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Abstract. The traditional models used to characterize animal home ranges have no
mechanistic basis underlying their descriptions of space use, and as a result, the analysis
of animal home ranges has primarily been a descriptive endeavor. In this paper, we char-
acterize coyote (Canis latrans) home range patterns using partial differential equations for
expected space use that are formally derived from underlying descriptions of individual
movement behavior. To our knowledge, this is the first time that mechanistic models have
been used to characterize animal home ranges. The results provide empirical support for
a model formulation of movement response to scent marks, and suggest that having relo-
cation data for individuals in adjacent groups is necessary to capture the spatial arrangement
of home range boundaries. We then show how the model fits can be used to obtain predictions
for individual movement and scent marking behavior and to predict changes in home range
patterns. More generally, our findings illustrate how mechanistic models permit the de-
velopment of a predictive theory for the relationship between movement behavior and
animal spatial distribution.
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INTRODUCTION

The analysis and description of home range patterns
has been central to understanding the ecology of many
mammalian populations. The relationship between pat-
terns of space use and the spatial and temporal distri-
bution of resources (Brown and Orians 1970), as well
as the consequences for social organization (Ruben-
stein, and Wrangham 1986), mating systems (Clutton-
Brock 1989) and demography (Clutton-Brock and Al-
bon 1985) have all been subjects of considerable the-
oretical and empirical interest. Moreover, there is in-
creasing evidence that animal spacing patterns play
important roles in determining the spatial distributions
of prey and competitors within animal communities
(Mech 1977, Paquet 1991, Creel 1996, White et al.
1996b).

Animal home ranges have been traditionally char-
acterized using a variety of statistical models (Mac-
donald et al. 1980, Worton 1987). The Minimum Con-
vex Polygon model (Odum and Kuenzler 1955, Jenn-
rich and Turner 1969) provides a simple estimate of
home range size. Density estimation models, such as
the bivariate normal (Jennrich and Turner 1969), har-
monic mean (Dixon and Chapman 1980) and kernel
(Worton 1989) models, provide more detailed infor-
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mation, characterizing the relative intensity of space
use in the form of a probability density function (PDF),
sometimes referred to as a utilization distribution (UD).
While these various statistical methods can provide
useful descriptions of home range data, they are of little
theoretical or predictive value because they have no
mechanistic basis underlying their descriptions of
space use.

The development and application of mechanistic
home range models offers a promising way to integrate
theoretical and empirical home range studies. In con-
trast to statistical home range models, mechanistic
home range models derive patterns of space use from
an underlying description of individual movement and
interaction behavior. As we hope to show in this paper,
fitting mechanistic models to empirical home range
data offers two important advantages over traditional
approaches to home range analysis. First, the results
of the model fits can be used to evaluate hypotheses
regarding the factors underlying animal home range
patterns. Second, the fitted models can be used to obtain
predictions for how home range patterns change fol-
lowing perturbation. In addition, since the parameters
reflect the behaviors of individuals, they can be verified
from field measurements of individual behavior (Moor-
croft 1997).

The origins of mechanistic models for animal move-
ment lie in the mathematical analysis of correlated ran-
dom walks, in which individual motion is characterized
as a sequence of movements at different speeds, ori-
entations, and turning frequencies. The term ‘‘corre-
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lated random walk’’ is used to indicate that the loca-
tions of individuals are correlated in time and that
movement rules are stochastic, specified in terms of
probability distributions of movement speeds, orien-
tation angles, and turning frequencies (Skellam 1951,
Skellam 1973, Okubo 1980). The recent development
of mechanistic models for foraging (Grunbaum 1996,
1998), aggregation (Gueron and Levin 1994), and home
ranges (Lewis and Murray 1993), suggests that mech-
anistic models are widely applicable in studies of an-
imal movement.

In this paper, we use a mechanistic home range model
for carnivores, proposed by Lewis and Murray (1993),
to characterize coyote (Canis latrans) home ranges in
the Hanford Arid Lands Ecological Reserve, Washing-
ton, USA. The model formulation reflects observations
that scent marking is the dominant, proximate mech-
anism indicating home range occupation in coyotes
(Gese and Ruff 1996) and many other carnivore species
(Brown and Macdonald 1985). Earlier analysis showed
that the model equations could be derived from two
simple rules for individual movement and scent mark-
ing behavior: (1) encounters with foreign scent marks
increase an individual’s probability of movement to-
ward the center of its home range, and (2) an individ-
ual’s rate of scent marking increases after encountering
foreign scent marks. Explicit mathematical scaling of
these individual rules yielded a partial differential
equation (PDE) for each home range, describing the
expected pattern of space use, coupled to ordinary dif-
ferential equations (ODEs) describing the spatial pat-
tern of scent marks (Moorcroft 1997).

Further analysis showed that solutions of the model
equations in two spatial dimensions resulted in home
range and scent mark distributions that are qualitatively
consistent with those observed in empirical studies of
carnivores (Lewis and Murray 1993, White et al.
1996a, Moorcroft 1997). Depending on the model pa-
rameters and spatial arrangement of home range cen-
ters, which for many carnivores corresponds to a den
site (or, in other cases, a core foraging area), the ex-
pected pattern of space use varies from exclusive, non-
overlapping territories to loosely overlapping home
ranges. Scent marking patterns also vary, both in den-
sity and spatial distribution, from cases where scent
marks are found mostly in the interior of the home
range to cases where the scent marks are concentrated
into peaks along home range boundaries (Moorcroft
1997).

In this analysis, we fit the Lewis and Murray (1993)
carnivore home range model to radio-tracking obser-
vations of individuals belonging to a single coyote pack
located at the center of the study area. We compare the
fit to that obtained with a simpler, mechanistic home
range model (Holgate 1971) in which individuals ex-
hibit a constant bias in movement direction. We then
characterize the regional pattern of home ranges at
Hanford and show how the model fits can be used to

obtain predictions for movement and scent-marking be-
havior.

MODELS

Constant bias in movement direction

Holgate (1971) proposed a simple mechanistic home
range model in which individuals moved on a square
lattice, exhibiting a constant bias in their movement
towards a home range center. An equivalent, continu-
ous space formulation can found in Lewis et al. (1997)
and Moorcroft (1997). Each home range i 5 1, . . . , n
(where n is the number of home ranges) is described
by the steady-state solution of a PDE for a probability
density function u(i)(x, y):

(i)]u
2 (i) (i)5 D¹ u 2 ¹ · (u c $x ) 5 0 i 5 1, . . . , ni]t (1)

that describes the expected pattern space use by an
individual, or pack of individuals, sharing a common
home range. At every point in space (x, y), the unit
vector xW indicates the direction of the home range cen-
ter, and ¹ indicates spatial derivatives (]/]x, ]/]y). In
Eq. 1, D indicates the strength of the random (diffusive)
component of movement, relative to c, the directed
(advective) component of movement, caused by indi-
viduals having an increased probability of turning to-
wards the center of the home range. Note that, as in
the original Holgate (1971) model, the magnitude of
directional movement c is simply a constant. The for-
mal connection between the two macroscopic param-
eters D and c and the properties of individual movement
are given in Eq. 4 (see Models: Movement behavior,
below).

Movement in response to foreign scent marks

In the carnivore home range model, first proposed
by Lewis and Murray (1993), directional bias in move-
ment arises as a result of encounters with foreign scent
marks. Each home range i is described by the steady-
state solution of a PDE for a probability density func-
tion u(i)(x, y, t) (i 5 1, . . . , n), that is coupled at each
point in space, to ODEs describing the accumulation
and decay of scent marks p(i)(x, y) within the region:

n(i)]u
2 (i) (i) ( j)5 D¹ u 2 ¹ · u c $x a p 5 0Oi[ ]]t j±i

i 5 1, . . . , n (2)

n(i)dp
(i) ( j) (i)5 u l 1 m p 2 mp 5 0O[ ]dt j±i

i 5 1, . . . , n (3)

where the spatial coordinates (x, y) describe locations
within a domain V representing the study area. The
explicit spatial dependency (x, y) of u and p has been
dropped for notational convenience.

In contrast to Eq. 1, where the directed component



1658 Ecology, Vol. 80, No. 5P. R. MOORCROFT ET AL.

of motion is constant, in Eq. 2 the local density of
foreign scent marks S p( j), j ± i, governs the strength
of directed movement. The coefficient a governs the
magnitude of directed movement per unit of scent mark
density. Note that Eqs. 2 and 3 are coupled: foreign
scent marks j influence the movement direction of in-
dividuals in pack i and the resulting space use by in-
dividuals in pack i, u( i); furthermore, the density of
foreign scent marks p( j) influence the rate at which i
individuals deposit scent marks at different locations
in space.

The spatial distribution of scent marks for each pack
arises from the accumulation and subsequent decay of
scent marks, as described by simple first-order kinetics
(Eq. 3). The rate of scent mark accumulation depends
on extent of space use by individuals in pack i and their
rate of scent marking. Individuals mark at a background
rate l, and increase their marking, at rate m, in response
to the density of foreign scent marks encountered p( j),
j ± i. Deposited scent marks decay at rate m.

Movement behavior

The parameters D and c in Eqs. 1 and 2 describe the
characteristics of individual movement:

` `

2 2c t f (c, t ) dc dtE E
0 01

D 5
`4

t f (c, t ) dtE
0

` `

ct f (c, t ) dc dtE E
0 01

c 5 . (4)
`2

t f (c, t ) dtE
0

The integrals in the numerators are, respectively, the
first and second moments of the joint distribution f(c, t)
of movement speeds c and times between turns t. In
both cases, the denominator is the mean time between
turns (Patlak 1953, Moorcroft 1997).

Nondimensionalization

Eqs. 1–3 can be nondimensionalized in the following
way. We make the following definitions:

x y D
x* 5 y* 5 t* 5 tm D* 5

2L L mL

ic al m p m
(i)c* 5 a* 5 m* 5 p* 5

mL m m l
(5)

where L is a characteristic length scale that is related
to the area A (L 5 A1/2) of the domain V (the study
area) over which the equations are to be solved.

The time scale for the system is now the rate of decay
of scent marks m. The scent mark density pi is non-
dimensionalized by scaling to m and the low-level scent

marking rate of individuals l. Making the substitutions
from Expression 5 into Eqs. 1–3, applying a steady-
state condition, and defining

D*
d* 5 (6a)

c*

D*
d* 5 (6b)

a*c*

for Eqs. 1 and 2, respectively, then dropping the as-
terisks, we get

(i)]u
2 (i) (i)5 d¹ u 2 ¹ · [u $x ] 5 0 (7)i]t

and
n(i)]u

2 (i) (i) ( j)5 d¹ u 2 ¹ · u $x p 5 0 (8)Oi[ ]]t j±i

n(i)dp
(i) ( j) (i)5 u 1 1 m p 2 p 5 0. (9)O[ ]dt j±i

Boundary conditions

Movement Eqs. 7 and 8 have associated boundary
conditions that describe the behavior of the solutions
at the boundary ]V of the domain V:

[d¹u(i) 2 u(i)xW i]·nW 5 0 (10)

for Eq. 7, and

n
(i) (i) ( j)d¹u 2 u $x p · $n 5 0 (11)Oi[ ]j±i

for Eq. 8, where nW is the outwardly oriented unit normal
to ]V. These are ‘‘zero flux’’ boundary conditions, in
both cases indicating movement and interaction in a
finite, self-contained region.

ANALYSIS

We performed two separate analyses. In the first anal-
ysis, we characterized the home range of a single pack,
the centrally located Hopsage Pack at the Hanford Arid
Lands Ecosystem Reserve (ALE). We compared the fit
of Holgate’s (1971) model, which assumes a constant
bias in movement direction (Eq. 7), to the fit obtained
using the Lewis and Murray (1993) carnivore home
range model (Eqs. 8 and 9), in which directional move-
ment arises from encounters with foreign scent marks.

In the second analysis, we used the Lewis and Mur-
ray (1993) carnivore home range model to characterize
the regional home range patterns at Hanford ALE, fit-
ting the model to relocation data for six contiguous
packs in the region. The results of the regional fit were
compared to that obtained in the single-pack fit and
then used to predict (1) the expected distribution of
scent marks across the region, (2) the spatial pattern
of directionality in individual movement, and (3) the
effects of pack removal for home range patterns within
the region.
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Data

For the model fitting, we used observations of coyote
home ranges collected at the Hanford ALE. The data
comprised radio locations of known individuals be-
longing to six contiguous coyote packs, in the western
portion of the ALE, collected by Crabtree (1989).
Weekly relocations were collected during December
1985–June 1987 from high accuracy triangulations
(0.58 error), recorded by two fixed monitoring stations
that had ‘‘line-of-sight’’ coverage over the entire 150
km2 study area; see Crabtree (1989) for details.

Model fitting

The home range models were fitted to the relocation
data by maximum likelihood. We used a log-likelihood
function l(u) to measure goodness-of-fit:

qn i

(i)l(u) 5 ln u (x , y ) (12)O O i j i j
i51 j51

where u is the vector of model parameters u( i)(xij, yij)
is the height of the probability density function (PDF),
for expected space use by pack i at point (xij, yij), given
by the steady-state solution of Eq. 7 or Eqs. 8 and 9.
(xij, yij) are the spatial coordinates of relocations for
individuals belonging to pack i (i 5 1, . . . , n, j 5 1,
. . . , qi), where qi is the total number of relocations for
pack i, expressed as Universal Trans-Mercator (UTM)
grid (x, y) coordinates. Because information on core
denning and foraging areas was not available, we as-
sumed that the centroid of the relocation observations
indicated the location of the home center.

The models were fitted to the data by maximizing
l(u) with respect to the model parameters u, using an
iterative maximization algorithm (Press et al. 1992).
For each set of parameter values u, Eq. 7, or Eqs. 8
and 9, were solved, and the relative goodness-of-fit of
the two models were compared, using changes in log-
likelihood Dl(u), which asymptotically follows a half
chi-square distribution, the number degrees of freedom
being given by the change in the number of model
parameters (Edwards 1992).

Solving for patterns of space use and scent marking

For the biologically realistic case of home ranges in
two-dimensional space, the home range model Eq. 7
or Eqs. 8 and 9 could not be solved analytically; hence,
they were solved by numerical simulation. We used the
Method of Lines (Schiesser 1991) to approximate the
PDEs given by Eqs. 7 and 8, discretizing the spatial
derivative terms to second order, and yielding a large
set of spatially coupled ODEs. The scent marking
ODEs (Eq. 9) were discretized onto the same spatial
grid used to discretize the associated PDEs (Eq. 8).
Using this method, all the models could be represented
by large systems of coupled ODEs.

The number of ODEs used to represent Eq. 7 and
Eqs. 8 and 9 is governed by the size of the simulation

region and the spatial scale used for discretization. We
simulated the model equations in a 12.5 3 11.0 km
domain, encompassing the relocation data, at a spatial
resolution of 100 3 100 m, since fine-scale approxi-
mations of the spatial derivatives were necessary for
accurate simulation of the PDEs in Eqs. 7 and 8. Due
to their flux-conserving nature (Press et al. 1992), we
solved for the steady state of Eqs. 7 and 8 by solving
the corresponding time-dependent equations. From a
prescribed initial condition of uniform space use across
the study area by all packs, we iterated the equations
to convergence, a procedure known as the Method of
False Transients (Ames 1992). The time integration was
done using a fully implicit method to solve the system
of coupled equations at each time step (Saad and
Schultz 1986, Brown et al. 1989, Byrne 1992). Further
details of the simulation and fitting methods can be
found in Moorcroft (1997).

RESULTS

Characterization of a single home range

Visual inspection of the home range fits shows that
the Holgate (1971) constant bias model (Eq. 7) pro-
duces a circular home range that gives a relatively poor
fit to the observed pattern of relocation data for the
Hopsage pack (Fig. 1a). In contrast, the fit of the Lewis
and Murray (1993) carnivore home range model match-
es the spatial distribution of relocations more closely
(Fig. 1b). The shape of the contour lines around the
home range center indicate that the shape of the prob-
ability density function (PDF) for expected space use
is influenced by the presence of neighboring home
range centers (Fig. 1b). Examination of the likelihood
scores for the two models (Table 1) shows that switch-
ing from a constant bias in movement direction (Eq.
7) to directional movement, induced by encounters with
foreign scent marks (Eq. 8 and 9), significantly im-
proves the goodness-of-fit to the relocation data
(Dl 5 62.6; p , 0.0001).

Regional range patterns

Fits of the carnivore home range model (Eqs. 8 and
9), to the relocation data for the six contiguous packs
at Hanford ALE are shown in Fig. 2. Compared to the
single pack fit (Fig. 1b), the regional fit of the carnivore
home range model to the centrally located Hopsage
pack suggests a more exclusive pattern of space use
(Fig. 2a). The inclusion of the relocations from the
surrounding groups into the model fits results in prob-
ability density functions (PDFs) for expected space use
that show increased platykurtosis, indicating a more
uniform intensity of space use within sharply defined
home range boundaries, beyond which space use de-
clines more sharply (Fig. 2b).

The carnivore home range model captures the spatial
pattern of home ranges across the region well, captur-
ing the location of the boundaries between adjacent
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FIG. 1. Contour lines showing the probability density function u(x, y) for the home range of the central Hopsage pack
at Hanford ALE obtained by fitting (a) Holgate’s (1971) model of constant bias in movement direction (Eq. 7) to relocation
data (●) collected by Crabtree (1989). (b) The Lewis and Murray (1993) carnivore home range model, in which directional
movement arises from encounters with foreign scent marks and individuals’ scent marks in response to encounters with
foreign scent marks (Eqs. 8 and 9). The contour interval is 2, in density units, scaled so that both the domain area A and
integral of u(x, y) are unity. Home range centers of the Hopsage pack and neighboring packs, as estimated by the centroids
of the relocation data for each pack, are shown (m). The fitting procedure is described in the text (see Models), and the
maximum likelihood values and parameter estimates for d and m are given in Table 1. Positions are indicated in Universal
Trans-Mercator (UTM) grid coordinates (east, north); axis scale numbers are in terms of millions of meters (i.e., 106 m).

TABLE 1. Details of the home range model fits (Figs. 1 and
2) to relocation data collected Hanford ALE.

Constant
bias

Single home
range

Regional
fit

No. of packs (n) 1 1 6
Equations 7 8 and 9 8 and 9

Parameter
d
m
l(u)

0.081
···

741.9

0.178
0.083
801.3

1.829
0.131
3106

qtotal 5 480 qtotal 5 2325

Notes: Parameter values and likelihood scores are given for
the fit of the Holgate (1971) constant bias model, Eq. 7, and
the Lewis and Murray (1993) carnivore home range model
(Eqs. 8 and 9). The single home range fits used relocations
collected on individuals belonging to the Hopsage pack. In
the regional fit, the Lewis and Murray (1993) home range
model was fitted to relocation data for the six contiguous
pack home ranges in Hanford ALE study area: qtotal is the
total number of data points used in each model fit qtotal 5
S qi (Eq. 12). In Eq. 7, d indicates the ratio of nondirectedn

i51

movement D to directed movement c (Eq. 6a). In Eqs. 8 and
9, d indicates the ratio of nondirected movement D relative
to the strength of directed movement c and the sensitivity of
directed movement to foreign scent mark density a (Eq. 6b).

home ranges (Fig. 2b). The degree of overlap between
neighboring packs appears to vary; the central Hopsage
pack home range has sharper boundaries where the
neighboring home range centers are in close proximity

(in the northeast section of the study area), while those
between more distant neighbors tend to be more over-
lapping (Figure 2b). Note, however, that the ability of
the model to describe observed patterns of space use
at the periphery of the region is limited. This is a result
of the exterior home range boundaries being set by the
‘‘zero-flux’’ boundary conditions for the edges of the
domain (Eq. 11), rather than as a result of interactions
with foreign scent marks of adjacent packs (Fig. 2b).

Model predictions

Since the spatial pattern of home ranges in the car-
nivore home range model arises from interactions be-
tween individuals and scent marks, the fits provide in-
formation about the expected distribution of scent
marks across the region (Fig. 3). The results of the
regional fit (Fig. 2b) suggest that, in the interior of the
domain, elevated concentrations of scent marks should
occur along the boundaries between neighboring home
ranges. In particular, high scent mark concentrations
are expected in the northeast section of the domain,
where three home range centers lie in close proximity
(Fig. 3). The absence of any high concentrations at the
periphery of the domain can be attributed to the absence
of interacting packs along these home range bound-
aries, which are governed by the boundary conditions
(Eq. 11).

The mechanistic nature of the home range models
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FIG. 2. Contour lines showing fit of the Lewis and Murray (1993) carnivore home range model (Eqs. 8 and 9) to relocation
data (●) for six groups at Hanford ALE collected by Crabtree (1989). As in Fig. 1, the contour interval for u(x, y) is 2, and
the home range centers for each pack are shown (m). The axis scales are in terms of millions of meters (i.e., 106 m). (a)
Home range of the central Hopsage pack. (b) Regional fit showing home ranges for all six groups in the study region (packs
are indicated by different colors). Maximum likelihood values and estimates for d and m are given in Table 1.

FIG. 3. Contour lines showing the expected regional
pattern of total scent mark density p(i) within HanfordnSi51

ALE study area, obtained from the fit of the Lewis and Murray
(1993) carnivore home range model (Eqs. 8 and 9) shown in
Fig. 2b. The axis scales are in terms of millions of meters.
Peaks in scent mark density are indicated (1). Scent mark
densities across the domain vary in the range 1.1–22.1 in
rescaled units (Eq. 9), as shown using a contour interval
of 1.

used in this analysis means that the model parameters
(Table 1), reflect the behavior of individuals that can
be verified with measurements obtained on movement
and scent-marking behavior. For example, in the Lew-
is and Murray (1993) model, directionality in indi-
vidual movement is caused by encounters with foreign
scent marks. From this, we can calculate distributions
of expected movement directions in different regions
of the study area. Earlier analysis (Moorcroft 1997)
showed that the distribution of turning angles K(f, x,
y) is given by

n1
( j)K(f, x, y) ø 1 1 a p (x, y)cos f̂ cosfO[2p j±i

n
( j)1 a p (x, y)sin f̂ sin f (13)O ]j±i

where is the direction of the home range center, andf̂
a is the sensitivity of movement direction to foreign
scent mark density, p( j)(x, y), both in nondimen-nSj±i

sional form. The model fit provides the values of the
scent mark density for each pack (see Eq. 9 and Fig.
3). The value of a, the sensitivity of movement direc-
tion to foreign scent marks, depends on d and the ratio
D/c (Eq. 6b). The value of d is estimated as part of the
model-fitting procedure (see Table 1), and an estimate
for D/c is provided by the single-pack fit of Eq. 1 in
which d 5 D/c (Eq. 6b). Alternatively, D/c can be
obtained from observed statistics of individual move-
ment using Eq. 4. Resolving the density of scent marks
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FIG. 4. (a) Surface height indicates the predicted spatial variation in the density of foreign scent marks p( j) encounterednSj±i

by members of the Hopsage pack in the Hanford ALE study region. The axis scales are in terms of millions of meters. (b)
Predicted distribution of turning angles K(f) in the regions around points P and Q labeled in Fig. 4a: f indicates movement
direction relative to UTM grid north. Around P, the turning distribution is relatively uniform, indicating that movement is
relatively nondirectional (isotropic). Around Q, the turning distribution is less uniform, indicating that movement is more
directional (nonisotropic). K(f) was calculated using the relationship between the density of foreign scent marks, p( j),nSj±i

and the distribution of turning angles (Eq. 13), using the value of 0.46 for a obtained using Eq. 6 and the values of d obtained
from the fits of Eqs. 7–9.

‘‘foreign’’ to a particular pack, p( j)(x, y) (Fig. 4a),nSj±i

then substituting into Eq. 13 along with the estimate
of a obtained from the single-pack fit, yields predic-
tions for the direction and magnitude of bias in move-
ment direction across the domain, expressed as distri-
butions of expected movement directions in different
regions of the study area (Fig. 4b).

In addition, as a result of the home range boundaries
being determined by packs responding to the presence
of foreign scent marks, the regional Lewis and Murray
(1993) model fit can be used to predict the conse-
quences of removing and introducing packs into a re-
gion. For example, before their removal, the central
Hopsage pack at Hanford had almost exclusive use of
the center of the domain (Fig. 2b). However, following
their removal, neighboring packs expanded their home
ranges into the unoccupied central region (Fig. 5a). In
addition, due to the reduction in the density of packs
in the study region, the home ranges of the remaining
pack became more overlapping (Fig. 5a). Accompa-
nying these changes in patterns of space use are
changes in the spatial distribution of scent marks (Fig.
5b). Following the removal, the peaks in scent mark
density present between the Hopsage pack and each of
its neighbors (Fig. 3) disappear; the scent mark peaks
between the remaining packs alter in shape and size as
patterns of space use by the remaining groups shift in
response to the removal (Fig. 5b). This is particularly
evident in the northeast region where the three ridges
of high scent mark density present before the removal
(Fig. 3) are replaced by a single ridge between two
remaining packs (Fig. 5b). In a similar manner to these
predictions following a removal, if the location of the

denning area of a newly introduced pack is known or
can be predicted, the model fits can be used to predict
the new arrangement of home ranges and patterns of
scent marks.

DISCUSSION

We have shown how a mechanistic model for car-
nivore home ranges, derived from simple individual
movement rules, can be directly related to coyote Canis
latrans home range relocation data. To our knowledge,
this is the first time a mechanistic, rather than a sta-
tistical, model has been used to characterize animal
home ranges. Our previous work had shown that the
carnivore home range model reflects the macroscopic
pattern of home ranges obtained by scaling two simple
rules describing individual movement and scent mark-
ing behavior (Moorcroft 1997). Furthermore, the so-
lution of the model equations produces home range and
scent mark patterns consistent with those observed in
empirical studies of carnivores (Lewis and Murray
1993, Moorcroft 1997). In this paper, we have shown
that the carnivore home range model can also be used
both to characterize empirical home range patterns and
to obtain predictions for individual movement and
scent marking behavior.

The results of fitting the model to the central pack
at Hanford provides empirical support for the charac-
teristic behavioral rules underlying the Lewis and Mur-
ray (1993) carnivore home range model. In particular,
the results of the likelihood analysis provide support
for a formulation in which foreign scent marks influ-
ence the movement behavior of individuals (Eqs. 8 and
9). This formulation provides a better fit to observed
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FIG. 5. (a) Contour lines show the predicted home range pattern at Hanford ALE following removal of the Hopsage pack.
The patterns of space use prior to removal are shown by the fitted probability density functions in Fig. 2b and the relocation
data (•) (this figure). The location of the former home range center of Hopsage pack (n) and the locations of the home range
centers of the remaining packs (m) are also shown. (b) Contour lines showing the expected new pattern of total scent mark
density following the removal of the Hopsage pack (the pattern of scent mark density prior to removal is shown in Fig. 3).
Peaks in scent mark density are indicated (1). Scent mark densities across the domain vary in the range 0.9–15.1, in rescaled
units (Eq. 9), shown using a contour interval of 1. Axis scales are in terms of millions of meters.

relocation patterns than Eq. 7, in which individuals
exhibit a constant bias in movement direction (Table
1).

The underlying formulation of the Lewis and Murray
(1993) carnivore home range model of movement in
response to the scent marks of neighboring packs re-
sults in home ranges whose size and shape are influ-
enced by the location of neighboring home ranges. This
effect, particularly apparent in the regional home range
fit at Hanford (Fig. 3b), contrasts with the biologically
unrealistic property of statistical home range models
and the constant-bias mechanistic home range model
(Holgate 1971), where home ranges are completely un-
influenced by the presence of neighboring ranges. The
mutual interdependency in home range size and shape
of neighboring packs captured by this formulation en-
ables the model fits to be used to predict the conse-
quences of pack introduction or removal (Fig. 5).

The shape of the probability density functions for
the regional fit at Hanford indicates uniform space use
by packs in the home range interior and well-defined
home range boundaries. Their shape implies relatively
exclusive territories, differing markedly from the typ-
ical distributions obtained using statistical home range
models, which are often inappropriately peaked and
have unrealistically long tails (Schoener 1981). Com-
paring the fits for the six contiguous packs (Fig. 2a) to
that obtained from fitting to a single group (Fig. 1b)
suggests that simultaneously fitting the model to re-
location data collected on adjacent groups results in a

much better characterization of home range boundaries,
capturing variation in the degree of exclusivity in space
use along different boundaries.

The ability of the carnivore home range model to
accurately represent home range patterns at the pe-
riphery of the study area was limited, due to the influ-
ence of the boundary conditions. If home ranges are
located in a restricted area, such as a steep sided valley,
specifying zero-flux boundary conditions (Eq. 11)
around an appropriately shaped domain will accurately
represent how these natural barriers to movement affect
home range patterns within the region. In cases such
as those presented here, where there are no apparent
landscape boundaries, the artificial influence of the
boundary conditions on home range patterns can be
mitigated by simulating the home ranges of adjacent
packs in addition to the home range(s) of interest. As
shown in Fig. 1b, it is not necessary to have relocation
data for peripheral packs. Simply specifying the lo-
cations of neighboring home range centers, and using
the model to simulate the movement and scent-marking
behavior of individuals in these packs, provides a meth-
od of predicting the position and shape of the home
range boundaries between the packs of interest and the
adjoining packs.

Just two parameters were used to describe the move-
ment scent marking behavior of individuals in all six
packs. The home range model (Eqs. 8 and 9), can be
modified to include other relevant details of home range
behavior, such as variation in group size, and the effects
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of additional orientation cues on individual movement,
such as resource availability and landscape heteroge-
neity (Moorcroft 1997). These more detailed imple-
mentations increase the numerical cost of model fitting
however, because the maximum likelihood fitting pro-
cedure (Eq. 12) involves repeated numerical simulation
of Eqs. 8 and 9 in two-dimensional (x, y) space for
different parameter combinations. For the simple two-
parameter model implementations presented here, it
was possible to solve the equations by the simple and
robust, though computationally intensive, procedure of
solving the corresponding time-dependent problem.
Further progress with more detailed implementations
of the model will require more sophisticated numerical
methods to solve the steady-state Eqs. 8 and 9 directly.

More generally, our analysis shows that a mecha-
nistic framework for home range analysis provides a
method for directly integrating theoretical and empir-
ical studies of animal home range patterns. Formulating
and applying models, in which predicted patterns of
space use are formally scaled from an individual-level
description of movement and interaction behavior, in
contrast to earlier descriptive approaches, provides a
methodology for directly testing hypotheses regarding
the factors governing home range patterns. This, in
conjunction with an ability to make predictions for in-
dividual behavior and changes in home range patterns
following perturbation, allows for the development of
a quantitative, reductionist understanding of animal
home range patterns.
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