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Abstract

This thesis provides a description of the cardiac rhythm as a latent chain of

heart sound arrivals which occur over time, where each arrival generates a

fixed window of observable data that can be described with arbitrary feature

functions. This description of the process produces tractable procedures for

inference of timing parameters and estimation of the most likely chain of ar-

rivals. It is shown that the central obstacle for accurate estimation is that

the timing of the arrivals for a particular subject will often differ substantially

from those of the pooled sample, often resulting in poor estimates. One of the

theoretical contributions of this work is a method for estimating the unique

timing parameters of the rhythm through the use of signal filtration applied

directly to the observed data. This technique is effective at modeling the dis-

tribution of these parameters for recordings with repetitious patterns in the

signal.



Preface

The overall goal of my research is to find effective ways of modeling long-
term history, or rather to model processes which exhibit a strong memory.

In this investigation I take both theoretical and constructive approaches:
a model is described, it is shown to exhibit certain essential properties, then
it is run on real data and comparisons are made. My goal is to extend this
path toward more theoretical justifications in the future, but for now I have
included a few derivations that are part of learning a model that can represent
correlations over time.

The bigger question of, “how does one model the current state of a history-
dependent process?” is narrowed to, “how does one model the interval dura-
tions between distinct events in the process?”. The answer is partially provided
by point process models in which the intervals are represented by independent
positive random variables. These questions typically turn up when a sound
recording captures a sparse set of events that are either well-separated in the
time domain or sufficiently easy to decorrelate from each other. This work’s
primary theoretical contribution is a method of describing the influence of a
point process on a continuous signal, such as one recorded and sampled by a
microphone or stethoscope.

The identification of heart sounds also demands such an answer. In this
task, the raw signal sounds produced by heartbeats vary substantially within
the population and are only so reliable at identifying the beats. An accurate
sense of the overall rhythm is sometimes the most predictive element that
can be used in the prediction of the individual beats. However, the two are
inextricably linked - the overall rhythm is dependent on the positions of the
beats, and the positions of the beats is easiest to estimate when one knows
the overall rhythm. The question of how to model this rhythm and to capture
its unique characteristics for individual subjects is thus the primary research
question of the current study.

I learned quite a bit about research, about memory, and about living while
writing this thesis. Only a small amount of that managed to make its way
into the document itself. The rest I have reiterated endlessly to my mother,



father, sister, aunt, friends, and my two supervisors. If the key to memory is
repetition then I have acquired a full ring.

Finally, I want to give my deepest gratitudes to Dr. Ian Adatia and to
Stollery Children’s Hospital both for the data used in this study and for hours
of invaluable consultation given during the course of its development.
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Chapter 1

Introduction

This work concerns the problem of automatically identifying and labeling
heart sounds in recordings collected by stethoscope from the four primary chest
listening sites used in cardiac auscultation. The motivation for this problem
comes from pediatric cardiology, where diagnosis of certain pathologies is more
difficult for infant patients e.g. because of the difficulty of having infants sit
motionless during cardiac MRI scans.

There are at two long-term goals in the larger scope of this project. The
first concerns the identification of a gap width between the two valve closures
that make up the second heartbeat, which normally beat synchronously and
with little or no audible delay between the two. This gap width, when present,
is often the consequence of a late pulmonary valve closure due to high blood
pressure in the pulmonary artery [20, 31]. The second concerns the probabilis-
tic modeling of the heart sound process in order to support general cardiac
auscultation for pathologies that are known to produce anomalous sounds. In
support of the long-term goal of providing machine-aided diagnosis tools for
auscultation, this thesis offers a method for modeling the heart sound and for
identifying the times of heartbeats within a stethoscope recording sequence.

The main contributions of this thesis are threefold.

• First, a method is provided for normalizing a signal or function so that
its local maxima become bounded. This method is used to remove the
large intensities that arise in certain feature map representations.

• Second, an approach is described for learning and inference with marked
point processes and feature representations of observed data. This method
produces an estimate of the chain of heartbeats and their arrival times.

• Third, a filtration approach is presented which can find reliable param-
eters describing a patient’s unique heart sound rhythms without having
to know the exact positions of the beats in a recording.
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In addition, this method offers a means by which several subject recordings can
be combined to produce a more reliable estimate of the distributions associated
with the valve closure timings.

In the experimental portion of the thesis, two empirical evaluations are
given. The first is a statistical analysis that examines the suitability of var-
ious distributional models for the intervals that lie between the beats. The
second is an empirical evaluation of the set of predictors that are developed
using the methods herein. The predictor variants are evaluated using mea-
sure(s) referred to as the continuous precision-recall scores. These measures
provide the analogous precision-recall score for classification tasks in which a
machine-labeled region or segment may exhibit partial overlap with the region
containing the true label. In this case, the classifier’s performance on con-
tinuous precision and recall will vary in a way that is analogous to standard
precision and recall curves, and the results can be compared while varying
some parameter of interest.

The experimental section and overall thesis then concludes by summarizing
the main points learned about heart sound analysis with respect to the algo-
rithms and methods presented, including some thoughts on future direction in
automatic diagnosis.
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Chapter 2

Background

The majority of heart sound research might be partitioned roughly into two
main categories. One category, heart sound identification concerns the task of
identifying locations or regions of a sound signal that are associated with dis-
tinct cardiac events such as the onset and duration of the first or second heart
sound (hereafter abbreviated by S1 and S2), murmurs, the diastolic interval,
or the clicks and pops associated with valvular defects. The second category,
heart sound representation concerns the task of transforming the sound sig-
nal into a numerical representation (typically vector-based) that facilitates the
previous identification task. The problem of identifying heart sounds is some-
what more demanding than representation because solution correctness can
be defined more precisely for the former problem. An important consideration
of these studies is that they operate almost exclusively with the output of a
phonocardiograph (PCG) and a set of contact sensors which provide a very
noise-free sound signal. Often this sensor technology is complemented with an
electrocardiogram (ECG) and/or carotid pulse sensor that is used to “gate”
the sound signal and to provide a segmentation aid for determining the cardiac
phase.

One of the inconveniences of working with recordings made by electronic
stethoscope is that most research in the area of analyzing heart sounds has
been with the phonocardiograph, often with an ECG signal which provides a
pulse and a means of registering the signal to the cardiac cycle. Because of
this, much research with heart sounds [21, 49, 22, 43, 32, 48, 19, 7] is conducted
with ECG, either as an input feature or as a method of labeling the training
data. Relatively few use the sound itself as the only data [33, 25, 38, 15] and
these predominantly use the phonocardiograph to collect input. The problem
of identifying the sounds becomes easier with ECG because this signal provides
a landmark with which to register the cardiac cycle. The R-wave1 peaks of
the ECG signal denote the onset of the systolic interval and arrive shortly
before the S1 beat [19]. Given the ECG signal and in particular the peak of

1This is usually the dominant peak in the ECG signal in a healthy patient.
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the R-wave, identifying S1 from S2 becomes a trivial task. That said, there
are very few existing methods which identify S1 and S2 for a wide variety of
pathologies.

Some of the earliest works in the area of heart sound analysis examined
the representation of the signal from a purely visual perspective (see Obaidat
[37]). This type of study is still of interest as it is becoming more common
for clinicians to visually inspect the signal during diagnosis (see Kudriavtsev
[29]). Indeed, the rise in availability of electronic stethoscopes should make it
more common for the physician to use a computer in diagnosis.

Early attempts to the identification problem in the 1990s relied on a scalar
“energy” feature that is thresholded in order to identify regions containing the
heartbeats. These methods often relied on hand-tuning of threshold values
and fixed algorithms to perform identification. For example, Liang et al. [33]
perform PCG heart sound identification using the normalized Shannon energy
and thresholding to identify candidate beats, followed by a fixed rejection
algorithm to identify certain beats as false positives. Later, Haghighi et al.
[21] used the power spectral density of a target sub-band in an autoregression
model of the raw PCG signal. This method is notable as one of the first to
“learn” parameters (here, of the autoregression model) in order to solve the
identification problem.

Another attempt to solve the identification problem with no help from ECG
came from Hebden and Torry [22] who used a neural network to identify the
start and endpoints of S1 and S2 within a recording sequence. That is, their
method treated the problem as a segmentation task. Although their method
relied on ECG to produce correct labelings for training data, it adopted the
strange practice of using performance on test data to determine the stopping
criterion of the training procedure. Still, this attempt stands out as one of the
few that has looked exclusively at the task of identifying S1 and S2. Despite
the innovations made in this work, the feature set used to represent the in-
put was seemingly ad-hoc and not motivated by the physics or physiology of
the sound. Additionally, the authors do not reveal the topological structure
or configuration of their segmentation network, making the method irrepro-
ducible.

It should be noted that most solutions to the identification to this point
take the form of segmentation tasks, where the S1 and S2 beats are represented
by bounds which surround regions of variable length.

As computing power grew in the early 2000s, identification methods based
on time-frequency (TF) representations flourished, bringing with them higher
dimensionality and a need for numerical efficiency that could not be satisfied
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with hand-tuned algorithms. It is in this setting that learning and optimization
techniques started to become more popular for heart sound analysis. For
example, the Morlet wavelet representation was used by Rajan et al. [38] as
an input representation to a simple perceptron that was trained to identify the
two major heartbeats as well as clicks and pops and other types of stethoscope
noise. The TF representation allowed the authors to make explicit use of
frequency information to distinguish the first and second heart sounds from
other noises such as murmurs. Further exploration of TF representations was
done by Wang et al. [48] while looking specifically at the S1 heart sound and
using Mallat and Zhang’s matching pursuit algorithm [34]. This is perhaps the
earliest attempt to “learn” a numerical representation of the heart sound rather
than supply it with hand-tuned features or those computed directly from the
signal via filter bank. Another major stride was a pair of studies by Xu et al.
[50, 51] which use a TF representation of the S2 heart sound as a raw signal,
but characterize the source of the observed signal as a parameterized chirp
whose phase function is modeled using a high-order polynomial and whose
amplitude is found by solving a least-squares problem. It is during this time
that researchers began to study the time-frequency “signatures” of specific
cardiac events as a separate research goal, and indeed the last four papers in
this category were structured around this approach.

The Xu et al. articles highlight a major research step in the realization
that the relatively complex TF representations could be viewed as the “ob-
served result” of a much simpler yet hidden source model. This view moti-
vated the study of generative probabilistic models and was followed by Gamero
and Watrous’ study [19] using hidden Markov models (HMM) to model the
PCG output represented by its Mel-frequency Cepstrum Components [14]. Al-
though this study found a very low rate of error, their method is applied to
a relatively noise-free PCG signal and uses ECG gating to produce reliable
predictions. It is also noteworthy that commercialization of heart sound iden-
tification software started to become more visible at this time, and indeed the
former authors submitted their work on behalf of a corporation2 rather than
an academic research institution.

Although many of these studies report high rates of success, no controlled
study has been done comparing the methods on a common data set. Further-
more, nearly all of the work done in heart sound analysis has been done as a
form of phonocardiography (which technically includes stethoscope sounds but
classically refers to the relatively less noisy output of the phonocardiogram).
Less work has been done on the subject of automated auscultation, which is
the act of diagnosing a patient using the sounds heard via stethoscope. The
modern digital stethoscope uses a single microphone and produces a relatively
noisy signal compared to the set of contact sensors that are used by PCG.

2Zargis corporation.
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The lower signal to noise ratio makes the identification problem slightly more
difficult in this setting, and also further motivates probabilistic methods for
the purpose of making robust predictions. Of the studies mentioned above,
only the Gamero & Watrous study attempted to model the inputs using prob-
abilistic methods (e.g.: using a density function and/or distribution function).

Despite the shortcomings of the stethoscope as a measurement device, it
is still more commonly used than PCG as a diagnostic tool due to its ease of
use, low cost, and portability. Although one might argue that identification
of heart sounds via PCG is a solved problem, (and even more so with the aid
of ECG to gate the cardiac phase) the presence of noise and the reliance on
a single sensor make the identification problem still somewhat difficult when
using the digital stethoscope.

This work contrasts with previous works by focusing exclusively on sounds
collected by digital stethoscope rather than PCG, and does not rely on ECG
gating to obtain markers of the cardiac phase. The model is also more ad-
vanced than earlier attempts in heart sound modeling in that it attempts to
account for individualistic variation in the input patterns. There are two major
theoretical foundations for the current work. From the literature in stochastic
processes, there exists a class of models known as point processes which are
well-suited to modeling “instantaneous” sequences of sparse events in the time
domain. From applied harmonic analysis, one can obtain a wide variety of
harmonic representations that provide a time-frequency feature appropriate
for detecting the subtle changes in the tone and pitch of a sound recording. A
quadratic filter known as the pseudo-Wigner Ville distribution (PWVD) has
been selected on the basis of past application to heart sounds [29].

2.1 Point processes

Where automated diagnoses are concerned, there is some value to modeling
predictions of health or biological “state” with probability theory. The ability
to determine a level of confidence is especially important in these cases; and
it is unavoidable that the signals collected contain some amount of noise. It is
therefore beneficial for a diagnostic program to be able to emit its diagnoses
in a way that communicates the uncertainty associated with the prediction.
This is necessary in order for physicians to position the automated diagnosis
in the context of partial information and classical clinical protocols.

The probability model used here to model the unknown times of the heart-
beats is known as a point process [13]. This type of process describes a set of
instantaneous points embedded in time called arrivals, each of which occurs
at a precise instant known as the arrival time. The model provides a means
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to model the time intervals between the arrivals explicitly using positive dis-
tributions. Here, we assume that the time intervals between the arrival times
(known as waiting times) are independent and identically distributed.

The use of explicit potentials to model these intervals makes point processes
distinct from the related Bernoulli-Gaussian processes (BGPs) [27]. BGPs
treat observable real-valued observations as a Gaussian process conditionally
dependent on a sequence of discrete labels which are latent. BGPs use a state
space model that is based on random impulses, though these impulses are
modeled as i.i.d. for every time step in the sequence and the times between
the impulses are not modeled explicitly. Variants exist in which the observable
sequence is a Gaussian mixture model whose component is determined by the
hidden label [17]. Other related models include:

• hidden Semi-Markov models (HSMMs) [35, 54]: the hidden state is a
discrete label whose value is sustained over a sequence of time steps of
random length.

• jump-Markov linear systems (JMLSs) [44, 16]: the hidden state is a
discrete label and the observed variable is determined by a linear system
whose parameters are selected by the hidden label.

Subtleties of the state space make these models inappropriate for heart
sound detection. The JMLSs use a real-valued state space that is influenced by
a Bernoulli sequence. This formulation does not explicitly model the interval
times between the “impulses”, which are treated as i.i.d. and are drawn from a
distribution over positive numbers. Under the i.i.d. assumption, these intervals
must be exponentially distributed and so they do not accurately represent the
dynamics of the cardiac cycle. The HSMMs do allow for explicit modeling
of the sojourn time, or the time spent in a discrete hidden state. Here, it is
difficult to specify an observational model for heart sounds that is structured
around discrete “states” and can accomodate non-independent sequential data
of arbitrary length.

A simple point process (SPP) can be thought of as a sequence of arrivals
Q = 〈qi〉i with q denoting an arbitrary element in the set. Each arrival is
associated with a sequence of positive real-valued scalar random variables rep-
resenting the arrival times T = (T1, T2, ...) which are monotonically increasing.
An assignment of the random variables in a point process (whether considered
full or partial) is referred to as a configuration.

Formally, a general point process can be thought of as the space of all
measurable sequences defined over a more fundamental measure space. For
an elegant treatment of general point processes in algebraic terms, see [5]. A
more concise set of notation is given here. Let S be an arbitrary set, so that
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(S,B, µ) is a measure space. Then (S,F , µ∗) is the measure space of finite
sequences of elements of S, with:

S = {t1, ..., tK | ∀i : ti ∈ S, K ≥ 0} (2.1)

The ordering of the elements within a subset is normally not relevant and one
can define processes over joint time and space domains where S is multivariate.
However for point processes in the time domain i.e. S = R++, it is appropriate
to impose the monotonicity constraint ti < ti+1 for all i. Normalization of the
measure λ via 1/λ(S) yields a probability space over finite configurations of
points. Then the following conditions apply, taken from [24]:

P(0 < T1 ≤ T2 ≤ · · · < Tq) = 1 (2.2)

P(Tq < Tq+1, Tq <∞) = P (Tq <∞) (2.3)

P
(

lim
q→∞

Tq = ∞
)

= 1 (2.4)

I.e.: the arrival times are treated as positive random variables, with eqn.
2.4 stipulating that only finitely many arrivals can occur within a finite time
interval. (To see this, try assuming that an infinite number of events occur
within a finite time interval; one can then immediately derive a contradiction
by showing that the Tq is finite in the limit). The waiting times are denoted
Zq = Tq − Tq−1.

When a simple point process is defined on a temporal domain such as
R,R++, or N, an alternative representation can be given in terms of its waiting
times Zq = Tq+1 − Tq and the time of the first arrival T1, i.e.: (T1, Z1, Z2, ...).
The probability space associated with the point process can be defined by
providing distributions for these variables, which are defined over the positive
real numbers. One of the simplest and most commonly found definitions given
for such a distribution treats these variables as independently and identically
distributed exponential random variables; a Poisson process.

Other representations exist which provide greater flexibility over the proba-
bility of witnessing a single (unique) arrival conditioned upon arbitrarily many
other arrivals within the process or in parallel processes. For example, it is
possible to define an intensity function λ(t) as follows:

λ(t) = lim
h→0
P( ∃!q : t < Tq ≤ t+ h )/h (2.5)

Note that the uniqueness of this event precludes the possibility that two ar-
rivals occur in the period (t, t + h). This notation characterizes the intensity
function as a predictor of a single arrival rather than than as a predictor for
the time course that contains it. The intensity function representation is useful
when the times of the arrivals is conditioned on self-excitation of the process
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by previous arrivals [42, 4]. This is particularly true when the point process
is expressed in terms of its filtrations.3 Roughly speaking, filtrations are his-
torical segments of the original process defined on left-connected subsets4 of
the original fundamental measure space. That is, they provide a view of the
history of some process relative to an arbitrary point t. In this context, the
intensity function can be used to predict the probability associated with seeing
a future event after time t for very small distances into the process’ future,
conditioned on the history preceding t.

The intensity function can also be defined in terms of another point pro-
cess [3], or in terms of points scattered in another space [45]. Both of these
approaches would be suitable for future investigations into modeling heart
sounds. For example, if one considers the other constituent sounds that make
up the heart sound recording (murmurs, clicks & pops, fluid flow) as well as
other processes which excite or mitigate the cardiac cycle (respiration) it is
readily apparent that heart sound recordings taken from a clinical population
might benefit from the application of such complex models. For simplicity,
only a single process is employed to represent the cardiac rhythm in the cur-
rent study.

The use of a single SPP has been used recently to model the “instantaneous”
heart rate of a patient using ECG inputs [1, 8, 7, 10] and previously using the
electromyogram [41]. In their application, the heartbeat times are known and
the inference task is to determine time-dependent parameters of the interval
distribution throughout the recorded sequence. Here, the inference task is
somewhat simplified by the presence of known heartbeat times; the parameters
of the point process can be computed directly by taking the waiting times from
a labeled recording as i.i.d. samples from the related distributions.

One extension to the above is the marked point process (MPPs) [30]. An
MPP is a simple point process augmented with a set of random variables for
each arrival X = (X1, X2, ...) called marks that are members of an arbitrary set
Xq ∈ E. The mark space E is completely arbitrary, e.g.: R,N, or a finite set
of labels. In the classic treatment of the MPP, the mark set is augmented with
a special mark called the irrelevant mark denoted ∇, so that Ē = E ∪ {∇}.
This extra member allows Q to be countably infinite, with:

P(Tq = +∞, Xq = ∇) = P(Tq = +∞) (2.6)

so that the probability space can still represent sequences of finite marked
events. In the following work, the mark space E is simply treated as a finite

3This use of the word filtration concerns a concept defined more precisely in the stochastic
process literature. See [24] for more information. We do not examine in more detail here.

4A left-connected subset is a connected subset that contains the infimum value of the
original set. The set functions for the sets used in filtrations are “càdlàg” (continue à droit,
limite à gauche). They are continuous on the right and contain their limits on the left.
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set of labels (the two heart sound types) and the arrival times are strictly
increasing Tq+1 > Tq.

The typical use of the MPP is to characterize heterogenous processes that
occur sparsely in some domain [6, 9]. Our application to heart sound iden-
tification fits this description: there is a small, finite set of beats which can
be assigned to the mark set, the observed data are sampled at a high rate,
and the duration of each beat can be characterized as an instantaneous point
which is the “center” of the sound generated by the heart valve closures for
that beat. What remains is to describe the influence of these marked points on
the observed stethoscope recording. For this, there exist contemporary signal
processing methods which can be integrated with a point process model to
produce a coherent probability model for heart sound analysis.

2.2 The pseudo Wigner-Ville distribution

In order to estimate the locations of the heartbeats, a feature representa-
tion must be used that can express variation in the frequencies present in the
signal in a time-varying manner. For this purpose, a variety of harmonic repre-
sentations have been considered for the phonocardiogram which may serve in
the analysis of stethoscope recordings. These include the short-time Fourier
transform [15, 39, 40, 52], a variety of wavelet transforms [25, 43, 52], and
the Wigner transforms [39, 40, 49]. It is a frequently cited fact in the above
studies that the short-time Fourier transform does not possess sufficient res-
olution to reveal the pair of valve closures that make up each heart sound as
distinct events. In the case of the Wigner transform, proper resolution of the
valve closure sounds often depends on correct setting of a scale parameter,
although this value can vary from patient to patient, between recordings, or
even between cardiac cycles themselves [32].

The pseudo Wigner-Ville distribution (PWVD) is a member of Cohen’s
[11, 12] class of distributions. It provides a time-frequency representation in
the form of a complex-valued feature map. This feature map provides an
intensity value for every time, frequency pair in a compact plane.

Φ(t, f) =

∫
x(t− τ)∗x(t+ τ)h

( τ
σ

)
exp {−2πifτ} dτ (2.7)

The window function h(τ) is a scaled Gaussian function with scale parameter
σ. The distribution is usually calculated for a uniformly discretized grid over a
region of finite length and frequency range. Typically, the modulus of the result
is used as a feature input and the phase component is discarded: |Φ(t, f)| ∈
R+. This provides a representation that is real-valued and non-negative.
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The strength of the PWVD is to characterize the distribution of frequency
components “contained within” the energy of the signal. The semantics of the
term “distribution” here are intended to reflect a semblance to the dispropor-
tionate allotment of mass in a probability distribution, but does not carry the
mathematical denotation associated with its use in probability theory.

In heart sound analysis, the largest values of the PWVD representation
tend to be well separated from mean values; this behaviour is characteristic of
sounds captured by stethoscope. If these values were to be used as features, the
peak values would tend to dominate in certain calculations, i.e.: convolutions
and filtration operations that rely heavily on summation. In heart sound data,
the most interesting parts of the time-frequency representation are the beats,
which tend to produce localized maxima and loosely connected regions that
contrast sharply with the ambient noise floor. In a given recording, these
peaks do not tend to remain in the same intensity range. Rather, the local
peaks in the time-frequency representation can fluctuate wildly and it is not
uncommon to see a dominant beat type whose signal energy is one hundred
times greater than that of the more diminutive beat type. At the same time,
the general shape or spectral signature of a heartbeat type tends to remain
somewhat consistent throughout the recording.

The PWVD has been proposed for use in auscultation in the past [29]. Its
primary advantage is high time-frequency resolution, though the filter tends
to produce a distinctive pattern of rippling artifacts as consequences of the
quadratic filter response. With the correct choice of scaling parameter, the
PWVD provides high contrast between regions of relatively high and low signal
intensity.

The ripples are a consequence of the quadratic filter’s differential response to
the phases of the basis function for each frequency band.

A central difficulty involved with the use of time-frequency representations
such as the PWVD is that of achieving high resolution of a pure signal. When
a pure sine wave at frequency f is converted into any particular time-frequency
representation, the PWVD responds at nearby frequencies f ± δ due to the
similarity among the neighbouring frequences. This phenomena occurs across
a wide variety of harmonic representation classes, and is dubbed the Gabor
uncertainty principle [18]. Significant research effort has been devoted to cir-
cumventing this limitation. While it is known that the PWVD is not able to
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resolve the split in the gap between the valve closures in the first or second
heart sound [36], it suffices for identifying one heart sound from the other.

Before using the PWVD representation as input to an algorithm, its values
are scaled using a normalization method developed in Section 3. This method
bounds the values of the features and eliminates some of the widely varying
peak intensities that can occur in the course of a heart sound recording, while
preserving the contrast necessary to identify each beat.
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Chapter 3

Signal Scaling

For signal data that are acquired by recording natural sounds (e.g.: speech,
music, heart sounds) the signal energy |s(t)| typically obeys a heavy-tailed
distribution1. When filtration methods are used to transform the signal from
its waveform representation to a new representation (e.g. a time-invariant
functional or time-frequency feature map) these large amplitudes are often
transferred to the new representation. As a result, a number of undesired
consequences can occur. For example, the maximal values in the new repre-
sentation can mask or overshadow each other if they occur in close proximity
to one another and yet have differing magnitude.

In order to deal with the influence of large changes in intensity that are
produced by heart sound recordings, a simple method is offered for scaling a
function that preserves the structure of its local maxima while bounding the
range of the map without introducing discontinuities (e.g. from less elegant
strategies such as truncation). The main idea behind this method is that the
feature map is differentially scaled so that its local maxima attain the value
f(x∗) = 1 while the curvature, contrast, and overall shape of the function are
approximately preserved.

Intuitively, the distance from a maximal point should help determine how
the function is scaled; in this way, the maxima themselves can be scaled in
relation to one another should they occur in close proximity. Our solution in
algorithm 1 will therefore provide an answer to the question of what consti-
tutes locality when considering a maximal point, and how should neighbouring
maxima be viewed when they are close to one another.

Consider an arbitrary feature function φ[x] defined over the joint feature-
time space, where x represents an instant in time and φ[x] ∈ RM

+ . The maximal

1Informally, this means that the corresponding density function converges to zero
“slowly”. As a result, a larger portion of the probability mass is located away from the
modes of the distribution and by a larger distance than a distribution that is not heavy-
tailed.
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points of the map are used in conjunction with a symmetric kernel k(x, x′)
(e.g. a Gaussian kernel). Note that it is desirable to have k(x, x′) ≤ 1 and
k(x, x) = 1 in order to produce the condition given below in eqn. (3.1). In the
context of the PWVD features discussed in the previous section, the notation
can be interpreted to mean that φ[x] and h[x] represent vector quantities, e.g.:
φ[x] = Φ[x, :]. (Here we use the MATLAB-like notation “:” to denote all
indices in the second dimension of the array Φ). In this case, the scaling is
performed component-wise.

Algorithm 1 [ φ ] = relative scaling( φ, ν, k(·, ·) )

for all x ∈ domain(φ) do
h[x]← ν

end for
M ← local maxima of φ[·]
for all x′ ∈M, x ∈ domain(F ) do
h[x]← max(k(x, x′) · φ[x′], h[x])

end for
for all x ∈ domain(f) do
φ̄[x]← φ[x] / h[x]

end for

The algorithm makes use of the map h to store a scaling factor for every
point in the map. This scaling factor is defined by multiplying each maximal
value of the map by a Gaussian kernel function that is centered on that point.
Initializing h[·] with a small value ν > 0 prevents division by zero and ensures
that only neighbourhoods with significant maxima (e.g. those above β) are
considered. For example, a typical pre-processing step is to first scale the
feature values so that their mean value across the entire recording is equal
to 1, and correspondingly to set β = 1. In this way, “small” maxima are
effectively ignored.

Since the scale factor for a maximal point x∗ is its own value φ(x∗), maximal
points will be reassigned the scale factor φ(x∗) = 1:

φ̄[x∗] =
φ[x∗]

max
x

φ[x]
= 1 by definition (3.1)

provided that no other maximal points are sufficiently close and sufficiently
large. The kernel function k often has a horizontal scaling parameter which
controls the tradeoff between closeness and function value. Here, a wider
kernel function will produce a more discriminating comparison between any
two maxima at the same distance, or the same level of discrimination at a
wider distance.

14



Figure 3.1: A 2-dimensional “signal” before and after using the relative scaling
operation. Note that only the extremal values are actually bounded at f(x∗) ≤ 1.0.
It is still possible for the function to exceed this value after the transformation.
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Chapter 4

A Modification to Marked Point
Processes

The mathematical model for the following modified marked point processes
can be described by three sets of variables denoted by the tuple (Y,X,T).
The first set of variables Y = 〈Yt〉t∈I are a sequence of real-valued feature
vectors subscripted by a time index. These values are the “observed” part of
the model; the other values are latent and represent a marked point process.
In heart sound modeling, these values represent time-dependent feature values
that are a function of the input recording. The variables T = 〈Tq〉q∈Q are the
arrival times, and the variables X = 〈Xq〉q∈Q are discrete labels (marks) that
provide a hidden state representation.

The observed random variables Yt are typically a vector of time-frequency
features computed directly from a discrete signal, but in practice they can be
any feature vectors as long as a conditional density can be provided that is
conditioned on the time and type of an arrival. With heart sounds, the time-
frequency representation can be sampled at a rate that is a lower multiple
than the discrete signal. For example, for observed data Yt = yt, the vector of
features is computed using yt = Φ[ t

n
, :], where Φ is a suitable time-frequency

representation such as the PWVD.

The indices q ∈ Q refer to a single arrival in a chain of length |Q| where
Tq ∈ I . The subset of the observed variables that are influenced by these
arrivals is YT , and the subset of observed variables influenced by a single
arrival is YT q ⊆ YT Although this definition subsumes a wide variety of
generative observational models, the principal configuration used here is that
YT refer to those variables that are w-proximal to some arrival in the chain.
Formally, w-proximality is defined as:

YT = {yt
∣∣ ∃q : |Tq − t| ≤ w} (4.1)

for arbitrarily chosen w. I.e.: T is a qualifier designating the set of indices
q that meet the construction in eqn. (4.1) In order to maintain tractability,
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it is assumed that there is at most one arrival that influences an observation
at any time step, i.e.: [q 6= q′] ⇒ [YT q ∩ YT q′

= ∅]. This simplification
makes the current approach different from classical treatments of the point
process, where the generative view of the model stipulates that new arrivals
are the product of an ambient intensity rather than presuming the existence
of a deterministic chain whose arrivals are consequences of those before them.
Without this simplification, the computation of arrival likelihood becomes a
problem of deconvolution that becomes very difficult as one considers large
numbers of overlapping events.

4.1 Probability model

The variables form a joint density/mass function that factorizes as follows:

P(Y,X,T) = P(Y|X,T)P(T|X)P(X) (4.2)

This factorization is valid under the assumptions:

• That a heartbeat’s time and type is independent of all other heartbeats
in the chain given only the time and type of the beat preceding it.

• That the observations are conditionally dependent on the times and types
of all the heartbeats.

• That the sequence of heartbeat types is entirely deterministic.

Under the assumption that the event types Xq form a Markov chain, eqn.
(4.2) can be factorized further. Numbering the arrivals from 1 to |Q|, and
treating X0 and T0 (i.e.: q = 0) as placeholder notation for an arrival that
preceded the first arrival the chain, the mark distributions can be written:

P(X) =
∏
q∈Q

P(Xq

∣∣Xq−1) (4.3)

...where P(X1|X0) can be either an “initial label” distribution over the la-
bel types, or it can be a steady-state distribution that is consistent with the
stochastic matrix that describes P(Xq

∣∣Xq−1).

Under the assumption that the waiting times are i.i.d., the arrival times
can be factored as:

P(T
∣∣X) =

∏
q∈Q

P(Tq
∣∣Tq−1, Xq, Xq−1) (4.4)

Note that the arrival times are easiest to model via the waiting times Zq =
Tq+1−Tq. This density can be represented by a function over a positive variable
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that represents the interval between the two arrivals, i.e.: for some pair of label
types Xq+1 = b,Xq = a. For q > 1,

P(Tq|Tq−1, Xq, Xq−1) ∼ P(Tq − Tq−1|Xq, Xq−1)

= P(Zq−1|Xq, Xq−1) (4.5)

This motivates the following density function, which captures the waiting time
in terms of neighbouring arrival times:

fab(z) = fab(t
′ − t) = P(Tq = t′

∣∣Tq−1 = t,Xq−1 = a,Xq = b) (4.6)

i.e. fab : R++ → [0, 1]

Here, fab can be used to define the probability for any positive length interval
between successive arrivals with labels a and b.

Recall the observed variables that depend on an arrival q are YT q and that
these are by requirement w-proximal to Tq. Also consider that since a given
observation can depend on at most one arrival, the arrivals must be spaced
apart by at least 2w. This implies that the chosen value of w will shape these
density functionals; specifically for x ≤ 2w, fab(x) = 0 in order to prevent the
arrivals from influencing the same observed variables Yt. An obvious solution
is to apply a non-negative distribution that is shifted horizontally by +2w,
meeting the above requirement.

In practice, the source of the arrivals producing the observable data may
extend beyond the start and end of the recorded signal. In this case, extra
factors must be introduced to account for the gaps between the first and last
arrival near the edges of the recording. The need for these factors is illustrated
in figure 4.1.

Recall that the joint probability model captures only a finite chain of vari-
ables even though the chain of arrivals extends backward and forward in time
past the bounds of the observed variables. One might presume an arrival time
T0 < 0 for some precursor arrival that occurred before the start of the recorded
signal, and similarly an arrival T|Q|+1 > L that arrives after its end. So, the
first factor in eqn.(4.4) models the probability of seeing the first visible arrival
at time t given that some arrival preceded it and occurred before the start
(t′ = 0) of the sequence.

To express these factors, a distribution function is created by conditioning
on T0 < 0 and integrating the appropriate density function for the waiting
times:

P(T1 = t
∣∣ T0 < 0, X0 = a,X1 = b) =

∫ ∞
t

fab(x)dx (4.7)
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start of recording end of recording

improbable

Figure 4.1: The configuration on the top shows a typical recording sequence whose
start and end fall in between some pair of arrivals in an infinitely long chain. What
is needed is a way to account for the waiting time between any unseen arrivals
occuring outside the recording and those producing observable patterns within it.
Without taking this waiting time into consideration, it is possible to assign a high
probability to a chain with unlikely waiting times near the start and end of the
sequence. This would be the typical outcome of inference about the best chain of
arrivals since a smaller chain of arrivals would in general produce a smaller total
log-likelihood values.

This allows us to marginalize over X0, T0 instead of conditioning on these
variables:

e.g. for P(T1 = t
∣∣ X1 = b) (4.8)

=
∑
a

P(T1 = t
∣∣ T0 < 0, X0 = a,X1 = b)P(X0 = a)

=
∑
a

[
1−

∫ t

0

fab(x)dx

]
P(X0 = a)

≡ f0b(t) (4.9)

and the substitution of P(T1

∣∣ T0, X0, X1) in eqn.(4.4) by P(T1

∣∣ X1).

A similar approach can be used to account for the end-gap, although
this factor cannot be hidden by introducing separate semantics for X0, T0 in
P(T1| · · · ). Instead, they must be supplied separately from the product in
eqn.(4.4), leading to a revised expression for the arrival time model:

let e = |Q|, e′ = |Q|+ 1

P(Te′ ≥ L
∣∣ Te, Xe = a,Xe′ = b) =

∫ ∞
t

fab(x)dx (4.10)

P(T
∣∣X) =

∑
b

P(Te′ ≥ L
∣∣ Te, Xe = a,Xe′ = b)P(Xe′ = b

∣∣Xe = a)·∏
q∈Q

P(Tq
∣∣Tq−1, Xq, Xq−1) (4.11)
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...where L is the length of the observed sequence. This revision adds one
extra factor for a supposed arrival e′ after the end of the recording, and avoids
modeling observations for this arrival altogether by summing out the time and
label for this arrival. Eqn.(4.11) can now be used in place of eqn.(4.4) in order
to correct for the start-gap and end-gap phenomenon.

The observation model can also be factorized according to the arrival chain.
The set T q refers to the set of points in the discretized sample space that are
influenced by some arrival q. The factorization is:

P(Y|X,T) = P(YT )
∏
q

P(YT q

∣∣ Xq, Tq) (4.12)

where YT q denotes the set of observations that are w-proximal to the arrival

time Tq, and YT denotes those observations that are not influenced by any ar-
rival. A distinctive aspect of this factorization is that the observation variables
exhibit context-specific independence. Specifically, this means that the values
of the arrival times Tq determine the conditional dependence relationships of
the variables in Y variables via the set YT . See [26] for a more thorough
review.

This brings the full factorization of the model to:

P(Y,X,T) = P(YT ) ·∏
q∈Q

P(Xq

∣∣ Xq−1)P(Tq
∣∣ Tq−1, Xq, Xq−1)P(YT q

∣∣ Xq, Tq) ·∑
b

P(Te′ ≥ L
∣∣ Te, Xe, Xe′ = b)P(Xe′ = b) (4.13)

All the model factors and their independence relationships can be visualized as
a graphical model in a dynamic Bayes network (DBN). An illustration of the
model is given in figure 4.2. In this illustration, the special notation Y(t1, t2, w)
refers to the observations that lie between two events.

4.2 Estimation of parameters

Inference of parameters for the conditional density and mass functions
described above can be conducted with a training set consisting of point-labeled
signal recordings denoted Strain. An arbitrary member of this set is denoted s.
Associated with each member is: a) a sequence of observed data yst sampled at
a known uniform sampling rate, b) a sparse set of labels xsq ∈ [1, N ] for a set of
known typed arrivals Qtrain, and c) a corresponding sparse set of times tsq ∈ R+

representing the arrival times. When not referring to a specific recording in
Strain, the superscript s on the associated data is dropped. These labeled
recordings provide values for the random variables of the model described in
section 4.
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Y(T1 ,T2 ,w)
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YTq
Y(T2 ,T3 ,w) Y(T3 ,T4 ,w) Y(T4 ,Tq ,w)

Figure 4.2: A dynamic Bayes network illustration of the probability model. Ob-
served variables with the overline YT (T1, T2, w) are not influenced by the arrival
sequence and are independent of the rest of the graph.

One of the benefits of the model factorization described above is that when
given complete data for X, Y and T , the parameter estimation problems for
each of the groups of densities becomes fully independent of one another. This
is because for each distribution in the factorization, data are available for both
the dependent variables and their parents. These data can be treated as i.i.d.
samples from stable distributions. The parameters of each model can then
be treated as independent of the rest of the model given the labeled data for
their specific distribution. This means that estimation can be achieved by
computing separate estimators for each part.

One generic assumption is used throughout the parameter estimation part,
and that is that if maximum likelihood estimators are available for a particular
waiting time distribution, then we can compute an estimator of the parameter
for the entire population that is unbiased by the number of beats in any
particular individual. This “length free“ estimator ignores the effect of having
larger numbers of beats in recordings with faster heart rates. A revised score
is computed as the average of the likelihood of each waiting time or each
observation in the training data which is then divided by the total number
of heart sounds. The motivation for this method comes from the assumption
that the individual patient’s identity is independent from the parameter that
generated the data.

4.2.1 Parameters of the waiting time model

There are a wide variety of distributional models that can implement
P(T|X). The only prerequisite is that these density functions have support
in the positive real numbers. Recall that the radius parameter w requires
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that these density functions have zero density over the domain [0, 2w]. If
traditional positive-support parameteric models are employed, (Poisson, Log-
Normal, Gamma, etc.) they must be shifted horizontally by +2w in order to
prevent the condition whereby two arrivals occur within range of influencing
the same observation. In the subsequent discussion, we restrict attention to
parameteric models. Although it is possible to use non-parameteric models
here, the following framework is designed with the idea of using likelihood
formulations for which these estimators exist and are computable.

It is also worth mentioning that many distributions over the entire real line
can be adapted to the non-negative reals using the elementary transformation
Z ′ = log(Z).

Only a generic description of the training process is provided here. In
this case, the waiting times zq derived from the training labels are sufficient
statistics for the estimators. If the labeled recordings are independent of one
another, the likelihood function will contain separate terms for each of the
recordings in Strain. Under the assumption that each recording is i.i.d., each
estimate can be computed using a weighted likelihood in the objective by
averaging over the number of arrivals in the individual labeled recordings.

let q′ = q + 1 (an example sequence pair)

let g be a likelihood function with parameter θ

if θ̂sab = arg max
θ

∑
(q,q′)∈Π(Qs)

ln g(xq, tq, xq′ , tq′ ; θ) (4.14)

then θ̂ab = arg max
θ

∑
s∈S

1

|Qs|
∑

(q,q′)∈Π(Qs)

ln g(xq, tq, xq′ , tq′ ; θ) (4.15)

where Π(Q) denotes the sequential transition pairs in Q. Solving this maxi-
mization globally relies on a differentiable, convex (or quasiconvex) function
ln g(). If this condition is present, the maximization can be solved using gra-
dient methods.

As an example, the training procedure is illustrated using the log-Normal
distribution to capture the waiting times.

All waiting times between pairs of arrivals of types a and b are considered
i.i.d. samples of a single population-wide distribution denoted ab, and that a
latent wait time of this type can be modeled as a random variable Zab.

The assumptions here are that:

• All beats are drawn from a common, population-wide distribution.

• The beats are i.i.d. within a pair class ab.
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• As a consequence of the first two assumptions, the number of beats in
any given patient’s recording is not a factor in the likelihood expression.

These assumptions do not hold for heart sounds.1

xq−1 = a , xq = b , Z = Tq − Tq−1

Zab ∼ LogNormal(θab) (4.16)

θab = 〈µab, σ2
ab〉 (4.17)

The MLE parameters for θab can be computed by maximizing the log-likelihood
expression:

L(θab) =
∑
s∈S

1

|Qs|
∑
z∈Zab

ln

(
1√

2πσab

)
− [ln(z)− µab]2

2σ2
ab

(4.18)

Here, Zab denotes a set of waiting times constructed from the tq variables in
the training data.

Zab = {tq′ − tq
∣∣ (q, q′) ∈ P (Q) , xq = a , xq′ = b} (4.19)

It is now straightforward to maximize the sample-weighted likelihood using
eqns.(4.14,4.15,4.18):

θ̂ab = arg max
θ

∑
s∈S

∑
(q,q′)∈P (Qs)

ln

(
1√

2πσab

)
− [ln(tq′ − tq)− µab]2

2σ2
ab

(4.20)

A note on the use of non-parameteric densities. There is some advan-
tage to using non-parameteric estimators to model the waiting time densities.
Consider the type of transition where an arrival of type b follows an arrival
of type a only at some small integer multiples, but with some small noise
that permits slight deviations from these modes. Classical unimodal param-
eteric models cannot capture this behaviour without resorting to the use of
mixture models, and the number of mixtures can be difficult to know a priori.
Non-parameteric models do capture multi-modal densities effectively, with one
caveat: because the density is defined over positive numbers, it is easy to learn
a density that puts too much mass near zero due to the selection of kernel func-
tions and bandwidth parameter. Indeed, choosing the bandwidth parameter
is one of the central challenges in constructing these estimators, but it is made
more acute when the random variable is bounded on one side (i.e.: at zero).

4.2.2 Parameters of the label distribution model

It is notable that the chain of labels and their respective conditional proba-
bility functions can be thought of as a Markov chain. The full set of conditional

1A patient’s waiting times generally vary according to a more precise distribution. This
issue is revisited in section 5.

23



distributions can be specified in an N ×N stochastic matrix of parameters de-
noted Γ = 〈Γab〉a,b∈E. Formally,

Γab = P(Xq = a
∣∣Xq−1 = b) (4.21)

The choice of initial distribution or steady-state distribution to use for the
marginals is arbitrary. The parameters for this distribution can be stored in
a vector τ = 〈τa〉a∈E] whose length is |E|.

τa = P(Xq = a) (4.22)

The estimates Γ̂sab and τ̂ sa for a single labeled recording s are built from
counts of the labels and the paired transitions that are present in the training
data but considered latent in test data:

ηsa =

|Qs|−1∑
q=1

I{xq=a} (4.23)

τ̂ sa =
ηa

|Qs| − 1
(4.24)

Γ̂sab =
1

ηa

|Qs|∑
q=2

I{xq−1=a}I{xq−b} (4.25)

The intermediate normalizations in (4.24) and (4.25) re-weight the estimates in
order to prevent training samples with large |Qs| from dominating. The pooled
sample estimates of these parameters can be found by taking the means of the
computed estimates of all the labeled sequences in the training set:

τ̂a =
1

|S|
∑
s∈S

τ̂ sa (4.26)

Γ̂ab =
1

|S|
∑
s∈S

Γ̂sab (4.27)

4.2.3 Parameters of the observation model

The probability density used for the observation model depends greatly on
the nature of the observed data itself. If the variables Yt are categorical and an
arrival can only influence the observations in the time step in which it occurs,
then a stochastic matrix can be used to implement P(Y|X,T) in the same
way that it is used to implement the conditional probability tables of a hidden
Markov model. Since the planned application of this framework is to learn to
label signal data, we concentrate on situations where the original input is a
continuous waveform captured by uniform sampling, and is transformed via
one of many “direct” approaches2. The outputs of this transformation are

2Making use of convolution, linear filtration, or other computations that avoid sampling
and/or optimization.
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typically the coefficients of a time-frequency transform such as the windowed
Fourier transform. It is natural to use the absolute value or the product of each
coefficient with its conjugate in order to obtain a feature that is real-valued.
In both of the previous cases, the resulting features will be positive Yt ∈ RM

+ .

Training of the observation model is shown with the multivariate exponen-
tial distribution to describe the conditional density of the observed values on
an arrival’s label value. This distributional model should be considered for il-
lustration purposes only - it has several shortcomings when applied to feature
representations derived from signals. Specifically, the multivariate exponen-
tial treats each feature as an independent exponential random variable with
its own parameter θi. These parameters are then organized into a vector θ.
This is an unrealistic modeling assumption given the fact that the features for
neighbouring frequencies do tend to correlate strongly in a harmonic represen-
tation, and especially if the signal exhibits a true “source” frequency that falls
between two of the neighbouring frequency values that were used to construct
the basis. Better choices for the observation model include the log-Normal dis-
tribution and the asymmetric Laplace distribution, although the best choice
of observational model will be domain dependent.

In the experiments detailed in section 6, the asymmetric Laplace distribu-
tion of Kotz [28] is used to model P(YTq |Tq,Xq).

The parameters for the multivariate exponential can be learned separately
for each label. Consider all arrivals with a given label value, say a, and for
each arrival consider a window of arbitrary size 2w centered at the arrival
time. The window of observed values is referred to by yT q ∈ R2w×M

+ and is
embedded in the time-feature space. The log-likelihood function for |Q| events
is written:

for θ ∈ R2wM
+ let λq = 4(yT q)

L(θ) =
∑
q∈Q

[
−

2wM∑
i

ln (θi)

]
−
(

1

θ
· λq
)

(4.28)

where 4(yT q) is the vectorization of a window matrix. Inside the exponent,
the dot product reflects the product of several exponential functions of each
independent variable in λq.

Again, we invoke the sample-weighting likelihood technique of eqn.(4.15)
and maximize the log-likelihood according to eqn.(4.28) with respect to the
parameter vector θ:

θ̂a = arg max
θ

∑
s∈S

1

|Qs|
∑
q∈Q

− ln(θi)−
1

θ
· λq (4.29)
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The treatment of the multivariate log-Normal log-density follows similarly
but has two parameters instead of one. Again, there is one set of such param-
eters for each label type. (i.e.: xq = a)

〈 θ ∈ RM , Σ ∈ RM×M 〉 := the mean and covariance parameters

L(θ,Σ) =
∑
q∈Q

− ln (Z)− 1

2
(lnλq − θ)>Σ−1(lnλq − θ) (4.30)

〈θ̂a, Σ̂a〉 = arg max
θ,Σ

∑
s∈S

1

|Qs|
∑
q∈Qs
− ln (Z)− 1

2
(lnλq − θ)>Σ−1(lnλq − θ)

(4.31)

where Z =
√

2π|Σ|1/2

A note on the multivariate exponential and deterministic label se-
quences. The multivariate exponential can exhibit unwanted effects if not
used with appropriate forethought. For example, consider computing the like-
lihood of some arrival whose label is known to be xq = a. Assume that there
are two observational windows for which to compute the likelihood, one with
medium-large feature values, and another in which all the feature values are
zero or close to zero. In this case, the latter will tend to produce a higher like-
lihood for an arrival of any given type because most of the probability mass
for this density is concentrated close to zero. Note that this is true regardless
of the value of the density’s scale parameter. The multivariate exponential
will always produce large likelihood values for time steps with relative silence
because of the large probability mass near zero for this density class. This
means that, in selecting from a large number of time steps for which an arrival
may have occurred, an estimation procedure may tend to favour time steps
with low feature values - which is often not the intended result.

In general, the multivariate log-Normal is recommended in favour of the
multivariate exponential for reasons given above.

4.3 Inference of the true point configuration

The intended use case for the overall framework is to produce point labels
for new recordings in order to match the timings of the training set point labels
and their match to the observed signal data in time-feature space. The formal
goal is to accept a sequence of observed feature data and to produce a finite
chain of labels Q which has the format 〈xq, tq〉 with the same semantics as the
point-labeled recordings used for training data. Below, a method is provided
that produces the labeling with the maximum probability over the space of all
possible label chains. This labeling can be considered the maximum likelihood
estimate of the latent chain, or as the maximum a posteriori estimate of the
latent chain given an initial arrival distribution which acts as a prior.
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4.3.1 Maximization of the arrival chain probability

The optimization solved by chain estimation is:

arg max
Q,xQ,tQ

P(X,T
∣∣ Y) (4.32)

where xQ, tQ denote a full set of marks and arrival times for Q, which is a
sequence of arrivals of unobserved length. The law of conditional probability
shows that the same solution can be found by dropping the partition function
since P(Y) is constant in the expression:

P(X,T
∣∣ Y) =

P(X,T,Y)

P(Y)
(4.33)

arg max
xQ,tQ

P(X,T
∣∣ Y) = arg max

xQ,tQ

P(X,T,Y) (4.34)

The problem can be stated in additive terms by instead maximizing the loga-
rithm of the probability in eqn.(4.34).

The steps to computing the maximum probability chain for a sample of
length L and M features for |E| mark types:

1. Calculate the sample mean vector µ̂ = 〈 1
D

∑D
k=1 xi,k 〉i

2. Calculate the biased sample covariance matrix:
Ŝ = 〈 1

D

∑D
k=1(xi,k − µ̂i)(xj,k − µ̂j) 〉ij

3. Compute the inverse of the sample covariance matrix Ŝ−1. This takes
O((2wM)3)

4. Compute the likelihood of each of |E| label types for every time step in
a sequence of length L. Note that the observed feature values are of size
2wM and that, under the Log-Normal model, all pairs of these variables
must be multiplied. This step takes O((2wM)2L|E|) time.

5. Construct a memoization array Φ[t, a] upon which to implement a dy-
namic programming solution. (The semantics of this array are discussed
in section 4.3.3). The size of the array is in O(L|E|). In order to compute
the score for each time step and label, one must search backward over
some segment of the history preceding a given point to find the last most
likely label. This search phase is computed in O(HL|E|) time. Here, H
is the length of the history in which to look back for the previous arrival.

6. Find the optimal chain by tracing the pointers in the dynamic program-
ming array backward to the start of the sequence. This involves first
search over a history window near the end of the recording for the best-
scoring endpoint of the chain, then following the backward links from
this point in order to recover the estimate of the best chain. This is
computed in O(L+H|E|) time.
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The sample covariance matrix must be positive definite in order to be
invertible. The conditions for positive definiteness are shown in the following
derivation. Assume that Z is a table of real-valued data with i.i.d. samples in
the columns and features in the rows. For simplicity, let the sample mean of the
data be equal to zero. The sample covariance matrix is then Ŝ = 1

D

∑D
k=1 ZZ

>.
This matrix is positive definite if ∀x ∈ RN : x>ZZ>x > 0. This condition is
satisfied if null(Z>) = 0.

Overall, steps 4-6 bear strong resemblence to the Viterbi [47] algorithm,
though neither that model nor the current one takes into account the unaf-
fected observed variables P(YT ) which may fall between any pair of arrivals.
The main difference between the Viterbi algorithm and the one given by steps
4-6 is that here the algorithm must search over a larger history of the sequence
whereas the Viterbi algorithm only needs to search over a history of length H.
However, incorporation of the unaffected/observed variables can be performed
additional step. See the bottom of subsection 4.3.3.

4.3.2 Computation of likelihood for arrival times and
label values

Let L[t, a] represent a table of size (Ls) × (N), where each cell computes
the log-likelihood of there existing an arrival of type x at time t based on the
trained observation model:

[ Recall that: λt = 4(yT t) ]

L[t, a] = lnP(4(YT t) = λt
∣∣ ∃q : Xq = a, Tq = t) (4.35)

Consider the implications of calculating the log-likelihood for a single entry in
this table using the log-Normal density function:

L[t, a] = ln

(
1√

2π|Σa|1/2

)
− (lnλt − µa)>Σ−1

a (lnλt − µa) (4.36)

The log-Normal observation model requires every pair of elements in the vec-
tor ln(λt) ∈ R2wM

+ to be multiplied in order to compute the factor inside the
braces, requiring O((2wM)2) operations. If only the diagonal elements are
used instead of training the full covariance matrix, one arrives at a “näıve”
multivariate log-Normal model that can be computed in only O(2wM) oper-
ations.

4.3.3 Dynamic programming

If the likelihood of each label type is computed for some3 points in the
time domain, it is possible to recover an estimate of the arrival chain using a

3It can be computed at every time step or only at selected candidate points. See the
experimentation section for details on how these ideas were applied.

28



variation on the classical Viterbi algorithm [47] for decoding the states of a
hidden Markov model.

Consider that the optimization problem in eqn.(4.34) can be decomposed
so that a solution can be written as a solution to a subproblem plus some
additional information. To see that this can provide a recursive solution to
the optimization, consider that the likelihood derived from the full joint dis-
tribution in eqn.(4.13) can be converted to a log-likelihood expression which
provides an additive objective function:

Φ = lnP(YT ) + (4.37)[∑
q∈Q

lnP(Xq

∣∣ Xq−1) + lnP(Tq
∣∣ Tq−1, Xq, Xq−1) + lnP(YT q

∣∣ Xq, Tq)

]
+(∑

b

lnP(Te′ > L
∣∣ Te, Xe, Xe′ = b) + lnP(Xe′ = b

∣∣Xe = a)

)
(4.38)

The goal is to find the best chain by solving Φ∗ = max Φ over the space of
configurations, X,T.

Consider that any configuration that optimizes the objective Φ for some
observations over [0, t) and whose final arrival occurs at Tq = t must also be
optimal for the observations over [0, t′) for the arrival subsequence that is one
shorter, i.e.: t > t′ = Tq−1. With this assumption in mind, the likelihood of
the optimal chain over [0, t) can be written in terms of that over [0, t′).

A recursive expansion of Φ can now be provided. Denote by Φ[t, b] the
objective for the subproblem on the timespan [0, t) with the assumption that
there exists an arrival with label Xq = b. To solve the subproblem for a given
time step and label, we maximize over all former arrivals of type Xq−1 = a in
the subsequence.

Φ[t, b] = max
t′<t,a

Φ[t′, a] + Ψ[t′, a, t, b] (4.39)

where Ψ[t′, a, t, b] is the incremental term linking the smaller subproblem with
the larger, and represents the log-likelihood associated with the waiting time
t− t′:

Ψ[t′, a] = lnP(Xq = b
∣∣ Xq−1 = a)

+ lnP(Tq = t
∣∣ Tq−1 = t′, Xq−1 = a,Xq = b)

+ lnP(YT q

∣∣ Xq = b, Tq = t) + lnP(Y(t′, t, w)) (4.40)
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There are two points to make here. First, eqn. (4.39) is different from
the Viterbi algorithm in only one aspect: the previous step of the relevant
sequence need not be t′ = t − 1. Rather, this optimization allows t′ to range
over an arbitrarily long history prior to t. Second, the observations Y(t′, t, w)
refer to those that arrive between t, t′ and are not w-proximal to either point:

Y(t1, t2, w) = {Yt
∣∣ t1 + w < t < t2 − w} (4.41)

The overall expression in eqn.(4.39) leaves out only one term (factor) from
eqn.(4.37), which is the corrective factor for the end-gap from eqn.(4.10). This
term is added to the end in the recursive definition of the total dynamic pro-
gramming objective:

Φ∗ = max
t,a

Φ[t, a] + Υ(e)[t, a] (4.42)

where Υ(e)[t, a] =
N∑
b

lnP(Te′ > L
∣∣ Te = t,Xe = a,Xe′ = b)+

lnP(Xe′ = b
∣∣Xe = a) (4.43)

The log-likelihood table L[t, b] can be computed directly by taking the
conditional probabilities of the data under the observation model. The table
Φ[t, b] can be built incrementally starting at t = 0 for each label type. For
some short span over the beginning of the sequence, solving eqn.(4.39) will
be slightly different because the time interval term must be adjusted as per
eqn.(4.8) in order to account for the start-gap. In plain English, when calcu-
lating the likelihood of an arrival near the start of the sequence, the search
for maxima must also consider the possibility that the arrival in consideration
is the first one that occurred after the start of the chain. Denote Υ(s)[t, b]
the log-likelihood explaining the existence of a start-gap preceding some first
arrival at time t with label b.

Υ(s)[t, b] =

[
M∑
a

lnP(T1 = t
∣∣ T0 < 0, X0 = a,X1 = b) + lnP(X0 = a)

]
+ lnP(YT 1

∣∣ X1 = b, T1 = t) + lnP(Y(0, t, w)) (4.44)

Again, we provide a revised expression for solving the subproblem that takes
into consideration this special behaviour of the maximization for small values
of t:

Φ[t, b] = max{max
t′<t,a

Φ[t′, a] + Ψ[t′, a, t, b] , Υ(s)[t, b] } (4.45)

The last three equations show that the recursive form of the full objective
incorporates both the corrective factors for the start-gap and the end-gap, and
that each solution for eqn.(4.39) takes into account any intermediate obser-
vations Y(t1, t2, w) as well, ensuring that the full objective in eqn.(4.37) is
maximized.
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A note on computing the “in-between” observations lnP(Y(t′, t, w)).
In practice, the observations that are not influenced by any arrival might come
from a wide variety of distributional models. However, if these observations
are not i.i.d., then computing lnP(Y(t′, t, w)) can be non-trivial: the overall
expression is not additive in each time step in (t′, t). In this case, an ap-
propriate model must take the correlations between all intervening observed
variables between t and t′. This can present a challenging modeling problem.
The solution to this problem might be attempted with models of continuous
and/or highly sampled stochastic models such as a Gaussian process.

Consider the difficulty of providing an observational model for these data
that are uninfluenced by the arrival chain. Since the segments can be of
arbitrary length, the distributional model must accomodate high dimensions
and also varying dimensions, i.e.: it may have to be modeled as its own point
process. If a distribution is chosen that does not properly reflect the observed
data, then the term(s) of lnP(Y(t′, t, w)) may accrue large negative values
during the decoding sequence. As a result, the decoder will tend to “find”
events that are as close together as possible in order to avoid the associated
loss in the objective.

In addition, if these observations are not truly independent of those influ-
enced by the arrival chain, then errors in the total log-likelihood expression can
accrue due to the hard segmentation between the two sets of variables. This is
particularly problematic for harmonic representations using scale as a param-
eter to the feature set, e.g. wavelets with a larger scale capture many more
time steps than those at a smaller scale, making the segmentation between
observed and unobserved variables all the more indistinct.

If the distributions of these observations differs significantly from their
conditional distribution given a mark type, then often this term does not
contribute meaningfully to the objective. This will often be the case when
the mark points designate some interesting pattern in the signal data while
the waiting times are characterized by periods of silence and/or baseline noise.
In these cases, this term can be dropped from the objective to arrive at an
approximation to the true solution to the maximum log-likelihood.

Having stated this, the log-likelihood of these in-between observations can
sometimes be neglected in practice as is detailed in the following note.

4.3.4 Proof of Convergence

Given the optimization program:

Φ∗ = max
t,a

Φ[t, a] + Υ(e)[t, a] (4.46)
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with the recursive definition:

Φ[t, b] = max{max
t′<t,a

Φ[t′, a] + Ψ[t′, a] , Υ(s)[t, b] } (4.47)

Let Q be the chain of arrivals whose times and labels are those produced by
dynamic programming using the values given by Φ[t, b] as memoization for the
scores of the subproblems, and the terms Ψ[t′, a, t, b],Υ(s)[t, b], and Υ(e)[t, a] as
score increments for the problem substructure.
Claim: Q is a maximum solution to (4.46).
Proof: Assume that ∃Q′ with strictly greater Φ∗ than Q with Q 6= Q′, so
that Q is sub-optimal. This means that there exists some initial interval in
the recording ending with some arrival in Q that would have been ignored
in the search that solves the subproblem for some longer chain in (4.47) or
for the entire chain including the end-gap in (4.46). Since all such suboptimal
chains are ignored during the search, Q could not have been found by dynamic
programming. This results in a contradiction.

4.4 Application

We’ve now described a probability model, its learning procedures and a
method for estimating the best chain of latent points from a sequence of ob-
servable data. This model can now be applied to heart sounds by supposing
the existence of two heartbeat types E = {S1, S2} which alternate determin-
istically and whose times must be estimated in new recordings. The training
procedures described in section 4.2.2 will not be necessary because the ordering
of the heartbeat labels is always alternating and is strictly deterministic. Also,
we will see in the following section that the training procedure described by
section 4.2.1 for the waiting time model does not suffice when the distribution
of a specific patient does not match that of the overall population or of the
training data that represents the population.
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Chapter 5

Modeling waiting times using
signal filtering

In the treatment of parameter estimation in the point process model out-
lined in the previous chapter, the parameters of the conditional probability
densities P(T|X) are trained from the sample-weighted likelihood over the
entire training set. This approach produces robust estimators of the distribu-
tion’s parameters if all recordings in the population obey the same distribution
for the waiting times. This is an unlikely occurrence in biological signal analy-
sis; individual subjects may exhibit considerable differences in the timing and
“rhythm” of the arrivals (heartbeats and neuronal firings).

For example, individual heart sound recordings may exhibit a waiting time
distribution that is substantially more precise than that of the overall popu-
lation. The cardiac period of a healthy adult can be easily double or triple
that of an infant. The use of a pooled model for the waiting times between
the beats would produce poor results when estimating the arrival sequence of
heartbeats. The intra-subject variance in the cardiac period is likely to be
quite low due to the heart’s natural pacemaker, while inter-subject variance
found in the greater clinical population will be much higher. Consequently,
individual parameters for each subject must be in order for inference to be
accurate. This scenario presents challenges for estimation of the arrival se-
quence.

When both the parameters and the arrival chain are treated as unknowns,
both must be estimated simultaneously. In order to find maximum likelihood
estimates, this leads to an optimization that is intractable: the best sequence
of arrivals must maximize probability under the timing model, and the pa-
rameters of the timing model are dependent on the arrival times themselves -
a circular dependency. This produces a difficult optimization program:

max
θ,X,T

P(X,T | Y, θ) (5.1)
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The main offering of this section is an approximate inference method that is
designed to work around this difficulty by estimating parameters of the waiting
time density functions. Note that this is more difficult for an unlabeled test
recording than a labeled recording because the arrival times are not known and
are co-dependent on these waiting time parameters. This is done by creating
a separate feature representation of the recorded signal, hereafter called an
intensity map. Using this intensity map representation the probability density
for the waiting times can be approximated reliably without knowing the actual
arrival times for a given recording.

5.1 Repeating signals and alternating labels

In heart sound identification, the sequence of arrivals P(Xq

∣∣Xq−1) is en-
tirely deterministic although the waiting times between these arrivals are
stochastic. Recall that the waiting time Zq = Tq+1 − Tq is often easier to
model than the times Tq themselves. In this case, the task is to model the
waiting times P(Zq

∣∣Xq−1, Xq) for each pair of labels Xq−1, Xq and to do this
before estimating the times of the labels themselves.

If each arrival produces observations that are similar to those of neighbour-
ing arrivals of the same label, one can design filters that respond to patterns of
“output” (here, the Yt variables) separated by fixed intervals in time. The cur-
rent approach uses a filter designed to produce a response proportional to the
intensity of repetition at two fixed length intervals. A filter bank can then be
constructed so that there is one filter for each combination of interval lengths
in some bounded set. This filter bank can be used to implement an operator
which takes the time-dependent feature representation to a new time-invariant
representation that contains information about the interval lengths found in
the recording.

A single filter in the filter bank is determined by a selection of interval
width parameters 〈α, β〉.

let I{x} =

{
1 if x = 0
0 otherwise

(5.2)

hαβ(τ) = I{τ} + I{τ−α} + I{τ−β} + I{τ−α−β} (5.3)

Using an arbitrary time-dependent feature f [t], (for example the waveform
signal itself) the response can be written:

H[α, β] =
1

L− α− β

L−α−β∑
t=1

∏
τ

f [t+ τ ]hαβ(τ) (5.4)

=
1

L− α− β

L−α−β∑
t=1

f [t]f [t+ α]f [t+ β]f [t+ α + β] (5.5)
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For an alternating label sequence of only two label types, there are three inter-
vals of interest: the waiting time between an arrival of type A followed by one
of type B, the waiting time between an arrival of type B followed by an arrival
of type A, and the time between two arrivals of the same mark type which are
punctuated by one of the opposing type. These are depicted in figure 5.1.

α

β

β - α

A AB B

Time

hαβ[n]

Figure 5.1: Parameterization of a quartic filter. The intervals of interest can be
captured by two parameters.

In practice, this quartic filter can be further improved upon by making use
of a time-dependent feature vector rather than a scalar feature. This feature
vector represents observed signal data. For example, let y[t,·] be a vector of
time-frequency features corresponding to time t, where y[t,k] refers to the kth
scalar feature. Then eqn. (5.4) can be rewritten:

H ′[α, β] =
1

L− α− β

F∑
k=1

L−α−β∑
t=1

ν[t, k] ν[t+ β, k] ν[t+ α, k] ν[t+ α + β, k]

(5.6)

5.2 Conversion of filter output to probability

density

The filtration operator developed in the previous section can be used to
provide an estimate of the density function given in eqn.(4.6). The probability
model is extended to include the parameters of the waiting time distribution
as separate variables:

P(Y,X,T,θT) (5.7)

Here, θT represents a set of parameters that are specific to a particular patient
or to a given recording. This model admits a factorization similar to that given
in eqn.(4.4):

P(T,θT|X) = P(T|θT,X)P(θT) (5.8)

35



By taking the parameters of this model into account as random variables, it
is possible to associate timing properties of the arrival sequence with a specific
recording or subject. The central idea is to scale and normalize the filter bank
responses f [α, β] so that their values integrate to 1 using a suitable measure,
i.e.

∫∫
f [α, β]µ(dα, dβ) = 1 allowing them to serve as a probability density

function.

A bounded set of parameter values are discretized (“gridded”) to create the
domain for a function approximator whose values will be stored in a large array
(“intensity map”). In the case of heart sound data, the cardiac period and the
systolic interval are used to form the grid. The third quantity, the diastolic
interval, can be computed by a selection of the two former parameters. This
is depicted in figure 5.2.

One of the obstacles met by this filteration approach is that a repeating
input pattern can produce a strong response for many combinations of input
that are dissimilar to the “true” pattern. When a single referent goes by a true
identity and several false identities, we refer to the false identities as aliases.
This is a different use of the word than that used to describe the effect of
undersampling a signal (i.e.: sampling at less than twice the rate of its highest
non-zero frequency band).

We use this term “aliases” here to describe strong responses to a particular
input pattern at false values of the parameters. Usually, this occurs because
the input pattern assumes that no beats fall in between the intervals defined by
α and β. However, when a filter is configured with values of these parameters
at integer multiples of the true parameters, these filters will often respond
strongly. This produces “echo” patterns in the intensity map. These echoes
tend to occur at constant multiples of the true parameter values.
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1 2
3

4

Label Description Illustration (input signal in gray)

pink

This is the optimal alignment of filter
parameters for the example waveform
in grey.

A B A B
α
β

best response

1

This effect occurs when the systolic in-
terval is close to equal the diastolic in-
terval.

A BA
α

aliased response

β

B

2

This effect occurs when the true pa-
rameters 〈α, β〉 produce a response at
〈β − α, β〉. The cardiac period is accu-
rate, but the systolic and diastolic in-
tervals are reversed. This artifact is al-
ways directly above the optimal param-
eter value and tends to vertically mirror
the response about the line 2α = β.

A B A B
β-α
β

aliased response

3

This effect occurs when the systolic
interval parameter is correct, but the
cardiac period is off by β′ = β ± α.
The first pair of impulse responses align
cleanly with the two beats of a car-
diac cycle, but the second pair are mis-
matched. This artifact is more intense
when the systolic interval and diastolic
interval are close to equal, or 2α ≈ β.

A B
α

β+α

aliased response
A B

4

This effect occurs when the filter is
configured so that the cardiac period
is exactly twice the optimal parameter
value, or β′ = 2β. In this case, the filter
is aligned with two complete heartbeats
that are separated from each other by
an entire period instead of being truly
sequential.

A B A
α

2β

aliased response

Figure 5.2: This example shows that a few symmetries in the rhythm produce
aliases in the intensity map. The artifacts are labeled and the causes described in
the table. The true interval values fall approximately in the region of the pink circle
in the intensity map. Further artifacts can be seen toward the right of the intensity
plot as instances of these examples for larger integer multiples.
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5.3 Anti-aliasing of the filtered output

5.3.1 Method 1: Lateral inhibition

In order to produce an accurate distribution of the waiting times from the
intensity map depicted in figure 5.2, the “alias” artifacts must be removed
or suppressed from the intensity map before it is normalized. The main idea
is to treat each response point in the intensity map as though it were that
of the optimal parameter values, and then to subtract this response away
from any other point in the map that can be interpreted as an alias of these
parameters. Thus, the larger values in the map tend to “inhibit” the smaller
values, and the pattern of inhibition is determined by the aliasing patterns
described heretofore.

The removal of the aliasing artifacts in f can be expressed as:

f ′[α, β] = max(0, f [α, β]− g[α, β]) (5.9)

Here g is called the alias map. It is computed from the values of f in accordance
with valid aliasing patterns such as those in figure 5.2. These are described
algorithmically below. Once g has been computed, it can be subtracted from
f and the result thresholded at zero to produce a new non-negative intensity
map f ′.

Let D be the set of grid points of 〈α, β〉 which forms the domain of the
intensity map. Then the anti-aliasing procedure is as follows:

The parameter C specifies an arbitrary convolution kernel that is used to
smooth the alias map in the penultimate step. This smoothing step is essential
because the indices used in the innermost loop are formed by integer multiples;
the output values of g in this step are thus strided at 2×, 3×, ... and so on. The
parameter H is meant to limit the number of multiples in the cardiac period
domain. In our experiments, the value used was H = 3. The constant λ is a
value large enough to “zero out” the values of F for which the systolic interval
is much larger than the diastolic interval (by some threshold ε). This constant
should be equal to or greater than the peak magnitude of the convolution
kernel in order to ensure that the resulting map is zero over this range of
parameter values.

An illustration of the lateral inhibition method is given below in figure 5.3.
The result of subtracting the aliased points from the intensity map can be
visualized in figure 5.3.
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Algorithm 2 [ f ′ ] = lateral inhibition(f ; C,H, k)

g ← ∅Domain(α,β)

for all 〈α, β〉 ∈ D do
if 2α > β + ε then
g[α, β]← λf [α, β]
continue

end if
for all 〈p, q〉 ∈ [0 : H]× [0 : 1] do
c← qα + pβ
for all 〈m,n〉 ∈ [0 : 1]× [−1 : 1] do
s← nα +mβ
if 〈c, s〉 ∈ D then

g[c, s]←
(
g[c, s]k + f [α, β]k

) 1
k

end if
end for

end for
end for
g ← g

⊗
C

g ← g2

f ′ ← f − g
for all 〈s, c〉 ∈ D do

if c > 2s then
f ′[c, s] = 0

end if
end for
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Figure 5.3: The lateral inhibition method. The cardiac period width is on the
abscissa, while the systolic interval width is on the ordinate axis. In the left plot
is the original intensity map f produced by the filter bank. The middle plot is the
map g which contains the image of the aliased points. The right plot shows the
difference map f − g.

One of the drawbacks with this method is that it tends not to remove
enough of the “mass” of the intensity map near the line 2s = c, where the
systolic and diastolic intervals are roughly half that of the cardiac period and
are roughly equal with each other. This is because, in close proximity to
this line, there are few other points in the domain which can cause an alias
effect to occur in this region. As a result, the alias map g tends to exhibit a
darkened region slightly below the line 2s = c. The subsequent result after
subtracting the alias map from the result is increased probability mass near
this line, meaning that the estimator tends to favor heartbeat sequences in
which the systolic interval is about equal to the diastolic interval.

Although there are likely to be further steps that one could take to improve
the performance of this method, it is believed to be less robust overall. This is
because of the need to set several parameter settings and the likelihood that
further gains in performance due to programmatic tweaks are likely to overfit
in an algorithmic or structural sense. Since no aspect of this method relies
on learning, it is difficult to guarantee that an increase in performance will
generalize outside of the training set.

5.3.2 Method 2: Least maximal peak

One of the drawbacks of the lateral inhibition method is that if the signal
contains too much noise or high-frequency repetition, these can produce high
“false” values in the filter bank response which in turn mitigate the “true”
responses.

The least maximal peak method uses the signal normalization method
from section 3 to determine the positions of maxima in the smoothed filter
bank output, f . Once these have been localized, the maximal point with the
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smallest parameter values is chosen as the best and a distribution is created
by zeroing out all the responses that are sufficiently distant from this best
set of parameter values. Here, “sufficiently distant” means using a pair of
operating constants that determine the size of the region containing the final
total probability mass. These constants are given in appendix I.

This has the effect of producing a highly localized distribution that typi-
cally has a very small number of peaks concentrated in a tight region. Empir-
ically, this method has proven to be the most robust at identifying the proper
timing of heart sounds (see section 6). A listing of this algorithm is given be-
low. Here, the maximal(f) function selects all points (c, s) for which f(c, s)

Algorithm 3 [ f ′ ] = least maximal peak(f, kσ, dc, ds, ε)

f̄ ← mean(f)
f ′ ← relative-scaling(f, f̄ , kσ)
E = maximal(f ′)
c∗, s∗ = arg minE 2s+ c
for all c, s ∈ domain(f ′) do

if |c− c∗| > dc and |s− s∗| > ds then
f ′[c, s]← 0

end if
end for

attains a maximal value and f has a second-order difference value (i.e. not on
the borders of the map).

The drawback to this method is that it is difficult to provide a strong
analytical justification for its use. However, the motivation for the method
is quite simple: the intensity maps produced by filtration invariably contain
several maximal points. On inspection of several intensity maps, it has been
found that the true beat parameters usually have the smallest projection on
the line c = 2s.
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Figure 5.4: The least maximal peak method. On the left is the original input, on
the right is the density of f ′. Although this method introduces a strong discontinuity
in the shape of a box around the peak of the distribution, the discontinuity tends
to manifest itself in regions of low probability mass.

Aside from being easy to implement, the main strength of this method
is that produces relatively reliable distributions for use in estimation of the
arrival sequence. When the intensity map is created, the aliased responses
tend to accumulate at parameter values larger than the true parameter values,
with little or no aliasing artifact in the lower regions of the 2-dimensional
domain. This explains why choosing the lowest of the maximal values is a
good heuristic - it picks the peak that is least likely to have been contributed
to by the aliasing process.

5.4 Combining maps from several recordings

It is possible to obtain a more reliable distribution by taking the product of
intensity maps created by recordings taken at different chest positions on the
same subject. In practice, this technique seems to negate some of the noise
associated with a single chest position. See section 6.1.1 for more details.
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Chapter 6

Experiments

As mentioned earlier, most research attempts which require the identification
of S1 and S2 have relied heavily on the ECG signal to register the cardiac cycle.
Without the ECG signal, there are relatively few methods which classify S1
from S2 based on the sound alone. In the context of those methods that have
made the attempt, none look exclusively at the identification problem itself.
So, it is difficult to compare our algorithm with any current state of the art.

To compare a set of four variations of the methodology presented here, a set
of 35 human heart sounds were collected and annotated by a human non-expert
with the two labels S1 and S2. These labels stand for the noises produced by
the heart valves at the start of ventricular systole and diastole, respectively.
See [23, 2] for coverage on the mechanics of heart sound production. The
goal of the study is to determine whether heart sound identification is possible
using the available data, to determine what the major obstacles are, and to
compare a few solutions to the problem that rely on probabilistic modeling.

A sample of 43 patients’ heart sounds were recorded for 20 seconds using a
3M Littman stethoscope at the left sternal region (position 2L) using the Bell
end of the scope. These recordings were exported and stored in waveform at
4kHz without resampling. Although the Nyquist frequency is effectively 2kHz
for this sampling rate, the time-frequency features are computed at 500Hz. In
addition, the frequency bands of these features are limited to between 10Hz-
100Hz. Of the 43 recordings, 35 were manually labeled using an unspecified
wavelet transform as a guide for detecting the precise location of the beats;
the remaining 8 were either too noisy to be labeled by sight or not properly
recorded. Experimenter selectivity thus added significant bias to the result and
is one reason why the results should not be interpreted as clinically generaliz-
able. Rather, this selective method was used in order to obtain a “reasonable”
data set with which to learn from. The unlabeled recordings were simply too
difficult for a non-expert to judge, and so the resulting classifier cannot be
trusted to identify heartbeats for new recordings that similarly exhibit high
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noise or variation in the heartbeat rhythm. The labelings were not validated
by a clinician.

Two separate feature representations were applied in the study. The first
was a simple signal energy representation, where the signal energy |f [t]|2 is
smoothed using convolution with a Gaussian kernel with σ = 0.15 seconds.
This representation gives a good indication of the overall volume of the signal
at a level of detail that is as coarse as possible while still providing enough
resolution that two adjoining beats are not blurred together. The idea here
is that one finds a small number of maximal points when the signal energy
is blurred and that these maxima tend to encompass the sound from a whole
individual heartbeat. It is relatively easy to run the Viterbi algorithm by
computing likelihood for a small number of candidate points that occur at these
maxima compared to computing the likelihood for the entire dense sequence.
Furthermore, it was observed that these maxima tend to occur at or near the
training labels.

The second representation was a set of time-frequency features computed
using the pseudo Wigner-Ville distribution (PWVD) as found in [29]. The
PWVD was configured with a set of 32 frequency bands chosen from 10Hz to
100Hz uniformly spaced on the natural logarithmic scale, and with a time
resolution of 500Hz. The relative scaling function (see section 3) was
used to control for large spikes in amplitude: the parameters of the two-
dimensional Gaussian kernel passed to this function included a standard devi-
ation of σtime = 0.050 in the time domain and σfreq = 16 bands in the frequency
domain.

There are two parts to the study. The first part is a demonstration of subject
specificity in heart sounds. These illustrations show the inherent variability
of heart sounds by presenting the statistics and distributions of the labeled
training data. This part is intended to motivate the estimation procedures
described in previous chapters. In the second part, a number of predictors are
constructed using the methods proposed, and are then compared demonstrat-
ing the effectiveness of each method.

6.1 Waiting time distributions

In order to motivate the estimation of waiting time distributions for the
individual, this section provides a comparison of distributions learned for the
waiting times of individual training subjects versus those learned for the entire
pooled sample. These distributions were selected on the basis of their being
distributions over a positive random variable. They differ in terms of param-
eterization complexity, but also because they offer a wide range of flexibility
to skewness and heavier-tailed data.
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6.1.1 Configuration

To capture the waiting times conditioned on the heart sound type, P(Zq|Xq, Xq−1),
the following distributions were fit to data.

Name Parameters Density / Likelihood
Log-Normal µ, σ 1√

2π|σ| exp{− (ln x−µ)2

2σ }
Log-Laplacian µ, σ 1

2|σ| exp{− | ln x−µ|σ }

Asymmetric Log-Laplacian [28, 46] µ,m, σ
2 exp{ xmσ }

(2π)
d
2 σ

1
2

xνσ
ν
2

2+mνσ
ν
2
Kν

(√
(2 + m2

σ−1 )(y
2

σ )
)

Asymmetric Log-Laplacian [53] µ, p, σ p(1−p)
σ exp{−x−µσ (p− I(x ≤ µ))}

Gamma α, β 1
Γ(α)βαx

α−1 exp{− x
β }

Table 6.1: Candidate distributions for the waiting times.

Each recording s ∈ Strain contains some number of heartbeat arrivals of each
type: Ns,c. In order to negate the effects of bias caused by recordings with

larger numbers of beats, a desired “sample size per recording” is chosen N̂ . For
every recording and for each class, the Ns,c samples are replicated N̂ div Ns,c

times, followed by drawing N̂ mod Ns,c samples uniformly at random with
replacement. This procedure attempts to minimize the bias induced by random
sampling in order to provide an equal number of recordings for each sample.
Thus there are (|Strain| · N̂) data points altogether. Parameters for each of the
waiting time class conditionals are then fit for each of the distributions given
above, and the normalized negative log-likelihood is computed:

I(P , θ;ω) = − 1

D

∑
i

log2 (P(xi(ω)|θ)) (6.1)

This statistic is used as a rough goodness-of-fit measure of the distribution,
with higher values indicating more samples landing in the tails of a distribu-
tion. It can also be seen as an estimate of how robust the distribution is to
outliers in the training data set.

In every case, the systolic interval and cardiac period are modeled indepen-
dently, though in practice it is known that these two are correlated. If a heart
sound label corresponds to the column of the data matrix and each individ-
ual datum corresponds to the row, then the rows within a column cannot be
compared between columns because of the way the bootstrapping procedure
resamples from existing data in order to obtain N̂ samples for each class and
subject. Thus, each column must be modeled separately as a consequence of
the bootstrap method.
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The estimator used to find the maximum likelihood parameters of the Kotz
asymmetric log-Laplacian is given in [46]. This estimator can produce a non-
positive-definite estimate of Σ (here: σ) for some data sets. The usual remedy
for this deficiency is to project the intermediate matrix onto the positive def-
inite cone. However, for univariate data this amounts to forcing σ to equal
some small positive constant, which was set to 0.01.

It should be noted that PWVD features were used to compose the intensity
maps H[α, β] using the dot-product filter given by eqn. (5.6), and this was true
even for predictors that did not use the PWVD features for their observational
model. In the results section below, the density estimation method relying on
intensity maps H[α, β] are abbreviated as the “H-map” method in the tables
and figures.

In order to gauge the effectiveness of the intensity map approach described
in section 5, an intensity map was created for each one of the subjects over
the parameter domain of the systolic intervals and the diastolic intervals. The
parameters of the intensity map used are given in appendix 1. In addition to
the use of the intensity map to describe the distribution for a single recording,
a second set of distributions were created using the pooled intensity maps
from all four chest recordings corresponding to a single subject. The “pooled”
intensity map amounts to the product of the individual maps formed over each
of the recordings. This technique has been observed to provide a more accurate
distribution for any single recording in the set of four because it is effective at
cancelling out the bias associated with a single chest position. Different chest
positions are known to differentially propagate noise from the heart, whereas
the heart rate and overall rhythm is assumed to remain relatively constant
over all four recording sessions.

6.1.2 Results

The interval lengths for the systolic interval and the cardiac period were
taken for the pooled sample and for three individuals. These data are plotted
in histograms in figure 6.1.
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Figure 6.1: Histograms of waiting times for the pooled sample and for three
individuals with 20 bins. The systolic interval is along the top row with the cardiac
period along the bottom row. Note that a distinctive feature is the presence of
multiple modes in the distributions of the subjects.

For a total sample size of N = 10500 heart sounds taken from |Strain| = 35
labeled recordings, the statistics of the pooled sample were generated. For
three randomly selected training subjects, the above distributions were also
fitted to N̂ = 300 data points for each subject and each class.

Densities Pooled Subject 1 Subject 2 Subject 3
Log-normal -0.33 0.47 -1.90 -0.22 -2.71 -3.04 -1.86 -2.06
Log-Laplacian -0.41 0.62 -1.75 -0.13 -2.69 -3.00 -1.90 -2.19
Kotz Log-AL [28, 46] 0.70 1.01 -0.90 0.48 -1.32 -1.30 -0.95 -0.85
Yu Log-AL [53] -0.48 0.57 -2.06 -0.27 -2.82 -3.19 -2.01 -2.26
Gamma -2.22 -0.92 -3.67 -1.20 -5.28 -5.28 -3.23 -3.07
Single Recording H-map n/a -3.19 -0.47 4.61 4.67 -3.13 -2.73
Whole Session H-map n/a -3.30 -0.58 4.61 4.67 -3.05 -3.06

Figure 6.2: Normalized negative log-likelihood of selected density functions. Each
major column contains a pair of minor columns giving the normalized negative log-
likelihood for the systolic interval distribution and the cardiac period distribution.
The rows show these scores for each model. Lower scores indicate that the distribu-
tion was a better fit for the pool or sample of data, and for the interval given. Here,
the distributions created by signal filtering

The values reported in figure 6.2 were stable under the bootstrap sampler.
Although the scores were observed to vary by small amounts (< 1%), it was not
necessary to use error bars to report the results. The pooled scores were only
recorded for the parameteric distributions as the intensity maps are designed to
be used specifically with either one recording or one subject’s set of recordings.
The bars in figure 6.3 are plotted on an arbitrary scale of scores that is intended
to show the overall differences between the distributions and does not imply a
baseline.
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Figure 6.3: Normalized negative log-likelihood of selected density functions. Lower
values in the graph indicate fewer outliers and a better fit. The best distribution
fit given the training labels is the Gamma distribution. The two (nonparameteric)
methods on the rightmost side of the graph obtain an average log-likelihood that
is comparable with the parameteric methods on their left, although with a high
variance.

6.1.3 Discussion

As far as modeling the systolic interval goes, it is clear that the Gamma
distribution provided the best fit overall, though the intensity map approaches
were competitive. There was more variance in the log-likelihood scores of the
cardiac period model, though the Gamma was also a good fit in this category.
One distinguishing feature appeared to be performance on the multimodal
distributions seen in the subject histograms. It may be that this will prove
to be an important feature in future efforts to model heart sounds; there are
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good reasons to believe that the timing of the heartbeat may follow a bimodal
distribution. For example, breathing and physical activity can be treated as
bimodal processes. These activities can affect the dynamics of valvular flow
by offsetting the shutting of valves and by causing splits in the heart sound as
a consequence [23, 2].

One criticism of the experimental design is that in comparing distributions
in terms of their likelihood, the complexity of the model (specifically, the num-
ber of its free parameters) is left out. Broadly speaking, models with greater
parameteric complexity have a greater range of flexibility and thus thend to
attain higher likelihood scores than models of less parameteric complexity.
A better measure of the model fit might have been the Akaike Information
Criterion (AIC) which contains a penalty term that directly punishes model
complexity in terms of the number of its parameters.

Even in consideration of this fact, one would expect that the models with
higher parameteric complexity in this study would have had more freedom to
fit the data, resulting in lower negative log-likelihood scores for those models.
However, this isn’t what happened. The best-fitting model, the Gamma, had
only two parameters compared to the three parameters of the asymmetric Log-
Laplace distributions. This actually lends even more support to the Gamma
as the appropriate distribution for heart sound modeling.

In comparing the intensity map methods against their counterparts, it
seems that these methods are competitive with the Gamma distribution at
modeling the systolic interval, and slightly worse than average when it comes
to modeling the cardiac period. It is notable that the intensity map methods
did poorly at modeling subject 2’s data because of a specific characteristic
discussed below in section 6.2.5. Here, the intensity map estimators identify
the wrong distribution entirely and rely on the uniform density mixture com-
ponent almost entirely. Since this component accounts for only 4% of the
probability mass, the overall negative log-likelihood for this one recording is
very low.

The log-likelihood values tended to be lower when fitted to subject data
than for the overall population. This does not mean that the sufficient statis-
tics of the subject are more informative than that of the overall pooled dis-
tribution, even though casual observation of the histograms may appear to
support this claim. Rather, the lower scores are a result of low variance in the
waiting times of a given subject, resulting in data that were easier to fit using
unimodal density functions.
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Figure 6.4: Intensity maps created for four different recordings of each of the
different chest listening positions combined into a single map on the right which
identifies a much stronger peak than is present in any one of the separate maps.

The difference between goodness of fit and distribution accuracy can be seen
in comparing the intensity map distributions produced by a single recording
versus those produced by combining the maps from all four chest listening
positions. Although both classes of distributions produce roughly equivalent
scores, the combination of all four listening positions seems to identify the
“true” peaks of the distribution more readily (see figure 6.4).

Judging from the variability in the data alone, the histograms show that
the systolic interval exhibits a fairly stable and repetitious behaviour. This
behaviour is even consistent across patients, with the peak occurring consis-
tently at 300ms. This is likely due to the heart’s natural pacemaker ability,
which controls the width of the systolic interval with high precision using a
small network of nerve fibers which drive the cardiac rhythm and reach peak
activity during ventricular systole. The distribution of the systolic interval is
therefore the most useful piece of information to be gleaned from the timing
of the heart when attempting to predict the arrival times of heartbeats.

6.2 Estimation of point-labeled heart sounds

6.2.1 Methods

In order to assess performance on the identification task, a “continuous”
version of the precision-recall score was developed for comparing the predicted
labels of the heart sound sequence with the training labels. This metric is
intended to be analogous to the precision/recall scores derived from the confu-
sion matrix of a binary classification task. Recall that each heart sound arrival
is centered on a window of width 2w in the signal in which the arrival influ-
ences the observed feature variables. Each predicted label and training label
are associated with such a window, and the total width of the overlap between
these two classes of labels can be divided into either the sum of the prediction
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label window widths or the sum of the training label window widths. These
two ratios provide the analogues to precision and recall, respectively.

Formally, the continuous precision and continuous recall are defined in the
following terms. Denote by Qtrain and Q̂ the set of labeled heart sound arrivals
and a set of predicted arrivals, respectively.

W =

Q̂∑
q′

Qtrain∑
q

max{ 0, 2w − |tq′ − tq| } (6.2)

U =

Q̂∑
q′

w + min{w, tq′ , L− tq′ } (6.3)

V =

Qtrain∑
q

w + min{w, tq, L− tq } (6.4)

The scores are computed as:

P =
W

U
(6.5)

R =
W

V
(6.6)

The continuous precision can be interpreted as the percentage of correct
overlap between the predicted labeled windows and the true labeled windows
out of the sum of all the predicted windows. This interpretation is analogous
to the precision of a classification task. The motivation for this score is that
a correct labeling is not binary in the sense of a classification task. Rather,
a predicted label must be compared to a true label by means of an overlap
between the window of observations centered on each one.

For a given predictor and a labeled training set, the continuous preci-
sion/recall scores of a predictor form a point on the unit square. A predictor
generates a two dimensional scatterplot consisting of the points of all the
recordings. The scatterplot can be useful for identifying the predictor’s ro-
bustness and for identifying cases or groups of cases that the predictor has
difficulty with. One can use it to determine whether a predictor’s accuracy is
specialized toward generating more labels (emphasizing recall) or generating
fewer labels (emphasizing precision). There is a clear difference between a
classical PR-curve diagram and the scatterplot generated by these “continu-
ous PR” scores: in the classical version, there is a continuous parameter being
varied which generates the curve. Each point on this curve is intended to
represent a unique classifier which generated the point’s precision and recall.
In this continuous PR score, a small finite set of classifiers are being com-
pared. Ironically, the classical PR score for discrete labeling tasks produces
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a continuous curve and our continuous PR score generates a discrete set of
scores.

6.2.2 Experimental Configuration

As mentioned in the introduction of the thesis, few existing methods rely
exclusively on the phonocardiogram signal to identify S1 and S2. The only
method that focuses exclusively on the identification of S1 and S2 is a neural
network method [22] for which the topological properties of the network (its
sizes and connectivity) are not known. Furthermore, the misclassification rates
cited by this study indicate that the network

Four configurations of heart sound identification predictors were created
and are described below.

Predictor 1. Abbreviation: PS The distribution of both the waiting
times and the observed data are pooled across the entire sample Strain with
no subject specificity built into the model. The representation chosen for the
observed data is the signal energy representation. Both distributions are mod-
eled with the univariate asymmetric Laplacian described in [53]. Likelihoods
are calculated for every time step of the sequence.

Predictor 2. Abbreviation: PP This predictor uses the same pooled
distribution to model the waiting times. The observation model consists of the
PWVD features captured by the multivariate asymmetric Laplace distribution
described in [28] and whose parameters are also shared across the entire pooled
sample. Likelihoods are also calculated for every time step of the sequence.

Predictor 3. Abbreviation: SD Here, a subject-based model is used to
capture the waiting times between the heartbeats. The method outlined in
section 5 is used to approximate the waiting time distribution for the specific
patient before the estimates of the arrival chain have been computed. The
intensity maps for all four chest positions of a given subject are combined in
order to produce the distribution. The observational model uses the signal
energy representation with a univariate asymmetric Laplace distribution de-
scribed in [53]. Likelihoods are calculated for every time step of the sequence.

Predictor 4. Abbreviation: SP This predictor is fundamentally the same
as SD, except that likelihood is now calculated only at the maximal points of
the signal energy representation. That is, only the time steps that belong to
the set { t : s′[t − 1] ≤ s′[t] and s′[t + 1] ≤ s′[t] } are considered, where
s′[t] is the convolution of the signal energy by a Gaussian kernel1 with scale
parameter σ = 0.100s. This greatly speeds up the computation but at the risk
of loss in accuracy since it is not guaranteed that the maximal points in this

1This choice of kernel is discussed in section 6.
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representation will contain the training labels. Formally, this is like including
a binary feature yt,0 which is only true at the maximal points in the smoothed
signal energy and conditioning all probability mass on the truth of this feature.

6.2.3 Predictions

The relevant comparisons to be made between these configurations are as
follows.

PS vs. PP: Between these configurations, the effectiveness of the PWVD
representation is tested against the smoothed signal energy representation.
Although the PWVD has been recommended for use in heart sound analysis
before [29], it is difficult to anticipate whether the spectral signature of a given
heartbeat type will be consistent enough across the entire population to be
useful for labeling the beats. It is very likely that large intersubject variation
will exist in the time-frequency representation of a heartbeat. If it does, it
is non-trivial to capture this highly multivariate density while simultaneously
estimating the positions of the beats themselves. However, the time-frequency
representation might still be useful if it can be modeled by a pooled sample
model, and that is what this comparison attempts to determine. Prediction:
no significant difference between PS and PP.

PS vs. SD: These two configurations both use a similar observation model,
but the PS model uses a shared parameteric density to describe the waiting
times where the SD model uses a subject-specific density based upon the in-
tensity map technique from section 5. This comparison illustrates the benefit
of using the intensity map technique to capture a distribution that is unique
to the individual subject. Since this technique is one of the main contributions
of this thesis, the comparison is an important one. Prediction: SD should offer
better significantly better precision than PS.

SD vs. SP: This comparison tests whether there is any drop in performance
when likelihood is computed only for the sparse set of maximal points in the
smoothed signal energy rather than for the entire sequence. The former tech-
nique offers a dramatic increase in computational speed since the decode phase
of the dynamic programming algorithm is a major computational bottleneck
for the entire predictor. When using only the maximal points as candidates for
arrivals, the number of points under consideration drops by a factor of 100.
If the prediction performance of the algorithm is unaffected by this change,
then it is worthwhile to estimate the best chain in this way. Prediction: no
significant difference between SD and SP.
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6.2.4 Results

The plots in figure 6.5 shows a scatterplot containing the overall preci-
sion/recall scores. It is not clear if the PS or PP predictors are performing
better than chance on the vast majority of the recordings, and may even be
performing worse. In lieu of error bars, shaded ellipses have been drawn in the
neighbourhood of the prediction scores for a given predictor, these have been
calculated using the means µpr and covariance Σpr of each predictor’s preci-
sion and recall. Small eigenvalues of the covariance matrix are scaled upwards
using the following (given in MATLAB syntax):

[V,D] = eig(Σ) (6.7)

m = max diag(D) (6.8)

Σ′ = min(Σ, 0.15m) (6.9)

Each ellipse is drawn to cover approximately 68% of the associated prediction
scores for a predictor.

Due to the nature of the heart sounds alternating in sequence, it was a
frequent occurrence that the predictor would get the beats mismatched with
one another, e.g. predicting S2 for true S1. For this reason, the predictors
all obtained continuous precision/recall scores at zero for some number of the
recordings in the training data. This tended to give a skewed picture of the
results since it sometimes was that the predictor was arguably identifying the
primary rhythm but mismatching the beats’ label types.

Because this occurrence tended to deflate a predictor’s score, these “zero-
score” predictions were removed and the data was re-plotted on a log scale in
order to focus on differences between the predictors in the low range of the
accuracy scale. This plot should be viewed with some skepticism as it omits
the numerically worst output from each classifier.

54



Figure 6.5: Continuous precision and recall results for four predictor configura-
tions. Above, individual dots show training sample recordings, with ellipses drawn
to indicate overall accuracy and robustness. A number of data points occur at the
origin for each predictor. The log-scale plot on the right omits data points in which a
predictor did not successfully predict any heart sounds. On the bottom, the number
of recordings that achieved zero precision/recall score are given for each predictor
based on a training sample of size D = 35. Results indicate that the SP combina-
tion of using the maximal points of the likelihood, subject-specific modeling, and a
simple energy representation provided the best overall performance.

6.2.5 Discussion

The immediate finding is that the SP predictor dominated the prediction
scores by a substantial margin. This is largely supported by the continu-
ous precision/recall scatterplot showing the performances of each predictor on
training data, but also by the low number of “zero-score” labelings which may
have mismatched the labels. The second finding is that conditioning every
predicted beat on a maximal point in the signal energy representation was the
single most effective way to identify heart sounds in the training data. This is
likely due to the fact that such time steps stand out prominently when exam-
ining the sequence visually, and make for obvious candidates for the precise
arrival time of a given beat.
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It is challenging to model a segment of PWVD features with a parameteric
multivariate distribution. This is thought to be the main reason for the PP
predictor’s poor performance. As the complexity of the observed variables
increases, it becomes more difficult to learn an accurate generative model.

The implications of a complex input such as the PWVD is that the ob-
servation model tends to produce log-likelihood values that are far too small.
As a result, the decoding algorithm tends to avoid placing events altogether
and opts to put them as far apart as possible in order to avoid paying these
large penalties. This accrues “less small” log-likelihood values in the model of
the arrival times and results in an arrival chain that is spaced very far apart,
missing the true beats entirely. The visible effect of this is that overall fewer
label predictions are emitted, and so precision is somewhat increased (see the
green region of figure 6.5) while recall is diminished. This interpretation is
also supported by the large number of zero scores by the PP predictor which
attempts to model the PWVD features. Apart from this artifact, most of the
prediction scores tended to gather near the line where precision and recall were
nearly equal.

Another finding was that in comparing PS with SD, the use of the intensity
map approach to density estimation did not significantly improve performance
and may have even hurt performance for these configurations. This suggests
that there may still be room for the pooled density estimate to be successful
if coupled with other techniques such as that used by SP to only compute
likelihood for peak values in the smoothed signal energy.

The success of the density estimation method of section 5 does come with
some clear drawbacks. The method is constrained to a domain of heart sound
parameters that may not contain the entire population’s heart sounds. This
might be remedied by enlarging the domain of the intensity map, though it
would best be done with more data or clinical input to inform the selection of
the domain. The bounds of this map are given in appendix 1.

Figure 6.6: The output of the SP predictor. A strong dominant S1 beat coupled
with a muted S2 beat, together beating at over 150bp/min. Dark shaded labels de-
note training labels while lighter shaded labels denote predictions. In this situation,
the SP predictor models only the S1 beats when identifying the relevant waiting
time distributions, and may not even compute likelihood for the faint regions where
the true S2 occurs.
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In figure 6.6, the predictions of the SP predictor and the training labels are
overlaid on top of a plot of the PWVD features. In this case, the algorithm
has identified the wrong distribution for the waiting times of the arrivals due
to its use of the quartic filter used to build the intensity map. When the
subject’s heart sounds are extremely polarized, consisting of one very loud
beat, one very soft beat, and a very high heart rate, the softer beat does not
produce a noticeable response to the four indicator functions in the quartic
filter. Rather, when the filter aligns only with the dominant beat, this creates
a large response in the intensity map that is subsequently selected as the peak
of the density. In addition, if the likelihood is only computed at local maxima
in the smoothed signal energy representation, the softer beat can be skipped
entirely. The presence of a soft S2 beat thus presents an ambiguity in which
the cardiac period of length c is easily confused for one of length ∼ 2c.
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Chapter 7

Conclusion

The learning achievements attained during the completion of this work in-
cluded several items not mentioned earlier in the document. These included
the use of discriminative models to model heart sound identification, exponen-
tial family models and kernels to capture high-dimensional data. These earlier
research paths did have an influence on the preliminary stages of the solution
presented here, though they were not documented by this thesis for reasons of
brevity.

Future work in this area must rely more heavily on statistical analysis
of data in order to quantify the behaviour of the distributions involved. It
was found that the distributional analysis presented in the first part of the
experiments section was indirectly the most valuable part of designing the
predictor since it was able to provide decisive evidence for the appropriateness
of the distribution(s) used. Had this analysis taken place earlier in the project
schedule, it might have facilitated the design of a better classifier.

The work presented here should be viewed as very preliminary in the area
of automatic auscultation. It was found that the most difficult element of this
task was that of providing appropriate probability distributions for a clinical
sample that exhibits high variance and produces a large amount of observable
data. A correct distributional model and feature representation will help pro-
vide tractable inference for heart sound analysis and will eventually lead to
sound machine-assisted diagnoses.
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Appendix I: Constants and
operational parameters

Input representation
PWVD features : M = 32
PWVD feature rate: sp = 500Hz
PWVD frequency bands: fmin = 10, fmax = 100
Sampling rate: s = 4kHz
Sample recording length: L = 20s
Heartbeat width: 2w = 100ms

Waiting time distribution
Span of systolic interval used to select peak of distribution: 250ms
Span of cardiac period used to select peak of distribution: 350ms
Waiting time distribution uniform density mixture component: α = 0.04
Waiting time parameter range: (s ≡ systolic interval, c ≡ cardiac period)

P = { s, c : s ∈ [120ms, 502ms], c ∈ [240ms, 1774ms], 1.8s < c < 4s }

Viterbi decoder
Maximum search depth for systolic interval: 750ms
Maximum search depth for diastolic interval: 1500ms
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