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1. 

1.0 SUMMARY 

Initially, this report was intended primarily to review currently 

available analytical techniques for the determination or prediction of for

mation pressures on shaft linings. To address this question, it has been 

necessary for the author to progress through a detailed mechanistic under

standing of the analyses which have been developed for the prediction of 

formation pressures on tunnel linings. This material, presented in Section 

3 of the report, provides a necessary basis and framework from which to 

proceed into the question of shaft analysis, presented in Section 4. A 

comprehensive summary of two-dimensional analyses of stresses and deforma

tions around tunnels in a wide variety of materials has been attempted in 

Section 3, and is shown in two key figures (2 and 3) to which frequent ref

erence is thereafter made. The role of gravity in the question of determin

ing minimum required support pressures (synonymous with minimum predicted 

formation pressures) is addressed, as this factor is later seen to be of 

importance to the analysis of shafts under certain conditions. For shafts, 

it is shown in Section 4 that either two-dimensional or three dimensional 

analyses may be appropriate depending upon the conditions of the problem, 

notably the relationship between the horizontal to vertical field stress 

ratio and the formation material properties. Both types of analysis are 

presented, with some brief comment on the shortcomings and possible exten

sions to the analyses. The analytical approaches presented are used with 

case history data in Section 4.6 to show that reasonable predictions of 

formation pressure may be obtained, although the lack of available case 

history data for validation under a wide range of conditions is an un

fortunate drawback. 

Finally, some brief comments concerning additional research work 

which could usefully be undertaken are included in Section 5. 
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2.0 INTRODUCTION 

This project was instigated to look into the problem of shaft lin

ing design or, more precisely, the problem of adequately estimating the 

formation pressures for which a shaft lining must be designed. It became 

quickly apparent that the heart of the problem could be found in the decep

tively simple question of what is the difference between a shaft and a 

tunnel? While the answer is obvious in the physical sense of a shaft being 

vertical and a tunnel being horizontal, the means by which this difference 

was, or could be, accounted for analytically - and indeed the need for such 

an accounting - were a great deal less clear. Analyses of both problems 

have a common root in the well known hole-in-plate analogy, and this tends 

to lead to a homogeneous view of the two problems as one being simply a 

rotation in space of the other. The question of whether or not such a view 

is an adequate reflection of reality might be considered as the basic theme 

of this report. 
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3.0 TUNNEL ANALYSIS 

3.1 Introduction 

Analytical solutions for the determination of stresses and defor

mations around cylindrical openings have been developed primarily for the 

two-dimensional plane-strain case of a tunnel cross section. These solu

tions provide the essential bases for all of the analyses reviewed in this 

report for both tunnels and shafts, and it is therefore important to derive 

a clear understanding of the basic model utilized, the assumptions involv

ed, and limitations to the applicability of the results. 

This section will look firstly at the model to be utilized, and 

the assumptions which are inherent to the model. Development of the analy

tical solutions for the determination of stresses and deformations will 

then be presented for a variety of different material characterizations, 

encompassing a broad range of actual materials. The physical or mechanistic 

meaning of the analytical results is assessed, and a brief review of areas 

of extension to the analyses for various phenomena not accounted for in the 

basic model is included. 

The development given in this section draws heavily upon work by 

Ladanyi, 1974, Coates, 1970 and Hoek and Brown, 1980. Existing work has 

been extended to include the case of a purely cohesive (frictionless) mate

rial, such as the short-term response of a saturated clay. As the litera

ture includes a wide variance in notation and in format of equations, all 

of the analyses have been cast in a framework which provides consistent 

form to the equations and parameters used, enabling ready comparison of the 

formulations appropriate to different cases. 

3.2 Basic Model and Assumptions 

Consider the case of a circular tunnel, to be excavated to initial 

radius rio The length of the tunnel is very much greater than its 
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diameter, with the longitudinal axis lying parallel to one principal field 

stress. Thus, a cross-section can be analyzed under conditions of plane

strain provided that such section is remote from the excavation face. 

To analyze stress re-distribution and deformations around the tun

nel as it is excavated a model as shown on Figure 1 has been selected, the 

essential properties of which are given below. 

(1) The cross-section encompasses a region of the ground which 

incorporates the tunnel location and which is composed of 

material which is weightless. 

(2) The external boundaries of the region are remote from the 

tunnel (i.e. r-oo ) and are loaded by an in situ stress field 

having equal vertical and horizontal principal stresses of 

magnitude Po, these stresses being equivalent to the in

situ stress field existing at the tunnel elevation prior to 

tunnel excavation. Note that this is only valid for Ko = 

ON 10; = 1.0. 

(3) The tunnel boundary is defined by a ciru1ar hole of initial 

radius ri, initially loaded internally by a radial pres

sure equal to the remotely applied field stresses, Po. 

Thus, this situation represents the virgin condition in the 

region, prior to any disturbance due to tunnel excavation. 

Stresses in the field are everywhere hydrostatic and equal 

to Po. 

(4) The effect of tunnel excavation is modelled by progressively 

reducing the internal pressure from Po to a lower value 

Pi, termed the support pressure, and lying in the range 

Po > Pi > o. Thus, this model of weightless material 

remains radially symmetric throughout the process of tunnel 

excavation. 
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(5) No strains perpendicular to the plane of the section are 

generated during the process of stress redistribution re

sulting from the progressive reduction in internal (support) 

pressure, i.e. conditions of plane-strain apply. 

(6) The material within the model region is assumed to behave in 

a linearly elastic manner until the peak strength of the ma

terial is reached. Thereafter, the post-peak or post-failure 

behaviour of the material is assumed to be perfectly 

plastic, with the transition from elastic to plastic 

behaviour occurring instantaneously. Any reasonable \ 

envelopes of peak and post-peak strengths may be utilized to 

characterize the material, and a variety of such envelopes 

are included in the analyses which follow. 

(7) For material in the elastic range, the volumetric strains 

are determined by the elastic constants E and V. In the 

(8) 

plastic range it is assumed that the plastic strain incre-

ments lie normal to the selected yield surface in principal 

stress space. That is, the associated flow rule of the 

theory of plasticity (Drucker-Prager postulate) is assumed 

to be valid. 

It is assumed, for the basic analysis, that the material 

does not exhibit time-dependent behaviour in either the 

elastic or the plastic state. 

(9) Ground water pressures are neglected, i.e. all stresses are 

effective stresses. 

\ 
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3.3 Mechanistic Development 

Mechanistically, the model selected behaves as follows: 

Initially, stresses everywhere in the region are hydrostatic 

and equal to Po. 

As the internal (support) pressure is reduced from Po to 

Pi, simulating excavation of the tunnel, the stresses 

redistribute around the tunnel. Note that, from symmetry 

and the plane-strain condition, the principal stresses re

main radial, tangential and parallel to the longitudinal 

axis of the tunnel respectively. 

At first, as the support pressure is reduced, the stress 

differences created are insufficient to cause failure and 

the region remains elastic. As a consequence of the stress 

redistribution elastic strains and deformations occur. As 

indicated by later analysis, the stresses within this com

pletely elastic region are independent of the material pro

perties, being solely a function of the geometry and the 

imposed boundary stresses. 

As the support pressure is further reduced, stress differ

ences sufficient to cause failure may occur - initially at 

the boundary of the tunnel. Hence, a plastic zone is formed. 

It is important to note that in this model the onset of pla

sticity is governed by the radial and tangential (principal) 

stresses, i.e. by the principal stresses lying in the plane 

of the cross-section. 

The level of principal stress difference at which the onset 

of plasticity occurs is solely a function of the material 
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strength properties under consideration, and the stresses 

within the plastic zone are solely a function of the support 

pressure and the material properties. 

Upon further reduction of the support pressure, Pi, the 

plastic zone will extend outwards to a radius which is a 

function of the above parameters and of the level of the 

remotely applied stress, po. 

Once a plastic zone has formed, the stresses within the sur-

rounding elastic zone are modified, reflecting the fact that 

the plastic zone has limited load carrying ability, which 

results in shedding of excess stresses to the elastic zone. 

This phenomenon has been termed "ring action". 

Deformations of the tunnel periphery now reflect both the 

strains within the outer elastic region, and the strains 

within the inner plastic region. The mode of closure defor-

mation in the plastic zone is analogous to that of a camera 

shutter, and later analysis will show that movements occur 

along spiral slip lines in the plane of the section. 

3.3.1 Minimum Support Pressure 

The primary question which we seek to answer through analysis of 

this model, is the level to which the support pressure Pi may be re-

duced while maintaining a stable and functional opening; that is, what is 

the minimum ground pressure for which the tunnel support system must be 

designed? While this question will be addressed in more detail following 

development of an analytical approach, the problem may be outlined mechan-

istically as follows: 

f 

! 
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3.3.1.1 Neglecting Gravity 

As previously noted, the model selected comprises a weightless 

material. For this case two bounding conditions for the minimum support 

pressure may be postulated. 

i) No Plastic Zone Formation 

Clearly, the tunnel will remain stable if the peak strength of the 

material is not exceeded at any point in the region. Thus, if the support 

pressure Pi is maintained at a high enough level such that the stress 

differences created around the tunnel are insufficient to cause the onset 

of plasticity, then the region will remain everywhere elastic with the 

stresses at every point being less than the peak strength of the material. 

The criterion of providing sufficient internal support pressure to avoid 

any onset of plasticity ("failure") has commonly been invoked in tunnel and 

shaft lining design. However, while this criterion is certainly sufficient 

to maintain stability, it may not be - and in general is not - a necessary 

condition. 

ii) Stable Plastic Zone Formation 

If the support pressure is reduced below that value indicated by 

(i) above, the strength of the material will be exceeded by the imposed 

stress difference, initially at the boundary of the tunnel, and a plastic 

zone will start to form, growing outwards from the tunnel wall. However, 

provided that the extent of the plastic zone which forms remains finite 

i.e. re does not go to infinity, a zone of plastic equilibrium will 

form. This ~one will in turn be surrounded by an outer zone which remains 

in elastic equilibrium, and no further stress redistribution, strain, or 
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deformation, will occur. Bence the tunnel may be considered stable. The 

minimum support pressure for which the condition of the formation of a 

finite plastic zone is fulfilled provides a lower bound solution to the 

minimum design pressure question. In this case, it is clearly necessary to 

maintain the support pressure at or above this level to maintain stability. 

However, as discussed under item 3.3.1.2, fulfillment of this condition may 

not be sufficient to ensure stability due to the effects of gravity. 

The above two minimum support pressure conditions represent, re

spectively, an upper bound which is sufficient but may not be necessary to 

maintain stability, and a lower bound which is necessary but may not be 

sufficient. Note that the lower bound condition requires only that the 

plastic zone remain finite. In fact, if the plastic zone becomes very 

large in extent - even though remaining stable - the deformations of the 

tunnel wall may become excessive, causing a functional failure of the tun

nel. Thus, between these two bounds lies a spectrum of support pressure 

values identified with different degrees of extension of the plastic zone 

and hence with different tunnel wall displacements. The relationships be

tween support pressure and tunnel closure will be quantified analytically 

in Sec tion 4. 

3.3.1.2 Including Gravity 

The model proposed above comprises weightless material acted upon 

by an external stress system. In reality, the self weight of the material 

leads to differing stability conditions between the crown and the floor of 

the tunnel. Given that a plastic ("failed") zone forms as the support pres

sure is reduced, it is necessary to assess the limit equilibrium of kine

matically possible failure wedges acted upon by gravity, in order to 
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realistically match the stabiltity of the weightless model to the stability 

of a real material. The lower bound minimum support pressure necessary will 

then be that which is necessary to both maintain a stable zone of plastic 

equilibrium (re < 00 ) and to maintain the limit equilibrium of postu

lated gravity block failures. While the specific manner in which this may 

be accounted for is explored in the next section, it is important to empha

size the need for this limit equilibrium check, as it is primarily in this 

factor that the difference between a shaft and a tunnel lies. In the case 

of a tunnel, gravity forces act within the plane of the cross-section con

sidered in the model, and the limit equilibrium check may, therefore, be 

included in a two-dimensional analysis. In the case of a shaft, however, 

gravity forces act in a direction perpendicular to the plane of the cross

section, and a limit equilibrium check therefore invokes the third dimen

sion. 

3.4 Analytical Development 

In order to quantify the mechanistic behaviour outlined in Section 

3, we seek analytical expressions for the stresses within both the elastic 

and the plastic zones around the tunnel, and for the tunnel closurewhich 

results from the stress redistribution caused by the progressive reduction 

of support pressure. Utilizing such expressions, values of minimum support 

pressure necessary to ensure stability will be investigated. Development 

of the required analytical expressions is based primarily upon work by 

Ladanyi (1974) and Hoek (1980), extended to include a wider range of 

material characterizations. 

The analytical material presented in the following sections is 

summarized in Figures 2 and 3. 
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For each case it is necessary to define a peak strength envelope 

within which the material behaves elastically, and a post-peak envelope de-

fining the plastic behavior of the material. While the four cases outlined 

below have been selected to cover a fairly wide range of combinations of 

elastic and plastic material behaviour, any reasonable combination of 

elastic and plastic failure envelopes is, of course, perfectly admissible. 

3.4.1 Material Characterizations 

See Figures 2 and 3 for a summary of the following material. 

Case 1: Coulomb 

(A) Elastic Behavior 

~ = Shear STrCOJ79'ra 

tT = Nor.l77,a' / srrC'.5s 

Ct!" = Cohes/o/7 ;e/t::7ST/C./ 

fZ& = AJ7!?/e C7/ /orer-.J7o/ r.r/cT/O/7 
//7 e/asT/c rt::7/7.;?e. 

The material displays a linear Coulomb failure criterion on a Mohr 

envelope (tvstr) plot. For convenience in maintaining a consistent format 

between the various cases considered, the following parameters are defin-

ed: 

Terzaghi's flow value in the elastic range: 

= tdn? (45r~) 
Z 

Intercept on ur axis in elastic range: 
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An empirical parameter, M, giving a relationship between 

field stress Po and material strength: 

(B) Plastic Behavior 

Cp :: CC7a6's/oo ;;P/O'S//c/ 

P!/,o = A/79/6' 0/ /nT6'rl7o/ rr/cT/b/7 
//7 p/OST/C rp/7:re. 

This material also displays a linear Coulomb criterion on a Mohr 

envelope plot, with the parameters modified to reflect post-peak behaviour. 

Analogous to the elastic behaviour, we define the parameters: 

N.ep = £"Q/?2' /45r /ZfoA) 

S~ = C,o/~P/;?~ = ~p/(N~'p -/) 

This Case 1 model would generally be expected to have applicability 

to soils displaying both cohesive and frictional behaviour, and could also 

be utilized for a reasonable approximation of rock mass behaviour. Clearly, 

the choice of the governing values for the basic cohesion and friction 

parameters is of critical importance, as with all such material 

characterization models. 

Case 2: Fairhurst - Coulomb 

Ladanyi (1974) has suggested that a rock mass may be more ade-

quately characterized by a Fairhurst parabolic failure envelope in the 

elastic ("intact rock") range, and a linear Coulomb envelope in the plastic 

("broken rock") range. 

\ 
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(A) Elastic Behaviour 

where: 
/7 = -OC/0-

L = r/7r-/ 

Once again, we define a parameter M giving the relationship bet-

ween field stress Po and material strength as: 

(B) Plastic Behaviour 

Identical to Case 1, a linear Coulomb criterion of the form: 

z;, = ~ -I- trtg/? PP 
and for which; Np;o = CO/'? Z/45-1- JZ!o/z) 

~p = Cp / ttp/? pp 
Case 3: Hoek-Brown Parabola 

Hoek and Brown (1980) have suggested that a failure envelope for 

rock may be appropriately drawn on a principal stress (~vs~) plot. The 

equation of the envelope is defined in terms of two empirically derived 

constants and the uniaxial compressive strength. 

(A) Elastic Behaviour 

where: 
~ = L//ut2%/a/ &:'ornpress/J/6" sTrengTh. 

n7d ... S~ = Ct:J/7sronrs de,P6"nc:Vng q.t7t:J/7 
/77e:?r~r/::;'/ prt:Jperr/es //7 The 
e/dsr~c /'"0'/75e Q/7g de./'l/u/7g ..the 
s/uzpe &7/ rhe /o/,(",re ~nJ/e/ope 
(h'tlEK.., /98CJ.J 
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In this case, the parameter M is defined as: 

(B) Plastic Behaviour 

An envelope of the same general form as that for the elastic re-

gion is used, but the constants m and s are modified to reflect plastic 

behaviour, i.e. mp and sp. 

Case 3: Purely Cohesive Material 

Whereas the special case of a cohesionless material may be extra-

polated directly from Case 1, the case of a frictionless material (purely 

cohesive) is somewhat less evident. The model used is that of an elastic 

perfectly plastic material with no post-peak strength reduction. Hence, the 

elastic and plastic envelopes are identical and, on a Mohr envelope plot, 

are simply a horizontal (~ - 0) line as shown. 

C - t-__ --:'Z'=-.-=-c:C'--___ _ 

3.4.2 Analysis of Stresses and Deformations 

Development of the analytical expressions for stresses and dis-

placements are well covered in the literature for Cases 1 and 2 (Ladanyi, 
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1974) and Case 3 (Hoek and Brown, 1980). Case 4 is a relatively simple ex-

tension, based upon the same steps used for the other cases. As an example, 

and for clarity, the expressions for Case 1 are developed in this section, 

with the resulting expressions for all four cases summarized in Figure 2. 

As the logical sequence of the steps is identical in all four cases, de-

tailed development of each case may be readily undertaken. 

3.4.2.1 Stresses 

For the case of cylindical symmetry, the differential equation of 

equilibrium in polar coordinates is: 

:;. 0 
(1 ) 

Assuming linear-elastic response and satisfying Eq. (1) for the boundary 

conditions 0;. '"' Pi at r - ri and 0;. = Po at r =00 gives: 

(2 ) 

(3) 

These two equations give the radial and tangential stresses within an 

elastic medium loaded by a 'stress Po at infinity and containing a cir-

cular hole at the origin of radius ri with an internal pressure of 

Pi. If a plastic zone of radius re forms around the central hole, 

then the stresses in the surrounding elastic region are found by satisfying 

Eq. (1) for the boundary conditions 0;. = ~~ at r 0= r e and 0;. = Po 

at r '"' 00 , giving: 
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(4) 

(5 ) 

It is readily seen that Eq. (4) and (5) are exactly analogous to Eq. (2) 

and (3), but with the hole of radius ri replaced by the radius of the 

plastic zone, r e , and the internal support pressure, Pi, replaced 

by the radial stress at the elastic-plastic interface, ~ • Note that the 

stresses within the elastic zone are independent of the material strength 

properties. 

Within the plastic or "failed" zone, the failure criterion defined 

for Case 1 must be satisfied. As noted in Section 4.1, the plastic behav

ior of the material for Case 1 is governed by the Coulomb failure criteri-

on: 

which may be rewritten as: 

where: 

SCp = CP/~(7/7 f3P (Sa) 

A/~ = Ct2/72r45r ¢'..o/i') (5b) 

as defined under Case 1 in Section 4.1. Recognizing that, for the model 

under consideration, 0; = 0; and tJ; = t7;, we may write; 

(6) 

Substituting the failure criterion from Eq. (6) into Eq. (1), integrating 

Eq. (1), and applying the boundary conditions that ~ = Pi at r = 

ri gives the radial and tangential stresses in the plastic zone as: 
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(7 ) 

(8) 

Note that the stresses in the plastic zone are solely a function of the 

strength properties of the material and the internal support pressure. 

At the boundary between the elastic and plastic zones the failure 

criterion for the original material i.e. the elastic material, must also be 

satisfied. For Case 1, the elastic behaviour failure criterion may be 

written as: 

or: (9 ) 

The principal stress difference within the elastic zone may also be writ-

ten, from Eq. (4) and (5) as: 

(~-~)= Z(Po-0) (10) 

Substitution of Eq. (10) into Eq. (9) gives: 

(11 ) 

where, as previously defined; 

(l1a) 

At the transition interface between the elastic and plastic zones, 

there must be continuity of the radial stress. Thus, the expression for 

radial stress in the plastic zone, Eq. (7), and the expression for radial 

stress in the elastic zone, Eq. (4) must both be valid. Solving these two 

equations simultaneously, the extent of the plastic zone, r e , may be 

determined 

(12) 
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The value of internal support pressure, Pi, at which the onset 

of plasticity occurs, and the minimum value of support pressure necessary 

to maintain a stable plastic zone around the tunnel may be determined as 

follows. 

A plastic zone will exist when the radius of the elastic - plastic 

interface, r e , is greater than the radius of the tunnel, rio Thus, 

the onset of plasticity will occur when re - ri for which, from Eq. 

(12), plasticity will occur when: 

/j ' ::: ~ - Me q: (13) 

Comparing Eq. (13) and (11) shows them to be identical. In other words, for 

a condition of plasticity to be generated at the tunnel boundary, the in

ternal support pressure is, of course, identical to the radial stress at 

the plastic - elastic interface. It is of some interest to note that the 

onset of plasticity for the two bounding cases of purely frictional (cohe

sionless) and purely cohesive (frictionless) materials will occur at: 

Cohesionless material; Pt' ::S Z Po/IW¢4' r/) 

Cohesive materaial; ~'~ ~o- ~~ 

In order to maintain a stable plastic zone around the opening, the 

radius of the plastic zone must be maintained at less than infinity. From 

Eq. (12) it may be seen that re < 00 for any positive value of inter-

nal support pressure, even for a cohesionless material (i.e. ~c~ -0). For 

a material displaying some cohesion in the plastic state the plastic zone 

will theoretically stabilize even if the support pressure is reduced to 

zero, although the zone may be of very large extent and the consequent 

deformations may be quite unacceptable. 

Finally, the nature of the deformations which will occur within 

the plastic zone is governed by the system of sliplines which develop. 
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Jaeger. 1969 (p. 192) shows that the plastic slip lines form a family of 

equiangular spirals of the form; 

r =: /joe (r ~~) (14) 

and the existence of such slip lines give rise to the type of "camera-

shutter" closure movements referred to previously. Analytical expressions 

for the amount of closure occurring are included in the next section. 

Referring back to the mechanistic discussion of Section 3. the 

above analytical development allows determination of the radius of the 

plastic zone which forms as the internal support pressure is reduced (Eq. 

12); the radial stress at the elastic - plastic boundary (Eq. 11); the 

principal stresses within the elastic zone (Eq. 4 and 5) and within the 

plastic zone (Eq. 7 and 8). and gives values of the minimum required sup-

port pressure based either on the criterion that no plastic zone is allowed 

to form (upper bound; Eq. 13), or that the plastic zone which does form 

reaches a stable limit (lower bound; Eq. 12 <00). However. the lower bound 

solution. which is really the one of primary interest. is of relatively 

little value as it tells us that the support pressure may be reduced to 

zero for all but cohesion1ess materials. and even for this case any posi-

tive value of Pi will suffice to stabilize the plastic zone. To obtain 

a more realistic assessment of minimum support pressures. it is necessary 

to assess the closure deformations. and to assess the effect of gravity. 

This is undertaken in following sections. 

An example which demonstrates the nature of the change in forma-

tion stresses around a tunnel due to reduction of the internal support 

pressure is shown in Figure 4. A material obeying linear Coulomb failure 

criteria in both the elastic and plastic states was selected (Case 1) and 
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the analysis is outlined below. The material properties have been chosen 

to emphasize the mechanisms of iD.terest. 

Elastic Behavior 

Let: ¢e =35-

oc =- o.5~ 
-0 

i.e. uniaxial compressive strength equals 1/2 the 
remotely applied field stress. 

Hence: 
!Vide =- ~d/7P (45r ~ff) 
~6' = .3.6;31 

As; 0; = Z C6' cos 4/(/ - ~//7 f2!'c./ j 
Then C ... = O./3/b Ce = i{ ~ """'fe . ((- 'I~ 1e.) 
And Me =//r(N¢~ -/)~/o;~(/V~ r(} 

~ =- /.36 

Plastic Behavior 

The strength parameters have been arbitrarily reduced to: 

Thus: 

~ =30
0 

C,P "-%0 ~ = 0.00 

SC;!J = qo/.td/7;;:1p == O. 0/7.tb 

/V,.efp = .ta/? Z (45 f- ,@,.o/Z) == 3. 0 

Prior to excavation, the internal support pressure, Pi, is 

equal to the field stress, Po, and thus the field stresses are given 

by 
o;.=O;=~ 

as shown by CD on Figure 4. 

As the support pressure is progressively reduced, modelling the 

excavation process, the material initially behaves elastically, redistribu-

ting the field stresses according to Eq. (2) and (3). From these it may be 
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seen that the tangential stress near the hole is progressively increased, 

with radial stress decreasing as Pi is reduced. Eventually, a suffi-

cient stress difference is generated to cause failure (onset of plasticity) 

at the tunnel wall. The value to which Pi may be reduced before plas

ticity is generated is, by Eq. (13), equal to 0.32 Po. 

At this point, shown as CD on Figure 4, the tangential stress at 

the tunnel wall has increased to a value of 1.68 Po, with the radial 

stress being equal to Pi i.e. 0.32 Po. 

As the internal support pressure is further reduced, a plastic 

zone grows outwards from the tunnel. The maximum extent of the plastic 

zone is reached when the support pressure is reduced to zero for which, 

from Eq. (12), the plastic zone extends to a distance of 4.45 times the 

tunnel radius. Thus, for points located closer to the tunnel than (4.45) 

ri, the stresses are given by Eq. (7) and (8), with the radial stress 

at the elastic - plastic boundary being given by Eq. (11). For points 

beyond the elastic - plastic boundary, the stresses are given by Eq. (4) 

and (5). The results are shown as (D on Figure 4. 

From this example, the meaning of the upper and lower bound minimum 

support pressures discussed in Section 3.1 is indicated. Growth of the 

plastic zone first commences at the upper bound value, in this case when 

Pi is reduced from its initial value of Po to 0.32 Po' Growth 

of the plastic zone ceases, having reached its maximum extent, when the 

lower bound support pressure is reached, in this case when Pi is re-

duced to zero. As previously noted, the fact that a stable plastic zone is 

achieved even when Pi is reduced to zero is due to the small cohesion 

which "was assumed to exist for the material in the plastic state. Once 

again it is emphasized that this analysis deals with a weightless material, 
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and more realistic minimum support pressure assessment requires the inc1u-

sion of gravity effects. 

Similar analyses could be undertaken for any of the different ma-

teria1 characterizations represented by Cases 1 to 4. The relevant analy

tical expressions for all four cases, derived using the same framework as 

given in this section, are summarized on Figure 2. 

3.4.2.2 Deformations 

While this report is concerned primarily with the formation pres-

sures developed on tunnel or shaft linings, it is obvious from the fore

going section that the formation pressures which develop are related to the 

closure deformations which occur. We have seen that there is no unique 

value of internal support pressure - a reduction in support pressure is ac-

companied by a stress redistribution in the elastic material and a growth 

in the extent of plastic zone, if such a zone has formed. These changes 

will give rise to closure deformations. Conversely, one might state that 

as more closure of the tunnel is allowed to occur, the necessary support 

pressure is reduced. This section outlines an analytical approach, based 

on the work of Ladanyi, 1974, which relates the closure deformations to the 

material properties and the internal support pressure. As with the previous 

section, only Case 1 (linear Coulomb material) is explicitly considered, as 

the derivations for the other three cases follow identical logic. All cases 

are summarized on Figure 3. 

Consider first the radial displacement, ~ , of the elastic - pla-

stic interface at r - reo The elastic tangential strain at this inter

face,~~, may be written: 

Ct9 : ; (L1 OJ - }) (LJ 0;. r LJ 0; ) } (15) 
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Where ~ is the normal stress parallel to the longitudinal axis of the 

tunnel and V is Poisson's Ratio. For the two-dimensional model and load-

ing system selected, it may be readily shown that, in the elastic region, 

the change in longitudinal stress is zero for conditions of plane-strain 

(or, in fact, plane stress). 

Hence; Ct9 = j [Ll 0; - VLJ 0;] 
As; et9 = tL6'h 

Thus; tL~ = j ~o; - VL1o;.) 
From consideration of Eq. (4) and (5) we may write that; 

and Ll 0; == LPo r(/l; - t7;tf?)(&/f)V -~ 
A 0;. =L~-(~-~)(r~):;-rb 

(16) 

Substituting the above into Eq.(16) and simplifying gives the Lame equa-

tion: 

Substituting Eq. (11) into the above gives; 

LL'e = (I;Y) (McOf)/f;1 (17) 

which is the radial displacement of the elastic - plastic interface and is 

valid under conditions of either plane stress or plane strain. 

In addition to the elastic radial displacement above, the radial 

displacement of the plastic zone (if any) must be considered. If it is 

possible to determine the average plastic dilation (volumetric strain) of 

the material within the plastic zone, eav , then for plane strain condi-

tions we may determine the radial closure associated with a given extent 

(radius) of plastic zone. Ladanyi, 1974 undertakes this task based upon 

the concept of the associated flow rule of the theory of plasticity which 
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implies that the plastic strain increments are normal to the yield surface 

in principal stress space (Drucker-Prager postulate). 

For Case 1 (linear Coulomb) the yield function may be written 

(18) 

As noted, Drucker's postulate states that: 

(19) 

where ~ is a constant of proportionality, F is the yield function and a(c~' 

refers to a plastic strain increment. From (18) and (19), the ratio of the 

plastic dilation to the plastic shear strain increment is; 

(20) 

and, for small increments of strain, we may assume a direct proportionality 

between plastic dilation, e , and plastic shear strain, % . 

Thus, (21) 

The average plastic dilation, eav , is determined by dividing the total 

volume change of the plastic zone, dVp, by the original volume of the plas-

tic zone, Vp. 

(22) 

While the volume of the plastic zone is readily calculated as: 

(23) 

the total volumetric change must be calculated from 

/
16-

dtj:; = ZTTe(r)rdr 
/i' 

(24 ) 

To express the plastic dilation, e, as a function of radius, r, use 

is made of approximate relationships (Ladanyi, 1974) which allow the inte-

gration of Eq. (24) and thus the determination of eav from Eq. (22) 

as; 

(25) 
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where eav is negative for volume increase. 

The parameter Rc (the subscript referring to the Coulomb model 

of Case 1) reflects a concern over the range of validity of Druckers postu-

late. Ladanyi argues that the volume change rate can only be assumed to 

obey the associated flow rule within a limited portion of post failure 

strains and hence, for a thick plastic zone, Eq. (24) should only be inte-

grated over a portion of the zone. Ladanyi suggested that: 

For a thin plastic zone, i.e. /'~- < -v3 

Then: (26) 

For a thick plastic zone, i.e. 

Then: --Pc = /.IOC (27) 

Having obtained an expression for the average plastic dilation, 

the tunnel closure, Ui, may be calculated. Comparing the volume of the 

plastic zone before and after its formation; 

Simplifying, gives; 

d - = r - //-(1- t'a~ )1 7 
It tL/ Ii-A --,; .I 

(28 ) 

Where: 

(29) 

The equations derived from the foregoing development, which may be 

followed in similar fashion for Case 2 (Ladanyi, 1974), Case 3 (Hoek and 

Brown, 1980) and Case 4, are summarized on Figure 3. 

Using the foregoing analysis, displacements may be calculated for 

the example presented in the previous section and shown on Figure 4. To 
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calculate displacement, Poisson's Ratio and Young's Modulus are required. 

For illustrative purposes, the following values have been chosen: 

J) = (/.30 
E = /tJO ,.q, 

We wish to calculate the closure associated with progressively de-

creasing values of internal support pressure, Pi. As previously shown, 

the material will remain fully elastic until the support pressure is re-

duced to 0.32 Po, at which point a plastic zone is instigated at the 

tunnel wall. Thus the tunnel closure to this point is elastic and may be 

calculated from Eq. (17) replacing re by ri, which shows a closure 

of 0.009 times the original radius, ri. This point is shown on Figure 

5 as CD, corresponding to the equivalent stress distribution shown on Fig-

ure 4. As the support pressure is further reduced the radius of the plastic 

zone grows according to Eq. (12), and hence the ratio (re/ri) in-

creases. Knowing the values of (Ue/re) from Eq. (17); of Dc from 

Eq. (20), and of (re/ri) Eq. (12), the appropriate values of R may 

be calculated from Eq. (26) or (27), giving values of eav from Eq. 

(25), A from Eq. (29) and hence of radial closure Ui from Eq. (28). 

The results are plotted on Figure 5 in the form of a dimensionless closure 

versus support pressure curve. 

The results show that maintenance of the upper bound support pres-

sure (onse t of plas ticity, point CD) allows a radial closure of 0.009 

ri, whereas reduction of the support pressure to its theoretical lower 

bound allows closure of 0.28 ri, which would generally be completely 

unrealistic. To maintain a more realistic closure, a support pressure 

greater than the lower bound (zero in this case) is normally installed. The 

analysis of the interaction between support reaction curves and ground 
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reaction curves is well covered in the literature (Lombardi, 1973; Kaiser, 

1980; Hoek and Brown, 1980, Ladanyi, 1974 and others) and will not be re-

peated here. A question of primary interest to this report is the deter-

mination of the actual minimum support pressure which will maintain the 

tunnel in a stable condition. To determine this value we must now move 

away from the weightless model which has been used, and invoke the effect 

of gravity, thus differentiating between the crown of the tunnel and the 

floor - a distinction which has not been present so far. 

3.4.2.3 Gravity Effect - Limit Equilibrium 

In the preceding analyses, we have seen that progressive reduction 

in support pressure leads to the development of plasticity in the material 

surrounding the tunnel. In a manner somewhat analogous to a slope stability 

or retaining wall problem, we now seek to analyze kinematically possible 

failure mechanisms to determine what minimum support pressure must be in-

stalled to stabilize such mechanisms. In other words, the approach of 

limiting equilibrium can be utilized. 

According to Eq. (14), there exists an infinite family of spiral 

I 
slip lines in the plastic zone of the form: 

r = ;-;.6'(~~~p) 
for a Case 1 material. For the example which has been utilized in the last 

two sections, typical slip lines are shown in Figure 6, for the limiting 

case of Pi = 0 when the plastic zone has reached its maximum extent 

(re = 4.45 ri). The existence of such slip lines, in a homogeneous 

material, has been well demonstrated by the model tests of York and Reed, 

1953. As shown on Figure 6, it is possible to define blocks or wedges of 

material, bounded by plastic slip lines, which eould provide kinematically 
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possible failure mechanisms. Clearly, there are an infinite number of such 

blocks, as there are an infinite number of slip lines. The stability of a 

given block is a function of the weight of material contained within the 

block, the plastic shear strength of the material (which is fully mobilized 

along the slip lines) and the existence of any internal support pressure. 

In general, the internal support pressure required to stabilize a block may 

be found by summing forces in the direction of potential movement, which is 

parallel to the axis of symmetry of the block. Hence, for the block shown, 

the general expression; 

would be valid. 

It is readily seen, by inspection, that a block with a vertical 

axis of symmetry is most critical, as the driving force (W) is in the di

rection of potential movement. For a wall block, the driving force is zero 

in the direction of potential movement, and is opposed to the direction of 

movement for a floor block. Thus, some minimum value of support pressure, 

(Pi) min, may be required to stabilize the tunnel crown due to gravity 

effects, whereas the sidewalls require no such support, and the floor 

stability is actually enhanced by gravity. 

To determine the value of the minimum required support pressure on 

the basis of seeking out the most critical failure block bounded by slip 

lines as shown on Figure 6 is analytically feasible. However, such an 

approach would be somewhat cumbersome. More seriously, determination of 

minimum support pressure on such a basis would be placing an unwarranted 

confidence in the highly idealized model of a perfectly homogenous, per

fectly plastic etc. material which we have utilized. For material such as 

rock, the plastic zone represents a zone of broken rock, which will have 
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been greatly affected by geological detail and will certainly not produce 

the idealized slip lines shown in Figure 6. To obtain a simple and conser

vative value for the effect of gravity blocks in the crown it is generally 

assumed that the full weight of the failed material i.e. the material in 

the plastic zone ri < r < r e , must be carried by internal support 

(Hoek and Brown, 1980). This is equivalent to assuming a vertically bounded 

prismatic failure block with zero shear resistance along its boundaries, 

and extending from the tunnel crown to the limit of the plastic zone. As 

previously noted, the gravity destabilizing effect is fully active at the 

crown, irrelevant at the side walls, and of a negative sense (i.e. stabi

lizing) at the floor. These effects may therefore be simply, although 

crudely, accounted for by adjustment of the closure support curve shown in 

Figure 6 by the term t( (re - ri), where ~ is the unit weight of 

rock, increasing the support pressure by this amount in the crown, and 

decreasing it in the floor, as shown schematically in Figure 7. Thus, as 

experience clearly tells us, there exists a difference in the support re

quirements of the crown compared to the sidewalls or floor. Although this 

difference, which is the effect of gravity, has been rather crudely ac

counted for in this analysis, it is important to recognize that the funda

mental step which enabled the gravity effect to be accounted for in the 

context of a weightless material model was the use of a limit equilibrium 

check on potential gravity failure blocks. Although the limit equilibrium 

analysis was greatly simplified, the validity of the logic remains, and is 

important in the analysis of formation pressures on shaft linings. 
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3.4.3 Minimum Internal Support Pressures 

From the foregoing analyses, it is seen that the minimum internal 

support pressure - which essentially corresponds to the design pressure of 

the formation upon the tunnel supports - may be defined in several ways 

which have quite different physical meanings. There are really four basic 

definitions which are outlined below in quantitatively descending order. 

(1) Maintain Material in Elastic Range 

This refers to the internal support pressure required to avoid any 

failure of the material around the tunnel i.e. no onset of plasticity. 

Widely suggested as design criterion for use in tunnel and shaft analyses 

(Dixon and Mahtab, 1976). Referred to herein as the upper bound value of 

minimum support pressure. 

(2) Limit Closure of Tunnel 

Referring to the character~stic closure - support curve of Figure 

6, a support system may be installed to provide a reaction which is suffi

cient to limit the closure deformation to a pre-determined, acceptable, 

value. This design support value would in general be less than 1) above. 

Methods of treating analysis of support reaction are covered by Lombardi, 

1973j Hoek and Brown, 1980. 

(3) Maintain Limiting Equilibrium of Gravity Blocks 

Referring to the (schematic) modified characteristic curves of 

Figure 7, a minimum support value is required in the crown of the tunnel to 

maintain the equilibrium of gravity blocks. This, realistically, is the 

lower bound value for internal support pressure in the crown. 
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(4) Maintain Stable Plastic Zone 

This is the absolute minimum support pressure. For values less 

than this the radius of the plastic zone expands to infinity, giving rise 

to infinite closure movements. This parameter has relatively little mean

ing, as the analytical equations show that for a material displaying any 

cohesion in the plastic state - however small - a stable plastic zone is 

always achieved, albeit at the cost of extremely large displacements. For 

a material which is cohesionless in the failed (plastic) state, a stable 

plastic zone can theoretically be achieved provided some positive value of 

internal support, no matter how small, is maintained. In reality, require

ments (2) or (3) will generally control. 

3.4.4 Extensions to Analysis 

While it is not the intention herein to undertake an exhaustive 

review of tunnel analysis criticisms and extensions, some comments are in 

order for purposes of completeness and clarity. 

3.4.4.1 Face Effect 

It was noted in Section 2 that the model utilized was for condi

tions of plane strain, and hence existed remote from the three-dimensional 

effects of the tunnel excavation face. It was further stated that the pro

cess of tunnel excavation would be modelled by reducing the internal sup

port pressure from an initial value, Po' equal to the virgin field 

stress, to progressively smaller values. In reality, excavation of the 

tunnel does not occur gradually, but results in an instantaneous reduction 

of the internal support due to removal of the rock core. Nevertheless, work 

by Lombardi, 1973 and by Panet, 1974, indicates that the restraining effect 
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of the tunnel face upon closure deformations of the tunnel in the proximity 

of the face is reasonably modelled by the approach of progressively reduc

ing the internal support pressure in the analytical model. Thus, a ficti

tious internal support is presumed to exist within the tunnel near to the 

face. Panet, 1974, compared a 3-D axisymmetric numerical analysis with the 

results of the type of 2-D analytical analysis outlined in the previous 

sections. He found that, for a material in the elastic range, the radial 

closure immediately behind the face was in the order of 0.3 to 0.4 times 

the closure which ultimately occurred when the tunnel face, and hence its 

restraining effect, were advanced more than 2 diameters from the point in 

question. This may be viewed as equivalent to maintaining an initial fic

tituous internal support pressure of between 0.7 Po and 0.6 Po at 

the face. Thus, the restraining effect of the face may be approximately 

modelled in the 2-D analysis by assuming that the (fictitious) internal 

support pressure is equal to (say) 2/3 Po when the face is at the point 

in question, and reduces to zero when the face is a distance of 4 ri 

from the point in question. Thus, artificial support which is intended to 

maintain a minimum internal support pressure as discussed previously must 

be installed between the time of excavation and the time at which the face 

has advanced a distance of four times the tunnel radius. 

More detailed analysis of the stress-deformation response near the 

tunnel face requires 3-D analysis - most readily undertaken by numerical 

analysis of an axisymmetric model. Nevertheless, the 2-D model with a fic

titious internal support pressure which is progressively reduced does pro

vide a most useful analytical method which provides excellent insight to 

the mechanisms of stress redistribution and deformation. 
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3.4.4.2 Time Dependent Behavior 

The model utilized is independent of time. Ladanyi, 1974, proposes 

a simple method of utilizing "isochrone" lines to modify the support-clo

sure diagram derived from the foregoing analysis consisting, in essence, of 

arbitrarily reducing the material strength parameters as a function of 

time. More recently, Ladanyi, 1980 and Hanafy, 1980 have utilized creep 

relationships based on a power law to account for time dependence. The 

thesis by Da Fontura, 1980 provides a useful review. 

3.4.3.3 Non-Hydrostatic Field Stresses 

All of the foregoing analysis has been based upon a hydrostatic 

state of stress in the virgin condition. This may be a serious restriction 

with regard to the analysis of tunnels. Muir-Wood, 1975, and more recently 

Pender, 1980 have extended the characteristic line method to include non

hydrostatic loading. This restriction is not as serious for the problem of 

shaft analysis for which the condition of hydrostatic loading will gen

erally be closely met. 

3.4.5 Summary 

This section has outlined the basic derivation of an analytical ap

proach to the analysis of the stress-deformation response of a tunnel sec-

tion. Four cases of different elastic and plastic material properties have 

been presented, and an attempt has been made to explain, qualitatively, the 

mechanisms at work during the process of stress redistribution and deforma

tion. While the approach is strictly valid only for a two-dimensional pro

blem in plane-strain, it is able to provide useful insight to the process 

of tunnel excavation by the device of progressively reducing a fictitious 
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internal support pressure. It is emphasized that the onset of plasticity 

or failure around the tunnel is due to the difference between the major and 

minor stresses in the plane of the cross-section i.e. the tangential and 

radial stresses, giving rise to a "camera-shutter" type of closure along an 

infinite family of equiangular spiral slip lines. Because the model is 

weightless, it is necessary to check the limit equilibrium under gravity 

loading of potential failure blocks bounded by the spiral slip lines in 

order to determine the minimum support pressure required. This limit equi

librium check is approximated by simply considering the full weight of the 

material in the plastic zone to require support, and this approach succeeds 

in differentiating between the crown, sidewalls and floor of a tunnel. 

In essence, the well known hole-in-a-plate model has been utilized 

for the basic analytical approach, modified for the special conditions of a 

tunnel by including a limit equilibrium check of potential gravity failure 

blocks. An exactly analogous approach may be followed for the analysis of 

the formation pressures acting on a shaft lining, with the primary modifi

cations being due to the nature of the stresses causing plasticity and to 

the fact that gravity effects act perpendicular to the plane of the hole

in-a-plate cross-section. 
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4.0 SHAFT ANALYSIS 

4.1 Introduction 

After extensive review of the literature pertaining to the anal

ysis of formation pressures on shafts, one is struck by several factors. 

Firstly, there is a surprising paucity of material. Secondly, it is com

monly argued that whereas the simple hole-in-a-plate model may be question

able for a tunnel due to non-hydrostatic loading and due to differences in 

the effects of gravity at different points around the tunnel periphery, 

these deficiencies are not generally present for a shaft. As a consequence, 

simple hole-in-a-plate models are almost universally invoked for shaft an

alysis, and the result is then idential to the basic characteristic sup

port-closure curve outlined in the last section, but neglecting any gravity 

corrections. In short, a shaft is viewed simply as a two-dimensional tunnel 

problem around which gravity may be neglected. To quote Lombardi, 1973 "In 

the centrosymmetrical case, as perhaps for a vertical shaft sunk in a homo

geneous rock, the problem is simpler in so far as every displacement points 

towards the centre and thus exhibits only radial components. In the same 

way the forces and stresses are only directed radially or tangentially". As 

we shall see, this convenient and simple two-dimensional approach is rea

sonably valid, but only under cerain conditions, depending primarily upon 

the ratio of horizontal to vertical field stresses, ko • Terzaghi, 1942, 

had already recognized that the problem of shaft design in soils was not as 

simple as merely rotating a tunnel in a weightless medium through ninety 

degrees, and undertook an elegant engineering solution to a three-dimen

sional shaft problem. This section will endeavour to reconcile both ap

proaches by outlining the ranges of validity of each. 
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Finally, it should be noted that attempts to determine the current 

state-of-the-art basis for assessment of formation pressures around shafts 

were remarkably unproductive. Mayo, 1968, in a state-of-the-art report re

fers to the rule of thumb of "one inch of concrete (liner) per foot of dia

meter" as still being the most acceptable. Virtually all of the more ana

lytical approaches which were found were simply based on provision of suf

ficient support pressure to avoid the onset of plasticity - identical to 

the upper bound minimum support pressure from the previous section - al

though most authors emphasize that this is really only an approximate 

method for controlling deformations (Weehuizen, 1959; Ostrowski, 1972). In 

private communication with several consultants and contractors currently 

involved in shaft design or construction, little additional insight was 

gained. Indeed, in two cases the view was expressed that supports capable 

of resisting pressures equal to the virgin state of stress, po, should gen

erally be provided. Such a view cannot in general be defended, and would 

place an unnecessary penalty on the cost of shaft supports. 

4.2 Mechanisms of Shaft Behaviour 

The two basic shaft models referred to briefly above may be 

thought of as essentially two-dimensional (hole-in-a-plate model, weight

less material) and essentially three-dimensional (Terzaghi, 1942) respect

ively. The applicability of each model may be understood in terms of the 

mechanics of behaviour of the material around the shaft, notably the manner 

in which failure (plasticity) of the surrounding material is generated. 

Consider the excavation of a vertical shaft as shown in Figure 8. 

As with the tunnel analysis, the excavation of the shaft at any particular 

section (depth) may be modelled by considering the progressive relaxation 
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of the internal support pressure starting from an initial value equal to 

the in situ horizontal stresses appropriate to the depth being considered. 

We will consider the horizontal stress field to be hydrostatic and of mag-

nitude Po = koOV ' where ko is the ratio of the virgin hori-

zontal to vertical stresses. The vertical stress is initally equal to the 

overlying weight of material i.e. oy - tJ; =)(z. The internal support pres-

sure prior to excavation is equal to the remotely applied stress, i.e. 

Pi = Po' As excavation proceeds Pi is progressively reduced. 

As Pi is reduced, the material initially responds elastically 

with the tangential stress increasing above Po near the shaft, the 

radial stress deceasing, and the longitudinal stress remaining constant, 

vertical and equal to J(Z. For this axisymmetrical case, as long as the 

material remains in the elastic range, the equations governing the stress 

distribution in the plane of the section are identical to those derived for 

the two-dimensional tunnel case (Poulos and Davis, 1971), given by Eq. (2) 

and (3). 

~ = Fb -0-/1)(r0-)2 

0; = ~ r(;:z, _~)("'*)2 

Thus, as Pi is reduced, a stress difference is generated at the shaft 

(2 ) 

(3) 

wall due to the increasing 0; and decreasing t7;. Provided that no plasti

city occurs, the closure of the shaft in the elastic medium may also be 

calculated by the same equations as those utilized for the tunnel case. 

If the process of decreasing the internal pressure could be con

tinued, without the onset of plasticity, to the point where the internal 

pressure is equal to zero, we see from Eq. (2) and (3) that the tangential 

stress would rise to a value of twice the field stress at the shaft wall, 
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the radial stress would drop to zero, and the vertical stress would remain 

equal to the gravity load, all three stresses being principal. 

i6'. o;-"'ZPo=Z~cYz 

o;.~O 

0; = .5"2 

As the potential for the onset of plasticity depends upon the max-

imum principal stress difference, we see that there are actually three pos

sible alternatives for which pair of stresses initiates failure. Plasticity 

could be generated in the plane of the cross-section by the difference bet-

ween the tangential and radial stresses, or it could be generated in the 

vertical plane by the difference between either the vertical and radial 

stresses or the vertical and tangential stresses. The latter case, although 

possible, has been neglected in the following analysis. Which of the re-

maining two mechanisms occurs first, depends upon whether the vertical or 

the tangential stress is the larger. This in turn depends upon the value 

Consider first, as an example, a case for which the value of ko 

is equal to or greater than unity as shown diagrammatically on Figure 9. As 

Pi is reduced, 0; rises to values always greater than tJZ, and 0; falls 

rapidly below tr.!(except for extremely high values of ko ), and thus the 

maximum stress difference lies in the plane of the section and is due to 

(OQ - 0;. ). If, during this process, the strength of the material is insuf

ficient to sustain the stress difference - which may, of course, occur be-

fore Pi is reduced to zero - then plasticity will be generated at the 

shaft wall. The nature of this plastic zone is to form spiral slip lines, 

exactly as in the tunnel case previously investigated. Plastic closure of 

the shaft w,ill occur in "camera-shutter" form, with the surfaces of sliding 
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causing movements only in the horizontal plane. Shear stresses in the ver

tical direction remain zero, and the vertical stress will remain unchanged, 

as no failure has occurred in the vertical plane. This statement implies 

that failure in the horizontal plane does not affect the m~terial strength 

in the vertical plane, which is true only for an ideal material. While 

this is clearly a simplification, it allows the mechanistic difference to 

be clearly seen between the cases of horizontally generated plasticity, 

(0& -0;. ) and vertically generated plasticity, «(Jz -0;). Thus, the situ

ation described closely resembles the two-dimensional tunnel case, with the 

minor change that a condition of constant longitudinal stress prevails 

(l:J.OZ={J) compared to the constant longitudinal strain (llcZ=O) assumed 

for the tunnel case. It is this case, which we may refer to as "horizontal 

plasticity" that has been referred to as the two-dimensional case, and it 

is intuitively obvious that use of the simple 2-D hole-in-plate model may 

be used to give approximately correct solutions to the stress - deformation 

response, as outlined in following sections. 

The above case contrasts with that shown diagrammatically in Fig

ure 10 where, for illustration, a value of ko < 1/2 has been assumed. 

In this case, even if the internal pressure is reduced to zero, the tangen

tial stress never reaches a value as great as the vertical stress. Thus, 

as Pi is progressively reduced, the maximum stress difference is always 

governed by (OZ - 0; ). If, at some stage of this process, the strength of 

the material is exceeded, plasticity will be generated in the vertical 

plane by the (~ -~) stress difference. Failure generated in this mode 

will create a family of inclined slip lines in the vertical plane, as ill

ustrated in the lower part of the figure, requiring downwards and inwards 

movement of the material. As a consequence of the relative vertical 
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movement, shear stresses will act vertically in the r - z plane, and excess 

vertical stress (due to further reduction of Pi or due to the higher 

initial vertical stresses at sections deeper in the shaft) is thereby shed 

to surrounding material, causing a rotation of principal stresses in the 

vertical, «(JZ - 0; ), plane. At the same time, the wedging action of the 

inward movement will cause an increase in tangential stresses to a limiting 

value equal to the major (near-vertical) principal stress. Thus, principal 

stresses are no longer radial, tangential and vertical, the problem ceases 

to be two-dimensional and the direct use of the 2-D tunnel model to deter

mine the stress-deformation response is no longer justified. Terzaghi, 

1942, and later Coates, 1970 addressed this problem of "vertical plasti

city" with a view to determining the minimum support pressure required for 

stability i.e. the minimum design formation pressure. 

Before proceeding further with the analysis of these two cases, it 

is worthwhile to develop a means of identifying the general range of appli

cability of each model i.e. the two-dimensional model of horizontal plas

ticity and the three-dimensional model of vertical plasticity. 

4.2.1 Conditions of Validity for 2-D and 3-D Models 

The simple mechanistic arguments of the previous section suggest 

that a 2-D hole-in-a-plate "tunnel" model is reasonably applicable to a 

shaft if the onset of plasticity is generated by stresses in the horizontal 

plane i.e (0.9 -~ ), whereas a 3-D model must be invoked if plasticity is 

generated in the vertical plane by the (OZ-o;,) stress difference. By 

inspection of the illustrative examples in Figures 9 and 10, plasticity 

will generally be of the horizontal (0& - 0;) type for ko < 1. 0 [exclu

ding the unusual case of the ~ - t7Z stress difference generating plasti-
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ci ty], and of the vertical (OZ -0;. ) type for ko < 1/2. Between these 

two bounds, the determination of which mechanism will occur for a parti

cular case may be analytically solved as follows. 

As the internal support pressure is reduced, the material redist

ributes stresses elastically, and the tangential-radial stress difference 

at the shaft wall may be written from Eq. (2) and (3) as: 

(30) 

Assuming a linear Coulomb material (Case 1 from the tunnel analysis sec

tion), the maximum stress difference which may be sustained may be written 

(0;-03)= OC rOj (N¢'e -/) (31) 

As, for elastic response, ~ and ~ are principal stresses, we may equate 

Eq. (30) and (31) and simplify to give; 

(32 ) 

Eq. (32) thus indicates that, once Pi is reduced to the value given by 

the above expression, horizontal plasticity due to the (~ -0;.) stress 

difference will occur. 

Similarly, we may write an expression for the «(JZ - 0;.) stress 

difference in the vertical plane at the shaft wall from Eq. (2) as: 

(t/Z -0;.) = (OZ -~) (33) 

Once again, in the elastic range, OZ and ~ are principal stresses 

and, equating Eq. (33) and (31) gives, upon simplification; 

Eq. (34) indicates that, if Pi is reduced to the above value, vertical 

plasticity will occur due to the (OZ - 0;.) stress difference. 

(34) 

Comparing Eq. (32) and (34) we may deduce that the equation which 

gives the larger value of Pi will determine which form of plasticity 

will first occur, as it is the larger value of Pi which will first be 
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encountered during the progressive reduction of the internal support pres

sure. From this comparison, by equating Eq. (32) and (34) we may define a 

critical value of ko - the ratio of horizontal to vertical field 

stresses - as follows; 

(tp kr//." = f +-)fz #'4) - OC ~ ;V~¢" OZ) (35) 

If the actual value of ko at the depth of the particular shaft section 

being considered is greater than (ko ) crit, then horizontal plasticity 

will first be generated. Note that this expression does not indicate that 

plasticity will be generated - only that if plasticity does occur, then it 

will be in the horizontal plane. Conversely, for (ko ) actual < (ko ) 

crit, any onset of plasticity will be in the vertical plane due to the 

«(7z - 0;) stress difference. 

Referring to the illustrative examples previously used, we see 

that the use of Eq. (35) agrees with the previous conclusions of potential 

horizontal plasticity for ko > 1.0, and potential vertical plasticity 

for ko < 1/2. From Eq. (35), the maximum possible positive value which 

(ko ) crit can attain is equal to 1.0. Thus, any in situ value of 

(ko ) actual> 1 will always be greater than (ko ) crit, and any 

plasticity generated will therefore be of the horizontal mode. It can also 

be shown that no plasticity can occur if the value of (ko ) crit is less 

than 1/2, as the uniaxial compressive strength, ~ , must then be greater 

than the vertical stress, o.!, and no vertical plasticity can occur even if 

Pi (= 0;.) is reduced to zero. Thus, the minimum value of (ko ) crit 

with which we need be concerned is 1/2. 

Equations similar to Eq. (35) could be developed for other mate

rial characteristics, such as Cases 2, 3 and 4 on Figure 2, and would pro-

vide a means of determining the type of shaft analysis appropriate to the 
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particular section under consideration, provided that in situ values of 

ko are known. However, values of ko are difficult to obtain. 

Nevertheless, precedent data and knowledge on the likely ranges of ko 

in different formations provides some insight to distinguishing the type of 

shaft analysis most probably appropriate. 

i) For: (ko ) actual> (ko ) crit. 

If plasticity occurs under these conditions it will be of the 

horizontal mode due to the stress difference in the plane of the cross-sec

tion (~-~), and a 2-D hole-in-a-plate analysis is appropriate (see Sec

tion 3). This situation would be expected where (ko ) actual is rela

tively high compared to conventional at rest earth pressure coefficients, 

and in all situations where (ko ) actual is greater than unity. Pub-

lished data on measured ko values (e.g. Hoek & Brown, 1980) suggests 

that most rock formations would fall into this category, particularly at 

relatively shallow depths (say less than 1000 m) where ko is commonly 

greater than unity. Thus, as a broad but reasonable generalization, we may 

state that for shafts in rock; 

(ko ) actual> (ko ) crit. 

is likely to occur. Thus, if actual field data is not obtainable, it would 

be generally reasonable to proceed with a 2-D hole-in-a-plate type of shaft 

analysis in rock. This conclusion indicates that the hole-in-a-plate ana

lytical shaft approach taken by many workers in rock mechanics does, in 

fact, have justification, although this justification has not been expli

citly stated. 
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ii) For: (ko ) actual < (ko ) crit. 

If plasticity occurs under these conditions, it will be of the 

vertical mode due to the stress difference in the vertical plane (OZ - 0;. ), 

and a 3-D Terzaghi type analysis is appropriate (See Section 4). As noted 

previously, this situation is valid for all cases where (ko ) actual is 

less than 1/2, which covers most soil deposits. For normally consolidated 

soils the at-rest earth pressure may be approximated by; 

(36) 

Manipulating Eq. (36) in conjunction with the inequality above (based on 

Eq. (35» shows that the condition of vertical plasticity will govern for 

all cases where plasticity is possible (i.e. exluding cases for which o.c >~) 
in a normally consolidated soil. 

Theoretically, the value of (ko ) actual may rise to the limit 

of the passive earth pressure coefficient for overconsolidated soils, and 

thus achieve values greater than (ko ) crit within a soil deposit. Prac

tically, however, it is unlikely that ko will lie above the range 0.5 -

1.0 in most soil deposits. Lacking specific field data, it would be rea

sonable to assume in soil deposits that; 

(ko ) actual soil < (ko ) critical 

is likely to occur, giving rise to vertical plasticity and the need for a 

3-D shaft analysis. 

From the foregoing discussion, a simple and convenient division 

arises between the analysis of shafts in rock (or, perhaps, very heavily 

overconsolidated soils) and in soils (normally consolidated to moderately 

overconsolidated). The former (rock) case may be treated in essentially 

two-dimensions due to the "horizontal" mode of (00 - or) plastic! ty engen

dered, while the latter (soils) case requires a three-dimensional treatment 

due to the "vertical" mode of «(fz - 0;.) plasticity which dominates. It is 
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of interest to note that Coates. 1970. derives an analysis for shafts in 

rock based upon the 3-D Terzaghi analysis. justified by the statement .. 

where the ground around the shaft has failed. the vertical stress for the 

elastic condition before failure might have been the major principal stress 

and thus greater than the horizontal tangential stress. In this case. the 

stress initiating failure would be the vertical stress". As shown by the 

foregoing analysis. however. this situation is. in fact. very unlikely to 

arise in rock. due to the generally high values of ko encountered. 

The two basic analytical models. two-dimensional and three-dimen

sional. are reviewed in the following sections. 

4.3 Two-Dimensional Analysis 

As long as the material surrounding the shaft in the axisymmetri

cally loaded model remains elastic as the internal support pressure is de

creased. the equations for stress redistribution and deformations derived 

in Sections 3.4.2.1 and 3.4.2.2 for the tunnel case are valid for the shaft 

case. As further support pressure reduction causes horizontal (0& -o,r ) 
plasticity to be generated. Eq. (7) and (8) will govern the stresses within 

the plastic zone (for a Coulomb material). provided that the onset of hor

izontal plasticity has not caused a change in the vertical stress i.e. the 

material strength in the vertical plane remains unchanged. leaving the 

vertical stress as an intermediate principal stress. 

However. the analyses of plastic closure deformations presented 

previously are no longer precisely applicable to this case of shaft an

alysis. It will be recalled that Ladanyi. 1974. computed the closure due to 

the plastic zone around a tunnel based on the assumption of plane-strain. 

which allowed the volume of material in the plastic zone before and after 
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its formation to be compared while ignoring volume changes parallel to the 

tunnel axis. In the case of a shaft, the condition of plane-strain must be 

replaced by a condition of constant vertical stress (i.e.~o.? - 0). If such 

a modification were made, values of plastic shaft closure could be deter

mined to produce a support pressure - closure characteristic curve such as 

that utilized in the previous analyses of tunnels. Lacking such an exten

sion, the direct use of the tunnel analysis equations (see Figures 2 and 3 

for different material characterization) will result in some error when 

applied to a shaft. It would be of interest to undertake the necessary an

alytical modifications to determine the significance of the errors. Despite 

several attempts, this extension has not been adequately derived within the 

scope of this work. Nevertheless, as a first approximation, the tunnel 

formulae may be used to derive a support pressure - closure characteristic 

curve for a shaft in rock (high ko ). 

With regard to the minimum support pressure applicable to this 

case, we see that the situation is analogous to that of a tunnel side wall 

as indicated on Figure 7. The question of limiting equilibrium of gravity 

blocks is irrelevant for this case, as the vertical stress remains every

where equal to the gravity stresses and thus the weight of any vertically 

bounded block is supported at its base by the in situ vertical stress (re

calling that the spiral plastic slip lines in the horizontal plane are 

sections through vertical planes). Unlike a tunnel, for which the gravity 

block limiting equilibrium condition creates different characteristic lines 

for the crown, sidewalls and floor, only a single characteristic curve is 

applicable to this shaft case. Minimum support pressure may thus be var

iously defined as that required to avoid the onset of any plasticity, or as 
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that required to maintain a stable plastic zone, or as that pressure asso-

ciated with some desired limit of radial closure. 

In short, the foregoing case of a shaft in rock - or in any mate-

rial for which (ko) actual> (ko ) crit. as defined by Eq. (35) -

may be approximately analyzed by using the two-dimensional tunnel equations 

previously derived and summarized in Figures 2 and 3, although with some 

degree of error due to the deviation from plane-strain conditions. This is 

precisely the approach taken classically by many investigators (Ostrowski, 

1972, Weehuizen, 1959, Galanica, 1959), who have considered a shaft as a 

vertical tunnel in weightless material. 

An interesting approach to the problem of predicting the formation 

pressure which will develop on a rigid liner placed at or near the shaft 

face has been suggested by Abel et al, 1979, in analyzing the results from 

an instrumented shaft at the Mt. Taylor mine. As this case history is an-

alyzed in further detail in Section 4.6, the original paper has been in-

cluded as an Appendix for reference purposes. In this section, the approach 

suggested by Abel is presented in more generalized form than in the ori-

ginal reference. 

The problem under consideration is that of a concrete lined shaft 

in rock, for which the relatively rigid concrete lining is placed right up 

to the shaft face as soon as possible after excavation. The question is to 

predict the formation pressures which will develop against the liner as the 

shaft face is further advanced. The case is appropriate to a two-dimen-

sional analysis on the basis of ko considerations. 

From the 2-D tunnel equations previously developed, the radius of 

plastic zone which develops may be written, Eq. (12), as 

(12) 
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for a Coulomb material. Thus, the formation pressure which develops on the 

lining, Pi, may be written in terms of the plastic zone radius, as; 

(36) 

Note that this equation is analogous to that given in Abel's paper as Eq. 

(1), but is generalized to account for the difference between the plastic 

properties of the rock (Scp,AI}1},) and the elastic properties of the rock 

(~,~). If the material is considered as elastic perfectly plastic such 

that the plastic envelope is identical to the elastic peak strength enve-

lope, then the above equation becomes identical with Abel's Eq. (1), given 

below in conforming notation; 

A variety of expressions similar to Eq.(36) may be readily de-

veloped for different material characterizations. For the four cases shown 

in Figures 2 and 3, the equations for the radius of plastic zone may simply 

be rewritten to express (Pi) as a function of (re ). Abel quotes an 

additional expression based on a material characterization suggested by 

Talobre, 1957 (not reviewed - in French) which is essentially the same as 

Eq. (36) with the cohesion of the material in the plastic state set equal 

to zero. From any such expression which is selected as appropriate to the 

material involved, the formation pressure could be determined if the radius 

of plastic zone which develops is known. The key problem, therefore, is to 

assess the likely thickness of the plastic zone which develops. 
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Abel argues that (for this "rigid" lining case) the plastic zone 

will develop to that distance at which the radial stress, as determined 

from an elastic analysis of the zero internal pressure case, is just suffi

cient to provide the confinement necessary to resist the tangential stress, 

also determined from an elastic, Pi - 0, analysis. Thus, this limiting 

value of radial stress may be calculated, according to Abel, from knowledge 

of the elastic stress distribution for Pi = 0 and the failure criterion 

of the material. This is shown schematically on Figure 11, taken from Fig

ure 5 of Abel's paper. The extent of plastic zone which has been determined 

in this manner must be associated with a specific value of internal support 

pressure or formation pressure as required by Eq. (36). Thus, the value of 

formation pressure, Pi, which will act on the lining may be directly 

predicted from Eq. (36) based on this assessment of plastic zone extent. 

Plotting the curves shown in Figure 11 is somewhat tedious, and Abel's 

approach may be undertaken analytically quite simply as follows. 

As previously derived, the radial stress at the plastic - elastic 

boundary is given by Eq. (11) as: 

ore =(~-McOC) (11) 

(Reference to Figure 2 will give other expressions for ~e for other mate

rial characterizations). Thus, ore may be directly calculated from know-

ledge of the field stress, Po, and the elastic material properties 

Mc and c.b. Then, for a purely elastic material, the radial stresses 

are given by Eq. (2) as: 

0;. =Po -(po-Pt)(rff)Z (2 ) 

for zero internal pressure, this reduces to 

0;. = "bLI- (r0-)V (37) 

(Given as Eq. 4 in Abel's paper). 
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The radial stresses given by Eq.(37) and Eq.(ll) are equated at r - re 

to give; 

(38) 

The value of re from Eq. (38) may then be substituted in Eq. (36) to 

determine the predicted value of formation pressure, Pi. Knowing this 

value for Pi, the actual distribution of radial and tangential stresses 

in the plastic zone may then be calculated if desired. 

Conceptually, the justification for Abel's approach is somewhat 

difficult to see - the best argument seems to be as follows. Abel argues 

that, at a section just above the shaft face, the radial stresses are those 

which would occur for an elastic medium and zero support pressure i.e. Eq. 

(37). The tangential stresses which are generated, however, are much less 

than those predicted by an elastic analysis, due to the supporting or 

"stress shielding" action of the face. A lining is then placed up to the 

face, and the face is further advanced. As the face advances, removing the 

stress-shielding effect, the tangential stresses increase towards their 

maximum possible value, as given by the elastic analysis for the Pi = 0 

case. However, the value which the tangential stress can actually reach is 

limited by the material strength, which is dictated by the value of the 

confining (radial) stress at any point. Hence, plasticity may be generated, 

commencing at the shaft wall and moving outwards until a sufficient radial 

stress value is reached to stop the process. During this process, deforma-

tions occur and the lining causes a reaction i.e. the value of support 

pressure Pi increases. As the support pressure increases, the plastic 

zone growth is inhibited, and a balance is reached when the plastic zone 



I 

51. 

just extends to the point at which the radial stress is equal to the speci

fic value of elastic - plastic interface stress appropriate to the material 

properties and remote stress field under consideration (Eq. 11). The 

support pressure associated with this balance is the predicted formation 

pressure. 

The approach taken by Abel has two significant advantages - it is 

simple and, at least for the case analyzed by Abel, it appears to give very 

satisfactory results compared to measured values of formation pressures. 

The specific analysis undertaken by Abel is summarized in Section 

4.6, and is compared to an analysis of the same data based upon use of the 

two-dimensional "tunnel" equation to derive a support pressure - closure 

characteristic line diagram. 

4.4 Three-Dimensional Analysis 

The case for which plasticity of the material surrounding a shaft 

is initially generated by the vertical and radial stress difference, {ar-~~ 

is treated by Terzaghi, 1942 and later by Coates, 1970. However, as 

previously demonstrated, this case is really only applicable to soils, 

rather than to rocks as assumed by Coates. 

Referring to Figure 12, let us assume that, at a given depth in a 

shaft, plasticity has been generated by the (OZ -0;) stress difference, 

causing downwards and inwards movement of the material. Vertically acting 

shear stresses, ~Z' will thus be generated on cylindrical surfaces as 

shown in Figure 12 and the principal stresses will rotate by an amount, 5 , 

such that the state of stress upon an element near the shaft will be as 

shown in Figure 12. For ease of computation, a cohesionless Coulomb mate

rial will be considered, and the state of stress on an element may then be 
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represented in the Mohr diagram shown in the figure. We see that the 

principal stresses in the vertical plane have changed from (Oi - 0;) to 

(0;-03), due to the onset of plasticity. 

For a case in which the principal stresses in the plastic zone 

remain parallel to the shaft (or tunnel) axis, tangential, and radial 

respectively, we see from Eq. (7) and (8) (see also Figure 2) that for a 

cohesionless Coulomb material the plastic zone stresses are given by: 

0; = (17)('/1;·)(#;;,.0-/) (37) 

and 

for the case shown in Figure 12, Terzaghi argues as follows. Due to the 

downwards and inwards movement of the shaft wall, wedging action will cause 

the (intermediate) tangential stress to increase to its maximum value com-

patible with the Mohr theory, which will be when it is equal to the major 

principal stress, 0;. Thus, in the plastic zone, 

(39) 

From the Mohr diagram, we see that the maximum ratio of vertical to radial 

stress which the material can sustain is given by: 

(0/0;) = N¢'/ = rd/7t'(4.5 r ¢;/,?) (40) 

We also note that flf/ </21p. 

If we undertake to analyze a horizontal section through the shaft, 

the maximum ratio of tangential to radial stress which could exist in the 

plastic zone is, from Eq. (39) and reference to the Mohr digram, given by: 

(41) 

However, from the Mohr diagram, it is clear that the ratio (~/~) is al

ways greater than the ratio (OZ/~). Thus, if we analyze the section on 

the assumption that a stress ratio of only (o.!/~) can be sustained, de-
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fined by the flow va1ue~, this will give conservative answers as the 

actual stress ratio which can be sustained is greater than this, equal to 

(~/~) as defined by the flow va1ueAl~. Thus, as a reasonable approxi-

mation, the stresses in the plastic zone may be determined from the 2-D 

equations Eq. (37) and (38) by replacing the value of !V.¢p by~, giving; 

0; = "1.(~)(/V~ -I) (42) 

and 

0; = N¢/ (";f;) (#1'1/ - /) (43 ) 

Although the ratio (~/~) is somewhat greater than (o.z/~), Terzaghi 

assumes that, for purposes of analysis, 

o;~oz (44 ) 

Similarly, an expression for the radius of the plastic zone, 

r e , may be determined by replacing N.¢p by Ai.¢1 in Eq. (12) which, for a 

cohesion1ess material, results in: 

/"e' ~/4> ~co;.j}f#;f; -/) (45) 

Equations (42), (43) and (44) thus give an approximate analysis of the 

stresses in the plastic zone, based upon modification to the two-dimen-

siona1 tunnel analysis equations to account (approximately) for the rota-

tion of principal stresses. 

The primary goal of Terzaghi's analysis is to determine the mini-

mum internal support pressure, Pi, which must be sustained. Just as in 

the tunnel analyses outlined previous1~ an upper bound value of (Pi) 

min. could be defined as that value necessary to avoid the onset of any 

plasticity, given by; 

(,?J)m//l. = ZPo/!Njde-r/) (46) 
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A lower bound value, defined as that required to ensure that a stable plas-

tic zone is formed (re <00 ) is satisfied for any value of Pi 

greater than zero, from Eq. (45). However, to determine if this lower bound 

value can in fact be reached without instability, it is necessary to check 

the limiting equilibrium of potential gravity failure blocks. Terzaghi 

undertakes this check by considering a cylindrical potential failure block 

of radius r as shown in Figure 13. Due to the shear stresses acting on the 

vertical plane, trz ' the vertical stress o.z is less than the gravity stress 

JZ, and hence the block is not held in simple equilibrium between the 

weight of the block and the vertical stresses at its base - unlike the 

previous two-dimensional case. For the block shown, 

W= C?rS (47) 

were: 

W= 7T(r?-//oZ)& 
r 

9=JZ7Ti~d, 
Ij' 

S ~ 271r z (Trz )AV(; 

(48) 

(49) 

(50) 

Using Eq.'s (42), (43), and (44) to determine the stresses acting, and Eq. 

(47) to check the limit equilibrium of the gravity block, it is then pos-

sible to determine the minimum support pressure which must be maintained in 

the shaft, as follows. 

From the Mohr diagram, Figure 12, the value of the shear stress at 

given depth Z and radius r is given by: 

trz = 0;. Can J2fz (51 ) 

Assuming a linear increase in ~ with depth, the average shear resistance 

available along the cylindrical surface of radius r extending from ground 

surface to depth Z may be written 

7rz = (~o;.) tan X (52 ) 
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Note that this is conservative, as the actual average value of the radial 

stress will be greater than (1/2~). Hence, from Eq. (50), we may write; 

S = (ZJ!'rz)(i 0;. rO/7 X) 

Thus, from Eq. (47), (48), (49) and (53), 

J
r / 

1Tf/'l'-0'2)%z- Z7!'rOZdr:. (zT/rz)(eo;.£cza X) 
r: t 

Utilizing the stresses determined from Eq. (42), (43) and (44) we may 

write; 

where: 

and 

,Cda X = /7£-1 _ Z N¢I 
mp"I7N~ N~ 1-/ 

/7 = 0i. 
/77.:7 = Ahl£' 

ri 
z 

r#4 tl)_/ /7 

/? Alp" 

(53 ) 

(54 ) 

(55 ) 

(56) 

(57) 

The location of the critical failure surface will be that for which the 

average shear stress reaches a maximum i.e at location Ii = 17/1 

on Figure 13. For this, we set d( ttZl7;t>JiI7 = 0 in Eq. (55) giving; 

mer = z N¢/ r I N¢I - (N¢/ - Z) 0 Z 

'i ZN~ ;V~ 1-0 (N~r/) 
(58) 

We also see, from Figure 13, that the maximum possible value that tan X 

could achieve at a radius r I is equal to tan fiI2, and thus, from Eq. 

(55); 

/7/ 2 -/ 
taa)2'2 :. /77170 N~ 

2 Np, r;' 0,'/ #pJ', r/) - I 
1V¢',r/ Z /7; N¢, 

(59) 

The minimum required support pressure, embodied in the parametern7~, and 

the location of the critical surface of sliding, represented by r 1 = n,r 
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may be calculated for any depth from Eq. (58) and (59), provided 

v~lues of 01 and 02 are known. 

To assess the values of 01 and 02, Terzaghi utilizes an 

ingenious numerical analysis which results in the conclusion that, under 

conditions of minimum internal support; 

¢i := ¢z = (¢p - 5 ") for 30°< fOp <40" (60) 

Thus, for a material of known angle of internal friction in the 

plastic state, 0p , values of N01 and tan 02 may be calculated. 

For selected values of the depth ratio, Z/ri, the parameter f,7~may then 

be expressed as a function of the distance to the failure surface, n1, 

from Eq. (58). Substituting in Eq. (59) then allows calculation of the 

value of n1 and hence of~, giving the required value of (Pi) min. 

The results of this calculation, for the case of a cohesionless Coulomb 

material, are presented in the u.s. Department of the Navy Design Manual 

NAVFAC DM-7 and are reproduced as Figure 14. The results show, for mate

rials of 0p > 30° that a maximum value of the minimum support pressure 

is reached at a depth ratio Z/ri of approximately 4, whereas materials 

weaker than this will show a continued increase in required support pres

sure to depth ratios of about 10. As most shafts extend to depths of at 

least ten times their radius, it may be concluded that a limiting maximum 

value of required minimum support pressure is generally reached beyond 

which, for further advances of the shaft face, no increase in the necessary 

minimum support pressure occurs. 

Thus, Terzaghi's approximate three-dimensional analysis may be 

viewed, in its essence, as a method of accounting for the necessary limit 

equilibrium check of potential failure blocks under the action of gravity. 

In both the tunnel and the shaft analyses stress distributions are ini-
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tially calculated assuming a model of weightless material. For a tunnel, 

this model is corrected for gravity (in terms of the minimum support pres

sures required) by accounting for the limit equilibrium of the gravity 

blocks existing in the broken zone above the crown of the tunnel. For a 

shaft in which it is assumed that no vertical plasticity occurs (ko ac

tual > ko critical), no correction is required as the vertical stresses 

in the walls remain equal to the gravity stresses. For a shaft in which 

vertical plasticity is generated (ko actual < ko critical), the 

Terzaghi approach provides the necessary correction for the support pres

sure required to resist the failure of vertical cylindrical gravity blocks 

in the shaft walls. 

The limit equilibrium of gravity blocks which are not vertically 

sided provides the basis for the minimum support pressure predictions 

reviewed by Prater, 1977. Full assessment of Prater's paper would require 

a project of its own, as the work refers to a series of German language 

publications. However, several serious shortcomings are evident in 

Prater's paper. He refers to a shortcoming of Terzaghi's work in ·'its 

unrealistic prediction of the shape of the plastic zone which according to 

Terzaghi increases in radius with increasing depth reaching a limiting 

value asymptotically". This is not predicted by the Terzaghi approach. 

Whereas the minimum support pressure, based on limit equilibrium, does 

reach a limiting value, this is by no means a prediction of the radius of 

the plastic zone. It simply reflects the fact that, within a plastic zone 

of some unspecified extent, the location of the critical (vertical) slip 

surface reaches a limiting distance from the shaft wall. Terzaghi does, 

however, utilize a calculation of the stresses in the plastic zone to 

define the stresses acting upon the potential failure surface - chosen to 
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be a vertical cylindrical annulus with a horizontal base. This step is 

ignored by Prater, and apparently by the German work which he reviews, 

giving rise to a serious error. Without regard to the effect of shedding 

of excess vertical stress away from the plastic zone around the shaft, 

Prater et al go directly to a limit equilibrium analysis of a potential 

truncated cone failure block, shown in Figure 15. In assessing the equili-

brium of the block, it is assumed that the tangential stress (and hence the 

tangential force, T) is related to the vertical stress by an earth pressure 

coefficient (variously assumed as k = 1; k = (1 - sin ~); etc.) and that 

the vertical stress is equal to the overburden stress (5z). As the tan-

gential force has an outward acting wedging component, F, which tends to 

stabilize the block, this wedging component is thus related linearly to the 

overburden depth. Hence, as the shaft depth increases to infinity; 

oz o'Z -00 

T k(d"Z)-oo 
F = r(T)-oo 

As the wedging force goes to infinity, the block cannot fail, and the re-

suIt is thus predicted that the support pressure required decreases to zero 

at an infinite shaft depth - a result which hardly seems likely. This 

deficiency is noted by Walz, 1978, in his discussion of Prater's paper. 

However, as all of the significant referenced work is in German, notably in 

a Ph.D. thesis by Walz, this material has not been accessed for the current 

project. The work refers to the case of shafts in soil, and may provide 

useful additional insights to this problem. 

4.5 Cr.iticisms, Extensions and Comments 

Two basic approaches to the analysis of formation pressures around 

shafts have been presented in the foregoing sections. Firstly, a two-dimen-
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sional approach was presented, generally applicable to shafts in rock and 

based upon the same analytical expressions as those applicable to the an

alysis of a tunnel under plain strain conditions. Secondly, a three-dimen

sional approach was reviewed, generally applicable to shafts in soil and 

based upon approximate modifications to the two-dimensional stress analysis 

equations combined with an assessment of limit equilibrium conditions 

around the shaft. Both methods are approximate in many areas, and some 

criticisms, extensions and comments to the methods are briefly outlined in 

this section. 

4.5.1 Field Stresses 

For all analyses presented it has been assumed that the field 

stresses in the plane of the cross-section are hydrostatic. In general, 

this is a reasonable assumption for shaft analysis. If specific data are 

available to indicate a non-hydrostatic state of stress the analyses may be 

modified, although at the cost of increased complexity. Muir-Wood, 1975, 

and Pender, 1980 indicate methods by which unequal field stresses may be 

accounted for in analysis. 

4.5.2 Horizontal and Vertical Plasticity 

In differentiating between the cases appropriate to two-dimensional 

and three-dimensional analysis respectively (Section 4.2.1), it was impli-

citly argued that creation of horizontal plasticity due to a tangential -

radial stress difference would not significantly alter the elastic material 

properties in the vertical plane. As shown in Abel's paper (see Appendix, 

I 
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Figure 4) the cracking around a shaft in rock (a two-dimensional, horizon

tal plasticity case) tends to form vertically sided cylinders, and it may 

thus be argued that the material strength in the vertical direction remains 

essentially intact. However, large scale disruption of the material due to 

the (~-~) stress difference is in fact likely to affect the vertical 

strength. Thus, if determination of the absolute minimum support pressure 

(formation pressure) is being sought, it would generally be prudent to 

assume that the Terzaghi model of limit equilibrium under conditions of 

vertical plasticity may apply, and the stability of the lining checked for 

this value. As the minimum pressures given by this approach are small (see 

Figure 14), they will generally not control the lining design. 

4.5.3 Material Characteristic 

The four cases of different elastic and plastic material character

izations presented on Figures 2 and 3 cover a very wide range, and should 

provide an adequate basis for most situations. Additional characterizations 

have been presented by Talobre, 1957 and Rabcewicz, 1964. However, these 

characterizations are in fact special cases of the more general character

izations given in the four cases presented. 

4.5.4 Failure Criteria 

The failure criteria embodied in the four cases presented include 

both shear stress criteria and principal stress criteria (Hoek-Brown enve

lope). Trollope, 1970 suggests that a criterion of maximum effective ten-

sile stress may be more appropriate for shafts in hard rock than a Mohr

Coulomb criterion. His argument rests on the observation that a failure 

generated by a (CTz -~ ) stress difference around a shaft cannot occur 
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unless the failed element of rock is freed from the surrounding rock (by 

joints, for instance) and thus able to move downwards and inwards along the 

inclined shear surface. Note, however, that the discussion in Section 

4.2.1 implies that such a failure is very unlikely in a hard rock shaft. 

Nevertheless, Trollope defines an effective tensile stress criterion as: 

OJ =0.;- V(o;+t72) 

This criterion may be introduced to the analysis of stresses around the 

shaft to give a critical depth of shaft at which such failure will first 

initiate. Trollope suggests that structural support sufficient to avoid 

such failure should be installed. As previously noted, however, the pro

vision of internal support sufficient to avoid any failure (plasticity) is 

unnecessarily stringent. The above failure criterion could readily be 

utilized within the analytical framework presented, and would modify the 

calculated support pressure at which failure first initiates, the radius of 

plastic zone etc., and may be valid for brittle rocks which tend to display 

strain-extension fracturing under low confining stresses. In essence, this 

is simply a modification to the material characterization chosen. 

4.5.5 Deformations 

For the two-dimensional analysis of a shaft section, it was noted 

that use of the plane-strain tunnel formulation to determine radial defor-

mation is not strictly valid, although the errors are likely to be small. 

For the Terzaghi type of three-dimensional model, no reference material is 

available concerning deformation analyses. While such a task might be 

fruitful, the use of numerical analysis techniques by computer modelling 

world generally be preferable. As a very approximate guide, the shaft wall 

movements necessary to allow the full mobilization of shear strength along 
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the limiting equilibrium surface selected could be roughly deduced from the 

strains measured at peak strength in testing the material. Coates, 1970, 

indicates this approach. 

4.5.6 Face Effect 

As discussed in Section 3.4.4.1 with reference to tunnels, the 

face of the excavation provides a supporting or stress-shielding effect. 

Panet, 1974, suggests that the effect of the face upon the deformations of 

a section immediately behind the face is equivalent to maintaining a fic

titious internal support pressure of about 2/3 the field stress, with this 

effect reducing to near zero at a distance of about four radii from the 

face. Galle, 1962, suggests that the stresses in the elastic walls of a 

vertical well are equal to those calculated by two-dimensional analysis at 

any distance greater than about 3 radii from the face. However, both of 

the above analyses are based upon elastic models, and could usefully be 

extended to compare numerical 3-D elastic - plastic models with 2-D elastic 

- plastic models. 

4.5.7 Thickness of Plastic Zone 

Ostrowski, 1972, in one of the more interesting papers available 

on the analytical design of shafts, used the theory of the strain energy of 

distortion to predict the thickness of plastic zone. The apparent advantage 

of such an approach is that it deals with volumetric and shear stress in

variants, thus including the effect of the intermediate principal stress. 

Unfortunately, derivation and application of the relevant equations is only 

briefly presented in Appendices, making them difficult to follow. Abel, 

1979, has found that the use of Ostrowski's approach gives values which are 
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not compatible with field data, and there would therefore seem to be little 

advantage in its use. 

4.5.8 Time Dependence 

No consideration has been given to the effects of time dependence 

of material properties in the foregoing analyses, and reference should be 

made to the comments on this topic under Section 3.4.4.2. 

4.5.9 Face Stability 

An additional stability phenomenon which is well known during shaft 

sinking, particularly in soils, is that of heave of the face. The question 

of face stability has not been reviewed herein, although this does not 

imply that it is of minor importance. Indeed for many shafts it is the 

critical stability concern, and its omission here is due solely to lack of 

time. Some interesting work was instigated by Broms, 1967, and extended by 

Attewell, 1971, on the question of stability ratios in saturated clays 

(i.e. the determination of critical values of the ratio of undrained shear 

strength to overburden stress at which intrusion of the clay into the shaft 

or tunnel face would occur). Review and extension of this work to provide 

guidance for shaft design in a wider variety of materials including both 

soils and rocks would be a useful undertaking. 

4.6 Case History Analysis 

In order to provide validation for the analytical approaches out

lined in this report, the literature was surveyed to obtain case history 

data which could be analyzed. Unfortunately, only a single paper - that by 

Abel et aI, 1979 - was found which contained data which was at all adequate 
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to provide a case history. This scarcity of published case history data on 

shaft analyses and field measurements is a serious deficiency in trying to 

assess the most appropriate analytical approaches for various shafting 

conditions. The author is grateful to Dr. Morgenstern for uncovering the 

paper by Abel. 

Most published reports on shaft sinking projects contain data on 

advance rates and shaft excavation techniques, but with only fragmentary 

information (if any) on the properties of the formations being penetrated, 

the basis of design of the shaft linings, and the field performance of the 

linings in terms of stresses or deformations. Such papers include those by 

Pack and Skinner, 1976; Barron and Toews, 1963; Gooch and Conway, 1976; 

Redpath, 1971; Collins and Deacon, 1972; Hulshizer et aI, 1976; Lambert, 

1968; Grieves, 1974; Sibson, 1968;' and Zahary and Unrug, 1972. According 

to Zahary "Interesting results were obtained recently in Poland and Russia 

using dynamometer and strain gauges installed in the shaft lining. Lateral 

pressures measured showed wide variations, particularly in competent 

rocks". Unfortunately, the results are not presented, with reference being 

made to the Russian language publications of Krupiennkow, 1963 and Unr~g, 

1970. 

The paper by Abel, Dowis and Richards, 1979, is, therefore, a 

particularly useful contribution, containing adequate data on the formation 

properties and field stress, the concrete lining, and the results of lining 

stress measurements at the 14 foot diameter Mt. Taylor mine shaft. This 

paper has been attached for reference as an Appendix to this report. 

In his paper, Abel suggests an interesting approach to the problem 

of predicting the formation pressures which develop upon a rigid concrete 

liner cast close to the excavation face as the face advances. The basis of 
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the analysis has been presented in Section 4.3. Sufficient data is pre-

sented in Abel's paper to provide a quantitative example and validation of 

the analytical approaches suggested in this report. In this section, the 

data applicable to the 3032 foot level of the Mr. Taylor shaft is analyzed 

both by the method suggested by Abel, modified somewhat to allow the an-

alysis to be undertaken in a more general form, and by the support pressure 

- closure characteristic line method. An interesting and worthwhile com-

parison emerges. 

While reference may be made to the attached paper for more detail, 

the critical elements of the data necessary for analysis are summarized 

below, with notation conforming to that used in this report. 

Field Stresses 

OV = 2906 psi, based on overburden load 
Po = 2150 psi, based on hydrofracture stress measurements 
ko = 2150/2906 = 0.74 

Shaft Geometry 

r i 
Depth 

= 7 ft. 
= 3032 ft. 

Material Characterization 

Linear Mohr-Coulomb 

i) Elastic Properties: 

at - 500 psi (uniaxial compressive strength), based upon reduction 
of intact specimen strengths by a factor of about 5 

~ = 29°. Hence N~e - tan2 (45 + ~e/2) = 2.90 
E c 60,000 psi. 

ii) Plastic Properties: 

OC)' assumed to vary linearly from 0 psi at the shaft wall to 500 
psi at the elastic-plastic interface (r = re). Therefore, 
(ctp) AVG. = 250 psi. 

0p c ~e = 29°. Hence N~e c N~p c 2.90 



Liner Properties 

Cc .. 
Ec = 

I~ = 

24 inches (thickness of concrete) 
4.03 x 106 psi 
5.000 psi (uniaxial compressive strength) 
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Abel proceeds directly to utilize two-dimensional analyses. which 

implicitly assumes that the stress difference which governs formation of a 

plastic zone is the tangential - radial stress difference. Following Sec-

tion 4.2.1. this assumption may be checked explicitly as follows: 

( ktl)cr/I: .: -l f- }f? N~e') - oc,;f? IV'k0-) 

Substituting the relevant figures gives: 

As: 

(ko)crit. = 0.64 

(ko)actual = 0.74 

we see that (ko ) actual> (ko ) critical. which defines a condition 

(35) 

for which plasticity will occur in the horizontal plane. generated by the 

(i?&-O'r) stress difference. As argued in Section 4.2.1. this condition 

allows use of a 2-D analysis. 

As outlined in Section 4.3. Abel criticizes the equation relating 

support pressure to plastic zone radius derived from Terzaghi's work on 

the basis that it applies to an elastic - perfectly plastic material. The 

more general form of equation for a linear Coulomb material having differ-

ent elastic and plastic properties may be substituted. as given by Eq. 

(12). where: 

~ = r~- / (Po r .5c,P - Me OC) 1 }fN,p -I) 
[ - -'7- r .5cp -.; 

(12) 

While other material characterizations could be used. see Figure 2. the 

test data on the formation materials is not presented by Abel in sufficient 
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detail to allow this. The relevant terms for the above, and following, 

equations may be readily determined from the data as: 

Po = 2150 psi 

5 c,P = C,PftQn~ = /.3Z'p5~· 

Me =/1+ rN¢'e -/)~~.?fNP4'.,..lj 
Mc = 2.35 

From Eq. (11), the radial stress at the elastic-plastic interface is given 

by: 

ore =(rb - McOC) (11) 

from which; 

0/-6' = 9 7S 'p5~' 

Note that this simply derived value agrees exactly with the value deter-

mined by Abel using a more complex iterative procedure (Eq. 11 in Abel's 

paper) • 

For a purely elastic material, the radial stress distribution 

under conditions of zero internal support pressure (i.e. immediately upon 

excavation and before a lining reaction has developed) are given from Eq. 

(2) as: 

0; = Poj/-/Yr)'i 
Hence, at r = a distance, r e , 

0;.6' = ,-Cb LI- (r',fre)Z J 
From which, re = 1.35 ri 

which agrees with Abel's value. Abel then suggests that the lining pressure 

which will develop is that which is appropriate to the above value of 

plastic zone radius. Abel uses a formulation for elastic material given by 

Ta1obre, 1957, and obtains a predicted value of support pressure as: 
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Pi - 506 psi 

Using the general Coulomb material representation given in Eq. (12), with 

the parameters determined from the given data gives; 

Pi = 494 psi 

which is seen to agree very closely with Abel's predicted value. The ac-

tua1 measured support pressure which developed at the 3032 foot level was 

548 psi giving agreement within 10 per cent of the above predicted values. 

Considering the many major assumptions which have been made concerning the 

material properties (for instance, the lineal increase of unconfined 

compressive strength from 0 to 500 psi over the thickness of the plastic 

zone) and the approximate nature of the 2-D approach, this agreement may 

reflect a considerable degree of good fortune. Nevertheless, the agreement 

does exist and suggests that Abel's approach, generalized to the form given 

here, may provide a very rapid, simple and reasonably accurate prediction 

of rigid lining stresses. 

Production of a complete support pressure - closure diagram is a 

good deal more cumbersome. We proceed by calculating the radial closure of 

the shaft, Ui , according to the equations summarized on Figures 2 and 3 

for progressively decreasing values of internal support pressure, Pi' 

The steps are as follows. 

For each value of Pi, the radius of plastic zone is calculated 

from Eq. (12) 

re = ri /(p() r Scp - McOC) ;}fAl(#p-/) 
!' (,.q'r Scp) J (12) 
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from which the value of re first becomes greater than ri (onset of 

plasticity) at Pi = 975 psi. Note that this may also be determined 

from Eq. (11); 

~e = (Po - McOC) 

Starting at Pi = 975 psi, for each further reduction in Pi, the 

displacement of the elastic-plastic interface, Ue , is calculated from 

Eq. (17) 

(/,.. J/) (~OC)/"e LIe = ~ 

(11) 

(17) 

A value of V = 0.20 was assumed (Not given in Abel's paper). The calculated 

thickness of plastic zone, Eq. (12) is assessed to see whether it is a thin 

zone (i.e. I?I/i' <6) or thick zone (;elit' >7/3) and the appropriate value 

of the parameter Rc calculated by: 

Thin zone; Rc = 2 Dc .1/1 ( Ii- Iii" ) 

Thick zone; Rc = 1.1 Dc 

where Dc is the ratio of plastic dilation to plastic shear strain, 

Dc -= - 5~/?~ 

(26) 

(27) 

(20) 

The average plastic dilation, eay , may then be calculated for each step 

from Eq. (25) as: 

j(re?;)?-lj!i'" fficJ 

z(U~I!')(~/r~)? 
6'/71/ = (25) 

Note that negative values are obtained for epl/' indicating volume increase 

of the plastic zone. Finally, the total closure (elastic plus plastic) of 

the shaft wall is calculated from Eq. (28) as: 

.L 
, /; //-e4~)Z 7 

0' = -?j /-(-/-I-A 7 ./ (28) 
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where the parameter A is equal to: 

A ,., (2 ~rt!' - ~4V)( I'JI//;o )z (29) 

The resulting characteristic line of support pressure versus closure is 

given for the 3032 foot level of the Mt. Taylor shaft in Figure 16. 

In order to predict the lining pressure, it is necessary to cal-

culate the lining stiffness. Following Hoek and Brown, 1980, the stiffness 

of the concrete lining, kc, is given by; 

J::: _ Ecb·Z-Mo- t"c)Z.l 
c - (IrJ/c)L(/-ZJ/c)/i"Z+/~.-Z-c):; 

Note that ri refers to the excavated radius of the shaft and not to the 

internal radius of the concrete lining as incorrectly shown in the refer

ence. Choosing a value of Poisson's Ratio for the concrete of ~ - 0.2, 

gives 

KC = /. 48 X /0 ~SL' = L1;q~ (U0-~o) 

As discussed in Section 3.4.4.1 and Section 4.5.6, the effect of 

the shaft face, according to Panet, 1974, is to provide a "fictitious" in-

terna1 support pressure of roughly (2/3) po. Thus, if the lining is 

assumed to be poured right up to the excavation face, the liner instal1a-

tion will have taken place at a closure appropriate to a support pressure 

of Pi = (2/3) po. If no further factors were involved, the lining 

would then deform according to its stiffness to produce an equilibrium 

support pressure of about 1100 psi as shown on Figure 16. However, Abel 

calculates that the combined effects of concrete shrinkage and creep give 

rise to a radial closure of about 0.25 inches. Shifting the lining 

reaction curve by this amount, gives an equilibrum support pressure of 

about 740 psi. This has been referred to as (Pi) max., as it represents 

the maximum possible formation pressure which could develop upon the lining 
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if the lining were poured right up to the excavation face and in perfect 

contact with the rock. In reality, some gap will exist between the end of 

the lining and the shaft face, allowing some additional inwards deformation 

of the rock to occur before the lining is placed. A rough approximation to 

the amount of additional closure occurring due to this gap might be obtain-

ed by assuming that the full shaft closure of approximately 4 inches would 

occur with an unsupported gap of about 4 radii from the face (Panet, 1974), 

and simply pro-rating this closure according to the unsupported gap actu-

ally left. By this very crude method, a gap of about 1-1/2 ft. would ac-

count for an additional wall closure of 0.2 inches, shifting the origin of 

the lining reaction curve by this amount and producing an equilibrium sup-

port pressure of 550 psi, as measured in the field. Even without this 

refinement - more properly considered as fiddling - the results of the 

characteristic line analysis are very encouraging. The analysis indicates 

a predicted upper limit to the formation pressure which could be expected 

of 740 psi. Design of the liner to resist this stress could justifiably be 

undertaken with a reduced factor of safety, in the knowledge that the 

actual liner will not be installed flush to the excavation face. On this 

basis the factors of safety for the 24 inch concrete liner, based on a 

5,000 psi concrete compressive strength are, from use of Lame's thick-

walled cylinder equation, 

for (Pi) max. - 740 psi, F.S. - 1.35 
for (Pi) actual - 548 psi, F.S. - 1.82 

Thus, use of the characteristic line method to determine a maximum 

formation pressure, and use of this pressure to design the liner on the 

basis of a factor of safety of 1.3 to 1.4 appears justified as the actual 

factor of safety will then be higher than this, depending upon how much gap 

is left between the shaft face and the lining. The advantage of the 
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characteristic line method is that it provides a fairly complete picture of 

the shaft lining response, such that the effects of changes in construction 

sequence or modifications to the lining stiffness can be reasonably assess

ed, providing a rational basis for decisions. Abel's method has the advan

tage of simplicity, but provides only a "single-point" answer, for which 

prudence would suggest that a somewhat more generous factor of safety be 

used. 
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5.0 FURTHER WORK 

It is not intended in this section to provide an exhaustive listing 

of possible extensions to the question of shaft analysis which could be 

undertaken. Numerous areas of deficiency are undoubtedly evident upon read

ing of this report. However, during the progress of this work two major 

concerns were persistently encountered which would benefit greatly from 

further investigation. 

The greatest single deficiency is the lack of well documented case 

histories on shafts. Considering the antiquity of shaft sinking, the vast 

number of shafts which have been sunk, and the high cost of the substantial 

linings which are normally placed, this is a somewhat surprising lack. As 

with any area of geotechnical engineering, it cannot be presumed that any 

analytical methodology provides an adequate model of reality until such 

methods have been tested against the actual performance of structures. The 

lack of published data on shaft performance, including adequate detail on 

formation material properties, in situ stresses, and lining response repre

sents a serious stumbling block to the validation of appropriate predictive 

techniques for formation pressures. Research field programs aimed at gath

ering such data must be considered a high priority if we are to advance to 

a state of rational lining design for shafts. 

A second area within which research work would provide significant 

benefits is the utilization of numerical techniques capable of including 

the three-dimensional effects occurring near a shaft face for the purpose 

of calibrating or correcting the more simply based two-dimensional analy

tical techniques. The latter have the benefit of relative simplicity and 

speed, and hence may be inexpensively utilized. However, analysis of the 

stresses, deformations and generation of plastic zones at or near the shaft 
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face cannot be undertaken by simple models, and require that the 2-D models 

be corrected for 3-D effects based upon a more complete understanding de

rived from numerical modelling. The work of Panet, 1974, while useful in 

this regard, deals only with very limited cases. Recent numerical models 

suggested by Hanafy and Emery, 1980, appear useful as a basis for a com

prehensive assessment of 3-D effects, time-dependence, liner placement se

quence etc. which would provide considerable benefit to the correction and 

calibration of 2-D analytical approaches. 

The above two areas are viewed as high priority research needs. 

Beyond these, many areas of fruitful and important research may be envi

saged. The question of shaft lining design for drilled shafts utilizing 

stabilizing muds and jacked-in liners is becoming of increasing importance 

as drilling equipment becomes available for the provision of large diameter 

shafts. The increasing use of subsurface space for housing a wide variety 

of facilities, often at considerable depth and with stringent operating or 

safety requirements, is evident in such schemes as radioactive waste stor

age, compressed air energy storage, and underground mining of tar sands 

deposits. In all such projects shafts will provide the lifeline link to 

the surface, and the assurance of adequate methods of designing such shafts 

will be an important responsibility of the geotechnical community. 



LIST OF REFERENCES 

Abel, J.F., Dowis, E. and Richards, P. "Concrete Shaft Lining Design" 20th 
U.S. Symp. on Rock Mech., Austin, Texas, 1979 

Attewell, P.B. and Boden, J.B. "Development of Stability Ratios for Tunnels 
Driven in Clay" Tunnels and Tunnelling pp. 195-198 Vol. 3, No.3, 
May 1971 

Barron, K and Toews, N.A. "Deformation Around a Mine Shaft in Salt" Proc's. 
2nd Can. Symp. on Rock Mechanics, pp. 115-134, Kingston 1963 
~-=-=-

Brockenbrough, R.L. "Steel Linings for Deep Mine Shafts" Trans. Soc. Min. 
Engs. AIME Vol 258 pp. 132-136, 1975 

Broms, B.B. and Bennermark, H. "Stability of Clay in Vertical Openings" 
Proc's. ASCE Soil Mech. and Fndtn. Eng. Div., Vol. 193 Part 1, 
1967 

Coates, D.F. "The Effect of Stress Concentrations on the Stabili ty of Tun
nels" Proc. lst Congr. ISRM Vol. 2, 1966 

Coates, D.F. "Rock Mechanics Principles" Dept. Energy Mines & Resources, 
Mines Branch", Monograph 874 Revised 1970 

Collins, S.P. and Deacon, W.G. "Shaft Sinking by Ground Freezing: Ely Ouse
Essex Scheme, U.K." Proc. lnst. Civ. Engrs. Supple No. 7506S, 
1972 

Collins, S.P. "The Three Valley Aqueductin Tunnel" Tunnels and Tunnelling 
Vol. 4 No. 5 pp. 441-445, 1972 

Curtis, D.J. and Rock, T .A. "Tunnel Linings-Design?" in: Computer Methods 
in Tunnel Design, Inst. Civ. Engrs., 1978. Symposium on Shafts 
and Shaft Sinking. The Chem. Metall. and Min. Soc. of South Af
rica, 1948/1949 

da Fontura, S.A.B. "Time-Dependent Response of Rock Masses During Tunnell
ing" Ph.D. Thesis, Univ. of Alberta, 1980 

Daeman, J.J .K. "Problems in Tunnel Support Mechanics" Underground Space, 
Vol. 1 pp. 163-172, 1977 

Dahl, D. and VOight, B "Isotropic and Anisotropic Plastic Yield Associated 
with Cylindrical Underground Excavations". Proc's Int. Symp. on 
Large Underground Openings, Oslo 1969 

Deere, D.U. et al. "Design of Tunnel Liners and Support Systems" Nat. Tech. 
Inf. Service PB183799, 287 pp. 

Deere, D.U., Peck, R.B. et al. "Design of Tunnel Support Systems" Highway 
Research Record No.339, Transp. Res. Board, Washington, 1970 

TN s s:<:t~6Z 

"\Id 70~ lS;c 



/ 

Desai, C.S. and Reese, L.C. "Stress-Deformation and Stability Analyses of 
Deep Boreholes" Proc's 2nd Congr. ISRM paper 4-13, pp.475-484, 
Belgrade, 1970 

Dixon, J.D. and Mahtab, M.A. "A Method for Computing Stabilization Pres
sures for Excavations in Incompetent Rock" U. S. Bureau of Mines. 
Report of Investigation RI8128, 1976 

Dschandshgawa, J. et aL "The Results on Rock Pressure of Deep Mines of 
Tkibuli-Shaori (USSR) Coal Deposits" Proc. 2nd Congr. ISRM, Theme 
4 No.10, Belgrade, 1970 

Fairhurst, C. and Daemen, J.J.K. "Practical Inferences from Research on the 
Design of Tunnel Supports" Underground Space Vol. 4 No.5, pp. 297 
-311, 1980 

Florence, A.L. and Schwer, L.E. "Axisymmetric Compression of a Mohr-Coulomb 
Medium Around a Circular Hole" Int. Journal for Numerical and An
alytical Methods in Geot. Eng. Vol. 2, pp. 367-379, 1978 

Galanka, J. "Problems of Shaft Sinking in Poland" Op. cit. 

Galle, E.M. and Wilhoit, J.C. "Stresses Around a Wellbore Due to Internal 
Pressure and Non-Symmetrical Geostatic Stresses" Soc. Petrol. 
Eng's Journ. Vol. 2, No.2, pp. 145-155, 1962 

Golder Associates and J.F. Maclaren Ltd. "Tunnelling Technology: An Apprai
sal of the State of the Art for Application to Transit Systems" 
Publ. Ontario Ministry Trans. and Comm., 1976 

Gooch, A.E. and Conway, J.P. "Field Measurements and Corresponding Finite 
Element Analysis of Closure at the Lucky Friday Mine in the Coeur 
D'Alene District, Id~ho" U.S. Dept. Interior, Bureau of Mines, 
Research Report R18193, 1976 

Grieves, M. "Shaft Sinking at Boulby Mine" Tunnels and Tunnelling pp. 32 -
34, July 1974 

Hanafy, E.A. and Emery, J. "Advancing Face Simulation of Tunnel Excavations 
and Lining Placement" Proc's 13th Can. Symp. on Rock Mechanics, 
Toronto, 1980 

Hebblewhite, B.K., Miller, H.D.S., Potts, E.L.J. "A Method for Predicting 
Time Dependent Deformations in Evaporite Around a Vertical Shaft" 
Proc's Conf. Rock Eng. Brit. Geot. Soc. Vol. 1, pp. 529-539, 1977 

Hoek, E and Brown, E.T. "Underground Excavations in Rock" Restricted Circu
lation Draft: to be published by Inst. Min. & Met., London, 1980 

Horvath, J. "Calculation of Rock Pressure in Shafts and Roadways of Cir
cular Section" Int. Journal Rock Mech. and Min. Sci. Vol. 8, pp. 
239-276, 1971 

'\.~ -, os f \~ 



r- , 

Hulshizer, A.J., Desai, A.J., Dave, B.J. "Drilling and Lining of Ocean 
Shafts - Seabrook Power Project" Proc's RETC, pp. 148-168, Las 
Vegas, 1976 

Jacobsen, S. "Pressure Distribution in Steel Lined Rock Tunnels and 

!l /~ 0.-1: <;flI( C 
'V i aeger, J •• 

Int. Water Power and Dam Const. Vol. 29 No. 12, pp. 47-51, 
l ! q t 9) f> II:( R 

"Elasticity, Fracture and Flow" J. Wiley and Sons, 1956 

Shafts" 
1977 

Kaiser, P.K. "Effect of Stress History on the Deformation Behavior of Un
derground Openings". Proc. 13th Can. Symp. on Rock Mechanics, 
Toronto, 1980 

Kitamura, I. (ed.) "Tunnelling Under Difficu1 t Conditions" Proc' s Int. 
Tunns. Symp. Tokyo, 1978 

Ladanyi, B. "Use of the Long-Term Strength Concept in the Determination of 
Ground Pressure on Tunnel Linings" Proc's 3rd Congress ISRM. Vol. 
II Part B, Denver, 1974 

Ladanyi, B. "Direct Determination of Ground Pressure on Tunnel Lining in a 
Non-Linear Viscoelastic Rock" Proc's 13th Can. Symp. on Rock Mech
anics, Toronto, 1980 

Lambert, R.N. "High Speed Shaft Sinking in South Africa" Proc's Tunnel and 
Shaft Conf. Ed. D.B. Yardley, pp. 195-214, Minnesota, 1968 

Lombardi, G. "The Influence of Rock Characteristics on the Stability of 
Rock Cavities" Tunnels and Tunnelling Vol. 2 No.2, pp. 19-22 and 
Vol. 2 No.3, pp. 104-109, 1970 

Lombardi, G. "Dimensioning of Tunnel Linings" Tunnels and Tunnelling, pp. 
340-351, Vol. 5 No.4, July 1973 

Longden, B.A. "Current Techniques in Deep Shaft Sinking and Development" 
Can. Min. Journ. V. 90 No.3, pp. 61-65, 1969 

Mayo et a1. "Tunneling - The State of the Art. A Review and Evaluation of 
Current Tunneling Techniques and Costs with Emphasis on Their Ap
plication to Urban Rapid Transit Systems in the U.S.A." U.S. Dept. 
Housing and Urban DeveL, Contract B-7'66 NTIS: PB178036, 263 pp., 
1968 

Morrison, R. and Coates, D. "Soil Mechanics Applied to Rock Failure in 
Mines" Trans. CIM Vol. 58, 1955 

Muir-Wood, A. "The Circular Tunnel in Elastic Ground" Geotechnique Vol. 25 
, No.1, pp. 115-127, 1975 

Onischev, U. "Ground Stress in Vertical Shafts" Ugul, Dec. 1959 (in Rus
sian) 



,-

Ostrowski, W.J. S. "Design Considerations for Modern Shaft Linings" Can. 
Min. and Met., Trans. CIM, Vol. LXXV, pp. 184-198, 1972 

Pack, P.D. and Skinne'r, E.H. "Design Review of a Rectangular Shaft In Al
luvium" Proc's 17th U.S. Symp. on Rock Mech., Utah 1976 

Panet, M. "Contribution to the Design of Tunnel Support Behind the Face" 
proc's 3rd Congo ISRM Vol. II Part B, pp. 1163-1168 (in French), 
1974 

Peck, R.B. "Deep Excavations and Tunnelling in Soft Ground" State of the 
Art Report, Proc's 7th Int~. Soil Mech. Fndtn. Eng., Mexico \~ 710 Al A( 
1969 ( 

Pender, M.J. "Simplified Analysis for Tunnel Supports - Discussion" ASCE 
Journ. Geot. Eng. Div., Vol. 106 No. GT-7, pp. 833-835, July 1980 

Poulos, H.G. and Davis, E.H. "Elastic Solutions for Soil and Rock Mechan
ics" J. Wiley and Sons, 1975 

Prater, E.G. "An Examination of Some Theories of Earth Pressure on Shaft 
Linings" Can. Geot. Journal Vol. 14 No.1, pp. 91-106, 1977 

Redpath, J .S. "Sinking the Creighton No.9 Shaft at Sudbury" Min. Congr. 
Journal Vol. 57 No.3, pp. 66-70, 1971 

Shtein, M.S. "The State of Stress Near the Bottom of a Mine Shaft" Soviet 
Mining Science Vol. 9, pp. 123-128, 1973 

Sibson, J.N.S. "Photoelastic Investigation of Shaft Stress Changes Due to 
Mining" Trans. Ins t. Min. & Metallo Sec tion A. Min. Ind. V. 77 No. 
1, pp. A34-A36, 1968 

Swaisgood, J.R. and Versaw, R.E. "Geotechnical Investigations for Mine 
Shafts" Mining Engineering Vol. 26 No.6, pp. 37-40, 1974 

Terzaghi, K. "Theoretical Soil Mechanics" J. Wiley and Sons, 1942 

Trollope, D.H. "The Stability of Deep Circular Shafts in Hard Rock" Proc' s 
2nd Congo ISRM Vol. 2 paper 4-39, Belgrade 1970, 

U.S. Department of the Navy. "Design Manual: Soil Mechanics Foundations and 
Earth Structures" NAVFAC DM-7, March 1971 

Wagner, H. "The Application of Rock Mechanics Principles to Strata Control 
in South African Gold Mines" Proc. 10th Can. Rock Mech. Symp., pp. 
247-280, 1975 

Walz, B. "Discussion" Can. Geot. Journ. Vol. 15 No.3, pp. 438-440, 1978 

Weehuizen, J .M. "New Shafts of the Dutch State Mines" Symp. on Shaft Sink
ing and Tunnelling, Inst. Min. Eng., London 1959 



r 

Westergaard. H.M. "Plastic State of Stress Around a Deep Well" ~ostO.Jl 

Soc. of CWo Eng. Vol,. 1tXY-II_No~. Jan0 940_ in Contributions_ to 
SOr~Mecnanics,_1925-l940 

Wichur. A. "Rock Pressure on the Shaft Circumference as a Normal Stationary 
Probability Function Archiwum Gornictwa 6.1. 1970 

Wilson. J .W. "Shaft Sinking Technology and the Future Needs of the Mining 
Industry" Proc's RETC. pp. 103-125. Las Vegas. 1976 

York. B. and Reed, J.J. "An Analysis of Mine Opining Failure by Means of 
Models" Trans. AIME Mining Branch V. 196. pp. 705-710. 1953 

Zahary. G. and Unrug. K. "Reinforced Concrete as a Shaft Lining" Proc. 
8th Can. Rock Mech. Symp •• pp. 265-282. 1972 



ADDITIONAL REFERENCE MATERIAL (Sought But Not Obtained) 

Buchanan, J. "The Load Cell Installation in No.3 Mine, Dominion Wabana Ore 
Ltd. Bell Island, Nfld" Mines Branch PM 194, 1955 

Krupiennikow, G.A. "Some Methods, Results and Investigations of the Co-op
eration Between Rock Masses and a Shaft Lining" In volume Rock 
Mass Pressure Acting on the Lining of Vertical Shafts, Moscow 1963 
(in Russian) 

Kyoto University, Memoirs of Faculty of Engineering, Vol. 21, Part II, 
1959; Vol. 23 Part I, 1961; Vol. 25, Part II, 1963 

Murty, N.P.L. "Earth Pressure on Shafts" Journ. Soil Mech. Fndtn. Eng. 
India, Vol. 9, No.4, pp. 435-443, 1970 

Talobre, J. "La Mechanique des Roches" Dunod, Paris 1957 

Unrug, K.F. "The Measurement of Strains, Stresses and Rock Mass Pressure 
Applied in Mining Openings" Budownictwo Gornicze No.2, 1970 (in 
Russian) 

U.S. Army Corps of Engineers "Tunnels and Shafts in Rock" Engineer Manual 
EM 1110-2-2901, 1978 

Walz, B. "Active Soil Pressure on a Cylindrical Caisson Compared with Model 
Measurements" Proc's. 6th Conf. on Soil Mech. and Intn. Eng. 
Vienna, Austria. Vol. III, pp. 669-672, 1976 

Walz, B. Ph.D. Thesis, No. 083, Univeristy of Berlin, 1976 



SminDU 

I 

I 

I 



' ![;avt:::'~ ~9'sP/d 
p~D ::?9'sC?/;;;t VCi'8;W~~ ,?JDpVnC1t? C1~ S,,?/pDCY = ;J 

;/#'Vvn .... /C1 S;~"PDJ /~/~/V/ = ."'../ 
'Ci'J/?SStii1JcT .... JC1cTohS /~VJ&VU/ = .{7 

('O/'=~./ ~ /8Ivvn .... /17 V~/ .... DACi'/iP .... 'O S'S6V~S n .... /s-v/ <b' 



",,,rIRIAt. C"'''IPACr~R/ r ArION F.¥rFNr 0': ~""'O/AL. '!sTRIf·5~ 51RI!'551!'S Srlfi'~5:51!"!!S 1 
p~A5r/<: rI!JROKFN) 4r ,'N IN 

~~A$r/c ('INTACT) PLA5 r;C/I!JROKEN) 
Ze'llVr. ~/.45'/' "A 4.~rl'C ~,£A!;jT;C Zl:JNc pt.ASr"/C ZONE 

.Nr~;"'J!."At::~ 
rONI ZONE - /""i'!"' - i'l-"" J"""4' ~ r ::s ClIO /j-" ::: r:!::; r~ 

"'A~'- :i ..,;:JZ!. ..... 

It ~d~ 
~I"/N<!'AR'I r .... 

_ ~""'MI!J 

r;j.~ -~_:M,:~-!lJNpp-; c., ./r ~i_1 
or, -

4f--r._$~ C~fOM~ i'P.' ~ _SCp) ("io - ~q;.) 

5. ~ 'y~ 0'.,. ./ ~. .- N~-/ -A4IJj,-/ 
0; -~ ... 4:p)(~)~-~ !!1e;.. A6ft--'('''''''' on) 

~ "'" -P"(~-/,JAo/~~ .. ~ I'd 
,c,'AS£" i? _ t·e,. 

06.~~ .. ~y~}-1J,-! ~p e; 

"~"ltIl 
0' 

~_c,., _~ 
r,. • 

I ,I: .... ; .. HVR~ ~ """"-I 'i;?''''''~~--~~1~-1 PARAI!JO£A 
~ -1't7,.' (~S .. JilIpA> ) ~;!"= 

I"" 4 (T ?p.- · "5,;-~ (.P" -MF~) -t .... /n"',fl- $/n"!o 
t7; -/1,-4 - tJ;,,}(/2;?)' "-4/-4-

~- JIjm / 
.H~ -/iM,o."tf.-JI2-/J7h-o 0; .,q,"4-'%-)(~) 2 

.!::~6'C 2 

4tZ_'_~i -'V ~ ~. 
0; • ~'ffnr;-J/~ ~ 1'I!! t-';'~(~t7;p.' ''!WJC~J} 

If- ( ..... ~}.~,fI;c;;".,.A!v- or;!" • f/nf{. -fHfp<l-~' .. ~q; r;! -j , ;....-.,,~"" 
" PO ~ I} 'T ",,~,.,: (Po - A~o;.) 

,*,N-II1;"Jr,."'~/tf .. ~J. ~ 4".l§ ... ~4'~ f' ~/J(;~J 
;V=I-(m",If~ f'!!S,tJtf'-""'tfrA~}J o;,-P;--fptfd; .. ~~r,)J 

I 

(mpl ~)e ::::::::'r;~:r 
""'If I 

IHOEK- BROWN PARA80~AI 

CASS:: 4-
~~~v ~~.~~.(~K!:"~~~.':-!£] 

'I' 
(~/GllJlr~ ·.,DW""tJIIC"/j;-~hc/ 

~-p'. i) 
gJ.o 

~'r;'~ -oc- - o;.~. (-0 • ~ ~ t7; ~,,( '~) 
I~ j q;} " 

& ,( '\ os ',LJ ,.q;.;;f~/1(;)J 
4-2',;- tT 

N .... ·/ 
--

F/9'vre e MATER/AL CNARACTER/ZAT/ON5 ANO STRESS ANALY5/5 E~UAr/ON5 
FOR rUNNELS - SUMMARY. 



MAT,RhlU. CNA,vACTE,v/ ZA T/ON R4P/AL D/.$<1,(AC~- RAr/O O.c APERA6E ""AD/At: 
MENT"', ,oLA~T/C O/l'.4T/0/V TO PLA~r/c O/~P'4CGMIFA./r 

,0£ AS T/C/LlROKt!'IV) 
EL A~#ljr/~ P'{;4$ r/c .r'/A:5T/C O/L.A T/ON 4T W4~,(. or CAv/ry 

'LA:lr/c ,/NTACT) I,vTEPr-Ac r ~HrA"" ~rRA/N 
rONE ZONG -ut!" - /' . ~4V - d J/,o/J/,o -u/-

cASE' Z '" 
t (/,;'~ 
~~'A~~ _ c"",,""M'LI 

ul'. c., _ . .. 

~~ fj~")r'McOC Dc = -$/nfd" ~ .,,,,-.JItr.~ ,=-~~,!,~19 E 

t:.. ret!- "'9ik oc ,,/ ~- 4· ...v"",,-/ ~-/ 
i!!!6"-"'I- -.", I'~'~ +A» ~-~ 2(~#,)(~,.hf "'" ·P"I'''''-~Ao/~~ .. ~ 

£"ASE g _ t·&P-
/!~f;F~if;~ I 

Hi· 'if-f/; ~.n:J'J & 

tK-1P''lfJ 
tr '«-fN) 

w~,...,. 
_h~~ : .;, 41 ~or .t!f!!! ,o~",it: ~"n16 
A.(r '% - ~4,..}(r~)r !!io-..... ;oo;~ .. -~- ~. 0 .... , I~/ANVA'''TJ '" ~ A.f6 ... -/ ~ ,' ""'~.< ff I ,oAAALI""~ "" ..... "'7'7 r I'~$ '" ~n ) ~)r,~Pi: 

l'e;-"~~)II-~-I u,. 4 .,./7' ~~N)·e Pn;-fN)//I(~.) -/,. iI/n4//- .-U/7.tt!c 
~ ~ 

n-4/-4 
~~r ~"'A-,o"""I'.:.p-L .. r/liH 

'"'" -p,.,,~.Af -/~-/)~/) ~ .~ r~~.> Y.r 

~<'-3 
~-fN) e 1.1 04:-fN) 

~ ~1j- 4V 0; 

~-d;,.~o;~,.~tE')l 
ON· q- , ...... ~).~II';i::""" __ 

~. __ -1'11.,0 ___ 1_ # /n~~A-
~ dj t7j 

a"'V)'i!-MNQi 

1>0i.~.y~4'~ l-:lptJi?! 
E "fof4(117p~.h I-~I')e 

~·II1:"1~Hfo~/~ .. ~.;J-~ (~J 5p)~ ::!.Zc;;~:~t'r 
[NG'EK-8A>CW/v PAA>ABP~A J 

C:~J5£: 4-

z-' 
~R;~~_~.d':'£;I'~ (;-~K;~N;;'.~(J 

(£o/Dsr/c: ~~~~,./"".,.c:V09"'<: ) a,-
r;,. v Jr .... (fo/ 0 , 0 <"'m- ~ n 14' a 1if//!A7'J 111 - 0 E c: 

V .~~L---.• 0-

I .... h~r<t'"" 
e A -(Z LLt-1:,.)(;-'/'.)? . ~ /'~ 

N ... ·' 
4- ~~c 

~/9vre 3 MATER/AL CNARACTER/Z4770NS ANO LJEFORMAT/ON ANALYS/S Et;1UAT/CJN5 
r~P rUNNELS - SUMMARY. 



/.6 

1.4 

/.z 

~ /.(7 

-I-

'" VI 
~ all 

~ 
'l) 

(7.6 

~ 

r:;:;:;::-' -------.- ------.-~ 
~A~/MV"" EXTENT o~ P<AST/C ZON~ ______ ___ _ 

\ 'L==: &p <30' i 
~ 

c/-' = 0. O/Pc I 
t;o (?" 

Z ~~."'5~{C_ BENA~/OU~ I 
" ~ --. --_ ... -?] I " 0,.; @Jp. :: 0.32,q . -'- - -' 1~ -.. -- 0 I "-. I --, ':-- I 

.. . - . _._-----_. __ .. 
(})- //7//'/0/ a:?/7c:::V~/O/7 

0- O/7.5er 0/ p/O'.sr/c/~¥ c» -Md.K//77U/77 exns-nr oJ' 
p/O'sr/c ~O/7e_ 

l:? cO; "~(jfE)A' =.41-----.-.-.-
-{jj!' ::: __ ?-~~" __ =I'L -'" - -- ----7t-~ -==--' =---=-=:=::-..:=-.=--'= '-=~=~--'-'-1-'-'-'-'-'-'---'-' - ' .--" 
0' 

.I 
/ 

1. 0 

/' 
/' 

2.(7 

0-e :..t' 

J.o 4.0 

RO'd/~/ . .,. 

:5.0 

r' ~ 

?:l:f: ~ 6'~ .. .!J.5" 
OC .. o_~~ 

CI!' OC (T (et!''' a /3~) 
~~A57"/C BcNAV/OV~ 

6 .0 70 

Figure 4 E.YAMPl.E OF srRE55 OlsrRIBUrlONS WITH 
REDUCING /N7"ERNAL SUPPORT. 

tJ.tJ 



"0/,77/ '.gCY/7S07.:;:J 7f7'/Of7'tiY 

E 't:J Z "() / -p t:J 

I~~~-===========I==:::::::::::::::::I~------------~;p 
cb 

.:aOu.oa
.:?/~S-,o/d- -=?/~S,o/5' 

.:;;avpa' 
://T"S,o/.!? h"//17.:::1'" 



a::u?,;"../a.,t Gi'/ 

=?/.,IS.o/c7- '=>/.,IS,o/j:. 



A 
.,.·../C'da/§' a///U!//u/-'1' 

.,.?V/7cG' ..-/~dd/7 1 
! 





I ~ 0..y ·~.:rtl"H$; 
C7N/70eYt!' S3SS;;?~~S; G ';..//7~/.:T' 

2"R: &7.0 I 
-U .... ·""I 

I 



· f.:;;; "¥ 
~~e;/'t9 ON/70&l'IJI' S3!;S;,;~~g 0/ ;J/7~/~ 

-'( 
\ . 

r' ," 
~"U'/~/' 

:7, .. sc/d 

.f :;:. o~ 
~..3f?'HS; c7N/70dl? S;~S;S.?d~~ .7/~SI?77 

- .?"RD.j' ~ "'.::7'-
5G;t:!JU$ 7""J'NOZ/a-ON 

J 



I 

";;NOZ .;J/~!j;f:?'7d 
.:70 1V0/j.l7'N/Nd';;~';;d // ~J/?~/=, 

"~ 



2~t1'HS 1lJ't1';/V A~/:;J/~SI1'7d 
7f?'.:7/~dI';A :1'0 ,;NOZ /V/ ~';!;;!j;,;~~S; Z/ 3..//7Q/d 

-O.~----------------~~~4---~---+-h~~ 

'~IYOZ ://~>t:rId /'II 
~,.ygVY~7g /YO !;gSS;t3'~_ 

I 

j. 

gIY(/Z :7a!:~7d /'II 
LIY;W;/fOI1' jlL ~""'~I'f:7~ 

, 



·.>t'::J07/iT A~//I~e)'9 
~o PY/J/t¥/?/7//JC; ~//IV/7 G'/ ;..;'/7~/~ 

r;7/~ f7P1 g#.:?~/ 
NO~~~H~~aSS~~~S~~;NS 

-oj 
r- --
I 
I 
I 
I 
I. 1 I . ;.tv "oJ' 

I 
I /14 
I .~ 

I ~ 
I 

~ I 
I 

,'-

,,~ 
I ~ 
I ~ I 

f 
J 

.'../ 

~ 
~ -..: 

~ 
~ 

I 

1 
I 



· 7f?/d'.2U l?'W 
SS;~7IYO/S;';h'0:7 N/ ~.:Tl?'H9 

: >.:7~/7S;S;';~d ~~Odd/7G W/7PV/N/;f' :17/ ;.J/7~/.::7' 

"/L6/ :t-ne? .7"'~A"'N 
~8/Y /# .. -17;(7 ~;17 . _J;i!JI 

·V.J 'C'/~t?'tiJ' H~d3d 
C/ 9 t? Z o 
~--~~--~--------------~--~--~--+o 

/,j --~-----------------~~ . 
i ~,,~.a¢1 . ./ 
, -.--
I . .'-1 ~-;':-~I ~ 

?"tJ 

----~ ---~,,~z=~1 

81:7 

2'1 

(.II 

~ 
~ 
~ 
~ 
~ 
~ 

~ 
,C't\ 

9/ ~ 
,~ 

~"Z 



'5'.:;;?tJI'.;,Id'ns 3~/77/tJI'.:7' 
7/:?'/~N.ii'~Od 7t?'.:;J//V0:7 ~/ ~.//7~.J" 

-' 
. ' 



:L.::TI1'HS .3N/W d'07A""~ ~W 
~7.:TA;7 ;y ZG'O. d'O.::r .;i'/v/7 ~/~t;/CJf':;J.::JI?'d'/?"N;:;J 9/ .?../np/..:r 

'0"-':/"-':// CiI.,/ii1../.:7UO.:7 ../0/ 

. ~/ 53 ·0 ....... d'8CP./.:7 PUD 
a6D"""~/,/~S; ;;~a../.:7vo.:? 

CiI~// .;;v/7SO/.:7 'S;4 ii1..//7ss;vd p~//dd~ _ •• -

~~U::)4'S;; PV/70../D ':':70./ ../0/ 

CiI~// ;;;1..//7S0/.:7 'SA .;;unss.:;../d .,/.Joddn~ ---

~ _, .~..:. ' ii' 

/.;;;>/1CP7 # 2t;c?E ~ .:) r :~ " 
:. . I". 

, ; 
' " 

dT/70//1 t?'H;?g 
,:?/~S;;17'7d 

C/ /70/ /. f?' hI!?f' 
:7 / ~ 51?' 7.5' 

'b'(ii"/,?/ : .G>:7.o~ ~p 
cp..//7Ssa../o ~OOt://7S ~ua/DA.//7b.:#f 

0 

ttl . 
!~ 
" 

I~ ' 

i~ 
:~ 
I~ Ot7.{" .~ 

i~ ~ :~ 

,~ ~ 
~ I~ ~ 
(\., 

~ 
-~/~ 

~ 
~ 
~ 
~ 
\J\ 

~ 
\7,{/ ~ 

\ 
<II 
...... 



r--

APPENDIX 

PAPER BY ABEL, J.F; DOWIS, E. AND RICHARDS, P. - "CONCRETE 
SHAFT LINING DESIGN" 20th U.S. SYMPOSIUM ON ROCK MECHANICS, 

AUSTIN! TEXAS, JUNE 4th - 6th, 1979 



!!"., 

I 

:~CRETE SHAFT LIN I NG DES I GN 

J.F. Abel Jr., Colorado School of Mines. 
£. Dowis, Gulf Mineral Resources Co.; and 
=. Richards, Jenny Engineering Corp. 

-'.i5 pappr was presented at the 20th U.S . Symposium on Rock Mechanics. held in Austin . Tpxas. June 4-6. 1979 . The matPriai 

. ~ject to correction by the author . Permission to copy is restricl.ed to an abstract nf not more than 300 words. Write ' 

'. Ken Gray. U. of Texas at Austin. Petroleum Engineering Dept 

.;BSTRACT 

Instrumen~e.tion placed at three 
:evels in the concrete linino of the l4-ft 
1.0. shaft at the Mt. Taylor-Mine permitted 
:~ecking which lining pressure eq~ation 
" ~st fit the particular geologic conditions. 

iobre's (1957) lining pressure prediction 
_~~ation for clastic rock most closely 
3?proxirated the ~easured results. The 
::ohr-CouloY"'b st!"ength criteria appeared to 
~est describe the strength/confinement con
:itions outward into rock adjacent to the 
14-ft Mt. Taylor shaft. 

:~':'RODUC':' IO:l 

Traditional shaft support has been 
~i~h either timber or steel sets or a cast 
:cncrete lining. Steel and timber sets 
are much more flexible than concrete. 
:his results from (1) the low compressive 
strength, typically 250 psi across the 
:,rain, of the tiMber blocking ... ,hich braces 
:he SEtS against the rock, and (2) the 
~lgh elastic flexibility of steel or timber 
sets. The stiffness of concrete, after 
:uring, is much higher than any composite 
structure of timber blocking and steel 
sets. It is this feature of concrete which 
:omplicates the understandinn of concrete 
lining design. -

Irrespective of whether steel, timber 
~r concrete is used for shaft support. the 
very nature of the shaft sinking cycle 
~e~erally results in the support being in
stalled fairly close to the sh~ft bottom. 
!n Eorth America:1 sink inc oractice con
:r~~e lini:1g is seldom m;r~ than 20 ft away 
!rom the shaft bottom. A zone of "stress 
~~ieldina" occurs near the shaft bottom 
·' .lich i ~nefits sinking in weak ground. 

~e=ences and illustratlons at end of paper. 

The elastic analysis of Galle and 
Wilhoit (1961) demonstrated that the elastic 
stresses in the wall "as close as 2.9 radii 
from the bottom agreed well with those cal
culated by the plane strain solution". 
They also show that the tangential stresses 
at the shaft wall within 2.9 radii above 
the shaft bottom 3re less than predlcted by 
the olane strain solution. The 2.9 radii 
interval above the shaft bottom represents 
the elastic "shielded zone". They state, 
"ThErefore, the plane strain solution may be 
used to calculate the stresses everywhere 
around a well bore except very near the 
bottom or the top." The "shlelded zone" 
allows the concrete to be poured and to cure 
at least partially, before full ground 
stresses are applied. This zone of stress 
shielding advances with the sinking of the 
shaft. Galle and Wilhoit also show a zone 
of elastically higher stress below the 
shaft bottom. This higher stress zone ex
tends approximately the same distance below 
the shaft bottom. 

7he sho~t length of the elastlc shiel~ 
zonesUp~0rts the traditional assumption 
that the influence of the shaft bottom 
stress deviations can be ignored in shaft 
lining design. Measurement results from 
the Straight Creek pilot bore (Abel, 1967) 
give a vastly differe~t picture. Ground 
stabilization occurred at an average dis
tance behind the tunnel face in excess of 
40 radii. Abel and Lee (1973) reported the 
onset of stress ahead of an advancing tunnel 
in excess of 14 radii. In contrast to the 
elastic predictions, the response of a rock 
~3SS to driving a tunnel or sinking a shaft 
is apparently non-elastic, as shown by the 
greater influence distances in rock. 

The sequence of loading for shaft linin 
at the Mt. Taylor Mine of Gu!f ~ineral 
Resources Company near Grants, ::ew ~exico, 
indicated a progressive loading of the linin 
which related to the incremental deepening 



of the shaft and advance of the stress 
shielded zone. Figure 1 presents an ideal
ized representation of the progressive de
velopment of ultimate tangential stress in 
the rock mass adjacent to the shaft wall as 
the shaft is deepened. This representation 
has been inferred from measurements of the 
progressive increase in concrete lining 
stress. It has been assumed that the over
burden stress acts uniformly on any horizon
tal plane. 

LINING PRLSSURE PREDICTION 

Steel sets are blocked against the rock 
at a low loading condition and concrete is 
poured against the rock under no load. In 
both cases the rock mass has to deform 
against the support before significant sup
port loads develop. A flexible support 
capable of yielding when subject to the 
deformation of the rock adjacent to the 
shaft need only be designed to resist the 
active pressure of the rock mass. A rigid 
support resists the elastic deformation as 
well as the active pressure of the rock 
mass. For instance at Mt. Taylor the approx
imate cured concrete stiffness is 4,000,000 
psi, whereas the rock stiffness is between 
600,000 and 1,000,000 psi. As such the con
crete lining represents a stiff inclusion 
within the rock. 7he stiffer concrete 
resists the elastic deformation of the rock 
tc~ard the shaft. A stiff concrete lining 
11terally draws load from the rock and this 
additional lining load must be accommodated 
in concrete shaft lining design. 

The traditional methods of estimating 
rock pressure on a shaft lining (Terzaghi, 
1943 and Talobre, 1957) assume a rigid (non
yielding) lining. The properties required 
to predict the external pressure (Pi) 
exerted on a rigid concrete lining by a rock 
mass are angle of internal friction, rock 
mass cOMpression strength and cohesion. The 
horizontal ground stress is also necessary, 
since it is the driving stress. The hori
zontal load that was carried by the rock 
prior to shaft excavation must be sup~orted 
by the conposite structure of the shaft 
lining and the adjacent rock. 

Terzaghi (1943) presented the following 
prediction equation for the lining pressure 
on a rigid lining in plastic (yielding) 
rock: 

('!an~-l) 

Pi = 2 f 011 + (f"5 } (r ) 
(Tan~ +1) t (7an ~ -1) R 

cro (1) 
(Tan~ -1) 

?i radial stress applied to outside 
of lining 

Ta,. (3 passive pressure coefficient 

Tan ~ = 1 + Sin ~ 
1 - Sln ~ 

i 
Oji= 

60 = 

r = 
R = 

angle of friction 
horizontal ground stress (ass~ 
uniform e 
rock Mass uniaxial cOMpression 
strength 
excavation radius 
relaxed zone radius 

Talobre (1957) developed a Similar equat1 
for clastic (brittle) rock, as follows: e 

Pi = r Ta~ ,- +~ (l-Sin f )1 (~)(Tanf -1 

c 
Tan I 

c = rock mass cohesion 

(2) 

. The properties of a rock mass are not 
read11y measurable. The angle of frictior 
( I) can be either the angle of internal 
friction if the potential failure of the 
rock is through int~ct.roc~ (Fig. 2) or t~ 
angle of surface fr1ct10n 1f the failure 
would occur along weaknesses in the rock 
mass. However, once the concrete is in 
place only the angle of internal friction 
need be considered. Hobbs (1970) demon
strated that the angle of friction for 
British coal measure rock was the same fOI 
triaxially confined intact rock as for 
broken rock. 

The uniaxial compression strength of 
rock mass (0-0 ) cannot be determined from 
specimen tests, unless the specimens are 
very large. Table I presents several ind o 
cations of the decrease in rock strength 
with increase in size. The reported de
crease in uniaxial compression strength 
from NX(2-in.) cores specimens to large 
blocks of rock ranges from over seven ti~ 
to about four times. Wilson (1972) recom 
mended the use of specimen cohesion for 
rock mass compression. Obert, et. al. (1 ' 
suggest dividing specimen strength by 2 0: 

4 to obtain a design compression strength 
for the rock mass. 

The rock mass cohesion (c) ca~ be ca 
culated from the mciasured angle of intern, 
friction and the estimate of rock mass COl 

pression strength, as follows: 

c:ro 
c 

2 / Tan ~ 
(3 ) 

The excavation radius is tied to the 
internal lining radius as determined by 
production and use requirements of the sh 
and by the required thickness of the lini 
Lining thickness must be determined by it 
ative solution, involving first the selec 
tion of a trial lining thickness and seco 
calculating the resulting lining safety 
factor. This orocess is reoeated until t 
desired safety-factor is obtained. The 
lining thickness is designed to carry ~he 
lining pressure which develops after sln~ 



:~ I. Uniaxial compression strength de
crease with increasing specimen size. 

COAL QUARTZ DIORITE 
(Pratt and others, 

: leni awsk i , 1968) 1972) 

;ide Side 
~:1gth Strength Length Strength 
In. ) (psi) q.n. ) (psi) --0.75 4260 3.18 4420 
1 4760 4.24 4530 
2 4880 4.5 4860 
2.7 4575 8 3340 

3 4070 12 1980 
6 1850 18 1400 

12 ll58 24 1660 
18 910 36 1080 
24 800 72 1330 
28 774 108 990 
36 709 Increase Decrease 
48 650 34 times 78\ 
60 644 

:-::Crease Decrease 
:: times 85\ 

35 removed the stress shield. Above the 
~ieldec zone the design tangential rock 

·:ress ( ()t) and the maximum lining pres
'Jre (Pi) are present. 

In the typical case where the elastic 
:~~gential stress, as well as overburden 
:ress, exceeds the uniaxial compression 

::rength of the rock mass the rock near the 
~aft wall relaxes, or unloads, to a stress 
:~at can be supported. The relaxation of 
: zone of overstressed rock behind the con
::ete lining results in partial failure of 
·.:~ e rock (Fig. 3). 

The radius of the relaxed, or over
'~ressed, rock zone (R) adjacent to the 
' laft has traditionally been estimated 
.ith the Mohr-Coulomb strength criteria. 
:Jck strength increases outward from the 
, ~aft wall as the radial confining stress 
~) increases. The elastic tangential 

: ~ress in the rock is a maximum at the 
:"aft wall, and decreases outward into the 
~ock (Fig. 3). 

Within the relaxed zone, rock failure 
~~sults in expansion of the rock mass which 
.s resisted by the concrete lining. Rock 
~ailure cannot be permitted until the con
:rete has gained sufficient strength to 
:esist the radial expansion stress which 
~~uals the lining pressure (Pi). The par
: ially relaxed rock adjacent to unsupported 
:~afts and tunnels or in pillars can fre
:'~ently be seen as splits in the rock when 
·joki~g into a borehole drilled into the 
:io or wall. Figure 4 presents schemati
:ally this partial failure of the rock in 
he re1axed zone. The lower half of Figure 

; prese~ts the associated Mohr-Coulomb 
':edicted stable stress distribution out
'~rd from the concrete lining at the 3032-ft 

depth in the Mt. Taylor shaft. In the un
lined portion of the shaft, near the shaft 
bottom, the stresses are limited to the rock 
mass co~pression strength (~). The actual 
tangential and vertical stresses may well be 
less because this portion of the shaft is 
within the "shielded zone". The stresses in 
the shielded zone increase upward. In weak 
ground this limits the length of pour in 
order to prevent sloughing and caving of the 
exposed rock. 

The Mohr-Coulomb strength criteria pre
dicts the extent of the relaxed zone outward 
from the shaft wall (i). The boundary of 
the relaxed zone is the point where the 
radial stress (air) is just sufficient to 
triaxially reinforce the rock mass to carry 
the overburden (CJv ) or tangential stress 
(Cit), whichever is greater. \: ' .:" . 

( r2) "" , err:: Os 1 - ~ (4) ~ -.~._ 
(r+ R ) - '\ " '- ~ 

:~ .. ~ 
Failure Strength :: 

()t:: OH (1 
0-0 + Tan~ err (5) . :, .. ~ I '· 

+~~) \ )....,Ij.4.- ' -- \Iy'" 

(6 ) 

.: .,/~. ::r 
'i . 

Figure 5 shows the predicted radial and tan
gential stress distributions adjacent to the 
shafts at the 3032-ft depth at Mt. Taylor. 
The elastic stress distributions are also 
shown. Figure 5 also indicates the transfer 
of tangential stress from the overstressed 
rock near the shaft (Area I) to the triax
ially confined rock beyond the boundary of 
the relaxed zone (Area II). 

The radial stress (err) increases from 
zero to Pi from the shaft bottom to the top 
of the shielded zone. The lining pressure, 
calculated from Talobre's clastic equation, 
is 507 psi (See Figs. 4 & 5). The unconfinec 
compression strength (ero ) of the rock mass 
must decrease as the overstressed rock near 
the shaft relaxes (partially fails) against 
the lining. The unconfined compression :_
strength of the partially failed rock directl 
against the lining is ~onservativeJy assumed 
to be zero. The triaxial strength of the 
rock adjacent to the lining is not zero, how
ever, because it is confined by the 507 psi 
lining pressure. Its strength is: 

Failure Strength (psi) 

Failure Strength (psi) 
= 1469 "Osi 

00 + Tant! (Pi) 
(7) 

o + 2.90 (507) 

based on the Mohr-Coulomb strength criteria 
and the properties of the Upper Westwater 
sandstone. The uniaxial compression strength 
(0-0 ) is assumed to rise across the relaxed 
zone, reaching 500 psi at the overstressed 
zone/elastic rock boundary. The failure 
strength curve shown on FIgure 5 indicates 
the tangential and radial stress distribution 
adjacent to the shaft. Their elastic distri
butions are also shown, although the over
stressed :-ock :lear the s.lM!ft wall will of CO'.lI"se not 
be responding elastically, The area, desig-



nated Area I on Figure 5, below the elastic 
tangential stress curve and the failure 
strength curve represents the load that 
cannot be carried by the overstressed rock. 
This load must be transferred to the 
stronger confined rock in the elastic zone, 
indicated as Area lIon Figure 5. 

The Mohr-Coulomb strength criteria ig
nores the effect of the intermediate stress. 
Mogi (1967) indicated that "10 to 50% dif
ferences of strength are associated with the 
influence of the intermediate principal 
stress." Ostrowski (1972) applied the strain 
e~ergy of distortion theory of failure to 
predict the thickness of the relaxed zone 
adjacent to the shaft wall while taking into 
consideration the intermediate stress. The 
assumptions are simple, (Seely and Smith, 
1952), namely (1) volumetric strain from 
hydrostatic stress does not result in fail
ure, and (2) rocks yield or fail only under 
sufficiently large differential 3-dimen
sional stress conditions. The critical in
dicator of failure is the shear stress 
invariant (t): 

r----------------------------------~ 
t = j j(CJ'i- (/2)2+("l- 03)2+("2_03)2 

61, 62, 
(8 ) 

63 = Principal stresses 

Near the shaft the principal stresses are 
the tangential stress ( crt), the radial 
stress ( COr) and the vert~cal stress 
(o-v). Failure is predicted when the shear 
stress invariant (t) reaches the critical 
value for the associated volumetric stress 
invariant (s): 

s= 01.+ <J2+ OJ 
3 

(9 ) 

The critical "t" value for associated 
"s" values can be defined by applying equa
tions 8 and 9 to the same triaxial strength 
tests used for the Mohr-Coulomb strength 
criteria, as shown on Figure 6 for the 
3032-ft depth at Mt. Taylor. At a specific 
shaft depth the elastic volumetric stress 
invariant adjacent to a circular shaft is 
a constant, since art plus or equals 
twice the assumed uniform horizontal stress 
and the vertical overburden stress is 
ass~ed uniform. The thickness of the re
laxed zone (1) is determined by finding 
the thickness which produces a shear stress 
invariant just under the strength, or fail
ure, line. 

MT. TAYLOR CASE STUDY 

The concrete lining in the l4-ft 1.0. 
shaft at the Mt. Taylor Project of Gulf 
Minel"al Resources Co. was instrumented with 
Carlson strain cells at three depths: 
940 ft, 2030 ft and 3032 ft. The measured 
concrete strains were converted to concrete 
stress (otc) and then the lining pressures 
(Pi) calculated. The Lame' thick walled 
cylinder equation was employed: 

Pi = (ftc 

C<; ~ ~+~~-) 
r = excavation radius 
a = shaft lining radius 
x instrumen~ radius 
(See Figure 3) 

(10) 

Table II presents the results of the ins. 
mentation program. The scatter of the c~~: 
culated lining pressures can be seen on 
Figure 7. This scatter may be the resUlt 
of the irregular shaft wall. 

Statistical regression curves were 
fitted to the calculated lining pressures 
as shown on Figure 7. It is interesting ~ 
note that the lining pressure predicted fo 
the 3032-ft depth from the 940-ft and 
2030-ft depth data was reasonably close, 
even though the rock types changed, as not 
on Table III. 

The in situ stress conditions and roc 
mass properties are two elements in predic 
ing pressure on a shaft lining. The forma 
tions were hydrofractured at 1106 and 
2390 ft. A horizontal stress equal to 0.7 
times the vertical stress was indicated by 
these tests. The vertical stress was 
assumed to be the result of the overburder. 
load. The average rock density of 138 lb/ 
ft 3 resulted in estimated in situ stresses 
shown in Table III. The physical proper
ties employed in the analysis are also pre 
sented on Table III. The estimated rock 
mass compression strengths of 1000 psi for 
the Mancos shale and 500 psi for the Upper 
Westwater were obtained by decreasing the 
specimen strength of the Mancos by over 7 
times and the Upper Westwater over 5 time~ 
T~ese reductions were inferred from the 
fissile nature of the Mancos, similar to 
Bieniawski's (1968) cleated coal, and fror. 
the massiveness of the Upper Westwater, 
similar to Pratt's (1972) quartz ?iorite. 
Figures 8 and 9 present the triaxial test 
results for the Mancos shale and the Uppe: 
Westwater Canyon member of the Morrison 
Formation, respectively. 

S~~PLE CALCC~ATIONS FOR 3032-FT DEPTH 

The first step in calculating the pr. 
sure o~ the lining involves calculating t~ 
thickness of the relaxed zone (~ ) at the 
3032-ft depth. An iterative process was 
employed which yielded a relaxed zone thi~ 
ness of 0.353 times the excavation radius. 
as follows: 

or = DB (1 - r2 ) 
(r+ i) 2 

(11) 

or = 2150(1 + 
r2 ) 

(r+ 0.353 r)2 = 975 psi 



The triaxial compression strength under 
)si of confinement is (Mohr-Coulomb 

;~rength cri teria) : 

Fail = 00 + Tan~(or) = 500 + 2.90 

(975) .. 3300 psi (12) 
.~e triaxial compression strength just ex
~~eds the elastic tangential str~ss ( at) 
~~r the relaxed zone equal to 0.353r, as 
~"llows : 

(}t = OH (1 + r2) (13) 
(r+R)2 

= 215 1 + -~ r2)-
~ (r+0.353r)2 

3320 psi 

~he tangential stress (at) value is used for 
;omparison to the failure strength (OFail) 
:ecause the overburden stress is only 2906 
?si. 

The predictions of lining pressure~ 
~he above relaxed zone thickness at 3032-ft 
~ePtn are presented on Table IV. One addi
~ional lining stress prediction is included 
In Table IV, the no cohesion clastic modifi
:ation of Talobre's (1957) equation pre
:ented by Rabcewicz (1964). Similar results 
:or the 940-ft and 2030-ft depths are also 
jn Tat1e IV. Factors of safety for all 
1ree instrumented depths are presented on 

.able V. The design concrete strength is 
5000 psi. La~e's thick walled cylinder 
equation provides the solution, as given 
~l~: 

f~ 

FS ( ~ + 1) 2 (14) 
..--:-0--'2 t'l. 

t lining thickness (in.) 
a shaft lining inside radius (84-in.) 

f~ z concrete design strength (5000 psi) 
Pi linin~ pressure 

The distortion energy method predicts 
:he thickness of the reJ~xed zone (~) at 
:he 3032-ft depth as 0.113 tines the exca
vation radius. This is shown on Table VI 
and Figure 6 for the value of "i" in terms 
of "r" where the strength and stress invar
iant values are equal. With Terzaghi's 
equation the predicted plastic lining pres
sure is 854 psi. The Rabcewicz no cohe
sion clastic lining stress prediction is 
e99 psi and the Talobre prediction is 850 
psi. These lining pressures are greatly 
in excess of the maximum 548 psi calcu
lated from the strain cell instrumentation. 
See Table IV for comparisons. The assump
tion that the critical shear stress invar
:ant (t) determined from triaxial tests can 
?re(' ict strength under polyaxial stress 
conditions does not appear to be valid. 

£QNCRE~E CONSIDERATIONS 

The assumotion that concrete acts as a 
rigid shaft lining is conservative. The 

elastic deformation of the snar~ ~"''''''''':I __ 
is progressively loaded reduces the radial 
stress imposed. Similarly the tendency of 
concrete to shrink, and to creep under 
stress will also reduce the radial stress. 

The maximum rigid lining stress for tho 
3032-ft depth in the 14-ft 1.0. shaft indi
cated by the field measurements was (Lame 
thick-walled cylinder equation): 

Otc = 2Pi( /\) 
r -a 

(15 ) 

Otc = 2 (548) ( 1082 )= 2740 

108
2

-84
2 

psi 

The minimum safety factor for the 24-in 
thick concrete lining is 1.82 for the 5000+ 
psi concrete. 

The elastic decrease in shaft diameter 
for the 24-in concrete lining at the 3032-ft 
depth, when subjected to the average 420 psi 
exterior lining pressure is 0.090 in., cal
culated as follows: 

Average lining stress crt:c = 420(216) 
48 

1890 psi 
Stiffness of the concrete (E) from American 
Concrete Institute (ACI) ,(1977): 

E = 57000 ;-t; (16) 
fc = concrete strength 

Average lining strain ate (17) 
-E-

1890 = 0.000469 in./in. 
4,030,000 

Average lining circumference C = 
2 1T' (96) = 603 in. 

Shortening of circumference ~C = 
co( = 603(0.000469)= 

0.283 in. 
Deformed shaft diameter d 

new 
= (C-tlC) 111' = 

191.91 in. 
Decrease in shaft 1.0. .od = 0.09 in. 

The elastic decrease in shaft lining 
diameter will decrease the radial stress 
acting on the suP?osed rigid lining. This 
decrease will be in direct relation to the 
diameter decrease of the elastic defor~a
tion of the shaft if unlined, calculated 
from Obert and Duvall (1967) as 

u = 4r aH (18) 

U 

r = 
Er = 

OH 

u 

~ 
elastic decrease in shaft d:a~eter 

(in. ) 
excavation radius (lOS-in.) 
elastic rock modulus (~OO,OOO psi) 
horizontal ground stress 

(2150 psi) 
4(108)2150 = 1.55 in. 

600,000 



The resulting decrease in lining pressure 
(Pi) from elastic deformation of the shaft 
lining is: 

0.09 l:'"55 (100) 5.8\ increase in lining 
pressure (Pi) due to elas
tic lining response. 

This may not be a significant decrease, but 
it is in the right direction, conservative. 

Concrete undergoes non-elastic shrink
age in the course of curing. If the mois
ture content of the concrete is held con
stant this shrinkage amounts to about 0.07% 
for a rich 7 sack mix. If the concrete is 
exposed to air drying, which was not the 
case for the wet Mt. Taylor shaft, shrink
age is tripled to 0.21\ for Type I cement 
and more than tripled to 0.23\ for Type III 
cement (Troxel, and others, 1968). 

Shrinkage will further decrease the 
diameter of the shaft lining and thereby 
reduce the predicted lining stress, as 
follows: 

0.07% strain = 0.000700 in./in. 
~C 603(0.000700) = 0.422 in. 

dnew = 191.87 in. 
~d = 0.13 in. 
0.13 
1.55 (100) ~ 8.4% decrease in lining 

pressure due to shrink
age alone. 

Troxell, et. al. (1968) state, "that 
the rate of creep is relatively rapid at 
early ages." "Roughly, about one-fourth of 
the ultimate creep occurs within the first 
month and three-fourths within the first 
year." The rate of shaft sinking will par
tially determine how soon the concrete 
lining will be fully loaded: therefore, 
~ow muc~ creep will occur. Troxell, et. al. 
(1968) describe non-elastic creep under sus
tained stress partly through "viscous flow 
of the cement/water paste, closure of inter
nal voids, and crystalline flow of aggre
gates, but it is believed that the major 
portion is caused by seepage into internal 
voids of colloidal (absorbed) water from 
the gel that formed by hydration of the 
cement." 

The magnitude of creep depends on sev
eral factors relating to the quality of the 
concrete, as well as to the stress applied 
and to how early in the curing process the 
concrete is loaded. The ultimate magnitude 
of concrete creep under stress "is usually 
about 1 millionth per unit of length, per 
unit stress (psi)" (Troxell, and others, 
1969). The non-elastic concrete/rock inter
action is complex and difficult to predict. 
However, if no other factor were to decrease 
the lining pressure the estimated creep 
relate~ stress decrease would be approxi
mately: 
Circumferential creep strain {= 0.000001 
(1890) = 0.001890 in./in. 

~C 603(0.001890) 1.14 in. 
d ~ 191.64 in. new 6 . 
~d O. 3 -~n. 

0.36 (100) 23.4\ decrease in !i~!~; 
r:ss oressure (P~) d·.Je to COo, 

alone. . 

The composite effect of the :-.o:-.-~._ 
elastic response of the concrete Iln'::": 
shrinkage of the concrete. and t:-.E _: .. ~ .. 
which is governed by the stress a~c~::~~ 
history appear to prevent a precise a;~~:'~ 
ment of these effects on shaft l.:..::ir.Q -- ::. 
is possible to state that each of ::-.~:" :~ 
tors increase the effective:-:ess of a ~:.:t 
crete shaft lining. - . 

OVERBREAK 

Overbreak is another factor that ,~_ 
fluences the stability of a CO~crete s;~ •• 
lining. Overbreak is rock excavation '. 
beyond the pay-line. The concrete ola-~A 
beyond this design line is considered ~;~~ 
at the contractor's expense. Overbreakw.~c 
allowed because neither the owner nor t~~ 
contractor wants to excavate tights bc~:~. 
placing the lining. The approximate c~~:. 
break, in terms of design concrete ~a:~J-p. 
at the three instrumented levels at Mt. 
Taylor was 16.3% at the 940-ft de~th, e. , 
at 2030-ft and 7.5% at 3032-ft. ?hlS co ~ ~. 
pares quite favorably with the results c! 
an extensive study of tunnel cverbreak 
which indicated an average of about 12' 
over several tens of miles of tu~nell:-g. 

SUHMARY _~ND CONCLCSIONS 

The prediction of the press~re ~~~. 
on a concrete shaft lining is the cr!:l:J; 
item in designing a concrete s~a~t. :~~ 
level of confidence is directl rela~0d: ' 
the confidence in the rock pro Ertle! ].~ 

the in situ stress field used n the ~r~
diction. 

The Talobre (1957) equation for pre
dicting lining pressure produced values 
which most closely approxi~ated the n( J~

ured results at Mt. Taylor. Ta10Lre's ~ -
is for clastic (bri~tle) rock, whereas 
Terzaghi's model was for plastic (yielc!:~ 
rock. The rock s through wh i ch the Mt. ': J; • 

shafts were sunk are relatively low-str~':' 
shales and sandstones, apparently not S~~· 
ject to significant time dependent Fla,":.~ 
deformation. The shale and sandstone ~J~r 
very similar physical properties whic~ ~~~. 
the regression prediction of lining pre- 4: 
possible at Mt. Taylor. The ~a~cos S~3;' . 
actually stronger under unconfined co~ : ·:· " 
sion than the Upper Westwater sa~dstO~c: 
We initially thought the high mo~~~o~~! .. 
nite content of the Mancos s~ale ~~g~: : :. 
mit it to respond plastically. Sha:: :~:,. 
ers in the Grants area expect and ac~;c~' 
high advance rates in the ~ancoS. 7~:f -~. 
plies that it is not pliable a~e v!scc~~ 
but a rock which can be blasted, l03~c~ ;.! 
supported efficiently, similar to ~2rc 
brittle rock. 
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Depth 
(ft) 

II 

0 

940 

2030 

3032 

Dept:-l 

~ 

Ii 
940 

2030 

3032 

Depth 
(ft) 

940 

2030 

3032 

TABU: II 
Shaft li n i ng :>reli sure ca1culat1on 
for 14-ft d 1ametnr shaft. 

Excava-
tion Ins t rllr.1ent Tangential Cell Ca l cul a ted 
Rad1us Rad1US Stress Locat1on Li n1ng pressure 
( i n. ) (In . ) (ps i ) (ps i ) 

r x (ftc P1 

0 0 

114 . 0 99.5 400 NE 107 

113 . 0 98 . 5 400 NW 1 04 

106.5 95.0 400 SrI 85 

l()6 • 5 95 . 0 370 SE 79 

105.0 94 . 5 350 Nt: 70 

106 . 0 95.0 950 !T\'; 198 

106 . 0 95.0 1500 5;7 313 

10£ . 0 95 . 0 1 500 Sf: 313 

.. !'Io Read1ng 

110.0 97.0 2300 W 548 

108.0 96.0 1360 5 304 

117.0 106.0 1360 E 405 

':''-BLE III 

I~ Sltu stresses a~d p~yslcal properties 
a~ shaf~ l~s~r~~e~~a :! o~ cepths. 

Ver'tica1 
Stress 

(?Sl) 

av 
901 

1945 

2906 

Estimated 
Horizo:1ta 
Ground 
Stress 

(psi) 

667 

1440 

2150 

Hor!.zc :i t~l 
Stress 

(psi) 

OF. 
667 

1440 

2150 

A:,cle of 
In~erna1 
"riction 

; 
32.1 0 

32.1
0 

29.2
0 

'!'ABL: : V 

Passive 
Pressure 
Coeff1-
cient 

:-r'lI 
3.27 

3.27 

2.90 

i<ock 
~ass 

Cor.;;:,.es
Slon 
St::enqth 

(Jo 
1000 

1000 

500 

L!~lng ~ress~re 0: Mt. 7aylor s~aft, 
14-ft d~a~eter shaft. 

Bed 

~~a;.cos 

S:>a1e 

Mancos 
Shale 

t:p?er 
:iestwater 
Sandstone 

Lin i ng p,.essure (pS1) 
=~c::r-Cc::lol:lb .erza;"l,1 "ii5c::e'.'~cz 17~ 
Relaxed P1ast1c No Cone- Clastic 
Zone ~aximu~ P::e- sion Pre- Pre-
T:,:ckness Measured d,cted I dicted d1cted 

(xr) 

0.0642r 

0.200r 

0.353r 

107 

313 

548 

10 

142 

434 

654 213 

737 297 

769 506 



:epth 
(ft) 

940 

2030 

3032 

: 

TABU V 
Linlna thlcknesses and resul.lng factors of safety. 
Mt. Taylor 14-ft s~aft. 

f'ilctor O!: ,actors Of saf~ty 
Safety for for Desia~ Llnin~ Thlckness 

Llnin~ Th i ckness Mln imur.t T~rzaahl Rabcewlcz Talobre 
~'I1nlmum Measured Plastic No Coheslon ClaStlC 
Measured· Deslgn Lining Predicted PredIcted PredIct(!d 

(1.n. ) (in. ) Thickness 

:<2.5 18 7.52 '730 1. 23 3.78 

21.0 18 2.57 5.67 1. 03 2.71 

24.0 24 2.2S 2.28 1. 28 1. 95 

·~o::e: R(!fer to ~ABLL II, minimum measured 11~inn thlckness 
is the minlmum excavation radius m.nus the Ins1.de 
radius of the shaft 1inin~ (84 in.). TA3Lf IV 
presents the measured and predicted l1.nln; ?ressurcs 
(Pl). Refer to equation 11 for method of calculating 
the factor of safety for the minimum meas~re~ and 
design lining thicknesses. 

TAB i.E VI 

DlstOrt1.on ener~y 1in1.n; pressure preclct1.0n, 
3032-!t depth as plotted in FIgure 6. 

(A) Triaxlal test strength line 

Cor.! lr:ing 
Stress 
(!12=~) 

(pSl) 

100· 

500 

1000 

rai ure 
Sa ss (<1ll 

( si) 

790 

1950 

3400 

VOlumetrIc 
Stress 
lr.varlant - 5 

(;:>si) 

330 

983 

1600 

S:'"!~ar S~:ess 
Invarlant - t 

(;::Sl) 

325 

684 

1131 

1363.5---cross 44690ver---2402---polnt---146l.5 

1500 4850 2617 1579 

2000 6300 3433 2027 

(B) ~va1uation of polyaxia1 stresses to find critical 
shear stress invarlant (t) at predicted fallure. 

'lelaxed Zone 
~~ickness 
(in tenns of r) 

O.OOr 

0.05r 

0.10r 

Volumetr1.C Stress 
Invariant - s 

(psi) 

2402 

2402 

2402 

S:lear St.ress 
Invarlant 

(pSl) 

1791 

1632 

1494 

O.1~29r---cross over----- 2402-----point----- 1461.5 

o .15r 2402 1374 

0.20r 2402 1270 

0.2Sr 2402 ~179 

0.30r 2402 1093 

~ote: Confining stress in triaxlal :ests is unlform aroun~ the 
test specimen. Therefore. 02=~ in the volumetrlc and shear 
stress invariant equatlons. 
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DISTRIBUTION, 50,2-FT DEPTH. 
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FIG. 8 - TRIAXIAL COMPRESSION TEST RESULTS, ~NCOS SHALE FORMATION. 
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FIG. 9 - TRIAXIAL COMPRESSION TEST RESULTS. UPPER WES7WATER CANYON MEMBER 
OF THE ~ORRISON FORMATION . 



CONVERGENCE CONFINEMENT METHOD (after McCreath) 

fi'fJ~ p te /~ 
He Cvea (0 Thes 7S 

MASS DENSITY 
DEPTH 
TUNNEL RADIUS 
FRICTION ANGLE 

PLASTIC FRICTION ANGLE 
COHESION 
PI.ASTIC COHESION 
COEFF. OF LATERAL STRESS 
ELASTIC MODUU GROtJN) 

POISON RATIO GROUND 
DILATANCY COEFF. 
UNCONRNED~ 

RAllO PEAKlRESID STRENGTH 

SHEAR MODULUS 
G=E/(2*(n+l» 
COEFF.OF PASSIVE PRESS. 
m=(1 +SIN(li»/(I-SIN(li» 
VERTICAL STRESS 
Po=Z*g 
LAMBDAe 
lame=I/(I+m)*(m-l+Sc/Po) 

Coefficient Mc 

Mc=(I+(lam-l)*Po/Sc)/(lam+l) 

Plastic dilation 

(9) 
(Z) 
(a) 
(fI) 

(flp) 
(c) 
(cp) 
(K) 
(E) 
(n) 

(AL) 
(Sc) 
(s) 

1 
35 

30 
0.13 
0.01 

1 
100 
0.3 

0.5 

(G) 

(m) 

(Po) 

(lame) 

(MC) 

ev=(2*(UlIR)*(R/a)"2)/«(R/a)"2-1 )*(1 +lIrc» (ev) 
Parameter rc 

Thin Plastic zone rc=2*(-sin(li»*ln(R/a) 

Thick Plas'Iic zone rc=I.I*(-sin(li» 
Deformat. at the boundary of PlaB1.zol 
Ul =(1 +n)/E*(Mc*Sc)*R 
Coeff.of Passive Pressure 
lam=(1 +sin(li»/(I-sin(li» 
lamp=(1 +sin(lip»/(I-sin(lip» 
Parameter A 
A=(2*U l/R-ev)*(R/a)"2 

ELASTO-PLASTIC DISPL. IN GROUND 

Press. at the boundary of Plast.zone 
Pl=Po*(I-sin(li»-c*cos(li) 
RA~USOFPLASnCZONE 

(rc) 

(rc) 
(U1) 

(lam) 

(lamp) 

(P1) 

R=a * « Po+cp/tan(li)-Mc*Sc )/( Ps+cpltan (Ii» )"( I/(1am-l » 
ELASnC~SPL 

kN 
m 
m 

deg 

kPa 

kPa 

deg 

! 

0.611 rad 

0.524 rad 

K=n/(l-n) 

--------------------------------------------
kPa Sc=2*c*tan(45*asin(1 )/90+li) 

1.4745 
0.0746 

r------"1 kPa 

kPa 

1.3604 

Ria < (3)"0.5 

Ria > (3)"0.5 

3.6902 

3 

kPa 

m 

m (Ue) 
Ue=Ul*Rla 

(u(e+p»U ELASTO-PLASTIC DISPL m 
U(e+p)=a*(I-«I-ev)/(1 +A»"0.5) 

(3)"0.5= 1.7321 
Ps lams Ps/Po U1 R Ris rc ev A U(e+p) 
kPa =1-Ps/Po m m m 

1 0 0.0050749 0.573929 0.5739 0.637 -0.0034 0.0069 0.00177 1.7686 
0.9 0.1 0.9 0.0053452 0.604502 0.6045 0.5774 -0.0037 0.0078 0.00203~ 
ii.ii 0.2 0.8 0.0056639 0.640546 0.6405 0.511 -0.0042 0.009 0.00238 ""'2':'3'B2'6T 
0:; 0.3 0.7 0.0060474 0.683916 0.6839 0.4358 -0.0047 0.0105 0.00285 2.85474 
0.6 0.4 0.6 0.0065211 0.737486 0.7375 0.3493 -0.0055 0.0126 0.00353~ o.s 0.5 0.5 0.007127 0.806004 0.806 0.2474 -0.0065 0.0157 0.00454~ 
0.4 0.6 0.4 0.0079407 0.898028 0.898 0.1234 -0.0081 0.0208 0.00624 6.23796 
IT 0.7 0.3 0.0091169 1.031047 1.031 -0.035 -0.0108 0.0303 0.0095 9:5oOii7 
IT 0.8 0.2 0.0110411 1.248663 1.2487 -0.255 -0.0169 0.0539 0.0177117.71ii9 
IT 0.9 0.1 0.0151188 1.709818 1.7098 -0.615 -0.043 0.1 774 0.0588 "'"'5B.'B'1i'37 

0 0 0.0427681 4.836721 4.8367 -0.631 -0.0316 1 .1 526 0.30773 "'"'3'ii7.'732 

0.9 

0.8 

0.7 1\ 
0.6 F(s . r;-
0.5 

0.4 

0.3 

0.2 

0.1 

0 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 



CONVERGENCE CONRNEMENT METHOP (after McCreath) 

MASSDENSnv (9) 
DEPTH (Z) 
TUNNEL RADIUS (a) 
FRICT10N ANGLE (fl) 

PLASTIC FRICTION ANGLE (tip) 
COHESION (c) 
PLASTIC COHESION (cp) 
COEFF. OF LATERAL STRESS (K) 
ELASTIC MODUU GROUtO (E) 
POISON RATIO GROtJN) (n) 
DILATANCY COEFF. (AL) 

17.36 
29 

29 

73.168 
1 

60000 
0.2 

in 
deg 

deg 

psi 

psi 

7 
0.506 ,ad 

0.506 rad 

K=n/(l-n) 

ff X XJ Ii rtf:? 
-f!r~ 

UNCONFINED STRENGTH (Sc) 500 psi Sc=2*c*1an(45*asln(1 )/90+li) I1c Lrcr!{ / 0 
RATIO PEAKlRESiD STRENGTH 

SHEAR MODULUS 
G=E/(2*(n+l » 
COEFF.OF PASSIVE PRESS. 
m=(l +SIN(fI))/(l·SIN(li)) 
VERTICAL STRESS 
Po=Z*g 

73.1687948 

LAMBDAe 
lame=l/(l+m)*(m·l+Sc/Po) 

Coafflclent Mc 

Mc=( 1 +(Iam-l )*Po/Sc)/(lam+ 1) 

Plastic dilation 

(s) 

(G) 

(m) 

(Po) 

(lame) 

(Mc) 

510.33 

2150 psi 

2.3423 

ev=(2*(UlIR)*(R/a)"2)/(((R/a)"2-1 )*(1 +l/rc» (ev) 
Parameter rc 

Thin Plastic zone rc=2*(-sin(II»*ln(R/a) 

Thick Plastic zone rC=1.1*(-sln(fI» 
Deformat. at the boundary of Plaat.zOl 
Ul =(l+n)/E*(Mc*Sc)*R 
Coeff.of Passive Pressure 
lam=(l +sin(li»/(l-sin(li» 
lamp=(l +sln(lip»/( l·sin(lip» 
Parameter A 
A=(2*Ul/R-ev)*(R/a)"2 

ELASTo-pLASnC PISPL IN GROUND 

Press. at the boundary of Plaat.zone 
Pl =Po*(l-sin(li»-c*cos(li) 
RADIUS OF PLASTIC ZONE 

(rc) RIa < (3)"0.5 

(rc) RIa > (3)"0.5 
(U1) 

(lam) 2.8821 

(lamp) 2.9821 

(P1) 

Rca * «Po+cp/tan (Ii)-Mc* Sc)/(Ps+cp/ta n(li» )"( 1/( lam·l » 
ELASTIC DlSPL (Ue) 
Ue=Ul*Rla 

(U(e+p»Lj ELASTo-PLASTlC D1SPL 
U(e+p)=a*(l·«l-ev)/(l +A»"0.5) 

131"0.5= 1.7321 
lams Ps/Po U1 R Ria rc ev 

=l·PslPo in in 
0 1 0.2773726 11.84201 0.6821 0.3709 '0.011 

0.1 0.9 0.2923464 12.48129 0.719 0.3199 -0.0121 
1720 0 .2 0 .8 0.3099146 13.23134 0.7622 0.2633 ·0.0135 
i505 0 .3 0.7 0.3309157 14.12795 0.8138 0.1998 ·0.0153 
1290 0.4 0.8 0.3568218 15.22544 0.877 0.1272 -0.0176 
1075 0.5 0.5 0.3890763 16.61103 0.9569 0.0428 -0.0208 

"ii6"O' 0.6 0.4 0.4318193 18.43588 1.062 -0 .058 -0 .0258 
m 0.7 0 .3 0.4916676 20.99101 1.2092 -0 .184 ·0.0335 
430' 0.8 0.2 0.5840125 24.93354 1.4363 -0.351 -0.0492 
ill 0 .9 0.1 0.7545485 32.21432 1.8557 -0.533 -0.0754 

0 0 1.2610101 53.83694 3.1012 -0.533 -0.0597 

2500 

2000 

A U(e+p) 
In 

0.0269 0.13492 134.923 
0.0305 0.15523""'1"55.'22s 
0.0351 0 .18159""'1iii":'5ii7 
0.0412 0.21695"""'2i6.'9s 
0.0496 0.26641"""2"ii"6.4Oi 

0.062 0.33951 ~ 
0.0817 0.45619~ 
0 .1174 0 .66486~ 
0.1981 1 .11461~ 
0.4211 2.25802~ 
1.0251 4.801 79 """4eO"i"":79 

1500 fiG. \~ 
1000 

500 

J 1===== 
o 0.5 1.5 2 2.5 3 3.5 4 4.5 5 

~ -/ 

1 i1r!2:/s 
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