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Abstract

Replicated regular two-level factorial experiments are very useful for industry. The

basic purpose of this type of experiments is to identify active effects that affect the

mean and variance of the response. Hypothesis testing procedures are widely used for

this purpose. However, the existing methods give results that are either too liberal

or too conservative in controlling the individual and experimentwise error rates (IER

and EER respectively). In this thesis, we propose a resampling procedure and an

exact-variance method for identifying active effects for the mean and variance of the

response, respectively. Monte Carlo studies show that our proposed methods perform

extremely well in terms of controlling the IER and EER. We also extend our proposed

methods to control the false discovery rate. Two real data sets were used as case study

to illustrate the performance of the proposed methods.
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Chapter 1

Introduction

1.1 A brief Review of Two-Level Factorial Exper-

iments

Experimental Designs involve laying out of detailed experimental plans in advance

of doing experiments. They are widely used in industries to control and improve the

quality of outputs. In robust designs, experimentation is used to determine the factor

levels so that the product or production process is insensitive to potential variations

in operating, environmental, and market conditions (Tagushi, 1986). A factor in this

case is a variable that is studied in the experiment while levels refer to the values of

the factor. To study the effect of a factor on the response, two or more values of the

factor are used. A combination of factor levels is called a treatment or a run.

The most important class of these designs is two-level factorial designs. They

are easy to design, efficient to run, straightforward to analyze and full of useful

information (Mee, 2009).

In two-level factorial designs, each factor is investigated at only two levels. These

designs are widely used in industrial (Box, Hunter and Hunter, 1978) and agricul-

tural (Kempthorne, 1952; Cochran and Cox, 1957) experiments to identify the most
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important factor(s) affecting a process.

Two-level factorial designs can be un-replicated. That is, a single experiment

is carried out at each run. This type of design is often performed when runs are

expensive. The other case is the replicated experimental design. In this case, the

experiment is replicated more than one time at each run.

This thesis concentrates on replicated two-level factorial designs.

1.1.1 Two-Level Full Factorial Designs

Suppose that a two-level factorial design has k experimental factors each having two

levels. The experimental factors can be numerical variables such as Temperature (e.g.

low level = 1000F , high level = 1800F ) or categorical such as Deposition time (e.g

low level = Low, high level = High).

A full factorial experiment consists of every combination of the levels of factors in

the experiment. Thus, for the k factors each with two levels, a full two-level factorial

design consists of 2×2×2×·· ·×2 = 2k treatments/runs. We denote it as 2k factorial

designs. We shall use − and + to represent the low level and high level of the factors

respectively in this thesis.

The following gives an example of a full factorial design.

Example 1.1. This example is taken from Montgomery (2009, p. 267). The exper-

iment is a 24 factorial design. Four experimental factors: length of putt (A), types

of putter (B), break of putt (C) and slope of putt (D) were investigated each at two

levels. The primary response in this experiment is the distance from the ball to the

center of the cup after the ball comes to rest. The experiment is replicated seven times

for each run. The purpose of this experiment is to improve the golfer’s scores (putting

accuracy). That is, minimize the putting variability while maintaining the distance

from the ball to the center of the cup closest to zero. Tables 1.1 and 1.2 below show

the data, and factors and levels respectively for this example.

2



Table 1.1: Design Matrix and Distance Data for Example 1.1
Factors Distance from Cup (replicates)

Runs A B C D y ȳ s2 loge s
2

1 - - - - 10.0 18.0 14.0 12.5 19.0 16.0 18.5 15.429 11.536 2.445
2 + - - - 0.0 16.5 4.5 17.5 20.5 17.5 33.0 15.643 116.893 4.761
3 - + - - 4.0 6.0 1.0 14.5 12.0 14.0 5.0 8.071 28.702 3.357
4 + + - - 0.0 10.0 34.0 11.0 25.5 21.5 0.0 14.571 167.202 5.119
5 - - + - 0.0 0.0 18.5 19.5 16.0 15.0 11.0 11.429 68.369 4.225
6 + - + - 5.0 20.5 18.0 20.0 29.5 19.0 10.0 17.429 62.369 4.113
7 - + + - 6.5 18.5 7.5 6.0 0.0 10.0 0.0 6.929 40.119 3.692
8 + + + - 16.5 4.5 0.0 23.5 8.0 8.0 8.0 9.789 61.071 4.112
9 - - - + 4.5 18.0 14.5 10.0 0.0 17.5 6.0 10.071 47.786 3.867
10 + - - + 19.5 18.0 16.0 5.5 10.0 7.0 36.0 16.000 107.250 4.675
11 - + - + 15.0 16.0 8.5 0.0 0.5 9.0 3.0 7.429 42.869 3.758
12 + + - + 41.5 39.0 6.5 3.5 7.0 8.5 36.0 20.286 305.738 5.723
13 - - + + 8.0 4.5 6.5 10.0 13.0 41.0 14.0 13.857 154.726 5.042
14 + - + + 21.5 10.5 6.5 0.0 15.5 24.0 16.0 13.429 70.786 4.260
15 - + + + 0.0 0.0 0.0 4.5 1.0 4.0 6.5 2.286 7.155 1.968
16 + + + + 18.0 5.0 7.0 10.0 22.5 18.5 8.0 14.214 94.071 4.544

Table 1.2: Factors and Levels for Example 1.1
Level

Factor − +
A Length of put (ft) 10 30
B Types of putter Mallet Cavity back
C Break of putt Straight Breaking
D Slope of putt Level Downhill

1.1.2 Two-level Fractional Factorial Designs

When the number of factor k is large, the number of runs required for the 2k factorial

designs also increases. For economic reasons and/or in the absence of enough resources

to carry out the full factorial experiment, a fraction (say 2−p) of 2k factorial design

is often used. This type of two-level factorial designs is called 2k−p factorial design,

where p is any positive integer less than k.

3



Two-level fractional factorial designs can be regular and non-regular fractional

factorial designs (Wu and Hamada, 2000). A regular fractional factorial design is

formed through defining relations among factors. That is, the design is constructed

by assigning p of the k factors to the interaction columns of the 2k−p full factorial

design. Fractional factorial designs that are not regular are non-regular designs.

This thesis focuses on regular two-level fractional factorial designs. The following

is an example of a regular 2k−p factorial designs.

Example 1.2. This example is taken from Montgomery (2001, p. 352). This experi-

ment is a regular 26−3 factorial design with 3 replicates for each run. The experiment

is based on the use of carbon anodes in a smelting process baked in a ring furnace.

The six factors used are: Pitch/Fines ratio (A), Packing material type (B), Pack-

ing material temperature (C), Flue location (D), Pit temperature (E) and Delay time

before packing (F). The response recorded is the weight of packing material stuck to

the anodes measured in grams. The purpose of this experiment is to minimize the

variability in the weight of the packing material while maintaining the weight of the

material to a certain nominal level. Tables 1.3 and 1.4 below contain the data, and

Factors and Levels for this example.

Table 1.3: Design Matrix and Weight of Packing Material for Example 1.2
Factors Weigth of Material

Runs A B C D(=AB) E(=AC) F(=BC) y ȳ s2 loge s
2

1 + + - + - - 984 826 936 915.333 6561.333 8.789
2 + + + + + + 1275 976 1457 1236.000 58981.000 10.985
3 - + - - + - 1217 1201 890 1102.667 33984.333 10.434
4 + - - - - + 1474 1164 1541 1393.000 40453.000 10.608
5 - - - + + + 1320 1156 913 1129.667 41932.333 10.644
6 - - + + - - 765 705 821 763.667 3365.333 8.121
7 + - + - + - 1338 1254 1294 1295.333 1765.333 7.476
8 - + + - - + 1325 1299 1253 1292.333 1329.333 7.192

4



Table 1.4: Factors and Levels for Example 1.2
Level

Factor − +
A Pitch/Fines ratio 0.45 0.55
B Packing material type 1 2
C Packing material temperature Ambient 3250C
D Flue location Inside Outside
E Pit temperature Ambient 1950C
F Delay time before packing Zero 24 hours

In this example, k = 6 and p = 3. The three factors A, B and C generate a 23

factorial design. Factors D, E and F are defined through the following relationship:

D = AB, E = AC, F = BC.

That is, the column D is the interaction between column A and column B; column E

is the interaction between column A and column C, and column F is the interaction

between column B and column C.

1.2 Types of Responses and Two-Step Procedures

In general, responses can be classified according to the stated objective of the ex-

periment. The three broad categories are: nominal-the-best, smaller-the better and

larger-the-better responses.

1.2.1 Nominal-The-Best Response

A nominal-the-best response is a measured response or characteristic with a spe-

cific target (nominal) value. The response in Example 1.2 is a good example of the

nominal-the-best response. For this case, one would like to minimize

E{(Y − t)2} = V ar(Y ) + {E(Y )− t}2,

5



where Y is the response and t is the nominal value. For the nominal-the-best response,

a two-step procedure was introduced in Wu and Hamada (2000, 2009) as follows to

select the levels of factors:

Step 1. Find the levels of the some factors to minimize the dispersion of re-

sponse;

Step 2. Find the levels of some factors that are not in Step 1 to move the

location of response closer to t.

For the above two two-step procedures, any factor appears in Step 2 is called an

adjustment factor.

1.2.2 Smaller-The-Better Response

A smaller-the-better response is a measured characteristic with an ideal target value

of 0. That is, as the value for this type of response decreases, quality increases. The

response in Example 1.1 is a good example of the smaller-the-better response. The

interest here would be to minimize

E(Y 2) = V ar(Y ) + E2(Y ).

For the smaller-the-better response, a two-step procedure is outlined in Wu and

Hamada (2000, 2009) as follows:

Step 1. Find some factor levels that minimize the location of response;

Step 2. Find some factor levels that are not in Step 1 to minimize the dispersion

of response.

Again, any factor appears in Step 2 is called an adjustment factor.

For the larger-the-better response, a similar two-step procedure can be found in

Wu and Hamada (2000, 2009).

6



1.3 Model and Parameter Estimation

As we can see in Section 1.2, identifying the factors which have significant effects on

the mean of response and variance of response is the first step before applying two-step

procedures. In this section, we introduce some notations and setup the model.

1.3.1 Model Setup

Let yij be the response for the ith treatment and jth replication in regular two-level

factorial experiments, i = 1, · · ·, m; j = 1, · · ·, ni. Here m = 2k or 2k−p. For the

convenience of presentation, we consider the case when n1 = · · · = nm = n as

in Examples 1.1 and 1.2. Suppose there are I effects that we are interested in (in

most cases I = m − 1). These effects can be main effects or interaction effects. Let

xi1, xi2, · · ·, xiI denote the corresponding covariates values of these interested I effects

for the ith treatment, i = 1, · · ·, m.

The popular model for modelling the mean and variance of the response simul-

taneously is the normal model with a linear regression for the mean and a log-linear

model for the variance (Harvey, 1976; Cook and Weisberg, 1983; Nair and Pregi-

bon, 1988; Wang, 1989; Brenneman and Nair, 2001; Variyath et al., 2005; Wu and

Hamada, 2000 and 2009; Loughin and Rodŕıquez, 2011; and others). That is,

yij ∼ N
(

µi, σ
2
i

)

(1.1)

where

µi = α0 + α1xi1 + ...+ αIxiI (1.2)

and

loge σ
2
i = γ0 + γ1xi1 + ...+ γIxiI . (1.3)

Further, y′ijs are independent. Here α1, ···, αI are the interested effects for the location
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or mean of response; γ1, · · ·, γI are the interested effects for the dispersion or the

variance of the response. The models in (1.2) and (1.3) are called the location model

and the dispersion model, respectively.

Before we end this subsection, we use Example 1.2 to illustrate the notations

above. In Example 1.2, m = 8, n = 3 and suppose that we are interested in I =

8 − 1 = 7 factorial effects: six main effects and one two-factor interaction between

factors A and F. The covariate values for the 7 factorial effects are:





















































A B C D E F AF

1 1 −1 1 −1 −1 −1

1 1 1 1 1 1 1

−1 1 −1 −1 1 −1 1

1 −1 −1 −1 −1 1 1

−1 −1 −1 1 1 1 −1

−1 −1 1 1 −1 −1 1

1 −1 1 −1 1 −1 −1

−1 1 1 −1 −1 1 −1





















































.

1.3.2 Parameter Estimation

To fit model (1.1), we first summarize yij to

ȳi =
n

∑

j=1

yij/n and s2i =
n

∑

j=1

(yij − ȳi)
2/(n− 1).

Next, we regress ȳi over {xi1, · · · , xiI}, i = 1, . . . , n, to obtain least square esti-

mates of α1, · · ·, αI (denoted by α̂1, · · ·, α̂I). We also regress loge s
2
i over {xi1, · · · , xiI}
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to obtain least square estimates of γ1, · · ·, γI (denoted by γ̂1, · · ·, γ̂I). Let

X =













x11 · · · x1I

· · · · · · · · ·

xm1 · · · xmI













be the matrix consisting of columns corresponding to all the I effects that we are in-

terested in. In two-level full factorial designs and two-level regular fractional factorial

designs, X is an orthogonal matrix such that XTX = mI, where I is an identity ma-

trix. Further, for each column of X, m/2 elements equal -1 and other m/2 elements

equal 1. Then,













α̂1

· · ·

α̂I













=
1

m
XTZL and













γ̂1

· · ·

γ̂I













=
1

m
XTZD, (1.4)

where ZL = (ȳ1, · · ·, ȳm)T and ZD = (loge s
2
1, · · ·, loge s2m)

T
.

Let xl denote the column for lth interested effects in X, l = 1, · · ·, I. Then, from

(1.4), we have

α̂l =
1

m
xT
l ZL and γ̂l =

1

m
xT
l ZD, respectively. (1.5)

1.4 Review of Existing Methods

After we obtain the estimates of α′
ls and γ′

ls, we can use them to construct hypothesis

testing procedures to identify the significant effects for both location and dispersion

models. We introduce two important concepts, namely individual error rate (IER)

and experiment-wise error rate (EER). Generally speaking, IER is the probability of

making an error for a single hypothesis, while EER is the probability of making at

9



least one error for all I hypotheses.

In the literature, there are three well-known hypothesis testing methods for iden-

tifying the significant effects for the location and dispersion models in replicated

two-level factorial designs: Wu and Hamada (2000, 2009) methods, Variyath et al.

(2005) method and Lenth (1989) method.

1.4.1 Wu and Hamada’s Methods

To introduce Wu and Hamada’s methods, we need to investigate the expectation and

variance of α̂′
ls, and γ̂′

ls. By using (1.5), Wu and Hamada showed that

E(α̂l) = αl (1.6)

and

Var(α̂l) =
xT
l V ar(ZL)xl

m2
=

1

m2
xT
l V ar{(ȳ1, . . . , ȳm)T}xl

=
1

m2n
xT
l diag{σ2

1, . . . , σ
2
m}xl =

1

m2n

m
∑

i=1

σ2
i . (1.7)

The last step in (1.7) is from the fact that the elements of xl are either -1 or 1 in

two-level experiments. Similarly, they showed that

E(γ̂l) = γl (1.8)

and

Var(γ̂l) =
xT
l Var(ZD)xl

m2
=

1

m2
xT
l Var{(loge s21, . . . , loge s2m)T}xl

=
1

m2
xT
l diag{Var(loge s21), . . . ,Var(loge s2m)}xl.
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Again using the fact that the elements of xl are either -1 or 1 in two-level experiments,

we further have

Var(γ̂l) =
1

m2

m
∑

i=1

Var(loge s
2
i ). (1.9)

Dispersion Model

Wu and Hamada noted that

(n− 1)s2i =

n
∑

j=1

(yij − ȳi)
2 ∼ σ2

i χ
2
n−1,

where χ2
v is the chi-squared distribution with v degrees of freedom. Then taking

natural logarithm yields

loge(s
2
i ) ∼ loge(σ

2
i ) + loge{χ2

n−1/(n− 1)}.

Using the first-order Taylor expansion, they argued that approximately

loge(s
2
i ) ∼ N(loge(σ

2
i ),

2

n− 1
). (1.10)

By using (1.8), (1.9) and (1.10), they obtained that approximately γ̂l has the

following distribution

γ̂l ∼ N(γl,
2

m(n− 1)
).

A z-type test statistic

zl =
γ̂l

√

2
m(n−1)

was constructed to test the hypothesis H0 : γl = 0. To control IER, the N(0, 1)

distribution is used to calculate the critical value of the z-type test statistic. To

control EER, they used the studentized maximum modulus distribution with two

parameters I and ∞ to calculate the critical value.
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Location Model

In this case, Wu and Hamada (2000, 2009) via (1.6) and (1.7), obtained the

distribution of α̂l as

α̂l ∼ N(αl,
1

m2n

m
∑

i=1

σ2
i ).

They construct a t-type test statistic

tl =
α̂l

√

1
m2n

∑m
i=1 s

2
i

to test the hypothesis H0 : αl = 0. Further, to control IER, the tm(n−1) distribution is

suggested to calculate the critical value. To control EER, they used the studentized

maximum modulus distribution with two parameters I and m(n− 1) to calculate the

critical value.

1.4.2 Variyath et al.’s Method

Variyath et al. (2005) suggested a Jackknife method on the replicated responses to

provide an estimate of variance of the performance measures such as the ȳ and loge s
2

of the replicated responses at each run. The variance estimate of the performance

measure is then used to estimate the variance of the estimated factorial effects. Their

method was applied to control only the IER. To describe their method, we have

adopted the notations used in their paper. Let yi = (yi1, . . . , yij, . . . , yin) be the

random sample of size n for each run. Let c(yi) be the performance measure of

interest. Then by deleting yij from yi for j = 1, . . . , n, n delete-one Jackknife replicates

of size (n − 1): yi(j), i = 1 ..., m was obtained. Hence, n Jackknife replications of

the performance measure c(yi(j)) were obtained. The Jackknife variance estimate of
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c(yi) was given as

V̂ja(c(yi)) =
n− 1

n

n
∑

j=1

(c(yi(j))− c(yi.))
2,

where c(yi.) =
1
n

∑n
j=1 c(yi(j)). A pooled estimate of the variance of c(yi) was given

as

V̂pja(c(y)) =
1

m

m
∑

i=1

V̂ja(c(yi)).

They construct a F -statistic

F =
Mean Square (MS) for the factorial effect

V̂pja(c(y))

to test the null hypothesis of interest. They provide some theoretical explanations

to show that the mean square of the factorial effect and V̂pja(c(y)) are independent.

The F -distribution with degrees of freedom 1 and m(n − 1) is used to calculate the

critical value of the above F -statistic.

Dispersion Model

Here, c(yi) = loge s
2
i and V̂pja(c(y)) =

1
m

∑m
i=1 V̂ja(loge s

2
i ). The F -statistic is given

as

Fl =
MS(γ̂l)

1
m

∑m
i=1 V̂ja(loge s

2
i )

to test the hypothesis H0 : γl = 0, where MS(γ̂l) = γ̂2
l (xl

Txl) = mγ̂2
l . Based on

their simulation results for consistency, the Jacknife variance estimate for loge(s
2
i ) is

consistent when n = 50. For small n, they considered an adjustment factor for the

variance estimate of loge s
2
i .

Location Model

Here, c(yi) = ȳi and V̂pja(c(y)) = 1
m

∑m
i=1 V̂ja(ȳi). The F -statistic to test the
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hypothesis H0 : αl = 0 can be written as

Fl =
MS(α̂l)

1
m

∑m
i=1 V̂ja(ȳi)

, (1.11)

where MS(α̂l) = α̂2
l (xl

Txl) = mα̂2
l in this case.

1.4.3 Lenth’s Method

Lenth (1989) proposed a robust estimator of the standard deviation of the factorial

effects of interest. His approach is the same for both the dispersion and location

models. We describe his method for dispersion model only. Suppose γ̂1, . . . , γ̂I are

the least square estimates of factorial effects (γ1, . . . , γI) of interest in the dispersion

model.

Lenth (1989) proposed a pseudo standard error (PSE) for the standard deviation

of γ̂l as

PSE = 1.5 Median{|γ̂l|<2.5s0
}|γ̂l|. (1.12)

Here the median is computed among the |γ̂′
ls| with |γ̂l| < 2.5s0 and s0 = 1.5Median|γ̂l|.

He defined a t-type statistic

tLenth,l
=

γ̂l
PSE

to test the hypothesis H0 : γl = 0.

Lenth’s method does not require an unbiased estimate of variance of response. For

this reason, researchers have used his method for both un-replicated and replicated

factorial experiments. The critical values for controlling the IER and EER are given

in the Tables of Appendix H of Wu and Hamada (2000, 2009).
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1.5 Motivation and Organization of The Thesis

In this section, we first state the motivation of the thesis and then give the outline of

the thesis. Our motivation is from the following observations for the above mentioned

methods.

1. For dispersion model, the validity of the N(0, 1) distribution for the z-type

statistic suggested by Wu and Hamada depends on the approximation of the

variance of loge(s
2
i ). When n is large, the approximation 2/(n − 1) to the

Var{loge(s2i )} is reasonable. If n is small, which is the common situation in

practice (such as in Examples 1.1 and 1.2), then the approximation may not

be good. For example, when n = 3, the actual variance of loge(s
2
i ) is around

1.64, but the approximate variance is 2/(3− 1) = 1. If we use the approximate

variance, the statistic will be inflated. Also, the Variyath et al. Jacknife variance

estimate for loge(s
2
i ) is not consistent for small n and this may also inflate their

suggested F statistic.

2. For location model, the validity of the t-distribution suggested by Wu and

Hamada for the t-type statistic depends on the homogeneity of σ2
i ’s. But in

some practical situations, heterogeneity of σ2
i ’s is a real possibility. If they are

not the same, the t-distribution may not be true. Also the connection between

Wu and Hamada’s method and Variyath et al.’s method is not clear so far.

In this thesis, we will follow the line of Wu and Hamada’s methods. Our purpose

is two-fold.

1. We intend to identify the distribution for the z-type statistic under the null

hypothesis for the dispersion model. This distribution should work well for the

small n case. Based on this distribution, we develop corresponding procedures

to control the IER and EER in the dispersion model. This distribution will
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also be used to calculate the P -values of the I z-type statistic and those P -

values, in turn, are used to control the false discovery rate (FDR; Benjamini

and Hochberg, 1995) in the dispersion model.

2. We intend to identify the distribution for the t-type statistic under the null hy-

pothesis for the location model. This distribution should work well whether σ2
i ’s

are homogeneous or not. Based on this distribution, we develop corresponding

procedures to control the IER and EER in the location model. This distribution

will also be used to calculate the P -values of the I t-type statistic and those

P -values, in turn, are used to control the FDR in the location model.

The thesis is organized as follows. In Chapter 2, we present the new distribu-

tions for the z-type and t-type statistics, respectively, and propose new procedures

for controlling the IER and EER. Also, we perform some simulation studies to com-

pare the performance of the methods in controlling IER and EER. Further, we apply

the methods to real data sets given in Examples 1.1 and 1.2. In Chapter 3, the

new distributions are used to calculate the P -values of z-type and t-type statistics,

respectively. Those P -values are used to control the FDR using some existing proce-

dures. Simulation studies are used to examine the performance of all the methods in

controlling the FDR. We also apply the methods to real data set given in Examples

1.1 and 1.2. Chapter 4 is the closing chapter of this thesis. It contains the summary

and conclusion on the performance of the methods. We provide some directions for

further research.
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Chapter 2

Controlling IER and EER in

Location and Dispersion Models

2.1 Dispersion Model

2.1.1 New Distribution of z-type statistic

Recall that for testing H0 : γl = 0 in the dispersion model, the z-type statistic is

defined as

zl =
γ̂l

√

2
m(n−1)

.

The actual variance of γ̂l is given in (1.9) as

Var(γ̂l) =
1

m2

m
∑

i=1

Var(loge s
2
i ).

For the small n case, instead of using the approximation 2/(n−1) to Var(loge s
2
i ),

we suggest using the exact variance of the loge(s
2
i ). Note that

loge(s
2
i ) ∼ loge(σ

2
i ) + loge(χ

2
n−1/(n− 1)).
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Therefore

Var{loge(s2i )} = Var{loge(
χ2
n−1

n− 1
)} = Var{loge(χ2

n−1)}

and

Var(γ̂l) =
1

m
Var{loge(χ2

n−1)}.

Here Var{loge(χ2
n−1)} means the variance of the logarithm of a random variable from

the χ2
n−1 distribution.

Let

an =

√

Var{loge(χ2
n−1)}

2/(n− 1)
,

which is just the square root of the ratio of true variance over the approximate variance

for loge(s
2
i ). The values of an for some small n values are tabulated in Table 2.1.

We observe that the z-type test statistic can be written as

zl =
γ̂l

√

1
m
Var{loge(χ2

n−1)}

√

Var{loge(χ2
n−1)}

2/(n− 1)
= an

γ̂l
√

Var(γ̂l)
.

Motivated from the above form of the z-type statistic, we suggest using N(0, a2n) to

approximate the true distribution of the z-type statistic under the null hypothesis

H0 : γl = 0.

Table 2.1: Comparison of the Exact and Approximate variances of loge(s
2
i )

n
Variance 3 4 5 6 7 8 9 10
Exact 1.644 0.935 0.645 0.490 0.395 0.330 0.284 0.249

Approximate 1.000 0.667 0.500 0.400 0.333 0.286 0.250 0.222
an 1.282 1.184 1.140 1.107 1.089 1.075 1.065 1.058

We should point out here that the true distribution of γ̂l may not be normal.

However, since γ̂l as given in (1.5) is a linear combination ofm independent identically

distributed log-transformed random variables, central limit theorem implies that the

distribution of γ̂l may be well approximated by the normal distribution. Simulation
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studies show that the normal approximation works very well even for small n and m,

for example m = 8 and n = 3.

From Table 2.1, our suggested distribution N(0, a2n) and the suggested distribution

N(0, 1) by Wu and Hamada (2000, 2009) can be quite different for small n. The two

distributions become close to each other as n becomes large. However, the suggested

distribution based on the exact variance of loge(s
2
i ) may be preferable for small n in

practical applications. This has been verified in the simulation study.

2.1.2 Controlling IER and EER in Dispersion Model

With the suggested distribution N(0, a2n), if we would like to control the IER at the

given α level, we can set the critical value CIER to be the upper 1 − α/2 quantile of

the N(0, a2n). That is,

CIER = anΦ
−1(1− α/2).

Here Φ(·) is the cumulative distribution function of N(0, 1).

For controlling EER, we note that for

EER = Pr(max
1≤l≤I

|zl| ≥ CEER|H0 : γ1 = · · · = γI = 0)

= 1− Pr(max
1≤l≤I

|zl/an| < CEER/an|H0 : γ1 = · · · = γI = 0)

= 1− {Φ(CEER/an)− Φ(−CEER/an)}I

= 1− {2Φ(CEER/an)− 1}I .

Here CEER is the critical value for controlling EER. Therefore if we need to control

the EER at the given α level, then

CEER = anΦ
−1

(

0.5 + 0.5(1− α)1/I
)

.

19



2.2 Location Model

2.2.1 New distribution for the t-type Statistic

Recall that the t-type test statistic for testing H0 : αl = 0 in the location model is

given as

tl =
α̂l

√

1
m2n

∑m
i=1 s

2
i

and the variance of α̂l is Var(α̂l) =
1

m2n

∑m
i=1 σ

2
i . Next we try to find the distribution

of tl under the null hypothesis.

Note that the t-type test statistic can be rewritten as

tl =
α̂l

/√

1
m2n

∑m
i=1 σ

2
i

√

1
m2n

∑m
i=1 s

2
i

/√

1
m2n

∑m
i=1 σ

2
i

. (2.1)

The classical theory of normal distribution implies that the numerator of (2.1) is

independent of the denominator. Further, under the null hypothesis of αl = 0, it

follows the N(0, 1). That is

α̂l

/

√

√

√

√

1

m2n

m
∑

i=1

σ2
i ∼ N(0, 1).

The denominator of (2.1) can be further expressed as

∑m
i=1 s

2
i

∑m
i=1 σ

2
i

=
1

n− 1

m
∑

i=1

[

(n− 1)s2i
σ2
i

(

σ2
i

∑m
i=1 σ

2
i

)]

.

Let

ρ2i =
σ2
i

∑m
i=1 σ

2
i

.

Note that for i = 1, . . . , m

(n− 1)s2i
σ2
i

∼ χ2
n−1
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and they are independent. Therefore the denominator of (2.1) follows a weighted sum

of m independent χ2
n−1 distribution. For the convenience of presentation, we write in

the following way:
∑m

i=1 s
2
i

∑m
i=1 σ

2
i

∼
m
∑

i=1

ρ2iχ
2
n−1/(n− 1).

Therefore the distribution of the t-type statistic under the null hypothesis of αl = 0

is

tl ∼
N(0, 1)

√
∑m

i=1 ρ
2
iχ

2
n−1/(n− 1)

. (2.2)

In the above form, the N(0, 1) and m χ2
n−1 distributions are independent.

Remark 2.1. If the σ2
i ’s are homogeneous, then

σ2
i

∑m
i=1 σ

2
i

=
σ2

mσ2
=

1

m
.

Therefore,
∑m

i=1 s
2
i

∑m
i=1 σ

2
i

∼
χ2
m(n−1)

m(n− 1)
.

Thus, under H0 : αl = 0, we obtain

tl ∼
N(0, 1)
√

χ2
m(n−1)

m(n−1)

= tm(n−1).

But if the σ2
i are not homogeneous, then the distribution of tl may not be t-distribution

under the null hypothesis.

2.2.2 Controlling IER in Location Model

The explicit form of the cumulative distribution function of tl in (2.2) is unknown

if σ2
i ’s are not homogeneous. But it suggests a way to generate the random sample

from this distribution, which can be used to calculate the critical value for controlling
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IER. In the following steps, we propose a resampling procedure to generate random

samples from the distribution in (2.2). Since ρ2i ’s are unknown, we estimate it from

the given data by ρ̂2i = s2i /
∑m

i=1 s
2
i .

Step 1: Compute ρ̂2i , for i = 1, 2, . . . , m, from the given data set.

Step 2: For b = 1, . . . ,M ,

Step 2.1 Generate one N(0, 1) random variable Ub.

Step 2.2: Generate m independent χ2
n−1 random variables Vb1, . . . , Vbm.

Step 2.3: Compute t(b) = Ub√∑m
i=1 Vbiρ̂

2
i
/(n−1)

.

Step 3: The critical value CIER for controlling IER in the location model at

the given α value is set to be the 1−α/2 upper quantile of {t(b), b = 1, 2, ...,M}.

In R, it is very fast to calculate the critical value CIER. With our R function, it takes

several seconds to get the CIER for M = 1, 000, 000. The R function will be provided

in the Appendix.

2.2.3 Controlling EER in Location Model

Here, we are interested in controlling

EER = Pr(max
l

|tl| ≥ CEER|H0 : α1 = · · · = αI = 0)

at a given α level.

We first use the result in Section 2.2.1 to investigate the distribution of max1≤l≤I |tl|.
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Note that

max1≤l≤I |tl| = max1≤l≤I

∣

∣

∣
α̂l

/√

1
m2n

∑m
i=1 σ

2
i

∣

∣

∣

√

1
m2n

∑m
i=1 s

2
i

/√

1
m2n

∑m
i=1 σ

2
i

=
max1≤l≤I

∣

∣

∣
α̂l

/√

1
m2n

∑m
i=1 σ

2
i

∣

∣

∣

√

1
m2n

∑m
i=1 s

2
i

/√

1
m2n

∑m
i=1 σ

2
i

. (2.3)

The distribution of the denominator of (2.3) has been investigated in Section 2.2.1.

We now study the distribution of the numerator. Note that

(α̂1, · · · , α̂I)
T =

1

m
XTZL

with ZL = (ȳ1, · · ·, ȳm)T . Under the normal assumption in (1.1) on yij, we have

that ZL follows a multivariate normal distribution. Due to the properties of multi-

variate normal distribution, we also have that (α̂1, · · · , α̂I)
T is multivariate normally

distributed. Under the null hypothesis H0 : α1 = · · · = αI = 0,

(α̂1, · · · , α̂I)
T ∼ MVN(0,

1

m2
XTVar(ZL)X).

With the fact that Var(ZL) = diag{σ2
1/n, . . . , σ

2
m/n}, we have





α̂1
√

1
m2n

∑m
i=1 σ

2
i

, . . . ,
α̂I

√

1
m2n

∑m
i=1 σ

2
i





T

∼ MVN(0,XTdiag{ρ21, . . . , ρ2m}X)

Here, “MVN” stands for the multivariate normal distribution.

Combining the distributions of the numerator and denominator of (2.3), we get

that max1≤l≤L |tl| has the same distribution as the ratio U/V such that

(1) U and V are independent;

(2) U has the same distribution as the maximum of the absolute values of a I-
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dimensional multivariate normal random vector with mean vector 0 and variance-

covariance matrix XTdiag{ρ21, . . . , ρ2m}X;

(3) V follows the weighted sum ofm independent χ2
n−1 distributions,

∑m
i=1 ρ

2
iχ

2
n−1/(n−

1).

The explicit form of the cumulative distribution function of max1≤l≤L |tl| may be

unknown. But, it suggests a way to generate the random sample from the distribution

as follows.

Step 1: Compute ρ̂2i , for i = 1, 2, . . . , m, from the given data set.

Step 2: For b = 1, . . . ,M ,

Step 2.1 Generate a I-dimensional random vector (Ub1, · · · , UbI)
T from

the multivariate normal distribution with mean vector 0 and variance-

covariance matrix XTdiag{ρ̂21, . . . , ρ̂2m}X.

Step 2.2: Generate m independent χ2
n−1 random variables Vb1, . . . , Vbm.

Step 2.3: Compute t
(b)
l = Ubl√∑m

i=1 Vbiρ̂
2
i /(n−1)

, l = 1, . . . , I.

Step 2.4: Compute max1≤l≤I |t(b)l |.

Step 3: The critical value CEER for controlling EER in the location model at

the given α value is set to be the 1−α/2 upper quantile of {max1≤l≤I |t(b)l |, b =

1, 2, ...,M}.

We give two remarks here. First, we can show that if σ2
i ’s are homogeneous,

max1≤l≤I |tl| follows a studentized maximum modulus distribution with two parame-

ters I and m(n − 1), which is suggested by Wu and Hamada to control the EER in

location model. However, if σ2
i ’s are not homogeneous, max1≤l≤I |tl| no longer follows

this distribution. Our method can be applied to both situations. Second, the com-

putation cost again is very cheap. Our R function in the Appendix only take several

seconds to obtain CEER when M = 10, 000.
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2.2.4 Connection between Wu and Hamada’s method and

Variyath et al.’s method

Both Wu and Hamada’s method and Variyath et al.’s method can be applied to

control the IER in the location model. In this subsection, we present the connection

between these two methods in the following proposition.

Proposition 2.1. For testing H0 : αl = 0, we have

t2l = Fl.

Here Fl is defined in (1.11). Therefore the two methods are equivalent for controlling

the IER.

Proof. Recall that the Jackknife variance estimate of performance measure of inter-

est, c(yi), is given as

V̂ja(c(yi)) =
n− 1

n

n
∑

j=1

(c(yi(j))− c(yi.))
2,

where c(yi.) =
1
n

∑n
j=1 c(yi(j)).

For the location model, we have c(yi) = ȳi,

c(yi(j)) =

∑

k 6=j yik

n− 1
=

∑n
k=1 yik − yij
n− 1

=
nȳi − yij
n− 1

,

and

c(yi.) =
1

n

n
∑

j=1

c(yi(j)) =
1

n

n
∑

j=1

(

nȳi − yij
n− 1

)

= ȳi

Therefore

V̂ja(c(yi)) =
n− 1

n

n
∑

j=1

[

nȳi − yij
n− 1

− ȳi

]2

=
n− 1

n

n
∑

j=1

[

ȳi − yij
n− 1

]2

=

∑n
j=1 [yij − ȳi]

2

(n− 1)n
.
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Thus, the Jackknife variance estimate for c(yi) now becomes

V̂ja(ȳi) =
s2i
n
.

Then, a pooled estimate of c(yi) is

V̂pja(c(y)) =
1

m

m
∑

i=1

V̂ja(c(yi)) =
1

mn

m
∑

i=1

s2i .

Therefore, the F -statistic to test the hypothesis H0 : αl = 0 can be written as

Fl =
MS(α̂l)

1
m

∑m
i=1 V̂ja(ȳi)

=
α̂2
lm

1
mn

∑m
i=1 s

2
i

= t2l . (2.4)

The preceding expression on the right-hand side of (2.4) implies that the F -statistic

proposed by Variyath et al. (2005) for the location model is the same as the square

of t-type statistic of Wu and Hamada (2000, 2009).

Since Wu and Hamada’s method and Variyath et al.’s method are equivalent

for controlling the IER in location model, Variyath et al.’s method shares the same

problem as Wu and Hamada’s method. That is, if σ2
i ’s are not homogeneous, the true

distribution of Fl may not be F -distribution.

2.3 Simulation Study

Here, a simulation study is carried out to compare the performance of the proposed

methods for IER and EER with the three existing methods for both dispersion and

location models.

2.3.1 Simulation Results in Dispersion Model

Results for IER
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We compare the performance of our new method, Wu and Hamada’s method,

Variyath et al.’s method, and Lenth’s method for controlling IER in the dispersion

model.

In the simulation, we considered 23 and 24 factorial experiments. For a 23 ex-

periment with three two-level factors A, B and C, we generate the data using the

models

yij ∼ N (0, exp(0.35A+ 0.3C + 0.3AC))

and

yij ∼ N(0, exp(0.35A+ 0.3C + 0.3BC))

where A, C, AC and BC take values ±1 depending on the combination of factors

levels. Since the mean of the response does not affect the procedures mentioned above,

it is set to be 0 for each run. Then, we test the significance of the I = 23 − 1 = 7

factorial effects of interest at 5% level based on the above mentioned procedures. For

l = 1, . . . , I, the percentage of rejecting the null hypothesis H0 : γl = 0 at the 5%

level by each method is calculated based on N = 20, 000 repetitions. The results are

summarized in Tables 2.2 and 2.3.

For a 24 factorial experiments with four two-level factors A, B, C, and D, we used

the models

yij ∼ N(0, exp(0.3A+ 0.3B + 0.3C + 0.25AC))

and

yij ∼ N(0, exp(0.3A+ 0.3B + 0.3C + 0.25AD))

where A, B, C, AC and AD take values ±1 depending on the combination of factors

levels. We test the significance of each of I = 24−1 = 15 effects at 5% level based on

all the four methods. The simulation is also repeated for N = 20, 000 times. Then,

the percentage of each factorial effect being declared significant at 5% level is recorded
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Table 2.2: Percentage of rejecting the null hypothesis H0 : γl = 0 at the 5% level for
model: yij ∼ N (0, exp(0.35A+ 0.3C + 0.3AC)) in replicated 23 experiments

Effects n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
Wu and Hamada’s method Our method

A 50.6 65.7 77.6 85.9 33.5 53.8 70.2 81.2
B 12.7 9.5 8.1 7.5 5.3 5.0 4.9 5.1
C 42.2 54.1 65.2 74.8 25.8 41.6 56.6 68.6
AB 13.0 9.8 8.3 7.7 5.4 5.2 4.8 5.0
AC 41.3 54.8 65.2 74.8 25.5 42.3 56.2 68.3
BC 12.5 9.7 8.3 8.0 5.4 5.1 5.1 5.4
ABC 12.4 10.2 8.3 7.8 5.3 5.4 5.0 5.3

Lenth’s method Variyath et al.’s method
A 16.5 21.3 25.3 29.6 33.3 52.0 67.8 78.5
B 1.9 1.1 0.6 0.5 6.5 7.3 6.7 6.3
C 12.3 15.3 18.1 21.9 26.6 41.4 55.1 66.8
AB 2.0 0.9 0.7 0.4 6.7 7.0 6.6 6.7
AC 12.0 15.2 18.1 21.6 26.2 41.5 55.2 66.4
BC 2.0 1.0 0.7 0.5 6.7 6.9 7.0 6.6
ABC 2.0 1.2 0.6 0.5 6.6 7.1 6.9 6.8

Table 2.3: Percentage of rejecting the null hypothesis H0 : γl = 0 at the 5% level for
model: yij ∼ N(0, exp(0.35A+ 0.3C + 0.3BC)) in replicated 23 experiments

Effects n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
Wu and Hamada’s method Our method

A 51.2 65.4 77.8 85.8 33.7 53.5 70.0 80.8
B 12.7 9.8 8.3 7.8 5.3 5.1 4.9 5.1
C 41.9 53.9 65.7 74.6 25.6 41.5 56.6 67.9
AB 12.2 9.7 8.5 7.6 5.1 5.2 5.0 5.1
AC 12.4 9.5 8.6 8.2 5.4 5.1 5.1 5.2
BC 42.2 54.0 65.5 74.0 25.7 41.8 56.4 67.4
ABC 12.7 9.8 8.3 7.6 5.4 5.1 5.1 5.0

Lenth’s method Variyath et al.’s method
A 16.4 20.7 25.5 29.5 33.1 52.1 67.7 78.9
B 2.3 1.3 0.8 0.6 7.0 7.0 6.9 7.0
C 11.9 14.7 18.6 21.6 26.4 42.0 54.3 67.1
AB 1.9 1.1 0.7 0.4 6.7 7.1 6.9 6.9
AC 2.3 1.3 0.8 0.6 6.8 6.7 6.9 6.9
BC 11.9 15.0 18.5 21.5 26.4 41.6 55.4 66.9
ABC 2.2 1.4 0.8 0.5 7.0 7.0 6.9 6.7
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in Tables 2.4 and 2.5.

From Tables 2.2, 2.3, 2.4 and 2.5, the simulated IERs for the factorial effects not

in the models are quite close to the 5% nominal level by our new method. Wu and

Hamada’s method inflates the IER especially for small n. It becomes better as n

increases. Lenth’s method is quite conservative for controlling IER whether n is large

or small. Variyath et al.’s method is also liberal for controlling IER. The performance

is the same for all the n’s we considered.

We emphasize that the z-type statistics are the same for our method and Wu

and Hamada’s method. The difference between the two methods are the suggested

distributions for the z-type statistics. Therefore the simulation results above suggest

that our suggested distribution is more accurate than the one suggested by Wu and

Hamada.

Results for EER

Here, we also compare the performance of our new method, Wu and Hamada’s

method, and Lenth’s method for controlling EER in the dispersion model. Since

Variyath et al. (2005) does not have a procedure for controlling EER, then it is not

included in the comparison.

In the simulation, we considered 23 and 24 factorial experiments. For each exper-

iment, the model under the null hypothesis H0 : γ1 = . . . = γI = 0 is

yij ∼ N(0, 1).

We set the mean of response to be 0 since it does not affect the above mentioned

three methods. For each experiment, we are interested in I = m − 1 experiments.

For example, for the 23 experiment, we are interested in I = 23 − 1 = 7 effects.

The simulated EER at the 5% level in the dispersion model is calculated based

on N = 20, 000 repetitions. The results are presented in Table 2.6.
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Table 2.4: Percentage of rejecting the null hypothesis H0 : γl = 0 at the 5% level for
model: yij ∼ N(0, exp(0.3A+ 0.3B + 0.3C + 0.25AC)) in replicated 24 experiments

Effects n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
Wu and Hamada’s method Our method

A 63.8 79.7 89.6 95.0 46.4 70.3 85.0 92.7
B 63.5 80.0 89.6 95.2 46.4 70.3 85.1 93.0
C 63.8 80.2 89.9 95.1 46.2 70.7 85.2 93.0
D 12.8 9.7 8.6 7.5 5.0 4.9 5.1 5.0
AB 12.2 9.9 8.5 7.8 5.0 5.1 5.1 5.2
AC 51.6 66.1 77.3 86.0 34.6 54.2 69.7 81.6
AD 12.3 9.7 8.5 7.4 5.1 5.2 5.1 5.0
BC 12.6 9.4 8.5 7.9 5.1 5.0 5.3 5.2
BD 12.3 9.6 8.3 7.7 4.9 4.9 5.0 4.9
CD 12.3 9.7 8.4 7.8 4.8 5.1 4.9 5.2
ABC 12.2 9.7 8.3 7.5 5.0 5.0 5.1 5.0
ABD 12.7 9.8 8.4 7.8 5.1 5.1 5.1 5.0
ACD 12.8 10.2 8.5 7.8 5.4 5.4 5.2 5.1
BCD 12.5 9.5 8.4 7.7 5.0 5.0 5.2 4.9
ABCD 13.1 9.7 8.3 7.3 5.4 5.0 5.1 4.8

Lenth’s method Variyath et al.’s method
A 23.4 37.3 50.3 63.1 46.0 68.0 83.6 92.1
B 23.7 37.4 50.2 63.1 45.8 68.0 83.1 92.4
C 23.4 37.5 50.5 62.5 45.2 68.2 83.7 92.2
D 1.7 1.5 1.8 2.1 6.2 6.2 5.9 6.2
AB 1.6 1.7 1.7 2.0 6.2 6.5 6.1 5.9
AC 16.1 25.9 36.8 49.1 34.1 53.5 69.3 80.4
AD 1.6 1.6 1.7 2.2 6.2 6.1 6.1 6.0
BC 1.7 1.5 1.9 2.3 6.1 6.3 5.7 6.0
BD 1.7 1.5 1.7 1.8 6.4 6.4 5.9 5.8
CD 1.7 1.7 1.7 2.2 6.0 6.5 5.8 5.9
ABC 1.6 1.6 1.6 2.1 6.1 6.4 6.3 5.8
ABD 1.7 1.6 1.8 2.3 6.2 6.2 6.1 5.9
ACD 1.8 1.7 1.8 2.1 6.1 6.1 6.3 6.2
BCD 1.7 1.6 1.6 1.9 6.2 6.1 6.2 6.0
ABCD 1.9 1.6 1.8 2.1 6.1 6.2 6.1 6.0
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Table 2.5: Percentage of rejecting the null hypothesis H0 : γl = 0 at the 5% level for
model: yij ∼ N(0, exp(0.3A+ 0.3B + 0.3C + 0.25AD)) in replicated 24 experiments

Effects n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
Wu and Hamada’s method Our method

A 63.2 80.1 89.5 95.0 46.0 70.5 84.5 92.8
B 63.6 79.8 89.7 95.3 46.2 70.3 84.7 93.0
C 63.6 79.5 89.9 95.1 46.2 69.7 85.4 92.9
D 12.8 9.6 8.5 7.7 5.3 5.0 5.3 4.9
AB 12.3 9.8 8.3 7.6 5.2 5.0 5.1 5.0
AC 12.5 9.8 8.4 7.3 5.1 5.1 5.0 4.8
AD 51.2 65.8 78.1 86.0 33.8 54.3 70.7 81.3
BC 12.8 9.5 8.1 7.8 5.4 4.8 4.7 5.1
BD 12.0 9.9 8.5 7.7 4.9 5.2 4.9 5.2
CD 12.7 9.7 8.3 7.5 5.1 5.2 5.1 5.0
ABC 12.7 9.8 8.6 7.7 5.0 5.1 5.2 5.0
ABD 12.6 9.7 8.4 7.8 5.4 5.1 5.1 5.2
ACD 12.0 10.0 8.6 7.9 4.8 5.3 5.1 5.2
BCD 12.8 10.0 8.3 7.8 5.4 5.3 5.0 5.1
ABCD 12.6 9.9 8.3 7.7 5.1 5.2 5.0 5.2

Lenth’s method Variyath et al.’s method
A 23.7 36.8 50.8 62.7 45.9 67.9 83.2 91.9
B 23.5 36.8 50.9 62.8 45.7 68.6 83.6 91.7
C 24.0 37.1 50.8 62.8 45.4 67.5 83.6 91.7
D 1.7 1.6 1.8 2.1 6.1 6.3 6.0 6.1
AB 1.9 1.6 1.9 2.0 6.0 6.1 5.9 6.0
AC 1.7 1.5 1.7 2.1 6.3 6.3 6.2 5.9
AD 16.4 25.7 37.2 48.6 33.1 53.6 68.9 80.9
BC 1.8 1.7 1.6 2.0 6.1 6.0 5.9 5.9
BD 1.7 1.6 1.7 2.1 6.2 6.2 6.0 5.8
CD 1.8 1.5 1.7 2.1 6.2 6.2 6.2 6.1
ABC 1.7 1.7 1.7 2.0 6.0 6.1 6.0 5.7
ABD 1.7 1.6 1.7 2.0 6.3 6.1 6.1 6.2
ACD 1.7 1.8 1.8 2.2 6.0 6.1 6.1 5.9
BCD 1.9 1.6 1.8 1.9 6.3 6.2 5.8 5.9
ABCD 1.8 1.6 1.8 2.1 6.1 6.3 6.0 5.9

Table 2.6: Percentage of rejecting the null hypothesis H0 : γ1 = . . . = γI = 0 at the
5% level for model: yij ∼ N(0, 1) in replicated 23 and 24 factorial experiments

I n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
Wu and Hamada’s method Our method Lenth’s method

7 0.216 0.149 0.119 0.109 0.055 0.054 0.054 0.054 0.045 0.045 0.047 0.048
15 0.264 0.175 0.140 0.119 0.055 0.054 0.053 0.051 0.043 0.045 0.043 0.043
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From Table 2.6, it is observed that the values for the EER based on our new

method are around 0.05 (5%). This is an evidence that our proposed method can

accurately control the EER in the dispersion model. The method suggested by Wu

and Hamada gives results that are far more than the 5% nominal level. Therefore

Wu and Hamada’s method can not tightly control the EER in the dispersion model.

The EER based on the Lenth’s method is quite close to the nominal level. Therefore

Lenth’s method can also tightly control the EER.

2.3.2 Simulation Results in Location Model

Results for IER

As we discussed in Section 2.2.4, Wu and Hamada’s method and Variyath et al.’s

method are equivalent for controlling IER in the location model. Therefore, we only

compare the performance of our new method, Wu and Hamada’s method, and Lenth’s

method for controlling IER in the location model. We consider two cases: σ2
i ’s are

homogeneous and σ2
i ’s are not homogeneous.

Case I: σ2
i ’s are homogeneous

In this case, we performed simulations for 23 and 24 factorial experiments. For

the 23 experiment with three two-level factors A, B, and C, we used the model

yij ∼ N(10 + 0.5A+ 0.5B + 0.4AB, 1)

where A, B and AB take values ±1 depending on the combination of factors levels.

For the 24 experiment with four two-level factors A, B, C and D, we used the model

yij ∼ N(5 + 0.3A+ 0.3B + 0.3D + 0.25BD, 1)

where A, B, D and BD take values ±1 depending on the combination of factors

levels. Then, we test the significance of the factorial effects of interest for each model
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at 5% level based on the aforementioned methods. The simulation is repeated for

N = 20, 000 times for each model. We compute the percentage of rejecting the null

hypothesis H0 : αl = 0, l = 1, . . . , I. The results are summarized in Tables 2.7 and

2.8.

From the simulated results in Tables 2.7 and 2.8, it is seen that both our proposed

method and Wu and Hamada’s method can tightly control IER at the 5% nominal

level when the σ2
i ’s are homogeneous. However, Lenth’s method can not tightly

control the IER. In terms of the power, our method almost has the same power as

Wu and Hamada’s method in all the situations except for the 23 experiment with

n = 3. In that situation, our method is a little bit less powerful.

Table 2.7: Percentage of rejecting the null hypothesis H0 : αl = 0 at the 5% level for
model: yij ∼ N(10 + 0.5A+ 0.5B + 0.4AB, 1) in replicated 23 experiments

Effects n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
Our method Wu and Hamada’s method Lenth’s method

A 58.7 75.8 86.0 92.7 63.3 77.0 86.4 92.1 22.9 27.5 33.1 37.4
B 58.8 76.6 85.8 92.3 64.3 77.8 86.0 92.0 23.7 28.3 33.1 37.6
C 4.5 4.6 4.7 5.3 5.2 5.1 4.8 5.3 0.7 0.5 0.4 0.5
AB 41.3 57.0 68.4 77.3 45.1 57.8 69.0 77.8 13.9 17.6 21.4 25.2
AC 4.6 4.8 5.0 5.4 5.0 5.0 4.9 4.8 0.8 0.5 0.5 0.4
BC 4.3 4.8 4.5 5.4 4.7 4.9 5.0 5.1 0.6 0.5 0.5 0.4
ABC 4.7 4.5 4.7 4.9 5.1 4.9 4.9 4.7 0.6 0.6 0.4 0.4

Case II: σ2
i ’s are not homogeneous

In this case, we used the models

yij ∼ N(10 + A+B + 0.5AB, exp(A+ C + 0.5AC))

and

yij ∼ N(5 + 0.65A+ 0.65B + 0.45AB, exp(A+ C + 0.5AC))

for the 23 factorial experiment with three two-level factors A, B, and C. For the 24
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Table 2.8: Percentage of rejecting the null hypothesis H0 : αl = 0 at the 5% level for
model: yij ∼ N(5 + 0.3A+ 0.3B + 0.3D + 0.25BD, 1) in replicated 24 experiments

Effects n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
Our method Wu and Hamada’s method Lenth’s method

A 51.2 63.8 74.1 81.7 52.6 65.2 75.2 82.8 26.2 33.0 40.7 48.1
B 49.6 63.4 73.6 81.2 51.3 64.9 74.8 82.9 26.5 32.1 41.4 47.4
C 4.8 4.6 4.5 4.5 5.1 5.0 4.8 4.7 1.9 1.6 1.7 1.8
D 51.0 63.6 74.2 81.9 52.6 65.3 75.2 83.4 25.5 32.8 41.1 47.0
AB 4.6 4.5 4.4 4.4 5.0 4.8 4.8 5.0 1.7 1.8 1.7 2.0
AC 4.8 4.6 4.5 4.5 5.2 5.0 4.7 5.0 1.8 1.7 1.7 1.8
AD 4.5 4.5 4.6 4.5 4.9 5.1 5.0 4.8 1.8 1.6 1.8 1.8
BC 4.8 4.6 5.1 4.7 5.1 5.1 5.4 4.9 1.7 1.6 1.7 1.7
BD 37.7 47.9 58.3 65.8 39.1 49.6 59.4 67.5 18.7 22.5 28.7 34.2
CD 4.5 4.8 4.5 4.5 4.8 5.2 4.9 5.1 1.6 1.7 2.0 1.7
ABC 5.0 4.5 4.6 4.5 5.4 4.9 4.9 5.1 1.9 1.7 1.7 1.9
ABD 4.6 4.5 4.5 4.4 4.8 4.9 4.6 4.5 1.7 1.5 1.7 1.7
ACD 4.6 4.6 4.5 4.6 4.6 4.9 4.7 5.1 1.8 1.8 1.5 1.8
BCD 4.6 4.7 4.8 4.5 5.1 5.1 5.3 4.4 1.7 1.6 1.8 1.6
ABCD 4.7 4.5 4.7 5.0 5.1 4.8 4.9 4.8 2.1 1.7 1.7 1.8

experiment with four two-level factors A, B, C and D, we used the models

yij ∼ N(10 + 0.5A+ 0.45B + 0.5D + 0.4AD, exp(A +B +D + 0.5AD))

and

yij ∼ N(5 + 0.75A+ 0.65B + 0.55C + 0.5AD, exp(A+B + C + 0.5BD)).

Also, we test the significance of the I factorial effects of interest at the 5% level based

on the above mentioned methods. For l = 1, . . . , I, the percentage of rejecting the

null hypothesis H0 : αl = 0 at the 5% level by each method is calculated based on

N = 20, 000 repetitions. The results are summarized in Tables 2.9, 2.10, 2.11 and

2.12 respectively.

From the simulated results in Tables 2.9, 2.10, 2.11 and 2.12, only our proposed

method can tightly control the IER for all the models. These results support our
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argument that the t-distribution with degrees of freedom m(n− 1) suggested by Wu

and Hamada may not be true and fail to control IER when σ2
i ’s are not the same.

Again, Lenth’s method can not accurately control the IER in the location model.

Table 2.9: Percentage of rejecting the null hypothesis H0 : αl = 0 at the 5% level for
model: yij ∼ N(10+A+B+0.5AB, exp(A+C+0.5AC)) in replicated 23 experiment

Effects n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
Our method Wu and Hamada’s method Lenth’s method

A 57.5 74.3 86.6 93.1 71.0 82.3 90.5 94.8 31.2 38.6 44.4 49.9
B 57.0 74.1 87.0 93.3 71.3 82.2 90.3 94.9 27.2 35.1 41.4 47.4
C 4.7 4.6 5.2 5.3 8.3 7.4 7.1 7.0 0.2 0.3 0.2 0.3
AB 18.3 24.6 33.8 41.6 28.5 33.3 40.6 46.2 9.8 12.4 16.3 20.1
AC 4.5 4.6 5.1 5.3 8.5 7.4 7.0 6.9 0.3 0.2 0.2 0.3
BC 4.6 4.5 5.3 5.2 8.2 7.1 7.4 6.9 0.5 0.4 0.3 0.4
ABC 4.7 4.6 5.1 5.0 8.5 6.6 7.0 6.4 0.5 0.4 0.4 0.4

Table 2.10: Percentage of rejecting the null hypothesis H0 : αl = 0 at the 5% level
for model: yij ∼ N(5 + 0.65A+ 0.65B + 0.45AB, exp(A+ C + 0.5AC)) in replicated
23 experiment
Effects n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6

Our method Wu and Hamada’s method Lenth’s method
A 28.6 40.4 51.1 60.0 41.2 50.6 58.5 66.0 15.2 17.4 20.8 24.6
B 28.1 40.0 51.2 59.9 40.2 50.0 59.2 65.7 10.6 13.8 16.6 20.8
C 5.0 5.2 5.0 5.0 8.1 7.6 7.0 6.4 0.3 0.3 0.2 0.3
AB 16.5 21.8 28.3 33.4 24.8 28.7 34.4 38.9 5.1 7.0 9.0 12.0
AC 5.0 5.2 5.3 5.0 8.0 7.6 7.1 6.3 0.4 0.3 0.2 0.2
BC 5.3 5.1 4.7 5.2 8.6 7.6 6.9 6.5 1.5 1.1 0.9 0.8
ABC 5.4 4.9 4.8 4.8 8.6 7.3 6.8 6.5 1.4 1.0 0.9 0.8

Results for EER

We compare the performance of our proposed method, Wu and Hamada’s method,

and Lenth’s method for controlling the EER in the location model. We still consider

two cases: σ2
i ’s are homogeneous and σ2

i ’s are not homogeneous.

Case I: σ2
i ’s are homogeneous

Here, we considered 23 and 24 factorial experiments. We used the model

yij ∼ N(0, 1)
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Table 2.11: Percentage of rejecting the null hypothesis H0 : αl = 0 at the 5% level
for model: yij ∼ N(10 + 0.5A+0.45B +0.5D+0.4AD, exp(A+B +D+0.5AD)) in
replicated 24 experiment
Effects n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6

Our method Wu and Hamada’s method Lenth’s method
A 25.7 34.3 43.3 51.2 35.1 42.1 49.9 56.5 18.4 22.7 27.3 31.4
B 21.6 29.4 36.8 44.2 30.5 36.7 43.4 49.1 16.3 21.0 25.1 29.0
C 5.0 5.5 5.0 5.1 7.7 7.7 6.6 6.5 0.5 0.4 0.5 0.6
D 25.7 34.3 43.0 51.2 35.5 42.3 49.8 56.5 18.5 23.2 27.0 31.4
AB 5.1 5.2 5.2 4.9 8.0 7.5 7.0 6.2 0.5 0.5 0.4 0.6
AC 5.1 5.3 5.2 5.2 7.8 7.5 7.0 6.5 0.6 0.4 0.5 0.6
AD 18.6 24.3 29.9 36.2 26.1 30.9 35.7 41.0 13.5 16.8 19.9 22.7
BC 4.9 5.6 5.1 5.0 8.0 7.8 6.7 6.4 0.6 0.6 0.5 0.4
BD 4.9 4.9 5.1 5.1 8.0 7.4 6.8 6.4 0.6 0.7 0.5 0.4
CD 4.9 5.2 4.9 5.4 7.9 7.4 6.6 6.8 0.5 0.5 0.5 0.5
ABC 5.2 5.5 5.4 4.9 8.4 7.4 7.1 6.3 0.5 0.5 0.5 0.5
ABD 5.0 5.1 5.1 5.0 8.0 7.6 6.8 6.2 0.7 0.5 0.5 0.5
ACD 5.2 5.2 5.1 5.3 8.5 7.4 6.8 6.9 0.7 0.5 0.5 0.4
BCD 5.1 5.4 4.8 5.1 8.1 7.6 6.7 6.3 0.7 0.5 0.5 0.5
ABCD 5.1 5.3 5.1 5.0 7.9 7.6 6.9 6.4 0.7 0.5 0.5 0.5

Table 2.12: Percentage of rejecting the null hypothesis H0 : αl = 0 at the 5% level
for model: yij ∼ N(5 + 0.75A+ 0.65B + 0.55C + 0.5AD, exp(A +B + C + 0.5BD))
in replicated 24 experiment
Effects n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6

Our method Wu and Hamada’s method Lenth’s method
A 59.1 75.9 85.9 91.6 70.7 82.1 89.4 93.8 42.1 51.6 59.5 65.1
B 48.4 62.7 75.4 83.5 59.3 70.2 80.4 86.7 32.7 42.2 50.5 56.3
C 36.9 49.9 61.2 70.7 47.5 57.1 67.3 75.0 24.9 33.2 41.2 46.8
D 5.2 5.1 4.9 5.3 7.7 6.8 6.2 6.4 1.0 1.1 1.1 1.3
AB 5.1 4.9 4.9 5.2 7.4 6.2 6.2 6.4 2.3 1.8 2.1 2.1
AC 4.8 5.1 5.1 5.5 6.9 6.9 6.5 6.6 1.7 1.7 1.9 2.1
AD 31.4 43.0 52.9 61.6 40.4 50.2 59.0 66.1 20.5 28.9 34.8 40.6
BC 5.2 5.3 4.7 5.2 7.8 6.8 6.0 6.3 1.7 1.7 2.0 1.7
BD 5.0 5.0 5.2 5.5 7.6 6.7 6.3 6.7 0.6 0.9 0.9 1.0
CD 5.0 5.2 5.0 5.3 7.5 6.8 6.3 6.2 0.5 0.6 0.7 0.8
ABC 5.2 5.0 5.0 5.2 7.5 6.6 6.4 6.7 1.1 1.0 1.4 1.1
ABD 5.0 5.2 4.9 5.4 7.3 7.0 6.4 6.5 0.8 1.1 1.1 1.2
ACD 4.8 4.9 5.0 5.0 7.4 6.5 6.4 6.2 1.0 1.0 1.0 1.1
BCD 5.2 5.1 5.3 5.4 7.6 6.9 6.6 6.7 0.6 0.7 0.7 0.8
ABCD 5.1 5.3 5.2 5.4 7.3 7.4 6.7 6.7 0.5 0.7 0.7 0.9
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for the simulations for both factorial experiments. The simulated EER at the 5%

level by each method is calculated based on N = 20, 000 repetitions. The results

are shown in Table 2.13. As we can see from this table, all the three methods can

accurately control the EER at the 5% level.

Table 2.13: Percentage of rejecting the null hypothesis H0 : α1 = . . . = αI = 0 at the
5% level for model: yij ∼ N(0, 1) in replicated 23 and 24 experiments

I n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
Our method Wu and Hamada’s method Lenth’s method

7 0.045 0.046 0.046 0.048 0.053 0.051 0.044 0.049 0.053 0.050 0.051 0.050
15 0.046 0.045 0.047 0.051 0.049 0.048 0.045 0.054 0.049 0.050 0.052 0.050

Case II: σ2
i ’s are not homogeneous

Here, we used the models

yij ∼ N(0, exp(A+ C + 0.5AC))

and

yij ∼ N(0, exp(A+ C +D + 0.5CD))

for the 23 and 24 factorial experiments respectively. The simulation is repeated for

20,000 times and the EER is computed using the above procedures. The results are

summarized in Table 2.14.

From Table 2.14, it is seen that only our proposed method controls the EER at

5% nominal level. The results given by Wu and Hamada’s method are too liberal

while those of Lenth’s method are conservative. Again, these results also support

our argument that the studentized maximum modulus distribution with parameters

I and m(n − 1) suggested by Wu and Hamada may not be true and fail to control

the EER when σ2
i ’s are not homogeneous.
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Table 2.14: Percentage of rejecting the null hypothesis H0 : α1 = . . . = αI = 0 at the
5% level for model: yij ∼ N(0, exp(A+C+0.5AC)) and yij ∼ N(0, exp(A+C+D+
0.5CD)) in replicated 23 and 24 experiments respectively

I n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
Our method Wu and Hamada’s method Lenth’s method

7 0.054 0.052 0.052 0.049 0.087 0.068 0.066 0.063 0.030 0.027 0.030 0.030
15 0.052 0.050 0.049 0.049 0.081 0.066 0.063 0.060 0.023 0.023 0.025 0.026

2.4 Application To Real Examples

In this Section, we illustrate the above methods by two real data sets given in Ex-

amples 1.1 and 1.2 above. In each set, we examine the performance of the proposed

methods.

2.4.1 Example 1.1

Traditionally, half-normal plots developed by Daniel (1959, 1976) are used to identify

the active effects in factorial experiments. We first consider the data set of Example

1.1. The half-normal plot for the interested 15 effects in the dispersion model is shown

in Figure 2.1. Clearly, effect A is significant, and probably BC, AC, ABD and AB

are also significant for the dispersion model.

If we control the IER of each effect in the dispersion model to be 5%, Wu and

Hamada’s method declared that effects A, AC, BC and ABD are found significant;

both our method and Variyath et al.’s method claimed that effects A and BC are

significant; Lenth’s method found that only effect A is significant. If we control the

EER in the dispersion model to be 5%, both the Wu and Hamada and our method

declared that only effect A is significant, while Lenth’s method declared that no effect

is significant for the dispersion model.

For the location model, the half-normal plot of 15 interested effects as shown in

Figure 2.2 declared effect A and probably B and AB as significant. If we control the

IER of each effect in the location model to be 5% we found that effects A and B
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are declared significant by the Wu and Hamada and our methods while no effect is

declared significant by the Lenth’s method. If we control the EER in the location

model to be 5%, both our method and Wu and Hamada’s method found that only

effect A is significant, again Lenth’s method does not identify any significant effect.

Figure 2.1: Half-Normal Plot for the interested 15 effects in the dispersion model,
Example 1.1.
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2.4.2 Example 1.2

Figure 2.3 gives the half-normal plot of the interested seven effects in the dispersion

model. It is quite hard to tell which effects are significant from the plot. If we control

the IER for each effect at 5% in the dispersion model, we found out that effects C and

AF are declared significant by Wu and Hamada and Variyath et al. methods, while

no effect is declared significant by our proposed method and Lenth’s method. If we

control the EER for the dispersion model to be 5%, effect C is declared significant

by the Wu and Hamada’s method. Again, no effect is found significant by both our

method and Lenth’s method.

For the location model, the half-normal plot as shown in Figure 2.4, declared
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Figure 2.2: Half-Normal Plot for the interested 15 effects in the location model,
Example 1.1.
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effects D and F as significant. If we control the IER for each effect in the location

model to be 5%, Wu and Hamada’s method declared effects A, D and F as significant.

Effects D and F are declared significant by our method and no effect is declared

significant by Lenth’s method. If we control the EER to be 5% in the location model,

effects D and F are are declared significant by Wu and Hamada’s method. Effect D is

found significant by our method and no effect is found significant by Lenth’s method.
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Figure 2.3: Half-Normal Plot for the interested 7 effects in the dispersion model,
Example 1.2.
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Figure 2.4: Half-Normal Plot for the interested 7 effects in the location model, Ex-
ample 1.2.
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Chapter 3

Controlling the FDR in Location

and Dispersion models

3.1 False Discovery Rate

False discovery rate (FDR) was first introduced by Benjamini and Hochberg (1995,

hereinafter BH) as an error rate to control in many multiple hypotheses testing prob-

lems. It provides an alternative for the EER. Since then, this error rate has been given

much attention by various researchers in different settings (Weller et al., 1998; Troen-

dle, 1999; Benjamini and Hochberg, 2000; Benjamini and Yekutieli, 2001; Efron et al.,

2001; Mosig et al., 2001; Genovese and Wasserman, 2002a, b; Storey, 2002; Sarkar,

2002; Storey and Tibshirani, 2003a, b; Benjamini, Krieger and Yekutieli, 2006; Kimel

et al., 2008; and others). Kimel, Benjamini and Steinberg (2008) first applied this

error rate in two-level unreplicated regular factorial experiments.

Suppose we are interested in testing simultaneously I null hypotheses of interest.

Suppose that m0 of these hypotheses are true and m1 = (I −m0) are false. Let V

be the number of false discoveries and R be the total number of discoveries. BH

(1995) defined FDR as the expected proportion of false discoveries among the total
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discoveries. That is

FDR = E

(

V

R

)

if R > 0.

When R = 0, they defined the FDR to be 0, since no error of false discovery can be

committed.

The following two important properties about FDR were shown by BH (1995):

(a) If all the null hypotheses are true, then the FDR is equivalent to the EER.

(b) When m0 < I, the FDR is less than or equal to EER. This implies that

any procedure that controls the EER also controls the FDR as well at the same

nominal level but the converse is not true.

3.1.1 Benjamini and Hochberg’s Procedure for controlling

the FDR

Suppose we are interested in I factorial effects. We use Pl to denote the P -value of

the test statistic for the lth hypothesis, l = 1, . . . , I. Let P(1) ≤ P(2) ≤ . . . ≤ P(I) be

the ordered observed P -values. For the given q value, let

h = max

{

l : P(l) ≤
l

I
q

}

,

then we declare the h largest effects active or significant.

We call the above procedure BH procedure. When the test statistics are inde-

pendent, BH (1995) showed that the foregoing procedure controls the FDR at level

(m0/I)q. Benjamini and Yekutieli (2001) later proved that the preceding procedure

also controls the FDR at a level less than or equal to q for positively dependent test

statistics.
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3.1.2 Adaptive Procedure for controlling FDR

Recall that the Benjamini and Hochberg (1995) FDR procedure controls the FDR at

the desired level q for independent and positively dependent test statistics. When all

the null hypotheses are true, and the test statistics are independent and continuous,

the bound is sharp (Bejamini et al., 2006). When some of the null hypotheses are not

true (that is, when m0 < I), the BH procedure becomes conservative by a factor of

m0/I (Benjamini and Hochberg, 2000). To remedy this conservativeness, Benjamini

and Hochberg (2000) suggested an adaptive version of Benjamini and Hochberg (1995)

procedure that controls FDR by first estimating m0. The estimate is then used to

adjust the BH procedure to control the FDR at precisely the desired level q. Since

then, the problem of estimating m0 has received wide attention (Efron et al., 2001;

Mosig et al., 2001; Storey, 2002, 2003; Black, 2004; Storey et al., 2004; Benjamini,

Krieger and Yekutieli, 2006; and others). Of all the aforementioned methods for

estimating m0, Benjamini and Hochberg (2000)’s adaptive FDR control procedure is

found most effective for analyzing factorial experiments (Kimel et al., 2008). The

following is the adaptive procedure for controlling FDR. We call this procedure ABH

procedure.

The ABH FDR Controlling Procedure

1. Use the BH procedure described in Section 3.1 at level q. If no significant effect

is found, then stop; otherwise, proceed.

2. Calculate the slopes Sl =
(1−P(l))

(I+1−l)
, which is the l-th slope estimate of the line

passing through the points (I+1, 1) and (l, P(l)) on the quantile plot of the

P -values.

3. Starting with l = 1, proceed as long as Sl ≥ Sl−1. When for the first time

Sl < Sl−1, stop.
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4. Set m̂0 = min([1/Sl+1], I). Here [x] is the largest integer which is smaller than

or equal to x.

5. Use the BH procedure described in Section 3.1 again at level q(I/m̂0).

Remark 3.1. Here are some remarks about Steps 2, 3, and 4. In Step 2, we compute

the slopes Sl’s since they contain the information for estimating m0. If all the null

hypotheses are true, that is m0 = I, and the test statistics are independent, P(l)’s can

be considered as a realization of ordered sample from the uniform distribution over the

interval [0,1]. The expected value of the l-th P -value is E(P(l)) = l/(m0+1). A plot of

P(l) against l should therefore indicate a straight line with the slope 1/(m0+1) passing

through the origin and the point (I+1, 1). When m0 < I, the P -values corresponding

to the alternative hypotheses tend to be smaller than the P -values corresponding to the

null hypotheses, so they concentrate on the left-hand side of the plot. The relationship

over the right-hand side of the plot should be approximately linear with slope 1/(m0+

1). Therefore the slopes Sl’s for large l contain the useful information for estimating

m0.

The condition Sl ≥ Sl−1 in Step 3 is equivalent to

(P(l) − P(l−1))/(1− P(l−1)) ≤ 1/(I + 1− (l − 1)).

The value 1/(I + 1− (l − 1)) is the expected value of the normalized gap on the left-

hand side under the assumption that all P -values greater or equal to P(l−1) correspond

to true null hypotheses. Therefore the stopping rule is equivalent to dropping a small

P -value if its gap to its larger neighborhood is smaller than its expected value.

The estimate of m0 in Step 4 is called the lowest slope estimate of m0. This is the

most satisfactory estimate found by Benjamini and Hochberg (2000). See Benjamini

and Hochberg (2000) for more details.
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3.2 FDR in Replicated Regular Two-Level Exper-

iments

As we can see in the last section, finding the P -values of the test statistic for testing a

given null hypothesis for each method is the first step before using the BH and ABH

procedures to control the FDR. In the following subsections, we present how to obtain

the P -value of the test statistic for the existing and the proposed methods. For each

method, once the I P -values are obtained in the location model or dispersion model,

the BH and ABH procedures can be applied to control the FDR.

3.2.1 Wu and Hamada’s Methods

Recall that for the dispersion model, Wu and Hamada constructed a z-type statistic

zl =
γ̂l

√

2
m(n−1)

to test the hypothesis H0 : γl = 0. They used N(0, 1) distribution to approximate

the distribution of the z-type test statistic under the null hypothesis. Therefore the

P -values of the z-type test statistic can be calculated as

Pl = Pr(|N(0, 1)| > observed |zl|).

For the location model, the t-type test statistic

tl =
α̂l

√

1
m2n

∑m
i=1 s

2
i

is used to test the hypothesis H0 : αl = 0. The P -value of the t-type statistic can be
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calculated based on the tm(n−1) distribution as

Pl = Pr(|tm(n−1)| > observed |tl|).

3.2.2 Variyath et al.’s Method

Variyath et al. (2005) argued that the F statistic, Fl, follows the F1,m(n−1) distribu-

tion. Therefore, the P -value of the F statistic, Fl, can be calculated as

Pl = Pr(F1,m(n−1) > observed Fl).

3.2.3 Lenth’s Method

Here, we adopt the method proposed by Edwards and Mee (2008) to compute the

P -value for Lenth’s test statistic. Their method is the same for both the dispersion

and location models. To describe their method for the dispersion model, we have

adopted some notations used in their paper. Suppose γ̂1, . . . , γ̂I are the least square

estimates for factorial effects (γ1, . . . , γI) of interest in dispersion model. In order to

handle the cases where the diagonal elements of Var(γ̂) = Var(γ̂1, . . . , γ̂I)
T are not

equal, they standardized the estimated factorial effects of interest as

cl =
γ̂l√
υll

, (3.1)

where υll is the diagonal element of V = (XTX)−1 corresponding to γ̂l. Here, X is

the matrix corresponding to the columns of the I factorial effects of interest only.

Therefore, for a given set of least square estimates γ̂1, . . . , γ̂I , they compute the P -

values for the Lenth t-type statistic through Monte Carlo simulation given by the

following steps.

Step 1: Compute the standardized coefficients using (3.1), the PSE using
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(1.12), and the I Lenth t statistics, tLenth,l
, l = 1, . . . , I.

Step 2: Compute the I × I matrix R, where the (l, p)th element of R is given

by υlp/(υllυpp)
1/2.

Step 3: Generate M sets of I random variables from a multivariate normal

distribution with mean 0 and covariance R.

Step 4: For the bth set of random variables, compute PSE and the Lenth t

statistics, t
(b)

Lenth,l
, l = 1, . . . , I, b = 1, . . . ,M .

Step 5: Compute the P -value of γ̂l as

Pl =
#
{

b :
∣

∣

∣
t
(b)

Lenth,l

∣

∣

∣
≥

∣

∣

∣
tLenth,l

∣

∣

∣

}

M
,

where ′#′ stands for “the number of”.

3.2.4 Our Proposed Methods

For the dispersion model, we proposed using N(0, a2n) to approximate the distribution

of zl in Section 2.1.1. Therefore it can also be used to calculate the P -value of zl as

Pl = Pr(|N(0, a2n)| > observed |zl|).

The values of an can be found in Table 2.1.

For the location model, we argued that under the null hypothesis of H0 : αl = 0,

tl ∼
N(0, 1)

√
∑m

i=1 ρ
2
iχ

2
n−1/(n− 1)

and proposed a method to approximately generate M random observations, t
(b)
l , b =

1, . . . ,M , from the above distribution. The details can be found in Section 2.2.2.
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Then the P -value of tl can be calculated as

Pl =
#
{

b :
∣

∣

∣
t
(b)
l

∣

∣

∣
≥ observed |tl|

}

M
.

3.2.5 Simulation Study

Now, we perform a simulation study to compare all the four methods in terms of

controlling FDR in replicated regular two-level factorial experiments.

Dispersion Model

For the simulations, we considered 23 and 24 factorial experiments. Two different

cases are considered. First, when no effect is active, we used the model

yij ∼ N(0, 1)

for both the 23 and 24 factorial experiments. Second, when there are some active

effects, we used the models

yij ∼ N (0, exp(0.35A+ 0.3C + 0.3AC))

and

yij ∼ N(0, exp(0.35A+ 0.3C + 0.3BC))

for 23 experiment. For 24 experiments, we used the models

yij ∼ N(0, exp(0.3A+ 0.3B + 0.3C + 0.25AC))

and

yij ∼ N(0, exp(0.3A+ 0.3B + 0.3C + 0.25AD)).

The simulation is repeated for 10,000 times except for Lenth’s method. The simu-
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lation is repeated only 5,000 times for Lenth’s method since it is quite computationally

extensive to run the simulations for Lenth’s method. The simulated FDRs are then

calculated and are summarized in Tables 3.1, 3.2, 3.3, 3.4, and 3.5.

Table 3.1: Simulated FDRs under the 5% using BH and ABH procedures for the
model: yij ∼ N(0, 1) in 23 and 24 experiments
I n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6

Our method BH Our method ABH Wu and Hamada BH Wu and Hamada ABH

7 0.057 0.054 0.054 0.056 0.057 0.054 0.054 0.056 0.210 0.155 0.124 0.104 0.210 0.155 0.124 0.104

15 0.060 0.055 0.054 0.054 0.060 0.055 0.054 0.054 0.280 0.187 0.141 0.122 0.280 0.187 0.141 0.122

Variyath et al. BH Variyath et al. ABH Lenth BH Lenth ABH

7 0.085 0.097 0.092 0.091 0.085 0.097 0.092 0.091 0.034 0.033 0.031 0.039 0.034 0.033 0.031 0.039

15 0.087 0.088 0.084 0.089 0.087 0.088 0.084 0.089 0.035 0.031 0.037 0.032 0.035 0.031 0.037 0.032

Table 3.2: Simulated FDRs under the 5% using BH and ABH procedures for the
model: yij ∼ N (0, exp(0.35A+ 0.3C + 0.3AC)) in 23 experiment

Method I n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
BH ABH

Our method 7 0.033 0.031 0.031 0.030 0.040 0.041 0.043 0.045
Wu and Hamada’s method 7 0.109 0.073 0.059 0.051 0.122 0.088 0.077 0.071
Variyath et al.’s method 7 0.044 0.046 0.046 0.044 0.056 0.059 0.060 0.062

Lenth’s method 7 0.004 0.005 0.002 0.002 0.004 0.005 0.003 0.002

Table 3.3: Simulated FDRs under the 5% using BH and ABH procedures for the
model: yij ∼ N(0, exp(0.35A+ 0.3C + 0.3BC)) in 23 experiment

Method I n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
BH ABH

Our method 7 0.034 0.030 0.030 0.029 0.040 0.041 0.044 0.045
Wu and Hamada’s method 7 0.107 0.074 0.059 0.052 0.119 0.091 0.078 0.073
Variyath et al.’s method 7 0.044 0.047 0.044 0.041 0.058 0.058 0.060 0.060

Lenth’s method 7 0.004 0.004 0.003 0.002 0.004 0.004 0.003 0.002

From Tables 3.1, 3.2, 3.3, 3.4, and 3.5, it is seen that our proposed method coupled

with ABH procedure can accurately controls FDR at the q = 0.05 for both the cases

of no active effect and when there are some active effects. Lenth’s method is quite

conservative especially when there are some active effects. Wu and Hamada’s method

is quite liberal for both cases no matter BH or ABH procedures are used. Variyath
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Table 3.4: Simulated FDRs under the 5% using BH and ABH procedures for the
model: yij ∼ N(0, exp(0.3A+ 0.3B + 0.3C + 0.25AC)) in 24 experiment

Method I n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
BH ABH

Our method 15 0.039 0.038 0.038 0.038 0.050 0.048 0.049 0.049
Wu and Hamada’s method 15 0.160 0.103 0.080 0.068 0.180 0.126 0.102 0.088
Variyath et al.’s method 15 0.054 0.056 0.051 0.052 0.062 0.070 0.067 0.068

Lenth’s method 15 0.006 0.008 0.010 0.010 0.007 0.008 0.012 0.013

Table 3.5: Simulated FDRs under the 5% using BH and ABH procedures for the
model: yij ∼ N(0, exp(0.3A+ 0.3B + 0.3C + 0.25AD)) in 24 experiment

Method I n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
BH ABH

Our method 15 0.040 0.040 0.040 0.040 0.046 0.050 0.050 0.050
Wu and Hamada’s method 15 0.160 0.106 0.083 0.069 0.180 0.128 0.105 0.090
Variyath et al.’s method 15 0.055 0.056 0.051 0.052 0.064 0.068 0.066 0.069

Lenth’s method 15 0.009 0.008 0.009 0.010 0.010 0.011 0.012 0.013

et al.’s method is quite liberal for the case of no active effect whether BH or ABH

procedure is used. It works quite well for the case when there are some active methods

if BH procedure is used.

Location Model

We considered two situations here: σ2
i ’s are homogeneous and σ2

i ’s are not homo-

geneous.

Case I: σ2
i ’s are homogeneous

We performed simulations for 23 and 24 factorial experiments in this case. For the

23 and 24 experiments when no effect is active, we used the model

yij ∼ N(0, 1).

When there are some active effects, we used the models

yij ∼ N(10 + 0.5A+ 0.5B + 0.4AB, 1)
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and

yij ∼ N(5 + 0.3A+ 0.3B + 0.3D + 0.25BD, 1)

for 23 and 24 experiments, respectively. The simulated FDRs are presented in Tables

3.6, 3.7 and 3.8.

Table 3.6: Simulated FDRs under the 5% using BH and ABH Procedures for the
model: yij ∼ N(0, 1) in 23 and 24 experiments

I n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
Our method BH Our method ABH

7 0.030 0.035 0.043 0.045 0.030 0.035 0.043 0.045
15 0.032 0.040 0.044 0.046 0.032 0.040 0.044 0.046

Wu and Hamada BH Wu and Hamada ABH
7 0.050 0.050 0.048 0.050 0.050 0.050 0.048 0.050
15 0.048 0.047 0.047 0.046 0.048 0.047 0.047 0.046

Lenth BH Lenth ABH
7 0.033 0.036 0.035 0.035 0.033 0.036 0.035 0.033
15 0.040 0.035 0.033 0.034 0.040 0.035 0.033 0.034

Table 3.7: Simulated FDRs under the 5% using BH and ABH Procedures for the
model: yij ∼ N(10 + 0.5A+ 0.5B + 0.3C + 0.4AB, 1) in 23 experiment

Method I n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
BH ABH

Our method 7 0.021 0.023 0.026 0.027 0.035 0.037 0.040 0.044
Wu and Hamada 7 0.029 0.026 0.029 0.030 0.041 0.041 0.044 0.048

Lenth 7 0.003 0.002 0.001 0.001 0.002 0.002 0.001 0.002

Table 3.8: Simulated FDRs under the 5% using BH and ABH procedures for the
model: yij ∼ N(5 + 0.3A+ 0.3B + 0.3D + 0.25BD, 1) in 24 experiment

Method I n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
BH ABH

Our method 15 0.029 0.030 0.032 0.034 0.034 0.036 0.040 0.044
Wu and Hamada 15 0.033 0.037 0.037 0.035 0.039 0.044 0.046 0.045

Lenth 15 0.008 0.009 0.009 0.010 0.009 0.010 0.010 0.012

From the simulated results in Tables 3.6, 3.7 and 3.8, it is seen that all the

methods can control FDR when no factorial effect is active. In this situation, Wu

and Hamada’s method works slightly better than our method and Lenth’s method.
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When some effects are active, both our proposed method and theWu and Hamada’s

method control FDR at 5% nominal level especially when the ABH procedure is used

for both method. The performance of both methods are similar. The Lenth’s method

is quite conservative whether BH or ABH procedure is used.

Case II: σ2
i ’s are not homogeneous

For the case of no active effect, we used the models

yij ∼ N(0, exp(A+ C + 0.5AC))

and

yij ∼ N(0, exp(A+ C +D + 0.5CD))

for 23 and 24 experiments, respectively.

In the presence of some active effects, we used the models

yij ∼ N(10 + A+B + 0.5AB, exp(A+ C + 0.5AC))

and

yij ∼ N(5 + 0.65A+ 0.65B + 0.45C, exp(A+ C + 0.5AC))

for 23 experiment. For 24 experiments, we used the models

yij ∼ N(5 + 0.5A+ 0.45B + 0.5D + 0.4AD, exp(A+B +D + 0.5AD))

and

yij ∼ N(5 + 0.75A+ 0.65B + 0.55C + 0.5AD, exp(A+B + C + 0.5BD)).

The simulated FDRs are summarized in Tables 3.9, 3.10, 3.11, 3.12 and 3.13.

From the simulation results in Tables 3.9, 3.10, 3.11, 3.12 and 3.13, it is clearly seen
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Table 3.9: Simulated FDRs under the 5% using BH and ABH procedures for the
models: yij ∼ N(0, exp(A+C +0.5AC)), yij ∼ N(0, exp(A+C +D+0.5CD)) in 23

and 24 experiments respectively
I n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6

Our method BH Our method ABH
7 0.046 0.039 0.037 0.037 0.046 0.039 0.037 0.037
15 0.045 0.038 0.035 0.035 0.045 0.038 0.035 0.035

Wu and Hamada BH Wu and Hamada ABH
7 0.087 0.071 0.071 0.062 0.087 0.071 0.071 0.062
15 0.098 0.075 0.066 0.061 0.098 0.075 0.066 0.061

Lenth BH Lenth ABH
7 0.024 0.026 0.028 0.029 0.024 0.026 0.028 0.029
15 0.020 0.018 0.021 0.022 0.020 0.018 0.021 0.022

Table 3.10: Simulated FDRs under the 5% using BH and ABH procedures for the
model: yij ∼ N(10 + A+B + 0.5AB, exp(A+ C + 0.5AC)) in 23 experiment

Method I n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
BH ABH

Our method 7 0.029 0.026 0.025 0.024 0.049 0.045 0.049 0.046
Wu and Hamada’s method 7 0.048 0.047 0.039 0.038 0.072 0.072 0.064 0.065

Lenth’s method 7 0.002 0.001 0.001 0.001 0.002 0.002 0.002 0.002

Table 3.11: Simulated FDRs under the 5% using BH and ABH procedures for the
model: yij ∼ N(5 + 0.65A+ 0.65B + 0.45C, exp(A+ C + 0.5AC)) in 23 experiment

Method I n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
BH ABH

Our method 7 0.029 0.026 0.025 0.023 0.042 0.040 0.042 0.042
Wu and Hamada’s method 7 0.054 0.045 0.042 0.039 0.071 0.063 0.061 0.058

Lenth’s method 7 0.003 0.003 0.003 0.002 0.003 0.004 0.003 0.003

Table 3.12: Simulated FDRs under the 5% using BH and ABH procedures for the
model: yij ∼ N(5 + 0.5A+ 0.45B + 0.5D + 0.4AD, exp(A +B +D + 0.5AD)) in 24

experiment
Method I n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6

BH ABH
Our method 15 0.031 0.028 0.027 0.028 0.041 0.042 0.042 0.046

Wu and Hamada’s method 15 0.065 0.055 0.049 0.042 0.080 0.071 0.066 0.064
Lenth’s method 15 0.011 0.012 0.012 0.012 0.012 0.013 0.014 0.013
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Table 3.13: Simulated FDRs under the 5% using BH and ABH procedures for the
model: yij ∼ N(5+ 0.75A+0.65B+0.55C +0.5AD, exp(A+B+C +0.5BD)) in 24

experiment
Method I n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6

BH ABH
Our method 15 0.033 0.033 0.034 0.032 0.051 0.052 0.054 0.054

Wu and Hamada’s method 15 0.066 0.052 0.050 0.048 0.085 0.075 0.074 0.073
Lenth’s method 15 0.007 0.006 0.004 0.007 0.008 0.007 0.007 0.009

that our proposed method can also control FDR both in the absence of active effect

and in the presence of some active effects, especially when ABH procedure is used.

Lenth’s method also controls FDR in both cases, but the results are more conservative

compared to our proposed method. Wu and Hamada’s method is quite liberal in the

absence of active effect whether BH or ABH procedure is used. Interestingly, Wu

and Hamada’s method coupled with ABH procedure is quite liberal in the presence

of active effects, while Wu and Hamada’s method coupled with BH procedure works

well in the presence of active effect.

3.3 Application To Real Examples

3.3.1 Example 1.1

Dispersion Model

Here the P -values for the I = 15 effects of interest are shown in Table 3.14.

Suppose that we would like to control the FDR to be q = 5% in the dispersion model.

Then, using the BH procedure, effect A is declared active by all the methods except

Lenth’s method that declared no active effect. Using the ABH procedure, we found

that m̂0 = 13 for our method, m̂0 = 12 for Wu and Hamada’s method, m̂0 = 14 for

Variyath et al.’s method and m̂0 = 15 for Lenth’s method. In this case, effect A is

also declared active by our method, Wu and Hamada’s methhod, and Variyath et

al.’s method. Again, no effect is declared active by Lenth’s method.
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Table 3.14: P -values for the fifteen effects in the dispersion model: Example 1.1
Sorted P-values

l Effects Our method Wu and Hamada Variyath et al. Lenth
1 A 0.0004 0.0001 0.0014 0.0447
2 BC 0.0272 0.0162 0.0438 0.1644
3 AC 0.0560 0.0406 0.0850 0.2283
4 ABD 0.0699 0.0485 0.0968 0.2414
5 AB 0.0752 0.0528 0.1030 0.2507
6 ABC 0.1936 0.1571 0.2321 0.3871
7 ACD 0.2703 0.2302 0.3104 0.4678
8 CD 0.2848 0.2443 0.3249 0.5404
9 BD 0.3074 0.2665 0.3474 0.5576
10 D 0.4283 0.3886 0.4655 0.6515
11 BCD 0.4486 0.4095 0.4849 0.6651
12 C 0.4912 0.4536 0.5257 0.6915
13 ABCD 0.6512 0.6226 0.6767 0.7946
14 B 0.6516 0.6231 0.6771 0.7965
15 AD 0.9490 0.9444 0.9529 0.9708

Location Model

For each method, the P -values for the I = 15 effects of interest are given in Table

3.15. Suppose that we would also like to control the FDR to be q = 5% in the location

model. By using BH procedure, effect A is declared active by our method and Wu and

Hamada’s method. Lenth’s method declared no active effect in this case. Using the

ABH procedure, we found that m̂0 = 15 for all the three methods. Again, effect A is

declared active by our method and Wu and Hamada’s method. No effect is declared

active by Lenth’s method.

3.3.2 Example 1.2

Dispersion Model

For each method, the P -values for the seven effects of interest are shown in Table

3.16. Suppose that we would like to control the FDR to be q = 5% in the dispersion

model. Then, no effect is declared active by all the methods using BH procudure.

Using the ABH procedure, we found that m̂0 = 7 for all the methods. Again, no
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Table 3.15: P -values for the fifteen effects in the location model: Example 1.1
Sorted P-values

l Effects Our method Wu and Hamada Lenth
1 A 0.0020 0.0016 0.0559
2 B 0.0391 0.0374 0.1735
3 AB 0.1163 0.1144 0.2862
4 C 0.2024 0.2005 0.3817
5 BC 0.2556 0.2542 0.4390
6 ABD 0.2558 0.2542 0.4406
7 ABCD 0.2952 0.2940 0.4766
8 AD 0.2998 0.2984 0.5026
9 BD 0.4193 0.4188 0.6326
10 ACD 0.5045 0.5045 0.6942
11 BCD 0.5370 0.5373 0.7162
12 AC 0.7151 0.7156 0.8297
13 ABC 0.7762 0.7769 0.8658
14 CD 0.8951 0.8953 0.9374
15 D 0.9031 0.9033 0.9431

effect is declared active by all the methods.

Table 3.16: P -values for the seven effects in the dispersion model: Example 1.2
Sorted P-values

l Effects Our method Wu and Hamada Variyath et al. Lenth
1 C 0.0648 0.0179 0.0302 0.2821
2 AF 0.0956 0.0325 0.0475 0.3256
3 E 0.1832 0.0878 0.1059 0.4325
4 F 0.2039 0.1032 0.1213 0.4966
5 D 0.4355 0.3172 0.3302 0.7322
6 A 0.6860 0.6041 0.6097 0.8578
7 B 0.8793 0.8456 0.8474 0.9460

Location Model

In this case, we also examined the performance of all the methods considered under

location model. The P -values for the seven effects of interest for each method are

summarized in Table 3.17. Again, suppose that we would like to control the FDR at

q = 5%. Then, two effects D and F would be identified as active by both our method

and Wu and Hamada’s method using the BH procedure. No effect is declared active

by Lenth’ method using the BH procedure. Using the ABH procedure, we found that
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m̂0 = 7 for all three methods. Again, two effects D and F are declared active by

both our method and Wu and Hamada’s method. No effect is declared active by the

Lenth’s method.

Table 3.17: P -values for the seven effects in the location model: Example 1.2
Sorted P-values

l Effects Our method Wu and Hamada Lenth
1 D 0.0022 0.0008 0.0970
2 F 0.0034 0.0013 0.1117
3 A 0.0549 0.0428 0.3032
4 E 0.1458 0.1306 0.4958
5 AF 0.5970 0.5912 0.8460
6 C 0.8562 0.8546 0.9473
7 B 0.8907 0.8896 0.9601

58



Chapter 4

Summary and Future Work

4.1 Summary

In this thesis, we focused on controlling the IER, EER and FDR in the location and

dispersion models of the response. More specifically, our methods are based on the

z-type test statistic (Wu and Hamada, 2000, 2009) for the factorial effects in the

dispersion model and the t-type test statistic (Wu and Hamada, 2000, 2009) for the

factorial effects in the location model.

In Chapter 2, we re-investigated the distribution of the the z-type statistic and

proposed a new distribution for this test statistic. Based on this new distribution,

new procedures have been suggested to control the IER and EER in the dispersion

model. Our simulation studies suggest that the new procedures work well in terms

of controlling the IER and EER in the dispersion model. Other existing methods are

either too liberal or too conservative for controlling either or both of the IER and EER

in the dispersion model. We also identified the distribution of the t-type statistic and

suggested a resampling method to generate random samples from this distribution.

Based on the generated random samples, we suggested some new procedures to control

the IER and EER in the location model. Our simulation results showed that our
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method works well in terms of controlling the IER and EER in the location model

whether σ2
i ’s are homogeneous or heterogeneous among the m runs. However, Wu

and Hamada’s method works well when the σ2
i ’s are homogeneous.

In Chapter 3, we suggested using the new distributions we found in Chapter 2

to calculate the P -values of the z-type statistic and t-type statistic, respectively.

Coupled with the ABH procedure, our methods can also accurately control the FDR

in the location and dispersion models. On the other hand, Wu and Hamada’s method

only works in the location model for some situations, for example, when σ2
i ’s are

homogeneous.

Our proposed methods have also been applied to two real examples to control the

IER, EER and FDR in the location and dispersion models.

4.2 Recommendations for Future Work

The followings are some recommendations for future research based on this thesis:

• As stated earlier, replicated two-level factorial designs are full of useful informa-

tion. This is due to the fact that they allow reliable estimation of the location

and dispersion of the response. In this thesis, we considered only the case when

the number of replications in each run is the same. Though, there may be some

practical situations where the number of replications is not the same. However,

further research could be conducted on controlling these error rates when the

number of replications is not the same for each run.

• There may be some practical situations that require to study factors with more

than two levels or mixed levels. See Wu and Hamda (2000, 2009) for some

real examples. Further research could also be carried out to see what will hap-

pen by extending the current setup to other three-level or mixed-level factorial

experiments.
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• Since the main goal of this thesis is to control the IER, EER and FDR at any

nominal level, little consideration was given to the power of the proposed meth-

ods in identifying the active effects in replicated two-level factorial experiments.

Further study could be carried out to develop methods or modify the proposed

methods to simultaneously control the error rates and achieve higher power in

identifying active effects.
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Appendix

Appendix A: R code to Calculate an

### Our Method ###

f1=function(x,n)

{

### log(x/(n-1)) times the density function of chisq with (n-1)

degress of freedom###

### x: a random variable that follows a chisquare distribution

### n: number of replicates

log(x/(n-1))*dchisq(x,df=n-1)

}

f2=function(x,n)

{

### log(x/(n-1)) times the density function of chisq with (n-1)

degress of freedom###

### x: a random variable that follows a chisquare distribution

### n: number of replicates

( log(x/(n-1)) )^2*dchisq(x,df=n-1)

}

exact.var.dispersion<-function(n)
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{

### Variance of log(chisq/(n-1)) with (n-1)

degress of freedom###

mom1=integrate(f1,0,Inf,n=n)

mom2=integrate(f2,0,Inf,n=n)

mom2$value-mom1$value^2

}

## Wu and Hamada’s Method ##

approx.var.dispersion<-function(n)

{

### Variance of the approximation method ###

## n: number of replicate ##

2/(n-1)

}

## Computing a_{n} ##

a<-function(n)

{

## n: number of replicate ##

sqrt(exact.var.dispersion(n)/approx.var.dispersion(n))

}

Appendix B: R code to Calculate the IER critical value for our Proposed

Method in Location Model

## Critical value (IER)##

simul.t<-function(rho,n)

{

### rho is estimated from the given data ###

## n is the number of replication ##
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m=length(rho)

w=rnorm(1000000,0,1)

x=matrix(rchisq(1000000*m,n-1),ncol=m)

y=(x%*%rho)/(n-1)

z=abs(w/sqrt(y))

quantile(z,0.95)

}

Appendix C: R code to Calculate the EER critical value for our Proposed

Method in Location Model

## Critical Value (EER) ##

quantile.eer<-function(rho,v,n)

{

m=length(rho)

## m is the number of run ##

## rho is estimated from the given data ##

V=matrix(v,nrow=m)

## V is the matrix with columns corresponding to

the factorial effects of interest ##

P=diag(rho,m,m)

A=t(V)%*%P%*%V

## A is the variance-covariance matrix ##

W=mvrnorm(10000,rep(0,nrow(A)),A)

R=apply(abs(W),1,max)

Q=matrix(rchisq(10000*m,n-1),ncol=m)

Y=(Q%*%rho)/(n-1)

Z=R/sqrt(Y)

q=quantile(Z,0.95)
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return(q)}

Appendix D: R code to Calculate the FDR P- value for our Proposed

Method in Location Model

simul.pvalue<-function(rho,n,statistic)

{

## rho is estimated from the data##

##n is the number of replicate##

m=length(rho)

## m is the number of run ##

I=m-1

w=rnorm(1000000,0,1)

x=matrix(rchisq(1000000*m,n-1),ncol=m)

y=(x%*%rho)/(n-1)

z=abs(w/sqrt(y))

pvalue=rep(0,I)

for(i in 1:I)

{

pvalue[i]=mean(z>=abs(statistic[i]))

}

pvalue

}
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