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Abstract

Replicated regular two-level factorial experiments are very useful for industry. The
basic purpose of this type of experiments is to identify active effects that affect the
mean and variance of the response. Hypothesis testing procedures are widely used for
this purpose. However, the existing methods give results that are either too liberal
or too conservative in controlling the individual and experimentwise error rates (IER
and EER respectively). In this thesis, we propose a resampling procedure and an
exact-variance method for identifying active effects for the mean and variance of the
response, respectively. Monte Carlo studies show that our proposed methods perform
extremely well in terms of controlling the IER and EER. We also extend our proposed
methods to control the false discovery rate. Two real data sets were used as case study

to illustrate the performance of the proposed methods.
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Chapter 1

Introduction

1.1 A brief Review of Two-Level Factorial Exper-
iments

Experimental Designs involve laying out of detailed experimental plans in advance
of doing experiments. They are widely used in industries to control and improve the
quality of outputs. In robust designs, experimentation is used to determine the factor
levels so that the product or production process is insensitive to potential variations
in operating, environmental, and market conditions (Tagushi, 1986). A factor in this
case is a variable that is studied in the experiment while levels refer to the values of
the factor. To study the effect of a factor on the response, two or more values of the
factor are used. A combination of factor levels is called a treatment or a run.

The most important class of these designs is two-level factorial designs. They
are easy to design, efficient to run, straightforward to analyze and full of useful
information (Mee, 2009).

In two-level factorial designs, each factor is investigated at only two levels. These
designs are widely used in industrial (Box, Hunter and Hunter, 1978) and agricul-

tural (Kempthorne, 1952; Cochran and Cox, 1957) experiments to identify the most



important factor(s) affecting a process.

Two-level factorial designs can be un-replicated. That is, a single experiment
is carried out at each run. This type of design is often performed when runs are
expensive. The other case is the replicated experimental design. In this case, the
experiment is replicated more than one time at each run.

This thesis concentrates on replicated two-level factorial designs.

1.1.1 Two-Level Full Factorial Designs

Suppose that a two-level factorial design has k experimental factors each having two
levels. The experimental factors can be numerical variables such as Temperature (e.g.
low level = 100°F, high level = 180°F) or categorical such as Deposition time (e.g
low level = Low, high level = High).

A full factorial experiment consists of every combination of the levels of factors in
the experiment. Thus, for the k factors each with two levels, a full two-level factorial
design consists of 2 x2x 2 x -+ x 2 = 2F treatments/runs. We denote it as 2¥ factorial
designs. We shall use — and + to represent the low level and high level of the factors
respectively in this thesis.

The following gives an example of a full factorial design.

Example 1.1. This example is taken from Montgomery (2009, p. 267). The exper-
iment is a 2% factorial design. Four experimental factors: length of putt (A), types
of putter (B), break of putt (C) and slope of putt (D) were investigated each at two
levels. The primary response in this experiment is the distance from the ball to the
center of the cup after the ball comes to rest. The experiment is replicated seven times
for each run. The purpose of this experiment is to improve the golfer’s scores (putting
accuracy). That is, minimize the putting variability while maintaining the distance
from the ball to the center of the cup closest to zero. Tables 1.1 and 1.2 below show

the data, and factors and levels respectively for this example.



Table 1.1: Design Matrix and Distance Data for Example 1.1

Factors Distance from Cup (replicates)

Runs A B C D Y 7 52 log, s?
1 - - - - 100 18.0 14.0 12.5 19.0 16.0 185 15429 11.536 2.445
2 + - - - 00 165 45 175 205 175 33.0 15.643 116.893 4.761
3 -+ - - 40 6.0 10 145 12.0 14.0 5.0 8071 28.702 3.357
4 + 4+ - - 00 10.0 34.0 11.0 255 21.5 0.0 14.571 167.202 5.119
) - - + - 00 00 185 195 16.0 15.0 11.0 11.429 68.369 4.225
6 + - + - 50 205 18.0 200 29.5 19.0 10.0 17.429 62.369 4.113
7 -+ + - 65 185 75 6.0 0.0 100 0.0 6.929 40.119 3.692
8 + 4+ + - 165 45 00 235 80 &80 80 9789 61.071 4.112
9 - - - 4+ 45 180 145 100 0.0 175 6.0 10.071 47.78  3.867
00 + - - 4+ 195 180 160 5.5 10.0 7.0 36.0 16.000 107.250 4.675
11 - 4+ - 4+ 150 160 85 0.0 05 9.0 3.0 7429 42.869 3.758
12 4+ + - 4+ 415 390 65 35 7.0 85 36.0 20.286 305.738 5.723
3 - - + 4+ 80 45 6.5 10.0 13.0 41.0 14.0 13.857 154.726 5.042
4 4+ - + 4+ 215 105 6.5 0.0 155 24.0 16.0 13.429 70.786  4.260
15 -+ + + 00 00 00 45 1.0 40 6.5 228 7.155 1.968
6 4+ + + + 180 50 7.0 10.0 225 185 8.0 14.214 94.071 4.544

Table 1.2: Factors and Levels for Example 1.1

Level
Factor — +
A Length of put (ft) 10 30
B Types of putter Mallet  Cavity back
C Break of putt Straight  Breaking
D Slope of putt Level Downbhill

1.1.2 Two-level Fractional Factorial Designs

When the number of factor & is large, the number of runs required for the 2% factorial

designs also increases. For economic reasons and/or in the absence of enough resources

to carry out the full factorial experiment, a fraction (say 277) of 2* factorial design

is often used. This type of two-level factorial designs is called 2¥~7 factorial design,

where p is any positive integer less than k.



Two-level fractional factorial designs can be regular and non-regular fractional
factorial designs (Wu and Hamada, 2000). A regular fractional factorial design is
formed through defining relations among factors. That is, the design is constructed
by assigning p of the k factors to the interaction columns of the 2¥~7 full factorial
design. Fractional factorial designs that are not regular are non-regular designs.

This thesis focuses on regular two-level fractional factorial designs. The following

is an example of a regular 2P factorial designs.

Example 1.2. This example is taken from Montgomery (2001, p. 352). This experi-
ment is a reqular 2673 factorial design with 3 replicates for each run. The experiment
1s based on the use of carbon anodes in a smelting process baked in a ring furnace.
The sixz factors used are: Pitch/Fines ratio (A), Packing material type (B), Pack-
ing material temperature (C), Flue location (D), Pit temperature (E) and Delay time
before packing (F). The response recorded is the weight of packing material stuck to
the anodes measured in grams. The purpose of this experiment is to minimize the
variability in the weight of the packing material while maintaining the weight of the
material to a certain nominal level. Tables 1.3 and 1.4 below contain the data, and

Factors and Levels for this example.

Table 1.3: Design Matrix and Weight of Packing Material for Example 1.2

Factors Weigth of Material
Runs A B C D(=AB) E(=AC) F(=BC) Y 7 s log, s*
I+ + - + - - 984 826 936  915.333 6561.333 8.789
2 + + + + + + 1275 976 1457 1236.000 58981.000 10.985
3 - + - - + - 1217 1201 890  1102.667 33984.333 10.434
4 + - - - - + 1474 1164 1541 1393.000 40453.000 10.608
5 - - - + + + 1320 1156 913  1129.667 41932.333 10.644
6 - - + + - - 765 705 821  763.667 3365.333 8.121
7T 4+ -+ - + - 1338 1254 1294 1295.333 1765.333 7.476
8 - + - - + 1325 1299 1253 1292.333 1329.333 7.192




Table 1.4: Factors and Levels for Example 1.2

Level

Factor — +
A Pitch/Fines ratio 0.45 0.55
B Packing material type 1 2
C Packing material temperature ~ Ambient  325°C
D Flue location Inside  Outside
E Pit temperature Ambient  195°C
F  Delay time before packing Zero 24 hours

In this example, &k = 6 and p = 3. The three factors A, B and C generate a 23

factorial design. Factors D, E and F are defined through the following relationship:
D =AB, F=AC, F=BC.

That is, the column D is the interaction between column A and column B; column E
is the interaction between column A and column C, and column F is the interaction

between column B and column C.

1.2 Types of Responses and Two-Step Procedures

In general, responses can be classified according to the stated objective of the ex-
periment. The three broad categories are: nominal-the-best, smaller-the better and

larger-the-better responses.

1.2.1 Nominal-The-Best Response

A nominal-the-best response is a measured response or characteristic with a spe-
cific target (nominal) value. The response in Example 1.2 is a good example of the

nominal-the-best response. For this case, one would like to minimize

E{(Y =)} =Var(Y) +{E(Y) —t}*,



where Y is the response and ¢ is the nominal value. For the nominal-the-best response,
a two-step procedure was introduced in Wu and Hamada (2000, 2009) as follows to

select the levels of factors:

Step 1. Find the levels of the some factors to minimize the dispersion of re-

sponse;

Step 2. Find the levels of some factors that are not in Step 1 to move the

location of response closer to t.

For the above two two-step procedures, any factor appears in Step 2 is called an

adjustment factor.

1.2.2 Smaller-The-Better Response

A smaller-the-better response is a measured characteristic with an ideal target value
of 0. That is, as the value for this type of response decreases, quality increases. The
response in Example 1.1 is a good example of the smaller-the-better response. The

interest here would be to minimize

E(Y?) =Var(Y)+ E*(Y).
For the smaller-the-better response, a two-step procedure is outlined in Wu and

Hamada (2000, 2009) as follows:

Step 1. Find some factor levels that minimize the location of response;

Step 2. Find some factor levels that are not in Step 1 to minimize the dispersion

of response.

Again, any factor appears in Step 2 is called an adjustment factor.
For the larger-the-better response, a similar two-step procedure can be found in

Wu and Hamada (2000, 2009).



1.3 Model and Parameter Estimation

As we can see in Section 1.2, identifying the factors which have significant effects on
the mean of response and variance of response is the first step before applying two-step

procedures. In this section, we introduce some notations and setup the model.

1.3.1 Model Setup

Let y;; be the response for the ith treatment and jth replication in regular two-level
factorial experiments, i = 1,---,m; j = 1,- - -,n;. Here m = 2* or 2¥P. For the
convenience of presentation, we consider the case when ny = --- = n,, = n as
in Examples 1.1 and 1.2. Suppose there are [ effects that we are interested in (in
most cases [ = m — 1). These effects can be main effects or interaction effects. Let
Ti1, Lo, - -+, ;7 denote the corresponding covariates values of these interested I effects
for the ¢th treatment, i =1,-- - m.

The popular model for modelling the mean and variance of the response simul-
taneously is the normal model with a linear regression for the mean and a log-linear
model for the variance (Harvey, 1976; Cook and Weisberg, 1983; Nair and Pregi-
bon, 1988; Wang, 1989; Brenneman and Nair, 2001; Variyath et al., 2005; Wu and
Hamada, 2000 and 2009; Loughin and Rodriquez, 2011; and others). That is,

yij ~ N (i, 07) (1.1)
where
127 = g+ 1T + ...+ Orxyy (12)
and
log, 07 = Y0+ N1Zi1 + .. + VTir. (1.3)
Further, y;;s are independent. Here o, ---, a are the interested effects for the location



or mean of response; 7, - -,y are the interested effects for the dispersion or the
variance of the response. The models in (1.2) and (1.3) are called the location model
and the dispersion model, respectively.

Before we end this subsection, we use Example 1.2 to illustrate the notations
above. In Example 1.2, m = 8, n = 3 and suppose that we are interested in I =
8 — 1 = 7 factorial effects: six main effects and one two-factor interaction between

factors A and F. The covariate values for the 7 factorial effects are:

A B C D FE F AF
11 -1 1 -1 -1 -1
11 1 1 1 1 1

-1 1 1 -1 -1 1 -1

1.3.2 Parameter Estimation

To fit model (1.1), we first summarize y;; to

n

Yi = Zyw/n and s} = Z(yw —5:)*/(n—1).

J=1

Next, we regress g; over {;1, -+ ,x;}, ¢ = 1,...,n, to obtain least square esti-

mates of ay, -+, oy (denoted by &1, -+, ). We also regress log, s? over {x;1,- -, %}



to obtain least square estimates of 71, - - -,y (denoted by 44, - - -, 7). Let

be the matrix consisting of columns corresponding to all the I effects that we are in-
terested in. In two-level full factorial designs and two-level regular fractional factorial
designs, X is an orthogonal matrix such that XX = mlI, where I is an identity ma-
trix. Further, for each column of X, m/2 elements equal -1 and other m /2 elements

equal 1. Then,

= —X"7,; and :EXTZD, (1.4)

where Zy, = (i1, - - -, 9m)" and Zp = (log, s2, - - -,log, s2)"
Let x; denote the column for [th interested effects in X, [ =1,---,I. Then, from

(1.4), we have

1 1
& = —x;Zy and 4 = —x{Zp, respectively. (1.5)
m m

1.4 Review of Existing Methods

After we obtain the estimates of a/s and 7;s, we can use them to construct hypothesis
testing procedures to identify the significant effects for both location and dispersion
models. We introduce two important concepts, namely individual error rate (IER)
and experiment-wise error rate (EER). Generally speaking, IER, is the probability of

making an error for a single hypothesis, while EER is the probability of making at



least one error for all I hypotheses.

In the literature, there are three well-known hypothesis testing methods for iden-
tifying the significant effects for the location and dispersion models in replicated
two-level factorial designs: Wu and Hamada (2000, 2009) methods, Variyath et al.
(2005) method and Lenth (1989) method.

1.4.1 Wu and Hamada’s Methods

To introduce Wu and Hamada’s methods, we need to investigate the expectation and

variance of &4;s, and 4/s. By using (1.5), Wu and Hamada showed that

E(a) = o (1.6)
and
. xI'Var(Zp)x, 1 B )
Var(q;) = lT — ﬁvaar{(ylj N >ym)T}Xl
1 ) 1 &
- anXlelag{O'%, s 7072n}Xl == % ; Uiz. (1.7)

The last step in (1.7) is from the fact that the elements of x; are either -1 or 1 in

two-level experiments. Similarly, they showed that

E(%) = (1.8)

and

R xI'Var(Zp)x 1
Var(9,) = # = fo\/ar{(loge sf, ..., log, sfn)T}xl

1
— leTdiag{Var(loge s1),..., Var(log, s2)}x;.

10



Again using the fact that the elements of x; are either -1 or 1 in two-level experiments,

we further have

. 1 &
Var(y,) = " Z Var(log, s7). (1.9)
i=1

Dispersion Model

Wu and Hamada noted that

n

(n—1)s} = Z(yzg — i) ~ aixe s
=1

where x? is the chi-squared distribution with v degrees of freedom. Then taking

natural logarithm yields

log, (s7) ~ log,(07) +log {x7_1/(n — 1)}.

Using the first-order Taylor expansion, they argued that approximately

2

log,(s7) ~ N(log,(c7), n_1

). (1.10)

By using (1.8), (1.9) and (1.10), they obtained that approximately 4; has the

following distribution

2
Yy ~ N(v, ————).
A~ N, — = 1))
A z-type test statistic
Vi
5= ——
2
m(n—1)

was constructed to test the hypothesis Hy : 7, = 0. To control IER, the N(0,1)
distribution is used to calculate the critical value of the z-type test statistic. To
control EER, they used the studentized maximum modulus distribution with two

parameters I and oo to calculate the critical value.

11



Location Model
In this case, Wu and Hamada (2000, 2009) via (1.6) and (1.7), obtained the

distribution of &; as
. 1«
g~ N(O{l,%ggi).
They construct a t-type test statistic

~

0%

1 m 9
mZn Zi:l Si

=

to test the hypothesis Hy : oy = 0. Further, to control IER, the ?,,(,—1) distribution is
suggested to calculate the critical value. To control EER, they used the studentized
maximum modulus distribution with two parameters I and m(n — 1) to calculate the

critical value.

1.4.2 Variyath et al.’s Method

Variyath et al. (2005) suggested a Jackknife method on the replicated responses to
provide an estimate of variance of the performance measures such as the 7 and log, s
of the replicated responses at each run. The variance estimate of the performance
measure is then used to estimate the variance of the estimated factorial effects. Their
method was applied to control only the IER. To describe their method, we have
adopted the notations used in their paper. Let y; = (vi1,...,¥ij,.--,Yin) be the
random sample of size n for each run. Let c¢(y;) be the performance measure of
interest. Then by deleting y;; from y; for j = 1,...,n, n delete-one Jackknife replicates
of size (n —1): y;(j), ¢ = 1 ..., m was obtained. Hence, n Jackknife replications of

the performance measure ¢(y;(j)) were obtained. The Jackknife variance estimate of

12



c(y;) was given as

where ¢(y;.) = %Z c(yi(7)). A pooled estimate of the variance of ¢(y;) was given

as
. 1
Viial = E_
They construct a F-statistic

Mean Square (MS) for the factorial effect
Via(c(y))

F =

to test the null hypothesis of interest. They provide some theoretical explanations
to show that the mean square of the factorial effect and V,;4(c(y)) are independent.
The F-distribution with degrees of freedom 1 and m(n — 1) is used to calculate the
critical value of the above F-statistic.
Dispersion Model

Here, ¢(y;) = log, s? and V. (c(y)) = + el S Via(log, s2). The F-statistic is given

as
MS(%1)

% 221 Vja(l‘)ge 57)

to test the hypothesis Hy : v = 0, where MS(9;) = 42(xy7x;) = m4?. Based on

l prm—

their simulation results for consistency, the Jacknife variance estimate for log,(s?) is
consistent when n = 50. For small n, they considered an adjustment factor for the
variance estimate of log, s7.

Location Model

Here, c(y;) = 7 and V,a(c(y)) = Ly Via(7;). The F-statistic to test the

13



hypothesis Hy : oy = 0 can be written as

MS(@) (1.11)

= Via(#i)

F, =

where MS(&;) = a&?(x17x;) = ma? in this case.

1.4.3 Lenth’s Method

Lenth (1989) proposed a robust estimator of the standard deviation of the factorial

effects of interest. His approach is the same for both the dispersion and location

models. We describe his method for dispersion model only. Suppose 74, ...,7; are
the least square estimates of factorial effects (71, ...,7s) of interest in the dispersion
model.

Lenth (1989) proposed a pseudo standard error (PSE) for the standard deviation
of 4; as

PSE = 1.5 Mediany _, . 1%l (1.12)

Here the median is computed among the |§;s| with || < 2.5s¢ and s = 1.5Median|,|.

He defined a t-type statistic

tLenth,l = PLSjE
to test the hypothesis Hy : v = 0.
Lenth’s method does not require an unbiased estimate of variance of response. For
this reason, researchers have used his method for both un-replicated and replicated
factorial experiments. The critical values for controlling the IER and EER are given

in the Tables of Appendix H of Wu and Hamada (2000, 2009).
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1.5 Motivation and Organization of The Thesis

In this section, we first state the motivation of the thesis and then give the outline of
the thesis. Our motivation is from the following observations for the above mentioned

methods.

1. For dispersion model, the validity of the N(0,1) distribution for the z-type
statistic suggested by Wu and Hamada depends on the approximation of the
variance of log,(s?). When n is large, the approximation 2/(n — 1) to the
Var{log,(s?)} is reasonable. If n is small, which is the common situation in

practice (such as in Examples 1.1 and 1.2), then the approximation may not

2
i

be good. For example, when n = 3, the actual variance of log,(s;) is around
1.64, but the approximate variance is 2/(3 — 1) = 1. If we use the approximate
variance, the statistic will be inflated. Also, the Variyath et al. Jacknife variance
estimate for log,(s?) is not consistent for small n and this may also inflate their

suggested F' statistic.

2. For location model, the validity of the t-distribution suggested by Wu and
Hamada for the t-type statistic depends on the homogeneity of o’s. But in
some practical situations, heterogeneity of o?’s is a real possibility. If they are
not the same, the t-distribution may not be true. Also the connection between

Wu and Hamada’s method and Variyath et al.’s method is not clear so far.

In this thesis, we will follow the line of Wu and Hamada’s methods. Our purpose

is two-fold.

1. We intend to identify the distribution for the z-type statistic under the null
hypothesis for the dispersion model. This distribution should work well for the
small n case. Based on this distribution, we develop corresponding procedures

to control the IER and EER in the dispersion model. This distribution will
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also be used to calculate the P-values of the I z-type statistic and those P-
values, in turn, are used to control the false discovery rate (FDR; Benjamini

and Hochberg, 1995) in the dispersion model.

2. We intend to identify the distribution for the ¢-type statistic under the null hy-
pothesis for the location model. This distribution should work well whether o2’s
are homogeneous or not. Based on this distribution, we develop corresponding
procedures to control the IER and EER in the location model. This distribution
will also be used to calculate the P-values of the I t-type statistic and those

P-values, in turn, are used to control the FDR in the location model.

The thesis is organized as follows. In Chapter 2, we present the new distribu-
tions for the z-type and t-type statistics, respectively, and propose new procedures
for controlling the IER and EER. Also, we perform some simulation studies to com-
pare the performance of the methods in controlling IER and EER. Further, we apply
the methods to real data sets given in Examples 1.1 and 1.2. In Chapter 3, the
new distributions are used to calculate the P-values of z-type and t-type statistics,
respectively. Those P-values are used to control the FDR using some existing proce-
dures. Simulation studies are used to examine the performance of all the methods in
controlling the FDR. We also apply the methods to real data set given in Examples
1.1 and 1.2. Chapter 4 is the closing chapter of this thesis. It contains the summary
and conclusion on the performance of the methods. We provide some directions for

further research.
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Chapter 2

Controlling IER and EER in

Location and Dispersion Models

2.1 Dispersion Model

2.1.1 New Distribution of z-type statistic

Recall that for testing Hy : 7, = 0 in the dispersion model, the z-type statistic is

defined as

m(n—1)

The actual variance of 4; is given in (1.9) as
Var(it) = 5 3 Vas(log, 57
ar() = —3 2 ar(log, s7).

For the small n case, instead of using the approximation 2/(n — 1) to Var(log, s?),

we suggest using the exact variance of the log,(s?). Note that

log, (s7) ~ log,(07) +log,(x;_1/(n — 1)).
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Therefore

2
Var{loge(s?)} = Var{log,( Xn—

1
n—1

)} = Var{log,(x;-1)}

and

) 1
Var (%) = EVar{loge(xi_l)}-

Here Var{log,(x?_,)} means the variance of the logarithm of a random variable from
the x2_, distribution.

Let

2/(n=1)

which is just the square root of the ratio of true variance over the approximate variance

. \/Var{loge<xz_1>}

for log,(s?). The values of a,, for some small n values are tabulated in Table 2.1.

We observe that the z-type test statistic can be written as

- i \/Var{loge(xi_l)}:a W
Javarflog, 0z )yl 20 =D V)

Motivated from the above form of the z-type statistic, we suggest using N(0,a?) to
approximate the true distribution of the z-type statistic under the null hypothesis
Hy: v =0.

Table 2.1: Comparison of the Exact and Approximate variances of log,(s?)

n

Variance 3 4 5 6 7 8 9 10
Exact 1.644 0.935 0.645 0.490 0.395 0.330 0.284 0.249
Approximate|1.000 0.667 0.500 0.400 0.333 0.286 0.250 0.222
an 1.282 1.184 1.140 1.107 1.089 1.075 1.065 1.058

We should point out here that the true distribution of 4; may not be normal.
However, since 4; as given in (1.5) is a linear combination of m independent identically
distributed log-transformed random variables, central limit theorem implies that the

distribution of 4; may be well approximated by the normal distribution. Simulation
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studies show that the normal approximation works very well even for small n and m,
for example m = 8 and n = 3.

From Table 2.1, our suggested distribution N (0, a?) and the suggested distribution
N(0,1) by Wu and Hamada (2000, 2009) can be quite different for small n. The two
distributions become close to each other as n becomes large. However, the suggested
distribution based on the exact variance of log,(s?) may be preferable for small n in

practical applications. This has been verified in the simulation study.

2.1.2 Controlling IER and EER in Dispersion Model

With the suggested distribution N (0, a2), if we would like to control the IER at the
given « level, we can set the critical value Cjgg to be the upper 1 — «/2 quantile of
the N(0,a?). That is,

Crer = a, @ (1 —a/2).

Here ®(-) is the cumulative distribution function of N(0,1).

For controlling EER, we note that for

EFER = Pr(lngllagxl‘zl| > CpprlHo 71 ==~ =0)
= 1= Pr(lrglaé)%\zl/an\ < Cggrfan|Ho i1 =+ =71 =0)

= 1—{®(Crrr/an) — ®(~Cppr/a,)}’

= 1 - {2(1)(CEER/CL7L) - 1}1

Here Cggpr is the critical value for controlling EER. Therefore if we need to control

the EER at the given « level, then

CeEr = CLn(I)_l (05 + 05(1 — 04)1/1) .
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2.2 Location Model

2.2.1 New distribution for the ¢{-type Statistic

Recall that the t-type test statistic for testing Hy : oy = 0 in the location model is

given as
&
t = l
1 m
m2n ZiZI 812
and the variance of & is Var(&;) = —& >_i" | 07. Next we try to find the distribution

of t; under the null hypothesis.

Note that the t-type test statistic can be rewritten as

A 1 m 9
O‘l/ mZn Zi:l 0;
t = .
1 mo 2 1 m 2
\/mzn Zi:l S; /\/mzn Zi:l 0;

The classical theory of normal distribution implies that the numerator of (2.1) is

(2.1)

independent of the denominator. Further, under the null hypothesis of oy = 0, it

follows the N(0,1). That is

1 m
> o2~ N(0,1).
=1

m2n 4

The denominator of (2.1) can be further expressed as

diysi 1 i (n—1)s7 (o}
O o n — . o 771 o ’
i1 07 1 ; i1 07
Let
o}
P > im0}
Note that fori =1,...,m
(n—1)s} A2
0_2 n—1
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and they are independent. Therefore the denominator of (2.1) follows a weighted sum
of m independent 2 _; distribution. For the convenience of presentation, we write in

the following way:

le Zan l/n_l)

Therefore the distribution of the t-type statistic under the null hypothesis of a; = 0
is

N(0,1)
\/Z IPZXn 1 (n_ ]')

In the above form, the N(0,1) and m x?_; distributions are independent.

iy ~

(2.2)

Remark 2.1. If the 0?’s are homogeneous, then

Therefore,
Y8t Xy
2isiof  mn—1)

Thus, under Hy : oy = 0, we obtain

N(0,1
iy~ # = tm(n—l)-
an(nq)
m(n—1)

But if the o2 are not homogeneous, then the distribution of t; may not be t-distribution

under the null hypothesis.

2.2.2 Controlling IER in Location Model

The explicit form of the cumulative distribution function of ¢, in (2.2) is unknown
if 0%’s are not homogeneous. But it suggests a way to generate the random sample

from this distribution, which can be used to calculate the critical value for controlling
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[ER. In the following steps, we propose a resampling procedure to generate random
samples from the distribution in (2.2). Since p?’s are unknown, we estimate it from

the given data by p = s7/> " | s7.

Step 1: Compute p?

77

fori=1,2,...,m, from the given data set.
Step 2: Forb=1,..., M,

Step 2.1 Generate one N(0,1) random variable Uj,.
Step 2.2: Generate m independent 2 ;| random variables Vi1, ..., Vin.

Step 2.3: Compute t?) = . ’
ep ompute VL Veip? /(n—1)

Step 3: The critical value Cgg for controlling IER in the location model at

the given a value is set to be the 1 —a/2 upper quantile of {t®® b= 1,2, ..., M}.

In R, it is very fast to calculate the critical value Crgr. With our R function, it takes
several seconds to get the Crggr for M = 1,000,000. The R function will be provided

in the Appendix.

2.2.3 Controlling EER in Location Model

Here, we are interested in controlling
EER = Pr(mlax|tl\ Z CEER|H0 L = =0 = 0)

at a given « level.

We first use the result in Section 2.2.1 to investigate the distribution of max;<;<; |t].
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Note that

A /1 m 9
O‘l/ m2n2i21‘7i

1 m 9 1 m 9
\/m2n Zi:l Si /\/m2n Zi:l 0;
A~ 1 m 2
O‘l/\/ men Zi:l 0;

1 m 2 1 m 2
VRS s [\ o o

The distribution of the denominator of (2.3) has been investigated in Section 2.2.1.

maxlgg |tl | = maxlgg

maxy<i<y

. (2.3)

We now study the distribution of the numerator. Note that

. 1
(041, T ,CYI)T = EXTZL

with Z;, = (71, - -,ﬂm)T. Under the normal assumption in (1.1) on y;;, we have
that Zj follows a multivariate normal distribution. Due to the properties of multi-

T

variate normal distribution, we also have that (&q,---,&;)" is multivariate normally

distributed. Under the null hypothesis Hy : oy = --- = a; = 0,
. o 1 o
(G4, ,a7)" ~ MVN(0, —X"Var(Z.)X).
m

With the fact that Var(Z;) = diag{o?/n,...,c2 /n}, we have

T

~ MVN(0, X" diag{p7, ..., p,} X)

ay ar
e
/1 m 2 /1 m 9
mZn Zi:l 03 men Zi:l 0;

Here, “MVIN” stands for the multivariate normal distribution.
Combining the distributions of the numerator and denominator of (2.3), we get

that max;<;<y, |£;| has the same distribution as the ratio U/V such that
(1) U and V are independent;

(2) U has the same distribution as the maximum of the absolute values of a I-

23



dimensional multivariate normal random vector with mean vector 0 and variance-

covariance matrix XTdiag{p?, ..., p% }X;

(3) V follows the weighted sum of m independent x?_, distributions, > " | p?x2_,/(n—
1).
The explicit form of the cumulative distribution function of max;<;<z [t may be

unknown. But, it suggests a way to generate the random sample from the distribution

as follows.

Step 1: Compute p?, for i = 1,2,...,m, from the given data set.
Step 2: Forb=1,..., M,

Step 2.1 Generate a I-dimensional random vector (U, - -« ,Uy)T from

the multivariate normal distribution with mean vector 0 and variance-

covariance matrix X7diag{p?, ..., p2,}X.
Step 2.2: Generate m independent x2 | random variables Vi1, ..., Vin.
Step 2.3: Compute tl(b) = Yy l=1,...,1.

VI Veip? /(n—1)’
Step 2.4: Compute max;<;<s |tl(b)|.
Step 3: The critical value Cgggr for controlling EER in the location model at

the given « value is set to be the 1 — /2 upper quantile of {max;<;<s \tl(b)|, b=

1,2,..., M}.

We give two remarks here. First, we can show that if o?’s are homogeneous,
max; <<y |t;| follows a studentized maximum modulus distribution with two parame-
ters I and m(n — 1), which is suggested by Wu and Hamada to control the EER in
location model. However, if 02’s are not homogeneous, max;<;<; |t;| no longer follows
this distribution. Our method can be applied to both situations. Second, the com-
putation cost again is very cheap. Our R function in the Appendix only take several

seconds to obtain Cgrr when M = 10, 000.
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2.2.4 Connection between Wu and Hamada’s method and

Variyath et al.’s method

Both Wu and Hamada’s method and Variyath et al.’s method can be applied to
control the IER in the location model. In this subsection, we present the connection

between these two methods in the following proposition.

Proposition 2.1. For testing Hy : oy = 0, we have

tt = F.

Here Fy is defined in (1.11). Therefore the two methods are equivalent for controlling
the IER.

Proof. Recall that the Jackknife variance estimate of performance measure of inter-

est, c(y;), is given as

where ¢(y;) = % 2?21 c(yi(7))-

For the location model, we have ¢(y;) = ;,

N Zk;ﬁj Yik Y g Yik — Yij  Ni — Yij

and

Therefore

N n—1<[ng—yy -1 Yi D [yi‘—ﬂi]z
Vialetu)) = S0Pt | MLy ) i D
1
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Thus, the Jackknife variance estimate for ¢(y;) now becomes

Then, a pooled estimate of ¢(y;) is

m

Vija(c(y)) = % > Vialely:) = L > s

i=1 i=1

Therefore, the F-statistic to test the hypothesis Hy : oy = 0 can be written as

MS(¢y a*m
F}Zl m(A)7 :Lzlm 2:tl2 (24)
m Zi:l Vaa(yz) mn 2i=1%i

The preceding expression on the right-hand side of (2.4) implies that the F-statistic
proposed by Variyath et al. (2005) for the location model is the same as the square
of t-type statistic of Wu and Hamada (2000, 2009). O

Since Wu and Hamada’s method and Variyath et al.’s method are equivalent
for controlling the IER in location model, Variyath et al.’s method shares the same
problem as Wu and Hamada’s method. That is, if 7’s are not homogeneous, the true

distribution of F; may not be F-distribution.

2.3 Simulation Study

Here, a simulation study is carried out to compare the performance of the proposed
methods for IER and EER with the three existing methods for both dispersion and

location models.

2.3.1 Simulation Results in Dispersion Model

Results for IER
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We compare the performance of our new method, Wu and Hamada’s method,
Variyath et al.’s method, and Lenth’s method for controlling IER in the dispersion
model.

In the simulation, we considered 23 and 2* factorial experiments. For a 2% ex-
periment with three two-level factors A, B and C, we generate the data using the
models

yij ~ N (0, exp(0.35A4 4 0.3C' + 0.3AC))

and

ysj ~ N(0,exp(0.354 + 0.3C + 0.3BC))

where A, C, AC' and BC take values +1 depending on the combination of factors
levels. Since the mean of the response does not affect the procedures mentioned above,
it is set to be 0 for each run. Then, we test the significance of the I =23 —1 =7
factorial effects of interest at 5% level based on the above mentioned procedures. For
Il =1,...,1, the percentage of rejecting the null hypothesis Hy : v, = 0 at the 5%
level by each method is calculated based on N = 20,000 repetitions. The results are
summarized in Tables 2.2 and 2.3.

For a 2* factorial experiments with four two-level factors A, B, C, and D, we used
the models

Yi; ~ N(0,exp(0.3A + 0.3B + 0.3C + 0.25AC))

and

yi; ~ N(0,exp(0.34 + 0.3B + 0.3C + 0.25AD))

where A, B, C, AC and AD take values £1 depending on the combination of factors
levels. We test the significance of each of I = 2* —1 = 15 effects at 5% level based on
all the four methods. The simulation is also repeated for N = 20,000 times. Then,

the percentage of each factorial effect being declared significant at 5% level is recorded
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Table 2.2: Percentage of rejecting the null hypothesis Hy : 7, = 0 at the 5% level for
model: y;; ~ N (0, exp(0.354 + 0.3C' 4+ 0.3AC)) in replicated 2* experiments

Effectsin =3n=4n=5 n=6 m=3n=4n=5n==06
Wu and Hamada’s method Our method

A |50.6 65.7 77.6 859 |33.5 53.8 T70.2 81.2
B 12.7 9.5 8.1 7.5 53 5.0 49 5.1
C 422 54.1 652 748 |258 416 56.6 68.6
AB |[13.0 9.8 8.3 7.7 54 52 48 5.0
AC |41.3 54.8 65.2 74.8 |25.5 42.3 56.2 68.3
BC |125 9.7 83 8.0 54 5.1 51 b4
ABC | 12.4 10.2 8.3 7.8 53 54 50 5.3

Lenth’s method Variyath et al.’s method

A 165 21.3 253 296 |33.3 520 67.8 785
B 19 11 0.6 0.5 6.5 7.3 6.7 6.3
C 123 153 181 219 |26.6 41.4 551 66.8
AB [ 20 09 0.7 0.4 6.7 70 66 6.7
AC |12.0 152 181 21.6 |26.2 41.5 552 66.4
BC | 20 10 0.7 0.5 6.7 69 7.0 6.6
ABC | 20 12 06 0.5 6.6 7.1 69 6.8

Table 2.3: Percentage of rejecting the null hypothesis Hy : 7, = 0 at the 5% level for
model: y;; ~ N(0,exp(0.354 + 0.3C + 0.3BC')) in replicated 2 experiments

Effectsin =3n=4n=5 n=6 m=3n=4n=5n==06
Wu and Hamada’s method Our method

A |51.2 654 77.8 85.8 |33.7 53.5 T70.0 80.8
B 12.7 9.8 8.3 7.8 53 51 49 5.1
C 419 539 657 746 |25.6 415 56.6 67.9
AB 122 9.7 85 7.6 51 52 5.0 5.1
AC 124 95 86 8.2 54 51 51 5.2
BC |42.2 54.0 65.5 74.0 |25.7 41.8 56.4 67.4
ABC | 12.7 9.8 8.3 7.6 54 51 51 5.0

Lenth’s method Variyath et al.’s method

A 164 20.7 255 295 |33.1 52.1 67.7 789
B 23 1.3 0.8 0.6 70 70 69 7.0
C |11.9 147 186 216 |26.4 420 54.3 67.1
AB |19 11 0.7 0.4 6.7 71 69 6.9
AC | 23 13 08 0.6 6.8 6.7 6.9 6.9
BC |[11.9 150 185 21.5 |26.4 416 554 66.9
ABC| 22 14 08 0.5 70 70 69 6.7
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in Tables 2.4 and 2.5.

From Tables 2.2, 2.3, 2.4 and 2.5, the simulated IERs for the factorial effects not
in the models are quite close to the 5% nominal level by our new method. Wu and
Hamada’s method inflates the TER especially for small n. It becomes better as n
increases. Lenth’s method is quite conservative for controlling IER whether n is large
or small. Variyath et al.’s method is also liberal for controlling IER. The performance
is the same for all the n’s we considered.

We emphasize that the z-type statistics are the same for our method and Wu
and Hamada’s method. The difference between the two methods are the suggested
distributions for the z-type statistics. Therefore the simulation results above suggest
that our suggested distribution is more accurate than the one suggested by Wu and
Hamada.

Results for EER

Here, we also compare the performance of our new method, Wu and Hamada’s
method, and Lenth’s method for controlling EER in the dispersion model. Since
Variyath et al. (2005) does not have a procedure for controlling EER, then it is not
included in the comparison.

In the simulation, we considered 2 and 2* factorial experiments. For each exper-

iment, the model under the null hypothesis Hy : 73 = ... =~ =01s

We set the mean of response to be 0 since it does not affect the above mentioned
three methods. For each experiment, we are interested in I = m — 1 experiments.
For example, for the 23 experiment, we are interested in I = 23 — 1 = 7 effects.

The simulated EER at the 5% level in the dispersion model is calculated based

on N = 20,000 repetitions. The results are presented in Table 2.6.
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Table 2.4: Percentage of rejecting the null hypothesis Hy : 7, = 0 at the 5% level for
model: y;; ~ N(0,exp(0.3A 4 0.3B + 0.3C' + 0.25AC")) in replicated 2* experiments
Effectsin =3n=4n=5 n=6 m=3n=4n=5n==56
Wu and Hamada’s method Our method
63.8 79.7 89.6 95.0 |46.4 70.3 85.0 92.7
63.5 80.0 89.6 95.2 |46.4 70.3 85.1 93.0
63.8 80.2 89.9 95.1 |46.2 70.7 85.2 93.0
128 9.7 8.6 7.5 50 49 51 50
AB 122 9.9 85 7.8 5.0 51 51 5.2
AC | 516 66.1 773 86.0 |34.6 54.2 69.7 81.6
AD |12.3 9.7 8.5 7.4 51 52 51 50
BC | 126 94 85 7.9 51 5.0 53 52
BD |123 96 8.3 7.7 49 49 50 49
CDh | 123 9.7 84 7.8 48 5.1 49 5.2
ABC | 122 9.7 8.3 7.5 50 5.0 51 5.0
ABD [ 12.7 98 8.4 7.8 51 5.1 51 50
ACD | 12.8 10.2 8.5 7.8 54 54 52 5.1
BCD | 125 9.5 84 7.7 5.0 50 52 49
ABCD| 13.1 9.7 8.3 7.3 54 50 5.1 438
Lenth’s method Variyath et al.’s method
A 1234 373 503 63.1 |46.0 68.0 83.6 92.1
B 23.7 374 50.2 63.1 |[458 68.0 83.1 924
C 234 375 50.5 625 |[452 682 83.7 92.2
D 1.7 15 1.8 2.1 6.2 62 59 6.2
AB |16 1.7 1.7 2.0 6.2 65 6.1 59
AC |16.1 259 36.8 49.1 |34.1 53.5 69.3 80.4
AD | 1.6 1.6 1.7 2.2 6.2 6.1 6.1 6.0
BC | 1.7 15 1.9 2.3 6.1 63 57 6.0
BD | 1.7 15 1.7 1.8 64 64 59 58
Ccb | 1.7 17 1.7 2.2 6.0 6.5 58 59
ABC| 16 16 1.6 2.1 6.1 64 63 58
ABD | 1.7 16 1.8 2.3 6.2 6.2 6.1 59
ACD| 1.8 1.7 1.8 2.1 6.1 6.1 6.3 6.2
BCD| 1.7 16 1.6 1.9 6.2 6.1 6.2 6.0
ABCD| 1.9 16 1.8 2.1 6.1 62 6.1 6.0

SaQw»
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Table 2.5: Percentage of rejecting the null hypothesis Hy : 7, = 0 at the 5% level for
model: y;; ~ N(0,exp(0.3A 4 0.3B + 0.3C + 0.25AD)) in replicated 2* experiments

Effectsin =3n=4n=5 n=6 m=3n=4n=5n==56
Wu and Hamada’s method Our method

A 1632 80.1 89.5 95.0 |46.0 70.5 84.5 92.8

B 163.6 798 89.7 953 [46.2 70.3 84.7 93.0

C 163.6 79.5 899 951 |[46.2 69.7 854 92.9

D |128 96 8.5 7.7 53 5.0 53 49
AB 123 98 83 7.6 52 5.0 51 5.0
AC |125 98 84 7.3 51 5.1 50 438
AD |51.2 658 781 86.0 |33.8 54.3 70.7 81.3
BC |128 9.5 8.1 7.8 54 48 47 5.1
BD | 120 99 85 7.7 49 52 49 52
CDh 127 9.7 83 7.5 51 52 51 50
ABC | 127 98 8.6 7.7 50 51 52 5.0
ABD | 126 9.7 8.4 7.8 54 5.1 51 5.2
ACD | 12.0 10.0 8.6 7.9 48 53 51 52
BCD | 12.8 10.0 8.3 7.8 54 53 50 5.1
ABCD| 126 99 8.3 7.7 51 52 50 5.2

Lenth’s method Variyath et al.’s method

A 1237 368 50.8 62.7 |459 679 832 91.9

B 1235 36.8 509 62.8 |45.7 68.6 83.6 91.7

C 124.0 371 50.8 628 |[454 67.5 83.6 91.7
D 1.7 16 1.8 2.1 6.1 63 6.0 6.1
AB [ 19 16 1.9 2.0 6.0 6.1 59 6.0
AC | 1.7 15 1.7 2.1 6.3 6.3 62 59
AD |16.4 257 372 486 |33.1 53.6 689 80.9
BC | 1.8 1.7 16 2.0 6.1 6.0 59 59
BD | 1.7 16 1.7 2.1 6.2 62 6.0 58
Ch | 1.8 15 1.7 2.1 6.2 62 6.2 6.1
ABC | 1.7 17 1.7 2.0 6.0 6.1 6.0 57
ABD | 1.7 16 1.7 2.0 6.3 6.1 6.1 6.2
ACD | 1.7 18 1.8 2.2 6.0 6.1 6.1 59
BCD| 19 16 138 1.9 6.3 6.2 58 59
ABCD| 1.8 16 1.8 2.1 6.1 6.3 6.0 59

Table 2.6: Percentage of rejecting the null hypothesis Hy : v = ... = 77 = 0 at the

5% level for model: y;; ~ N(0,1) in replicated 2* and 2* factorial experiments

I

n=3n=4n=5 n==06

n=3n=4n=5n==06

n=3n=4n=5n==6

Wu and Hamada’s method

Our method

Lenth’s method

0.216 0.149 0.119 0.109
0.264 0.175 0.140 0.119

0.055 0.054 0.054 0.054
0.055 0.054 0.053 0.051

0.045 0.045 0.047 0.048
0.043 0.045 0.043 0.043
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From Table 2.6, it is observed that the values for the EER based on our new
method are around 0.05 (5%). This is an evidence that our proposed method can
accurately control the EER in the dispersion model. The method suggested by Wu
and Hamada gives results that are far more than the 5% nominal level. Therefore
Wu and Hamada’s method can not tightly control the EER in the dispersion model.
The EER based on the Lenth’s method is quite close to the nominal level. Therefore

Lenth’s method can also tightly control the EER.

2.3.2 Simulation Results in Location Model

Results for IER

As we discussed in Section 2.2.4, Wu and Hamada’s method and Variyath et al.’s
method are equivalent for controlling IER in the location model. Therefore, we only
compare the performance of our new method, Wu and Hamada’s method, and Lenth’s
method for controlling IER in the location model. We consider two cases: ¢?’s are
homogeneous and ¢?’s are not homogeneous.
Case I: 0?’s are homogeneous

In this case, we performed simulations for 2% and 2% factorial experiments. For

the 23 experiment with three two-level factors A, B, and C, we used the model

yij ~ N(104+0.5A+0.5B + 04AB, 1)

where A, B and AB take values +1 depending on the combination of factors levels.

For the 2* experiment with four two-level factors A, B, C' and D, we used the model

yij ~ N(B+034+0.3B+0.3D+0.25BD, 1)

where A, B, D and BD take values £1 depending on the combination of factors

levels. Then, we test the significance of the factorial effects of interest for each model
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at 5% level based on the aforementioned methods. The simulation is repeated for
N = 20,000 times for each model. We compute the percentage of rejecting the null

hypothesis Hy : ay = 0, [ = 1,...,I. The results are summarized in Tables 2.7 and
2.8.

From the simulated results in Tables 2.7 and 2.8, it is seen that both our proposed
method and Wu and Hamada’s method can tightly control IER at the 5% nominal
level when the 02’s are homogeneous. However, Lenth’s method can not tightly
control the IER. In terms of the power, our method almost has the same power as
Wu and Hamada’s method in all the situations except for the 23 experiment with

n = 3. In that situation, our method is a little bit less powerful.

Table 2.7: Percentage of rejecting the null hypothesis Hy : o = 0 at the 5% level for
model: y;; ~ N(10 4+ 0.5A + 0.5B + 0.4AB, 1) in replicated 2* experiments
Effectsin =3n=4n=5n=6n=3n=4n=5 n=6 m=3n=4n=5n==6
Our method Wu and Hamada’s method Lenth’s method
A | 587 758 86.0 92.7]63.3 77.0 86.4 92.1 |22.9 275 33.1 374
B |588 76.6 85.8 92.3|64.3 77.8 86.0 920 |23.7 283 33.1 37.6
C 45 46 47 53|52 51 438 5.3 0.7 05 04 0.5
AB [41.3 570 684 773|451 57.8 69.0 778 |139 176 214 252
AC | 46 48 50 54 |50 50 49 4.8 0.8 05 05 04
BC | 43 48 45 54|47 49 50 5.1 0.6 05 05 04
ABC | 47 45 47 49 |51 49 49 4.7 0.6 06 04 04

Case II: ¢?’s are not homogeneous

In this case, we used the models

Yij ~ N(10+ A+ B+ 0.5AB,exp(A+ C + 0.5AC))

and

yij ~ N(5+ 0.65A + 0.65B 4 0.45AB, exp(A + C + 0.5AC))

for the 23 factorial experiment with three two-level factors A, B, and C. For the 2%
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Table 2.8: Percentage of rejecting the null hypothesis Hy : o = 0 at the 5% level for
model: y;; ~ N(5+ 0.34+ 0.3B +0.3D + 0.25BD, 1) in replicated 2* experiments
Effectsin =3n=4n=5n=6m=3n=4n=5 n=6 m=3n=4n=5n=56
Our method Wu and Hamada’s method Lenth’s method
A |51.2 63.8 T74.1 81.7]52.6 65.2 752 82.8 |[26.2 33.0 40.7 48.1
B 49.6 63.4 73.6 81.2|51.3 649 74.8 829 |26.5 321 414 474
C 48 46 45 45|51 50 48 4.7 1.9 16 1.7 1.8
D 51.0 63.6 74.2 81.9]52.6 653 752 834 |255 32.8 41.1 47.0
AB | 46 45 44 44 |50 48 438 5.0 1.7 1.8 1.7 20
AC | 48 46 45 45|52 50 4.7 5.0 1.8 1.7 1.7 18
AD | 45 45 46 45|49 51 50 4.8 1.8 16 18 1.8
BC |48 46 51 47 |51 51 54 4.9 1.7 16 1.7 1.7
BD |37.7 479 583 65.8|39.1 49.6 59.4 675 |187 225 28.7 34.2
CD | 45 48 45 45 |48 52 49 5.1 1.6 1.7 20 1.7
ABC | 5.0 45 46 45 |54 49 49 5.1 1.9 1.7 1.7 19
ABD | 4.6 45 45 44 |48 49 46 4.5 1.7 15 1.7 1.7
ACD | 46 46 45 46 |46 49 47 5.1 1.8 18 15 1.8
BCD | 46 47 48 45|51 51 5.3 4.4 1.7 16 18 1.6
ABCD| 4.7 45 47 50 |51 48 49 4.8 21 1.7 1.7 1.8

experiment with four two-level factors A, B, C' and D, we used the models

Yij ~ N(10+0.5A 4 0.458B + 0.5D 4+ 0.4AD,exp(A+ B + D 4+ 0.5AD))

and

yij ~ N(5+ 0.75A 4+ 0.65B + 0.55C + 0.5AD, exp(A + B + C + 0.5BD)).

Also, we test the significance of the I factorial effects of interest at the 5% level based
on the above mentioned methods. For [ = 1,... 1, the percentage of rejecting the
null hypothesis Hy : oy = 0 at the 5% level by each method is calculated based on
N = 20,000 repetitions. The results are summarized in Tables 2.9, 2.10, 2.11 and
2.12 respectively.

From the simulated results in Tables 2.9, 2.10, 2.11 and 2.12, only our proposed

method can tightly control the IER for all the models. These results support our
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argument that the t-distribution with degrees of freedom m(n — 1) suggested by Wu

and Hamada may not be true and fail to control IER when o?’s are not the same.

Again, Lenth’s method can not accurately control the IER in the location model.

Table 2.9: Percentage of rejecting the null hypothesis Hy : a; = 0 at the 5% level for
model: y;; ~ N(10+ A+ B+0.5A4B, exp(A+C+0.5AC)) in replicated 2* experiment

Effectsin =3n=4n=5n=6n=3n=4n=5 n=6 n=3n=4n=5n==0
Our method Wu and Hamada’s method Lenth’s method
A |575 743 86.6 93.1|71.0 82.3 90.5 94.8 |31.2 38.6 44.4 49.9
B [57.0 74.1 87.0 933|713 822 90.3 949 |272 351 414 47.4
C 47 46 52 53|83 74 7.1 7.0 02 03 02 03
AB |18.3 246 33.8 41.6|28.5 33.3 40.6 46.2 9.8 124 16.3 20.1
AC | 45 46 51 53|85 74 70 6.9 03 02 02 0.3
BC 46 45 53 52|82 71 74 6.9 05 04 03 04
ABC | 47 46 51 50|85 66 7.0 6.4 05 04 04 04

Table 2.10: Percentage of rejecting the null hypothesis Hy
for model: y;; ~ N(54 0.65A + 0.65B + 0.45AB, exp(A + C + 0.5AC)) in replicated

23 experiment

: oy = 0 at the 5% level

Effectsin =3n=4n=5n=6n=3n=4n=5 n=6 m=3n=4n=5n==06
Our method Wu and Hamada’s method Lenth’s method
A 286 404 51.1 60.0]41.2 50.6 585 66.0 |15.2 174 20.8 24.6
B |28.1 40.0 51.2 59.9]40.2 50.0 59.2 65.7 |10.6 13.8 16.6 20.8
C 50 52 50 50|81 76 7.0 6.4 03 03 02 0.3
AB |16.5 21.8 283 33.4|24.8 28.7 344 389 51 7.0 9.0 12.0
AC |50 52 53 50|80 76 7.1 6.3 04 03 02 02
BC | 53 51 47 52|86 76 6.9 6.5 1.5 1.1 09 08
ABC |54 49 48 48 |86 73 6.8 6.5 1.4 10 09 08

Results for EER

We compare the performance of our proposed method, Wu and Hamada’s method,

and Lenth’s method for controlling the EER in the location model. We still consider

two cases: o2

i

Case I: o2

%

's are homogeneous

’s are homogeneous and ¢?’s are not homogeneous.

Here, we considered 2% and 2* factorial experiments. We used the model
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Table 2.11: Percentage of rejecting the null hypothesis Hj :

o; = 0 at the 5% level

for model: y;; ~ N(10+0.5A+0.45B+0.5D +0.4AD,exp(A+ B+ D +0.5AD)) in
replicated 2* experiment

Effects

n=3n=4n=5n==06

n=3n=4n=5 n==6

n=3n=4n=55n==6

Our method

Wu and Hamada’s method

Lenth’s method

A
B
C
D
AB
AC
AD
BC
BD
CD
ABC
ABD
ACD
BCD
ABCD

25.7 34.3 43.3 51.2
21.6 294 36.8 44.2
50 55 50 51

25.7 34.3 43.0 51.2
5.1 52 52 49
5.1 53 52 5.2
18.6 24.3 29.9 36.2
49 56 51 5.0
49 49 51 5.1
49 52 49 54
5.2 55 54 49
5.0 51 51 5.0
52 52 51 5.3
51 54 48 51
5.1 53 51 5.0

35.1 421 499 56.5
30.5 36.7 434 49.1
7777 6.6 6.5
35.5 423 49.8 56.5
80 75 7.0 6.2
78 75 70 6.5
26.1 309 35.7 41.0
8.0 7.8 6.7 6.4
8.0 74 6.8 6.4
79 74 6.6 6.8
84 74 7.1 6.3
80 7.6 6.8 6.2
85 74 6.8 6.9
81 7.6 6.7 6.3
79 76 69 6.4

184 227 273 314
16.3 21.0 25.1 29.0

05 04 05 0.6
185 232 27.0 314
05 05 04 06
06 04 05 0.6
13.5 16.8 199 22.7
06 06 05 04
06 07 05 04
05 05 05 0.5
05 05 05 0.5
0.7 05 05 0.5
0.7 05 05 04
0.7 05 05 0.5
0.7 05 05 0.5

Table 2.12: Percentage of rejecting the null hypothesis Hy :

o; = 0 at the 5% level

for model: yi; ~ N(5 + 0.75A + 0.65B + 0.55C + 0.5AD, exp(A + B + C + 0.5BD))
in replicated 2* experiment

Effects

n=3n=4n=5n==6

n=3n=4n=5 n==06

n=3n=4n=5n==06

Our method

Wu and Hamada’s method

Lenth’s method

A
B
C
D
AB
AC
AD
BC
BD
CD
ABC
ABD
ACD
BCD
ABCD

59.1 759 859 91.6
48.4 62.7 754 83.5
36.9 499 61.2 70.7
2.2 51 49 53
51 49 49 52
48 51 51 5.5
314 43.0 529 61.6
5.2 53 47 52
50 5.0 52 5.5
50 52 50 5.3
5.2 50 5.0 5.2
5.0 52 49 54
48 49 5.0 5.0
52 51 53 54
51 53 52 54

70.7 82.1 894 938
59.3 70.2 80.4 86.7
475 571 673 75.0
77 6.8 6.2 6.4
74 6.2 6.2 6.4
69 69 6.5 6.6
40.4 50.2 59.0 66.1
7.8 6.8 6.0 6.3
76 6.7 6.3 6.7
75 6.8 6.3 6.2
75 6.6 64 6.7
73 70 64 6.5
74 65 64 6.2
76 6.9 6.6 6.7
73 74 6.7 6.7

42.1 51.6 59.5 65.1
32.7 422 50.5 56.3
249 332 41.2 468

1.0 11 11 1.3
23 18 21 21
1.7 17 19 21
20.5 28.9 34.8 40.6
1.7 17 20 1.7
06 09 09 1.0
05 06 07 08
1.1 1.0 14 1.1
0.8 11 11 1.2
1.0 1.0 10 1.1
06 07 07 08
05 07 07 09
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for the simulations for both factorial experiments. The simulated EER at the 5%
level by each method is calculated based on N = 20,000 repetitions. The results
are shown in Table 2.13. As we can see from this table, all the three methods can

accurately control the EER at the 5% level.

Table 2.13: Percentage of rejecting the null hypothesis Hy : oy = ... = a; = 0 at the
5% level for model: y;; ~ N(0, 1) in replicated 2* and 2* experiments
Imn=3n=4n=5n=6n=3n=4n=5 n=6 n=3n=4n=5n==06
Our method Wu and Hamada’s method Lenth’s method
710.045 0.046 0.046 0.048]0.053 0.051 0.044 0.049 |0.053 0.050 0.051 0.050
15/0.046 0.045 0.047 0.051]0.049 0.048 0.045 0.054 [0.049 0.050 0.052 0.050

Case II: ¢?’s are not homogeneous

Here, we used the models

yi; ~ N(0,exp(A + C + 0.5AC))

and

for the 23 and 2* factorial experiments respectively. The simulation is repeated for
20,000 times and the EER is computed using the above procedures. The results are
summarized in Table 2.14.

From Table 2.14, it is seen that only our proposed method controls the EER at
5% nominal level. The results given by Wu and Hamada’s method are too liberal
while those of Lenth’s method are conservative. Again, these results also support
our argument that the studentized maximum modulus distribution with parameters
I and m(n — 1) suggested by Wu and Hamada may not be true and fail to control

the EER when 0?’s are not homogeneous.
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Table 2.14: Percentage of rejecting the null hypothesis Hy: oy = ... = a; = 0 at the
5% level for model: y;; ~ N(0,exp(A+C+0.5AC)) and y;; ~ N(0,exp(A+C+ D+
0.5CD)) in replicated 2% and 2 experiments respectively
Im=3n=4n=5n=6m=3n=4n=5 n=6 n=3n=4n=5n==06
Our method Wu and Hamada’s method Lenth’s method
710.054 0.052 0.052 0.049{0.087 0.068 0.066 0.063 |0.030 0.027 0.030 0.030
15/0.052 0.050 0.049 0.049|0.081 0.066 0.063 0.060 [0.023 0.023 0.025 0.026

2.4 Application To Real Examples

In this Section, we illustrate the above methods by two real data sets given in Ex-
amples 1.1 and 1.2 above. In each set, we examine the performance of the proposed

methods.

2.4.1 Example 1.1

Traditionally, half-normal plots developed by Daniel (1959, 1976) are used to identify
the active effects in factorial experiments. We first consider the data set of Example
1.1. The half-normal plot for the interested 15 effects in the dispersion model is shown
in Figure 2.1. Clearly, effect A is significant, and probably BC, AC, ABD and AB
are also significant for the dispersion model.

If we control the IER of each effect in the dispersion model to be 5%, Wu and
Hamada’s method declared that effects A, AC, BC and ABD are found significant;
both our method and Variyath et al.’s method claimed that effects A and BC are
significant; Lenth’s method found that only effect A is significant. If we control the
EER in the dispersion model to be 5%, both the Wu and Hamada and our method
declared that only effect A is significant, while Lenth’s method declared that no effect
is significant for the dispersion model.

For the location model, the half-normal plot of 15 interested effects as shown in
Figure 2.2 declared effect A and probably B and AB as significant. If we control the

IER of each effect in the location model to be 5% we found that effects A and B
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are declared significant by the Wu and Hamada and our methods while no effect is
declared significant by the Lenth’s method. If we control the EER in the location
model to be 5%, both our method and Wu and Hamada’s method found that only
effect A is significant, again Lenth’s method does not identify any significant effect.

Figure 2.1: Half-Normal Plot for the interested 15 effects in the dispersion model,
Example 1.1.

1.0

0.8

B:C

ag ABD AC

Dispersion Effects(Golf)
0.4 0.6
!

0.2

T T T T
0.0 0.5 1.0 15

Half-normal quantiles

2.4.2 Example 1.2

Figure 2.3 gives the half-normal plot of the interested seven effects in the dispersion
model. It is quite hard to tell which effects are significant from the plot. If we control
the IER for each effect at 5% in the dispersion model, we found out that effects C and
AF are declared significant by Wu and Hamada and Variyath et al. methods, while
no effect is declared significant by our proposed method and Lenth’s method. If we
control the EER for the dispersion model to be 5%, effect C is declared significant
by the Wu and Hamada’s method. Again, no effect is found significant by both our
method and Lenth’s method.

For the location model, the half-normal plot as shown in Figure 2.4, declared
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Figure 2.2: Half-Normal Plot for the interested 15 effects in the location model,
Example 1.1.

AB

Location Effects(Golf)

0.0 0.5 1.0 15

Half-normal quantiles

effects D and F as significant. If we control the IER for each effect in the location
model to be 5%, Wu and Hamada’s method declared effects A, D and F as significant.
Effects D and F are declared significant by our method and no effect is declared
significant by Lenth’s method. If we control the EER to be 5% in the location model,
effects D and F are are declared significant by Wu and Hamada’s method. Effect D is

found significant by our method and no effect is found significant by Lenth’s method.
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Figure 2.3: Half-Normal Plot for the interested 7 effects in the dispersion model,
Example 1.2.
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Figure 2.4: Half-Normal Plot for the interested 7 effects in the location model, Fx-
ample 1.2.
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Chapter 3

Controlling the FDR in Location

and Dispersion models

3.1 False Discovery Rate

False discovery rate (FDR) was first introduced by Benjamini and Hochberg (1995,
hereinafter BH) as an error rate to control in many multiple hypotheses testing prob-
lems. It provides an alternative for the EER. Since then, this error rate has been given
much attention by various researchers in different settings (Weller et al., 1998; Troen-
dle, 1999; Benjamini and Hochberg, 2000; Benjamini and Yekutieli, 2001; Efron et al.,
2001; Mosig et al., 2001; Genovese and Wasserman, 2002a, b; Storey, 2002; Sarkar,
2002; Storey and Tibshirani, 2003a, b; Benjamini, Krieger and Yekutieli, 2006; Kimel
et al., 2008; and others). Kimel, Benjamini and Steinberg (2008) first applied this
error rate in two-level unreplicated regular factorial experiments.

Suppose we are interested in testing simultaneously I null hypotheses of interest.
Suppose that mg of these hypotheses are true and m; = (I — my) are false. Let V
be the number of false discoveries and R be the total number of discoveries. BH

(1995) defined FDR as the expected proportion of false discoveries among the total
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discoveries. That is

FDR:E(%) it R > 0.

When R = 0, they defined the FDR to be 0, since no error of false discovery can be
committed.

The following two important properties about FDR were shown by BH (1995):
(a) If all the null hypotheses are true, then the FDR is equivalent to the EER.

(b) When mg < I, the FDR is less than or equal to EER. This implies that
any procedure that controls the EER also controls the FDR as well at the same

nominal level but the converse is not true.

3.1.1 Benjamini and Hochberg’s Procedure for controlling

the FDR

Suppose we are interested in I factorial effects. We use P, to denote the P-value of
the test statistic for the [th hypothesis, [ = 1,...,1. Let Py < Py < ... < P be

the ordered observed P-values. For the given g value, let
l
h = max l:P(l)qu ,

then we declare the h largest effects active or significant.

We call the above procedure BH procedure. When the test statistics are inde-
pendent, BH (1995) showed that the foregoing procedure controls the FDR at level
(mo/I)q. Benjamini and Yekutieli (2001) later proved that the preceding procedure
also controls the FDR at a level less than or equal to ¢ for positively dependent test

statistics.
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3.1.2 Adaptive Procedure for controlling FDR

Recall that the Benjamini and Hochberg (1995) FDR procedure controls the FDR at
the desired level ¢ for independent and positively dependent test statistics. When all
the null hypotheses are true, and the test statistics are independent and continuous,
the bound is sharp (Bejamini et al., 2006). When some of the null hypotheses are not
true (that is, when mg < I), the BH procedure becomes conservative by a factor of
mo/I (Benjamini and Hochberg, 2000). To remedy this conservativeness, Benjamini
and Hochberg (2000) suggested an adaptive version of Benjamini and Hochberg (1995)
procedure that controls FDR by first estimating mg. The estimate is then used to
adjust the BH procedure to control the FDR at precisely the desired level g. Since
then, the problem of estimating mg has received wide attention (Efron et al., 2001;
Mosig et al., 2001; Storey, 2002, 2003; Black, 2004; Storey et al., 2004; Benjamini,
Krieger and Yekutieli, 2006; and others). Of all the aforementioned methods for
estimating mg, Benjamini and Hochberg (2000)’s adaptive FDR, control procedure is
found most effective for analyzing factorial experiments (Kimel et al., 2008). The
following is the adaptive procedure for controlling FDR. We call this procedure ABH
procedure.

The ABH FDR Controlling Procedure

1. Use the BH procedure described in Section 3.1 at level ¢. If no significant effect

is found, then stop; otherwise, proceed.

2. Calculate the slopes S; = %,

which is the [-th slope estimate of the line
passing through the points (/+1, 1) and (I, F)) on the quantile plot of the

P-values.

3. Starting with [ = 1, proceed as long as S; > S;_1. When for the first time

Sl < Sl—l, stop.
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4. Set my = min([1/5;+ 1], I). Here [z] is the largest integer which is smaller than

or equal to z.
5. Use the BH procedure described in Section 3.1 again at level q(I/my).

Remark 3.1. Here are some remarks about Steps 2, 3, and 4. In Step 2, we compute
the slopes S;’s since they contain the information for estimating mg. If all the null
hypotheses are true, that is mg = I, and the test statistics are independent, Pyy’s can
be considered as a realization of ordered sample from the uniform distribution over the
interval [0,1]. The expected value of the l-th P-value is E(Pyy) = 1/(mo+1). A plot of
Pyy against | should therefore indicate a straight line with the slope 1/(mg+1) passing
through the origin and the point (I+1,1). When mqo < I, the P-values corresponding
to the alternative hypotheses tend to be smaller than the P-values corresponding to the
null hypotheses, so they concentrate on the left-hand side of the plot. The relationship
over the right-hand side of the plot should be approximately linear with slope 1/(mg+
1). Therefore the slopes S;’s for large | contain the useful information for estimating
my.

The condition S; > S;_1 in Step 3 is equivalent to

(Poy = Pa-1)/(1 = Pa—y)) < 1/(I+1—= (= 1)).

The value 1/(I +1 — (I — 1)) is the expected value of the normalized gap on the left-
hand side under the assumption that all P-values greater or equal to Py_yy correspond
to true null hypotheses. Therefore the stopping rule is equivalent to dropping a small
P-value if its gap to its larger neighborhood is smaller than its expected value.

The estimate of mq in Step 4 is called the lowest slope estimate of mq. This is the
most satisfactory estimate found by Benjamini and Hochberg (2000). See Benjamini
and Hochberg (2000) for more details.
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3.2 FDR in Replicated Regular Two-Level Exper-
iments

As we can see in the last section, finding the P-values of the test statistic for testing a
given null hypothesis for each method is the first step before using the BH and ABH
procedures to control the FDR. In the following subsections, we present how to obtain
the P-value of the test statistic for the existing and the proposed methods. For each
method, once the I P-values are obtained in the location model or dispersion model,

the BH and ABH procedures can be applied to control the FDR.

3.2.1 Wu and Hamada’s Methods

Recall that for the dispersion model, Wu and Hamada constructed a z-type statistic

gl
2
m(n—1)

Z] =

to test the hypothesis Hy : 7, = 0. They used N(0,1) distribution to approximate
the distribution of the z-type test statistic under the null hypothesis. Therefore the

P-values of the z-type test statistic can be calculated as

P, = Pr(|N(0,1)] > observed |z]).

For the location model, the t-type test statistic

a

1 m 2
mZn Zi:l Si

is used to test the hypothesis Hy : oy = 0. The P-value of the t-type statistic can be
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calculated based on the ?,,(,—1) distribution as

Py = Pr(|tmm-1)| > observed |t;]).

3.2.2 Variyath et al.’s Method

Variyath et al. (2005) argued that the F' statistic, [}, follows the F} ,(,—1) distribu-

tion. Therefore, the P-value of the F' statistic, F;, can be calculated as

P, = Pr(Fimm-1) > observed F}).

3.2.3 Lenth’s Method

Here, we adopt the method proposed by Edwards and Mee (2008) to compute the
P-value for Lenth’s test statistic. Their method is the same for both the dispersion
and location models. To describe their method for the dispersion model, we have
adopted some notations used in their paper. Suppose 71,...,7; are the least square
estimates for factorial effects (71, ...,7) of interest in dispersion model. In order to

)T are not

handle the cases where the diagonal elements of Var(§) = Var(%q,...,49;
equal, they standardized the estimated factorial effects of interest as

N
)
(%

Cc = (31)

where vy is the diagonal element of V = (XTX)™! corresponding to 4;. Here, X is
the matrix corresponding to the columns of the I factorial effects of interest only.
Therefore, for a given set of least square estimates 4y,...,%, they compute the P-
values for the Lenth t-type statistic through Monte Carlo simulation given by the

following steps.

Step 1: Compute the standardized coefficients using (3.1), the PSE using
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(1.12), and the I Lenth t statistics, tLenthy ! =1,---, 1.

Step 2: Compute the I x I matrix R, where the (I, p)th element of R is given

by vip/ (Vuvgy) 2.

Step 3: Generate M sets of I random variables from a multivariate normal

distribution with mean 0 and covariance R.

Step 4: For the bth set of random variables, compute PSE and the Lenth ¢

ot (b) _ _
statistics, tLenth,z’ l=1,...;I,b=1,..., M.

Step 5: Compute the P-value of 4; as

. |40
#* {b' ’tLenth,z’ = ’tLenth,z’}
M )

P =
where '#' stands for “the number of”.

3.2.4 Our Proposed Methods

For the dispersion model, we proposed using N (0, a?) to approximate the distribution

of z; in Section 2.1.1. Therefore it can also be used to calculate the P-value of z; as
P, = Pr(|N(0,a2)| > observed |z]).

The values of a,, can be found in Table 2.1.

For the location model, we argued that under the null hypothesis of Hy : oy = 0,

N N(0,1)
\/27;1 P?Xi—l (n—1)

4]

and proposed a method to approximately generate M random observations, tl(b), b=

1,..., M, from the above distribution. The details can be found in Section 2.2.2.
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Then the P-value of t; can be calculated as

4 {b; }tl(b)} > observed |tl|}

P = =

3.2.5 Simulation Study

Now, we perform a simulation study to compare all the four methods in terms of
controlling FDR in replicated regular two-level factorial experiments.
Dispersion Model

For the simulations, we considered 22 and 2* factorial experiments. Two different

cases are considered. First, when no effect is active, we used the model
yij ~ N(0,1)

for both the 2% and 2* factorial experiments. Second, when there are some active

effects, we used the models
vi; ~ N (0, exp(0.35A4 4+ 0.3C + 0.3AC))

and

Yi; ~ N(0,exp(0.354 + 0.3C' + 0.3BC))

for 23 experiment. For 2% experiments, we used the models
Yi; ~ N(0,exp(0.3A + 0.3B + 0.3C + 0.25AC))

and

yi; ~ N(0,exp(0.34 + 0.3B + 0.3C + 0.25AD)).

The simulation is repeated for 10,000 times except for Lenth’s method. The simu-
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lation is repeated only 5,000 times for Lenth’s method since it is quite computationally

extensive to run the simulations for Lenth’s method. The simulated FDRs are then

calculated and are summarized in Tables 3.1, 3.2, 3.3, 3.4, and 3.5.

Table 3.1: Simulated FDRs under the 5% using BH and ABH procedures for the
model: y;; ~ N(0,1) in 2° and 2* experiments

n=3n=4n=5n==06

n=3n=4n=5n==6

n=3n=4n=5n==6

n=3n=4n=5n==06

Our method BH

Our method ABH

‘Wu and Hamada BH

Wu and Hamada ABH

0.057 0.054 0.054 0.056
0.060 0.055 0.054 0.054

0.057 0.054 0.054 0.056
0.060 0.055 0.054 0.054

0.210 0.155 0.124 0.104
0.280 0.187 0.141 0.122

0.210 0.155 0.124 0.104
0.280 0.187 0.141 0.122

Variyath et al. BH

Variyath et al. ABH

Lenth BH

Lenth ABH

0.085 0.097 0.092 0.091
0.087 0.088 0.084 0.089

0.085 0.097 0.092 0.091

0.087 0.088 0.084 0.089

0.034 0.033 0.031 0.039

0.035 0.031 0.037 0.032

0.034 0.033 0.031 0.039
0.035 0.031 0.037 0.032

Table 3.2: Simulated FDRs under the 5% using BH and ABH procedures for the
model: y;; ~ N (0, exp(0.354 + 0.3C + 0.3AC)) in 2* experiment

Method Im=3n=4n=5n=6n=3n=4n=5n==6
BH ABH
Our method 0.033 0.031 0.031 0.030]0.040 0.041 0.043 0.045

Wu and Hamada’s method
Variyath et al.’s method

Lenth’s method

0.109 0.073 0.059 0.051
0.044 0.046 0.046 0.044
0.004 0.005 0.002 0.002

0.122 0.088 0.077 0.071
0.056 0.059 0.060 0.062
0.004 0.005 0.003 0.002

Table 3.3: Simulated FDRs under the 5% using BH and ABH procedures for the

model: y;; ~ N(0,exp(0.35A + 0.3C + 0.3BC')) in 2% experiment

Method Im=3n=4n=5n=6n=3n=4n=5n==6
BH ABH
Our method 0.034 0.030 0.030 0.029]0.040 0.041 0.044 0.045

Wu and Hamada’s method
Variyath et al.’s method

Lenth’s method

3 1 1

0.107 0.074 0.059 0.052
0.044 0.047 0.044 0.041
0.004 0.004 0.003 0.002

0.119 0.091 0.078 0.073
0.058 0.058 0.060 0.060
0.004 0.004 0.003 0.002

From Tables 3.1, 3.2, 3.3, 3.4, and 3.5, it is seen that our proposed method coupled

with ABH procedure can accurately controls FDR at the ¢ = 0.05 for both the cases

of no active effect and when there are some active effects. Lenth’s method is quite

conservative especially when there are some active effects. Wu and Hamada’s method

is quite liberal for both cases no matter BH or ABH procedures are used. Variyath
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Table 3.4: Simulated FDRs under the 5% using BH and ABH procedures for the

model: y;; ~ N(0,exp(0.3A4 + 0.3B + 0.3C' + 0.25AC")) in 2* experiment

Method Im=3n=4n=5n=6n=3n=4n=5n==06
BH ABH
Our method 15(0.039 0.038 0.038 0.038]0.050 0.048 0.049 0.049

Wu and Hamada’s method
Variyath et al.’s method

Lenth’s method

15
15
15

0.160 0.103 0.080 0.068
0.054 0.056 0.051 0.052
0.006 0.008 0.010 0.010

0.180 0.126 0.102 0.088
0.062 0.070 0.067 0.068
0.007 0.008 0.012 0.013

Table 3.5: Simulated FDRs under the 5% using BH and ABH procedures for the

model: y;; ~ N(0,exp(0.34 4 0.3B + 0.3C + 0.25AD)) in 2* experiment

Method Imn=3n=4n=5n=6n=3n=4n=5n==06
BH ABH
Our method 15/0.040 0.040 0.040 0.040|0.046 0.050 0.050 0.050

Wu and Hamada’s method
Variyath et al.’s method

Lenth’s method

15
15
15

0.160 0.106 0.083 0.069
0.055 0.056 0.051 0.052
0.009 0.008 0.009 0.010

0.180 0.128 0.105 0.090
0.064 0.068 0.066 0.069
0.010 0.011 0.012 0.013

et al.’s method is quite liberal for the case of no active effect whether BH or ABH
procedure is used. It works quite well for the case when there are some active methods
if BH procedure is used.
Location Model

We considered two situations here: o2’s are homogeneous and ¢?’s are not homo-
geneous.
Case I: 07’s are homogeneous

We performed simulations for 22 and 2* factorial experiments in this case. For the

23 and 2* experiments when no effect is active, we used the model

When there are some active effects, we used the models

yij ~ N(10 + 0.54 +0.58 + 0.4AB, 1)
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and

yij ~ N(5+ 034+ 0.3B +0.3D + 0.25BD, 1)

for 2% and 2* experiments, respectively. The simulated FDRs are presented in Tables

3.6, 3.7 and 3.8.

Table 3.6: Simulated FDRs under the 5% using BH and ABH Procedures for the

model: y;; ~ N(0,1) in 2° and 2* experiments

I

n=3n=4n=55n==6

n=3n=4n=5n==06

Our method BH

Our method ABH

0.030 0.035 0.043 0.045
0.032 0.040 0.044 0.046

0.030 0.035 0.043 0.045
0.032 0.040 0.044 0.046

Wu and Hamada BH

Wu and Hamada ABH

0.050 0.050 0.048 0.050
0.048 0.047 0.047 0.046

0.050 0.050 0.048 0.050
0.048 0.047 0.047 0.046

Lenth BH

Lenth ABH

0.033 0.036 0.035 0.035
0.040 0.035 0.033 0.034

0.033 0.036 0.035 0.033

0.040 0.035 0.033 0.034

Table 3.7: Simulated FDRs under the 5% using BH and ABH Procedures for the

model: y;; ~ N(10+0.5A 4 0.5B + 0.3C + 0.4AB, 1) in 2* experiment

Method Im=3n=4n=5n=6n=3n=4n=5n==6
BH ABH
Our method |7/0.021 0.023 0.026 0.027(0.035 0.037 0.040 0.044

Wu and Hamada

Lenth

7

0.029 0.026 0.029 0.030

0.041 0.041 0.044 0.048

0.003 0.002 0.001 0.001

0.002 0.002 0.001 0.002

Table 3.8: Simulated FDRs under the 5% using BH and ABH procedures for the

model: y;; ~ N(5+ 0.34+ 0.3B +0.3D + 0.25BD, 1) in 2* experiment

Method

I

n=3n=4n=55n==06

n=3n=4n=5n==06

BH

ABH

Our method
Wu and Hamada
Lenth

15
15
15

0.029 0.030 0.032 0.034
0.033 0.037 0.037 0.035
0.008 0.009 0.009 0.010

0.034 0.036 0.040 0.044
0.039 0.044 0.046 0.045
0.009 0.010 0.010 0.012

From the simulated results in Tables 3.6, 3.7 and 3.8, it is seen that all the
methods can control FDR when no factorial effect is active. In this situation, Wu

and Hamada’s method works slightly better than our method and Lenth’s method.
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When some effects are active, both our proposed method and the Wu and Hamada’s
method control FDR at 5% nominal level especially when the ABH procedure is used
for both method. The performance of both methods are similar. The Lenth’s method
is quite conservative whether BH or ABH procedure is used.

Case II: 0?’s are not homogeneous

For the case of no active effect, we used the models

yi; ~ N(0,exp(A+ C + 0.5AC))

and

for 23 and 2% experiments, respectively.

In the presence of some active effects, we used the models

Yij ~ N(10+ A+ B+ 0.5AB,exp(A+ C + 0.5AC))

and

yij ~ N(5+ 0.65A + 0.658 + 0.45C, exp(A + C + 0.5AC))

for 23 experiment. For 2* experiments, we used the models

yi; ~ N(5+0.54 4 0.45B + 0.5D + 0.4AD, exp(A + B + D + 0.5AD))

and

yi; ~ N(5+0.75A 4 0.65B + 0.55C + 0.5AD, exp(A + B+ C + 0.5BD)).

The simulated FDRs are summarized in Tables 3.9, 3.10, 3.11, 3.12 and 3.13.

From the simulation results in Tables 3.9, 3.10, 3.11, 3.12 and 3.13, it is clearly seen
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Table 3.9: Simulated FDRs under the 5% using BH and ABH procedures for the
models: y;; ~ N(0,exp(A+C+0.5AC)), yi; ~ N(0,exp(A+C + D +0.5CD)) in 2°

and 2% experiments respectively

Im=3n=4n=5n==6

n=3n=4n=5n==06

Our method BH

Our method ABH

0.046 0.039 0.037 0.037
0.045 0.038 0.035 0.035

0.046 0.039 0.037 0.037
0.045 0.038 0.035 0.035

Wu and Hamada BH

Wu and Hamada ABH

0.087 0.071 0.071 0.062
0.098 0.075 0.066 0.061

0.087 0.071 0.071 0.062
0.098 0.075 0.066 0.061

Lenth BH

Lenth ABH

0.024 0.026 0.028 0.029
0.020 0.018 0.021 0.022

0.024 0.026 0.028 0.029

0.020 0.018 0.021 0.022

Table 3.10: Simulated FDRs under the 5% using BH and ABH procedures for the

model: y;; ~ N(104+ A+ B+ 0.5AB,exp(A+ C + 0.5AC)) in 2° experiment

Method In=3n=4n=5n=6m=3n=4n=5n==06
BH ABH
Our method 710.029 0.026 0.025 0.024]0.049 0.045 0.049 0.046

Wu and Hamada’s method
Lenth’s method

7

0.048 0.047 0.039 0.038
0.002 0.001 0.001 0.001

0.072 0.072 0.064 0.065
0.002 0.002 0.002 0.002

Table 3.11: Simulated FDRs under the 5% using BH and ABH procedures for the

model: y;; ~ N(5+ 0.65A + 0.65B + 0.45C, exp(A + C' + 0.5AC)) in 2* experiment

Method In=3n=4n=5n=6nm=3n=4n=5n==06
BH ABH
Our method 710.029 0.026 0.025 0.023/0.042 0.040 0.042 0.042
Wu and Hamada’s method|7{0.054 0.045 0.042 0.039(0.071 0.063 0.061 0.058
Lenth’s method 7/0.003 0.003 0.003 0.002|0.003 0.004 0.003 0.003

Table 3.12: Simulated FDRs under the 5% using BH and ABH procedures for the
model: y;; ~ N(5+ 0544 0.45B + 0.5D + 0.4AD,exp(A+ B+ D + 0.5AD)) in 2*

experiment
Method IIn=3n=4n=5n=6m=3n=4n=5n==06
BH ABH
Our method 15{0.031 0.028 0.027 0.028]0.041 0.042 0.042 0.046

Wu and Hamada’s method
Lenth’s method

15
15

0.065 0.055 0.049 0.042
0.011 0.012 0.012 0.012

0.080 0.071 0.066 0.064
0.012 0.013 0.014 0.013
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Table 3.13: Simulated FDRs under the 5% using BH and ABH procedures for the
model: y;; ~ N(5+0.75A+0.65B + 0.55C + 0.5AD, exp(A+ B+ C +0.5BD)) in 2*

experiment
Method IlIn=3n=4n=5n=6m=3n=4n=5n==06
BH ABH
Our method 15(0.033 0.033 0.034 0.032]0.051 0.052 0.054 0.054

Wu and Hamada’s method|15{0.066 0.052 0.050 0.048{0.085 0.075 0.074 0.073
Lenth’s method 15/0.007 0.006 0.004 0.007/0.008 0.007 0.007 0.009

that our proposed method can also control FDR both in the absence of active effect
and in the presence of some active effects, especially when ABH procedure is used.
Lenth’s method also controls FDR in both cases, but the results are more conservative
compared to our proposed method. Wu and Hamada’s method is quite liberal in the
absence of active effect whether BH or ABH procedure is used. Interestingly, Wu
and Hamada’s method coupled with ABH procedure is quite liberal in the presence
of active effects, while Wu and Hamada’s method coupled with BH procedure works

well in the presence of active effect.

3.3 Application To Real Examples

3.3.1 Example 1.1

Dispersion Model

Here the P-values for the I = 15 effects of interest are shown in Table 3.14.
Suppose that we would like to control the FDR to be ¢ = 5% in the dispersion model.
Then, using the BH procedure, effect A is declared active by all the methods except
Lenth’s method that declared no active effect. Using the ABH procedure, we found
that mg = 13 for our method, my = 12 for Wu and Hamada’s method, mo = 14 for
Variyath et al.’s method and my = 15 for Lenth’s method. In this case, effect A is
also declared active by our method, Wu and Hamada’s methhod, and Variyath et

al.’s method. Again, no effect is declared active by Lenth’s method.
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Table 3.14: P-values for the fifteen effects in the dispersion model: Example 1.1

Sorted P-values
[ |Effects|Our method Wu and Hamada Variyath et al. Lenth
11 A 0.0004 0.0001 0.0014 0.0447
2| BC 0.0272 0.0162 0.0438 0.1644
3| AC 0.0560 0.0406 0.0850 0.2283
4|1 ABD 0.0699 0.0485 0.0968 0.2414
5| AB 0.0752 0.0528 0.1030 0.2507
6| ABC 0.1936 0.1571 0.2321 0.3871
7| ACD 0.2703 0.2302 0.3104 0.4678
8| CD 0.2848 0.2443 0.3249 0.5404
9| BD 0.3074 0.2665 0.3474 0.5576
10 D 0.4283 0.3886 0.4655 0.6515
11| BCD 0.4486 0.4095 0.4849 0.6651
12 C 0.4912 0.4536 0.5257 0.6915
13|]ABCD| 0.6512 0.6226 0.6767 0.7946
14| B 0.6516 0.6231 0.6771 0.7965
15| AD 0.9490 0.9444 0.9529 0.9708

Location Model

For each method, the P-values for the I = 15 effects of interest are given in Table
3.15. Suppose that we would also like to control the FDR to be ¢ = 5% in the location
model. By using BH procedure, effect A is declared active by our method and Wu and
Hamada’s method. Lenth’s method declared no active effect in this case. Using the
ABH procedure, we found that my = 15 for all the three methods. Again, effect A is
declared active by our method and Wu and Hamada’s method. No effect is declared

active by Lenth’s method.

3.3.2 Example 1.2

Dispersion Model

For each method, the P-values for the seven effects of interest are shown in Table
3.16. Suppose that we would like to control the FDR to be ¢ = 5% in the dispersion
model. Then, no effect is declared active by all the methods using BH procudure.

Using the ABH procedure, we found that mqo = 7 for all the methods. Again, no
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Table 3.15: P-values for the fifteen effects in the location model: Example 1.1

Sorted P-values
[ |Effects|Our method Wu and Hamada Lenth
1| A 0.0020 0.0016 0.0559
2| B 0.0391 0.0374 0.1735
3| AB 0.1163 0.1144 0.2862
41 C 0.2024 0.2005 0.3817
5| BC 0.2556 0.2542 0.4390
6| ABD 0.2558 0.2542 0.4406
7IABCD| 0.2952 0.2940 0.4766
8| AD 0.2998 0.2984 0.5026
9| BD 0.4193 0.4188 0.6326
10| ACD 0.5045 0.5045 0.6942
11} BCD 0.5370 0.5373 0.7162
12| AC 0.7151 0.7156 0.8297
13| ABC 0.7762 0.7769 0.8658
14| CD 0.8951 0.8953 0.9374
15| D 0.9031 0.9033 0.9431

effect is declared active by all the methods.

Table 3.16: P-values for the seven effects in the dispersion model: Example 1.2

Sorted P-values
[ |Effects|Our method Wu and Hamada Variyath et al. Lenth
1] C 0.0648 0.0179 0.0302 0.2821
2| AF 0.0956 0.0325 0.0475 0.3256
3 E 0.1832 0.0878 0.1059 0.4325
4 F 0.2039 0.1032 0.1213 0.4966
5 D 0.4355 0.3172 0.3302 0.7322
6] A 0.6860 0.6041 0.6097 0.8578
7 B 0.8793 0.8456 0.8474 0.9460

Location Model

In this case, we also examined the performance of all the methods considered under
location model. The P-values for the seven effects of interest for each method are
summarized in Table 3.17. Again, suppose that we would like to control the FDR at
q = 5%. Then, two effects D and F would be identified as active by both our method
and Wu and Hamada’s method using the BH procedure. No effect is declared active

by Lenth’ method using the BH procedure. Using the ABH procedure, we found that
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mgo = 7 for all three methods. Again, two effects D and F are declared active by
both our method and Wu and Hamada’s method. No effect is declared active by the

Lenth’s method.

Table 3.17: P-values for the seven effects in the location model: Example 1.2

Sorted P-values
[ |Effects|Our method Wu and Hamada Lenth
11 D 0.0022 0.0008 0.0970
2l F 0.0034 0.0013 0.1117
3 A 0.0549 0.0428 0.3032
4 E 0.1458 0.1306 0.4958
5/ AF 0.5970 0.5912 0.8460
6| C 0.8562 0.8546 0.9473
77 B 0.8907 0.8896 0.9601
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Chapter 4

Summary and Future Work

4.1 Summary

In this thesis, we focused on controlling the IER, EER and FDR in the location and
dispersion models of the response. More specifically, our methods are based on the
z-type test statistic (Wu and Hamada, 2000, 2009) for the factorial effects in the
dispersion model and the ¢-type test statistic (Wu and Hamada, 2000, 2009) for the
factorial effects in the location model.

In Chapter 2, we re-investigated the distribution of the the z-type statistic and
proposed a new distribution for this test statistic. Based on this new distribution,
new procedures have been suggested to control the IER and EER in the dispersion
model. Our simulation studies suggest that the new procedures work well in terms
of controlling the IER and EER in the dispersion model. Other existing methods are
either too liberal or too conservative for controlling either or both of the IER and EER
in the dispersion model. We also identified the distribution of the ¢t-type statistic and
suggested a resampling method to generate random samples from this distribution.
Based on the generated random samples, we suggested some new procedures to control

the IER and EER in the location model. Our simulation results showed that our
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method works well in terms of controlling the IER and EER in the location model
whether ¢2’s are homogeneous or heterogeneous among the m runs. However, Wu
and Hamada’s method works well when the ¢?’s are homogeneous.

In Chapter 3, we suggested using the new distributions we found in Chapter 2
to calculate the P-values of the z-type statistic and t-type statistic, respectively.
Coupled with the ABH procedure, our methods can also accurately control the FDR
in the location and dispersion models. On the other hand, Wu and Hamada’s method
only works in the location model for some situations, for example, when o?’s are
homogeneous.

Our proposed methods have also been applied to two real examples to control the

IER, EER and FDR in the location and dispersion models.

4.2 Recommendations for Future Work

The followings are some recommendations for future research based on this thesis:

e As stated earlier, replicated two-level factorial designs are full of useful informa-
tion. This is due to the fact that they allow reliable estimation of the location
and dispersion of the response. In this thesis, we considered only the case when
the number of replications in each run is the same. Though, there may be some
practical situations where the number of replications is not the same. However,
further research could be conducted on controlling these error rates when the

number of replications is not the same for each run.

e There may be some practical situations that require to study factors with more
than two levels or mixed levels. See Wu and Hamda (2000, 2009) for some
real examples. Further research could also be carried out to see what will hap-
pen by extending the current setup to other three-level or mixed-level factorial

experiments.
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e Since the main goal of this thesis is to control the IER, EER and FDR at any
nominal level, little consideration was given to the power of the proposed meth-
ods in identifying the active effects in replicated two-level factorial experiments.
Further study could be carried out to develop methods or modify the proposed
methods to simultaneously control the error rates and achieve higher power in

identifying active effects.
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Appendix

Appendix A: R code to Calculate a,

### Our Method ###

fi=function(x,n)

{

### log(x/(n-1)) times the density function of chisq with (n-1)
degress of freedom###

### x: a random variable that follows a chisquare distribution
### n: number of replicates

log(x/(n-1))*dchisq(x,df=n-1)

b

f2=function(x,n)

{

### log(x/(n-1)) times the density function of chisq with (n-1)
degress of freedom###

### x: a random variable that follows a chisquare distribution

### n: number of replicates

( log(x/(n-1)) )~2*dchisq(x,df=n-1)
}

exact.var.dispersion<-function(n)
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{

### Variance of log(chisq/(n-1)) with (n-1)
degress of freedom###
moml=integrate(f1,0,Inf,n=n)
mom2=integrate(£2,0,Inf,n=n)
mom2$value-moml$value~2

}

## Wu and Hamada’s Method ##
approx.var.dispersion<-function(n)

{

### Variance of the approximation method ###
## n: number of replicate ##

2/(n-1)

}

## Computing a_{n} ##

a<-function(n)

{

## n: number of replicate ##

sqrt (exact.var.dispersion(n)/approx.var.dispersion(n))

}

Appendix B: R code to Calculate the IER critical value for our Proposed
Method in Location Model

## Critical value (IER)##

simul.t<-function(rho,n)

{
### rho is estimated from the given data ###

## n is the number of replication ##
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m=length(rho)

w=rnorm(1000000,0,1)
x=matrix(rchisq(1000000*m,n-1) ,ncol=m)
y=(x%*%rho)/(n-1)

z=abs (w/sqrt (y))

quantile(z,0.95)

}

Appendix C: R code to Calculate the EER critical value for our Proposed
Method in Location Model

## Critical Value (EER) ##
quantile.eer<-function(rho,v,n)

{

m=length(rho)

## m is the number of run ##

## rho is estimated from the given data ##
V=matrix(v,nrow=m)

## V is the matrix with columns corresponding to
the factorial effects of interest ##
P=diag(rho,m,m)

A=t (V) %*%P%*hV

## A is the variance-covariance matrix ##
W=mvrnorm(10000,rep(0,nrow(A)) ,A)
R=apply (abs (W), 1,max)
Q=matrix(rchisq(10000*m,n-1) ,ncol=m)
Y=(Q%*%rho) /(n-1)

Z=R/sqrt (Y)

q=quantile(Z,0.95)
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return(q)}

Appendix D: R code to Calculate the FDR P- value for our Proposed
Method in Location Model

simul.pvalue<-function(rho,n,statistic)
{

## rho is estimated from the data##
##n is the number of replicate##
m=length (rho)

## m is the number of run ##

I=m-1

w=rnorm(1000000,0,1)
x=matrix(rchisq(1000000*m,n-1) ,ncol=m)
y=(x%*%rho)/(n-1)

z=abs (w/sqrt (y))

pvalue=rep(0,I)

for(i in 1:1)

{

pvalue[i]=mean(z>=abs(statistic[i]))

}

pvalue

b
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