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Abstract

Recently research on small soft particles shows impeccable interests be-

cause of their significance in both biology and industry. The term ‘particle’

here is defined as a deformable object with size in the range of nano- to mi-

crometers. Many experimental efforts have been spent on investigating the

behavior of these particles and theoretical models have been proposed to de-

scribe the mechanics of these particles under different loading conditions. Due

to the complex nature of these particles, these mechanics models are all ac-

companied by various assumptions, one of the common simplifications being

the neglect of large deformation. The objective of this study is to explore the

application of the nonlinear membrane model in describing the mechanical be-

haviors of soft particles under several loading conditions relevant to practice.

In all cases studied, an originally spherical particle filled with fluid inside was

considered. The surface of the particle was considered to be hyperelastic and

able to sustain large deformation. The enclosed fluid was modeled to be in-

compressible. The particle was subjected to four different loading conditions:

(i) symmetric poking by two identical conical indenters; (ii) asymmetric pok-

ing by a conical indenter and a flat indenter; (iii) micropipette aspiration; and

(iv) electrostatic attraction to a charged substrate. The theoretical results

were compared with experimental results involving the mechanical response of

soft particles such as cells. The model developed in this dissertation is capable

of characterizing certain phenomena observed in experiments. The proposed

model investigates the large deformation in soft particles from a continuum

perspective. The model will be useful in understanding the mechanical proper-

ties of particles such as cells, vesicle and microcapsules that have an immense

importance in life and industrial applications.
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Chapter 1

Introduction

1.1 Motivation

The motivation for this thesis emanated from the significance of mechanics of

small soft particles (µm ∼ nm) in both medical and industrial applications.

These particles have been widely used in food, pharmaceutical, chromatogra-

phy, electrophotography, bio-technology, and bio-medical industries [1, 2]. In

the food industry, the soft tissues of fruits and vegetables are subjected to

external mechanical loading during harvesting, plucking, transport and stor-

age [3]. Such mechanical stresses affect the physiological processes inside the

cell [4] and can cause damage to the cell. The quality of these products is

determined by the strength of the soft tissues [5]. Therefore, it is very im-

portant for the food industry to understand the rheological and micromechan-

ical behavior of these soft tissues [3, 5, 6]. In the pharmaceutical industry,

soft particles (e.g., microcapsules which are liquid-filled particles with a thin

membrane) are used for drug delivery and construction of synthetic cells for

artificial organs and artificial blood [7]. The delivery of these targeted drugs

to specific sites in the body at a precisely controlled rate is critically important

in the medicine field [8]. Since soft and flexible materials are used to carry
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out the drug delivery process, it is important to determine the mechanical

properties of the synthetic capsules in order to determine the kinetics of the

encapsulated chemicals and to control the durability of these capsules during

usage [7]. To control micro-fluidic channels, stimuli-responsive gels are used

as actuators that undergo volume change in response to surrounding envi-

ronment [9]. Such change is not possible with conventional micro-actuators

that require external power to operate. In microcirculation, blood cells un-

dergo repeated deformation through small vessels for the transport of blood

to different tissues [10]. The deformation of these cells in response to physical

forces is important to their in-vivo rheological behavior during circulation in

the capillaries [10, 11]. In electrophotography, under external electric field,

small charged particles are transferred from one surface to another for photo-

copying and printing [12–14]. A similar process has been used in electrostatic

powder coating [15]. Adhesion of these particles to substrate is of utmost

importance to these applications. For example, in electrophotography, the

adhesion of the charged particle to the paper is important to the quality of

the image. In powder coating, strong adhesion is necessary to make the de-

posited powders stay on the workpiece before they are completely cured [16].

The study of mechanics of soft particles is also critically important in other

applications such as filtration of deformable particles, centrifugal separation

of microorganisms, and wet pressing of paper [2]. The deformation of soft

particles greatly influences the manufacturing, separation and purification of

products containing such material [1].

The remainder of this chapter is organized in three sections. The first

section offers a review of the experimental techniques used to determine the

mechanical properties of soft particles. The second section presents different

theoretical approaches to modeling the mechanical properties of soft parti-

cles under various loading conditions. The last section reveals the original
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contribution that the present thesis makes and provides the thesis outline.

1.2 Experimental techniques to probe me-

chanical properties of soft particles

In the literature, there are numerous reports of experimental techniques

that have been applied to probe the mechanical properties of the flexible par-

ticles at different length scales. These particles, which are used in various

applications, differ from one another in both structure and internal functional

behavior. For example, some plant cells have a hard cell wall, which acts as

a shell that dominates their mechanics, while other cells have a soft mem-

brane and their mechanical response is determined by the internal protein

network and cytoskeleton [17]. Different cells (e.g., leukocyte, granulocyte,

endothelial, Chondrocyte and human neutrophils) respond differently to ex-

ternal loading [10, 11, 18–21]. For instance, Chondrocyte cells obtained from

non-osteoarthritic (normal) and osteoarthritic conditions show significant dif-

ference in cell volume in response to applied mechanical deformation [18]. To

determine the mechanical properties of these particles, an external force is

applied to the particle, and the particle’s response is monitored. The force

typically ranges from pN to nN and can be applied by optical traps, magnetic

beads, glass needles, and atomic force microscope cantilevers. The deforma-

tion of the particle on a scale of nanometers to microns can be measured by

deflection of lasers onto optical detectors or by high resolution microscopy [17].

Experiments generally use compression, indentation, aspiration, shear, mag-

netic or electrostatic forces to deform the particle.

The compression technique is a method in which a particle is compressed

between two flat plates and its physical properties are determined. Usu-

ally, in this technique one plate is fixed and other is movable to produce
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stress on the particle in order to determine the elasticity, visco-elasticity and

stresses/stretches on the particles. The compression technique is used in many

applications. For example, in the pharmaceutical industry, the compression

technique is used to study the fragmentation of particle (tablet) and to study

the effect of additives (e.g. binders) on the particle strength [22]. It was

observed that the surface area of the tablet increases with compaction pres-

sure [22]. Lin et al. [1] compared the geometrical variation of compressible and

incompressible soft particles and determined the difference in the behavior of

these particles under uni-axial compression. It was observed that the lateral

extension for incompressible particles was greater than that for compressible

particles, and rapid reduction in porosity was observed for incompressible soft

particles. In biomechanics, the compression technique is used to apply uniaxial

force to deform cells and measure their mechanical properties. For example,

endothelial cells were subjected to compression between glass microplates and

the resulting deformation was obtained [23]. It was observed that the elastic

modulus of the nuclei in round and spread cell is 5000N/m2 which is 10 times

larger than that of the cytoplasm [23].

Poking or indentation is a technique in which a very small force is applied

locally to the surface of the particle with the help of a poker or indenter to

determine the local mechanical properties of the particle. The force applied is

in the nN range and the displacement measured is in the nm range [24]. By

varying the rate of the applied force, the force vs. displacement curve gives

significant information about the elasticity and visco-elasticity of the parti-

cle. The observed response may be linear or nonlinear, depending upon the

material properties of the particle and the extent of the deformation. During

poking, the stiffness of the particle increases as the magnitude of indentation

increases. The poker tip diameter is very small compared to the diameter

of the particle, which makes it possible for local viscosity to be measured at
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different regions of the particle [17]. With considerable advances in the inden-

tation methods, this technique has been extensively used to investigate the

mechanical properties of cells. Glass needles, both uncoated and coated with

laminin, were used to deform rat embryo fibroblast [25]. Coated glass needles

with laminin were used to induce attachment to the cell surface . For both

cases, the experimentally applied force produced local response by the cy-

toskeleton. When the uncoated glass needle was used to probe the cell, it was

observed that the cell’s behavior could be predicted by the three layer model

proposed by Dong et al. [26] in which the nucleus was highly elastic, the cyto-

plasm was a viscoelastic fluid and the outer cortical layer was an elastic shell

with prestressed tension. The stiffness of the cortical layer increased when

the adhesive laminin coated needle was used to recruit the actin filaments

to the contacted surface region [25]. Visualization of the actin recruitment

confirmed a widely postulated model for the mechanical connections between

the extracellular matrix proteins and the actin cytosleketon [25]. Similarly,

vertical glass stylus with tip of 2µm in diameter was used to poke osmotically

swollen human erythrocytes to determine its elastic area compressibility mod-

ulus [27]. The analysis of data gave a range of values (17.9± 8.2 to 34.8± 12

mdyn/µm) for the elastic area compressibility modulus at 25oC depending on

the osmotic conditions [27]. The 2µm small probe was also used to poke the

fibroblast and it was observed that both the cytoplasm and nucleus resist the

deformation [28]. It was shown that the resistance to deformation has both

viscous and elastic components, and an increase in the depth of indentation

leads to an increase in stiffness. During indentation, the probe tip causes

changes in the microscopic appearance of the cell, which persisted for a long

time period (sustained stresses) [28]. Specifically, when a pressure of 0.1atm

was applied for some time, a circular dark spot was seen on the cell with

similar dimensions to that of the probe, but it eventually disappeared [28].
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The visible time of this spot depended on the magnitude and duration of the

applied pressure [28]. This spot might result from the rearrangement of cyto-

plasmic components in response to a sustained pressure [28]. The hysteresis

in the measurements could be due to cytoplasmic viscosity and the sustained

stresses. The recovery from the sustained stresses is faster at 37oC than at

25oC. Compared to erythrocyte, the fibroblast provided greater resistance to

deformation and, due to its network of microfilament, microtubules and inter-

mediate filaments, it was capable of sustaining more force than the cortical

matrix of the erythrocyte [28].

Micropipette is a technique in which a control negative pressure is applied

to aspirate particles into the pipette to measure their deformation, rheology,

viscosity and elastic properties. This technique has been used to measure

mechanical properties of cells/vesicles such as bending stiffness, viscosity, re-

laxation during recovery after being aspirated into a micropipette [10, 11, 18]

and adhesion during detachment from a substrate [29,30]. To understand the

flow of cells in vessels, arteries, veins and capillaries, where deformation occurs,

the micropipette technique has been applied to different living cells such as

granulocyte, leukocyte, erythrocyte, endothelial, red blood cell, chondrocyte,

and human neutrophil. Schmid-Schonbein et al. [19] observed that, when

the human leukocyte was aspirated by the micropipette at different locations

using the same pipette and control pressure, similar deformation occurred,

suggesting homogenous properties on the scale of the micropipette. Dong et

al. [31] observed small instantaneous deformation of leukocytes when the cell

sealed the micropipette tip, which was modeled as the initial elastic response

of the cell. Similarly, this initial elastic response for leukocytes was observed

by Sung et al. [11] during its recovery from the micropipette. The leukocyte

was found to return to a spherical shape during its recovery from the defor-

mation in the micropipette [11, 19] and it was suggested that this behavior
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was due to the pre-stressed tension in the cortical layer [31]. Micropipette

aspiration of endothelial cells has shown greater stiffness and viscosity as com-

pared to erythrocytes [21]. White blood cells were more resistive than red

blood cells and therefore larger suction pressure was required to deform white

blood cells [11, 32]. Through micropipette experiments for normal chondro-

cytes and osteoarthritic chondrocytes, Jones et al. [18] observed that their

Young’s moduli were almost identical, but there was significant volumetric

difference between normal chondrocytes and osteoarthritic chondrocytes after

deformation. Evan et al. [33] carried experiments using micropipette to study

the entry flow of single blood granulocytes. The results showed that the outer

cortex of the cell maintained a persistent tension of 0.035 dyn/cm during as-

piration in the micropipette. This tension created a threshold pressure below

which the cell could not enter the pipette. Different pipette sizes have been

used to determine the apparent viscosity of the cell which strongly depends

upon the temperature. The apparent viscosity determined was 2 × 103 poise

at 23oC, smaller than 1 × 103 poise at 37oC and larger than 104 poise below

10oC [33].

When comparing the micropipette and poking techniques, the micropipette

is a preferred technique in which small forces are easily applied to detect

changes in deformation during aspiration [27]. Also, the control on the applied

force and visualization of the deformed surface are easier with micropipette

aspiration than with poking [27]. However, poking is better suited to study

the adhesion and spreading of particles [27]. For example, when the aspira-

tion pressure is zero, the leukocyte may not come out of the pipette due to

its adhesion to the pipette wall; therefore, positive pressure may be needed to

remove the leukocyte from the pipette [19]. The adhesion between the poker

tip and the cell is less problematic than adhesion between the cell and the

micropipette wall [19,27]. Cell poking avoids the detachment of plasmalemma
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from the underlying cytoskeleton which might result from micropipette aspi-

ration [27, 28]. The contribution of intracellular organelles to the mechanical

properties of the whole cell may be more readily detected using poking [27].

Mechanical properties of erythrocytes determined from poking experiments

were compared with the ones determined from micropipette aspiration. The

results were in reasonable agreement [34] which suggested that the structural

elements in erythrocyte that resist area expansion respond similarly to both

pulling and pushing forces [27]. The elastic area compressibility modulus of

the erythrocyte membrane determined by Daily et al. [27] using cell poking was

17.9± 8.2 to 34.8± 12.0 mdyn/µm. Similarly, the elastic area modulus of the

erythrocyte membrane determined by Evans et al. [34] using the micropipette

technique was 28.8± 5.0 mdyn/µm. Both performed the experiment at 25oC

and at the same osmotic conditions. Mitchison et al. [35] suggested that in

the micropipette experiment the hysteresis in the pressure vs. deformation

curves during loading and unloading was mainly due to the friction between

the cell surface and the pipette edge. However, Petersen et al. [28] argued

that the hysteresis was due to viscoelastic nature of the cell, since hysteresis

was also found in indentation experiments, which could not be attributed to

friction alone, due to the lack of extensive contact between the cell and the

indenter [35].

AFM and scanning force microscope (SFM) are surface image techniques

that work by scanning the sample surface using a sharp tip and continuously

recording the images [17,36–39]. The force between the AFM tip and the par-

ticle is obtained by measuring the deflection of the flexible cantilever through

laser beam. The images can be created using different modes (e.g., contact

mode, tapping mode and jumping mode) to measure the surface topogra-

phy [17,36–39], but in the tapping mode, the occurrence of sample damage is

minimized [36, 37]. AFM technique is related to the poking technique, but it
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has higher force resolution and can be used to apply precisely controlled load

at different locations of the sample [17]. The limitation of this technique is

that it cannot measure the properties inside the particle, but only of the ac-

cessible surface [17]. When the AFM tip is attached to the particle, it can be

used for both pulling and pushing [17]. Putman et al. [39] used AFM to mea-

sure the response of the surface of monkey kidney cells and observed that the

cell became stiffened when probed under a tapping motion at high frequency.

Recently, advancement in the AFM technique has been made by attaching a

polystyrene bead at the AFM tip [40, 41]. Such well-defined probe geometry

deforms the sample nondestructively and helps to capture the mechanical re-

sponse of the object more accurately, because the stress in the sample depends

on the shape of the tip [40,41]. The bead diameter can be in the range of 12µm

to less than 1µm, which corresponds to the contact area of 0.5 − 30µm2 and

stress range of 100Pa− 10kPa [41]. Such low stress allows for the probing of

soft material. For example, AFM with polystyrene bead at the tip has been

used to determine the viscoelastic properties of thin fibroblast and polymer

gels [40, 41].

The fluid flow system is a technique in which a particle is exposed to

controlled fluid stresses to determine its response. This technique has practical

significance both in biology and industrial applications. Cells can experience

shear stresses, as in the case of red blood cells during flow in the circulating

system. Red blood cells adhering to a surface in a parallel plate flow channel

were found to be stretched when exposed to a fluid shear stress [42]. The

elastic modulus of the red blood cell determined this way is 104dyn/cm2 with

a membrane thickness of 0.01µm [42]. The distribution of mechanical strain in

the intermediate filament (IF) of cytoskeleton of endothelial cells was measured

in response to shear flow [43, 44]. It was observed that IF displacement in

cells caused by fluid-shear stresses rapidly changed the cytoskeletal mechanics
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[43, 44]. The IF displacement was more significant above the nucleus when

compared with near the coverslip surface, and the displacement downstream

from the nucleus was larger than the upstream areas [43]. It was also found

that the shear stress induced an increase in IF strain that was highly localized

within the cell [44]. The viscoelastic behavior of endothelial surface layer in

response to fluid shear stress was presented in [45]. It was found that the

core proteins in the structure acted as transducers, which allowed the fluid

shear stress to deform the cortical cytoskeleton [45]. Similar to endothelial

and blood cells, bone cells also undergo structural changes when exposed to

shear stresses. In a parallel plate flow chamber, a shear stress was applied to

a monolayer of cultured bone cells [46]. It was observed that the bone tissue

changed its structure due to a local distribution of strains resulting from the

fluid shear stresses [46]. The suspension of colloidal particles in the fluid

can be found in various applications such as pharmaceuticals, paints, inks,

brakes and food [47]. The micro-structural arrangement of these particles is

important to the macroscopic properties of the system. For instance, when

particles suspended in electrorheological fluids were subjected to both electric

field and shear flow, stable lamellar patterns were achieved due to difference

in the dipole moment induced in the particles [47]. By controlling the external

field and shear flow, the desired macroscopic properties of colloidal system can

be achieved [47].

In dynamic light scattering (DLS) and diffusing wave spectroscopy (DWS),

a laser beam is sent through a sample of milliliter volume and scattered light is

collected with a detector [17,48]. This technique allows for the determination of

viscoelastic behavior of complex fluid that carries suspended colloidal particles

[49]. This technique is also helpful in understanding polymer solutions, F-

actin solution, and cytolasmic solutions [48, 50, 51]. The scattered light is

sensitive to very small motions [17] of the particles and therefore can capture
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the dynamics of these particles in solution, for example, the motion of particles

in the colloidal suspension. Similar to these techniques is the fluorescence

correlation spectroscopy (FCS) technique in which a laser beam is focused on

a small portion of the particle. In this way, the dynamics of a selected portion

of the particle can be studied. The signals from the non-focused region of

the particle are avoided [17]. Compared to other light scattering methods,

the increased sensitivity of the FCS technique helps to detect the molecular

structural changes, conformational changes, chemical reaction kinetics, and

photophysical dynamics [52,53]. Another unique and nondestructive approach

to determine the elasticity and viscosity of small particles is the ultrasound

attenuation [17, 54–56]. In this method, the oscillating glass fiber serves as a

sensor to produce small displacements (1 ∼ 100nm) at its resonance frequency

[54,55]. An acoustic microscope analyzes these displacements and provides the

image of the particle due to changes in sound attenuation [17,54,55]. Using the

sound attenuation method the mechanical properties of F-actin, microtubules

and alginate microcapsules were determined [54–56].

Besides the above mentioned methods, there are a few other techniques

that can be used to study the behavior of soft particles, including optical traps,

optical tweezers and optical stretchers. The optical trap technique is used in

different fields including the study of atoms, molecules, dielectric spheres (size

nm ∼ µm), cells and other microrganelles in the cells [57]. In the optical trap,

a laser beam is used to apply a controlled force to a trapped particle, which is

usually a silica or latex bead [17,57]. The force on the trapped particle depends

upon the particle size and the relative index of refraction n = np/nm, where

np and nm are the indices of the particle and the medium [17]. The stability

of the trapped particle depends upon the applied field, the properties of the

particle and the surrounding medium [17]. Such trappable particle or bead can

be used to deform the cell membrane locally [17] to determine it mechanical
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properties. Optical tweezers also use focused laser beam to trap particles

or beads to deform cells and vesicles [58–60]. Lenormand et al. [58] used

three silica beads to trap a red blood cell membrane. Using optical tweezers,

the skeleton extracted from the red cell membrane was deformed by applying

calibrated forces to the beads and the area expansion and shear modulus of the

skeleton were measured [58]. Optical tweezers were also used to determine the

deformed shape of trapped red blood cells [59] and vesicles [60]. The advantage

of this technique is that these micron sized beads can be used to probe another

(typically larger) particle locally with high resolution [17]. The disadvantage is

that the force exerted on the particle is difficult to increase beyond 100pN , and

local heating of the trapped bead at high laser power is often not negligible [61].

The optical stretcher technique is similar to optical traps and uses two opposing

non-focused laser beams to stretch a dielectric object along the axis of the

beam [62]. The forces exerted by light due to momentum transfer are sufficient

to hold, move and deform the object [62]. This technique has been used

to measure the viscoelastic properties of dielectric materials and biological

cells [62]. For example, Guck et al. [62] used the optical stretcher to deform

human erythrocyte and mouse fibroblasts. The advantage of this method is

that it is nondestructive and the force applied ranges from that applied with

optical tweezers to that applied with AFM [62].

The magnetic trap method is generally used to quantify the response of par-

ticles under very small forces in the pico-newton range [63–66]. This method

helps to study the deformation, rheology, and local viscoelasticity of particles.

Bausch et al. [63] used the magnetic trap with one pole which could generate

forces up to 104pN on paramagnetic beads. These beads were then used to

measure the local viscoelastic properties of the surface of adhering fibroblasts.

The shear modulus found was in the range of 2× 10−3 Pa to 4× 10−3 Pa [63].

The bulk shear modulus estimated was 0.5×10−4 Pa, which was in agreement
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with data obtained by AFM [63]. Amblard et al. [66] designed a magnetic ma-

nipulator that generated two dimensional translational and rotational motions,

and they used it to study the local rheology and micromechanical properties of

biological systems. The limitation of this technique is that the magnetic beads

can only exert forces in the piconewton range [63–66] and torques on the order

of 10−14Nm [66]. However, the advantage is that the precisely controlled force

can be used to study the local response of µm− to nm− sized particles.

The different experimental methods discussed above have been employed to

understand the mechanical, chemical and biological responses of soft flexible

particles. However, there is not a single method that can capture all the

responses individually and the coupling between these responses. Each method

has a unique approach to interpret the behavior of a particular element of the

particle or the overall property of the particle. Sometimes, different methods

predict different results. For example, some methods may explain the particle

behavior as solid-like, while others may claim it to be liquid-like. Some may

suggest that the particle’s behavior is linear upon external force, while others

may propose a nonlinear behavior. Some may find the particle’s response

elastic, while others may point out that it is viscoelastic. These differences

can be due to the differences in the time scale of the measurement and in the

strains at which the measurements are taken [17]. In particular, it has been

observed quite often that a particle responds very differently at small and

large deformation. For biological particles, current experimental techniques

predict their response under controlled conditions but to capture their real

response in living conditions is still a challenge. In particular, a biological

particle responds both passively and actively. Sometimes, the passive response

is hidden in the active response that cannot be measured through experiments.

Further development in the technology is necessary to understand the complex

response of soft particles both in their passive and active states.
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1.3 Mathematical models for the mechanics of

soft particles

Different experimental approaches provide insight into both internal and

external properties of flexible particles. To interpret the experimental results

and relate them to the properties of the particles, different theoretical models

have been proposed in the literature. The ability of a model to predict the

experimental observations depends upon the type of the particle under study,

the size of the particle, the conditions under which measurements are taken and

the suitability of the assumptions in the model. Common models describing

the mechanics of soft particles and their responses in experiments are reviewed

below.

A particle can be modeled as a continuum, if the operative length scale

of interest is much larger than the distance over which structural or mate-

rial properties change [67]. The continuum approach uses constitutive laws

to describe the local stress-strain relationship. Prediction of the particle’s re-

sponse depends upon these constitutive laws [67]. Material properties such as

isotropy or anisotropy and homogeneity or heterogeneity of the particle are

incorporated in the continuum models. It has been shown that the experi-

mentally observed response of the particle using techniques such as poking,

micropipette, optical traps and magnetic manipulation can, to some extent,

be captured using continuum based models. For example, the mechanical

behavior of erythrocytes or neutrophils in micropipette aspiration has been

captured by viscoelastic continuum models [67]. Similarly, the deformation of

cells due to the controlled force from magnetic microbeads can be captured

by viscoelastic continuum models, when the bead size is much larger than the

mesh size of cytoskeletal network [67]. Comparison between experiments and

theoretical models can help to determine the mechanical properties of parti-

cles. Schmid-Schonbein et al. [19] used the continuum approach and modeled
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the human leukocyte as a homogenous viscoelastic body. They compared the

theoretical results with the micropipette experimental results to determine the

rheological properties of the leukocyte [19]. Studies on 75 neutrophils at 22oC

determined the elastic coefficients k1 = 275 ± 119 dyn/cm2, k2 = 737 ± 346

dyn/cm2 and viscosity coefficient µ = 130 + 54 dyn · s/cm2. Similarly, Drury

et al. [68] used the continuum description to study the aspiration of human

neutrophils into the pipette and observed that the continuum models needed

to incorporate both shear thinning and surface viscosity.

Generally, the continuum models are based on one of the two theories (1)

the shell theory and (2) the membrane theory. Hard-core particles that provide

resistance to bending are treated as shells. Some biological structures, for ex-

ample, arteries, embryos, heart, head, and eyeball can be treated as fluid-filled

shells [69,73]. These particles can buckle and dimples of reversed curvature can

form during buckling [69–72]. Cagan et al. [71] studied the large deflection of

spherical shells with ring loads. The computed load-deflection curve for both

thick and thin shell was compared with experimental data which showed good

agreement. The results suggested that, for a spherical shell with radius R and

ring load radius r0, there existed characteristic ring load radii r1 and r2 with

r1 < r2 < R. For r0 < r1, no buckling occurred and the load-deflection curve

resembled a point-load deflection curve. For r1 < r0 < r2 transition buckling

did occur, with the load rising to the peak and then dropping towards the

point-load curve. Last, for r2 < r0 < R, the shell buckled locally with abrupt

change in the shape at a critical deflection. [71]. Updike et al. [72] studied

the finite deflection and rotation of an elastic spherical shell by a rigid flat

indenter. They explored two bifurcation points. The first point marked the

buckling from a flat contact region to an axisymmetric dimple and the second

point marked the transition from the axisymmetric dimple to an asymmetric

one [72]. Taber [69, 70] studied the large deflection and rotation of fluid-filled
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spherical shells and compared the computed results with experimental data

on rubber shells filled with water. He observed that the deflection of the shell

less than 20 percent of its radius was dominated by bending, while larger de-

formation was mainly due to membrane stretching because of the fluid inside

the shell [69,70]. Membrane stress becomes significant for thin shell structures

that exist in many real particles, for example, gel microcapsules and plasma

membranes. These particles have jelly-like structure which is very thin and

can sustain significant stretches on their surface, but provide little resistance

to bending. Such soft particles can be modeled as two dimensional fluid-filled

membrane. Taber observed that when the thickness of a fluid-filled shell de-

creased to a certain extent bending became negligible and membrane stress

was significant even for small deformation [70]. Some cells have a cortical

layer that is very thin compared to the radius and can also be modeled using

membrane theory [73].

The main limitation of the continuum based models is that they do not

provide any information about the microstructure of the particle. For exam-

ple, in cells, it is hard to determine the intracellular stress and strain response,

unless a constitutive model is developed that can capture this behavior [67].

Using the continuum approach, it is difficult to capture the heterogeneity of

the interior of the particles. Continuum models usually employ a limited

number of time constants to characterize the particle’s response. However,

recent studies showed that there can be a continuous distribution of relax-

ation time constants [74]. Continuum models also cannot capture the small

Brownian motion in the particle [75]. To compensate for the limitations of the

continuum models, discrete models were proposed. While continuum mod-

els assume that the stress-bearing elements in the soft particle continuously

fill the space, discrete models consider discrete elements and the space is not

filled [76]. Among such discrete models, there is a special group which in-
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volve structural members that are pre-stressed with tension to maintain their

structural integrity. External forces are resisted by geometrical arrangement

of these members [76]. This special class is named tensegrity by Fuller [77]. In

this class of models, the particle is composed of a large number of structural

members and the behavior of each member depends on the mechanical equilib-

rium and geometrical compatibility at every node [76]. The particle stiffness

depends on the pre-stress induced in the structural members. The greater the

pre-tension is, the less deformable the particle structure will be upon external

loading. Any local disturbance in the tensegrity structure results in the global

rearrangement of the structural members [76], which typically leads to non-

linear relationship between stress and strain. The effect of local disturbance

on global rearrangement of the members in the tensegrity models is quite dif-

ferent from the continuum models, where local disturbance produce only local

response [76]. The tensegrity models have been used extensively to determine

the mechanical behavior of soft particles. Three tensegrity models commonly

used in cell mechanics are: (1) cortical membrane model, (2) tensed cable net

model and (3) cable and strut model [76]. In the cortical membrane model, the

pretension is carried by the cortical layer and balanced by cytoplasm pressure

and extracellular traction. In the tensed cable net model, there is a network of

cables that carries pretension to avoid buckling and structural collapse in the

presence of external force [76]. This initial pretension defines prestress which

is balanced by cytoplasmic swelling [76]. In the cable and strut model, the

prestress is carried by cables and balanced by compression of struts. Which of

these models is suitable to describe the deformability and mechanical behavior

of the cell depends on the cell type and the extent of cell deformation [76,78].

Many experimental results are consistent with the aforementioned tensegrity

models. For example, microscopic analysis of cells containing microtubules

and mitochondrial revealed that it behaved like a discrete structure when me-
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chanical stress was applied to the cell surface [79]. Stamenovic et al. [78]

concluded that tensegrity structural based models were more appropriate to

describe the role of cytoskeleton in determining the mechanical behavior of

adherent cells. Using the tensegrity structure, Volokh et al. [80] explained

the experimentally observed linear stiffening of living cells and also predicted

the transient softening behavior of cells. Like continuum models, the discrete

models also have limitations. The tensegrity models may not be well suited to

describe the dynamic behavior of cells and they can only explain some aspects

of cell’s viscoelastic behavior [78]. At large deformation, some particles behave

like liquid and the tensegrity models cannot explain the liquid-like behavior

of soft particles. Tensegrity models are also not applicable to the study of

thermal effect in the particles.

Through studies it has been found that the mechanics of some soft par-

ticles is affected by the interaction among their molecular components (e.g.,

polymers, proteins, water, ions and other macromolecules). To model these

particles, multiphase constitutive laws were used to represent the interaction

among solids, fluids and ions [81]. For instance, biphasic (fluid-solid) or triph-

saic (fluid-solid-ion) models were developed to determine the mechanical be-

havior of these complex particles. Micropipette aspiration and indentation

experimental results were explained using biphasic theory for cells in the ar-

ticular cartilage and osteo-blast-like cells [82, 83]. With the addition of ionic

concentration in the model, the triphasic theory was used to describe the os-

motic swelling and deformation of cells in the articular cartilage under both

mechanical and chemical loads [84]. These multiphasic models are based on

continuum theories and the constitutive model for each phase is selected in-

dependently to determine the particle’s response [81]. Such models combined

with other structural models, e.g. tensegrity models, may provide a better

opportunity to understand the interplay between molecular components and
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the overall response of the particle [81].

Despite the vast theoretical efforts, the models that describe the mechanics

of small soft particles, especially biological particles, are still far from being

mature. For some particles, due to their complex microstructures and some-

times complex loading conditions, it is difficult to find a single mechanics model

that can capture all of their mechanical properties observed in experiments.

There is an ongoing need for the development of models that can properly

characterize the behavior of these particles without involving all the molecular

details.

1.4 Thesis Contributions

As described above, understanding the behavior of soft particles in response to

external mechanical stresses is critically important in many applications. It is

of great interest to develop suitable models that can describe the mechanics of

these particles under loading conditions relevant to practical applications. The

main objective of the present thesis is to study a series of problems related to

the deformation of small flexible particles under different loading conditions.

The following four problems were studied in detail in this dissertation:

1. Poking of a fluid-filled particle using two conical indenters;

2. Poking of a fluid-filled particle with a conical indenter against a flat

indenter;

3. Micropipette aspiration of a fluid-filled particle;

4. Adhesive contact of a fluid-filled particle driven by electrostatic forces.

The motivation behind the research presented in this thesis consists of real-

life challenging situations (e.g., bruising of fruits during plucking and trans-

portation), which we addressed by proposing a theoretical continuum model.
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This model was used to solve four problems. In the first problem, we considered

a simplified symmetric indentation using two sharp identical conical indenters

to deform a fluid-filled spherical particle. The goal was to determine the in-

stantaneous response of the particle during sharp symmetric indentation and

lay a solid foundation for more complex, asymmetric indentation. The second

problem investigates asymmetric indentation in a typical poking/indentation

experiment, where the particle is either attached to a flat surface or to other

particles. In the third problem, we studied the response of the particle while

being aspirated by a micropipette. In the last problem, we studied the de-

formation of the particle due to electrostatic forces between the particle and

a flat surface. Many of the soft particles used in practice carry charges on

their surface. The electrostatic interaction between the particle and another

charged surface can contribute significantly to the adhesion between the two

surfaces. For example, the adhesion of blood cells to the capillary walls during

circulation of the blood, the adhesion of charged toner particles on paper dur-

ing photocopying and printing, and the adhesion of paint chemical droplets to

the wall.

To study the above four problems, we adopted a nonlinear continuum ap-

proach and modeled the particle as an entity consisting of two separate contin-

uum domains. The surface of the particle is modeled as a nonlinear membrane

that cannot sustain bending, but can undergo large stretching. The membrane

model is appropriate for thin shell structures whose thickness is much smaller

than their radius. The interior of the particle is modeled as an incompressible

fluid, which is suitable for liquids such as water. As the loading conditions in

the four problems are different, the forces acting on the particle and the as-

sociated boundary conditions will be formulated separately for each problem.

The major original contributions of this dissertation are:

1. Modeled the interior (i.e., incompressible fluid) and the surface of the
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particle (i.e., hyper elastic membrane) separately, instead of considering

the particle to be homogenous. This is a more appropriate approach to

model fluid-filled particles such as cells, vesicles and microcapsules.

2. Avoided various assumptions in the literature on the deformed geome-

try of the particle (e.g., part of the deformed particle being spherical).

This allows us to obtain the exact (not approximate) deformation of the

particle from well-defined boundary value problems (BVPs). We also

removed the typical assumption of small deformation, which allows us

to study the response of the particle under large deformation.

3. Introduced coupling between the electrostatic interactions and deforma-

tion of the particle, which has not been studied before in the literature,

but which is important for charged particles, especially biological parti-

cles.

4. Explored the ability of the membrane theory to capture experimental

observations of soft particles. In fact, some of the results predicted from

our model agree quantitatively with experimental results.

1.5 Thesis outline

The dissertation is organized as follows.

The general preliminaries are presented in Chapter 2. This chapter focuses

on explaining the membrane theory and the formulation on the geometry,

deformation, equilibrium and the constitutive relation to be used in this dis-

sertation.

The attempt to understand the mechanical response of a fluid-filled particle

in contact with rigid conical indenters is presented in Chapter 3.
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The deformation of the particle during indentation using a rigid conical

indenter against a flat indenter is investigated in Chapter 4.

The characterization of the particle during micropipette aspiration is pro-

vided in Chapter 5.

The adhesion of a charged flexible particle located in an electrolytic envi-

ronment to an oppositely charged rigid substrate is investigated in Chapter

6.

Chapter 7 summarizes the findings of this study and recommends directions

for future research.
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Chapter 2

Mathematical formulation for

the axisymmetric deformation

of a fluid-filled spherical

membrane

2.1 Introduction

The membrane is a structure that is commonly seen in soft particles (e.g.,

cells, vesicles and polymer microcapsules) [1–5]. Generally, a membrane is a

continuous two dimensional manifold that encloses a space which can be empty

or filled with liquid. The enclosing surface of the membrane can be a single

layer or a combination of different layers. Some membranes are permeable, so

liquid can be diffused inside or outside depending upon the osmotic pressure

(e.g., cells and vesicles). However, some membranes are impermeable and can

be used to make different microcapsules. The enclosed liquid can be single

phase or multiphase. Some other microstructures can also be embedded in the

liquid (e.g., polymers that can be proteins or fibers).

The material properties of the membrane structure greatly depend upon

the micro-components on the surface, as well as on the enclosed fluid. For

thin membranes, bending is usually negligible and stretching plays an im-

portant role in their deformation. However, for thick membranes, bending
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and curvature significantly affect the deformation. For instance, Dueling et

al. [6] explained the shape of red blood cell membrane on the basis of cur-

vature elasticity. Bending moments can also be induced chemically in the

membrane by altering the interfacial free energy densities, which changes the

curvature of the membrane [7]. Some membranes may exhibit anisotropic,

time-dependent and/or dissipative properties such as viscoelasticity and vis-

coplasticity [8]. Other membranes may also demonstrate rheological behavior

and flow under shear force. Possible diffusion of materials through the mem-

brane, molecular interactions and chemical interactions on the outside and in-

side the membrane all contribute to its apparent mechanical properties. The

mechanics of the membrane is also affected by the extent of the deformation

and by temperature. For example, different molecular components inside the

membrane may have thermal coefficients that respond differently to tempera-

ture changes. Thermal fluctuations may play a role when the deformation is

small. Finally, biological membranes may be in an active state and undergo

continuous changes with time. Due to the complexity of features that a real

membrane structure exhibits, it is not possible to consider all the mechanical

and thermodynamic aspects of the membrane in a single mechanics model. To

mitigate this limitation, various assumptions are set in place. In the literature,

one of two assumptions is often made for the membrane. One assumes that

the surface area of the membrane does not change with deformation while the

volume occupied by the membrane structure varies. The other assumes that

the volume stays constant allowing the surface area to change.

In this dissertation, the membrane model adopted is a continuum mechan-

ics model subjected to the following assumptions. First, the membrane is

separated into two domains, the membrane surface and the interior, each of

which is occupied by a single-phased homogeneous and isotropic material. We

focus on addressing equilibrium deformation of the membrane structure and
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do not consider any time-dependent properties. Second, the surface of the

membrane is assumed to be sufficiently thin so that bending can be neglected

and the surface is allowed to undergo large nonlinear deformation. Third, the

membrane is assumed to be impermeable and its interior is assumed to be

occupied by liquid that is incompressible. When external load is applied on

the membrane, deformation occurs in order to reach a new configuration in

equilibrium. Under the continuum mechanics framework, the deformation can

be described by the deformation gradient tensor.

Consider a body B whose material points occupy a region R0 ⊂ IR3 in a

reference configuration κ as shown in Figure 2.1(a). We label the two differ-

ent yet infinitely close points P0 and P1 ∈ R0 by their position vectors Z(P0)

and Y(P1), defined by their components {X1, X2, X3} with orthonormal basis

{E1, E2, E3} relative to a coordinate system. This system is referred to as

Lagrangian coordinate system and the components in this system are called

Lagrangian coordinates. The deformation of the body is defined by an injec-

tive mapping function χ, which maps every point in the reference configuration

to a point in the deformed configuration (ϕ). Such a mapping function does
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Figure 2.1: Displacement of a continuum body
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not include the effect of tearing of material, where one-to-one mapping does

not exist. χ(B) is the deformed configuration ϕ of the body. The material

points P0 and P1 in the deformed configuration are represented by their po-

sition vectors z(P0) and y(P1), defined by their components {x1, x2, x3} with

respect to orthonormal basis {e1, e2, e3}. This coordinate system is referred to

as Eulerian coordinate system and the components in this system are called

Eulerian coordinates. In the formulation, we will use upper case letters to

represent quantities in the reference configuration and lower case letters to

represent quantities in the deformed configuration. The position vectors z(P0)

and y(P1) can be written in terms of the mapping function χ as

z = χ(Z, t),y = χ(Y, t) (2.1)

Let χ be differentiable, the relative displacement between the two vectors y

and z is written as

y − z =
∂χ(X, t)

∂X

∣

∣

∣

∣

Y

(Y − Z) +O(|Y − Z|), (2.2)

where the deformation gradient is conveniently expressed as

F =
∂χ(X, t)

∂X
. (2.3)

Ignoring the high order terms in (2.2) it can be written simply as

dx =
∂χ(X, t)

∂X
dX, (2.4)

where dX and dx are the infinitesimal distances between two same material

points in the reference and deformed configurations, respectively. F is the

material deformation gradient tensor that describes the relationship between
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elemental vectors defining neighbouring particles in the reference and deformed

configuration of the body. By employing the deformation gradient tensor to

all material points, the membrane can be transformed from the referential to

the deformed configuration. In the following, we consider the special situation

where the deformation gradient is applied to the spherical membrane as a two

dimensional surface and we will consider the formulation for deformation that

possesses axisymmetry, which is the focus of this dissertation.

2.2 Formulation

2.2.1 Geometry

Consider a membrane which is a sphere of radius R in the reference config-

uration κ (taken to be the stress-free state) as shown in Figure 2.2(a). The

convected spherical coordinates {φ, θ} are used to define the position of a

material point X on the membrane surface

X = RER(φ, θ), (2.5)

where {Eφ(φ, θ),Eθ(θ),ER(φ, θ)} are the standard orthonormal basis for the
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Figure 2.2: a) Reference and b) Deformed configurations

spherical coordinates in κ. The membrane is inflated to radius r0 and then
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deformed axisymmetrically by applying some external force. The position x

of a material point X in the deformed configuration ϕ is located at

x(φ, θ) = r(φ)er(ψ(φ), θ), (2.6)

where the meridian angle ψ(φ) is shown in Figure 2.2(b) and {eψ(ψ, θ), eθ(θ), er(ψ, θ)}

are the orthonormal basis for the spherical coordinates in ϕ. The deformation

gradient is

F = ∇x = gφ ⊗Gφ + gθ ⊗Gθ, (2.7)

where {gφ, gθ} are the covariant basis in the deformed configuration ϕ, and

{Gφ,Gθ} are the contravariant basis in the reference configuration κ. The

covariant basis on ϕ are defined by

gφ =
∂x

∂φ
, gθ =

∂x

∂θ
, (2.8)

and the covariant basis on κ are

Gφ =
∂X

∂φ
, Gθ =

∂X

∂θ
. (2.9)

The contravariant basis on κ satisfy the Kronecker Delta property

Gi ·Gj = δji , (2.10)

which means

Gφ ·Gφ = 1, Gφ ·Gθ = 0, Gθ ·Gφ = 0, Gθ ·Gθ = 1. (2.11)

39



Now, using (2.6) and (2.8), the calculation yields

gφ = r′er + rψ′eψ, gθ = r sinψeθ, (2.12)

and using (2.5) and (2.9)

Gφ = REφ, Gθ = R sinφEθ, (2.13)

where ()′ = d()/dφ. By (2.10), the contravariant basis on κ are

Gφ =
Eφ

R
, Gθ =

Eθ

R sinφ
. (2.14)

Now, using (2.12) and (2.14), it can be shown that, for the membrane in

Figure 2.2, the deformation gradient (2.7) takes the form

F =
r′er + rψ′eψ

R
⊗ Eφ +

r sinψ

R sinφ
eθ ⊗ Eθ, (2.15)

which can be conveniently expressed as

F = λl⊗ L + µm⊗M, (2.16)

where λ and µ are the principal stretches, l and m are orthonormal vectors

in the tangent plane Tϕ of the deformed configuration ϕ, while L and M are

orthonormal vectors in the tangent plane Tκ of the reference configuration κ.

Comparison of (2.15) and (2.16) yields

λ =

√

(r′)2 + (rψ′)2

R
, µ =

r sinψ

R sinφ
,

l =
r′er + rψ′eψ

λR
, m = eθ, L = Eφ, M = Eθ,

(2.17)
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and the areal dilation is given by

J =
√
detFTF = λµ. (2.18)

The outward normals to Tκ and Tϕ are, respectively,

N = L×M, n = l×m. (2.19)

As shown in Figure 2.2(b), the unit tangent vector l can be expressed using

the standard cylindrical basis {i(θ), j(θ),k} as

l = cos τ i− sin τk, (2.20)

where the angle τ and the basis {i(θ), j(θ),k} are shown in Figure 2.2(b). The

transformation between the spherical and the cylindrical basis is

i = cosψeψ + sinψer, j = eθ, k = − sinψeψ + cosψer. (2.21)

Substituting (2.21) into (2.20) and, subsequently, into (2.17)3 (the third equa-

tion of (2.17)), the first order ordinary differential equations (ODEs) for r′(φ)

and ψ′(φ) are, respectively,

r′ = λR sin(ψ − τ), ψ′ =
λR

r
cos(ψ − τ). (2.22)

2.2.2 Equilibrium

The equilibrium equation of the membrane is given by

DivP+ Jf = 0, (2.23)
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where Div is the two dimensional divergence operator on the reference config-

uration κ, P is the first Piola-Kirchhoff stress tensor, J is the areal dilation

and f is the body force and lateral traction per deformed area. For simple

hyperelastic material, P is equal to the gradient w.r.t F of the strain energy

density function W (F) on κ

P = WF. (2.24)

The strain energy density is a scalar function that relates the strain energy

density of the material to the deformation gradient. The strain energy density

function depends on the deformation gradient through the symmetric right

Cauchy-Green deformation tensor, which is expressed in its spectral form by [9]

C = FTF = λ2L⊗ L+ µ2M⊗M. (2.25)

For an isotropic membrane, the strain energy density function simplifies to a

symmetric function of the principal stretches λ and µ as

W (F) = W (C) = w(λ, µ) = w(µ, λ). (2.26)

Considering (2.16), (2.24) and (2.26), the first Piola-kirchhoff stress tensor can

be written as

P = wλl⊗ L+ wµm⊗M, (2.27)

where wλ =
∂w
∂λ

and wµ = ∂w
∂µ
. By (2.27), the divergence of P is

DivP =
(wλ)

′l+ wλl
′

R
+
wλ cosφl− wµi

R sin φ
. (2.28)

If the membrane is filled with fluid and the particle is small enough so that

the effect of gravity can be neglected, the equilibrium of the fluid inside the

membrane requires that divσf = 0, which means that the pressure in the fluid
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is constant. That is, the fluid Cauchy stress tensor takes the spherical form

σf = −pfI, where pf is the fluid pressure and I is the identity tensor. This

means that the traction exerted on the membrane by the fluid is

ff = pfn. (2.29)

Depending on the loading conditions, there can be other traction acting on

the membrane, which will be discussed in each individual chapter.

2.2.3 Constitutive relationship

While the above formulation applies to any hyperelastic material, in this work

we adopt the strain energy function for the neo-Hookean material as [9]

w(λ, µ) =
G

2

(

λ2 + µ2 + (λµ)−2 − 3
)

, (2.30)

where G is a material constant with a dimension of energy per unit area. The

relevant derivatives of w(λ, µ) are

wλ = G

(

λ− 1

λ3µ2

)

, wµ = G

(

µ− 1

λ2µ3

)

, wλλ = G

(

1 +
3

λ4µ2

)

, wλµ =
2G

(λµ)3
.

(2.31)

Since the membrane cannot sustain any negative stress, the conditions wλ > 0

and wµ > 0 need to hold everywhere in the membrane [9]. If wλ or wµ are

found to be negative, then, physically, this corresponds to wrinkling of the

membrane and the equilibrium solution is not physically admissible. The

spherical membrane with initial radius R is first inflated by the enclosed fluid

to radius r0. For such homogeneous deformations ψ = τ = φ, since the sphere

is mapped into another sphere, and the principle stretches are λ = µ = λi =
r0
R
.

Using (2.23), (2.28), (2.29) and (2.31), the initial pressure in the fluid can be
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found to be

p0f =
2G

r0

(

1−
(

R

r0

)6
)

. (2.32)

The deformation of the fluid-filled membrane is also governed by the constitu-

tive law for the fluid which determines the pressure in the fluid. In this work,

the fluid is taken to be incompressible, which is an assumption commonly

used when the bulk stiffness of the fluid is much larger than the stiffness of the

membrane. The fluid pressure pf in the deformed membrane is determined by

the incompressibility condition

Jf =
V

V0
= 1, (2.33)

where V0 =
4
3
πr30 is the volume of the inflated spherical membrane before any

further deformation. V is the volume of the fluid enclosed in the membrane

after it has been deformed and can be calculated in several ways, for example

V = π

∫ Zmax

Zmin

u2dz, (2.34)

where u = r sin(ψ) and z = r cos(ψ) as indicated in Figure 2.2(b).

The above formulation applies to any axisymmetric loading on the fluid-

filled membrane. In each of the following chapters, where a particular loading

is given, corresponding ODEs and boundary conditions governing the defor-

mation of the membrane will be derived, and the numerical procedure to solve

the BVP will be described.
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Chapter 3

Contact of a fluid-filled

spherical membrane with rigid

conical indenters1

3.1 Introduction

Membrane-fluid structures have much resemblance to biological cells. Modern

advanced techniques have been used to poke and microinject foreign material

into biological cells. The determination of the mechanical properties of plant

cells was obtained in [1] by studying cell poking. Also, the turgor pressure

inside the cells can be measured using cell poking based on experimental data.

Microinjection model based on membrane model was proposed in [2] to predict

the mechanical response of cell when foreign material is injected. This chapter

focuses on the mechanical response of a spherical fluid-filled membrane when it

is brought into contact with two rigid conical indenters in a symmetric manner.

For simplicity, it is assumed that the membrane is homogenous, elastic and

isotropic, and the fluid is incompressible.

Large elastic deformation of inflated circular plate was studied in [3] by

assuming uniform pressure on one side. In [4], the deformation of a spher-

ical shell compressed between rigid plates was analyzed and conditions for

1A version of this chapter was published. Touqeer Sohail and Ben Nadler, Acta Mech,

218 , 225-235, 2011.
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buckling were determined. The contact of an initially flat circular membrane

with a smooth and rigid spherical indenter were discussed in [5], where the

axisymmetric deformations were analyzed. The general formulation of a flat

neo-Hookean membrane was presented in [6]. Mooney-Rivlin material model

was used in [7] to analyze the deformed configurations of an inflated nonlinear

membrane from an initially flat configuration. When Mooney-Rivlin mate-

rial model [7] was reduced to neo-Hookean material, the results in [7] agreed

with [6]. The contact problem of an inflated spherical membrane with flat rigid

plates was discussed in [8] using Mooney-Rivlin material and instability of the

membrane under large deformations was studied. The shape of the contact

region and the deformed configuration of the initially flat membrane was also

studied in [9] by employing the energy method. In [10], the large deflection

of fluid filled spherical shells were studied and compared with two analyti-

cal models (based on the shell theory and the membrane model). Recently,

in [11], a general formulation for the axisymmetric deformation of spherical

membrane-fluid structure in contact with two parallel planes was derived. It

was also observed in [12] that, under proper conditions, the membrane stress

can be reduced and loss of stability can occur in the form of wrinkling. Three

different theories not restricted to small strains were considered in [13] to de-

termine the equilibrium configuration and a comparison between the theories

was provided.

In this thesis, the mechanical response of a spherical membrane-fluid struc-

ture subjected to poking by conical indenters is presented. Generalization to

the formulation in [12] is introduced to include a non-flat indenter. The cur-

rent study provides more realistic data regarding the forces, stress distribution

and fluid pressure in biological cells subjected to poking.

The present chapter is organized as follows: Section 3.2 presents the model

description of a fluid-filled spherical membrane, the equilibrium equation, the
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constitutive relation and the contact conditions during indentation with rigid

conical indenters. The numerical procedure is discussed in Section 3.3. The

results and discussion are presented in Section 3.4 and conclusions are given

in Section 3.5.

3.2 Formulation

3.2.1 Governing ODEs

The membrane is a sphere of radius R in the reference configuration κ. In the

deformed configuration ϕ, the membrane is inflated to a radius r0 (r0 > R)

and then indented using two rigid conical indenters in a symmetric manner.

Both the referential and deformed configuration of the membrane are shown

in Figure 3.1. The kinematics and equilibrium equations for a fluid-filled

spherical membrane are explained in detail in section 2.2. Therefore, in this

section we will present briefly the governing equations required to formulate

this problem.

R
φ

κ

2R

i

l

k

τ
r

α

ψ

ϕ

2h

U

Figure 3.1: a) Reference and b) Deformed configurations

The geometry of the deformed membrane is represented by two first-order
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ODEs for r′(φ) and ψ′(φ)

r′ = λR sin(ψ − τ), (3.1a)

ψ′ =
λR

r
cos(ψ − τ), (3.1b)

which are explained in Chapter 2.

Assuming that the rigid indenters that exert force on the membrane are

frictionless, the traction exerted on the membrane by the rigid indenter is

normal to the membrane

fc = −pcn, (3.2)

where pc is the contact pressure between the membrane and indenters, and its

direction is opposite to the outward normal n. pc vanishes on the part of the

membrane not in contact with the indenters. Substituting Equations (2.28),

(2.29) and (3.2) into the equilibrium equation (2.23) yields

(wλ)
′l+ wλl

′

R
+
wλ cosφl− wµi

R sin φ
+ λµ(pf − pc)n = 0. (3.3)

Employing the properties

l · l = n ·n = 1, l ·n = 0, l · i = cos τ, n · i = sin τ, l′ · l = 0, l′ ·n = −τ ′,

(3.4)

the projection of (3.3) onto the l and n directions decomposes (3.3) into two

first order ODEs

(wλ)
′ +

wλ cosφ− wµ cos τ

sin φ
= 0, λµR(pf − pc)−wλτ

′ − wµ sin τ

sin φ
= 0. (3.5)

By virtue of (2.26),

(wλ)
′ = wλλλ

′ + wλµµ
′ (3.6)
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and by using (2.17)2 and (2.22), it can be shown that

µ′ =
λ cos τ − µ cosφ

sinφ
. (3.7)

Substituting (3.7) into (3.6), and subsequently, into (3.5), the equilibrium

equations can be conveniently expressed as two first order ODEs for λ and τ

λ′ =
(wµ − λwλµ) cos τ − (wλ − µwλµ) cosφ

wλλ sinφ
, (3.8)

τ ′ =
λµR(pf − pc)

wλ
− wµ sin τ

wλ sin φ
. (3.9)

Now, we have the four ODEs that govern the deformed geometry and equilib-

rium of the membrane which are (3.1a), (3.1b), (3.8) and (3.9).

3.2.2 Boundary and contact conditions

Due to the symmetry of the problem with respect to the plane defined by

φ = π
2
, it is sufficient to consider only the domain 0 ≤ φ ≤ π

2
. The boundary

conditions at φ = 0 are

ψ(0) = 0, τ(0) = α− π

2
, (3.10)

where α is the angle of the conical indenter depicted in Figure 3.1. At the

boundary φ = π
2
, the conditions are

ψ(
π

2
) =

π

2
, τ(

π

2
) =

π

2
, (3.11)

which are associated with the symmetry about the horizontal plane defined by

φ = π
2
.

The membrane domain is decomposed into two parts, one in contact with

the indenter and the other not in contact. The interface between the two
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domains is defined by the value of the convected coordinate φ and is labeled

by φc ∈ (0, π
2
). On the part of the membrane in contact with the indenter,

0 6 φ < φc, τ = α− π
2
and τ ′ = 0. Hence, using (3.9), the contact pressure pc

between the membrane and indenter can be evaluated by

pc = pf −
wµ sin(α− π

2
)

λµR sinφ
. (3.12)

Moreover, the presence of concentrated force at the pole is indicated by the

discontinuity of the normal to the tangent plane of the membrane at this point.

The height of the indenter h, as depicted in Figure 3.1(b), provides the initial

value of the radius, r, at φ = 0, such that

r(0) = h. (3.13)

A simple geometrical relationship (Law of Sines) furnishes an algebraic expres-

sion for the radius, r, in the part of the membrane in contact as

r = h
sin(π − α)

sin(α− ψ)
, (3.14)

and (3.1b) is expressed as

ψ′ =
λR sin2(α− ψ)

h sin(π − α)
. (3.15)

On the part of the membrane not in contact, φc < φ 6
π
2
, the contact pressure

between the indenter and the membrane, pc, in (3.9) vanishes, which furnish

the governing equation for τ

τ ′ =
λµRpf
wλ

− wµ sin τ

wλ sinφ
. (3.16)

The resultant vertical force between the conical indenter and the membrane
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due to the contact pressure and the concentrated force can be evaluated by

global equilibrium of the membrane domain 0 6 φ 6
π
2
as

F = πU2pf − 2πRT, (3.17)

where U = u(π
2
) as shown in Figure 3.1 and T = wλ(

π
2
) is the meridian traction

per referential length at φ = π
2
.

Two different sets of equations govern the equilibrium in the parts of the

membrane in contact and not in contact with the indenter. On the part of the

membrane in contact, 0 6 φ < φc, τ = α − π
2
and the governing equations to

determine {λ, ψ, r} are

λ′ =
(λwλµ − wµ) sinα + (µwλµ − wλ) cosφ

wλλ sinφ
, (3.18)

(3.15), and the algebraic equation (3.14). On the part of the membrane not in

contact with the indenter, φc < φ 6
π
2
, the governing equations to determine

{λ, τ, ψ, r} are the four first order ODEs (3.1a), (3.1b), (3.8) and (3.16). These

first order ODEs are accompanied by boundary conditions (3.10)1 and (3.11).

In additions, on the interface, φc, between the two parts of the membrane,

{λ, τ, ψ, r} are continuous [12]. It should be noted that the value of φc is not

known a priori and is part of the solution to the BVP.

3.2.3 Constitutive relationship

To finalized the mathematical model of the membrane-fluid structure, the

strain energy function of the membrane needs to be specified. Here, we adopt

the well-known neo-Hookean model

w(λ, µ) =
G

2

(

λ2 + µ2 + (λµ)−2 − 3
)

, (3.19)
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where w is the strain energy function and G is the ground-state shear modulus

of the membrane. For the equilibrium configuration to be physically admis-

sible [12], the requirements wλ > 0 , wµ > 0 need to hold everywhere in the

membrane. In the deformed configuration, the fluid pressure is computed by

satisfying the incompressibility condition

Jf =
V

V0
= 1, (3.20)

where V is the volume of the enclosed fluid and V0 = 4
3
πr30 is the volume of

the fluid in the inflated spherical membrane. The volume of the enclosed fluid

in the deformed membrane is evaluated by

V = 4π

∫ U

0

zudu, (3.21)

where z = r cosψ as shown in Figure 3.1.

3.3 Numerical Algorithm

The shooting method based on standard Euler forward differencing with a

suitable mesh spacing ∆φ is used to solve numerically the governing equa-

tions in the contact and non-contact domains of the membrane. Due to the

discretization of the membrane (required by the numerical solution) it is pre-

ferred numerically to control the parameter φc such that it coincides with the

membrane discretization. A sequence of equilibrium configurations is obtained

for various prescribed values of φc, and the corresponding indenter height h is

computed. In this method, the boundary conditions ψ(π
2
) = π

2
, τ(π

2
) = π

2
are

satisfied by determining the associated initial conditions

r(0) = h, λ(0) = λ0, (3.22)
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where h and λ0 are unknowns. After {λ, τ, ψ, r} are obtained, the other prin-

cipal stretch µ can be determined from equation (2.17)2 and the principal

stresses can be calculated from equation (2.27).

3.4 Results and Discussion

The equilibrium configurations of the membrane-fluid structure at various con-

ical indenter angles are depicted in Figure 3.2 for the same indenter height,

where the following normalize parameters are used

r̄0 =
r0
R
, h̄ =

h

r0
, ū =

u

r0
, (3.23)

and the normalized indenter displacement is defined as

d̄ = 1− h̄. (3.24)

In the considered deformations, the membrane is compressed by identical in-
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Figure 3.2: Equilibrium configurations of the membrane-fluid structure at var-
ious indenter angles for r̄0 = 2 and h̄ = 0.35.
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Figure 3.3: The force applied by the indenter on the membrane-fluid structure
vs. indenter displacement for various indenters α = {90o, 70o, 50o, 30o, 10o}
and r̄0 = 2.

denters from both sides in the vertical direction, and as a result, it moves out-

ward circumferentially. The dependency of the vertical contact force applied

on the membrane-fluid structure by the indenter on the indenter displacement

and angle is depicted in Figure 3.3. The indenter force increases nonlinearly

with the indentation. As the sharpness of the indenter increases (indenter

angle decreases), the force required to indent the membrane decreases. In

Figure 3.4, the fluid pressure as a function of the indenter displacement is

shown. It can be observed that the fluid pressure increases as the indenting

process advances. Also, the fluid pressure decreases as the indenter sharpness

increases. Figure 3.5 depicts the dependence of the contact radius on the ver-

tical displacement of the indenter. The contact radius increases with indenter

displacement until the two indenters meet each other at the geometrical center.

Decrease in indenter sharpness results in an increase in the contact radius.

In Figure 3.6, the principal first Piola-Kirchhoff stresses are plotted as a

function of position at a given indentation of d̄ = 0.65 for various indenters,

where Pi is the magnitude of the first Piola-Kirchhoff stress in the inflated

spherical membrane. It should be noted that for a flat indenter, the principal

56



0 0.1 0.2 0.3 0.4 0.5 0.6

0.5

0.55

0.6

0.65

0.7

0.75

0.8

 

 

90o

70o

50o

30o

10o

d̄

p
f

p
0 f
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Figure 3.5: Contact radius vs. indenter displacement for various indenters
α = {90o, 70o, 50o, 30o, 10o} and r̄0 = 2.

stresses increase from poles to the equator, such that, the lowest stresses are

located at the pole while the largest stresses are at the equator. As the sharp-

ness of the indenter increases (α decreases), the first Piola-Kirchhoff principal
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Figure 3.6: Distribution of principal first Piola-Kirchhoff stresses in the mem-
brane at d̄ = 0.65 for various indenters α = {90o, 70o, 50o, 30o, 10o} and r̄0 = 2.

stresses about the pole increase significantly and the stresses are much smaller

and approximately constants away from the pole. Thus, the maximum first

Piola-Kirchhoff principal stresses are located at the poles, if conical indenter

is used, and located at the equator, if flat indenter is used.

Figure 3.7 and Figure 3.8 depict the first Piola-Kirchhoff principal stresses

and stretches for different initial inflations r̄0 = {1.03, 1.5, 2.0} and flat inden-

ter at a given indentation of d̄ = 0.65, where λi is the principal stretch in the

inflated spherical membrane. For large initial inflation, the stress distribution

in the compressed membrane is close to equibiaxial stretch, but for small initial

inflation, the two principal stresses and stretches differ.

In Figure 3.9, the first Piola-Kirchhoff stress at the pole, P0, is plotted as

a function of the indenter displacement for various indenters. It is observed

that the stress distribution in the membrane has strong dependency on the

sharpness of the indenter. For flat indenter, the pole stress remains approxi-
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Figure 3.7: Distribution of principal first Piola-Kirchhoff stresses in the mem-
brane at d̄ = 0.65 for different initial inflations and flat indenter (α = 90o).
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Figure 3.8: Principal stretches in the membrane at d̄ = 0.65 for different initial
inflations and flat indenter (α = 90o).

mately constant through the indentation process and increases only at the last

stage of indentation. However, for conical indenter, the pole stress increases

initially and then remains approximately constant and even decreases at the

end of the indentation process.
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3.5 Conclusions

The contact problem of two rigid conical indenters with a spherical membrane-

fluid structure undergoing large deformation was analyzed. The results ob-

tained in this study can be used to determine the turgor pressure in a cell

during indentation and can be used to detect the mechanical properties of the

membrane in biological cells using a simple poking experiment. This can be

done by matching the constitutive law of the membrane with experimental

data on the structural stiffness of the cell under poking. It was shown that the

stress distribution in the membrane has strong dependency on the sharpness of

the indenter, which can be used for microinjection of foreign material into cells

where knowledge of the stress distribution and the location of the minimum

stress are important.
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Chapter 4

Asymmetric indentation of a

fluid-filled spherical membrane1

4.1 Introduction

Soft particles such as cells, vesicles, granules, emulsion bubbles, microcap-

sules and hydrogels have been widely used in the food, pharmaceutical, chro-

matography, electrophotography, biotechnology, biomedical and chemical in-

dustries [1–9]. Because of their broad applications, it is important to un-

derstand their mechanical properties. The deformation of these particles has

paramount importance in biomedical applications, for example, the microin-

jection of DNA material into an embryo [3], drug delivery capsules [1,7,9] and

non-toxic hydrogels for drug delivery [4]. The strength of these capsules is

important for holding and releasing the encapsulated content in response to

mechanical perturbations or osmotic pressure [1, 7]. Also, the blood flow in

blood vessels and capillaries [10, 11] and its rheological behavior are directly

related to the mechanical properties of blood cells.

Various techniques have been developed to probe the mechanical properties

of soft particles. The most common techniques are: compression [5–7, 12–17],

indentation [1–3,7,9,18–30] and micropipette aspiration [10,11,31,32]. In the

1A version of this chapter has been submitted to an international journal and is under

review. Touqeer Sohail, and Ben Nadler., 2012.
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compression technique, the particle is compressed between two flat parallel

plates, while the deformation of the particle and the corresponding compres-

sion force are measured. Similarly, the indentation technique uses indenters of

various shapes (spherical, conical and cylindrical) to indent the particle while

measuring the deformation and indentation force. The compression technique

gives the bulk response of the particle, while the indentation technique is used

to probe the local response of the particle at different locations. In both

techniques, the force versus displacement curve is obtained which gives useful

information regarding the elasticity, visco-elasticty and time dependent re-

sponse of the particle. Since indentation technique is non-destructive [9], it

can be used to determine the response during loading and unloading cycles. In

the past, this technique was used to study the indentation of axisymmetric ge-

ometries. Only recently it has been used to probe the mechanical properties of

complicated geometries [19–21,33]. In the micropipette technique, a controlled

suction pressure is applied to aspirate the particle into the micropipette. The

measured suction pressure versus the aspiration length curve is used to obtain

information about the global mechanical properties of the particle. The mi-

cropipette technique has been the preferred technique since small forces can

be easily applied to detect changes in the geometry of the deformed surface of

the particle during aspiration [18]. Also, micropipette aspiration is an easier

experiment to perform. However, indentation is better suited to study the

adhesion and spreading of particles [18].

Other experimental techniques are also mentioned in literature, including:

micromanipulation, microcantilevers, Atomic Force Microscope (AFM), opti-

cal tweezers, optical trap and optical stretcher [3,7,10,11,19,20,23,31,34,35].

These methods measure the mechanical properties by deforming the parti-

cles either mechanically (contact) [3, 7, 19, 20, 23], electrically (electric field)

[36, 37], chemically (by changing the external medium, ion concentrations or
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pH valve) [4] or by light (laser beam) [34, 38]. AFM has been used to study

the deformation of soft particles by recording the force versus indentation

curves [2, 19, 20, 24, 25, 28, 39, 40]. This is a surface image technique in which

a sharp tip mounted on a flexible cantilever beam is used to scan the particle

surface. The deflection of the cantilever beam is measured to create the images

of the surface topography of the particle. Smith et al. [5] used the micromanip-

ulation technique that allows the force required to compress a single yeast cell

between two parallel flat surfaces to be measured as a function of cell deforma-

tion [5]. It was found in [5] that the Young’s modulus of a single yeast cell was

about 100 MPa. To determine the Young’s modulus of yeast cells in different

surrounding environment, Bui et al. [20] used AFM to measure the Young’s

modulus of yeast cell in both Deionized (DI) water and Phosphate-buffered

saline solution (PBS). The deformation of yeast in DI water was greater than

in PBS solution, which indicated that yeast cell in DI water was softer than in

PBS [20]. The Young’s modulus observed for yeast cell was 0.15 ± 0.02 MPa

in DI water and 0.24±0.03 MPa in PBS. Using AFM, Arfsten et al. [19] found

that the local deformation of single yeast cell was purely elastic and completely

reversible. The influence of extracellular osmotic pressure on mechanical prop-

erties of the yeast cell was also investigated. It was observed that the stiffness

increased as the turgor pressure increased [19]. Sun et al. [23] used force sensor

to apply a uniaxial load on mouse oocyte and embryo Zona Pellucida (ZP).

The experimental results demonstrated that the force required for puncturing

embryo ZP (13 µN) was almost twice as much as for oocyte (7.5 µN) and the

measured elastic moduli were 42.2 kPa for embryo ZP and 17.9 kPa for oocyte

ZP [23]. The indentation was performed on the zebrafish embryo to generate

empirical data for determining the maximum sustainable stress and strain [3].

During indentation, nine images were obtained corresponding to different force

and indentation depth values [3]. These data points were used to evaluate the
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maximum sustainable stress and strain starting from initial contact to the

point just before penetration [3]. At an indentation depth of 440 µm, the

maximum stress calculated through membrane model using the experimental

data was 6.2 MPa [3]. The adhesion and viscoelastic properties of lysozyme

adsorbed on Mica substrate was investigated using AFM. The Young’s mod-

ulus of lysozyme was estimated to be 0.5 ± 0.2 GPa and the viscosity to be

800±400 Pa-s [24]. Radmacher et al. [25] measured the viscoelastic properties

of human platelets with AFM. The force curves taken on different spots on

a platelet measured an elastic modulus in the range of 1 − 50 kPa [25]. To

characterize the properties of elastic capsules, Gordon et al. [7] indented an

inflated polymer capsules using microcantilevers. It was observed that the in-

dentation depth depended linearly on the force for all capsules examined. The

elastic modulus of these capsules was calculated, from the linear response, to

be 100 Pa. In recent years, significant improvements in the nanoindentation

technique have been employed to study the mechanical properties of materials.

For example, the addition of continuous stiffness measurement technique al-

lows one to measure the dynamical contact stiffness and to probe the changes

in the mechanical properties during indentation [26].

Several mathematical models have been developed to study the mechanical

response of soft particles and to analyze the experimental observations. Such

particles are modeled either as shells or as membranes (neglecting bending

stiffness) with elastic or viscoelastic properties. The deformation and contact

of a solid elastic spherical particle subjected to a point load was first studied by

Hertz [41] and Boussinesq [42]. Sneddon solved the axisymmetric Boussinesq

problem and developed simple formulas to express the relation between load

and penetration for infinitely thick sample using different axisymmetric inden-

ter geometries [27]. Later, the Hertz theory was extended by Johnson-Kendall-

Roberts (JKR) [43] and Derjaguin-Muller-Toporov (DMT) [44] to account for
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the adhesive contact during deformation. The Hertz theory was also modified

to account for the thickness of the particles when deformed using different

indenter shapes [21, 28]. More recently, numerous new models were proposed

to characterize the mechanical properties of the soft particles. Wan et al. [1]

presented an elastic model for the indentation of a spherical pressurized micro-

capsule and observed that the response of the capsule is linear initially, when

the bending is dominant. However, the response is cubic at large deformation,

when large in-plane stretching is observed [1]. Sun et al. [23] used the same

model for thin film encapsulated with liquid to determine the biomembrane

mechanical properties of mouse oocyte and embryo ZP. Lu et al. [3] extended

the biomembrane model [23] to determine the maximum stress and strain of

zebrafish embryos. In this model, an indenter was used to exert a force on

zebrafish embryo and, as a result, a conical dimple was created, where the cell

contacted the indenter tip [3]. The deformed shape of the membrane was ap-

proximated by polynomial function [3]. Bui et al. [20] fitted the experimental

force versus indentation curves of yeast cells with the Hertz-Sneddon model

with a power equation of the form F = a∆zb, where a represented the Young’s

modulus and b depended on the indenter tip shape [39]. They suggested that

b ≈ 2 for conical indenter, b ≈ 1.5 for parabolic indenter and b ≈ 1 for cylindri-

cal indenter. Arfsten et al. [19] observed that the local deformation of a yeast

cell was purely elastic and, therefore, modeled the cell as a linear spring with

spring constant (kc), and found a proportional relation between kc and the

turgor pressure. Radmacher et al. [25] described the elastic response of human

platelets using the Hertz model, where the contact area is a function of the

loading force. The measured indentation versus loading force of Filopodium

shows good agreement with the Hertz model only for small indentation. How-

ever, for Pseudonucleus, which is the thicker part of the cell, it shows good

agreement for large indentation [25]. Gordon et al. [7] used a Finite Element
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Method (FEM) model to describe the indentation of a self-assembled polymer

membrane capsule inflated by osmotic pressure from internal polyelectrolyte.

It was shown that a membrane model (negligible bending stiffness) provided

more accurate predications than a shell model (with bending stiffness). The

FEM model was fitted with the indentation experiments to determine the sys-

tem parameters. It was found that Et = 0.73 N/m and pR/2Et = 0.023,

where E is the Young’s modulus, t is the thickness, p is the internal pressure,

and R is the radius of the capsule. Vella et al. [9] investigated the response of

uniformly pressurized spherical capsule by modeling it as a shell under a point

load. It was observed that the response has two linear regimes, at small and

large indentations.

Various assumptions have been considered to minimize the difficulty in

modeling the mechanical response of such particles. The most common of these

assumptions include homogeneity, constant surface area, constant volume, con-

stant pressure, constant thickness, axisymmetric deformation, small deforma-

tion and negligible bending stiffness [1, 2, 7, 9, 10, 12–17, 21, 23, 25, 28–32, 36].

These assumptions greatly simplified the analysis of soft particles, but are as-

sociated with limitations. For example, Leukocyte showed similar behavior

when aspirated at different locations by rotating the cell [10], which suggested

that Leukocyte cells had homogenous properties. The axisymmetric recovery

of Leukocyte cells provided further evidence of homogeneity [11]. However, it

was also observed that the cell was morphologically heterogeneous [10, 31]. It

has been observed by many researchers that bending stiffness dominated the

small deformation response but could be neglected for large deformation [1].

Similarly, for thin-fluid shells and small indenter size, the bending stiffness be-

comes negligible [12–14]. However, it is necessary to consider the bending, if

the thickness to radius ratio is significant (R/t ≤ 10). Taber [12,29] compared

the experimental measures of water-filled rubber shells of various thicknesses

68



with the model thin shell and showed that bending dominated for deflection

less than 20 percent of the radius. At large deflection, the membrane in-

plane stress became more significant since the fluid pressure increased. Joshi

et al. [36] used a thin elastic shell model to determine the deformation of a

spherical cell structure in response to an external force field. He observed

that the bending moment was small and could be neglected. Liu et al. [13]

suggested that the bending moment could be neglected for a spherical micro-

capsule that has a radius 16 times more than its thickness. However, Rachik

et al. [14] indicated that the thin shell approximation for capsules was valid

only for thickness to radius ratio of up to 5% and the bending effect could

not be ignored for thick shells. Considering small strain, the linear theory was

often assumed [10, 31], but it has been found that the response was nonlinear

for large deformation [1, 9, 20, 21, 23, 39, 45].

The Hertz-Sneddon contact model has also been used to study the response

of soft particles [2, 21, 23, 28, 46]. This model treats the particle as as solid

body. However, it is experimentally observed that many of these soft particles

do not behave as a solid body upon indentation. This model only shows good

agreement with experimental data for indentation smaller than the particle

thickness [21]. This model also assumes that there is only local deformation

in the neighbourhood of the contact with the indenter, while the global shape

remains unchanged, which is not always observed in experiments [2, 7, 20, 23].

Due to these assumptions, this model lacks the ability to accurately describe

the large deformation of soft particles.

In this chapter, we develop a continuum model to characterize the behavior

of a spherical particle during indentation by a rigid conical indenter. Unlike

previous studies [1, 10, 31], we do not assume small deformations. Hence the

model has the ability to capture the nonlinear response observed experimen-

tally. We only study axisymmetric deformations, but do not impose any addi-
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tional geometrical assumption on the deformation to obtained the equilibrium

configurations of the particle as a function of the indenter force. The particle

is modeled as a spherical membrane enclosing incompressible fluid. The mem-

brane is considered to be hyperelastic, homogenous and isotropic, while the

viscosity of the membrane and the enclosed fluid, the frictional contact and

adhesion were neglected. Consistent with the membrane assumption, bending

stiffness is neglected, but the membrane can undergo large deformations. The

current study determines the indenter force, indenter displacement, fluid pres-

sure, contact radii and principal stress distributions in the membrane. As part

of the formulation, it is necessary to specify the constitutive relation. In the lit-

erature, constitutive relations based on the theory of elasticity or viscoelasticty

are generally used [47]. However, due to the complex microstructure of these

particles, the exact constitutive relations are difficult to determine. Therefore,

we formulate the problem for general nonlinear isotropic hyperelastic material

by using a neo-Hookean material type as an example.

The remainder of the chapter is organized as follows. The governing equa-

tions of the deformations, equilibrium equations, the constitutive relation and

the contact conditions during indentation are presented in Section 4.2. The

numerical procedure is explained in Section 4.3. The results and discussion

are presented in Section 4.4, and conclusions are given in Section 4.5.

4.2 Formulation

Consider a nonlinear membrane Ω, which is spherical and stress-free in its

reference configuration κ as depicted in Figure 4.1(a). In the reference config-

uration, the membrane occupies a sphere surface of radius R. The membrane

is inflated from its stress-free radius, R, to radius r0 > R and then quasistat-

ically indented by a rigid conical indenter, while supported by a rigid plane.
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Figure 4.1: (a) Referential configuration, (b) Deformed equilibrium configu-
rations of the membrane-fluid structure in contact with rigid conical indenter
and flat support.

This indentation yields an axisymmetric deformation in the deformed con-

figuration ϕ as shown in Figure 4.1(b). To study the mechanical response of

this membrane-fluid structure, the equilibrium configurations is obtained. The

formulation of the governing equation is presented below.

4.2.1 Governing ODEs and boundary conditions

The basic idea for formulating the deformation of the membrane has been

illustrated in Chapter 2, using the radial position r(φ) and meridian angle

ψ(φ) (see Figure 4.1). The choice of origin, O, is natural in the reference

configuration, but this is not the case for the deformed configuration (see

Figure 4.1), where the origin can be located anywhere on the axisymmetry axis.

Since the deformed configuration is axisymmetric, it is more natural to use

cylindrical coordinates rather than spherical coordinates. We now reformulate

the deformation using the more convenient cylindrical coordinates {u, h, θ}

with respect to the origin located at the conical indenter tip, O′, as shown in

Figure 4.1(b). The coordinates u(φ) and h(φ) are the horizontal and vertical
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distances from the origin O′, such that

x(φ, θ) = u(φ)i(θ) + h(φ)k. (4.1)

The following relationships can be easily established

u = r sinψ, h = h̃− r cosψ, (4.2)

where h̃ is the distance between the origin O′ and the horizontal line passing

through O at τ = π/2. Differentiating (4.2) and using equation (2.22), the

first order ODE for u′(φ) and h′(φ) are

u′ = λR cos τ, h′ = λR sin τ. (4.3)

The principal hoop stretch µ(φ) in (2.17)2 can be expressed in terms of u(φ)

as

µ =
u

R sin φ
. (4.4)

Assuming that the rigid conical indenter and the flat support are friction-

less, the equilibrium equations for the membrane can be derived following the

same procedure as demonstrated in Chapter 3, which results in the following

two ODEs for principal stretch λ(φ)

λ′ =
(wµ − λwλµ) cos τ − (wλ − µwλµ) cosφ

wλλ sinφ
, (4.5)

and for angle τ(φ) (see Figure 4.1(b))

τ ′ =
λµR(pf − pc)

wλ
− wµ sin τ

wλ sin φ
. (4.6)

where pf and pc are the pressure due to the fluid and due to the indenter,
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respectively. The resultant external force applied on the membrane by the

conical indenter is

fc =

∫

Ωc1

pc1 cos τdA, (4.7)

where Ωc1 is the part of the membrane in contact with rigid conical indenter

and pc1 is the indenter pressure on the membrane. At the contact part of the

membrane with flat support Ωc2, where τ = π, the contact pressure between

the membrane and the flat support is equal to the fluid pressure inside the

membrane, which is confirmed by (4.6). So, the resultant external force applied

on the membrane by the flat support is

fs = πu2c2pc2, (4.8)

where uc2 = u(φc2) (see Figure 4.1(b)) is the radius of the contact area with

flat indenter and pc2 is the pressure exerted on the membrane by the flat

support.The global equilibrium of the membrane requires that the sum of the

external forces vanishes, that is

fc = fs. (4.9)

Define φc1 to be the convected coordinate of the interface between the part of

the membrane in contact with the indenter and the part not in contact, and

φc2 to be the convected coordinate of the interface between the part of the

membrane not in contact and the part in contact with the flat support. Then,

the part Ωc1 is parametrized by 0 6 φ 6 φc1 and φc2 6 φ 6 π corresponds

to the part Ωc2 in contact with the flat indenter. Ωnc
will be used to denote

the domain not in contact, corresponding to φc1 6 φ 6 φc2 The equilibrium of

each domain is governed by a different set of equations.
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4.2.1.1 Equilibrium of Ωc1

The membrane is in contact with the rigid conical indenter on the domain

0 6 φ 6 φc1. The indenter makes a constant angle α with the horizontal axis

as shown in Figure 4.1(b). Since the membrane is in contact with the indenter

on Ωc1 , τ = −α and

τ ′ = 0. (4.10)

Employing (4.6), the contact pressure between the membrane and the conical

indenter, pc1 is evaluated by

pc1 = pf −
wµ sin τ

λµR sinφ
. (4.11)

The three first order ODEs (4.3)1, (4.3)2 and (4.5) are to be integrated on this

domain with the initial conditions

u = 0, h = 0 at φ = 0. (4.12)

4.2.1.2 Equilibrium of Ωcnc

The domain of the membrane which is neither in contact with the conical

indenter nor with the flat support is parametrized by φc1 < φ < φc2. Since the

contact pressure vanishes, pc = 0, in this part equation (4.6) reduces to

τ ′ =
λµRpf
wλ

− wµ sin τ

wλ sinφ
. (4.13)

Moreover, the angle τ monotonically increases from −α to π as depcited in

Figure 4.1(b). The four first order ODEs (4.3)1, (4.3)2, (4.5) and (4.13) are

integrated to solve for the deformation of the membrane in the non-contact

domain. The four boundary conditions at the interface φc1 are the continu-

ity of λ (i.e., limφ→φ+c1
λ = limφ→φ−c1

λ), τ (i.e., limφ→φ+c1
τ = limφ→φ−c1

τ), u
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(i.e., limφ→φ+c1
u = limφ→φ−c1

u) and h (i.e., limφ→φ+c1
h = limφ→φ−c1

h) across the

interface. The fifth boundary condition is at the interface φc2, given by

τ = π at φ = φc2. (4.14)

4.2.1.3 Equilibrium of Ωc2

In this part, φc2 6 φ 6 π, the membrane is in contact with the flat support

and τ = π. Therefore h′ = 0 and τ ′ = 0. Equation (4.6) reduces to

λµR(pf − pc2)

wλ
= 0. (4.15)

Hence, the contact pressure between the membrane and the flat support is

pc2 = pf , (4.16)

as suggested by (4.15). The two governing equations of this domain are (4.3)1

and (4.5) with the continuity conditions of λ (i.e., limφ→φ+c2
λ = limφ→φ−c2

λ) and

u (i.e., limφ→φ+c1
u = limφ→φ−c1

u) across the interface at φc2, and the boundary

condition

u = 0 at φ = π. (4.17)

4.2.2 Constitutive relationships

The neo-Hookean strain energy function is adopted to describe the membrane

w(λ, µ) =
G

2

(

λ2 + µ2 + (λµ)−2 − 3
)

, (4.18)

where G is the ground state shear modulus constant. For the homogeneous

deformation of a spherical membrane of radius R to spherical membrane of

radius r0 (mapping of a sphere into a sphere), the initial principle stretches
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are λi = µi =
r0
R
, the enclosed fluid volume is V0 = 4

3
πr30, and the enclosed

fluid pressure is

p0f =
2G

r0

(

1−
(

R

r0

)6
)

. (4.19)

Since the fluid is assumed to be incompressible, the fluid pressure, pf , is a

Lagrange multiplier determined by the incompressibility condition

Jf =
V

V0
= 1, (4.20)

where the deformed volume V is evaluated by

V = 2π

∫ u0

0

hudu+ π

∫ hπ

0

u2dh, (4.21)

where u0 and hπ are shown in Figure 4.1(b). The first term in (4.21) accounts

for the enclosed volume above the plane defined by h = 0, while the second

term accounts for the enclosed volume below this plane.

4.3 Numerical Algorithm

The shooting method with standard Euler explicit integration are employed

to integrate the governing ODEs in the three parts. The membrane domain,

0 6 φ 6 π, is discretized into n elements of equal length ∆φ. Due to the

discretization of the membrane (required by the numerical solution), it is nu-

merically preferred to control the parameter φc1 such that it coincides with

the membrane discretization. A series of equilibrium configurations is com-

puted for increasing values of φc1 which is associated with an increase in the

indenter displacement. The parameter φc1 is increased by adding elements to

the domain of the membrane in contact with the conical indenter, Ωc1 . As φc1

is monotonically increased, the part of the membrane in contact with the flat

support, represented by φc2, also increases. For each additional element that
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comes into contact with the conical indenter, the deformed equilibrium config-

uration is solved. It should be noted that, while the interface φc1 is prescribed,

the interface φc2 is unknown.

Here, the shooting method is used to convert the BVP into two initial

value problems: one involving integration from φ = 0 to φ = φc2 and the other

involving backward integration from φ = π to φ = φc2. The decomposition into

two initial value problems is done to reduce the cumulative error associated

with the integration. For the deformed membrane, the guessed values λ1 =

λ(φ = 0), λ2 = λ(φ = π), pf and φc2 are used to satisfy the boundary condition

τ(φ = φc2) = π, continuity of u and λ at φc2, and one additional condition

(4.20). The Newton-Raphson method is used to solve the resulting system

of nonlinear algebraic equations. After {λ, τ, u, h} are obtained, the other

principal stretch µ can be determined from (4.4) and the principal stresses can

be calculated from (2.27).

4.4 Results and Discussion

The numerical results are presented in this section to study the response of the

fluid-filled membrane when indented by rigid conical and flat indenters. At

each equilibrium configuration, the conical indenter force, the enclosed fluid

pressure, the contact areas, the principal stresses and stretches in the mem-

brane are studied in detail and discussed. The following normalized parameters

are used

r̄0 =
r0
R
, h̄ =

h

2r0
, ū =

u

r0
. (4.22)

The conical indenter force fc, the indenter height d, the enclosed fluid pressure

pf , and the contact radii are normalized as

f̄c =
fcR

Gr0
, d̄ = h̄(φ = 0), p̄f =

pfR

G
, ūc1 =

uc1
r0
, ūc2 =

uc2
r0
, (4.23)
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where uc1 is the contact radius with the conical indenter and uc2 is the contact

radius with the flat support.

In many experiments, spherical beads are used at the AFM tip [21, 28] to

probe the elastic properties of the particle. This provides the average elastic

response of the particle associated with the diameter of the spherical bead,

but local properties cannot be obtained [21]. Therefore, sharp AFM tips are

used to provide measurements of local elastic properties with nanometer reso-

lution [21]. Experiments using spherical AFM tip to determine the mechanical

response of thin Gelatin film [46] showed that the Hertz model failed to cor-

rectly predict the elastic property when the indentation is larger than the

radius of curvature of the tip. However, the Hertz cone model predicted cor-

rectly the elastic response for large indentation [46]. For small indentations,

the response is better approximated by spherical indenter tip [46], but for

large indentation, the tip geometry should be assumed either conical or pyra-

midal [2, 21, 46].

The inflated spherical configuration and the deformed equilibrium configu-

rations by various conical indenters (α = 0o, 20o, 40o, 60o and 80o) at indenter

height of d̄ = 0.50 are depicted in Figure 4.2. It should be noted that the

positive direction of h is pointing downward in Figure 4.1(b). In Figure 4.2,

we have converted the positive direction of h upward by using negative of the

h values obtained from solving the BVP. In addition, a rigid body translation

in the vertical direction is introduced so that, in the contact zone with the flat

support, h is zero. It can be observed that, as the indentation advances, the

membrane is pushed outward circumferentially to preserve the fluid volume.

Since the membrane structure has vanishing bending stiffness, the membrane

takes a conical shape at the part in contact with the conical indenter and a

flat shape at the part in contact with the flat support. This was also seen

experimentally when mouse embryo, mouse oocyte, and zebrafish embryo are

78



deformed by rigid indenters [3,23]. Since the membrane is hyperelastic, it can

undergo large deformation and can recover fully [7]. It has also been observed

that, as the sharpness of the conical indenter increases (i.e., α increases), the

part of the membrane in contact with the conical indenter, Ωc1 , and in contact

with the flat support, Ωc2 , decreases. By decreasing the conical indenter sharp-

ness (i.e., decreasing α), the membrane circumferential advancement increases

as shown in Figure 4.2.
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Figure 4.2: Equilibrium configurations of the membrane-fluid structure at var-
ious indenter angles α = {0o, 20o, 40o, 60o, 80o} for r̄0 = 2 and d̄ = 0.50.

The resultant contact force of the conical indenter, which is equal to the

resultant contact force with the flat support, is plotted in Figure 4.3. It has

been observed that the response depends on the indenter shape and also ex-

hibits different behaviors for small and large deformation [9]. The response is

linear for small deformation [1, 9, 14, 15] and nonlinear for large deformation

[1, 5, 9, 13–15, 20, 21, 23, 39, 45]. Starting from the initial point of contact with

d̄ = 1.0 (no deformation), the membrane shows linear response until the in-

denter height reaches d̄ = 0.98 for flat indenter and d̄ = {0.96, 0.93, 0.78, 0.65}

for conical indenters with sharpness α = {20o, 40o, 60o, 80o}. It becomes clear

that the linear regime increases as the indenter sharpness increases. The reason
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is that, by increasing the indenter sharpness, the deformation is localized as

shown in Figure 4.2. When the indenter sharpness decreases, the deformation

is non-localized, which increases the geometrical nonlinearity. In Figure 4.3,

the different curves of the indenter force represent the stiffness of the structure

corresponding to different indenters. It can be seen that the contact force in-
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Figure 4.3: Normalized conical indenter force vs. normalized conical indenter
height for various conical indenters α = {0o, 20o, 40o, 60o, 80o} and r̄0 = 2.

creases nonlinearly with indentation displacement, which is in agreement with

experimental results [13–15, 20, 21, 23, 45]. In particular, at indenter height

of d̄ = 0.4 and r̄0 = 2.0, the force applied by the flat indenter is f̄c = 4.74.

At the same indenter height, the indentation force for conical indenters with

sharpness α = {20o, 40o, 60o, 80o} are {48.94%, 30.71%, 19.36%, 6.77%} of the

flat indenter. As expected, this shows that, by increasing the sharpness of the

conical indenter, the force required to deform the membrane decreases to a

great extent. Santos et al. [21] observed that the applied force for a conical

indenter is smaller compared to a spherical indenter. Similarly, when the cap-

sules are deformed with point and flat indenters, it is observed that, at the

same indentation depth, smaller force is required by the point indenter than

by the flat indenter. In our model, if we increase the sharpness from 00 to 900,
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the indenter geometry changes from flat to conical and, ultimately, to point

load; the force required to deform the membrane decreases with increasing

sharpness, which is consistent with [7, 21].
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Figure 4.4: Normalized fluid pressure vs. normalized conical indenter height
for various conical indenters α = {0o, 20o, 40o, 60o, 80o} and r̄0 = 2.

The indentation experiments are also used to determine the enclosed fluid

pressure [9,40]. A major resistance to indentation is provided by the enclosed

fluid [9], while the role of the peripheral membrane is to confine the fluid. Gor-

don et al. [7] modeled the polymer capsules inflated by osmotic pressure from

internal polyelectrolyte as a pressurized membrane and used the finite element

modeling approach to study the deformation upon indentation. Because these

capsules are inflated to a great extent as shown in Figure 6 of [7], the infla-

tion can be used as a possible non-mechanical trigger for the release of the

encapsulated contents. Similarly, due to the osmotic gradient, the water flows

into the cell under physiological condition, causing an overpressure inside the

cell, which is called turgor pressure and is defined as the difference between

intracellular and extracellular osmotic pressure [19]. Since these examples are

associated with large inflations, in particular for capsules [7], we take the ini-

tial inflation to be r̄0 = 2.0. The fluid pressure as a function of indenter height
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is depicted in Figure 4.4. The fluid pressure increases monotonically with the

decrease in indenter height. Moreover, in [7] it was shown that at the same

indentation depth, less force is required for point indenter than for flat in-

denter. A similar relationship is observed in our model since compared with

conical indenter, the fluid pressure increases at higher rate when using flat

indenter as depicted in Figure 4.4. For comparison, for flat indenter (α = 0o),

the fluid pressure at the indenter height of d̄ = 0.4 and r̄0 = 2.0 is p̄f = 1.56.

For conical indenters with sharpness α = {20o, 40o, 60o, 80o}, at the same in-

denter height, the fluid pressure is {83.27%, 76.91%, 72.60%, 67.33%} of the

flat indenter. The fluid pressure decreases as the conical indenter sharpness

increases, because the deformation is more localized for sharper indenters.
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Figure 4.5: Distribution of normalized principal stresses in the membrane at
d̄ = 0.50 for various conical indenters α = {0o, 20o, 40o, 60o, 80o} and r̄0 = 2.

The principal stress distribution in the membrane, normalized by the ini-

tial membrane stress Pi, at the indenter height of d̄ = 0.50, is depicted in

Figure 4.5. With initial inflation of r̄0 = 2.0, it is observed that both principal

Piola-Kirchhoff stresses wλ and wµ are approximately equal everywhere in the
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d̄ = 0.50 for different initial inflations r̄0 = {2.0, 1.5, 1.3} and conical indenter
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membrane. When flat indenter (α = 0o) is used, the maximum principal stress

occurs at the equator (φ = ψ = π/2) [13, 17, 45, 48, 49], since this part is not

externally supported. However, for conical indenters, the maximum stress is

located at the point in contact with the indenter tip [3, 21]. For comparison,

at d̄ = 0.50 the normalized maximum stress is 1.083 at φ/π = 0.5 for flat

indenter and the normalized maximum stresses are {1.263, 3.385, 14.48, 91.14}

at φ/π = 0 for different sharp conical indenters α = {20o, 40o, 60o, 80o}. It

is obvious that the maximum stress value for conical sharp indenters is much

larger than for the flat indenter which is also reported in [21], where the stress

for conical indenter is almost ten times larger than that for spherical inden-

ter. As sharpness increases, the maximum stress significantly increases and

becomes more localized about the indenter tip, while the stress away from

the indenter tip is almost uniform, which is in agreement with [3]. In Fig-

ure 4.5, for indenters α = {0o, 20o}, the principal stresses show non-monotonic
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change away from the indenter tip. To better observe this non-monotonic

change for α = 60o, which is difficult to observe in Figure 4.5, the prin-

cipal stresses are also depicted in Figure 4.6 for different initial inflations

r̄0 = {2.0, 1.5, 1.3}. The non-monotonic change is significant for both prin-

cipal stresses wλ and wµ. For large initial inflation r̄0 = 2.0, the principal

stresses are equal but as the initial inflation decreases, the principal stresses

start to vary as shown in Figure 4.6. At an initial inflation of r̄0 = 1.5, the

Piola-Kirchhoff stress wµ is smaller than wλ at the part in contact with the

conical indenter, 0.0 6 φ 6 0.17. However, wµ is larger than wλ at the part

which is not in contact, 0.17 < φ 6 0.9. For the part of the membrane in

contact with the flat support, 0.9 < φ 6 1.0, the principal stresses are almost

equal. Similar behavior is observed for an initial inflation of r̄0 = 1.3. The

variation in the principal stresses is dependent on the initial inflation, which

is an important factor to study in inflated particles such as cells, vesicles, and

polymer capsules [1, 7, 9, 19, 40].

Figure 4.7 shows the principal stretches distributions in the membrane

for various initial inflations r̄0 = {2.0, 1.5, 1.3} using flat indenter. Similarly,

Figure 4.8 shows the principal stretches distributions in the membrane for dif-

ferent initial inflations using conical indenter with α = 60o. In Figure 4.7 and

Figure 4.8, the principal stretches are normalized by the initial stretches. The

principal stretches show similar behavior to the principal stresses in Figure 4.5

and Figure 4.6. For large initial inflation, the membrane is close to an equib-

iaxial stretch state, but, for smaller initial inflations, the principal stretches

deviate. In case of flat indenters (Figure 4.7), the hoop stretch, µ, is always

greater than the meridian stretch, λ. However, when conical indenters are

used, the hoop stretch µ is smaller than the meridian stretch λ at the part of

membrane in contact with the conical indenter, while being larger than the

meridian stretch on the part of the membrane not in contact.
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Figure 4.7: Normalized principal stretches in the membrane at d̄ = 0.50 for
different initial inflations r̄0 = {2.0, 1.5, 1.3} and flat indenter α = 00.
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The pole stress, which is the maximum stress for conical indenters, can be

used as an indication of the penetration conditions [3]. The principal stress

at the pole normalized by the initial homogeneous stress Pi as a function of

indenter height for various indenters is shown in Figure 4.9. It is observed,

as expected, that the pole stress in the membrane has strong dependency on

the indenter sharpness. Moreover, while for sharp indenters, α > 20o, the

pole stress increases monotonically with indenter displacement (i.e., decrease

in indenter height), for blunt indenters, α < 20o, the pole stress decreases

initially followed by an increase. This behavior is governed by the coupling

between the pole strain and the fluid pressure (see [17]). It was also observed

in [30] that when the structure is poked by two conical indenters, the pole stress

during the indentation process increases initially, then remains approximately

constant and, in the final stage of indentation decreases. However, if the

membrane is poked by a conical indenter on a flat support, the response is

completely different (see Figure 4.9).

The final equilibrium configurations of the fluid-membrane structure as the

conical indenter comes into contact with the flat support, h̄ = 0, are depicted

in Figure 4.10. For flat indenter, α = 0o, the indenter height can approach

zero, but cannot take the value zero, since the inclosed fluid volume cannot

vanish. Such large deformed equilibrium configuration of the membrane is

possible for polymer capsules that recover elastically even when indented by a

depth of nearly the capsule’s diameter [7]. The contact radius increases with

indenter displacement until the indenter tip comes into contact with the flat

support. The dependency of the contact radii, uc1 and uc2 on the indenter

height are shown in Figure 4.11. An increase in the sharpness of the conical

indenter (i.e., increasing α) yields a decrease in the contact radii. It is observed

that the contact radius of the structure with the flat support is larger than

the contact radius with the conical indenter, and converges to the same value
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with a decrease of indenter sharpness. The same was observed experimentally

in [12].
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Figure 4.11: Normalized contact radii vs. normalized conical indenter height
for various conical indenters α = {0o, 20o, 40o, 60o, 80o} and r̄0 = 2.

4.5 Conclusions

In this chapter, we developed a nonlinear spherical membrane-fluid model.

The membrane is assumed to be homogenous, isotropic and of hyperelastic

type filled with incompressible fluid. The governing equations are formulated

to investigate the mechanical response of the structure in contact with a rigid

conical indenters and a flat support. Our formulation can be used to determine

the mechanical properties of soft particles by comparison with experimental

measurement of indentation. Although such particles, which can undergo large

deformation, have no bending stiffness, the enclosed fluid provides sufficient

resistance to the deformation and contributes to the structural stiffness. The

resistance to deformation also depends on the sharpness of the indenter. This

study provides valuable information on the indentation force, fluid pressure,

contact areas and principal stress/stretch distributions in the membrane. It

was observed that the indenter force, fluid pressure and contact area depend
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inversely on the sharpness of the indenter. While, for large inflations r̄0 > 2.0,

the two principal stresses/stretches are almost equal everywhere, for small

inflations, r̄0 < 2.0, the two principal stresses/stretches differ. The location

and value of the maximum principal stresses/stretches show strong dependency

on the indenter sharpness. For flat indenter the maximum stresses/stretches

are at the equator, while for conical sharp indenters, they are located at the

tip of the indenter. Our model predicts accurately the nonlinear response

of certain particle types for large deformation and shows excellent agreement

with experiments.

Our model can also accommodate different hyperelastic constitutive mem-

brane laws and compressible fluid. This model provides insights into the com-

plex response of elastic spherical particles and can be used to determine the

mechanical properties of soft particles from indentation experiments. In ad-

dition, the model can determine the distribution of stresses in the peripheral

membrane which can be used to predict the penetration condition associated

with capsules holding and releasing their content and the microinjection tech-

niques. The model presented here is very simple and therefore, it has certain

limitations. In the current model, the friction and adhesion of the membrane

with the indenters and the flat support are not considered. Moreover, the

viscous properties of the membrane and the enclosed fluid are ignored.
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Chapter 5

Micropipette aspiration of an

inflated fluid-filled spherical

membrane1

5.1 Introduction

This work is motivated by the micropipette experiments that have been widely

used to determine the mechanical response of cells. The human cell is a com-

plicated structure that contains nucleus, cytoplasm, protein fibers, plasma

membrane, and a network of different organelles [1,2], which work together to

maintain the daily activities of human beings. Living cells always remain in an

active state and are constantly involved in various physio-chemical reactions.

In response to external mechanical stresses, cells undergo biophysical changes

influenced by their interaction with the extracellular matrix [3]. Depending

upon the surrounding environment, cells go through mechanical changes such

as contraction, relaxation, and stretching. In addition, different cells (e.g.,

leukocyte, granulocyte, endothelial, chondrocyte and human neutrophils) re-

spond differently to external loading [2, 4–8]. To regulate cell activities, it is

essential to understand how the different organelles in a cell contribute to its

mechanical properties and how a cell behaves under typical loading conditions.

1A version of this chapter was published. Touqeer Sohail, Tian Tang and Ben Nadler,

Z. Angew. Math. Phys., 63 , 737-757, 2012.
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This has become an active area of research in recent years [3, 7–10].

The micropipette technique has been widely used to investigate the me-

chanical and adhesive properties of living cells [1–20]. The goal of the mi-

cropipette technique is to measure the mechanical properties of the cell such

as the bending stiffness of the membrane, viscosity, relaxation during recovery

after being aspirated into a micropipette [5, 6, 8] and minute adhesive forces

during detachment from a substrate [19,20]. In a typical micropipette experi-

ment, a micropipette of radius 0.2-0.8 times the cell radius is used and a suction

pressure is applied so that the pressure inside the micropipette is smaller than

that outside. Such a pressure difference causes the cell to be aspirated into the

micropipette and the cell’s deformation can be captured by a high resolution

microscope [4]. This technique has been applied to various active and passive

living cells such as granulocyte, leukocyte, erythrocyte, endothelial, red blood

cell, chondrocyte and human neutrophil. In general, it has been observed that,

at small suction pressure, the cell’s response is elastic [14], and upon removal

of the suction pressure, the cell completely recovers its original shape. When

the suction pressure exceeds a threshold value, the cell exhibits liquid-like be-

havior [1] and spontaneously flows into the micropipette. The resistance to

aspiration decreases as the ratio between the micropipette diameter and the

cell diameter increases. Based on different mechanics models, the micropipette

technique has also been used for the design of force transducers to measure

forces in the piconewton range [21–23]. Here, a cell is aspirated by the mi-

cropipette at one end and a microbead (or another cell) is attached at the

other end. The membrane tension resists the displacement of the bead [22,23]

and the stiffness of the force transducer is changed by changing the suction

pressure [22,23]. With a mechanics model for the cell, the force on the bead is

deduced, and the force-displacement relation is used to determine the bonding

characteristics [20, 24] between the cell and the bead.
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Through the micropipette experiments, different properties have been iden-

tified for different types of cells. For example, aspiration of leukocyte at

three different positions has shown similar behavior, which suggests that it

has nearly homogeneous mechanical properties [4]. The axisymmetric recov-

ery of leukocyte upon removal of external load provides further support [5].

It has also been found that some cells are morphologically heterogeneous be-

cause of non-uniform distribution of organelles and cytoskeletal elements in

the cytoplasm [4, 12]. During micropipette aspiration, endothelial cells have

shown greater stiffness and viscosity as compared to erythrocytes [7]. White

blood cells are more resistive than red blood cells and, therefore, larger suction

pressure is required to deform white blood cells [5,15]. Based on a theoretical

model, Jones et al. [8] interpreted the data from micropipette experiments for

normal chondrocytes and osteoarthritic chondrocytes, and argued that their

Young’s moduli are quite close, whereas there is significant volumetric differ-

ence after deformation.

The cell’s behavior during the micropipette experiment is usually repre-

sented by a graph where the aspiration length (i.e., the projected length of the

cell inside the micropipette) is plotted against the suction pressure. For the

neutrophil, such a graph contains an initial linear regime, which reflects its

linear elastic response at small deformation [4, 9]. The subsequent non-linear

regime, however, suggests its non-linear behavior at large deformations [9]. In

general, it has been observed that the cell behaves in an elastic manner when

being rapidly aspirated and expelled from the micropipette [13, 16]. Specifi-

cally, the cell returns to its original shape upon removal of the pressure. The

recovery, however, depends on how long the cell is held in the micropipette [13].

The longer the cell is kept deformed, the more slowly it recovers its original

shape [5].

Several mechanics models have been developed to explain the experimen-
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tal observations. Based on whether the cell is considered a solid or a liquid

(Newtonian or Maxwell liquid), these models can be divided into two main

categories: (1) solid-like models and (2) liquid-like models. Bagge et al. [25]

suggested that the neutrophil can be modeled as a solid body when deformed.

Jones et al. [8] showed that the chondrocyte behaves as a viscoelastic solid,

where the aspiration length is significantly greater than the micropipette ra-

dius. Sato et al. [7] suggested that the cell’s major resistance to aspiration

is provided by its cortical layer and that the cell can be modeled as a shell

with thickness equal to that of the cortical layer. They also proposed that, if

the micropipette radius is small, a plate model with thickness equal to that

of the cortical layer can also be considered [7]. Yeung et al. [1] and Evan et

al. [6, 17] demonstrated the liquid-like behavior of neutrophil, namely that it

continuously flows into the micropipette when the suction pressure exceeds a

threshold value. The threshold pressure is found to be inversely proportional

to the micropipette radius [1]. Dong et al. [14] modeled leukocyte by a shell

containing a Maxwell fluid, but pointed out a few deficiencies of using small

strain theory in their work. Hochmuth et al. [15] observed the shear thin-

ning behavior of the cytoplasm at high rates of deformation (i.e., the viscosity

decreases as the rate of deformation increases). Tran-Son-Tay et al. [13] pro-

posed that the neutrophil behaves like Newtonian liquid if it is held in the

micropipette for a long time and like Maxwell liquid if it is held for a short

time and undergoes rapid deformation. Hochmuth et al. [16], however, sug-

gested that the neutrophil does not behave as simple Newtonian or Maxwell

liquid because the cytoplasmic viscosity decreases as deformation decreases.

The solid-like and liquid-like models are simplified cell models, and neither

can adequately capture the overall cell behavior. The solid-like model [4]

and the Maxwell liquid-like model [14] adequately capture the initial elastic

response during the aspiration and expulsion from the micropipette, but the
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Newtonian liquid-like model [13,15] does not. The solid-like model with small

strain assumption [4] can adequately fit the experimental data during loading

and unloading when the deformation is small, but are not suitable for large or

long term deformation [6]. In fact, because of the scarcity of the information

about the properties and interactions of the materials that constitute cell, it is

very difficult for any single model to fit cell’s natural response for both small

and large deformations.

Along with the above simplified continuum models, the tensegrity cell

model has been proposed. This model uses cables and struts to represent

the cell structure [26]. The cables are initially stretched in the reference state

by the struts. The entire structure is stretched uniaxially and its deformation

is determined. In [18], the cytoskeletal material is modeled as a network of

viscoelastic links, which is capable of predicting its viscosity, elasticity, shear

thinning and thixotropy. However, because this model is two-dimensional, it

does not provide good comparison with experimental measurements on the

three-dimensional cell structure. A combination of elements from the contin-

uum and tensegrity models [9] is also suggested to study cell mechanics.

Despite the different levels of complexity involved in the common cell mod-

els, several assumptions were often made. Firstly, it was assumed that the

deformation of the cell during aspiration is small (i.e., the reference and cur-

rent configurations are indistinguishable). Secondly, the geometry of the cell

outside the micropipette was considered to be part of a sphere even after de-

formation. Finally, it was assumed that the tension in the cell membrane is a

constant and independent of position. However, it is not clear whether these

assumptions truly reflect the actual physical situation, especially since large

deformation can be expected during aspiration.

In this work, we attempt to characterize the behavior of a spherical cell in

a micropipette experiment using a simple continuum mechanics model, while
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removing the above assumptions. We recognize that the mechanical properties

of the cortical layer are in general very different from the liquid core [1], which

is why we model them separately. Specifically, the cell membrane is assumed

to be in a passive state and is modeled as a homogenous, isotropic and elastic

membrane. The membrane is assumed to be a hyper-elastic material and can

sustain very large deformation. The fluid inside the membrane is considered to

be incompressible, so that its volume is conserved. Equilibrium configurations

of the fluid-filled membrane during micropipette aspiration are calculated for

different micropipette radii and different suction pressures. Although possi-

ble viscous behavior of the membrane and the fluid are not considered in this

work, compared with previous work, our model has several advantages. It is

simple and involves very few parameters. It does not require the assumption

of spherical shape for the cell segments during aspiration. It considers geomet-

rical nonlinearity and can capture very large deformation. In fact, our results

show very good agreement with experimental data, indicating that the non-

linear membrane model may be suitable to accurately describe the mechanical

behaviors of certain cells.

This chapter is organized as follows. In Section 5.2, we provide the formu-

lation for the geometry of a nonlinear membrane, the equilibrium equation,

the constitutive relation and the contact condition during micropipette aspi-

ration. The numerical procedure is described in Section 5.3. The results and

discussion are presented in Section 5.4 and conclusions are given in Section

5.5.
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5.2 Formulation

5.2.1 Geometry

As shown in Figure 5.1(a), the membrane under consideration is a sphere of

radius R in the reference configuration κ (taken to be the stress-free state)

and the convected spherical coordinates {φ, θ} are used to define the position

of a material point X on the membrane surface. The membrane is inflated

to radius r0 filled with fluid and then aspirated by a rigid micropipette of

radius ρ. In Figure 5.1(b), A and B correspond to the leftmost and rightmost
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Figure 5.1: Coordinate system for the membrane under micropipette aspira-
tion. φ is the angle measured in the reference configuration κ and ψ in the
deformed configuration ϕ and τ− = limφ→φ̄− τ and τ+ = limφ→φ̄+ τ are the
tangential angles at the kink. (a) Referential state (b) Deformed equilibrium
configuration when membrane is not in contact with the micropipette wall (c)
Deformed equilibrium configuration when membrane is in contact with the
micropipette wall.

points of the membrane, while O′′ is the intersect of AB and the symmetry

line of the membrane. r(φ) is the distance from O′′ to a point on the deformed

membrane and ψ(φ) is the meridian angle. As explained in Chapter 2, the
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first order ODEs for r′(φ) and ψ′(φ) are

r′ = λR sin(ψ − τ), ψ′ =
λR

r
cos(ψ − τ), (5.1)

where ()′ = d()/dφ, λ is the meridian stretch (the hoop stretch denoted by

µ), and τ is the tangent angle on the membrane surface. Through geometrical

relationship, in Figure 5.1(b), r in the deformed membrane can be calculated

as

r =
(h1 − h)

cos(ψ)
(5.2)

where h1 is the distance from the horizontal axis AB to the lower edge of the

micropipette. Substituting (5.2) into (5.1)2, ψ
′(φ) in the deformed membrane

is given by

ψ′ =
λR cos(ψ)

(h1 − h)
cos(ψ − τ). (5.3)

Since the deformed membrane does not possess spherical symmetry, but rather

cylindrical symmetry, it is more convenient to employ cylindrical coordinates.

In the following, the formulation will be recast in terms of u(φ) and h(φ), which

are the horizontal and vertical positions defined with respect to the origin O′

located at the centre of the lower edge of the micropipette (see Figure 5.1 (b)).

The following relationships can be easily derived

u = r sinψ, h = h1 − r cosψ, (5.4)

where h1 is the distance from O′′ to the center of the micropiette, O′. Differ-

entiating (5.4) and afterward substituting equation (5.1) into it, the first order

ODEs for u′(φ) and h′(φ) are

u′ = λR cos τ, h′ = λR sin τ. (5.5)

104



Using (5.4) and (5.5), expressions for r′(φ) and ψ′(φ) can be written in terms

of u(φ),u′(φ),h(φ) and h′(φ) as

r′ =
u′u− h′h1 + h′h

u
sin(tan−1(

u

h1 − h
)), ψ′ =

u′(h1 − h) + h′u

u2
(sin(tan−1(

u

h1 − h
)))2.

(5.6)

The principal stretches λ and µ can also be written in terms of u(φ), h(φ) and

their derivatives as

λ =
sin(tan−1( u

h1−h
))

uR

√

(u′u− h′h1 + h′h)2 + (u′h1 − u′h + h′u)2, µ =
u

R sin φ
.

(5.7)

5.2.2 Equilibrium

The derivation of the equilibrium equations follows the same procedure as

shown in Chapter 3, except that the traction on the membrane due to the

indenter is replaced by the pressure from outside of the membrane. Let P1

and P2 denote the pressure inside the micropipette and the outside ambient

pressure, respectively. The traction on the membrane due to the fluid outside

the membrane is

fv = −pn, (5.8)

where n is the outward normal to the deformed membrane surface, p = P1

on the aspirated part of the membrane not in contact with the micropipette

wall, and p = P2 on the part of the membrane outside the micropipette. The

equilibrium equations are, therefore, given by

λ′ =
(wµ − λwλµ) cos τ − (wλ − µwλµ) cosφ

wλλ sinφ
, (5.9)

τ ′ =
λµR(pf − p)

wλ
− wµ sin τ

wλ sinφ
. (5.10)
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As shown in Figure 5.1(b,c), at the lower edge of the micropipette there is a

“kink” in the deformed membrane, where curvature is undefined. Figure 5.2(a)

shows the balance between the force exerted by the micropipette and the

tension in the stretched membrane at the kink. The vertical force exerted by

hf

1P

a

2P
b

ρ

pf

fp

pf pf

hf
hf

wλ
−

wλ
+

τ−

τ+

Figure 5.2: (a) Free body diagram for the kink of the membrane in contact
with the micropipette. The principal stresses at the kink are w−

λ = limφ→φ̄− wλ
and w+

λ = limφ→φ̄+ wλ . (b) Equilibrium of the membrane with inside fluid
pressure pf , micropipette vertical force fp, micropipette horizontal force fh
and external pressures P1 and P2.

the micropipette in contact with the membrane is

fp = − [wλ sin τ ]φ̄ , (5.11)

where

[wλ sin τ ]φ̄ = (wλ sin τ)
+ − (wλ sin τ)

− = lim
φ→φ̄+

wλ sin τ − lim
φ→φ̄−

wλ sin τ (5.12)

is the jump at the kink, i.e., at φ̄ = φc, when the membrane is not in contact

with the micropipette wall and, at φ̄ = φc2, when it is in contact with the

micropipette wall, as shown in Figure 5.1 (b) and (c). The domain φc1 6 φ 6
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φc2 corresponds to the part of the membrane in contact with the micropipette

wall as shown in Figure 5.1 (c). τ− = limφ→φ̄− τ is the tangential angle of

the membrane inside the micropipette at the kink and τ+ = limφ→φ̄+ τ is

the tangential angle of the membrane outside the micropipette at the kink

(see Figure 5.1(c)). It should be noted that the vertical force fp is the force

per unit length, measured in the reference configuration, of the contact line

between the membrane and the end of the micropipette. The balance between

the external pressures and the micropipette force is shown in Figure 5.2(b).

Since the length of the contact line in the reference configuration is R sin φ̄,

the total vertical force from the pipette is fp2πR sin φ̄. Therefore, the suction

pressure (i.e., the pressure difference inside and outside of the micropipette)

required to aspirate the membrane is

∆P =
2

ρ2
fpR sin φ̄. (5.13)

Here, φ̄ = φc, when the membrane is not in contact with the micropipette

wall and φ̄ = φc2, when the membrane is in contact with the micropipette

wall. ∆P = P2 − P1 is the pressure difference and ρ is the radius of the

micropipette.

5.2.3 Constitutive relationship

The strain energy function for the membrane is described in this work by the

neo-Hookean material as [27, 28]

w(λ, µ) =
G

2

(

λ2 + µ2 + (λµ)−2 − 3
)

, (5.14)

where G is a material constant. Since the membrane cannot sustain any neg-

ative stress, the conditions wλ > 0 and wµ > 0 need to hold everywhere in

107



the membrane [27]. If wλ or wµ are found to be negative, then, physically,

this corresponds to wrinkling of the membrane and the equilibrium solution

is not physically admissible. The spherical membrane with initial radius R is

inflated by the enclosed fluid to radius r0. For such homogeneous deforma-

tions, ψ = τ = φ, since the sphere is mapped into a sphere, and the principle

stretches are λ = µ = λi =
r0
R
. Using (5.10) and (2.31), the initial pressure in

the fluid is

p0f =
2G

r0

(

1−
(

R

r0

)6
)

+ P2. (5.15)

The fluid is taken to be incompressible and the pressure pf in the aspirated

membrane is determined by the incompressibility condition

Jf =
V

V0
= 1, (5.16)

where V0 = 4
3
πr30 is the volume of the inflated spherical membrane before

aspiration. V is the volume of the fluid enclosed in the membrane after it has

been aspirated and can be calculated using

V = π

∫ hD

hC

u2dh, (5.17)

where the position of points C and D are indicated in Figure 5.1(b).

5.2.4 Contact conditions

The micropipette aspiration of the membrane consists of two stages. When

the suction pressure is small, the membrane is only in contact with the mi-

cropipette at its lower edge and there is no contact between the membrane and

the micropipette wall, as shown in Figure 5.1(b). When the suction pressure

is sufficiently large, contact is formed with the micropipette wall, as shown in

Figure 5.1(c). For the first stage, the membrane can be separated into two
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regions: (1) the aspirated part and (2) the external part. For the second stage,

the membrane has three regions: (1) the part inside the micropipette, but not

in contact with the micropipette wall, (2) the part inside the micropipette and

in contact with the micropipette wall and (3) the external part.

5.2.4.1 First stage: no contact with the micropipette wall

At small aspiration pressure, the membrane is only in line contact with the

micropipette edge. Equation (5.10) for the aspirated region, where p = P1,

becomes

τ ′ =
λµR(pf − P1)

wλ
− wµ sin τ

wλ sinφ
. (5.18)

The three first order ODEs (5.5)1, (5.9) and (5.18) are to be solved for the

aspirated part of the membrane 0 6 φ 6 φc. The boundary conditions (BCs)

in the aspirated region are

u(0) = 0, τ(0) = 0, u(φc) = ρ, (5.19)

as shown in Figure 5.1. Equation (5.10) for the external part of the membrane

with p = P2 becomes

τ ′ =
λµR(pf − P2)

wλ
− wµ sin τ

wλ sinφ
. (5.20)

The three first order ODEs (5.5)1, (5.9) and (5.20) are required in the external

part of the membrane φc < φ 6 π. The BCs for this region are

u(φc) = ρ, u(π) = 0, τ(π) = π, (5.21)

as shown in Figure 5.1(b). Once λ and τ are determined, equation (5.5)2

can be integrated with respect to the origin O′, where h(φc) = 0, and the

configuration of the deformed membrane is entirely determined. It should be
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noted that there are two unknowns, pf in the governing equation and φc in

the BCs above. Therefore, two additional conditions are required to complete

the formulation of the problem. These equations are the incompressibility

V

V0
= 1, (5.22)

and the equilibrium of the whole membrane-fluid structure

πρ2∆P + 2πR sin φ̄fp = 0, (5.23)

where the first term is the resultant force due to the pressure difference and the

second term is the resultant vertical force applied by the micropipette edge.

In the case of no contact between the membrane and the micropipette wall,

φ̄ = φc.

5.2.4.2 Second stage: contact with the micropipette wall

At large suction pressure, the aspirated membrane forms contact with the

micropipette wall. The three first order ODEs (5.5)1, (5.9) and (5.18) are to be

solved for the aspirated yet non-contacting part of the membrane 0 6 φ 6 φc1.

The BCs for this region are

u(0) = 0, τ(0) = 0, u(φc1) = ρ, (5.24)

as shown in Figure 5.1(c). For the part of the membrane, φc1 6 φ 6 φc2, which

is in contact with the micropipette wall, τ = π/2 and u = ρ. Thus, in this

region,

τ ′ = 0, u′ = 0. (5.25)

Hence, only one governing equation (5.9) for λ is required. The boundary con-

dition in this region is the continuity of λ at φc1 (i.e., limφ→φ+c1
λ = limφ→φ−c1

λ),
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as required by the jump condition in the absence of concentrated load, where

limφ→φ−c1
λ is known from the solution to the aspirated, but non-contacting

part of the membrane. The three governing equations for the exterior part of

the membrane, φc2 < φ 6 π, are (5.5)1, (5.9) and (5.20). The BCs for this

part are

u(φc2) = ρ, u(π) = 0, τ(π) = π, (5.26)

as depicted in Figure 5.1(c). After knowing λ and τ , equation (5.5)2 is inte-

grated with h(φc2) = 0. Two unknowns φc1 and φc2 are present in the BCs and

the third unknown pf is present in the governing equation for τ ′. These three

unknowns require three aditional conditions. In addition to the two conditions

(5.22) and (5.23) introduced in 5.2.4.1, the third condition is

τ(φc1)− π/2 = 0, (5.27)

which is the continuity of τ as required by the jump condition in the absence

of concentrated load.

5.3 Numerical Algorithm

Experimentally, in the micropipette aspiration, the suction pressure is con-

trolled and the deformation of the cell is measured. This corresponds to solv-

ing the above defined BVPs for given parameters R, r0, G, ρ, P1 and P2.

Considering, for example, the case where the membrane forms contact with

the micropipette wall, one would specify P1 and P2, and solve the BVP de-

fined in 5.2.4. Consequently, φc1 and φc2 will be part of the solution. However,

numerically, it is difficult to solve a BVP without knowing the boundary lo-

cations (i.e., how much of the membrane has been aspirated and how much

is in contact with the micropipette wall). In order to avoid this difficulty, in
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our calculation, we specify the domain boundary φc2 and calculate the corre-

sponding suction pressure. This approach facilitates the numerical calculation

and also allows us to establish the relationship between the suction pressure

and deformation.

The membrane, 0 6 φ 6 π, is discretized into n elements with equal spacing

∆φ. The lower edge of the micropipette is placed on a sequence of nodes

j = q, q + 1, ...n on the membrane, where j = q corresponds to ∆P = 0 and no

deformation in the membrane. For each j, the deformation of the membrane

is obtained by solving the BVP and the corresponding suction pressure is

determined. The shooting method is employed to solve the BVP. Using this

method, the BVP is replaced by two initial value problems. The membrane

is decomposed into two parts, the part inside the micropipette, 0 6 φ < φ̄,

and the part outside the micropipette, φ̄ < φ 6 π. For the the first stage (no

contact with the wall), given P2, the guessed values λ1 = λ(0), λ2 = λ(π), pf ,

and P1 are used to shoot for the boundary conditions u+(φc) = u−(φc) = ρ, and

the two additional conditions (5.22) and (5.23). For the second stage (contact

with the micropipette wall), the guessed values λ1, λ2, pf , P1 and φc1 are used

to shoot for the boundary conditions u+(φc1) = u−(φc2) = ρ, and the three

additional conditions (5.22), (5.23) and (5.27). The fourth order Runge-Kutta

method was used to integrate the equations. After {λ, τ, µ, h} are obtained,

the hoop stretch µ can be determined from (4.4) and the principal stresses can

be calculated from (2.27).
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5.4 Results and Discussion

The deformed equilibrium configuration of the aspirated membrane is ex-

plained using the following normalized parameters:

ρ̄ =
ρ

r0
, f̄p =

fpR

Gρ
, L̄ =

L

R
, r̄0 =

r0
R
. (5.28)

Here, ρ̄ is the micropipette radius normalized by the inflated radius of the mem-

brane, fp is the normalized micropipette force and L̄ is the aspirated length

normalized by the referential radius of the membrane shown in Figure 5.1.

The fluid pressure inside the membrane, the pressure inside the micropipette

and the external pressure are normalized as

pf =
pfR

G
, P1 =

P1R

G
, P2 =

P2R

G
. (5.29)

The normalized pressure difference (defined as the suction pressure) by which

the membrane is aspirated is

∆P = P2 − P1. (5.30)

In general, as shown in Figure 5.1(b), at low suction pressure, the membrane

aspirated does not form contact with the micropipette wall. As the suction

pressure increases to a certain value, the contact with the micropipette wall is

achieved as shown in Figure 5.1(c). Figure 5.3 to Figure 5.12 represent the re-

sponse of the membrane at an initial inflation of r0 = 2R. The aspirated mem-

brane for micropipette radius ρ̄ = 0.52 and different suction pressures is shown

in Figure 5.3. Figure 5.3(a) shows the state where the membrane is inflated,

but not aspirated. Figure 5.3(b) illustrates the state where the membrane has

no contact with the micropipette wall, and Figure 5.3(c-d) illustrates the state

where the membrane is in contact with the micropipette wall. The correspond-
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ing normalized suction pressures for Figure 5.3(b-d) are ∆P = 0.871, 0.540

and 0.103, and the normalized aspirated lengths are L̄ = 1.01, 2.35 and 6.76,

respectively. Interestingly, these values indicate that, once contact with the

micropipette wall is achieved, the suction pressure can decrease, while the aspi-

rated length keeps increasing. In addition, our numerical results show 42.5%

dcba

Figure 5.3: Configuration of the membrane when aspirated by a micropipette
of radius ρ̄ = 0.52, (a) Referential state, ∆P = 0.0 (b) ∆P = 0.872 (c)
∆P = 0.505(d) ∆P = 0.103.

of the membrane is inside the micropipette in Figure 5.3(c) and 92.5% is inside

the micropipette in Figure 5.3(d). Out of the part of the membrane inside the

micropipette, 62.1% (in Figure 5.3(c)) and 96.4% (in Figure 5.3(d)) are in con-

tact with the micropipette wall. Clearly, as deformation increases, portion of

the membrane inside the micropipette that is in contact with the micropipette

wall increases, while the portion of the membrane inside the micropipette that

is not in contact decreases. This phenomenon occurs because stretches about

the pole are larger compared with the stretches in the part which is in contact
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with the micropipette wall. This point will be demonstrated later.

To study the large deformation of the membrane, its aspiration into mi-

cropipettes of various sizes is investigated. The micropipette size is in the

range of (0.20r0 − r0), where r0 is the radius of the inflated membrane. Fig-

ure 5.4 shows the deformed configuration of the membrane when aspirated by

micropipettes of different radii at the same suction pressure ∆P = 0.310. It

is observed that, at the same suction pressure, the aspirated length is larger

in smaller micropipettes. Specifically, the aspirated lengths in the three mi-

a b dc

Figure 5.4: Configuration of the membrane when aspirated by micropipettes
of different radii at the same ∆P = 0.310 (a) Referential state (b) ρ̄ = 0.70
(c)ρ̄ = 0.58 (d)ρ̄ = 0.52. The dotted curve represents sphere (with Delta P
=0.0).

cropipette sizes ρ̄ = 0.70, 0.58 and 0.52 are L̄ = 2.38, 5.68 and 8.13, respec-

tively. For fixed ∆P , 45.9% of the membrane is inside the micropipette in

Figure 5.4(b), 87.35% is inside the micropipette in Figure 5.4(c) and 98.1%

is inside the micropipette in Figure 5.4(d). The portions 40.41% (in Fig-

ure 5.4(b)), 90.09% (in Figure 5.4(c)) and 96.58% (in Figure 5.4(d)), respec-
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tively, are in contact with the micropipette wall. This demonstrate that, at the

same ∆P , a larger portion of the membrane is in contact with the micropipette

wall for smaller micropipettes. In [17], it is verified experimentally that the

resistance to aspiration is small for large micropipette size and large for small

micropipette size. To investigate this fact by our model, we consider different

micropipettes sizes: ρ̄ = 0.70, 0.58, 0.52 and 0.45. The ∆P require to ini-

tially aspirate an equal small portion of the membrane into the micropipette

are determined to be 0.019 for ρ̄ = 0.70, 0.073 for ρ̄ = 0.58 and 0.143 for

ρ̄ = 0.52. These pressure values indicate that the resistance to aspiration

increases drastically as the micropipette size decreases. This is in agreement

with experimental observations.

In a typical micropipette experiment, a suction pressure is applied and the

aspirated length is measured. Figure 5.5 shows the relation predicted by our

model between the normalized suction pressure and the ratio L/ρ for different

micropipette sizes. Here, L/ρ is chosen to be the variable instead of L̄, be-

cause the radius of the unstressed membrane R is not known in experiments.

Let us first examine the curve corresponding to ρ̄ = 0.45. It can be seen that

the suction pressure first increases with L/ρ at a steep slope until it reaches

p, which is the pressure at which contact with the micropipette wall is initi-

ated. As L/ρ further increases, ∆P continues to increase, but with a much

smaller slope. At certain L/ρ, ∆P reaches its maximum value p′, after which

∆P decreases with further aspiration. p′ represents the threshold point after

which the suction pressure decreases in the micropipette, while the aspiration

length continues to increase. We refer to this phenomenon as “liquid-like”

behavior of the membrane. Specifically, our model is based on displacement

control, in which the part of the membrane aspirated is specified and the

corresponding suction pressure is computed. However, in experiments, load

control is typically used to aspirate the membrane. The suction pressure is
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Figure 5.5: Normalized suction pressure vs. aspiration length L normalized by
micropipette radius ρ for various micropipette sizes ρ̄ = {0.70,0.58,0.52,0.45}.

gradually increased and the corresponding deformation of the membrane is

measured at each ∆P . Because the suction pressure decreases with L/ρ after

the threshold value, it is expected that in a load control test the membrane

will spontaneously “flow” into the micropipette once ∆P exceeds p′. The ad-

ditional three curves in Figure 5.5 demonstrate how ∆P varies with L/ρ for

different micropipette sizes. All the curves demonstrate similar characteristics,

namely, that there is a branch with positive slope and one with negative slope.

However, for the cases where ρ̄ ≥ 0.58, it has been found that p and p′ collapse

into a single point. For these micropipette sizes, once the membrane forms

contact with the micropipette wall, the “liquid-like” behavior is expected in a

load control test. It is interesting to point out that such “liquid-like” behavior

is an experimentally observed phenomenon [1, 13, 15, 17]. Such phenomenon

cannot be predicted by the solid-like models where the aspiration length in-

creases when the suction pressure increases [16]. However, it can be captured

117



with the present model.

If ∆P is slowly reduced after reaching p′, there are two possible outcomes:

(1) the membrane undergoes further deformation, which corresponds to mov-

ing along the curves in Figure 5.5 from p′ to the right or (2) the aspiration pro-

cess is reversed and the membrane gradually retreats from the micropipette,

 

 

b c

d fe

a

L
L

L

L L L

Figure 5.6: Configurations of the membrane aspirated by micropipette of dif-
ferent radii at the same ∆P = 0.311 (a)-(c) ρ̄ = 0.70, ρ̄ = 0.58 and ρ̄ = 0.52,
respectively, in the situation where the membrane is not in contact with the
micropipette wall;(d)-(f) ρ̄ = 0.70, ρ̄ = 0.58 and ρ̄ = 0.52, respectively, in the
situation where the membrane is in contact with the micropipette wall.

which corresponds to moving along the curves in Figure 5.5 from p′ to the

left. Figure 5.6(a-c) show the deformed configurations of the membrane for

three micropipette sizes at the suction pressure of ∆P = 0.311, where the

membrane is not in contact with the micropipette wall, and Figure 5.6(d-f)

show the deformation at the same ∆P , but in this case the membrane is in
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contact with the micropipette wall. It is observed that, in the former case

(i.e., before reaching the maximum pressure), the aspirated length is greater

for larger micropipette sizes: L̄ = 0.706, 0.474 and 0.401 for ρ̄ = 0.70, 0.58

and 0.52, respectively. In contrast, after the threshold point, the aspirated

length is greater in smaller micropipette sizes: L̄ = 1.59, 4.79 and 7.79 for

ρ̄ = 0.70, 0.58 and 0.52, respectively.
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Figure 5.7: Normalized threshold pressure vs. normalized micropipette radii.

The maximum pressure as a function of the micropipette radius is plotted

in Figure 5.7, where the squares represent the p′ values obtained from our

numerical calculations. It is clear from Figure 5.7 that the maximum pressure

p′ increases as micropipette size decreases. This relation looks very similar to

the experimental data reported in [1,17]. In fact, the maximum pressure can be

shown to be inversely proportional to the micropipette radius, as demonstrated

by the curve fitting (solid line in Figure 5.7). This is in quantitative agreement

with experimental findings [1, 17].

In the literature, the micropipette aspiration data have been used to extract

the stiffness and viscosity of the cortical layer [2,16,17]. The membrane in our
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model has no bending stiffness; nevertheless, the results above demonstrate

quantitatively good agreement with experimental observations. The mem-

brane resistance to aspiration in this model results from the enclosed fluid. To

illustrate this, in Figure 5.8, the fluid pressure pf in the membrane is plotted

as a function of the aspirated length. pf is normalized by p0f , which is the

initial pressure of the fluid prior to aspiration. The fluid pressure increases

as the aspirated length increases. For fixed L̄, the fluid pressure is larger for

smaller micropipettes. Because the membrane in our model has no bending

rigidity, its resistance to aspiration largely arises from the enclosed fluid. The

larger pf shown here for smaller micropipettes is consistent with the fact that

it is more difficult to aspirate the membrane with smaller micropipette. This

result also indicates that the experimentally observed resistance to aspiration

may be largely attributed to the structural stiffness due to the enclosed fluid,

rather than the bending stiffness of the surface. Therefore, special care should

be exercised when interpreting the experimental data. In fact, as indicated by

Taber [29, 30] in his work of fluid-filled spherical shell, bending is important

if the deflection is less than 20 percent of the radius, whereas the membrane

stress becomes significant for large deformations. If the spherical shell has a

thin wall (radius to thickness ratio about 16), the bending stiffness can be

completely neglected [31].

The normalized contact area with the micropipette wall vs. the normalized

suction pressure is plotted in Figure 5.9. Here, the contact area Ac between

the membrane and the micropipette wall is normalized by R2. The arrows

in the figure indicate how Ac and ∆P change as the aspirated length in the

micropipette increases. Clearly, when the aspirated length is small, Ac re-

mains zero, independent of ∆P . This is the regime where the membrane does

not have contact with the micropipette wall. After ∆P reaches p, contact is

initiated, Ac continues to increase for further aspiration, while ∆P may start

120



1.4 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6
1

1.05

1.1

1.15

1.2

1.25

 

 

p
f

p
0 f

L̄

ρ̄ = 0.45

ρ̄ = 0.52
ρ̄ = 0.58

ρ̄ = 0.70

Figure 5.8: Normalized fluid pressure vs. normalized aspiration length for
various micropipette sizes ρ̄ = {0.70,0.58,0.52,0.45}.
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Figure 5.9: Normalized contact area between the membrane and the mi-
cropipette wall vs. normalized suction pressure for various micropipette sizes
ρ̄ = {0.70,0.58,0.52,0.45}.

decreasing (if p′ = p) or increasing to p′ and then decreasing. In Figure 5.9,

the maximum contact area that can be achieved for ρ̄ = 0.70 is about 20R2
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and the contact area for ρ̄ = 0.45 can exceed 45R2. Recalling that the surface

area of the unstressed membrane is πR2 and that of the inflated membrane

is 4πR2 (r0 = 2R), our results demonstrate significant areal dilation during

aspiration, and such dilation appears to be much more pronounced in smaller

micropipette sizes. It is recognized that such large dilation may not be possible

physically. However, the maximum contact area that can be obtained depends

on the initial inflation r0 and the choice of r0 = 2R here is rather arbitrary.

Nevertheless, the results here demonstrate the possibility of very large defor-

mation, which is often seen experimentally [6,13–15,17]. In [17], the cell model

is based on the assumption that the cell surface inside and outside of the mi-

cropipette is spherical. In [8], the deformed cell is assumed to be of cylindrical

shape with a hemisphere at each end. In [15], the assumption is limited to the

situation where the segment outside the micropipette is hemispherical. Unlike

these models, our model does not make any geometrical assumptions and the

actual deformed shape of the membrane is solved. Deviation from spherical

shape is demonstrated in Figure 5.4, where dashed circles are drawn as a com-

parison. In [3], it is argued that neither the external nor the internal part is

spherical. In [1], it is suggested that, in complex situations, there is deviation

from the original spherical shape. It has also been shown experimentally that

the external part is not spherical [15], especially at large deformations. These

results are consistent with our model.

The assumption of a spherical surface also implies that the tension is uni-

form along the surface. This assumption was made in many papers [1,6,11,13–

17]. Because of the invalidity of the spherical shape assumption in general, con-

stant tension may not be a good assumption under certain loading conditions.

In fact, our results show that variation in the tension exists on the surface.

The principal stresses are plotted in Figure 5.10 for different micropipette sizes

at the same aspiration length L̄ = 2.0. The suction pressure is different, being
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0.329, 0.636 and 1.17 for ρ̄ = 0.70, 0.58 and 0.45, respectively. The principal

stresses are normalized by wi, where wi is the magnitude of the initial principal

stress in the inflated spherical membrane. In Figure 5.10, φ corresponds to the

convected location on the reference membrane surface as shown in Figure 5.1.

Before the kink, part of the membrane is inside the micropipette and beyond

the kink, part of the membrane is outside the micropipette. Clearly, each of
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Figure 5.10: Distribution of normalized principal stresses in the membrane for
various micropipette sizes ρ̄ = {0.70,0.58,0.45}.

the two principal stresses wλ and wµ varies with location along the surface.

In addition, the principal stresses wλ and wµ are equal near the poles (φ = 0

and π), but deviates in between, especially in the part of the membrane in

contact with the micropipette wall. Such difference is more pronounced for

smaller micropipette sizes. It is also observed from Figure 5.10 that for each

ρ̄, jumps in the principal stresses occur at the location of the kink where the

membrane makes contact with the lower edge of the micropipette. This fur-

ther confirms that the principal stresses are not only non-uniform, but also
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discontinuous. It is interesting to see that for ρ̄ = 0.38, wµ becomes negative

around φ/π ≈ 0.37. Because the membrane presented in our model can only

sustain tension, the negative wµ obtained here will correspond to compression

of the membrane and physically will cause its wrinkling. The wrinkling only

occurs for sufficiently small micropipettes, in this case when ρ̄ ≤ 0.40.
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Figure 5.11: Distribution of normalized principal stretches in the membrane
for various micropipette sizes ρ̄ = {0.70,0.58,0.45}.

The principal stretch distribution in the deformed membrane, normalized

by the initial principal stretch λi, are plotted in Figure 5.11. The behavior is

quite similar to what is shown in Figure 5.10 for the principal stresses, namely

that the two principal stretches are equal at the poles and deviates around

the contact region of the membrane with the micropipette wall, indicating the

geometry of the deformed membrane is only close to being spherical near the

poles. There also exists a jump in λ at the kink and it is more pronounced

for small micropipette sizes. As shown in Figure 5.11, the principal stretches

are greater at the poles, which is consistent with the earlier argument in the
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explanation of Figure 5.3.
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In the previous discussions, the initial inflation has been fixed at r0/R = 2.

Figure 5.12 presents the characteristic behavior of the membrane considering

different inflation values r0/R = 2.0, 2.2, 2.4 and 2.6. The suction pressure

as a function of aspirated length is plotted at a constant micropipette radius

ρ = 1.41R. For all values of r0 considered here, the suction pressure increases

until it reaches the maximum value p′, which coincides with p, the pressure at

which contact with the pipette wall is initiated. The suction pressure drops

afterwards and the membrane exhibits “liquid-like” behavior. At the same

L
ρ
, a membrane with larger initial inflation requires a larger suction pressure,

which is expected.

In the results presented above, P1, the pressure inside the micropipette, is

variable and P2, the ambient pressure, is assigned to be zero. In Figure 5.13,

the normalized suction pressure vs. the normalized aspiration length is plotted

considering different ambient pressures P2 = 0.0, 0.5, 1.0 and 1.5. Interestingly,

all the curves collapse onto one another, indicating that the deformation of the

membrane only depends on the pressure difference ∆P = P2 − P1, but not on

P1 or P2 individually. This is a direct result of the incompressibility of the

enclosed fluid, but it is not apparent from the formulation of the BVP, where

the quantity P2−P1 cannot be clearly separated. Nevertheless, our numerical

results confirmed this fact, which is also consistent with the experimental

data [17], where L is reported as a function of the pressure difference ∆P .

5.5 Conclusions

Reliable models for the mechanics of cells are very important in the under-

standing of cell adhesion, flow of cells in vessels, arteries, veins and capillaries,

where deformation of cells occurs. In this work, we use a continuum membrane

model to characterize the mechanical response of a cell during micropipette
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aspiration. This model assumes elastic material properties, but accounts for

large deformation. No assumptions are made on the deformed shape of the cell.

The membrane has no bending stiffness, but the enclosed fluid can greatly con-

tribute to the structural stiffness. Based on this model, we identify two critical

suction pressures p and p′ during aspiration. As the suction pressure increases

from zero, prior to reaching the suction pressure p, the membrane deforms, but

it is not in contact with the micropipette wall. Between p and p′, the membrane

comes in contact with the micropipette wall. After reaching the maximum

pressure value p′, the aspiration length continues to increase, but, to maintain

equilibrium, the suction pressure has to decrease. This predicts a “liquid-like”

behavior during a load control test. The maximum pressure p′ increases as

the micropipette radius decreases or as initial inflation increases. During as-

piration, non-uniform and even discontinuous principal stresses/stretches are

obtained on the surface of the membrane. This indicates that the deformed

membrane does not possess a spherical shape in general, especially when the

deformation is large. Despite its simplicity, the model we presented here, cap-

tures some of the experimental results quite adequately. Specifically, it predicts

larger resistance associated with smaller micropipette sizes. The relationship

between aspiration pressure and aspirated length captures the “solid-like” re-

sponse at small deformation and “liquid-like” response beyond the maximum

pressure point, both observed in experiments. The maximum pressure is shown

to be inversely proportional to the micropipette radius, which is also consistent

with experimental data [17].

The present model is by no means a fully realistic representation of a cell

under micropipette aspiration. There are clear limitations. The model does

not involve any rate-dependent material properties and, therefore, will not be

able to capture any time/rate-dependent behaviors observed in experiments.

This can be done by extending the current model to include viscosity in the
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membrane and in the enclosed fluid. The adhesion and the frictional contact

of the membrane with the micropipette wall are not part of this study. It is

observed that wrinkling may appear in the aspirated part of the membrane

during large deformation, if very small micropipette sizes (ρ̄ ≤ 0.40) are used.

Experimentally, aspiration using very small micropipettes is not feasible be-

cause cell lysis will occur [1, 13]. Future research may model the cytoplasm

as a viscous and compressible fluid. The non-linear membrane coupled with

the cytoplasm model will shed more light on the cell’s complex mechanical

response.
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Chapter 6

Adhesive contact of a fluid-filled

membrane driven by

electrostatic forces1

6.1 Introduction

Adhesion between two objects arises from the molecular interactions between

them [1–3]. These interactions can be categorized into (1) non-specific, such as

electrostatic, van der Waals, steric and hydrophobic interactions [1, 2, 4–7], or

(2) specific, such as receptor-ligand bonds and hydrogen bonding [2,4–6,8–12].

Specific interactions are strong, but short-ranged, while the non-specific inter-

actions are relatively weak, but long ranged [2, 4–6]. Adhesion plays an im-

portant role in biology, for example, cell deformation, cell movement, growth

and cell-tissue interaction [12,13,20–22] and contributes substantially to many

industrial applications, for example, electrophotography [14–17], powder tech-

nology [18, 19], biotechnology, semiconductor and pharmaceutical industries

[23, 24].

Cell adhesion has recently become an intensive area of research because

of its significance in many biological, physiological and pathological processes

[4,8,9,12,13]. Also, widely studied is the adhesion of vesicles, which are more

1A version of this chapter is in press for publication. Touqeer Sohail, Tian Tang and

Ben Nadler., Int. J. Solids Struct., 2013.
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simple than cells, as they have no cytoskeleton or nucleus effects [4,25]. They

are often used as primitive models to determine important insights in cell ad-

hesion [1]. In experiments, many techniques have been used to investigate

the specific and non-specific adhesion of cells and vesicles during their attach-

ment with other cells, vesicles or substrates [2, 4, 5], including atomic force

microscopy [26], dynamic force spectroscopy [11], magnetic tweezers [13], op-

tical interferometry [27], traction force microscopy [28], optical traps [29], cen-

trifugation [30], hydrodynamic shear [31], micropipette aspiration [8,9,11,12],

optical microscope [3, 11] and impedance spectroscopy [25]. Evans et al. [32]

measured the adhesion between red blood cells using micropipette aspiration

by monitoring the reduction of the aspirated length in the pipette during ad-

hesion. Similarly, Prechtel et al. [11] used micropipette aspiration to study the

detachment of a vesicle from a substrate. They observed that the detachment

force depended on the loading rate which could be well described by a power

law relation with exponent of 0.4. In the work of Reinhart-King et al. [33],

endothelial cells were plated on flexible polyacrylamide gels, the spreading rate

and changes in the cell shape were examined, and the traction force exerted by

the endothelial cells on the polyacrylamide substrate was measured by traction

force microscopy. It was observed that the rate of spreading of the endothe-

lial cells increased with the ligand density on the substrate [33]. Aside from

the experimental explorations, many theoretical studies have been conducted

to model cell/vesicle adhesion [1–6, 8–11, 13, 20–22, 25, 34–42]. There are two

key elements in each of these studies. The first is a mechanics model that

captures the bulk mechanical response of the cell/vesicle and the second is an

interfacial model for adhesion. To reduce the difficulties of modeling the non-

homogeneous and non-isotropic nature of cells, many assumptions have been

introduced in the bulk mechanics models of cells, common examples including

constant surface area [2], constant volume [4,5,20,36], constant tension along
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the surface [37,38], small deformation [11,21,22] and negligible bending [21,22].

These assumptions are not without limitations, but have greatly simplified

the analysis on cell deformation. The necessity of considering bending de-

pends upon the extent of deformation. Taber showed that bending dominated

if the deflection of a fluid-filled rubber shell was less than 20 percent of its

radius [39, 40] and, at large deformation, membrane stretching became more

significant [39]. Joshi et al. [21,22], by using a thin shell model for a spherical

cell structure and determining its deformation in response to external electric

fields, observed that the bending moments were small and could be neglected

for simple analysis. For elastic polymer capsules which have thin membrane

structures, it was observed that bending effects were negligible compared to

stretching [43]. In general, it has been found that, if a spherical microcapsule

has a radius that is more than 16 times its thickness, the bending moment

can usually be neglected [41], while for larger thickness, the bending effect

has to be included [42]. The geometrical assumption of small deformation

is quite common, but it has also been emphasized that geometrical nonlin-

earity can play a significant role during large deformation [5]. Cell/vesicle

adhesion also depends strongly upon the interfacial adhesive behaviors. Many

interfacial models have been introduced, for example, within thermodynamic

framework [1,5], via chemical reaction kinetics [2,4–6,11,12,35,44] and prob-

abilistic kinetics [5], as well as through cohesive zone models [4,5,8,9]. These

models are typically based on one of two approaches. The first uses an energy

approach and the formation of contact area causes reduction in the system’s

free energy [1–3,8,9,12,13]. The second models the interacting forces explicitly

and “binders” on the interface keep the surfaces in contact [2, 4, 5, 8, 9, 13, 34].

Through out the literature, it has become evident that non-specific and specific

forces have different interaction relation and strength that contribute towards

adhesion [5]. Therefore, it is appropriate to model them separately [5]. As
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one of the non-specific forces, electrostatic interaction is a long-ranged inter-

action that contributes to cell/vesicle adhesion. In particular, charge groups

exist over the surfaces of cells and vesicles, and they can interact with one

another as well as with other charged entities. Seyfert et al. [45] used the

flat plate streaming potential method to test the adhesion of leucocytes to

microscope glass slides coated with various polycations. It was observed that

the cell adhesion could be modified by altering the surface conditions and

the interaction forces, including the electrostatic forces [45]. Modeling and

understanding electrostatic interaction is therefore of interest to the study of

cell/vesicle adhesion and its modulation.

Many experimental and theoretical efforts have been devoted to the study

of particle-particle and particle-substrate adhesion driven by electrostatic forces.

Experimentally, different methods, for example, atomic force microscopy, cen-

trifugal detachment and microelectrode detachment field methods have been

used to investigate the electrostatic adhesive force between particles and sub-

strates [14–18]. Through these studies, many factors that affect the electro-

static force were determined, including particle size, particle’s total charge and

its distribution, particle shape and surface roughnesses of the particle and the

substrate [14,15,17]. On the theoretical front, several works addressed the ad-

hesion between a charged particle and a conductive plane [14–16, 18, 45]. The

particle was usually assumed to be spherical with a uniformly distributed sur-

face charge [16–18]. These charges were controllable and could be increased by

applying an electric field [17, 18]. The electrostatic force between the particle

and the substrate was then calculated via different methods such as the image

charge model, charge patch model and dumbbell model [14, 18, 46]. It has

also been a common practice to replace the uniform surface charges around a

spherical particle by a point charge at the center of particle [14,16] in order to

facilitate the force calculation. The image charge model [17] and Matsuyama
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model [47] always underestimate the electrostatic force because these models

do not consider the strong contribution from the local charges in the vicinity of

the contact area [14]. For instance, the electrostatic adhesion of a conductive

plane with a spherical particle that has a uniform, but discrete, distribution

of charges was studied by Schien [16] and Czarnecki et al. [46]. It was pre-

dicted analytically that the electrostatic force acting on the few charges on

the particle in close proximity with the conductive plane was comparable to

the electrostatic force acting on a single point charge located at the center of

the sphere [46]. Although the various models mentioned above acknowledged

significant electrostatic interaction and predicted its contribution to adhesion,

all these models assumed that the electrostatic interaction was between rigid

particles and substrates, that is, no deformation resulted from the interaction.

For compliant solids subjected to electrostatic forces, however, such treat-

ment is not appropriate. For example, experiments on vesicles with different

internal and external conductivity were used to determine the electromechani-

cal behavior of vesicles [25]. These experiments suggested that the deformation

of the vesicles strongly depended upon the magnitude and frequency of the ap-

plied electrostatic field, as well as the conductivity of the media. Theoretically,

Bryant et al. [20] modeled a cell in suspension under a uniform electric field.

The interaction of the electric field with the induced charges on the cell mem-

brane caused its deformation and the electrical and mechanical stresses in the

cell membrane were analyzed [20]. The external electric field was assumed not

to be influenced by the deformation and possible charge redistribution of the

cell. That is, the electrostatics is decoupled from the deformation. In [37],

the cell membrane was modeled as an insulating layer with univalent cations

exterior to the layer and univalent anions in the interior of the layer. The

presence of surface charges on the outer and inner surfaces of the cell produces

surface stresses on the cell membrane due to the attraction of counterions. The
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resulting pressure drop across the membrane sets a limit on the hydrostatic

pressure drop that the membrane can sustain without buckling. This analysis

focused on addressing the equilibrium of the membrane in presence of elec-

trostatic forces, while the actual deformation of the membrane required from

the equilibrium condition was not calculated. In [38], Lopez et al. studied the

shape of human erythrocyte by assuming constant tension in the cell mem-

brane and considering its deformation caused by both the electrostatic forces

due to the charges on the cell surface and the hydrostatic pressure difference

across the cell. The proposed model coupled electrostatics with deformation

and predicted an equilibrium shape that was similar to the observed shape

of erythrocytes [38]. While these previous studies have shed light on the me-

chanics of flexible particles under electrostatic forces, it remains unclear how

electrostatic interaction can contribute to adhesion of such flexible particles to

other entities and how adhesion may be affected by surrounding media such

as an electrolyte solution, the environment in which cells reside.

In this work, we study an interesting adhesion problem driven by electro-

static forces, while invoking possible large nonlinear deformation and strong

coupling between deformation and electrostatic forces. In particular, we study

a charged flexible particle that adheres to an oppositely charged substrate via

electrostatic attraction. The particle is a spherical membrane filled with in-

compressible fluid. The membrane cannot sustain bending, but is extensible

and can undergo large nonlinear deformation. Such a model has been used

to represent the deformation of vesicles [4], but electrostatic interaction was

absent from that work. The particle is located in an electrolytic environment

with certain salt concentration. We assume that the presence of electrostatic

field gives rise only to electrostatic forces acting on the membrane associ-

ated with the charge’s attraction and repulsion. Material response, in the

form of polarization, to an electric field [48–50] is neglected. Uniformly dis-
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tributed charges are initially introduced on the surface of the membrane. In

the absence of other charged entities, the electrostatic repulsion between these

surface charges results in spherical symmetry in the shape of the particle. As

this particle is brought to the vicinity of an oppositely charged substrate, the

electrostatic attraction between the charges on the membrane and the charges

on the substrate deforms the particle, leading to its formation of contact with

the substrate. Such deformation is resisted by the stresses in the membrane, as

well as by the fluid inside the membrane. In addition, the deformation results

in a new charge distribution on the membrane surface, which in turn affects the

electrostatic interaction between the surface charges and between the particle

and the substrate. That is, the deformation of the particle and the electrostatic

interaction are strictly coupled. Through this work, we demonstrate how the

electrostatic force induced adhesion is affected by the properties of the par-

ticle and the electrolyte solution. Our results will be useful for modulating

particle-substrate adhesion by controlling the electrostatic interaction [10].

The present chapter is organized as follows. The formulation of the electro-

static force, the equilibrium equation, the geometry of the nonlinear membrane

and its constitutive relation are presented in Section 6.2. The numerical pro-

cedure used to obtain the deformed configuration is explained in Section 6.3.

The results and discussion are provided in Section 6.4, while conclusions are

given in Section 6.5.

6.2 Formulation

The system under consideration is shown in Figure 6.1. It consists of a spher-

ical membrane with an initially uniform distribution of positive charges on its

surface. The radius of the membrane is R in the reference unstressed config-

uration κ. We will consider R to be in the micron/submicron range, because
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Figure 6.1: System under consideration in this work. It consists of a spherical
membrane of radius R in the reference configuration and a nearby rigid flat
substrate. σ0 is the surface charge density on the membrane and φ represents
the location of the charges in the meridional direction, both measured in the
reference configuration. σ̂ is the surface charge density of the substrate. Both
the membrane and the substrate are embedded in an electrolytic environment,
and the membrane is filled with incompressible fluid.

this problem is motivated by the adhesion of small particles, where surface

forces dominate. The location of charges on the membrane is represented by

angle φ in the reference configuration. The total charge on the membrane is

Q = σ0(4πR
2), where σ0 is the uniform referential charge density as shown

in Figure 6.1. The membrane is assumed to have no bending rigidity, but it

is stretchable and can sustain large nonlinear deformation. The inside of the

membrane is filled with incompressible fluid. A rigid flat substrate with a uni-

form distribution of negative charges σ̂ is located near the membrane as shown

in Figure 6.1. Note that the choice of σ0 > 0 and σ̂ < 0 is rather arbitrary,

and all calculations in this work remain the same as long as σ0σ̂ < 0. Both the

membrane and the substrate are located in an electrolytic environment. It is

assumed that the electrolyte solution both inside and outside of the membrane
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is identical having the same Debye length. The Debye length is an important

quantity to describe an electrolyte solution. It is inversely proportional to the

square root of the ionic concentration in the solution [51] and is a character-

istic length that corresponds to the distance from a charged entity at which

the electric potential decays to approximately 1/e of its value at the charged

entity [52], e here being the base of the natural logarithm.

The loading process considered in this work is described as follows. Firstly,

the membrane of radius R in the reference configuration is inflated by the in-

compressible fluid to a radius of r0. Under the fluid pressure and the electro-

static repulsion among the charges on the surface, the membrane maintains its

spherical shape. Afterward, the substrate is brought to the proximity of the

inflated membrane. The electrostatic attraction between the charges on the

membrane and those on the substrate tends to deform the membrane and cause

its adhesive contact with the substrate. The deformation of the membrane is

resisted by the electrostatic repulsion among the charges on the membrane as

well as by the fluid enclosed by the membrane. This results in an equilibrium

deformation of the membrane. It is clear that the entire loading process as

described above is axisymmetric, therefore, the deformation possesses axisym-

metry. Due to steric effects and van der Waal repulsive interactions at short

range (although not to be explicitly modeled in this work), in the deformed

configuration, a non-zero gap will be formed in the contact area between the

membrane and the substrate, and, therefore, neutralization of charges on the

membrane and on the substrate will not be considered. The objective of this

study is to model the coupling between the electrostatic interactions and the

deformation of the membrane, and to predict the equilibrium deformation of

the membrane, the adhesive contact and adhesive force, and how they depend

on physical parameters governing the problem. To obtain the equilibrium

deformation of the membrane, a system of equations was developed that de-
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scribes the geometry and constitutive behavior of the membrane, as well as

the force balance involving the electrostatic interactions. The formulation is

presented below.

Due to axisymmetric deformation, we can completely describe the shape

of the membrane using the curve from point O to point A as shown in Fig-

ure 6.2(a). To calculate the electrostatic traction at an arbitrary surface ele-
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Figure 6.2: (a) Calculation of electrostatic traction on an arbitrary element
da1 of the membrane due to another surface element da2 on the membrane.
σ is the charge density in da1, σ

′ is the charge density in da2 and l1 is the
distance between da1 and da2. z defines the vertical position of points on the
membrane from the lower pole O. (b) Cross-sectional view of the membrane
showing the location of the surface element da2. x and y are the coordinates
of points on the membrane in the circumferential direction. θ′ and u′ show the
radial and angular position of da2, respectively. (c) An infinitesimal element
ds′ in the meridional direction, τ ′ is the angle between the curved membrane
and the horizontal x-axis.

ment da1 on the membrane, we start with the electric potential Φ, which, for

both inside and outside of the membrane, is assumed to be governed by the

Debye-Huckel (D-H) equation [53]

∇2Φ = k2Φ, (6.1)
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where k is the inverse Debye length defined as

k =

(

q2

ǫ0ǫkBT

∑

i

zini∞

)1/2

. (6.2)

In equation (6.2), q is the unsigned charge of an electron, ǫ0 is the free space

permittivity, ǫ is the dielectric constant of the solution, kB is the Boltzmann

constant, T is the temperature, zi is the valence of the ith type of ions in the

solution and ni∞ is the bulk number concentration of the ith type of ions. The

D-H equation is the linear version of the Poisson-Boltzmann (P-B) equation

governing the electrolyte [53]. The linear form of equation (6.1) not only allows

analytical solution for Φ in many situations, but it also allows for the use of

linear superposition, which is adopted in this work. Specifically, consider an

arbitrary surface element da2 on the membrane (see Figure 6.2(a)). If the

local charge density in da2 is σ
′, then the total charge in da2 is σ

′da2. Treating

it as a point charge gives the potential Φ in the electrolyte due to this point

charge [53]:

Φ =
(σ′da2)e

−kl

4πǫ0ǫl
, (6.3)

where l is the distance from this surface charge element. Denoting the local

charge density in da1 as σ, and considering σ and σ′ are separated by l1, the

electrostatic force from the charge σ′da2 on the charge σda1 is calculated by

taking the gradient of the potential Φ in (6.3) with respect to l, evaluating it

at l = l1, and multiplying it by −σda1. This gives the electrostatic force from

σ′da2 on the surface elements da1 as

F 21 =
(σda1)(σ

′da2)

4πǫ0ǫ
(1 + kl1)

(

e−kl1

l21

)

el1 , (6.4)

where el1 is the unit vector pointing from da2 to da1. Now, by considering the

force between σda1 and all other surface elements on the membrane and on
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the substrate, and using linear superposition, the total force on σda1 can be

calculated. It should be noted that, as the membrane deforms, the local charge

distribution on the membrane varies, which also modifies the electrostatic

forces. Specifically, the local charge density in da1 can be written as σ = σ0
λµ
,

where λ and µ are the principal stretches at da1 and λµ represents the local

areal dilation. Similar calculation can be performed for any other surface

element on the membrane. Due to axisymmetry, σ and σ′ are functions of z

only and do not depend on x or y shown in Figure 6.2. Because the substrate

is considered to be rigid and it does not deform, its charge density σ̂ is fixed

throughout the calculation.

To perform the superposition, we first express the area element da2 in terms

of the coordinates defined in Figure 6.2. The cross-section of the membrane in

the circumferential direction is shown in Figure 6.2(b). θ′ is the circumferential

location of da2 and u
′ is the radial distance of da2 from the z-axis as shown in

Figure 6.2(a). The surface element da2 can be written as da2 = u′(z′)dθ′ds′. ds′

is the length of an infinitesimal element along the membrane in the meridional

direction shown in Figure 6.2(c) and can be written as ds′ = dz′

sin τ ′
, where τ ′

is the angle between the tangent on the membrane and the horizontal x-axis.

The distance l1 between da1 and da2 can be written as

l1 =
√

(x− u′(z′) cos θ′)2 + (y − u′(z′) sin θ′)2 + (z − z′)2, (6.5)

where {x, y, z} are the coordinates of surface element da1, {u′(z′) cos θ′, u′(z′) sin θ′, z′}

are the coordinates of da2. The total electrostatic traction acting on da1 due to

all surface charge elements on the membrane can then be calculated through

the following integration

Fm(z)

da1
=

σ(z)

4πǫ0ǫ

∫ zmax

0

∫ 2π

0

[

(σ′(z′))
u′(z′)

sin τ ′

]

(1+kl1(θ
′, z′, z))

(

e−kl1(θ
′,z′,z)

[l1(θ′, z′, z)]2

)

el1(θ′,z′,z)dθ
′dz′,

(6.6)
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where el1(θ′,z′,z) is the unit vector pointing towards da1 from any other area

element on the membrane. In (6.6), the dependence of l1 on x and y has

been omitted for simpler notation, because axisymmetry permits us to use the

curve from O to A (i.e., a given set of x and y) to describe the membrane

deformation.

Since σ and σ′ in (6.6) are of the same sign, Fm(z) represents a repulsive

force, which provides resistance to the deformation of the membrane. On the

contrary, the electrostatic attractive forces between the surface charges on the

membrane and the substrate tend to deform the membrane. The electrostatic

forces on da1 from the substrate can be calculated as follows. In Figure 6.3(a),

H represents the non-zero gap between the substrate and the lower pole of the

membrane and l2 is the distance between da1 and an arbitrary surface element

da3 on the substrate. In Figure 6.3(b), R1 is the distance from the axis of the

membrane to da3 and ϕ represents the location of da3 in the circumferential

direction. The expression for the total electrostatic traction acting on da1 due

to all surface charge elements on the substrate is

F s(z)

da1
=

σ(z)

4πǫ0ǫ

∫

∞

0

∫ 2π

0

[(σ̂R1)](1+kl2(ϕ,R1, z))

(

e−kl2(ϕ,R1,z)

[l2(ϕ,R1, z)]2

)

el2(ϕ,R1,z)dϕdR1,

(6.7)

where el2(ϕ,R1) is the unit vector pointing towards da1 from any arbitrary ele-

ment on the substrate and l2 can be written in terms of (ϕ,R1) as

l2 =
√

(x− R1 cosϕ)2 + (y − R1 sinϕ)2 + (z +H)2. (6.8)

Here, {R1 cosϕ,R2 sinϕ,−H} are the coordinates of da3 on the substrate with

respect to O shown in Figure 6.3.

Summing (6.6) and (6.7), after substituting (6.5) into equation (6.6) and

(6.8) into equation (6.7), gives the total electrostatic traction fe at the element
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Figure 6.3: Calculation of electrostatic traction on an arbitrary element da1
of the membrane due to the flat substrate. (a) l2 is the distance between da1
and an arbitrary surface element da3 on the substrate and H is the vertical
distance from the substrate to the lower pole O on the membrane (b) x-y plane
view of the substrate, where ϕ and R1 are the radial and angular position of
da3, respectively.

da1 on the membrane, which can be expressed as

fe = fet + fen, (6.9)

where fet = fett and fen = fenn are the electrostatic tractions in the tangential

t and the normal n directions, respectively, as shown in Figure 6.2(a). Because

of axisymmetry, the electrostatic traction does not have any circumferential

component. t and n are defined in the deformed configuration and can be

expressed in terms of the cylindrical basis {i, j,k} as

t = cos τ i− sin τk, n = sin τ i + cos τk, (6.10)
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where i and k are depicted in Figure 6.2(a) and j is orthogonal to both i and k.

Since the choice of da1 is arbitrary, the equilibrium equation of the membrane

can be written as

DivP+ J(ff + fe) = 0, (6.11)

where Div is the divergence operator on the reference configuration κ, P is the

first Piola-Kirchhoff stress tensor, J is the areal dilation, ff is the traction due

to the fluid inside the membrane and fe is the traction due to the electrostatic

interaction. The traction exerted by the fluid is normal to the membrane ff =

pfn, where pf is the fluid pressure. The gravity of the fluid can be neglected

because of the small dimension considered here. Therefore, equilibrium of the

fluid requires uniform pressure inside the membrane. The first Piola-Kirchhoff

stress tensor P of a hyperelastic material is equal to the gradient of the strain

energy function with respect to the deformation gradient F of the membrane,

which can be expressed as [54–56]

F =

dr
dφ
er + r dψ

dφ
eψ

R
⊗Eφ +

r sinψ

R sinφ
eθ ⊗ Eθ, (6.12)

where {ψ, θ} are the spherical coordinates in the deformed configuration γ.

ψ represents the angular position of surface elements in the meridional di-

rection and θ represents the angular position in the circumferential direction.

{Eφ(φ, θ),Eθ(θ),ER(φ, θ)} and {eψ(ψ, θ), eθ(θ), er(ψ, θ)} are the orthonormal

basis for the spherical coordinates in κ and γ, respectively. After substitution

of the first Piola-Kirchhoff stress tensor and the traction (due to both elec-

trostatics and fluid) into (6.11), the equilibrium equation can be conveniently

expressed as the following set of first order ODEs

dλ

dφ
=

(wµ − λwλµ) cos τ − (wλ − µwλµ) cosφ

wλλ sinφ
− λµRfet

wλλ
, (6.13)

147



dτ

dφ
=
λµR(pf + fen)

wλ
− wµ sin τ

wλ sin φ
, (6.14)

where w(λ, µ) is the isotropic strain energy function of the membrane, wλ =

∂w
∂λ
, wµ = ∂w

∂µ
and wλµ = ∂w

∂λµ
. The stretch µ in equations (6.13) and (6.14) is

given by

µ =
u

R sin φ
, (6.15)

and the ODE for u is given by

du

dφ
= λR cos τ. (6.16)

The detailed derivation of the equations (6.13)-(6.16) can be obtained by ex-

tending our previous work [54–56] to include the electrostatic traction. A word

of caution for equation (6.14) is that in its derivation from equation (6.11), the

pressure from the substrate upon the formation of contact has not been con-

sidered. Considering the contact pressure, equation (6.14) needs to be slightly

modified, which will be explained below.

Due to the electrostatic attraction, a finite contact region is formed between

the membrane and the substrate. Therefore, the membrane surface can be

separated into two domains: (1) the free not in contact region and (2) the

contact region. The transition between these two regions occurs at φ = φc.

The free region of the membrane is between 0 ≤ φ ≤ φc and the contact region

is in between φc ≤ φ ≤ π. The radius of contact between the membrane and

the substrate is denoted as a. For each of the two domains, the governing

equations and boundary conditions (BCs) are explained below.

In the free region of the membrane surface, the three first order ODEs

(6.13), (6.14) and (6.16) are to be solved with the following BCs

u(0) = 0, τ(0) = 0, u(φ = φ−

c ) = a, τ(φ = φc) = π. (6.17)
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The first two equations correspond to zero horizontal displacement and zero

slope at the upper pole (φ = 0; point A as shown in Figure 6.2(a)). The

last two equations correspond to conditions at the edge of the contact zone

(φ = φ−

c ), including the horizontal distance from the axis of the membrane

being equal to the contact radius a, and the continuity of tangent angle τ in

the absence of a concentrated force. At first glance, we have three first order

ODEs and four BCs. But, it should be noted that both φc, and a, are not

known a priori and should also be solved. This requires that one more BC be

prescribed, which is the continuity of the stretch λ at φc

lim
φ→φ+c

λ = lim
φ→φ−c

λ. (6.18)

For the contact region of the membrane, dτ
dφ

= 0; therefore, equation (6.14) is

not required. The governing equations required are (6.13) and (6.16), and the

BCs of this region are

u(φ = φ+
c ) = a, u(φ = π) = 0. (6.19)

The first equation corresponds to the horizontal distance being the contact

radius a at (φ = φ+
c ) and the second equation requires the horizontal distance

at the lower pole of the membrane (φ = π; point O as shown in Figure 6.2(a))

to be zero, that is, the membrane is a closed axisymmetric surface. Once

u is solved, µ can be determined from (6.15) and the principal stresses can

be evaluated using (2.27). Finally, pf is also an unknown to be found. To

determine pf , the condition to be satisfied is

V

V0
= 1, (6.20)

which corresponds to the incompressibility of the fluid inside the membrane.
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Here, V0 =
4
3
πr30 is the initial volume of the inflated spherical membrane and

V is the volume of the fluid enclosed by the membrane after deformation and

is calculated as

V = π

∫ zmax

0

u2dz. (6.21)

It should be pointed out that in the contact zone, there is another source of

loading, which is the contact pressure pc from the substrate on the membrane

and it is repulsive. This contact pressure may arise from steric or van der Waals

repulsion when the surfaces are sufficiently close, and it modifies equation

(6.14) to

dτ

dφ
=
λµR(pf + fen − pc)

wλ
− wµ sin τ

wλ sinφ
, (6.22)

which is further reduced to

pc = pf + fen, (6.23)

as the membrane is flat in the contact zone, i.e., τ = π and dτ
dφ

= 0. Since

the BVP defined above completely determines the equilibrium deformation

of the membrane, the fluid pressure pf and the normal electrostatic traction

fen, equation (6.23) serves to determine the distribution of the contact pres-

sure pc in the contact zone. To describe the nonlinear material behavior of

the membrane, we make use of the constitutive relation for the Neo-Hookean

type, which has the following strain energy function in terms of the principal

stretches:

w(λ, µ) =
G

2

(

λ2 + µ2 + (λµ)−2 − 3
)

, (6.24)

where G is the material constant. After the initial inflation, the fluid pressure

inside the spherical membrane can be calculated as

p0f =
2G

r0

(

1−
(

R

r0

)6
)

. (6.25)

150



6.3 Numerical Algorithm

In the numerical calculation, given initial uniform charge density on the mem-

brane, charge density on the substrate, Debye length, material constant, radii

of the membrane in its unstressed and inflated states, and gap between the

membrane and the substrate, we determine the deformation of the membrane,

the contact area and the adhesive force on the membrane. Since the deforma-

tion and the electrostatic forces are strongly coupled, the solution is obtained

through an iterative numerical scheme as explained below.

Considering axisymmetric deformation, the membrane is discretized into

n elements with spacing ∆φ for 0 6 φ 6 π. At each node j = 1...n, the elec-

trostatic traction is calculated and the deformation is obtained by solving the

BVP defined in Section 6.2. The shooting method is used to reduce the BVP to

an initial value problem. Specifically, the membrane has two regions, the free

region and the region in contact with the substrate. The initial guess values for

λ0 (λ0 being the stretch at φ = 0), pf and φc are used to integrate the ODEs

identified in Section 6.2, and the conditions τ(φc) = π, u(π) = 0 and V/V0 = 1

are used to adjust the λ0, pf and φc values. Contact area a is also computed as

part of the solution. The Euler’s explicit method is used to integrate the gov-

erning equations. At this point, it is important to note that the electrostatic

tractions on the membrane fet and fen, which appear in the equilibrium equa-

tions (6.13) and (6.14), are calculated from equations (6.6) and (6.7), and they

clearly depend on the deformation of the membrane. That is, the final equi-

librium configuration of the membrane should be such that the electrostatic

tractions are consistent with the deformation. To obtain such a self-consistent

deformation, we use the following iterative numerical scheme. We start with

the spherical configuration of the membrane with a radius of r0. The charge

distribution on the membrane under this configuration is still uniform and

the traction at any arbitrary position on the membrane can be calculated by
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performing the integrations in equations (6.6) and (6.7). The calculated fet

and fen are then substituted into the equilibrium equations (6.13) and (6.14)

to obtain the deformation under such tractions. Next, the newly obtained

deformation is applied to equations (6.6) and (6.7) to recalculate the tractions

fet and fen, which are then used to calculate the deformation again. This iter-

ation continues until the deformation and the electrostatic traction calculated

from it are consistent in that the guess value for {λ0, pf , φc} at the (N + 1)th

iteration step is sufficiently close to that at the N th iteration step. Such nu-

merical scheme is applied to every set of parameters {σ0, σ̂, r0, G,R, k,H} and

the dependence of the deformation and adhesive force on these parameters is

presented in the section below.

6.4 Results and Discussion

In this section, we present numerical results to investigate the influence of

parameters such as the Debye length, inflation and substrate charge density

on the deformation of the membrane and on the adhesive electrostatic forces.

At each equilibrium configuration, the distribution of charges on the deformed

membrane, the adhesive contact area between the membrane and the sub-

strate, the fluid pressure inside the membrane and the principal stresses/stretches

on the membrane are studied in detail and discussed below.

To facilitate the discussion and reduce the number of independent param-

eters, a normalization of the BVP described in Section 6.2 can be performed

using the following definitions:

ā =
a

R
, r̄0 =

r0
R
, H̄ =

H

R
, k̄ = kR, p̄f =

pfR

G
, σ̄ =

σ

σ0
, ¯̂σ =

σ̂

σ0
, w̄ =

w

G
,

(6.26)

where ā, r̄0 and H̄ are, respectively, the contact radius, inflated radius and

vertical distance between the membrane and the substrate normalized by the
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referential radius of the membrane, k̄ is the normalized inverse Debye length, p̄f

is the normalized fluid pressure inside the membrane, σ̄ and ¯̂σ are, respectively,

the local charge density on the membrane and the substrate charge density

normalized by the referential charge density σ0 on the membrane, and w̄ is

the normalized strain energy function. In addition, unless otherwise specified,

all lengths are normalized by the referential radius of the membrane R. The

normalized BVP is given in the Appendix, which reveals five dimensionless

governing parameters: H̄ ,
σ20R

4πǫ0ǫG
, k̄, ¯̂σ, and r̄0. To get an estimate of the range

of the parameters used in this work, consider a spherical membrane with a

referential radius of 1 micron. The non-zero gap between the membrane and

the substrate in the contact zone due to van der Waals repulsion is on the

order of a few angstroms to one nanometer; hence H̄ is chosen to be 0.001

throughout the calculation (simulations were also done for smaller H̄ and the

results showed similar characteristics). The dimensionless parameters
σ2
0
R

4πǫ0ǫG

will also be fixed in the calculation. Specifically, σ0 is chosen to be 0.022 C/m2,

close to the experimentally measured charge density on human erythrocytes

[57]. Considering the solution to be aqueous, the dielectric constant ǫ is set to

be 80. The estimation of the material constant G requires more consideration.

In particular, because the membrane is a two-dimensional mechanics model, G

has the dimension of force per unit length. That is, it differs from the elastic

modulus E of a solid by a length scale. This length scale would be the thickness

of the membrane if it is viewed as a three-dimensional material. In fact, the

strain energy function as given in equation (6.24) implies that the material

is incompressible and the principle stretch in the direction perpendicular to

the membrane surface is (λµ)−1. Denoting this length scale as L, G can be

approximated by EL. Considering the elastic modulus of a soft solid with

E ∼ 100 MPa and the thickness L to be on the order of 10 nm [58], G can be

estimated to be 1 N/m. The resulting value of
σ2
0
R

4πǫ0ǫG
from these estimations is
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0.05, which will be applied to all calculations below. The other three governing

parameters k̄, r̄0 and ¯̂σ will be varied in the discussion. Since the Debye length

of an electrolyte is typically in the range of 1nm to 100nm [59], the normalized

parameter k̄ is in the range of 10 to 1, 000. We have used several values of

k̄ in this range to study the effect of Debye length, i.e., the effect of salt

concentration on the membrane deformation. A range of normalized charge

density ¯̂σ on the substrate from 0.1 to 60 is used in the calculation to study how

it influences the adhesion. Finally, the effect of inflation r0 is also investigated

by varying r̄0 from 1.2 to 2.0.

First, we demonstrate the fundamental characteristic of the membrane de-

formation under the electrostatic force. Figure 6.4 presents the deformed equi-

librium configuration of the membrane at an initial inflation of r̄0 = 1.2, De-

bye length k̄ = 100 and different substrate densities ¯̂σ = {0.1, 30, 60}. As

expected, the increase in ¯̂σ causes increase in the electrostatic attraction be-

tween the membrane and the substrate, which results in larger deformation of

the membrane, larger contact area and smaller height of the membrane. The

increase in total electrostatic force F due to the increase in the substrate charge

density is shown in Figure 6.5(a), where the normalized force F̄ is defined by

F̄ = F
GR

. From equation (6.7), the electrostatic attraction between the mem-

brane and the substrate should be directly proportional to the surface charge

density on the substrate. If the electrostatic interaction is decoupled from the

deformation, then a linear relation will be expected. The observed nonlinear

behavior shown in Figure 6.5(a) arises from the coupling between deformation

and electrostatic force. Higher ¯̂σ results in larger deformation and, overall,

closer separation between the charges on the membrane and the charges on

the substrate. This causes the faster increase of F̄ with ¯̂σ seen in Figure 6.5(a),

as the substrate charge density increases. Such nonlinear relation, however,

becomes insignificant once ¯̂σ reaches 48, after which the relation between F̄
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Figure 6.4: Deformed equilibrium configuration of the membrane at an infla-
tion of r̄0 = 1.2, Debye length k̄ = 100 and several different substrate density
¯̂σ (0.1 for solid line, 30 for dash line and 60 for dash and dotted line).

and ¯̂σ becomes almost linear again. This implies that the coupling between the

electrostatic interaction and the deformation is not strong for very large defor-

mations. This can be further confirmed by examining the relation between the

electrostatic force and the contact radius, as shown in Figure 6.5(b). It can

be seen from this figure that the normalized contact radius ā first increases

gradually with the increase of electrostatic force, indicating steadily increasing

contact between the membrane and the substrate. However, once ā reaches

0.39, there is a rapid increase in F̄ without significant changes in ā. Specif-

ically, when F̄ changes from 2.66 × 105 to 8.89 × 105 (234.13% increase), ā

only varies from 0.39 to 0.46 (18.56% increase). This demonstrates that once

a considerable contact area has been formed, a significant increase in the elec-

trostatic force is required to expand the contact area and to further deform

the membrane. Therefore, in this regime, the influence of deformation on F̄

becomes weaker and F̄ is mainly affected by changes in ¯̂σ.
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Figure 6.5: (a) Normalized total vertical electrostatic force vs. normalized
substrate charge density. (b) Normalized total vertical electrostatic force vs.
normalized radius of contact between the membrane and the substrate. (c)
Fluid pressure in the membrane normalized by initial fluid pressure vs. nor-
malized contact radius. The initial inflation of membrane is r̄0 = 1.2 and the
Debye length is k̄ = 100. Changes in ā are caused by changes in ¯̂σ.
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The above seen resistance to deformation arises from two sources. The

first is the fluid pressure inside the membrane, which increases monotonically

as larger contact area is formed, as shown in Figure 6.5(c). In our earlier

work [56], we showed that, if a fluid-filled membrane was subjected to mi-

cropipette aspiration, even if the membrane itself had no bending stiffness,

the change in fluid pressure could cause resistance to aspiration, which was

in quantitative agreement with experiments. Similarly, in this work, the fluid

pressure is also an important contributor to the structural rigidity of the mem-

brane. The second source of resistance comes from the electrostatic repulsion

between the charges on the membrane. The distribution of local charge den-

sity on the membrane is shown in Figure 6.6(a) for three different substrate

charge densities ¯̂σ = {0.1, 30, 60}, each corresponding to one equilibrium de-

formation shown in Figure 6.4. As the membrane is inflated to r̄0 = 1.2, the

surface charge density remains uniform, but its magnitude normalized by the

charge density in the referential state is reduced to 0.69. When the mem-

brane is brought to the vicinity of the substrate, upon the non-homogeneous

deformation, the charge distribution is no longer uniform. Specifically, in Fig-

ure 6.6(a), φ is the angular position along the membrane surface, while σ̄ is the

normalized local charge density. φ = 0 corresponds to the upper pole (point

A) on the membrane and φ = π corresponds to the lower pole (point O) in

Figure 6.2(a). On each curve, the symbol “×” is used to mark the location of

the contact edge. The value φc at the edge of the contact zone is, respectively,

0.98π, 0.74π and 0.65π for ¯̂σ = {0.1, 30, 60}, as shown in Figure 6.6(a). At

¯̂σ = 0.1, the local charge density on the membrane is almost uniform with

a slight increase within the contact zone. Such increase is due to the areal

shrinkage in the contact zone that occurs during the deformation. As the sub-

strate charge density increases to ¯̂σ = 30 or ¯̂σ = 60, the local charge density

on the membrane decreases near the upper pole (φ = 0) and increases quite
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Figure 6.6: (a) Normalized local charge density on the membrane vs. the
location of surface charge elements on the membrane. (b) Distribution of
principal stretches along the membrane surface. (c) Distribution of principal
stresses along the membrane surface. Above figures are plotted at an initial
inflation r̄0 = 1.2, Debye length k̄ = 100 and at different substrate charge
densities ¯̂σ = {0.1, 30, 60}.
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significantly inside and near the contact zone. This leads to areal dilation near

the upper pole and great areal shrinkage within and near the contact zone.

Such areal shrinkage causes the charges within and near the contact zone to be

located much closer to one another compared with the spherical configuration.

Because the electrostatic interactions between these charges are repulsive, this

provides a resistance to further increase in charge density in this region caused

by the membrane deformation.

The areal changes during deformation can be clearly seen from the distri-

bution of the principal stretches and stresses on the membrane surface, shown

in Figure 6.6(b) and Figure 6.6(c). Again, the location of the contact zone

edge is marked with “× ” on each curve. The principal stretches are normal-

ized by the initial principal stretch in the membrane λi = r0/R = 1.2 at an

inflation of r̄0 = 1.2. The principal stresses are normalized by the initial stress

Pi = wλ(λi, λi) in the inflated spherical membrane, which is given by 0.80G,

G being the material constant in equation (6.24). At ¯̂σ = 0.1, the principal

stretches and stresses are almost uniform everywhere on the membrane sur-

face. However, for substrate charge densities ¯̂σ = {30, 60}, both the principal

stretches and stresses have non-uniform distribution along the membrane sur-

face. Specifically, they have larger values on the free part of the membrane

and smaller values on the contact part of the membrane. The largest values

of the principle stretches and stresses occur at the upper pole (φ = 0), where

the areal dilation is most significant and the local charge density is smallest,

as seen in Figure 6.6(a). The minimum values of the principle stretches and

stresses are obtained at φ = π and it is clear that, within the contact zone,

the principle stretches are mostly below one, indicating surface compression

in this domain. This is consistent with the large local charge density in the

contact zone observed in Figure 6.6(a).

All the above discussion applies at an initial inflation of r̄0 = 1.2. The
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deformed equilibrium configurations of the membrane with the same substrate

charge density ¯̂σ = 50 and Debye length k̄ = 100, but different initial inflations

r̄0 = {1.2, 1.4, 1.6, 2.0}, are shown in Figure 6.7(a). Note that, here, x and

z are normalized by r0, so that a comparison can be made on the “relative”

deformation of the membrane. For fixed ¯̂σ and k̄, it is observed that the relative

deformation of the membrane increases with decreasing inflation and among

these r̄0 values, the membrane with initial inflation of r̄0 = 1.2 undergoes

the largest deformation. This is due to several reasons. Firstly, for smaller

inflation, the charges on the membrane are closer to the substrate which results

in larger electrostatic attraction. Secondly, for the same charge density in

the reference configuration, smaller r0 results in larger charge density on the

membrane after inflation, which also contributes to larger electrostatic force.

Finally, smaller r̄0 corresponds to smaller initial stresses in the membrane,

which implies smaller resistance to deformation.

From Figure 6.4 to Figure 6.7(a), we considered constant normalized Debye

length of k̄ = 100. To understand the effect of Debye length on the membrane

deformation, the deformed equilibrium configurations of the membrane with

initial inflation of r̄0 = 1.2, substrate charge density ¯̂σ = 50 and different

Debye lengths k̄ = {10, 100, 1000} are shown in Figure 6.7(b). The Debye

length k−1 is inversely proportional to the square root of ion concentration in

the electrolyte solution; therefore, it is expected that by increasing the Debye

length, the electrostatic screening from the ions will become weaker. As a

result, at a given distance l, the exponential in equation (6.3) increases, which

will increase the magnitude of the potential Φ at l. Thus, larger Debye length

enhances the electrostatic interactions between the membrane and the sub-

strate, which consequently should cause larger deformation of the membrane.

This is confirmed in Figure 6.7(b), where, as the Debye length increases from

k̄−1 = 0.001 to 0.1, a clear increase in the deformation of the membrane and
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Figure 6.7: (a) Deformed equilibrium configuration of the membrane with
different initial inflations r̄0 = 1.2 (solid line), 1.4 (dashed line),1.6 (dashed
and dotted line) and 2.0 (dotted line) but the same substrate charge density
¯̂σ = 50 and Debye length k̄ = 100. (b) Deformed equilibrium configuration
of the membrane with initial inflation r̄0 = 1.2, substrate density ¯̂σ = 50 and
different Debye lengths k̄ = {10, 100, 1000}.
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area of contact is observed.

Two quantities that are of most interest in contact mechanics are the con-

tact area a and the applied force F causing the contact. The well-known

Hertz theory of contact relates F and a for two solid spherical particles in

contact based on the following assumptions: (1) the contact radius is small

compared with the radii of the particles; (2) the region outside the contact

zone is traction-free, so that the particles can be approximated by half spaces;

(3) the strains are small, permitting the use of linear elasticity; (4) the surfaces

are continuous and non-conforming and (5) the surfaces are frictionless [60].

With these assumptions, a cubic relation between F and a can be derived: [60]

F =
4E∗a3

3R
, (6.27)

where a is the contact radius, 1/R = 1/R2+1/R3, R2 and R3 being the radii of

the two spherical particles, and 1/E∗ = (1−ν22)/E2+(1−ν23)/E3, (E2, ν2) and

(E3, ν3) being the Young’s moduli and Poisson’s ratios of the two particles. In

the case of an elastic sphere contacting a rigid substrate, R3 and E3 can be set

to infinity in equation (6.27). The Hertz theory was later extended to account

for adhesive contact, one of the most famous theories being the Johnson-

Kendall-Roberts (JKR) theory. In the JKR theory, the surface interactions are

assumed to be short-ranged and negligible outside the contact zone. In contact

problems involving particles with surface charges, some of the assumptions in

the Hertz and JKR theories are clearly violated due to the long-ranged nature

of the electrostatic interaction. Nevertheless, there has been some success

in applying Hertz/JKR theories to adhesive contact driven by electrostatic

forces. For example, it was shown that when a spherical elastic insulating

particle with uniformly distributed surface charges made contact with a rigid

conducting half space, the contact radius could be reasonably predicted by the
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Hertz theory, if the electrostatic surface traction was replaced by an equivalent

point load acting remotely from the contact zone [61].

In addition to the long-ranged electrostatic surface tractions acting both

inside and outside the contact region, the problem considered in the present

work violates the assumptions in the Hertz theory in several other aspects.

The charged particle is not made of a single solid material, but consists of a

membrane filled with fluid. The membrane and the fluid have different ma-

terial behaviors characterized by different constitutive relations. In addition,

the membrane is elastic, but it can undergo large nonlinear deformation. That

is, it is not subjected to small strain approximations, and the reference and

deformed configurations must be distinguished. Recognizing these differences,

it is of interest to see how the force-contact radius relation from this work com-

pares with predictions from the Hertz theory. To make such a comparison, an

effective Hertz equation first needs to be established that involves parameters

from this work. Specifically, if we estimate the contact radius from equation

(6.27), then F would be interpreted as the total electrostatic force between

the charged membrane and the substrate, as calculated in Figure 6.5(a) and

Figure 6.5(b). R and a are the undeformed radius of the membrane and the

contact radius, while E∗ will be replaced by G/L as demonstrated earlier,

with L being a length scale on the order of the thickness of the membrane.

Such modification to equation (6.27) results in F = 4Ga3/3RL, which can be

written in the following form

ln[
3F

4GR
(kR)3] = 3 ln(ka)− ln(

L

R
). (6.28)

The above equation predicts that, if ln[ 3F
4GR

(kR)3] is plotted against ln(ka),

a straight line will be obtained with the slope of 3 and intercept of − ln(L
R
).

As we do not have exact information about L, we will compare our numerical

163



results with the following equation

ln[
3F

4GR
(kR)3] = 3 ln(ka), (6.29)

where the intercept term in equation (6.28) has been removed. In fact, due to

the uncertainly in L and the neglect of several governing parameters (addressed

later), when converting equation (6.27) to (6.28), examining whether the cubic

relation between F and a still holds in the current problem is more interesting

than comparing the exact value of F at a given a.

Figure 6.8 plots ln[ 3F
4GR

(kR)3] vs. ln(ka) obtained from our numerical so-

lutions (symbols) and from equation (6.29) (solid line). The different symbols

correspond to different sets of governing parameters r̄0 and k̄. The increase
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Figure 6.8: ln 3F (KR)3

4GR
vs. ln(ka) for different initial inflations r̄0 =

{1.2, 1.4, 1.6, 2.0} at constant Debye length k̄ = 100 and for different Debye
length k̄ = {10, 100, 1000} at constant initial inflation r̄0 = 1.2.

in the electrostatic force and contact area is generated by varying the sub-

strate charge density ¯̂σ from 0.1 to 50. For all the combination of governing
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parameters shown in Figure 8, when ln(ka) is in the range of 1.16 to 1.4, the

relation between ln[ 3F
4GR

(kR)3] and ln(ka) is nearly linear with slopes in the

range of 2.9 ∼ 3.2. That is, despite the various differences between the Hertz

contact problem and the membrane contact problem considered here, the cu-

bic scaling between the total force and the contact radius remains when the

deformation of the membrane is small. As deformation increases, the results

from our model deviate from equation (6.29) in that there is a clear increase

in the slope of the ln[ 3F
4GR

(kR)3] vs. ln(ka) curves for all sets of governing

parameters. When ln(ka) is larger than 2.6, all the curves become parallel

with a slope of approximately 5. In this regime, the total force and contact

radius still follow a power relation F ∼ an, with n ≈ 5 > 3. As pointed out

earlier, the faster increase of F as compared with the Hertz theory is exactly

due to the resistances from the fluid pressure and the electrostatic repulsion

near and within the contact zone.

It can also be seen from Figure 6.8 that the force-contact radius relation is

affected by the governing parameters r̄0 and k̄, which are not considered when

converting equation (6.27) into (6.28). The effect of these parameters on the

scaling relation between F and a is quite small, since all the curves in Figure 8

show a more or less parallel pattern. At small deformation (ln(ka) between 1.16

and 1.4), the initial inflation r̄0 has a slight influence on the slope of the curves,

with smaller r̄0 having a smaller slope which is also closer to 3. However,

the exact magnitude of F is strongly affected by these governing parameters.

In general, larger force is obtained as the initial inflation r̄0 decreases or as

the Debye length k̄−1 increases. This is consistent with the greater relative

deformation obtained at lower r̄0 and higher k̄−1 values seen in Figure 6.7.

165



6.5 Conclusions

In this work, we study the adhesion of a flexible charged membrane, which

is filled with incompressible fluid and resides in an electrolyte solution, to an

oppositely charged rigid substrate. A nonlinear continuum model is formu-

lated to study the mechanical response of the membrane under electrostatic

interactions with the substrate. The membrane deformation is strongly cou-

pled with the electrostatic interactions. The coupling is most significant for

moderate deformation and becomes weaker for very large deformation. The

adhesion is driven by electrostatic attraction between the membrane and the

substrate, but is resisted by both the fluid pressure inside the membrane and

the electrostatic repulsion between the membrane charges, the latter being

most significant within and near the contact zone. Relative deformation of

the membrane (normalized with respect to its radius after inflation) increases

as the substrate charge density increases, as the initial inflation decreases, or

as the Debye length of the solution increases. Together with the increase in

deformation is the increase in the total electrostatic attractive force between

the membrane and the substrate. Compared with the classical Hertz theory

of contact, the cubic scaling (F ∼ an, where n = 3) between the total force

and the contact radius remains at small deformation, while n increases with

deformation and becomes approximately 5 at very large deformations. The

normalized inflation and Debye length appear to affect the actual magnitude

of the total force, while having very small influence on the scaling relation

between the total force and the contact radius. Although the results demon-

strated here are for a given value of G (1N/m) and for r̄0 values above 1.2, the

fundamental characteristics of the results do not apply only to these G and

r̄0 values. We have, in fact, carried out calculations with different G and r̄0

values, and we observed that the qualitative behaviors demonstrated in this

work remain the same.
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Our model predicts the response of a charged membrane in contact with a

charged substrate and provides useful information on how the adhesion can be

modulated by changing certain parameters such as the Debye length, inflation

and substrate charge density. The present model can be used to address some

real-life problems. For example, the model can be used to predict electro-

static interactions between charged capsules and oppositely charged surfaces

which are widely used in medicine, food technology, cosmetics, coatings, print-

ing, and cleaning [23, 24, 43]. These capsules are fabricated from polymeric

material, layer-by-layer deposition of oppositely charged polyelectrolyte onto

charged colloidal particles and emulsion polymerization [24, 43]. The surface

of the capsules is naturally charged and the electrostatic interactions with op-

positely charged surfaces bring adhesion [23]. The surface properties of these

charged capsules can be tailored to achieve desired interactions, particularly in

drug delivery systems, where the capsules have to interact with targeted cells,

tissues and organs [23]. Our model has the potential to study adhesion of these

capsules induced by electrostatic forces. The model is also useful in studying

the adhesion and spreading of vesicles. The deformed membrane shape, con-

tact area, contact angle, and adhesive forces predicted from our model can be

compared to measurements from experiments to test the applicability of the

model to vesicle adhesion.

Limitations do exist in the present model. For example, the model does

not account for possible rate dependent material properties of the membrane.

This issue can overcome by adding the viscosity of the membrane and that

of the enclosed fluid. The model can also be extended by including the com-

pressibility of the fluid in the membrane. Friction between the membrane and

the substrate is not considered which can also be included in the model. Our

model has neglected bending, so it is only applicable to thin membranes with

a thickness that is much smaller than its radius. It should be noted, however,
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that the electrostatic repulsions between the charges on the surface can con-

tribute to the apparent bending stiffness. For example, in a dilute electrolyte

solution, the elasticity of a single-stranded DNA was shown to be mostly con-

tributed by the electrostatic repulsion between the charges rather than the

bending/torsion of the bonds [62]. Explicitly modeling the electrostatics can

capture this part of the structural bending rigidity. For thick structures where

mechanical bending stiffness cannot be neglected, the model can be modified

by introducing the thickness and considering it as a shell.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The significance of soft particles in both medicine and industry have led re-

searchers to investigate their mechanical properties upon loading and how they

interact with external stimuli. Mechanics of such particles involve many dif-

ferent parameters, as well as coupling between the system parameters such as

a particle’s deformation and tractions acting on the particle. In the literature,

different mathematical models exist that attempt to capture the mechanical

response of soft particles. It is important to recognize that it is not possible to

capture all properties of soft particles within a single model. Each of the exist-

ing models has its own limitations and is only appropriate for certain particles

under certain loading conditions. In this work, we explore the suitability of a

continuum based nonlinear membrane model in describing the mechanics of a

fluid-filled soft particle under contact conditions. Specifically, the particle is

modeled as a two dimensional spherical membrane filled with incompressible

fluid. The membrane is homogeneous, isotropic and (of) hyper-elastic (ma-

terial). The bending stiffness of the membrane is neglected, but we did not

confine our model to any other geometrical restrictions (i.e., the membrane can
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undergo large deformations). With this model, we studied four axisymmetric

problems with different loading conditions on the particle. The findings in

each problem are summarized below.

The first problem concerns the symmetric indentation of the particle us-

ing two identical frictionless rigid conical indenters. The major resistance to

deformation is provided by the enclosed fluid in the membrane. The indenter

force, the contact radius and the fluid pressure were all found to increase non-

linearly with the indentation. Several observations were made when changing

the sharpness of the indenter:

• By increasing the sharpness of the indenter, the force required to indent

the membrane decreases and so does the fluid pressure which resists

deformation.

• For flat indenters, the principal stresses increase from the poles to the

equator such that the lowest stress is located at the pole while the largest

stress is at the equator. However, for conical sharp indenters, the max-

imum principal stress is located at the pole and the stresses are much

smaller and approximately constant away from the pole.

• For flat indenters, the pole stress remains approximately constant with

the indentation and increases only at the last stage of the indentation.

However, for conical indenters, the pole stress increases initially, then

remains approximately constant and decreases at the end of the inden-

tation process.

In the second problem, to better mimic the situation in a typical inden-

tation test, we studied the mechanical response of the particle indented by a

frictionless rigid conical indenter, while being supported by a rigid flat sup-

port. The relation between the indentation force and displacement was found

to be linear for small deformation and nonlinear for large deformation. The
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response of the particle was also observed to depend on the sharpness of the

indenter:

• As the sharpness of the indenter decreases, the force required to deform

the membrane to the same indentation depth increases. Meanwhile, the

linearity in the force versus indentation curve decreases.

• The fluid pressure increases nonlinearly during indentation and decreases

as the indenter sharpness increases.

• By increasing the indenter sharpness, the maximum stress significantly

increases and becomes more localized about the indenter tip, while the

stresses away from the indenter tip decrease and become almost constant

with the indentation.

• The principal stress at the pole has strong dependence on the indenter

sharpness. For sharp indenters α > 200, the pole stress increases mono-

tonically with indenter displacement, and, for blunt indenters, α < 200,

the pole stress decreases initially followed by an increase. This behavior

is due to the coupling between the pole strain and the fluid pressure.

Overall, our model predicts well the nonlinear response for large deformation

of the membrane which is observed in experiments for different soft particles.

In the third problem, we studied the micropipette aspiration of the par-

ticle, which has been widely used to determine the mechanical properties of

soft particles. In the literature, different models exist to determine the phys-

ical properties of these particles from the micropipette aspiration. Usually

these models capture small deformation and do not account for the nonlinear

behavior of the particle. Our model predicts two critical suction pressures p

and p′ during aspiration. As the suction pressure increases from zero, prior

to reaching the suction pressure p, the membrane deforms, but does not form
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finite contact with the micropipette wall. Between p and p′, the membrane

forms contact with the micropipette wall. After reaching the maximum pres-

sure value p′, the aspirated length continues to increase, but, to maintain

equilibrium, the suction pressure has to decrease. This predicts a “liquid-like”

behavior during a load control test. The maximum pressure p′ increases as

the radius of the micropipette decreases or as the initial inflation increases. It

has also been observed that deformation depends upon the pressure difference

(i.e., the pressure inside the pipette P1 and the outside ambient pressure P2),

but not on P1 or P2 individually. During aspiration, non-uniform and even

discontinuous principal stresses and stretches are obtained on the surface of

the membrane. This indicates that the deformed membrane does not possess

spherical shape in general, especially when the deformation is large. Our model

captures some of the experimental results in a good manner. Specifically, it

predicts larger resistance associated with smaller micropipette sizes. The rela-

tionship between the aspiration pressure and the aspirated length captures the

“solid-like” response at small deformation and “liquid-like” response beyond

the maximum pressure point, both observed in experiments. The maximum

pressure is shown to be inversely proportional to the radius of the micropipette,

which is also consistent with experimental data.

In the last problem, we studied a charged particle located in an electrolyte

environment that adheres to an oppositely charged substrate due to electro-

static interaction between them. The electrostatic traction on the membrane

surface is calculated from the electric potential and is dependent on the de-

formed configuration of the membrane. The adhesion is driven by the elec-

trostatic attraction between the membrane and the substrate, but is resisted

by both the fluid pressure inside the membrane and the electrostatic repulsion

among the charges on the membrane. Our model allows us to examine the na-

ture of the coupling between the electrostatic interaction and the deformation
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of the membrane. For example, an increase in the substrate charge density

causes an increase in the deformation of the membrane, which, in turn, causes

the charge distribution on its surface, uniform in its reference configuration,

to become non-uniform, resulting in significant electrostatic repulsion between

these charges. This repulsion is most pronounced within and near the contact

zone and provides a source of resistance to its further deformation and contact

formation. As a result, the coupling between electrostatics and deformation is

most significant for moderate deformation and becomes weaker for very large

deformation. At small deformation, the relation between the total electrostatic

adhesive force F and the contact area a shows similar scaling (F ∼ an, where

n = 3) to the classical Hertz theory of contact, but the value of n increases

as deformation increases. The deformation of the membrane increases as the

substrate charge increases, as the initial inflation decreases or as the Debye

length of the electrolyte solution increases.

The developed models can be used to investigate the particle response in

practical situations. For example, the indentation model can be used to de-

termine the Turgor pressure in a cell during indentation and can also be used

to study the mechanical properties of the membrane in biological cells using

poking experiments. Because the indentation model gives the locations on the

membrane surface, where the stresses are minimal, it can be used for microin-

jection of foreign material into cells, where reducing the damage to the cell

membrane is preferred. The micropipette model can be used for partial or com-

plete aspiration of soft particles inside the pipette to determine their response

at different aspirated lengths. It can predict the recovery response of the parti-

cles, as well as the response of soft gels that can be used as a microactuator in

microfluidic devices. The adhesion model can be used to predict electrostatic

interactions between charged capsules and oppositely charged surfaces which

are used in the food industry, medicine, and cosmetics. This model is useful in
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studying the deformation, adhesion and spreading of vesicles. In electropho-

tography, our model can be used to study the particle-substrate interactions

and the adhesion effect on the printing quality. In powder coating, the model

can be used to study the particle interaction with the wall in determining

the adhesion strength of the particle. Similarly, our models are also helpful

in studying the flexible particles in other biotechnology, semiconductor and

pharmaceutical industries.

7.2 Future Work

The primary objective of this work was to develop a continuum membrane

model to study the mechanical response of soft particles that can undergo

finite deformation. Since several assumptions have been made in the formula-

tion, the model is not without limitations. The present work can be extended

in a few directions. Firstly, the model assumes the enclosed fluid to be incom-

pressible. The compressibility of the fluid has been neglected here, but may be

considered in the future. This can be achieved by providing a constitutive law

which prescribes the pressure of the fluid as a function of its volume change.

Secondly, inhomogeneous and anisotropic material properties of the membrane

can be introduced in the model. When these properties are introduced, the ax-

isymmetric deformation may have to be relaxed. In addition, with anisotropy

the strain energy function is not a function of principal stretches but the right

Cauchy Green deformation tensor. Thirdly, rate-dependent properties of the

membrane and viscosity of the fluid can be added by considering dynamic re-

sponse of the particle. Fourthly, the membrane surface can also be modeled as

porous material to allow the diffusion of liquid through the membrane. The

diffusion or flux through the membrane depends on the chemical compositions

of the enclosed and surrounding fluids and also on the pressure difference across
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the membrane. The driving force for the transport of the fluid through the

membrane can be obtained by considering the differences of the chemical po-

tential and pressure across the membrane. Finally, adhesion of the membrane

to other entities is only studied by considering electrostatic interaction. Fric-

tion as well as adhesion due to van der Waals interaction are absent from the

current study and will be of interest in the future. Van der Waals force arises

from the interaction between dipoles, and it includes three types: Keesom

force (between two permanent dipoles), Debye force (between a permanent

dipole and an induced dipole) and London dispersion force (between two in-

stantaneous induced dipoles). The van der Waals attractive potential between

two molecules depends on the inverse sixth power of the distance separating

the two molecules. A repulsive branch is often added to the interaction po-

tential to account for the repulsion resulting from overlapping of molecules.

Knowing the van der Waals potential, the traction on the membrane due to

van der Waals interaction can be calculated in the same way as the calcula-

tion of electrostatic traction in Chapter 6, i.e., by taking the gradient of the

potential and using the principle of linear superposition. Dry or fluid friction

between two physical surfaces can be included in the future work. Frictional

force depends upon the contact geometry, topology, bulk and surface material

properties. Different friction models are available that can used to determine

the frictional force between the membrane and the substrate due to the applied

external load.
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Appendix A

Normalization of the BVP for

chapter 6

Introduce the following normalization:

w̄ =
w

G
, σ̄ =

σ

σ0
, ¯̂σ =

σ̂

σ0
, p̄f =

pfR

G
, k̄ = kR, ā =

a

R
, r̄0 =

r0
R
, H̄ =

H

R
.

(A-1)

In addition, all the lengths are normalized by R. Adding equations (6.6)

and (6.7) and substituting in the normalized quantities, the traction on the

membrane is expressed as

fe =
σ2
0 σ̄(z̄)

4πǫ0ǫ

{

∫ z̄max

0

dz̄′
∫ 2π

0

σ̄′(z̄′)ū′(z̄′)

sin τ ′
(1+k̄l̄1(θ

′, z̄′, z̄))
e−k̄l̄1(θ

′,z̄′,z̄)

[l̄1(θ′, z̄′, z̄)]2
el̄1(θ′,z̄′,z̄)dθ

′

+

∫

∞

0

dR̄1

∫ 2π

0

¯̂σR̄1(1 + k̄l̄2(ϕ, R̄1, z̄))
e−k̄l̄2(ϕ,R̄1,z̄)

[l̄2(ϕ, R̄1, z̄)]2
el̄2(ϕ,R̄1,z̄)dϕ

}

. (A-2)

If we define the normalized traction on the membrane as

f̄e =
fe
σ2
0

4πǫ0ǫ

, (A-3)
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then

f̄e = σ̄(z̄)
{

∫ z̄max

0

dz̄′
∫ 2π

0

σ̄′(z̄′)ū′(z̄′)

sin τ ′
(1+k̄l̄1(θ

′, z̄′, z̄))
e−k̄l̄1(θ

′,z̄′,z̄)

[l̄1(θ′, z̄′, z̄)]2
el̄1(θ′,z̄′,z̄)dθ

′

+

∫

∞

0

dR̄1

∫ 2π

0

¯̂σR̄1(1 + k̄l̄2(ϕ, R̄1, z̄))
e−k̄l̄2(ϕ,R̄1,z̄)

[l̄2(ϕ, R̄1, z̄)]2
el̄2(ϕ,R̄1,z̄)dϕ

}

. (A-4)

The normalized distances l̄1 and l̄2 in (A-4) are respectively

l̄1 =
√

(x̄− ū′ cos θ′)2 + (ȳ − ū′ sin θ′)2 + (z̄ − z̄′)2, (A-5)

l̄2 =
√

(x̄− R̄1 cosϕ)2 + (ȳ − R̄1 sinϕ)2 + (z̄ + H̄)2. (A-6)

The normalized electrostatic tractions in the tangential and normal directions

are

f̄et =
fet
σ2
0

4πǫ0ǫ

= f̄et.t, (A-7)

f̄en =
fen
σ2
0

4πǫ0ǫ

= f̄et.n. (A-8)

Now, the governing equations in the normalized form in the free region of the

membrane φ ∈ [0, φc] are

dλ

dφ
=

(w̄µ − λw̄λµ) cos τ − (w̄λ − µw̄λµ) cosφ

wλλ sin φ
− λµf̄et

w̄λλ

σ2
0R

4πǫ0ǫG
, (A-9)

dτ

dφ
=
λµ(p̄f + f̄en

σ2
0
R

4πǫ0ǫG
)

w̄λ
− w̄µ sin τ

w̄λ sinφ
, (A-10)

dū

dφ
= λ cos τ, (A-11)

and the normalized boundary conditions in this region are

ū(0) = 0, τ(0) = 0, ū(φ−

c ) = ā, τ(φ−

c ) = π. (A-12)
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The normalized governing equations in the part of the membrane in contact

with the substrate φ ∈ [φc, π] are

dλ

dφ
=

(w̄µ − λw̄λµ) cos τ − (w̄λ − µw̄λµ) cosφ

wλλ sinφ
− λµf̄et

w̄λλ

σ2
0R

4πǫ0ǫG
, (A-13)

dū

dφ
= λ cos τ, (A-14)

and the normalized boundary conditions in this region are

λ(φ+
c ) = λ(φ−

c ), ū(φ+
c ) = ā, ū(π) = 0. (A-15)

With the normalization, the volume constraint equation is reduced to

π

∫ z̄max

0

ū2dz̄ =
4

3
πr̄30. (A-16)

Clearly, the normalized BVP depends on the following dimensionless parame-

ters

k̄, ¯̂σ, H̄,
σ2
0R

4πǫ0ǫG
, r̄0. (A-17)
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