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ABSTRACT 

In a steel fabrication shop, jobs from different clients and projects are 

generally processed simultaneously in order to streamline production processes, 

improve resource utilization, and achieve cost-effectiveness in serving multiple 

concurrent steel-erection sites. Reliable quantity takeoff on each job and accurate 

estimation of shop fabrication man-hour requirements are crucial to plan and 

control fabrication operations and resource allocation on the shop floor. Building 

information modeling (BIM) is intended to integrate multifaceted characteristics 

of a building facility, but finds its application in structural steel fabrication largely 

limited to design and drafting. This research focuses on extending BIM’s usage 

further to the planning and control phases in steel fabrication. Using data 

extracted from BIM-based models, a linear regression model is developed to 

provide the man-hour requirement estimate for a particular job. Actual data 

collected from a steel fabrication company was used to train and validate the 

model. Two Excel macro-enabled workbooks were also developed to provide 

decision-making support in fabrication planning. 
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Chapter 1. INTRODUCTION 

1.1 BACKGROUND 

Steel has long been the most important material to the construction sector 

for its strength, durability, flexibility, efficiency, sustainability, and versatility 

(SteelConstruction.info 2014). The production of steel pieces, which includes a 

variety of operations of detailing, fitting, welding, and surface processing, is a 

complex and critical process for a typical steel construction project. Most steel 

construction projects use off-site structural steel fabrication shops to support the 

erection sites in order to increase the productivity, gain better control over 

quality, and reduce the total cost of projects (Eastman and Sacks 2008). A steel 

fabrication shop usually makes use of shift work and serves multiple steel 

erection sites at the same time to keep the business economical. Efficient 

planning is substantial to steel fabrication to ensure a streamlined and delay-free 

production process. 

Figure 1-1 shows the structure of a typical construction project (Dozzi and 

AbouRizk 1993). Personnel, materials, equipment, and management are 

consumed by the system as resources to produce the construction units. As the 

foundation of further planning and scheduling, estimating plays a critical role to 

every construction project. Quantity takeoff is the most time-consuming yet 

extremely important task in estimating. The following project scheduling and 

control would benefit a great deal if quantity takeoff could be done accurately and 

in a timely manner. For example, it can be used to foresee and plan the 

construction activities during the pre-construction stage; in the process of 
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construction, quantity takeoff can be used as a measurement of the project 

progress or for financial performance control of the project (Monteiro and Poças 

Martins 2013). 

 

Figure 1-1: Frame for productivity improvement (Dozzi and AbouRizk 

1993) 

 

The measurement unit for workload for steel fabrication projects can be 

the number of steel pieces, weight of the final product, project duration, or 

monetary value. With the nature of steel fabrication being labour-intensive, man-

hours are normally used as the major input for the steel fabrication processes 

(Dozzi and AbouRizk 1993). The other resources, such as labor, equipment, and 

overhead costs, are also closely correlated to man-hours. Therefore, it is most 

suitable to set the output of quantity takeoff as the man-hours needed to 

complete the project. In addition, the ratio of man-hours over the overall steel 

weight can be an excellent measure of production efficiency, i.e. productivity. 

As defined by National Building Information Model Standard Project 

Committee (2014), BIM is “a shared knowledge resource for information about a 

facility forming a reliable basis for decisions during its life-cycle.” The concept of 
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BIM has been rapidly gaining popularity and acceptance since Autodesk released 

the BIM white paper (Autodesk 2003). Ideally, the vitality of a BIM-based model 

spans the entire life-cycle of a project, from earliest conception to completion, 

supporting processes like planning, design, cost control, construction 

management, etc. This relatively new technology has also been adopted by the 

steel fabrication industry, but only to find its use limited mostly to design and 

drafting (Sattineni and Bradford 2011). Most of the advantages that BIM offers, 

such as increased coordination of documents and effective information 

communication and decision support for project management, are not exploited. 

BIM-based models are utilized solely as 3D visualization in most cases. The 

collaborating steel fabrication company for this research uses BIM software Tekla 

to build 3D models for structural visualization, and generate 2D drawings for the 

fabrication shop.  

1.2 PROBLEM STATEMENT 

A series of interviews with the estimators and project managers in the 

steel fabrication industry reveal that the current estimating practice followed by 

most steel fabricators is a manual process using spreadsheets and 2D drawings 

generated by computer aided design (CAD) software or exported from BIM-based 

models. Even with the availability of BIM, estimators use it as a visualization tool 

to help them with reading the 2D drawings. Estimators use their experiences to 

evaluate the project complexity and estimate the workload. The factor of human 

interpretation in the process determines the error-proneness of the process.  

The collaborating company is a leader in the steel fabrication and 

construction services industries, offering services of procurement, engineering, 

3D modeling, fabrication, coating, module assembly, erection, etc. Current 
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practice uses Tekla software (Tekla 2014a) to create 3D models from a customer’s 

drawings, and further produce erection and fabrication drawings.  

As shown in Figure 1-2, large projects are typically broken down in a 

hierarchical fashion from a project into one or more jobs, from jobs into one or 

more divisions, which is of the proper size to manage and to be processed in 

different shops. Shops are identified with different equipment and labor settings. 

For example, shop “A” is equipped with a 40-ton overhead crane, making it 

suitable to handle super assembly structures; shop “B” is set up to handle frames. 

A division is normally about 20 – 50 tons, consisting of multiple pieces. It is the 

basic unit for the estimators and project managers to manage projects. The 

estimators or fabrication shop managers use their experiences to evaluate the 

division complexity and come up with a labour productivity value measured by 

man-hours per tonne, which is to be multiplied by the overall weight of steel in 

order to get the man-hours budget needed to complete the work. 

 

 

Figure 1-2: Hierarchy of a steel fabrication project 
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The effectiveness of this practice depends to a great extent on personal 

experience and knowledge, and may not always be consistent and reliable. The 

abundant information contained in BIM, such as design details and predefined or 

user-defined material properties, is not exploited properly.  

Furthermore, job compositions of steel fabrication projects can vary 

greatly from one to another. Even within the same job or division, the labour 

requirements per unit weight of different material types are generally different. 

For example, a piece demanding extensive welding obviously requires more man-

hours than a super-assembly connected by bolts. 

1.3 RESEARCH OBJECTIVES 

The objectives of the research presented in this thesis include: 

 Investigating the common applications of BIM in structural steel 

fabrication; 

 Understanding the current estimating practices in steel fabrication 

shops; 

 Exploring the possibility of extending BIM’s usage further to the 

fabrication planning and control phase; 

 Providing decision support as to bid or not to bid after evaluating 

the current and future workload; 

 Comparing three different modeling methods (linear regression, 

SVM regression, and RBF neural network) to model steel 

fabrication workload in terms of man-hours; 

 Providing a quantitative approach to the prediction of fabrication 

man-hour requirements for structural steel projects by analyzing 

and learning from the historical schedules and cost information 
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stored in the company’s central database for the benefits of 

detailed estimating.  

1.4 METHODOLOGIES 

This study makes use of the material parts report generated from Tekla. 

The essential attributes at the level of materials, as well as the summary level of 

divisions, are collected and analyzed for 298 jobs and 1605 divisions completed 

by the collaborating steel fabricator from 2009 to 2013. Only jobs that include 

“supply work” are considered because erection is a process almost completely 

separate from shop fabrication. 

The first stage of this research is to design a meaningful data structure to 

sort out and organize the data at different levels, and to collect necessary 

information from the large database.  

After historical data are collected, a regression model is developed. The 

basic attributes of different material types are defined as independent input 

variables. The man-hours needed to fabricate a division are defined as the output 

variable. An open-source software, WEKA (Hall et al. 2009), is chosen to 

complete the data mining task because of its wide collection of machine learning 

algorithms and various regression functions. The selection of contributing factors 

and the optimization of the variables through iterative experiments are all 

facilitated by using WEKA. Different modeling methods are tested and compared 

to find a suitable model for the workload of steel fabrication in terms of man-

hours. 

At the third stage, the developed model is verified through an 

independent dataset and the prediction results are compared with the forecast 

made by personal judgment. 
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1.5 THESIS ORGANIZATION 

The thesis starts with an introductory chapter that presents an overview of 

the entire thesis, including the background, problem statement, research 

objectives, and methodologies used.  

Chapter 2 provides a thorough review of previous studies related to 

construction estimating, data mining, application of regression analysis in the 

construction field, and implementation of data mining algorithms.  

Chapter 3 explains the raw data structure in detail and describes how the 

data were prepared for modeling. 

Chapter 4 presents the modeling process. A real case study from the 

collaborating steel fabrication company is conducted as an example to illustrate 

the validity, suitability and usefulness of the proposed method. 

Chapter 5 demonstrates two automatic spreadsheet tools that can spread 

the workload in the shop on a weekly basis in order to facilitate shop operation 

planning. 

Chapter 6 concludes the thesis with a summary of what has been achieved, 

and outlines a proposal for future enhancements. 

  



8 
 

Chapter 2. BACKGROUND & LITERATURE REVIEW 

2.1 QUANTITY TAKEOFF 

Traditionally, a material takeoff (MTO) refers to the result or the process 

of generating a list of required materials with quantities and other specifications 

to accomplish a design by analyzing the drawings, blueprints, or other design 

documents (Whitt 2012). Takeoff is followed by the estimating process, which is 

to apply costs to the quantity measurements. Sometimes the terms quantity 

takeoff and estimating may be used interchangeably if the desired results use the 

same unit of measurements. As shown in the classic cost influence curve (Figure 

2-1), the ability to influence the project outcome is the greatest and the cost is the 

lowest when the project is in the early stages. If quantity takeoff and estimating 

could be done accurately early in the project, the following project scheduling and 

control would benefit a great deal. 

 

 

Figure 2-1: Cost influence curve for project lifecycle (CII 1995) 
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To perform quantity takeoff, several methods are available in the 

construction industry. Traditional estimators do their takeoffs manually with 

printed drawings. They would use colorful markers to keep track of different 

materials and enter relevant information onto leger sheets or spreadsheets for 

calculation. Figure 2-2 is a takeoff form template used by a company being 

investigated during the present research. The quantity, unit weight, section detail, 

etc. need be filled in manually for each line item. Some estimators adopt simple 

annotation software to view electronic drawings and perform color-coding, etc., 

but the process is still manual in essence (Vertigraph Inc. 2004). Special 

estimating software is another approach, but its input still relies heavily on 

human interpretation.  

 

 

Figure 2-2: An example of takeoff form 

 

As stated by Tiwari et al. (2009), “Model-based cost estimating is the 

process of integrating the object attributes from the 3D model of the designer 

with the cost information from the database of the estimator.” Adopting BIM for 
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managing the design and construction process of projects has proven to be a 

shared understanding (Aranda-Mena et al. 2009). BIM-based estimating would 

assure the reduction of errors resulting from the repetitive manual entry of data, 

allow high accuracy and standardisation in estimate production, which improves 

estimators’ productivity. As commented by Monteiro and Poças Martins (2013), 

BIM-based quantity takeoff is “one of the potentially most important and 

profitable applications for BIM.” Yet, it is still generally underdeveloped and 

underutilized. 

2.2 STRUCTURAL STEEL FABRICATION 

Steel is a widely used building material throughout the construction 

industry because of its ability to suit different requirements of strength, 

weldability, corrosion resistance, etc. (Williams 2011). It works like a skeleton to 

hold the building structure up and together. When compared to other structural 

building materials steel has a great many advantages. Unlike wood, steel does not 

bend, twist, expand, or contract substantially because of the weather and 

temperature. Unlike concrete, steel does not have a curing process and is at full 

strength as soon as it is completed. Steel has more strength with less weight and 

durability. Steel structures require little maintenance, do not age or decay as fast 

as the other construction materials, and last longer (SteelConstruction.info 2014). 

Steel construction is cost-efficient and can take place in most weather conditions. 

Furthermore, steel is 100% recyclable and can be multi-cycled without losing 

quality, making it one of the most environmentally friendly building materials. 

There are generally a few stages in a typical steel construction project: design, 

procurement, steel fabrication, shipment, optional module assembly, and on-site 

erection, among which steel fabrication is a very critical part (Azimi et al. 2011). 
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Fabrication is defined by Berman (2014) as “the act of changing steel from 

the mill or warehouse into the exact configuration needed for assembly into a 

shipping piece or directly into a structural frame.” It mostly takes place in an 

offsite fabrication shop that is highly regulated, controlled, confined, safe, and 

equipped with leading edge specialized fabrication systems. All structural steel 

components, such as columns, beams, channels, and plates, can be carefully 

designed and precisely fabricated before delivery to site to be assembled and 

erected.  

The systematic fabrication process generally consists of a series of 

operations including cutting, grinding, drilling, burning, fitting, welding, and 

surface processing (painting, sand blasting, fireproofing etc.). The whole shop 

floor is divided into several main areas according to the specific functions, and 

each shop (for instance, cutting shop, fitting shop, welding shop, and painting 

shop) is equipped with specialized machines, tools, and skilled personnel. The 

inputs of a steel fabrication shop are raw steel materials and shop fabrication 

drawings, and the outputs are fabricated steel components that are ready to be 

assembled and shipped to site for erection (Figure 2-3). 
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Figure 2-3: Steel fabrication processes 

 

A Shop Operations Manager is responsible for spreading and scheduling 

jobs throughout the multiple shops on the shop floor, in collaboration with the 

respective Project Manager. In order to maintain a balanced workload, high 
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production rate, and streamlined operations, the manager needs to define the 

scope of a job well in terms of man-hours, which is what this study focuses on. 

2.3 BUILDING INFORMATION MODELING (BIM) 

According to the National Building Information Model Standard Project 

Committee (2014), 

 

Building Information Modeling (BIM) is a digital representation of 

physical and functional characteristics of a facility. A BIM is a shared 

knowledge resource for information about a facility forming a reliable 

basis for decisions during its life-cycle; defined as existing from earliest 

conception to demolition. 

A basic premise of BIM is collaboration by different stakeholders at 

different phases of the life cycle of a facility to insert, extract, update or 

modify information in the BIM to support and reflect the roles of that 

stakeholder. 

The US National BIM Standard will promote the business requirements 

that BIM and BIM interchanges are based on: 

 a shared digital representation, 

 that the information contained in the model be interoperable (i.e.: 

allow computer to computer exchanges), and 

 the exchange be based on open standards, 

 the requirements for exchange must be capable of defining in 

contract language. 
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The concept of BIM has been rapidly gaining popularity and acceptance 

since Autodesk released the BIM white paper (Autodesk 2003). Ideally, the 

vitality of a BIM-based model spans the entire life-cycle of a project, from earliest 

conception to completion, supporting processes like planning, design, cost 

control, construction management etc. BIM solutions can be customised and 

applied to various areas, for instance, concrete construction, steel fabrication, 

steel erection, rebar fabrication, and structural design. Figure 2-4 (Tekla 2014b) 

shows the workflow and the integration of all the services in steel fabrication 

industry. Ideally, the bidding, preconstruction, construction, and post 

construction of a project can all be managed through BIM as a whole instead of 

jumping across multiple software and systems, avoiding having to deal with 

abundant document format transformations. It is a platform to share knowledge 

among different project stakeholders, providing consistent and coordinated 

representations of the digital model. 

 

Figure 2-4: BIM workflow (Tekla 2014b) 
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Figure 2-5 (Tekla 2014b) shows a portion of a BIM-based model, along 

with a view of the component coding system the model uses. It represents a steel 

structure that consists of beams, columns, handrails, and is connected with bolts. 

 

Figure 2-5: A BIM example of steel structures (Tekla 2014b) 

 

To seize the full potential value of BIM, contractors cannot limit their 

exploration of BIM to 3D modeling and visualization only. 3D rendering is the 

basic use of BIM. BIM can also be used to detect clashes and conflicts. Detailed 

fabrication drawings can be generated for different trades. Change orders and 

addendums can easily be communicated between different parties. 3D models 

combined with other planning techniques and tools can provide powerful 

construction monitoring, which in turn helps with scheduling and updating 3D 

models (Hergunsel 2011). 

The Industry Foundation Classes (IFC) data model is “a platform neutral, 

open file format specification” intended to provide a set of consistent data 

representations of building and construction industry information (Eastman 
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2006). It is developed by buildingSMART to facilitate interoperability in the 

Architecture, Engineering, and Construction (AEC) industry. Add-ons and 

extensions can be developed using IFC format to facilitate the communication 

between different BIM-related systems. 

Significant research has been carried out in exploration of BIM. The study 

conducted by Howard and Björk (2008) is an overview of experts’ views on BIM. 

It collects some pilot use cases and BIM user experience from a number of 

leading property owners in spite of the complexity of the formal standards such 

as the IFCs. Aranda-Mena et al. (2009) provided insights into BIM and 

illustrated its importance and potential applications in construction project 

management industry through case studies. Steel, Drogemuller, and Toth (2012) 

presented their experience with model-based interoperability issues, successes, 

and challenges in BIM exchange between various tools; a business case 

framework to facilitate the adoption of BIM was proposed. Jung and Joo (2011) 

developed a comprehensive BIM framework consisting of three dimensions and 

six categories, which provides a basis for the evaluation of practical BIM 

effectiveness. Nawari (2012) reviewed the importance of BIM standards in off-

site construction and its role in data exchange. An Information Delivery Manual 

(IDM) was also proposed, which provides material description of building 

construction processes, information requirements, and expected process outputs 

in the study. Furthermore, BIM can provide support to teaching construction 

project management (Peterson et al. 2011). The introduction of BIM-based 

project management tools helped educators design more realistic project-based 

assignments and cases, and supported students with learning the integration and 

application of different project management functions. 
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Ikerd (2008) justified the importance of BIM in structural engineering. 

Shi (2009) proposed a framework of integrating Radio Frequency Identification 

(RFID) with BIM technologies for the decision-making processes in structural 

steel fabrication and erection. A portable RFID database scheme was developed 

to increase the efficiency and accuracy in steel fabrication and erection. Xie, Shi, 

and Issa (2010) further discussed the BIM/RFID implementation in computer-

aided design, manufacturing, engineering, and installation processes. Tiwari et al. 

(2009) applied BIM tools for Target Value Design (TVD) on a large healthcare 

project in Northern California. A 4D simulation for a steel arch bridge was 

produced to illustrate the use of BIM tools in a design review and lifting plan 

study (Chiu et al. 2011). Lancaster and Tobin (2013) outlined their firms’ 

extensive experience with BIM, providing strategies and new understandings of 

applying BIM to structural engineering projects aimed to accommodate 

Integrated Project Delivery (IPD). Kalavagunta (2012) presented an integrated 

structural modeling workflow for structural design. Sattineni and Bradford (2011) 

conducted a survey of construction practitioners in United States to determine 

the usage of BIM in various tasks, especially in construction cost estimating. 

Monteiro and Poças Martins (2013) also explored automatic BIM based quantity 

takeoff and a case study was presented. As one of its conclusions, the authors 

suggested that takeoff specifications such as manual measurements should be 

revised to account for BIM features in order to minimize the limitations in 

current practice.  

2.4 MACHINE LEARNING 

People have been looking for information in the sea of data ever since 

human beings became intelligent, and the identification of potentially useful 
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information or patterns hidden in the huge amount of data around us is what 

experience, knowledge, and intelligence are actually about. Machine learning, as 

a branch of artificial intelligence (AI), is about the study and construction of 

systems, other than human brains, that can solve problems by analyzing and 

learning from data. In 1959, Arthur Samuel defined machine learning as “a field 

of study that gives computers the ability to learn without being explicitly 

programmed” (Simon 2013). It provides tools to make predictions automatically 

or help people make decisions about complex and scaled problems from data in a 

faster and more accurate way. A more formal and widely quoted definition of 

machine learning is provided by Mitchell (1997): 

 

A computer program is said to learn from experience E with respect to 

some class of tasks T and performance measure P, if its performance at 

tasks in T, as measured by P, improves with experience E. 

 

This fundamentally operational definition makes it clear that the class of 

tasks, the source of experience, and the measure of performance to be improved 

are the three features that have to be identified in order to have a well-defined 

learning problem (Mitchell 1997). 

The term machine learning is commonly confused with data mining. 

These two areas overlap significantly in the methods they employ, focusing on 

slightly different goals. As mentioned before, machine learning relates to the 

study and development of learning algorithms and focuses on prediction in most 

cases. Data mining, on the other hand, can be defined as the process of trying to 

extract previously unknown knowledge, properties, or patterns from 

unstructured data. It focuses on the discovery aspect. Data mining may utilize 
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machine learning algorithms during the process, and may also drive the 

advancement of machine learning techniques (Cross Validated 2013; 

ResearchGate 2013). 

2.4.1 Machine Learning Algorithms 

A popular taxonomy of organizing machine learning algorithms is based 

on the learning styles algorithms can adopt  (Brownlee 2013a): 

 Supervised Learning: Algorithms are trained on input data that 

have a known label or desired result, such as sunny/rainy or 

spam/not-spam. Such an algorithm attempts to create a model to 

make predictions of the outputs according to the inputs. The 

model is like a function or mapping from the inputs to outputs. 

Once a desired level of accuracy is achieved (i.e. the predictions 

and the labels are close enough), the trained model is able to 

generate outputs for inputs that have not been used in the training 

process. Classification and regression problems fall into this 

category. Example algorithms are Decision Trees, Stepwise 

Regression and Back-Propagation Neural Networks.  

 Unsupervised Learning: Training examples are not labelled and do 

not have a known result. Instead of generalising a function or 

mapping from inputs to outputs, a model is prepared by 

discovering structures present in the input data. Example 

algorithms are K-Means Clustering and Apriori Algorithm. 

 Semi-Supervised Learning: Input data consist of both labelled and 

unlabelled examples. The desired model needs to be able to make 

predictions as well as deducing the structures in the data. An 
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example problem would be image classification where only few 

examples are labelled in a large dataset. 

 Reinforcement Learning: Input data are provided as stimulus. A 

model attempts to gather knowledge in an environment through 

punishment or reward feedbacks about its actions. The goal is to 

maximize some cumulative reward. Example algorithms are Q-

Learning and Temporal Difference Learning. This type of learning 

is more likely to be used in certain kinds of control system 

development. 

Another grouping method is by algorithm similarity. For example, 

regression methods, decision tree methods, instance-based methods, associate 

rule learning, clustering methods, and artificial neural networks. In the following 

section, only the basic linear regression algorithm is introduced as it is the 

method used in this research. 

2.4.2 Linear Regression 

Linear regression is actually a fundamental method in statistics, suitable 

for situations where most or all the attributes are numeric. The basic idea is to 

express the model as a linear mapping from the attributes to the output class. The 

goal is to come up with “a function that approximates the training points well by 

minimizing the prediction error” (Witten, Frank, and Hall 2011). A model is 

represented as: 

𝑥 = 𝑤0 + 𝑤1𝑎1 + 𝑤2𝑎2 + ⋯ + 𝑤𝑘𝑎𝑘 (2-1) 

where 𝑥  is the outcome or class; 𝑎1, 𝑎2, … , 𝑎𝑘  are the numeric attribute 

values; and 𝑤0, 𝑤1, 𝑤2, … , 𝑤𝑘 are weights for each attribute. 
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The weights are calculated from the training data. Each training instance 

has its own set of attribute values 𝑎1
(𝑖), 𝑎2

(𝑖), … , 𝑎𝑘
(𝑖)  and the outcome 𝑥(𝑖) . 

Assuming an extra attribute 𝑎0 with a constant value of 1, then the predicted 

value for the class can be conveniently written as: 

𝑤0𝑎0
(𝑖) + 𝑤1𝑎1

(𝑖) + 𝑤2𝑎2
(𝑖) + ⋯ + 𝑤𝑘𝑎𝑘

(𝑖) = ∑ 𝑤𝑗𝑎𝑗
(𝑖)𝑘

𝑗=0  (2-2) 

The method of linear regression is to look for a set of numeric weights 

𝑤0, 𝑤1, 𝑤2, … , 𝑤𝑘  to make the predicted values as close to the actual values as 

possible; in other words, to minimize the sum of the squares of the differences 

over all the training instances (Witten, Frank, and Hall 2011). In order to choose 

coefficients properly, the function shown in (2-3) is the target to be minimized. 

This is the classic least-squares linear regression method. 

∑ (𝑥(𝑖) − ∑ 𝑤𝑗𝑎𝑗
(𝑖)𝑘

𝑗=0 )
2𝑛

𝑖=1  (2-3) 

Once a set of numeric weights has been calculated based on the training 

data, the prediction of the outcome of new instances can be accomplished using 

the formula. 

Aside from the complete numeric cases, linear regression is able to handle 

nominal attributes as well. In contrast to the continuous nature of numeric 

attributes that measure real or integer numbers, nominal attributes handle a pre-

defined set of values and are sometimes called categorical attributes. The finite 

set of values serve only as names or symbols (Witten, Frank, and Hall 2011). The 

trick of applying linear regression to nominal attributes is to view each possible 

value of the nominal attributes as a binary attribute, whose value is either 0 or 1. 

There are more advanced variations of the standard linear regression, such as 

logistic regression and multivariate linear regression, which is not covered in this 

research. 
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2.4.3 SVM Regression 

Support Vector Machines (SVMs) are supervised learning models with 

associated learning algorithms, belonging to a family of generalized linear 

classifiers. The current standard “soft margin” method was proposed by Cortes 

and Vapnik (1995) on the basis of the original algorithm invented by Vladimir N. 

Vapnik in 1979. SVM can be applied not only to classification problems but also 

to regression analysis for its ability of analyzing data and recognizing patterns. 

The basic idea of SVM is to find a hyperplane that divides data points into two 

classes with the largest separation or margin, which is defined by the distance 

from the hyperplane to the nearest data point of each class. As shown in Figure 

2-6, only 𝐻3 separates the classes with the maximum margin. 

 

 

Figure 2-6: One-dimensional hyperplanes 
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The traditional support vector machine can only utilize complex and 

expensive quadratic programming (QP) solvers in optimization, until the 

introduction of Sequential Minimal Optimization (SMO) method, which greatly 

simplifies the optimization into two analytically solvable problems (Flake and 

Lawrence 2002). 

SVM regression is a version of SVM proposed in 1996, which can also be 

called Support Vector Regression (SVR). The cost function for building the model 

ignores any training points that lie beyond the threshold. Therefore the model 

produced by SVR actually depends only on a subset of the training data. The 

basics of SVR is illustrated below (Smola and Schölkopf 2004; Cortes and Vapnik 

1995; Cross Validated 2011; “Support Vector Machine Regression” 2014). 

Suppose a training dataset consisting of 𝑛 points is given as:  

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛)} ⊂ ℝ𝑑 × ℝ , 

where ℝ is the set of real numbers. 

The 𝑥𝑖 is a 𝑑-dimensional real vector. The target is to find a function 𝑓(𝑥) 

such that the deviation from the actual target 𝑦𝑖 for all the training data is within 

the threshold 𝜀 . At the same time, the flatness of the function needs to be 

maximized to minimize the sensitivity to errors in the data points. 

The linear regression function 𝑓(𝑥) is in the form: 

𝑓(𝑥) = 𝜔 ⋅ 𝑥 + 𝑏, 𝜔 ∈ ℝ𝑑, 𝑏 ∈ ℝ (2-4) 

The ⋅ denotes the dot product and 𝜔 the normal vector to the hyperplane. 

In 𝜀-SV regression (Cortes and Vapnik 1995) where 𝜀 is a threshold, 𝑓 needs to 

satisfy (for any 𝑖 = 1, … , 𝑛): 

|𝑦𝑖 − 𝑓(𝑥𝑖)| ≤ 𝜀 (2-5) 
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And maximization of the flatness of the function in (2-4) can be achieved 

by minimizing the norm of 𝜔, i.e. ‖𝜔‖. Consequently the objective is to solve the 

following optimization problem (Smola and Schölkopf 2004): 

minimize  ‖𝜔‖ 

subject to  {

𝑦𝑖 − 𝜔 ⋅ 𝑥𝑖 − 𝑏 ≤ 𝜀

𝜔 ⋅ 𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜀
  (2-6) 

However, a function 𝑓 that satisfies all pairs (𝑥𝑖 , 𝑦𝑖) with 𝜀 precision may 

not actually exist. Moreover some errors also need to be allowed for. Accordingly 

the infeasible constraints of the optimization problem (2-6) are loosened by 

introducing non-negative slack variables 𝜉𝑖
+, 𝜉𝑖

− that are used in the “soft margin” 

cost function in SVM. Hence the optimization problem is transformed to (Smola 

and Schölkopf 2004): 

minimize  
1

2
‖𝜔‖2 + 𝐶 ∑ (𝜉𝑖

+ + 𝜉𝑖
−)𝑛

𝑖=1 , (𝐶 is a positive constant) 

subject to  {

𝑦𝑖 − 𝜔 ⋅ 𝑥𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖
+

𝜔 ⋅ 𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
−

𝜉𝑖
+, 𝜉𝑖

− ≥ 0

 (2-7) 

The solution to the problem above is to construct a Lagrange function 

from the objective function as (Smola and Schölkopf 2004): 

𝐿 ≜
1

2
‖𝜔‖2 + 𝐶 ∑(𝜉𝑖

+ + 𝜉𝑖
−)

𝑛

𝑖=1

− ∑(𝛼𝑖𝜉𝑖
+ + 𝛽𝑖𝜉𝑖

−)

𝑛

𝑖=1

− ∑ 𝛾𝑖(𝜀 + 𝜉𝑖
+ − 𝑦𝑖 + 𝜔 ⋅ 𝑥𝑖 + 𝑏)

𝑛

𝑖=1

 

− ∑ 𝛿𝑖(𝜀 + 𝜉𝑖
− + 𝑦𝑖 − 𝜔 ⋅ 𝑥𝑖 − 𝑏)𝑛

𝑖=1  (2-8) 

𝐿  is the Lagrangian and 𝛼𝑖, 𝛽𝑖 , 𝛾𝑖, 𝛿𝑖  are Lagrange multipliers. Having 

derived the Lagrange function, the Support Vector expansion is conducted as 

(Smola and Schölkopf 2004): 

𝜔 = ∑ (𝛾𝑖 − 𝛿𝑖)𝑥𝑖
𝑛
𝑖=1  (2-9) 

Hence: 
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𝑓(𝑥) = ∑ (𝛾𝑖 − 𝛿𝑖)(𝑥𝑖 ⋅ 𝑥)𝑛
𝑖=1 + 𝑏 (2-10) 

According to (2-9), 𝜔  can be completely calculated by the linear 

combination of the training data points 𝑥𝑖. 

The constant offset 𝑏  can be computed via various methods such as 

exploiting the Karush-Kuhn-Tucker (KKT) conditions and as a by-product of the 

optimization process (Smola and Schölkopf 2004). 

2.4.4 RBF Neural Network 

A radial basis function (RBF) neural network is an artificial neural 

network widely used for functional approximation and prediction in areas such as 

time-series modeling, system control and pattern classification. The name comes 

from its use of radial basis functions as activation functions (Broomhead and 

Lowe 1988). 

In a RBF network there are basically three layers with different roles as 

shown in Figure 2-7: an input layer, a hidden layer and an output layer. The first 

layer is simply a fan-out layer, acting as a connection between the network and 

the environment. No processing is done. The second layer, i.e. the hidden layer, 

transforms the nonlinear input space to the hidden space, which in most cases is 

higher dimensional. The last one, output layer, applies a linear transformation 

(Haykin 1999). The rationale is justified by Cover’s theorem on the separability of 

patterns (Cover 1965). By using a nonlinear mapping to transform the input 

space in a higher dimensional space, the complex patterns can be more linearly 

separable. The nonlinear mapping is then followed by a linear mapping from the 

hidden space to the output space. 
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Figure 2-7: Architecture of RBF network (Haykin 1999) 

 

Define a set of input vectors (or patterns) 𝑋 = {𝒙1, 𝒙2, … , 𝒙𝑁}, in ℛ𝑚 space. 

Each of these vectors are assigned to one of two classes 𝑋1 and 𝑋2. Define a set of 

hidden functions {𝜑𝑖(𝒙): ℛ𝑚 → ℛ|𝑖 = 1, 2, … , 𝑝}. For each vector  , define a vector 

𝜑(𝒙) = [𝜑1(𝒙), 𝜑2(𝒙), … , 𝜑𝑝(𝒙)]
𝑇

. Then the vector 𝜑(𝒙)  maps patterns of 

dimension 𝑚  into corresponding points in a 𝑝 -dimentional space, which is 

referred to as the hidden space. If there exists a 𝑝-dimentional vector 𝒘 such that 

(Cover 1965): 

{
𝑤𝑇𝜑(𝒙) > 0, 𝒙 ∈ 𝑋1

𝑤𝑇𝜑(𝒙) < 0, 𝒙 ∈ 𝑋2 
 (2-11) 

Then 𝑋 is 𝜑-separable, and the separating surface in the hidden space is 

defined by the equation (Cover 1965): 

𝑤𝑇𝜑(𝒙) = 0 (2-12) 

The inverse image of this hyperplane is the separating surface in the input 

space. 
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Given data pairs (𝒙𝟏, 𝑑1), (𝒙𝟐, 𝑑2), … (𝒙𝑵, 𝑑𝑁) ∈ ℛ𝑚 × ℛ, the interpolation 

problem is to find a function 𝐹: ℛ𝑚 → ℛ that satisfies the interpolation condition: 

𝐹(𝒙𝑖) = 𝑑𝑖, 𝑖 = 1, 2, … , 𝑁 (2-13) 

The RBF technique is to choose a function 𝐹 in the form (Haykin 1999): 

𝐹(𝒙) = ∑ 𝑤𝑖𝜑(‖𝒙 − 𝒙𝒊‖)𝑁
𝑖=1  (2-14) 

where 𝑤𝑖 ∈ ℛ  are weight factors.‖∙‖ denotes a norm between 𝒙 and 𝒙𝒊 , 

which is usually Euclidean distance. {𝜑(‖𝒙 − 𝒙𝒊‖)|𝑖 = 1, 2, … , 𝑁} is a set of radial 

basis functions, the value of which depends solely on the distance from the data 

point to the origin. Gaussian function is one of the popular choice and is in the 

following form: 

𝜑(𝑟) = 𝑒
−

𝑟2

2𝜎2 (2-15) 

where 𝜎 defines the width of the bell-shape. 

When choosing the center nodes of the RBF network in the hidden layer, 

aside from using K-means clustering, the centers can also be randomly sampled 

from the dataset. This step is unsupervised. If the RBF network is used for 

pattern classification, a hard-limiter or sigmoid function could be placed on the 

output neurons to generate categorical values. 

2.4.5 Evaluation of Machine Learning Algorithms 

Having defined the problem and prepared the data, machine learning 

algorithms will be applied to the data to solve the problem. Multiple tests are 

needed to run and tune the algorithms in order to discover whether there is a 

pattern or structure in the problem for the algorithm to learn, and decide which 

algorithms are effective for the problem. 
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The step before applying any algorithm is to prepare a training dataset 

and a test dataset out of the transformed dataset. The two datasets need to be 

representative of the problem. Generally the intersection of the two sets is empty, 

meaning that the training dataset and the test dataset are independent of one 

another. An algorithm will be trained on the training dataset and evaluated 

against the test dataset. 

Other than using separate training and test datasets, another approach is 

to use the whole transformed dataset to train and test an algorithm, which is 

called cross validation. The first step of N-fold cross validation method is to 

separate the dataset into N groups of instances of the equal size M. Each group is 

called a fold. The model is trained on N-1 folds and then tested on the one fold 

that was left out. The process is repeated so that each of the N fold is left out and 

act as a test dataset. In the end, the average of the performance measures of the N 

folds is used to evaluate the performance of the algorithm on the problem. This 

method resolves the balance issue between the size and representation of training 

and test datasets. It is often used when the transformed dataset is not large 

enough to be split into a training and a test datasets of suitable size. 

2.4.6 Performance Measure 

The performance measure is the measurement of the performance or 

quality of solutions to a problem. It is the way to evaluate the success of different 

machine learning experiments. For numerical prediction, a few measures to 

interpret the performance of the predictions made by a trained model on the test 

dataset are listed in Table 2-1. Assume the actual values of the test instances are 

𝑎1, 𝑎2, … , 𝑎𝑛; the predicted values calculated by the model are 𝑝1, 𝑝2, … , 𝑝𝑛; 𝑛 is the 

total number of test instances; �̂� is the average value from the training dataset; 𝑎 
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is the mean value over the test dataset; 𝑝 is the mean value of the predictions for 

the test data. 

 

Table 2-1: Performance measures for numerical prediction (Witten, 

Frank, and Hall 2011) 

Performance Measure Expression 

Correlation coefficient 
∑ (𝑝𝑖 − 𝑝)(𝑎𝑖 − 𝑎)𝑛

𝑖=1

√∑ (𝑝𝑖 − 𝑝)2𝑛
𝑖=1 × ∑ (𝑎𝑖 − 𝑎)2𝑛

𝑖=1

 

Mean absolute error 
|𝑝1 − 𝑎1| + ⋯ + |𝑝𝑛 − 𝑎𝑛|

𝑛
 

Mean squared error 
(𝑝1 − 𝑎1)2 + ⋯ + (𝑝𝑛 − 𝑎𝑛)2

𝑛
 

Root mean squared error √
(𝑝1 − 𝑎1)2 + ⋯ + (𝑝𝑛 − 𝑎𝑛)2

𝑛
 

Relative squared error 
(𝑝1 − 𝑎1)2 + ⋯ + (𝑝𝑛 − 𝑎𝑛)2

(𝑎1 − �̂�)2 + ⋯ + (𝑎𝑛 − �̂�)2
 

Root relative squared error √
(𝑝1 − 𝑎1)2 + ⋯ + (𝑝𝑛 − 𝑎𝑛)2

(𝑎1 − �̂�)2 + ⋯ + (𝑎𝑛 − �̂�)2
 

Relative absolute error 
|𝑝1 − 𝑎1| + ⋯ + |𝑝𝑛 − 𝑎𝑛|

|𝑎1 − �̂�| + ⋯ + |𝑎𝑛 − �̂�|
 

 

 

The first measure, correlation coefficient, is scale-independent and 

measures the statistical correlation between the actual 𝑎1, 𝑎2, … , 𝑎𝑛  and the 

predicted 𝑝1, 𝑝2, … , 𝑝𝑛. The larger the value, the better the performance. It ranges 

from 1 to -1. The value of 0 indicates that there is no correlation at all. Negative 

values indicate that the results are negatively correlated. For the other error 

measures, small values are the indications of good performance.  
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The appropriate choice of performance measures requires considerations 

of the specific problem and application. For example, the squared error measures 

and root squared error measures tend to amplify the large discrepancies of 

prediction errors, whereas the absolute error measures do not have this effect. 

Fortunately, all the performance measures are easy to calculate. In most 

situations, the measured results of a numerical prediction method is consistent 

no matter which mathematical performance measure is used. 

2.4.7 Applications in Construction 

Artificial intelligence has long been adopted by researchers for modeling 

and solving problems in the construction industry. Modeling techniques such as 

artificial neural network (ANN), regression models, and decision trees have been 

introduced to study the relationships between all kinds of factors in construction 

processes using historical data. 

Song and AbouRizk (2008) used ANN to model the relationship of 

influencing factors and steel drafting and fabrication productivities. They 

proposed a systematic approach to make use of historical data, and applied the 

methodology to measuring and modeling steel drafting and fabrication tasks. 

Portas (1996) developed a back-propagation, feed-forward neural network system 

to provide support in the labor productivity estimation for concrete formwork. 

The inputs to the system are contributing factors to labour productivity, and the 

output is a set of binary scores representing certainty of occurrence in 

correspondence with the subset ranges of productivity values that can be used to 

predict performance of the labour productivity of future projects. ANN has also 

been used to model the relationship between influencing factors and construction 

productivity in trades like earthmoving equipment productivity (Karshenas and 
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Feng 1992), concrete construction productivity (Sonmez and Rowings 1998), and 

productivity of spool fabrication in the shop and pipe installation in the field (Lu 

2001). These researches all proved the effectiveness of ANN in addressing the 

complexity in construction productivity modeling. At the preparation step, 

various methods of data collection and productivity measurement were also 

explored in different trades. Furthermore, instead of utilizing an existing ANN 

scheme, Lu (2001) developed a new ANN scheme, combining classification and 

prediction on the basis of Kohonen’s LVQ concept and with a probabilistic 

method integrated, to suit the requirements in the problem domain. It is named 

the Probability Inference Neural Network (PINN). The new model was applied to 

predict labour production rates and was proven effective in solving high 

dimensional mapping of input and output with multiple influential factors. 

Hu and Mohamed (2012) explored two different techniques, artificial 

intelligence planning and dynamic programming, to solve the automation 

problem in sequencing decision making in construction. More specifically, they 

applied Planning Domain Description Language (PDDL), which is a domain-

independent artificial intelligence planning language. 

Fayek and Oduba (2005) used fuzzy logic expert systems to predict 

productivity of pipe rigging and welding. Contributing factors that affect the 

productivity of each activity were identified. Fuzzy membership functions and 

expert rules were developed. Actual data collected from a construction project 

were used to validate the models, which were proved to have high accuracy of 

linguistic prediction. 

Smith (1999) applied multiple regression-based models to study 

earthmoving productivity with focus on investigation of the relationships between 

earthmoving operating conditions and productivity and bunching. The models 
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developed suggested a strong linear relationship between the operating 

conditions and productivity. Lee et al. (2013) used regression analysis to develop 

a quantity prediction model for reinforced concrete and bricks in education 

facilities that were built as a result of the Build-Transfer-Lease (BTL) projects 

actively promoted by the Korean government. Linear regression is also used to 

develop condition prediction models of oil and gas pipelines in order to provide 

decision support to practitioners in planning for pipeline maintenance (El-

Abbasy et al. 2014). Linear regression was explored to suit the numerical output 

type of the proposed pipeline condition assessment models. The influential 

factors that have a major impact on pipeline conditions were selected by 

presenting a questionnaire to experts and reviewing literature. Five condition 

prediction models were developed and a sensitivity analysis was conducted to 

learn about the impact degree of each factor on the model output individually. 

2.5 WEKA 

WEKA is an open source data mining software written in Java developed 

by the machine learning group at the University of Waikato, New Zealand. It is a 

modern platform and workbench for applied machine learning. The name WEKA 

is an acronym which stands for Waikato Environment for Knowledge Analysis. 

Incorporated into WEKA is a comprehensive collection of machine learning 

techniques and algorithms that can be applied directly to a dataset. Also included 

are tools for data pre-processing, classification, regression, clustering, association 

rules, evaluation methods, and functions that are suited for the development of 

new machine learning schemes (The University of Waikato 2014). It provides an 

environment to support and facilitate a range of machine learning activities. 

Furthermore, with the graphical user interfaces especially the data visualization 
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feature, a user can easily explore and apply machine learning algorithms and 

analyze and interpret the results. Figure 2-8 shows its graphical user interface 

(GUI). The latest stable version is 3.6.11, and that is the version utilised in this 

research. 

 

 

Figure 2-8: WEKA GUI chooser 

 

As shown in the figure above, WEKA consists of the following four major 

applications: 

 Explorer: This application is an environment for exploring data 

with the various transformation schemes, algorithms, etc. Its 

interface is divided into 5 different tabs, preprocess, classify, 

cluster, associate, select attributes, and visualize. 

 Experimenter: This environment is for designing controlled 

experiments with algorithm selections and datasets, conducting 

statistical tests, and analyzing and comparing results between 

different schemes over multiple runs. 
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 Knowledge Flow: This interface allows a user to design the 

iterative machine learning process graphically and run 

experiments for complex problems. Loading and preprocessing of 

data, application of algorithms can all be planned via simple drag-

and-drop. It provides support of incremental learning. 

 Simple CLI: This is a simple command-line interface (CLI) that 

provides access to all WEKA classes, allowing direct execution of 

commands for all WEKA features. 
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Chapter 3. DATA PREPARATION 

In order to get solutions to a problem via machine learning, it is critical to 

feed the algorithms the right data, meaning that significant features need to be 

included, and that the data are in a useful format and scale (Brownlee 2013b). To 

prepare data for a machine learning algorithm, they need to be selected, 

preprocessed, and transformed. 

3.1 DATA SOURCE 

BIM software has the functionality to create all kinds of reports of the 

information included in the models. Tekla Structures, used by the collaborating 

company, creates reports in the format of “*.xsr” files. The reports include lists of 

drawings, bolts, parts, etc. (Tekla 2014a). Since the reports come directly from 

the model, the information is always accurate and reliable. 

A customized report template (*.rpt) is used in Tekla to create reports 

containing necessary information from the BIM models. Figure 3-1 and Figure 

3-2 demonstrate an example of a material parts report generated from Tekla, the 

original model of which is shown in Figure 3-3. In the report, essential material 

attributes, such as part number, description, quantity, length, unit weight, and 

drawing number, are listed. 

Besides the BIM-based models and reports, the collaborating company’s 

information management system (IMS) also includes an internal central database. 

There are over 400 tables in the SQL Server database maintaining data for shop 

fabrication, as well as drafting, accounting, quality control, shipping, etc. The 
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data of detailed materials need to be processed in combination with the 

production data in the database to be meaningful in achieving the modeling goal. 

 

 

Figure 3-1: An example of Tekla report (part-1) 
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Figure 3-2: An example of Tekla report (part-2) 

 

 

Figure 3-3: An example of Tekla model 
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3.2 DATA SELECTION 

The targeted IMS contains data dating back over ten years. The 

productivity that can be achieved in the shop and the amount of resource 

required for fabricating the same amount of structural steel have both changed, 

compared with those ten years ago, on account of the technological evolution in 

fabrication methods and equipment, the growth of economy, as well as the 

development of company strategies. Therefore the input of the learning process 

must be recent enough to produce meaningful results that could benefit current 

practices. Furthermore, the dataset should be big enough to be representative of 

the trade, to contain useful features, and to be able to be split into training and 

test datasets. 

In addition, the method of time-tracking and recording is always 

improved on the shop floor, but errors still exist in historical data for reasons 

such as assigning hours to the wrong division number, failure to keep track of 

time, and failure to digitalize physical timesheets properly. To reduce noise in 

data as much as possible, division records that have zero tonnage, zero budgeted 

hours or zero actual hours are excluded. The figure below is the paper timecard 

currently utilized at the collaborating company. 
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Figure 3-4: Labour tracking card (courtesy of WSF) 

 

Because of the many services the company provides, jobs in the database 

are categorized into three different types based on the work scope: supply only, 

erection only, and supply and erection. Only jobs that include supply work are 

considered because on-site erection is a process almost completely separate from 

off-site shop fabrication. Drafting, accounting, quality, shipping, and other data 

that are irrelevant to the problem being addressed are also excluded. 

As a result, the collected dataset accounts for 298 jobs and 1605 divisions 

in total that were completed by the collaborating company from 2009 to 2013. 

The data from 2009 to 2012 are used as training dataset, and 2013 data are 

reserved for testing the model built. 
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3.3 DATA PREPROCESSING 

Having selected the data, preprocessing is necessary to get the data into a 

form suitable for machine learning. It is an important step that involves a lot of 

iterations, analysis, and exploration. 

 The selected data are in a relational database and flat files (*.xsr), and are 

not ready for application of machine learning algorithms. In the central database, 

the production-related data are scattered over several tables. A general 

illustration of the object relations is illustrated in Figure 3-5. The table columns 

in the figure are only partial. The physical steel materials are not directly 

associated with each division, but rather as parts of pieces and fabrication 

drawings. Divisions are assigned to different shops to be processed according to 

the characteristics of the division and the shops’ capacities. Therefore the shop 

name is included as a nominal input of the model. A detailed description of the 

relational database structure can be found in Section 3.3.1 - Database Structure.  

The database has evolved over the years, leaving misleading parameters 

and design problems in it. Without any well-written development logs or 

comments available, it took a lot of time to find the proper database tables and 

fields to be used for machine learning. A few lessons learnt from working on a 

production database are listed below. 

 Read-only access is not enough. Ask the database administrator 

for write permission to allow the use of temporary tables, variables, 

and the viewing of stored procedures. 

 Ensure nothing has changed to avoid affecting the functionality of 

the production database. 
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 Read all the SQL source code in detail, including data table 

structures, constraints, stored procedures, functions, etc. 

 Comments in the source code may not be reliable. Always test the 

functions and keep adequate records. 

 A same field (or attribute) name used in two tables may mean 

different things. 

 Do not assume the data type of an attribute solely based on its 

name. For example, “ID” does not have to be number; it can also 

be string. 

 Starting from a small amount of data makes it easier to verify the 

query or calculation results. 

 Always check any constraints added to a table. 

 When a foreign key constraint is included in a query, make sure all 

fields covered by the foreign key constraint are considered to avoid 

duplicate query results. 

 

Data were collected via SQL queries and exported to comma-separated 

values (CSV) files. Figure 3-6 is what the raw query result looks like. Records are 

at the material level grouped by the division number and different material types. 
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Figure 3-5: Fabrication information structure in database 

 

 

Figure 3-6: Part of the query result 

-job_id
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Jobs-div_id
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However, in order to study the productivity and schedule data at the 

division level, the detailed data of all the materials within the same division need 

to be collected and then aggregated to the division level. The basic attributes were 

collected at the level of each material type. Then the total quantity or length, and 

weight was summarized at the division level. A parser program was written in C# 

to do the summarization and transposition operations. Material data that belong 

to a same division were aggregated as one line item. 

In addition, some of the data collected were in imperial units (feet, inch, 

and pound); others were in metric units (meter, centimeter, kilogram, and ton). 

The data need to have the same scale and unit. Scaling and unit conversion was 

also automated by the program. 

3.3.1 Database Structure 

The concept, project, is used for jobs that are too large to be managed as 

one. For example, in oil sands industry there are always multiple construction 

projects ongoing at the same time at one mining site. The name of the site can be 

used as the name of a project, and all the projects that take place at that site are 

considered as jobs under the same project, coded with the same project number. 

Once a contract is awarded, a job number is allocated following the naming 

convention “XX-YYY”. “XX” is the last two digits of the year when the contract is 

awarded. “YYY” is an incremental number ranging from 001 to 999, which is 

tracked by a master logbook. Generally small job numbers are assigned for orders 

that are less than a certain amount of monetary value or man-hours; large jobs 

have large job numbers. 

As mentioned in Section 1.2, Figure 1-2, jobs are divided into several 

divisions as the basic management unit. The assignment rules include location, 
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scope, structural type, etc. For example, the ladders and handrails within one job 

are generally separated from the other steel elements as one division. For a 

typical stair tower, each floor may be viewed as a division. Division numbers are 

coded in the format of “[0-9][0-9][A-Z]” customarily. 

In the underlying database implementation, divisions are further divided 

and represented by subdivisions. Generally a division has only one subdivision, 

which is its main subdivision. Every division has one and only one main 

subdivision. In situations with handrails and ladders, a separate subdivision is 

created using the same division number. Subdivision tables contain all the 

schedule-related data, including all the milestones, planned dates, actual dates, 

detailer ID, fabrication requirements, etc. The division tables contain the general 

description, modification timestamps, information about cost categories, man-

hour tracking data, etc. The relational diagram of the four tables (projects, jobs, 

divisions, and subdivisions) is in Figure 3-7. 
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Figure 3-7: Database diagram – jobs and divisions 
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The database records all the changes ever made to the schedule, which is 

achieved by a Subdivision History table as shown in Figure 3-8. 

 

Figure 3-8: Database diagram – schedule history 
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Information of working hours are obtained by scanning workers’ time 

cards. Data are associated with each employee. The database diagram related to 

timesheet data are shown in Figure 3-9 below. Besides division numbers, 

classification and cost codes are also identified when reporting working time. 

 

 

Figure 3-9: Database diagram – employee timesheets 
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Classification is the type of workforce, such as welders, fitters, labourers, 

and foremen. Cost coding is another mechanism to track project performance. 

Generally cost items include detailing, document control, engineering, fabrication 

labour, freight, galvanizing, grating, material, paint labour, profit, quality control, 

etc. Not only the fabrication crew in the shop, all the office employees are all 

recorded in the Employees table. Stored procedures and calculated columns are 

used to sum up the detailed timesheet information to the division level. 

Figure 3-10 shows the connections between divisions, fabrication 

drawings, and pieces. All the drawings need to be approved before moving to the 

next phase. When the drafting department completes the initial engineering 

design, drawings are submitted to the customer for approval. This Issued for 

Approval (IFA) date is one of the several important milestones in the fabrication 

production cycle. The customer’s reply may be one of the three options: proceed, 

revise and proceed, or revise and resubmit. The return date is called Return from 

Approval (RFA), another milestone. After that, drawings are issued to Document 

Control department for tracking, formatting, and printing to be distributed to 

shop for fabrication. A division has one or more than one fabrication drawings. A 

drawing has one or more than one steel pieces. 
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Figure 3-10: Database diagram – fabrication drawings 
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types. The material-related data are queried mainly from this Materials table. 

approvals
proj_id

job_id

approval_id

approval_pf

approval_no

sent_date

company

address

city

province

postal_code

country

contact

purpose

remarks

approvals_fabdwgs
proj_id

job_id

div_id

fabdwg_id

approval_id

revision

copies

sent_date

returned_date

returned_status

pieces
proj_id

job_id

div_id

fabdwg_id

piece_id

piece_no

desc_id

quantity

weight

erctdwg_id

custdwg_id

package

cancelled

customer_ref

modified

fabdwgs
proj_id

job_id

div_id

fabdwg_id

fabdwg_no

revision

modified

rev_change_why

rev_date

modify_from

divisions
proj_id

job_id

div_id

div_no

stick

status

category_set_id

is_CCN

last_updated

last_processed

draft_weight_for_...

draft_BAC_hrs



50 
 

 

Figure 3-11: Database diagram – pieces and materials 
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3.4 DATA TRANSFORMATION 

Weight and length are two dependent parameters of steel materials, and it 

would be more meaningful to the problem if they are aggregated into a single 

feature. The unit weight per unit length, for example “kg/m,” and quantity are the 

two most basic attributes of steel materials. For major materials such as beams, 

columns, and channels, the fabrication man-hours required are positively 

correlated with the material length and weight, but for the various kinds of bolts 

and nuts used in the shop, quantity is a much more meaningful factor to be 

considered. The length of a bolt plays no role in determining the handling time of 

the piece it is attached to. Whether the bolt is long or short, it is the quantity that 

truly matters. The feature aggregation is done during the parsing process. 

Table 3-1 lists the 45 material types examined in this study, according to 

the collaborating company’s information library. The letters before the dash sign 

“-” are the abbreviations and the part after it are the complete description of the 

material type. For example, “W”-shaped steel actually refers to wide flange beams, 

and its key attribute is the length instead of quantity. Materials such as 

miscellaneous assemblies are excluded since their amounts and fabrication 

requirements are too small to make a difference. 

 

Table 3-1: Material types and key attributes 

Material Type Key Attribute 

W – Wide Flange Beams Length 

L – Equal Legs Length 

L – Unequal Legs Length 

C – Channels Length 

HS – Square Hollow Steel Sections Length 
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HS – Rectangular Hollow Steel Sections Length 

STD.PIPE – Standard Pipe Length 

M – Miscellaneous Beams Length 

S – I Beams Length 

WT – Structural Tees from W Shapes Length 

MC – Miscellaneous Channels Length 

CFC – Tarpon Cold Formed Channels Length 

RD.HSS – Round Hollow Steel Sections Length 

RAIL – Crane Rails Length 

XS.PIPE – Extra Strong Pipe Length 

XXS.PIPE – Extra Extra Strong Pipe Length 

PLT – Plate Length 

GRAT – Grating Length 

CHECK.PL – Checker Plate Length 

FLAT – Flat Bar Length 

SQ.BAR – Square Bar Length 

RD.BAR – Round Bar Length 

HEX.BAR – Hex Bar Length 

NS.STUD Length 

REBAR Length 

Z – Tarpon Z Sections Length 

WSS – Beam Length 

CFC – Canam Cold Formed Channels Length 

PIPE Length 

CP_WELD – Complete Penetration Weld Length 

PP_WELD – Partial Penetration Weld Length 

BPL – Bent Plate Length 

M-BOLT – M Type Bolts Quantity 

H-NUT – Hex Nuts Quantity 

HTB – Hex Type Bolts Quantity 

FL.WASHER – Flat Washers Quantity 

BV.WASHER – Beveled Washers Quantity 

MBOLT.BTN – Button Head Machine Bolt Quantity 
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MBOLT.HEX – Hex Head Machine Bolt Quantity 

HILTI.HAS – Threaded Anchor Rods Quantity 

HILTI-HVU – Adhesive Capsules Quantity 

HILTI-HIT – Adhesive Anchor Cartridges Quantity 

HILTI-KB3 – Expansion Anchor Bolts Quantity 

HILTI.HSL3 – Heavy Duty Expansion Anchor Bolts Quantity 

DTI.WASHER – Compressible Washers with DTI Quantity 

 

 

The outcome of the program is a CSV file ready for WEKA with each line 

representing one division. The format of the output file is demonstrated in Figure 

3-12. 

 

Figure 3-12: Formatted SQL data 
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To illustrate the transformed data structure better, Table 3-2 lists the 

characteristics of one of the divisions to be fed into WEKA. All zero-valued 

attributes were not included in the table. 

 

Table 3-2: Sample data of a division 

Characteristics Division-i Note 

Division ID 18117 Input 

Division Weight (kg) 28373 Input 

Shop (“A”, “B”, “C”, or “D”) “A” Input 

W Length (m) 13.89 Input 

L Length (m) 9.27 Input 

Plate Length (m) 78.06 Input 

Flat Bar Length (m) 8.07 Input 

Hex Type Bolts Quantity 381 Input 

Fabrication Actual MHrs 875.57 Targeted Output 

Fabrication Budget MHrs 692.30 Expert Judgment 

 

 

In conclusion, the whole process of preparing the dataset for machine 

learning is summarized in Figure 3-13. A training dataset and a test dataset, each 

as a CSV file, are prepared for machine learning modeling, the detailed process of 

which is illustrated in the next chapter. 
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Figure 3-13: Data preparation framework 
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Chapter 4. MODEL SELECTION & EVALUATION 

4.1 CANDIDATE MODELS 

Various types of models were investigated during the stage of model 

building and training. To obtain statistically meaningful results, 10 runs of 10-

fold stratified cross-validation were performed on the training dataset, which is 

the production data collected from 2009 to 2012, using different schemes. 10 

iterations of 10-fold cross-validation means 100 calls of each scheme with the 

same dataset (Bouckaert et al. 2014). Related knowledge about cross validation 

can be found in Section 2.4.5 - Evaluation of Machine Learning Algorithms. 

It is generally believed that the more materials a job requires, the more 

man-hours it will cost. Accordingly, linear regression could be a suitable 

technique to use for quantitative man-hour prediction. The Linear Regression 

implementation in WEKA uses the Akaike information criterion (AIC) (Burnham 

and Anderson 2002) for model selection. AIC is a means for measuring the 

relative quality of a statistical model given a set of data. It rewards goodness of fit 

of the model, but penalizes increasing the number of parameters so as to lead to 

over-fitting. A statistical selection procedure is also incorporated in WEKA to 

determine the best combination of independent input variables. Details about the 

selected factors and the regression parameters are provided in Equation (1) in 

Section 4.3 - Evaluation on Test Dataset. 

Although ANN models are generally popular in the construction industry, 

they are more suitable for non-linear problems. One of the most widely used ANN, 

Radial Basis Function (RBF) neural network, was tested in this study for 

comparison. The workflow of RBF can be found in Section 2.4.4 - RBF Neural 



57 
 

Network. One of the parameters, the number of clusters, was empirically set as 

the number of shops, which is 4 for the collaborating company. 

Moreover, a Support Vector Machine with Sequential Minimal 

Optimization (SMO) algorithm (Platt 1998; Shevade et al. 2000) was also 

investigated. In Support Vector Regression (SVR), an objective function on the 

training set is defined with a constraint threshold, and the optimization target of 

regression is to find the best fit objective function while excluding the least 

outlying training data (Smola and Schölkopf 2004). The basic idea of SVR can be 

found in Section 2.4.3 - SVM Regression. 

Some other models were also tested, such as:  

 Least median squared linear regression 

 M5P tree 

 Multilayer perceptron 

The modeling results were not good or typical enough to be elaborated in 

detail. 

4.2 CROSS VALIDATION 

The dataset from 2009 to 2012, which accounts for 248 jobs and 1343 

divisions out of the total 298 jobs and 1605 divisions, was used to train the model. 

Data in 2013 were collected as an independent dataset and reserved for further 

testing. Various schemes were evaluated by performing 10-fold cross-validation 

on the 2009 – 2012 dataset. 

The visualization of classifier errors of the results is shown in Figure 4-3, 

Figure 4-4, and Figure 4-5. The horizontal axis represents actual fabrication man-

hours; the vertical axis represents the man-hour prediction calculated through 

the trained models. The closer the data points are aligned on the 45 degree line, 
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line 𝑦 = 𝑥 to be exact, the closer the forecast is to the actual values. Figure 4-1 

shows an example of perfect fitting. The red dashed line in the figure is line 𝑦 = 𝑥 

for reference. Each cross in the figures represents an instance. The further away a 

data point is from the reference line, the bigger the difference between the actual 

value and the predicted value, the bigger the cross sign. 

 

 

Figure 4-1: A perfect model 

 

Generally speaking, training a model with the full set of instances without 

held-out evaluation instances and evaluating on the same training dataset bring 

about misleading results. The trained model would be too perfect to reflect the 

real performance of machine learning due to overfitting. Figure 4-2 shows the 
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testing result of RBF neural network using the training dataset itself. Even in this 

best possible test scenario, the points in Figure 4-2 are far from being a good fit 

as shown in Figure 4-1. It is clear that the trained model is not suitable for the 

defined problem. 

 

 

Figure 4-2: Evaluation of RBF network using training set 

 

Figure 4-3 is the result of cross validation using the same dataset and 

model training. As expected, the results are unsatisfactory based on the current 

problem definition and dataset available. A summary of the evaluation statistics 

can be found in Table 4-1. 
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Figure 4-3: Cross validation result of RBF network 

 

Table 4-1: Evaluation comparison of various models 

Evaluation 

Parameter 

RBF 

Network 

SMO 

Regression 

Linear 

Regression 

Correlation coefficient 0.49 0.83 0.80 

Mean absolute error 344.06 172.74 157.49 

Root mean squared 

error 
730.07 467.55 390.90 

Relative absolute error 74.25% 37.28% 42.79% 
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Figure 4-4 and Figure 4-5 are the cross validation results of SMO 

regression and linear regression. The statistical results are also summarized in 

Table 4-1. As shown in the figures, both of the fitting results are promising. The 

overall convergence proves the validity of the trained models. 

 

 

Figure 4-4: Cross validation result of SMO regression 
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Figure 4-5: Cross validation result of linear regression 

 

SMO regression’s attempt to exclude outliers leads to a lower relative 

absolute error. Despite its complexity, SMO’s performance can still be considered 

statistically as good as linear regression. However, the underlying algorithm of 

SMO is far more complicated than linear regression, making it function as a black 

box model, which is generally not desired or acceptable in engineering 

applications. It took 5.83 seconds and 0.08 second respectively for WEKA to 

perform the cross validation calculations on 1343 instances using SMO regression 

and linear regression. The complexity of SMO regression will certainly lead to 

higher implementation cost and lower user acceptance. Therefore, linear 
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regression is selected as the solution to the quantity take-off problem in the 

context of structural steel fabrication. 

4.3 EVALUATION ON TEST DATASET 

The best-fit model trained by linear regression is shown in Equation (4-1) 

below. The number of fabrication man-hours a division requires can be calculated 

based on some key properties that are obtained from BIM models. The complete 

list of attributes can be found in Table 3-1. 

 

054.154215.340.4813.0

.5694.1.776.10.7614.1

.6684.0.29.0.1164.2
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7095.02687.07115.61708.0

9271.02036.0015.0
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WASHERBVWASHERFLPLCHECK

HTBPLTPIPEXXS

PIPEXSPIPESTDHSSRD

HSLMCC

WTWdivWtdivAct

 (4-1) 

 

Basic information about the input and output variables are shown in 

Table 4-2 below. The average values and ranges were based on the whole dataset, 

i.e. fabrication data from 2009 to 2013. 

 

Table 4-2: Information about variables in Equation (4-1) 

Variable Description Unit Average Range 

divAct Division actual MHrs Man-Hour 454.16 
[10.17, 

7997.99] 

divWt Division weight Kilogram 17877.76 
[1001, 

238169] 

W Length of wide flange beams Meter 135.35 [0, 2050.66] 
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WT 
Length of structural tees from 

W shapes 
Meter 8.93 [0, 300.29] 

C Length of channels Meter 29.27 [0, 3288.60] 

MC 
Length of miscellaneous 

channels 
Meter 0.27 [0, 131.67] 

L 
Length of equal or unequal 

legs 
Meter 64.15 [0, 3530.59] 

HS 

Length of square or 

rectangular hollow steel 

sections 

Meter 18.93 [0, 1174.29] 

RD.HSS 
Length of round hollow steel 

sections 
Meter 0.69 [0, 900.95] 

STD.PIPE Length of standard pipes Meter 1.26 [0, 562.02] 

XS.PIPE Length of extra strong pipes Meter 0.06 [0, 38.63] 

XXS.PIPE 
Length of extra extra strong 

pipes 
Meter 0.10 [0, 112.77] 

PLT Length of plates Meter 102.33 [0, 4202.98] 

HTB Quantity of hex type bolts n/a 378.82 [0, 9235] 

CHECK.PL Length of checker plates Meter 2.86 [0, 209.53] 

NS.STUD 

Length of Nelson S3L shear 

connectors and H4L headed 

concrete anchors 

Meter 2.80 [0, 286.50] 

CP.WELD 
Length of complete 

penetration weld 
Meter 3.84 [0, 589.31] 

PP.WELD 
Length of partial penetration 

weld 
Meter 1.86 [0, 254.12] 

FL.WASHE

R 
Quantity of flat washers n/a 8.92 [0, 1984] 

BV.WASHE

R 
Quantity of beveled washers n/a 3.47 [0, 931] 

MBOLT.HE

X 

Quantity of hex head 

machine bolts 
n/a 4.39 [0, 1176] 

FabA Fabricated in  shop “A” n/a 
1: 13%; 

0: 87% 
0 or 1 
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According to Equation (4-1), the coefficient of the variable “FabA” is much 

bigger than the others, meaning that whether a division is fabricated in shop “A” 

has a great influence on the predicted fabrication MHrs. This traces back to the 

different functions of the several shops described in Section 1.2 - Problem 

Statement. Shop “A” is the only one that can handle dimensional structures. 

Therefore those divisions require more MHrs. 

As the next step, the 2013 data were used as an independent test set to 

evaluate the model performance. The number of fabrication man-hours of each 

division was calculated using Equation (4-1), and then compared to the actual 

values recorded in the database. Figure 4-6 shows the correlation between the 

actual fabrication man-hours and the values predicted by the model. 

 

Figure 4-6: Evaluation on independent test set 
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The method of tracking and recording actual hours on the shop floor has 

been gradually enhanced. New working procedures of timesheet recording and 

division planning have been formalized and emphasized. Shop workers are more 

used to and better at recording their working time accurately over the past few 

years. The historical data can have errors due to inaccurate records, for instance, 

working hours assigned to the wrong division number. Compared to the 

visualization in Figure 4-5, which is the cross validation results on historical data , 

points of 2013 data in Figure 4-6 suggests better convergence. The reason for this 

can be partially due to the improved tracking and recording of actual hours. 

Limitations in the data are also revealed in the figure. For some divisions, 

the model tends to predict the work to be more than the actual man-hours 

recorded. One reason may be that when a worker is working on multiple divisions 

in a day, it is very likely that he fails to precisely track the number of hours he has 

spent in each division. Nevertheless, the figure clearly demonstrates that the 

trained model can be considered satisfactory in terms of accuracy for rendering 

decision support for estimators to predict the fabrication man-hours. 

To further evaluate the performance of the prediction model, the relative 

difference results were plotted in Figure 4-7. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
|𝑝𝑖−𝑎𝑖|

𝑎𝑖
 (4-2) 

where 𝑝𝑖 is the value predicted by the model and 𝑎𝑖 is the actual value. 

For example, as shown in the figure, 68 of the 262 divisions in the test 

dataset, or 26% of the test dataset, have relative differences less than 10%. 44 

divisions, or 17% of the test dataset, have relative differences that are between 10% 

and 20%. The “small” series in Figure 4-7 represents divisions whose actual 

MHrs, or workload, are less than 48 MHrs. It is clear that more than half of the 

large prediction errors (relative difference > 100%) are small divisions. 
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Figure 4-7: Prediction results of test dataset 

 

Sensitivity analysis was conducted in order to test the sensitivity of the 

model output to changes in the input variables. Each of the input variables were 

modified while the values of the other variables were kept constant to determine 

their respective impact on the prediction result. Thus the variations in the 

prediction results would be under the exclusive influence of the one factor under 

study (El-Abbasy et al. 2014). The values of the variable under study were varied 

from 𝑚𝑖𝑛 + 𝑝  to 𝑚𝑎𝑥 = 𝑚𝑖𝑛 + 10𝑝 , where 𝑝  was calculated by Equation (4-3) 

below. 

𝑝 =
𝑀𝑎𝑥−𝑀𝑖𝑛

10
 (4-3) 

𝑀𝑎𝑥  and 𝑀𝑖𝑛  are the maximum and minimum values in each factor’s 

corresponding data space. 
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While changing the studied factor, the values of the other factors were set 

as their average values in their corresponding space. Variable “FabA” was not 

included in this analysis because there are only two possible values for this factor 

and its impact on the output is straightforward. The effects of each variable in 

Equation (4-1) on the predicted MHrs were plotted in Figure 4-8 below. The 

calculated values corresponding to each variable’s changes were tabulated. 

 

 

Figure 4-8: Prediction model sensitivity analysis 
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As shown in the figure, some variables are directly proportional while 

some are inversely proportional factors. As observed according to the curves in 

Figure 4-8, the length of CP weld and the division weight have the highest 

positive effect on the prediction value whereas the length of standard pipe has the 

highest negative effect. 

The shop budgeted man-hours are also compared with the actual 

fabrication man-hours. Shop budgets are the numbers produced by estimators 

following the current practice, which relies on the overall steel weight and a man-

hour per ton factor from experience. The evaluation results can be found in Table 

4-3. As described in Section 2.4.5 - Evaluation of Machine Learning Algorithms, 

the closer the correlation coefficient is to 1, the better the fitting is. But for the 

other error evaluations, the smaller the value, the better the result. 

 

Table 4-3: Evaluation summary of linear regression vs. experience 

Evaluation 

Parameter 

Cross 

Validation* 

Linear Regression 

Prediction** 
Experience*** 

Correlation 

coefficient 
0.80 0.95 0.92 

Output MHr 

Range 
[10.17, 7997.99] [13.04, 2584.92] 

[13.04, 

2584.92] 

Mean absolute 

error 
157.49 94.34 134.03 

Root mean 

squared error 
390.90 153.90 284.55 

Relative absolute 

error 
42.79% 25.01% 41.13% 

 

* Cross validation was performed on the training dataset only. 
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** The prediction was for the test dataset using the model trained by 

training dataset. 

*** Experience represents the expert estimation on the test dataset. 

 

The forecasted results are closer to the actual values than the judgment 

made by the professional judgment and experience. The increased accuracy in 

quantity takeoff will help optimize the company’s resource allocation and reduce 

the risk of cost and schedule overrun. More importantly, the model can be useful 

as decision support or guidance for someone with little or no experience, 

especially when no detailed estimating handbook or manual, except a procedure 

guideline, is available. The estimating process can be accelerated and managers 

better assured. 
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Chapter 5. SHOP LOADING TOOLS 

5.1 BACKGROUND 

Resources in structural steel fabrication shops include specialized 

stationary and portable machines, equipment, and workers. Constrained by the 

available resources, the fabricator’s strategies, and/or contractual requirements, 

the workload in a steel fabrication shop needs to be carefully scheduled. There are 

always multiple jobs taking place in a fabrication shop at the same time, with 

different schedules. The ideal situation is to maintain a stable or mildly 

fluctuating level in the total working man-hours in each particular shop. 

In the collaborating company, when the Shop Operations Manager works 

with a Project Manager to come up with a schedule for a job, they need to enter 

the fabrication plans of each division into the company’s IMS and use the 

software to spread the workload over time in order to see the overall fluctuation 

in workload of all the divisions. It takes time to enter the data into the system, 

make adjustments, and re-run the loading report.  

In this research, an Excel Macro-Enabled Workbook file (*.xlsm) was 

developed to read the estimated man-hours and fabrication schedules of divisions 

and generate a summary loading chart for the managers to review. Schedule 

changes can be easily made in the spreadsheet and it is convenient to propagate 

the report. In addition, a second tool was developed producing a chart comparing 

the loading changes resulting from scheduling modification. Detailed Macro code 

can be found in Appendix A and Appendix B. 
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5.2 SHOP LOADING TOOL 

Excel VBA (Visual Basic for Applications) is the name of the programming 

language of Excel, and the loading functions are implemented in VBA. 

Figure 5-1 shows the user interface of the shop loading tool. Functional 

codes are associated with the two buttons “start” and “clear”. To use the loading 

tool, enter division data right below the column headings, with no blank lines in 

between. The number of records will be calculated and shown in the 

corresponding field. User needs to ensure the number is correct. Then by clicking 

the “start” button, the numbers are read and calculated, populating a loading 

chart. When finished, the entire workbook can be cleared using the “clear” button. 

 

 

Figure 5-1: Shop loading tool user interface 
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The way this tool works is to evenly spread the workload from the start 

date to the finish date without considering any holiday breaks. Weekends or daily 

working hours do not affect the loading results either, due to the even-

distribution rule. Having spread the workload of all divisions respectively, man-

hours are summed up on a weekly basis and a column chart is plotted on the 

summary data. The workbook is suitable for planners to create preliminary shop 

loading chart based on division man-hours and fabrication dates. The detailed 

loading process is explained in Figure 5-2. 

 

 

Figure 5-2: Workflow of generating shop loading chart 
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5.2.1 Demonstration 

A job of 22 divisions was used as an example. The related information was 

filled in the workbook as shown in Figure 5-3. After clicking the button “start”, a 

horizontal axis of time was generated and the detailed workload was spread on 

the time axis. A new row of data was added summarizing the weekly shop 

workload. Figure 5-4 is the loading chart plotted in the same worksheet. The 

trending of the shop workload is clearly revealed in the loading chart. The job 

planner can adjust the fabrication schedules accordingly. 

 

 

Figure 5-3: Shop loading tool example 
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Figure 5-4: Shop loading chart example 

 

5.3 LOADING COMPARISON TOOL 

This tool was developed on the basis of the shop loading builder discussed 

in Section 5.2. The underlying calculation adopts the same even-distribution rule, 

meaning the workload is evenly spread from the start date to the finish date 

without considering any holiday breaks, weekends, or the number of daily 

working hours. Its main purpose is to show the difference in shop loading with 

different schedules. Figure 5-5 is the user interface of the loading comparison tool. 

The same simple design of two buttons ensures that it can be readily applied by 

users. Button “start” takes care of the calculation and chart plotting. Button “clear” 

resets the spreadsheet. Not only the fabrication dates but also the man-hours of 

each division can be changed, which is usually the case when more information 

becomes available to the planner. 
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Figure 5-5: Loading comparison tool user interface 

 

5.3.1 Demonstration 

A job of 41 divisions was used as an example. Two versions of the 

schedules, Plan A and Plan B, were filled in the workbook as shown in Figure 5-6. 

In the example, division man-hours are the same but the schedules differ. The 

original schedule (Plan A) was changed due to late issue of IFC (issued for 

construction) drawings. 
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Figure 5-6: Loading comparison tool example 

 

The loading comparison of these two plans is shown in Figure 5-7. The 

blue series represents the original plan, and the orange series shows the adjusted 

schedule. The chart exhibits a shift of the fabrication workload. 
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Figure 5-7: Loading comparison chart example 

 

5.4 APPLICATION OF TOOLS 

As proposed in the previous sections, division workload can be estimated 

using the BIM-based regression model, which is one of the input factors for the 

shop loading tools discussed in this section. These tools have been widely adopted 

and appraised by the project managers in the collaborating company. Combined 

with the quantity takeoff scheme, the shop loading builder and the loading 

comparison tool can provide much needed support in project managers’ decision-

making processes. A proposed process of future planning in structural steel 

fabrication industry is illustrated in Figure 5-8. With the automated facilitating 

tools integrated, this whole framework can help save time and improve accuracy 

in planning steel fabrication jobs. The process of scheduling is marked with 

dashed lines because it is handled manually at the current phase and is not the 
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focus of this research. Ideas about scheduling automation can be found in Section 

6.4 - Proposal for Future Research. 

 

 

Figure 5-8: A proposed procedure for bid preparation 
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Chapter 6. CONCLUSIONS 

6.1 SUMMARY 

Structural steel fabrication is an industry with characteristics that makes 

it different from traditional construction and manufacturing. The use of BIM is 

on the rise not only in general construction but also in structural steel fabrication. 

However, the functions and advantages of BIM-based models are limited to 

design and drafting in most cases. This research aims to develop an approach to 

extend BIM’s usage further into estimating and planning phases. The 

performance information recorded in historical BIM data is important and can be 

predictive for the company’s future projects. Expanding the scope of application 

of BIM is essential to improving the efficiency of steel fabrication work in terms 

of reducing implementation costs and satisfying project objectives such as 

schedule milestones.  

This study develops a linear regression model to provide man-hour 

requirement estimate for steel fabrication projects in the planning phase. The 

proposed methodology is implemented and validated, proving the models to be 

both feasible and recommended to support project estimating and planning. The 

models were developed using the production data from the collaborating 

company, so that they were customized to the company’s information 

management system (IMS). Another steel fabrication company may have 

different ways of tracking data and implementing IMS, but the methodology and 

framework of the study can still be used for the development of quantity take-off 

prediction models. 
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Furthermore, two Excel macro-enabled workbooks were developed for the 

purpose of facilitating shop operation scheduling. Used in combination with the 

BIM-based quantity takeoff solution, the shop loading tools provide decision-

making support for project managers in the structural steel fabrication industry. 

6.2 LIMITATIONS 

Fitting and welding are generally the most complex and time-consuming 

steps in steel fabrication. Different designs of the connections make a big 

difference to the fitting and welding workload, affecting the overall fabrication 

duration. For example, a column with end plates may be designed to be 

connected using bolts only, the fabrication of which requires cutting and detailing. 

This issue is another contributing factor to the regression errors observed.  

This research does not take into consideration the complexity of 

connections, such as the specific number of stiffeners to weld, the type of welding, 

and the number of plates to bolt. The reason for this is that most of the time, 

information on connections is not available during bidding. It is typically the 

contractor’s duty to complement the customer’s preliminary design with detailed 

connection designs, upgrading customer drawings to fabrication drawings. In 

general, the time before bid submission is not enough to complete connection 

design. Thus the information is normally not ready until the award of contract. 

Currently structural steel fabrication shops are also sometimes 

responsible for assembling the steel elements to a certain extent before shipping 

to the erection site. Offsite assembly results in cost and time savings at the 

erection site, and improvement of construction quality. Those steel elements are 

called super-assembly or sub-assembly (SA) structures and are different from 

traditional beam line type fabrication. SA demands not only additional labour but 
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also takes more time in the shop. An SA structure is generally larger than a single 

piece so that extra labour and equipment is required to handle it. It also takes 

time to wait for the composition pieces to be fabricated before assembly can 

commence or continue. This research does not distinguish specifically the 

assembly of SA structures from traditional streamlined fabrication for that the 

problem definition and data collection are both on the division level. It is 

appropriate to let the modeling training process in WEKA resolve the issue by 

clustering structure types and factoring in extra labour hours by adjusting the 

coefficients for SA structures. 

6.3 RECOMMENDATIONS TO WSF 

To fully utilize the results of this research, a few recommendations are 

listed for WSF. 

 It is recommended to keep adding new data to the training dataset 

and re-train the prediction model on a 3-month basis. Without 

proper update, the model trained a few years ago is not likely to 

work well for jobs now. 

 The absolute error of the modeling results can be related to a 

margin estimate of the job in bidding. Questionnaires need to be 

designed to obtain expert opinions on this. 

 To increase the prediction accuracy, jobs can be classified based on 

their dimensional characteristics, before the modeling process. 

 The time tracking methods on the shop floor can be upgraded to 

improve the quality of the man-hour data collected. 
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 More data are to be collected to finalize the boundaries of the 

input parameters, and set the low and high limit for the output 

parameter, making the MHr prediction more reasonable. 

6.4 PROPOSAL FOR FUTURE RESEARCH 

The results of this study show much promise for advanced BIM in steel 

fabrication planning and control. The combination of BIM with the current 

scheduling and fabrication process can be investigated in future studies. 

Starting from the current development, automatic scheduling on the shop 

floor can be investigated. A number of issues must be addressed, including how 

to determine the priority of various steel elements in scheduling, the complexity 

of the specific fabrication, and optimal allocation of the various resources on the 

shop floor. With the scheduling process handled by artificial intelligence, the 

whole process shown in Figure 5-8 would be complete and become an integrated 

system of estimating and scheduling, pushing the application of BIM further to 

the planning stage in steel fabrication shops.  
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APPENDIX A: SHOP LOADING TOOL MACRO CODE 

Module 1: 

Sub ButtonStart_Click() 

    Dim shopSheet As Worksheet 

    Set shopSheet = ThisWorkbook.ActiveSheet 

    Call SpreadWork(shopSheet, shopSheet.Name) 

End Sub 

 

Sub ButtonClear_Click() 

    Dim shopSheet As Worksheet 

    Set shopSheet = ThisWorkbook.ActiveSheet 

    Call ClearSheet(shopSheet) 

End Sub 

Module 2: 

' Clear all the data of Row 4 and below. 

Sub ClearSheet(ByRef mysh As Worksheet) 

    mysh.Rows("4:" & mysh.Rows.Count).ClearContents 

    ' Write the column titles back. 

    mysh.Cells(4, 1).Value = "Name" 

    mysh.Cells(4, 2).Value = "MHrs" 

    mysh.Cells(4, 3).Value = "Start" 

    mysh.Cells(4, 4).Value = "Finish" 

    ' Reset the formula in cell B1 

    mysh.Cells(1, 2).Formula = "=COUNTA(A:A)-2" 

    Dim chartObj As ChartObject 
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    For Each chartObj In mysh.ChartObjects 

        chartObj.Delete 

    Next 

End Sub 

 

Sub SpreadWork(ByRef mysh As Worksheet, ByVal chtName As 

String) 

    If mysh.Range("B1").Value = "" Or mysh.Range("B1").Value 

= 0 Then 

        Call MsgBox("Please enter the Number of Records.", 

vbOKOnly, "CAUTION!") 

        Exit Sub 

    End If 

     

    Dim numOfRecords As Integer 

    numOfRecords = mysh.Range("B1").Value 

     

    Dim wkRow As Integer 

    Dim wkCol As Integer 

    wkRow = 4 ' Row number 4 

    wkCol = 5 ' Column E 

     

    Dim minStart As Date 

    Dim maxFinish As Date 

    minStart = WorksheetFunction.min(mysh.Range("C" & (wkRow 

+ 1) & ":C" & (wkRow + numOfRecords))) 
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    maxFinish = WorksheetFunction.Max(mysh.Range("D" & 

(wkRow + 1) & ":D" & (wkRow + numOfRecords))) 

    Dim minSun As Date 

    Dim maxSun As Date 

    minSun = FirstDayofWeek(minStart) 

    maxSun = FirstDayofWeek(maxFinish) 

     

    mysh.Cells(wkRow, wkCol).Select ' Select the start point 

of the timeline axis. 

    Dim axisDate As Date 

    axisDate = minSun 

    ' Create the horizontal time axis. 

    Do 

        Selection.Value = axisDate 

        Selection.NumberFormat = "dd-mmm-yy" 

        Selection.Offset(0, 1).Select ' Move right by one 

cell. 

        axisDate = axisDate + 7 

    Loop While axisDate <= maxSun 

     

    ' Clear all the cell contents. 

    Dim colMax As String 

    colMax = ColumnLetter(Selection.Column - 1) 

    Dim wkColName As String 

    wkColName = ColumnLetter(wkCol) 
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    mysh.Range(wkColName & (wkRow + 1) & ":" & colMax & 

(wkRow + numOfRecords + 1)).ClearContents 

     

    Dim counter As Integer 

    For counter = 1 To numOfRecords 

        Dim taskStart As Date 

        Dim taskFinish As Date 

        taskStart = mysh.Range("C" & (wkRow + 

counter)).Value 

        taskFinish = mysh.Range("D" & (wkRow + 

counter)).Value 

        ' Check 

        If taskStart > taskFinish Then 

            Call MsgBox("Start Date is later than Finish 

Date on line " & (wkRow + counter) & ".", vbOKOnly, 

"CAUTION!") 

            Exit Sub 

        End If 

         

        Dim avgMh As Double 

        avgMh = mysh.Range("B" & (wkRow + counter)).Value / 

(taskFinish - taskStart) 

        Dim firstWk As Date 

        Dim lastWk As Date 

        firstWk = FirstDayofWeek(taskStart) 

        lastWk = FirstDayofWeek(taskFinish) 
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        mysh.Cells(wkRow, wkCol).Select 

        ' Set workload of the first week 

        Do While Selection.Value < firstWk 

            Selection.Offset(0, 1).Select 

        Loop 

        mysh.Cells((wkRow + counter), 

Selection.Column).Value = avgMh * (Selection.Value + 7 - 

taskStart) 

         

        ' Set workload in the middle week(s) 

        Selection.Offset(0, 1).Select 

        Do While Selection.Value < lastWk 

            mysh.Cells((wkRow + counter), 

Selection.Column).Value = avgMh * 7 

            Selection.Offset(0, 1).Select 

        Loop 

         

        ' Set workload of the last week 

        mysh.Cells((wkRow + counter), 

Selection.Column).Value = avgMh * (taskFinish - 

Selection.Value) 

    Next counter 

     

    mysh.Cells(wkRow + numOfRecords + 1, wkCol - 1).Value = 

"Sum" 
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    mysh.Cells(wkRow, wkCol).Select 

    Dim colName As String 

    Dim row As Integer 

    row = wkRow + numOfRecords + 1 

    Do While Selection.Value <> Empty And Selection.Value <= 

maxSun 

        colName = ColumnLetter(Selection.Column) 

        Dim loadSum As Double 

        loadSum = WorksheetFunction.sum(mysh.Range(colName & 

(wkRow + 1) & ":" & colName & (wkRow + numOfRecords))) 

        mysh.Cells(row, Selection.Column).Value = loadSum 

        Selection.Offset(0, 1).Select 

    Loop     

    ' Add a bar chart. 

    Dim objChart As ChartObject 

    On Error Resume Next 

    Set objChart = mysh.ChartObjects(chtName & " Chart") 

    If objChart Is Nothing Then 

        Set objChart = mysh.ChartObjects.Add(200, 500, 600, 

300) 

        With objChart 

            .Name = chtName & " Chart" 

            .Chart.HasTitle = True 

            .Chart.ChartTitle.Text = chtName & " Chart" 

            .Chart.HasLegend = False 

            .Chart.Axes(xlValue).HasTitle = True 
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            .Chart.Axes(xlValue).AxisTitle.Text = "Weekly 

MHrs" 

        End With 

    End If     

    With mysh.ChartObjects(chtName & " Chart") 

        .Chart.SetSourceData Source:=mysh.Range(wkColName & 

row & ":" & colMax & row) ' Weekly MHrs 

        .Chart.ChartType = xlColumnClustered ' Bar chart 

        .Chart.SeriesCollection(1).XValues = 

mysh.Range(wkColName & wkRow & ":" & colMax & wkRow) ' 

Sunday dates 

        .Chart.Axes(xlCategory).CategoryType = 

xlCategoryScale 

        .Chart.Axes(xlCategory).TickLabelSpacing = 1 

    End With 

    mysh.Cells(1, 1).Select 

End Sub 

 

Function FirstDayofWeek(ByVal target As Date) As Date 

    FirstDayofWeek = target - Weekday(target, vbSunday) + 1 

End Function 

 

Function ColumnLetter(ByVal colNum As Integer) As String 

    arr = Split(Cells(1, colNum).Address(True, False), "$") 

    ColumnLetter = arr(0) 

End Function  
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APPENDIX B: LOADING COMPARISON TOOL MACRO 

CODE 

Module 1: 

Sub ButtonStart_Click() 

    Dim shopSheet As Worksheet 

    Set shopSheet = ThisWorkbook.ActiveSheet 

    Call SpreadWork(shopSheet) 

End Sub 

 

Sub ButtonClear_Click() 

    Dim shopSheet As Worksheet 

    Set shopSheet = ThisWorkbook.ActiveSheet 

    Call ClearSheet(shopSheet) 

End Sub 

 

Module 2: 

Option Explicit 

' Clear all the data below the column title at Row 4. 

Sub ClearSheet(ByRef mysh As Worksheet) 

    mysh.Rows("5:" & mysh.Rows.Count).ClearContents 

    ' Reset the formula in cell B1 and F1 

    mysh.Cells(1, 2).Formula = "=COUNTA(A:A)-3" 

    mysh.Cells(1, 6).Formula = "=COUNTA(E:E)-3" 
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    Dim chartObj As ChartObject 

    For Each chartObj In mysh.ChartObjects 

        chartObj.Delete 

    Next 

End Sub 

 

Sub SpreadWork(ByRef mysh As Worksheet) 

    If mysh.Range("B1").value = "" Or mysh.Range("B1").value 

= 0 Then 

        Call MsgBox("Please enter the Number of Records and 

MHrs per Tonne.", vbOKOnly, "CAUTION!") 

        Exit Sub 

    End If 

     

    Dim ConsWkRow As Integer ' Two constants 

    Dim ConsWkCol As Integer 

    ConsWkRow = 5 ' Row number 5, the row below the column 

titles. 

    ConsWkCol = 9 ' Column I 

     

    '''' Schedule A '''' 

    Dim numOfRecords As Integer 

    numOfRecords = mysh.Range("B1").value     

    Dim minStart As Date 

    Dim maxFinish As Date 
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    minStart = WorksheetFunction.min(mysh.Range("C" & 

ConsWkRow & ":C" & (ConsWkRow + numOfRecords - 1))) 

    maxFinish = WorksheetFunction.Max(mysh.Range("D" & 

ConsWkRow & ":D" & (ConsWkRow + numOfRecords - 1))) 

    Dim minSun As Date ' Start and end of the timeline 

    Dim maxSun As Date 

    minSun = FirstDayofWeek(minStart) 

    maxSun = FirstDayofWeek(maxFinish) 

     

    Dim wkLoading As Collection 

    Set wkLoading = New Collection 

    Dim axisDate As Date 

    axisDate = minSun 

    ' Create the horizontal time axis. 

    Dim tmp As ClsWkLoad 

    Do 

        Set tmp = New ClsWkLoad 

        tmp.Init axisDate 

        wkLoading.Add tmp 

        axisDate = axisDate + 7 

    Loop While axisDate <= maxSun 

     

    ''' Main Calculation ''' 

    Dim counter As Integer 

    For counter = 1 To numOfRecords 

        Dim taskStart As Date 
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        Dim taskFinish As Date 

        taskStart = mysh.Range("C" & (ConsWkRow + counter - 

1)).value 

        taskFinish = mysh.Range("D" & (ConsWkRow + counter - 

1)).value 

        ' Check 

        If taskStart > taskFinish Then 

            Call MsgBox("Start Date is later than Finish 

Date on line " & (ConsWkRow + counter - 1) & ".", vbOKOnly, 

"CAUTION!") 

            Exit Sub 

        End If 

         

        Dim avgMh As Double 

        avgMh = mysh.Range("B" & (ConsWkRow + counter - 

1)).value / (taskFinish - taskStart) ' Daily average Mhrs 

        Dim firstWk As Date 

        Dim lastWk As Date 

        firstWk = FirstDayofWeek(taskStart) 

        lastWk = FirstDayofWeek(taskFinish) 

         

        Dim firstIdx As Integer ' Index in the collection 

        Dim lastIdx As Integer 

        firstIdx = (firstWk - wkLoading.Item(1).Week) / 7 + 

1 

        lastIdx = (lastWk - wkLoading.Item(1).Week) / 7 + 1 
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        wkLoading.Item(firstIdx).AddHr avgMh * (firstWk + 7 

- taskStart), 1 

        Dim index As Integer 

        For index = firstIdx + 1 To lastIdx - 1 

            wkLoading.Item(index).AddHr avgMh * 7, 1 

        Next index 

        wkLoading.Item(lastIdx).AddHr avgMh * (taskFinish - 

lastWk), 1 

    Next counter 

     

    '''' Schedule B '''' 

    numOfRecords = mysh.Range("F1").value 

     

    If numOfRecords > 0 Then 

        minStart = WorksheetFunction.min(mysh.Range("G" & 

ConsWkRow & ":G" & (ConsWkRow + numOfRecords - 1))) 

        maxFinish = WorksheetFunction.Max(mysh.Range("H" & 

ConsWkRow & ":H" & (ConsWkRow + numOfRecords - 1))) 

        minSun = FirstDayofWeek(minStart) ' Start and end of 

the timeline 

        maxSun = FirstDayofWeek(maxFinish) 

         

        axisDate = wkLoading.Item(1).Week ' The first date 

on the current time axis 

        Do While axisDate > minSun ' The axis is not enough. 



103 
 

            axisDate = axisDate - 7 

            Set tmp = New ClsWkLoad 

            tmp.Init axisDate 

            wkLoading.Add tmp, , 1 ' Insert in the beginning 

        Loop 

        axisDate = wkLoading.Item(wkLoading.Count).Week 

        Do While axisDate < maxSun 

            axisDate = axisDate + 7 

            Set tmp = New ClsWkLoad 

            tmp.Init axisDate 

            wkLoading.Add tmp, , , wkLoading.Count ' Insert 

to the end 

        Loop 

         

        ''' Main Calculation ''' 

        For counter = 1 To numOfRecords 

            taskStart = mysh.Range("G" & (ConsWkRow + 

counter - 1)).value 

            taskFinish = mysh.Range("H" & (ConsWkRow + 

counter - 1)).value 

            ' Check 

            If taskStart > taskFinish Then 

                Call MsgBox("Start Date is later than Finish 

Date on line " & (ConsWkRow + counter - 1) & ".", vbOKOnly, 

"CAUTION!") 

                Exit Sub 
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            End If 

             

            avgMh = mysh.Range("F" & (ConsWkRow + counter - 

1)).value / (taskFinish - taskStart) ' Daily average Mhrs 

            firstWk = FirstDayofWeek(taskStart) 

            lastWk = FirstDayofWeek(taskFinish) 

            firstIdx = (firstWk - wkLoading.Item(1).Week) / 

7 + 1 

            lastIdx = (lastWk - wkLoading.Item(1).Week) / 7 

+ 1 

             

            wkLoading.Item(firstIdx).AddHr avgMh * (firstWk 

+ 7 - taskStart), 2 

            For index = firstIdx + 1 To lastIdx - 1 

                wkLoading.Item(index).AddHr avgMh * 7, 2 

            Next index 

            wkLoading.Item(lastIdx).AddHr avgMh * 

(taskFinish - lastWk), 2 

        Next counter 

    End If 

     

    ''' Fill the weekly summary in the spreadsheet. ''' 

    mysh.Cells(ConsWkRow, ConsWkCol).Select ' Start of the 

timeline axis 

    For counter = 1 To wkLoading.Count 

        Selection.value = wkLoading.Item(counter).Week 
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        Selection.NumberFormat = "dd-mmm-yy" 

        Selection.Offset(1, 0).value = 

wkLoading.Item(counter).MhrA 

        Selection.Offset(2, 0).value = 

wkLoading.Item(counter).MhrB 

        Selection.Offset(0, 1).Select ' Move right. 

    Next counter 

    Dim colMax As String 

    colMax = ColumnLetter(Selection.Column - 1) 

 

    Dim xSeries As String 

    Dim y1Series As String 

    Dim y2Series As String 

    Dim y1Name As String 

    Dim y2Name As String 

    xSeries = ColumnLetter(ConsWkCol) & ConsWkRow & ":" & 

colMax & ConsWkRow 

    y1Name = mysh.Range("B3").value 

    y2Name = mysh.Range("F3").value 

    y1Series = ColumnLetter(ConsWkCol) & (ConsWkRow + 1) & 

":" & colMax & (ConsWkRow + 1) 

    y2Series = ColumnLetter(ConsWkCol) & (ConsWkRow + 2) & 

":" & colMax & (ConsWkRow + 2) 

    Call DrawChart(mysh, mysh.Name, y1Name, xSeries, 

y1Series) 
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    Call DrawChart(mysh, mysh.Name, y2Name, xSeries, 

y2Series) 

     

    Set wkLoading = Nothing 

    mysh.Cells(1, 1).Select 

End Sub 

 

' Find the nearest Sunday before target, which represents 

the first day of the week Target belongs to. 

Function FirstDayofWeek(ByVal target As Date) As Date 

    FirstDayofWeek = target - Weekday(target, vbSunday) + 1 

End Function 

 

' Conver a column to a letter. 

Function ColumnLetter(ByVal colNum As Integer) As String 

    Dim arr() As String 

    arr = Split(Cells(1, colNum).Address(True, False), "$") 

    ColumnLetter = arr(0) 

End Function 

 

' Create a bar chart. 

Sub DrawChart(ByRef mysh As Worksheet, ByVal chtName As 

String, ByVal seName As String, ByVal xSeries As String, 

ByVal ySeries As String) 

    Dim objChart As ChartObject 

    On Error Resume Next 
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    Set objChart = mysh.ChartObjects(chtName & " Chart") 

    If objChart Is Nothing Then ' Create if not exist 

        Set objChart = mysh.ChartObjects.Add(200, 500, 600, 

300) 

        With objChart 

            .Name = chtName & " Chart" 

            .Chart.HasTitle = True 

            .Chart.ChartTitle.Text = chtName & " Chart" 

            .Chart.HasLegend = True 

            .Chart.Legend.Position = xlLegendPositionTop 

            .Chart.Axes(xlValue).HasTitle = True 

            .Chart.Axes(xlValue).AxisTitle.Text = "Weekly 

MHrs" 

        End With 

    End If 

     

    With mysh.ChartObjects(chtName & " Chart") 

        With .Chart.SeriesCollection.NewSeries 

            .XValues = mysh.Range(xSeries) ' Sunday dates 

            .Values = mysh.Range(ySeries) ' Weekly MHrs 

            .Name = seName 

        End With 

        .Chart.ChartType = xlColumnClustered ' Bar chart 

        .Chart.Axes(xlCategory).CategoryType = 

xlCategoryScale 

        .Chart.Axes(xlCategory).TickLabelSpacing = 1 
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    End With 

End Sub 

 

Class Module: 

Option Explicit 

 

Private pWeek As Date 

Private pMhrA As Double 

Private pMhrB As Double 

 

Public Property Get Week() As Date 

    Week = pWeek 

End Property 

 

Public Property Get MhrA() As Double 

    MhrA = pMhrA 

End Property 

Public Property Let MhrA(value As Double) 

    If value < 0 Then 

        pMhrA = 0 

    Else 

        pMhrA = value 

    End If 

End Property 

 

Public Property Get MhrB() As Double 
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    MhrB = pMhrB 

End Property 

Public Property Let MhrB(value As Double) 

    If value < 0 Then 

        pMhrB = 0 

    Else 

        pMhrB = value 

    End If 

End Property 

 

Public Sub Init(value As Date) 

    pWeek = value 

    pMhrA = 0 

    pMhrB = 0 

End Sub 

 

Public Sub AddHr(value As Double, setNo As Integer) 

    If setNo = 1 Then 

        pMhrA = pMhrA + value 

    Else 

        pMhrB = pMhrB + value 

    End If 

End Sub 


