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Abstract

Multi-input-multi-output (MIMO) system, due to its large channel capacity

and high reliability, has been widely studied in numerous existing work. It

has a lot of applications in reality, e.g., 3GPP and LTE standards. These

advantages owes to the understanding of the MIMO channel, which shows the

necessity of the obtainment of channel state information (CSI).

In this thesis, channel estimation schemes based on singular value decom-

position (SVD) are proposed for MIMO systems, where instead of estimat-

ing each entry of the channel matrix, the singular spaces and singular values

are estimated, respectively. When the channel rank is fixed and known, the

maximum-likelihood (ML) estimator is derived. When the channel rank is

unknown, by using the singular values of the observation matrix as the test

statistics, three threshold-based rank detection algorithms are proposed. In

finding the thresholds, lower bounds on the correct detection probability are

derived and the thresholds are chosen to maximize the lower bounds. To eval-

uate the performance, mean square error (MSE) and achievable beamforming

capacity are introduced as the criteria. Compared with entry-based ML esti-

mation, simulations show that the combination of the proposed rank detection

and SVD-based channel estimation achieves lower MSE and higher capacity.
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Chapter 1

Introduction

Wireless communications, as defined in [1], is the transfer of information be-

tween two or more points which are not connected by an electrical conductor.

Electromagnetic waves are used to transmit information from one place to an-

other in a wireless system, such as radio system. Different from traditional

wired communications, wireless communications can help fulfilling the explod-

ing demand of flexible communications without the limits of electrical cables.

In addition, with the fast increase in the number of wireless users, local wire-

less network supplement or even substitute wireline systems at home, office

and campus [2]. Due to its advantages in flexibility, wireless communications

becomes one of the fastest growing segment of the communications industry

[1–5]. For example, mobile communication systems have experienced exponen-

tial growth over the last decades [6, 7]. Generations of mobile wireless network

standards have been brought out to make the communications between people

more flexible and cost effective.

Due to the limit of spectrum in traditional wireless systems, researchers

have been seeking for methods of improving the capacity of wireless systems

without increasing the required spectrum since the 1990s [1]. One of the solu-

tions is multi-antenna systems or multi-input and multi-output (MIMO) sys-

tems, which utilize multiple antennas at the transmitter and/or the receiver
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[8–13]. MIMO systems provide spatial diversity (antenna diversity), due to

which they can provide significant improvement in the channel capacity and

communication reliability [1, 2, 4, 10, 14], compared with traditional single-

input-single-output (SISO) systems. Actually, MIMO techniques have been

adopted as a major technology innovation in current and future wireless com-

munications, i.e., 3rd Generation Partnership Project (3GPP) and Long-Term

Evolution (LTE) standards. For example, in Release 7 for 3GPP, 2×1 and 4×2

MIMO configurations are used, whereas 2× 2 and 4× 4 MIMO configurations

are utilized in Release 8 for LTE [4].

To achieve the high capacity provided by MIMO systems, channel state

information (CSI) is usually required at the receiving side, and sometimes at

the transmitting side as well [15–19]. In practical systems, CSI can be ob-

tained by training and channel estimation, where known pilots are sent from

the transmitter and the receiver estimates the channel status from its received

signals. This thesis studies the channel estimation for reduced-rank MIMO sys-

tems. The maximum likelihood (ML) estimation is investigated and singular

value decomposition (SVD) is used for the parametrization of the reduced-rank

MIMO channel matrix. In the remaining part of this chapter, we briefly intro-

duce the background of my research project, including wireless channels, MIMO

systems, channel estimation methods, SVD; and review related literature on

entry-based and SVD-based channel estimation for MIMO systems.

1.1 Wireless Channel

Figure 1.1 illustrates how a signal propagates in a wireless channel. The mech-

anism of signal propagation in a wireless channel is different from that in a

wireline channel. Instead of one data transmission route in the copper cable or

optical fibers, the transmitted information in a wireless channel is received by

the receiver through multiple paths. Moreover, the signal propagation doesn’t
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Figure 1.1: Wireless signal propagation paths.

rely on any physical media. Due to this property, wireless channels have both

advantages and drawbacks in communications. For the advantages, the loca-

tion of the transmitter and the receiver can be more flexible and mobile than

those in wireline systems since no physical connection is needed between the

link ends. Thus, the installation of wireless systems is neat and easy since no

cable is running here and there. On the other hand, one drawback of wireless

communications is that the transmission can be easily effected by environmen-

tal factors such as the weather and buildings, which will lead to signal power

loss [6, 8, 20]. Another drawback is that different signals in the same wireless

medium may interfere with each other, which will lead to errors at the receiver.

To represent the mechanism of signal propagation in wireless channels, large

scale fading and small scale fading models have been proposed [1–5], some of

which are explained in detail in the following sections.

1.1.1 Large Scale Fading

Just as its definition shows, large scale fading occurs as the mobile moves a

“long” distance. It is caused by path-loss of signal as a function of distance

and shadowing by large objects such as buildings and terrains. In the following,

path-loss and shadowing models are briefly reviewed, respectively.
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Path-loss (or path attenuation) is the reduction in power density of an

electromagnetic wave as it propagates through space. The phenomenon may

be caused by not only optical factors mentioned in Figure 1.1, but also terrain

contours, environment (urban or rural, vegetation and foliage), propagation

medium (dry or moist air), and the distance between the transmitter and the

receiver [4]. Path-loss models have been proposed to reflect the connection

between the signal power reduction and the path length. A widely used one is

[4]

P r =
c

dν
Pt, (1.1)

where P r is the average received signal power, c is a constant which depends

on a variety of factors including transmitter and receiver antenna gains, Pt

is the transmitted power, d is the distance between the transmitter and the

receiver, and ν is the path-loss component. Typically, ν is between 2 and

6, depending on the environment conditions. Large ν represents complex data

transmission surroundings with a large amount of disruptors. For example, free

space propagation with line-of-sight has ν = 2, and some indoor environment

without line-of-sight may have ν as great as 6 [4].

Shadowing occurs due to the signal absorption by the local surrounding

media, such as trees, buildings and other obstacles [21]. Unlike path-loss, the

received power of shadowing is measured by averaging over a few seconds or

minutes, which can be regarded as random variable. Denote this received signal

power as Pr, a common shadowing model is described as [4]

Pr = P r +Xσ, (1.2)

where Xσ is a zero mean random variable. With log-normal shadowing model,

Xσ follows Gaussian distribution, i.e., Xσ ∼ CN (0, σ2). σ is heavily dependent

on environment, and usually it is in between 3dB and 12dB.
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1.1.2 Small Scale Fading

Small scale fading is due to the constructive and destructive interference of the

multiple signal paths between the transmitter and receiver [5]. This interference

depends on the signal phases. It occurs at the spatial scale of the order of the

carrier wavelength, and is frequency dependent [5].

Different from the deterministic modeling of path-loss, small scale fading is

modeled by stochastic process. Due to the various statistical characteristics,

several models have been proposed [22], e.g., Rayleigh fading, Ricean fading,

and Nakagami fading channels. Here, we only introduce Rayleigh fading model

which is used in this thesis.

Rayleigh fading occurs when there are many objects in the environment

that scatter the radio signal before it arrives at the receiver. Under this cir-

cumstance, the channel impulse response can be modeled as a Gaussian process.

If there is no dominant component in the scatter, the channel coefficient has

zero mean, and the phase is uniformly distributed between 0 and 2π. Then, the

probability density function (PDF) of the absolute value of the channel gain

can be written as [23, 24]

f(x) =
2x

σ2
exp

(
−x2

σ2

)
, if x > 0, (1.3)

where σ2 is the average channel power due to the path-loss and shadowing.

Rayleigh fading is viewed as a reasonable model for tropospheric and iono-

spheric signal propagation channels [23]. In addition, theoretical analysis with

Rayleigh fading model is usually more tractable than others since the channel

coefficients have normal distribution.

Due to the effect of Doppler spread, small scale fading can be divided into

slow fading and fast fading. Let Ts be the symbol duration and Tc be the coher-

ence time. Ts describes the time length that a symbol keeps unchanged during

the signal transmission process, which can also be interpreted as unit interval.
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Tc represents the time duration over which the channel impulse response is

considered to be nearly constant.

Slow fading happens when the symbol duration is smaller than the coher-

ence time (Ts < Tc). It implies that the fluctuation of the channel response

amplitude and phase can be considered roughly constant over the transmission

of a symbol. When the coherence time is sufficiently long, the channel can be

modeled as block fading channel where the channel fading can be regarded as

constant for a block of symbols, e.g., a few to a few hundred symbol trans-

missions. Fast fading occurs when the signal experiences high Doppler rate

that the symbol duration is larger than the coherence time, i.e., Ts > Tc. In

this case, the channel response amplitude and phase vary significantly over the

period of one symbol transmission.

Based on the effect caused by delay spread, small scale fading can be clas-

sified by flat fading and frequency selective fading on the frequency domain

(see Figure 1.2). Let Bs and Bc be the signal bandwidth (BW) and coherence

BW, respectively. Bs represents the difference between the upper and lower

frequencies of the transmitted signal. Bc is a statistical measurement of the

range of frequencies over which the channel can be considered “flat”, or in other

words the approximate maximum bandwidth or frequency interval over which

two frequencies of a signal are likely to experience comparable or correlated

amplitude fading [25].

Flat fading occurs when the signal BW is much smaller than the coherence

BW (Bs � Bc). Usually, a channel is considered as flat fading if Bs ≤ 0.1Bc.

All the signal frequency components will have the same magnitude of fading.

Frequency selective fading occurs when the coherence BW is much smaller

than the signal BW (Bc � Bs). Usually, a channel is considered as frequency

selective fading if Bc ≤ 0.1Bs. Different frequency components of the signal

will have uncorrelated fading.

In the thesis, we consider MIMO systems with Rayleigh flat-fading and
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Figure 1.2: Flat fading v.s. frequency selective fading in frequency domain.

block fading channels. Many existing work adopted the same channel model,

e.g., [15–19, 26]. There are many scatters and no line-of-sight on the signal

propagation paths for Rayleigh fading channels, which means the fading model

can be used in heavily built-up cities. By conducting trials on the environment

test, [27] shows that near-Rayleigh fading is found in Manhattan.

1.2 MIMO Systems

MIMO systems have been shown to be effective configuration in increasing the

channel capacity, thus has the potential of fulfilling the increasing demands

of high data rate in wireless communications. A lot of research activities have

been conducted to address both theoretical and practical issues associated with

MIMO systems. Among them, [10] and [11] are two seminal work that show

the significant capacity improvement of MIMO systems over single-antenna

systems on fading channels [28]. In what follows, the system model, channel

models, and capacity results of MIMO systems are explained.

Figure 1.3 shows a model of single-user MIMO system. M and N antennas

are equipped at the transmitter and the receiver, respectively. The channel be-

tween the transmitter and receiver can be represented by a matrix H, where its

(i, j)-th entry, hi,j, describes the propagation channel from the i-th transmitter

antenna to the j-th receiver antenna. In fact, the obtainment of CSI means
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Figure 1.3: Single user MIMO communication system.

the acquirement of the knowledge of H by the transmitter, or the receiver, or

both. For slow and block fading channels, the channels remain constant for a

period of time allowing reliable channel estimation at the receiver and timely

feedback to the transmitter [28].

In next paragraphs, we will discuss the capacity of MIMO systems and the

beamforming with waterfilling tranceiver scheme, which needs perfect CSI at

the transmitter and the receiver.

Let s be the 1 ×M transmitted symbol vector with M elements, H is the

M ×N channel matrix. The received signal y can be expressed as

y =
√
P sH+w, (1.4)

where P is the total transmit power, and w is the noise whose entries are in-

dependent and identically distributed (i.i.d.) and follow Gaussian distribution

with zero mean and σ2
n variance, i.e., wi ∼ CN (0, σ2

n). Let Rss be the trans-

mitter correlation matrix. The capacity of this single-user MIMO channel has

8



been shown as [1]

C = log2 [det (IN + ρHRssH
∗)] , (1.5)

where ρ is the transmit SNR, i.e., ρ = P
σ2
n
. If the data at different transmitter

antennas are uncorrelated, Rss is a diagonal matrix whose diagonal entries de-

scribe power distribution among different subchannels. The power distribution

in Rss depends on the CSI at the transmitter, which we assume the CSI is

perfect in this work. To maximize the capacity, we need to find the optimal

Rss. The optimal Rss can be found via beamforming and waterfilling, which

are described as follows.

First decompose the channel matrix H by doing SVD:

H = UΣV∗, (1.6)

where Σ is a diagonal matrix composed of singular values σk on its diagonal,

U and V∗ are unitary matrices containing the left and right singular vectors of

H as their columns, respectively. We assume the rank of H is r, which satisfies

1 ≤ r ≤ min (M,N). From (1.4), we have

y =
√
P sUΣV∗ +w. (1.7)

By right multiplying V on both sides of (1.7), we have

ỹ =
√
P sUΣ+ w̃, (1.8)

where ỹ = yV, and w̃ = wV. To realize beamforming scheme, the transmitted

signal s is designed as
√
P s = xdiag

{√
P1, · · · ,

√
Pr

}
U∗ = xRssU

∗, where

Rss is a diagonal matrix and Pk (1 ≤ k ≤ r) is the power allocated to the

k-th eigenmode of the channel matrix. With the design from (1.8), the MIMO

channel is decomposed into r (the number of non-zero eigenvalues ofH) parallel

and non-interfering subchannels based on the eigenmodes of the channel matrix
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as follows.

ỹ=xRss

⎡
⎢⎢⎢⎣
σ1 0

. . .

0 σr

⎤
⎥⎥⎥⎦+ w̃

=x

⎡
⎢⎢⎢⎣
√
P1 0

. . .

0
√
Pr

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
σ1 0

. . .

0 σr

⎤
⎥⎥⎥⎦+ w̃ =⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ỹ1 = x1

√
P1σ1 + w̃1

...

ỹr = xr

√
Prσr + w̃r

(1.9)

The capacity of the MIMO system is thus the sum of capacities of all subchan-

nels. That is

C =
r∑

k=1

log2

[
1 +

Pk

σ2
n

σ2
k

]
. (1.10)

The allocated power on all the subchannels is subject to the constraint of total

transmission power, i.e.,
∑r

k=1 Pk = P .

Three power allocation schemes are widely used, namely, uniform power

allocation, best channel only and waterfilling power allocation. Among these

schemes, best channel only and waterfilling power allocation require CSIT. Wa-

terfilling is the optimal power allocation method that maximizes the channel

capacity under the constraint that the total transmit power is fixed. In Al-

gorithm 1.1, we show the calculation of the power Pk allocated on the k-th

subchannel.

Algorithm 1.1 Waterfilling Algorithm

1: for j = r : 1 do

2: Calculate ε = 1
j

(
P +

∑j

i=1
σ2
n

σ2
i

)
and Pj = ε− σ2

n

σ2
j

.

3: if Pj ≥ 0 then

4: Go to Step 5.

5: Pk = ε− σ2
n

σ2
k

for k = 1, · · · , j and Pj+1 = · · · = Pr = 0.

The mechanism of waterfilling is to use a water level to distinguish better

subchannels (high SNR) from worse ones (low SNR) [1]. To be specific, ε is the

10



designed water level in Algorithm 1.1. Pour water into each vessel (subchannel),

and delete the vessels whose peak of the water level exceeding the designed

water level, i.e. ε − σ2
n

σ2
j

< 0. Then the designed water level is updated based

on the existing vessels. When the designed water level is finally guaranteed,

powers are allocated to each “good” vessel whose Pj > 0.

In this thesis, beamforming and water-filling schemes are used in our sim-

ulations of MIMO channel capacity.

1.3 Channel Estimation

For most MIMO communication schemes, such as, beamforming and waterfill-

ing, space-time coding, etc., CSI is required. To obtain the CSI, a training

process and channel estimation are usually conducted. Channel training de-

scribes a process that a known signal sequence called pilots, is transmitted

through the channel. Then channel estimation is conducted based on the re-

ceived information at the receiver.

With the existence of noise, channel estimation is never perfect but with

errors. To evaluate the estimation quality, mean square error (MSE) is used

as the typical loss function, which measures the average of the square of the

difference between the estimator and estimated object. In what follows, three

main estimators, minimum mean square error (MMSE) estimator, maximum

a-posteriori (MAP) estimator, and maximum likelihood (ML) estimator, are

explained.

To help the presentation, we introduce the following definitions. Vector

X ∈ R
m is the parameter to be estimated, and x is the sample parameter from

X. Vector Y ∈ R
n is the observation, and y is the sample observation from Y.

The conditional PDF fY (y|x) is the probability density function of observing

the given data (Y and y) for a given parameter x.
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1.3.1 MMSE Estimator

The MMSE estimator is the estimation that minimizes the MSE. It has been

proven to be

X̂MMSE = E {X|Y = y} , (1.11)

and the MSE of the MMSE estimator is

MSE(X̂MMSE) = E ‖X− E (X|Y)‖22 . (1.12)

When X and Y are jointly Gaussian variables, the MMSE estimator takes the

linear form.

1.3.2 MAP Estimator

The MAP estimation is the estimation that maximizes the a posteriori PDF,

i.e.,

X̂MAP (y) = argmax
x∈Rm

fX|Y (y|x) . (1.13)

The estimation has good performance if fX|Y(x|y) has a dominant peak. Oth-

erwise, the estimation error can be very large.

1.3.3 ML Estimator

The principle of ML is to choose an estimator X̂ as the value for the unknown

parameter X that makes the observed data most probable [29]. That is

X̂ML (y) = argmax
x∈Rm

fY (y|x) = argmax
x∈Rm

ln fY (y|x) . (1.14)

Usually, the ML estimation has lower complexity and is more tractable than the

MMSE estimator. When the number of independent observations increases to

infinity, the ML estimator is asymptotically unbiased, and reaches the Cramér-

Rao lower bound (CRLB). The estimator almost surely approaches the true
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value of the parameter [29].

In this thesis, both MMSE estimator and ML estimator are used for MIMO

channel estimation. But for MAP estimator, it appears in the future work

directions of Chapter 4.

1.4 Singular Value Decomposition

SVD is a factorization method of a real or complex matrix in linear algebra.

It conveys important geometrical and theoretical insights about linear trans-

formation [30]. It is a method for identifying and ordering the dimensions

along which data points exhibit the most variation. When we have identified

where the most variation is, the best approximation of the original data can be

achieved using fewer dimensions [31].

The SVD of an m× n real or complex matrix M can be expressed as

M = UΣV∗, (1.15)

where U and V are m ×m and n × n unitary matrices, respectively. Σ is an

m × n rectangular diagonal matrix with non-increasingly ordered real values

on its diagonal, i.e., σ1 ≥ · · · ≥ σk, which are called singular values of M.

The m columns of U and the n columns of V are the left and right singular

vectors of M, respectively. The SVD has many applications, e.g., genomic

signal processing, and low-rank matrix approximation, etc..

As an extension of eigenvalue decomposition (EVD) for non-square ma-

trices, SVD is closely related to EVD. Recall the definition of M in (1.15),

the followings are several properties between these two matrix decomposition

schemes. The left singular vectors of M are eigenvectors of MM∗; the right

singular vectors of M are eigenvectors of M∗M; the non-zero singular values of

M are the square roots of the non-zero eigenvalues of both MM∗ and M∗M.

In Chapter 3, in deriving a lower bound on the probability of correct rank
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detection, the marginal cumulative distribution function (CDF) of the singular

value of a Gaussian matrix is needed. Based on the transformation between

singular values and eigenvalues, this marginal CDF is achieved with the help

of the given marginal CDF of the eigenvalue in a Wishart matrix.

In this thesis, SVD is used for the parametrization of MIMO channel matrix.

In the proposed estimation schemes, the received signal matrix is decomposed

by SVD and the estimated channel matrix is obtained by doing the transforma-

tion of the pilot and receiving matrix and truncating the singular values of the

constructed receiving matrix. For known-rank channel matrix, the truncation

place is decided by the channel rank, and for unknown-rank channel matrix,

the truncation position can be determined by rank detection results.

1.5 Literature Review on MIMO Channel Es-

timation and Rank Detection

As mentioned in previous sections, the obtainment of CSI is an important

problem in MIMO systems. There have been a lot of research on channel

training and estimation for MIMO systems, as well as the effect of CSI error

on system performance, e.g., [15–18, 32, 33].

Most existing work on channel estimation focus on full-rank MIMO channel

matrices with i.i.d. or correlated entries [15–18]. In [15], the authors investi-

gate how training length affects the capacity of fading channel models. With

the help of training, a lower bound on the capacity is derived, and the bound

is maximized with respect to several parameters, such as the received signal-

to-noise ratio (SNR), coherence time and the number of transmitter antennas.

Their conclusion is that the optimal number of training symbols (in the sense

of maximizing a capacity lower bound) equals to the number of transmit an-

tennas. In [16], robust training sequence for MIMO channel estimation that

minimizes the worst-case estimation MSE is studied. In [17], a new discrimina-
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tory channel estimation scheme is derived based on the linear MMSE channel

estimator, where two steps are needed. In the first step, a general training

sequence is transmitted, and the corresponding estimated channel is achieved.

In the second step, based on the estimation result in the first step, the new

training sequence is generated by inserting artificial noise, which improves the

channel estimation performance of legitimate receivers, and degrades that of

unauthorized receivers. In [18], the authors propose new scaled least square

and relaxed MMSE estimators which require less information of the channel

second-order statistics than conventional least square and MMSE estimators.

The proposed estimation schemes achieve lower MSE than conventional linear

least square and MMSE estimators.

The channel estimation schemes used in aforementioned work are entry-

based, where the unknown channel matrix is parameterized by its entries. For

full-rank channels, this is natural and efficient. But when the channel matrix

has reduced rank, the number of its entries is larger than its real dimension.

Entry-based parameterization can become inefficient. A better approach is

SVD-based estimation, in other words to use the singular values and singular

vectors to parameterize the channel matrix. Another related problem is the

rank detection, i.e., detecting the of channel matrices with unknown rank.

There are several papers on SVD-based estimation schemes and rank de-

tection [34–37]. We first introduce the literature on SVD-based estimation

schemes. [34] and [35] are on the estimation and filtering of multivariate linear

regression model with reduced rank. In [34], the joint ML estimation of the

matrix of regression coefficients and the noise covariance matrix are derived,

which is shown to be superior than least square and modified least square

estimations on MSE. In [35], the same results on the estimation of the param-

eter matrix (also known as the matrix of regression coefficients) are obtained

by minimizing the trace and determinant of the (weighted) error covariance

matrix of the noise-obscured output. Also, an alternative power method is
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proposed to reduce the computation load of the estimation. The method is

proved to have global and exponential convergence. [36] studies the reduced-

rank channel estimation of MIMO systems. Two projection-based methods are

proposed based on signal subspace projections to exploit the vector taps of the

channel lying in the subspace spanned by the signal eigenvectors to the spatial

data covariance matrix. To evaluate the estimation quality, MSE and bit error

rate (BER) are used. Compared with the ML estimation scheme in [34, 35],

their detectors achieve lower BER but larger MSE. [37] also studies the ML

estimation for low-rank single-user MIMO channels and extends the results to

multi-user systems. The proposed estimation is equivalent to that in [34, 35].

The channel rank detection problem has also been investigated in some of

the aforementioned work [34, 37] as well as [38]. In [34], a rank detection scheme

is proposed based on the generalized likelihood ratio test (GLRT). It is shown

to achieve high detection accuracy, but needs a large number of observation

samples (over 1000 samples). In [37], a minimum description length-based rank

detection algorithm is proposed. Instead of choosing a threshold, this method

directly calculates the estimated rank using the channel rank log-likelihood

ML estimator and a bias correction. It is aimed to estimate the number of

uncorrelated sources from the analysis of the eigenvalues of the correlation

matrix of the estimated channel matrix. In [38], several threshold-based rank

detection methods are proposed. Lower and upper bounds on the threshold are

derived based on the theories of perturbations of singular values and statistical

significance test.

1.6 Motivation and Contribution

This thesis explores SVD-based ML estimation scheme and rank detection algo-

rithm for MIMO communication systems with reduced-rank channel matrices.

Most existing work on the channel estimation of MIMO communication sys-
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tems are for the case when the channel matrix is full-rank, and use entry-based

channel estimation schemes. However, in reality, due to the small angle or delay

spread, low-rank channel matrices often occur (see Table 2.1). One of typical

models for reduced-rank scenarios is keyhole channel model whose rank is 1.

In [39–41], physical examples of keyholes are presented, where details will be

explained in Section 2.1. With reduced channel rank, SVD-based estimation

method is proved to be more efficient and can achieve lower estimation MSE

than entry-based scheme.

Existing work on SVD-based schemes are mainly on the signal processing

aspects, e.g., linear regression with noise of arbitrary covariance, estimation of

the number of uncorrelated sources from the estimated channel matrix, dimen-

sion reduction, the computation of pseudoinverse, and matrix approximation,

etc.. The adopted models, design goals and assumptions are usually different

to those for MIMO channel estimation. Directly using the proposed schemes

can lead to suboptimal performance and constraints on the training design.

In our work, we investigate the SVD-based channel estimation and rank

detection for MIMO communication systems under the widely used Rayleigh

and double Rayleigh fading channels. A general training length and pilot design

are considered. The proposed rank detection algorithms take into account

the channel distribution information and channel rank distribution. In what

follows, the contribution of the thesis is explained.

• We derive rigorously the SVD-based ML estimation for reduced-rank

MIMO channels with general training length and pilot design.

• The simulation shows that the proposed SVD-based ML estimation scheme

achieves lower MSE and higher capacity than entry-based channel esti-

mations.

• We propose three threshold-based rank detection algorithms, which take

into account the channel distribution and in the case of Algorithm 3.1,
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the channel rank distribution.

• A systematic method for the thresholds calculation is proposed. The

thresholds are optimized by maximizing a lower bound on the probability

of correct detection.

• Our numerical simulations show that the proposed rank detection algo-

rithms outperform existing ones on the successful rate of channel rank

detection.

• We combine the ML channel estimation and rank detection algorithm for

general MIMO communication systems with unknown rank. Simulation

shows that the combination achieves larger beamforming capacity and

smaller MSE than entry-based schemes.

1.7 Thesis Organization

The thesis is organized as follows. Chapter 1 gives a brief introduction of

the background, including wireless channel model, MIMO systems, estimation

methods, SVD, and literature review. In Chapter 2, the channel estimation

problem is explained and SVD-based ML estimation for known-rank case is

derived. In Chapter 3, three rank detection algorithms are proposed and their

performance is simulated. Conclusions are made in Chapter 4 together with

possible future research directions. Eventually, the calculation of reduced-rank

channel matrix distribution is provided in Appendix A.

1.8 Notation

In this thesis, bold upper case letters and bold lower case letters are used to

denote matrices and vectors, respectively. For a matrix A, its Hermitian, trace,

rank, Frobenius norm, and determinant are denoted by A∗, tr(A), rank(A),
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‖A‖F , and det(A), respectively. In is the n × n identity matrix and 0 is the

matrix of all zeros. E(·) denotes the average operator, and diag{a1, · · · , an}
denotes the diagonal matrix whose diagonal entries starting from the upper left

corner are a1, · · · , an.
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Chapter 2

SVD-Based ML Estimation for

Reduced-Rank Channel with

Known Rank

This chapter derives the SVD-based ML channel estimation for MIMO systems

when the rank of the channel is known at the receiver. In Section 2.1, the

reduced-rank MIMO channel model is introduced. Section 2.2 explains the

training process and the channel estimation problem. In Section 2.3, SVD-

based ML estimation method is derived analytically. Numerical simulation

results of the estimation MSE and MIMO channel capacity with estimated

channel information are shown in Section 2.4, as well as the comparison with

entry-based estimation methods. Section 2.5 summarizes this chapter.

2.1 MIMO Channel Model

A MIMO system with M transmitter antennas and N receiver antennas is con-

sidered. The channels are assumed to be flat-fading and block-fading. Denote

the M ×N channel matrix between the transmitter and the receiver as H with

its (i, j)-th entry being the channel from the i-th transmitter antenna to the
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j-th receiver antenna. Define

L � max{M,N}, K � min{M,N}. (2.1)

Denote the rank of the channel matrix as r, i.e., rank(H) = r. If r = K,

the channel has full rank [16–19, 26]. If r < K, the channel has reduced rank

[32–38]. For a reduced-rank MIMO channel, the number of degrees of freedom

in the channel matrix is less than its dimension. A rank analysis on typical

propagation environments shows that sometimes when a matrix describing the

channel does not use its all available degrees of freedom, the channel matrix

is rank deficient [42, 43]. In this case, the conventional assumption that all

channel entries in H are mutually independent does not apply. A reduced-rank

channel with rank r can be represented as the product of two full-rank matrices

as follows:

H � AB, (2.2)

where A is an M × r full-rank matrix and B is a r × N full-rank rectangular

unitary matrix. This is also called rank factorization [32, 34]. In this work, we

consider Rayleigh fading by assuming that entries of A are i.i.d. and follow

circularly symmetric complex Gaussian (CSCG) distribution, with zero-mean

and unit-variance, i.e., aij ∼ CN (0, 1), where aij is the (i, j)-th entry of A.

Under this condition, each entry of H still yields CSCG distribution, i.e., hij ∼
CN (0, ‖bj‖2F ), where bj is the j-th column of B. The procedure of calculating

the mean and variance of hi,j is shown in the Appendix A.

Another model for reduced-rank channel matrix is double Rayleigh distri-

bution, where entries of both A and B in (2.2) follow independent Rayleigh

distribution. Thus each entry of H is not distributed as a complex Gaussian

variable, but as a summation of products of complex Gaussian variables. For

reduced-rank channel, a special case is when the rank is 1. In this case, H = ab,

where a and b are column and row vectors, respectively. Each entry of H is a
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product of two complex Gaussian variables, corresponding to the keyhole chan-

nel model (see Figure 2.1). Keyhole channel represents the scenario when the

signal propagation path is separated by a big screen with a small hole (size of

the hole is much smaller than the signal transmission path) on it, as a result of

which the rank of the channel is 1. As a special case of reduced-rank channel,

keyhole channel model has been profoundly investigated in [39–41].

Transmitter Receiver

Figure 2.1: Keyhole MIMO channel model.

To help motivate the reduced-rank MIMO channel model, Table 2.1, gen-

erated from [32] is presented to show the rank distribution of 8 × 8 MIMO

systems for four different environments, which are generalized typical urban

(GTU), generalized bad urban (GBU), generalized hill terrian (GHT) and gen-

eralized rural area (GRA), respectively. This categorization is based on the

COST-259 Directional Channel Model [44]. We can see from the table that for

all four scenarios, the 8 × 8 channel matrices are not full rank. Especially for

the scenarios of GTU and GRA, the MIMO channels have low rank.
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Table 2.1: Rank distribution of 8×8 MIMO systems for four different environ-
ments [32]

Rank order 1 2 3 4 5 6 7 8

GTU 0.170 0.410 0.280 0.140 0 0 0 0
GBU 0.014 0.181 0.235 0.260 0.180 0.130 0 0
GHT 0.100 0.260 0.200 0.220 0.170 0.050 0 0
GRA 0.500 0.440 0.060 0 0 0 0 0

2.2 Training Process and Channel Estimation

Problem

In this section, we demonstrate the training process and explain the channel

estimation problem. The training process is standard and widely used in the

literature, e.g. [16–19, 26]. Let T be the length of the training process, whose

unit is symbol interval. The transmitter sends
√
PT/MS, where the T × M

matrix S is the pilot. With the normalization tr(S∗S) = M , P is the average

training power per transmission. So the total training power is PT . We assume

that T ≥ M and S is full rank since a reduced-rank S will lead to worse

estimation quality than a full rank one. Denote the T ×N matrix received at

the receiver as Y. We have

Y =

√
PT

M
SH+W, (2.3)

where W is the T ×N noise matrix. Entries of the noise matrix are assumed

to be i.i.d. CSCG with zero-mean and unit-variance. The pilot and the noise

are assumed to be independent to the channel matrix, which applies to most

practical systems.

Our problem is to estimate H from Y. For full rank channel matrix with

i.i.d. Rayleigh fading coefficients, this problem has been well investigated, i.e.

in [16–19, 26]. In these work, estimations are conducted on each entry of the

channel matrix. For reduced-rank case, entries of the channel matrix have
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connections and are not independent to each other. Directly applying entry-

based estimations will result in degraded performance [33], since this method

ignores the connection among entries of H.

For a MIMO channel matrix, the rank is an indicator of how many data

streams can be spatially multiplexed on the channel, and the data streams

are represented by the singular values and the corresponding singular vectors.

Therefore, for reduced-rank MIMO channels, SVD-based channel estimation

can be advantageous. Instead of estimating entries of the channel matrices,

SVD-based estimation works on the singular vectors and singular values. It

can efficiently take into account the rank condition of the channel. Thus, we

use SVD-based channel estimation.

2.3 SVD-Based ML Channel Estimation with

Known Rank

In this section, we derive the SVD-based ML channel estimation for MIMO

systems when the rank of the channel is known at the receiver. Recall that Y

is the received signal matrix and S is the pilot. Let

S = U

⎡
⎣ Λ

0

⎤
⎦V∗ (2.4)

be the SVD of S, where U is a T × T unitary matrix, V is an M ×M unitary

matrix and Λ is an M ×M diagonal matrix with positive diagonals. Define

Ỹ =

√
M

PT

[
IM 0

]
U∗Y, (2.5)

which is the matrix composed of the first M rows of
√

M/(PT )U∗Y. The

following theorem on the ML estimation of H conditioned on rank(H) = r is

proved.
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Proposition 2.3.1. Let Ỹ = Pdiag{σ1, · · · , σK}Q∗ be the SVD of Ỹ, where

P and Q are M×K and K×N unitary matrices and σi’s are in non-increasing

order, i.e., σ1 ≥ · · · ≥ σK ≥ 0. If the rank of H is known to be r, the ML

estimation of H is

ĤML = VΛ−1Pdiag {σ1, · · · , σr, 0, · · · , 0}Q∗. (2.6)

Proof. Let p(Y|H) be the conditional PDF of Y given H. Since wij ∼
CN (0, 1), we have

p(Y|H) = (2π)−TNe
−
∥
∥
∥Y−

√
PT
M

SH

∥
∥
∥

2

F . (2.7)

The ML estimation of H can be derived as

ĤML=arg max
rank(H)=r

p(Y|H)

= arg max
rank(H)=r

ln p(Y|H)

= arg max
rank(H)=r

⎛
⎝−TN ln 2π︸ ︷︷ ︸

constant

−
∥∥∥∥∥Y −

√
PT

M
SH

∥∥∥∥∥
2

F

⎞
⎠

=arg min
rank(H)=r

∥∥∥∥∥Y −
√

PT

M
SH

∥∥∥∥∥
2

F

=arg min
rank(H)=r

∥∥∥∥∥∥
√

M

PT
U∗Y −

⎡
⎣Λ
0

⎤
⎦V∗H

∥∥∥∥∥∥
2

F

=arg min
rank(H)=r

∥∥∥Ỹ −ΛV∗H

∥∥∥2

F

Since ΛV∗ is invertible, the problem can be shown to be equivalent to

Ĝ = arg min
rank(G)=r

∥∥∥Ỹ −G

∥∥∥2

F
(2.8)
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and

ĤML = (ΛV∗)−1Ĝ = VΛ−1Ĝ. (2.9)

Based on Mirsky’s theorem [45], we have

∥∥∥Ỹ −G

∥∥∥2

F
≥

K∑
i=1

(σi − λi)
2, (2.10)

where λi’s are the singular values of G. With the condition that G is rank-r,

we have λr+1 = · · · = λK = 0. Thus

K∑
i=1

(σi − λi)
2 =

r∑
i=1

(σi − λi)
2 +

K∑
i=r+1

σ2
i ≥

K∑
i=r+1

σ2
i . (2.11)

Let Ĝ = Pdiag {σ1, · · · , σr, 0, · · · , 0}Q∗. We can see that Ĝ is the solution of

(2.8) since it has rank r and it makes the inequality in (2.11) takes equality.

By using (2.9), the result in (2.6) is obtained.

Since we assume that the rank information is known, with the SVD-based

ML channel estimation in (2.6), a channel estimation with rank-r is obtained

by keeping the subspaces with respect to the r strongest singular values of Ỹ.

Subspaces with respect to the K − r smallest singular values are seen as the

noise effect and are ignored. This process guarantees that the estimator has the

same rank with the real channel. It considers the connections among different

entries in H due to the rank condition.

In contrast, if we do not consider the rank condition and see entries of H

as independent, an entry-based ML estimation and linear MMSE (LMMSE)

estimation can be obtained, respectively, as

Ĥentry,ML =

√
M

PT
(S∗S)−1S∗Y, (2.12)

Ĥentry,LMMSE =

√
PT

M

[
IM +

PT

M
S∗S

]−1

S∗Y. (2.13)
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Both the entry-based estimations lead to a full rank matrix. When r = K, i.e.,

the channel is full rank, the SVD-based estimation and entry-based estimation

are equivalent. When r < K, i.e., the channel has reduced rank, entry-based

estimations will contain subspaces due to the noise effect only, thus have worse

performance.

Actually, SVD truncation schemes for reduced-rank MIMO systems is well-

known, which can be found in [32, 34, 35, 37]. But the papers focus on signal

processing aspects, i.e., lower-dimension approximation, estimation and filter-

ing of multivariate linear regression model. The results can be used straight-

forwardly in ML channel estimation of MIMO systems for the special case of

T = M and S = IM . We derive the SVD-based ML channel estimation for

general pilot S and T value.

2.4 Simulations

In this section, we simulate the performance of the proposed SVD-based chan-

nel estimation and compare it with entry-based channel estimations. Two

channel models are used: Rayleigh fading and double Rayleigh fading. In the

simulation, the channel matrix H is generated as the product of two full rank

matrices which have been defined in (2.2). For Rayleigh fading, A has i.i.d.

entries that follow Gaussian distribution, and B is a unitary matrix obtained

from QR decomposition. For double Rayleigh fading, entries of both A and B

are i.i.d. following Gaussian distribution. For each iteration, a distinct channel

realization is used. For each transmit power setup, 104 times Monte-Carlo tests

are conducted. To show the system performance, two measures are used: the

MSE of the estimated channel and the capacity of the MIMO system.
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2.4.1 MSE of Estimated Channel and Beamforming Ca-

pacity with Estimated Channel Information

The MSE of the channel estimation is defined as MSE(Ĥ) � E||H− Ĥ||2F . Tra-
ditionally, the average is over the noise. But here the average is over both the

noise and the channel, since the channel coefficients are also random variables.

For the capacity, beamforming and waterfilling schemes based on the esti-

mated CSI are used, where the corresponding derivations are shown as follows.

In simulating the capacity, we assume that the power for data transmission is

the same as the training power.

Let s be the transmitted symbol vector, and P be the average total transmit

power, i.e., E
{‖s‖2F} = P . By sending s through the channel, the transceiver

equation is written as follows,

y = sH+w, (2.14)

where y and w are the received symbol vector and noise vector, respectively.

The knowledge of H is unknown to neither the transmitter and the receiver.

But the estimated channel matrix Ĥ is known. Let

Ĥ = ÛΣ̂V̂∗ = Ûr̂diag
{
σ̂2
1, · · · , σ̂2

r̂

}
V̂∗

r̂ (2.15)

be the SVD of Ĥ, where σ̂k’s are the non-zero singular values of Σ̂, and they

are in non-increasing order, i.e., σ̂1 ≥ · · · ≥ σ̂r̂ ≥ 0. The number of σ̂k’s is the

estimated rank, i.e., r̂. With known channel rank, we have r̂ = r. Let Ûr̂ be

the M × r̂ matrix composed of the first r̂ columns of Û and V̂r̂ be the N × r̂

matrix composed of the first r̂ columns of V̂. Let H = UΣV∗ be the SVD of

H. By right multiplying V̂r̂ on both sides of (2.14), we have

ỹ = sUΣV∗V̂r̂ + w̃, (2.16)
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where ỹ = yV̂r̂ and w̃ = wV̂r̂. Both ỹ and w̃ are 1× r̂ vectors.

With beamforming scheme, the symbol vector s is designed as

s = xdiag
{√

P1, · · · ,
√
Pr̂

}
Û∗

r̂, (2.17)

where x is the 1× r̂ symbol vector composed of independent information sym-

bols, and its k-th element xk represents the k-th information symbol. By

assuming that each information symbol has the same average power 1, i.e.,

E {|xk|2} = 1, we have

E
{‖s‖2F}=E

{∥∥∥xdiag{√P1, · · · ,
√
Pr̂

}
Û∗

r̂

∥∥∥2

F

}
=E

{
tr
{
Ûr̂diag

{√
P1, · · · ,

√
Pr̂

}
x∗xdiag

{√
P1, · · · ,

√
Pr̂Û

∗
r̂

}}}
=E {tr {x∗xdiag {P1, · · · , Pr̂}}}
=tr

{
diag

{
P1E

{|x1|2
}
, · · · , Pr̂E

{|xr̂|2
}}}

=P1 + · · ·+ Pr̂. (2.18)

Hence, we obtain the total power constraint, i.e.,
∑r̂

k=1 Pk = P . Notice that Pk

is the power used to transmit xk. Substituting the symbol vector s in (2.16)

by its designed term (2.17), we have

ỹ = xdiag
{√

P1, · · · ,
√

Pr̂

}
Û∗

r̂UΣV∗V̂r̂ + w̃. (2.19)

Define a r̂ × r̂ matrix Z as Z = Û∗
r̂UΣV∗V̂r̂, and we obtain a more direct

connection between the received vector and the symbol vector after beamform-

ing manipulation as follows,

ỹ =
(√

P1x1, · · · ,
√
Pr̂xr̂

)
Z+ w̃. (2.20)

Thus, with the beamforming design and estimated CSI, the MIMO channel has
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been decomposed into r̂ independent subchannels as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ỹ1 =
√

P1x1z1,1︸ ︷︷ ︸
signal

+
r̂∑

i=2

√
Pixizi,1︸ ︷︷ ︸

interference

+ w̃1︸︷︷︸
noise

...

ỹr̂ =
√
Pr̂xr̂zr̂,r̂︸ ︷︷ ︸
signal

+
r̂−1∑
i=1

√
Pixizi,r̂︸ ︷︷ ︸

interference

+ w̃r̂︸︷︷︸
noise

(2.21)

If the channel estimation is perfect, i.e., Ĥ = H, we have Z = Σ which

is a diagonal matrix. The interference terms in (2.21) will diminish. This is

the beamforming that has been discussed in Section 1.2. In reality, due to the

noises, channel estimation is not perfect but with errors. The inter-channel

interference always occurs.

For the power allocation, waterfilling algorithm is adopted, which is given

in Algorithm 1.1 in Section 1.2. With estimated channel information Ĥ, only

the estimated singularvalues σ̂i are known. In using the waterfilling algorithm,

σ̂i replaces σi in Step 2 and Step 5.

With the the above beamforming and power allocation results, the channel

capacity can be represented as

C =
r̂∑

i=1

log2

(
1 +

Pi |zi,i|2
σ2
n +

∑r̂

j=1,j �=i Pj |zj,i|2
)
, (2.22)

where σ2
n is the noise variance. In the following simulations, we assume that

the noises have unit variance, i.e., σ2
n = 1.

2.4.2 Simulation Results on MSE

In this section, we show simulation results on MSE. The rank information is

known to both the transmitter and the receiver. In Figure 2.2 and Figure 2.3,
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we consider two MIMO systems, i.e., T = M = N = 2 and T = M = N = 5

for Rayleigh fading and double Rayleigh fading channels, respectively. For

simplicity, we set S = IM , and the channel rank equals to 1 (r = 1). In Figure

2.4, we simulate the MSE of the proposed SVD-based channel estimation under

Rayleigh fading channels with the four different rank distribution in Table 2.1.
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Figure 2.2: MSE(Ĥ) for network with T = M = N = 2 and T = M = N = 5
in Rayleigh fading channel.

In Figure 2.2, the MSEs of the channel estimation under the Rayleigh fad-

ing channel for different transmit powers P are shown. We can see that the

proposed SVD-based ML estimation achieves lower MSEs than entry-based

ML estimation. The advantage is larger for the system with higher dimension.

When P is large (> 15dB), the proposed scheme is about 1.5dB and 4.5dB bet-

ter than both entry-based estimations (ML and LMMSE) for both networks.
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When P has small values (< 10dB), the proposed scheme is slightly worse than

entry-based LMMSE estimation in the network with T = M = N = 2, but

is still better than the entry-based ML estimation. In addition, for all esti-

mations, the MSEs have a linear decreasing trend with respect to the training

power, which is important in achieving full diversity in data transmission [46].
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Figure 2.3: MSE(Ĥ) for network with T = M = N = 2 and T = M = N = 5
in double Rayleigh fading channel.

Figure 2.3 shows the MSE of the proposed estimation and entry-based es-

timation under double Rayleigh fading channels. Similar observations to those

in Figure 2.2 can be obtained. The reason can be found in [40], which explains

that the amplitude of the transmit signal for a double Rayleigh fading channel

will fade twice as often as a standard Rayleigh fading channel, and the differ-

ence between double Rayleigh and Rayleigh models becomes smaller when the
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system dimension increases. However, for the entry-based LMMSE estimation

scheme, the estimation MSE under double Rayleigh fading channel is larger

than that under Rayleigh fading scenario by 0.6dB and 1dB when P < 15dB

for 2× 2 and 5× 5 channels, respectively. This is because LMMSE estimation

is the same as the optimal MMSE estimation when the entries of H and Y are

jointly Gaussian. For Rayleigh fading channels, the LMMSE is the same as

the MMSE estimation, while for double Rayleigh fading, this is not true since

entries of H are not Gaussian.
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Figure 2.4: MSE(Ĥ) for networks with T = M = N = 8 by using the PMF in
Table 2.1 in Rayleigh fading channel.

In Figure 2.4, we show the MSEs achieved by using the proposed SVD-

based estimation scheme under the four rank distributions in Table 2.1. The

channel matrix is set to be 8 × 8 (M = 8 and N = 8) with training length

T = 8 and pilot S = I8. For the entry-based estimation, the MSE in four
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environments are equal, i.e., ‖W‖2F , where W is the i.i.d. Gaussian noise. We

can see that all the proposed SVD-based estimations achieve smaller MSEs

than entry-based estimation, and the advantage is up to 5dB power saving for

the same estimation errors. The MSE of the estimated channel is the smallest

in the environment of GRA, and is the largest in the environment of GBU.

The difference between the best estimation and the worst one is up to 4dB

power saving for the same estimation errors. Combining Table 2.1, the reason

for this is explained as follows. For GRA, there are only three possible rank

scenarios (r = 1, 2, 3), and the channel is low rank. But for GBU, there are six

possible rank cases (r = 1, · · · , 6), and compared with the other three cases,

the probability that the channel has a high rank in this case is the highest.

The proposed SVD-based estimation scheme has more advantages when the

channel matrix has lower rank. As an extreme case, when channel has full rank,

SVD-based scheme will have the same performance as entry-based estimation.

In addition, all the MSEs have a linear decreasing trend with respect to the

training power which is crucial in achieving full diversity in data transmission.

2.4.3 Simulation Results on Beamforming Capacity

In this section, the simulation results on beamforming capacity of the MIMO

channels are shown. The same to Section 2.4.2, we set σ2
n = 1 and r̂ = r since

the channel rank is assumed to be known.

Figure 2.5 shows the capacity of two MIMO systems, M = 5, N = 10,

T = 20, and M = 10, N = 20, T = 40 under Rayleigh fading channels, where

the rank of the channel is set to be 1. The pilot S is designed as a T × M

rectangular unitary matrix. We can see that our proposed SVD-based scheme

always achieves larger capacity than both entry-based estimation methods,

and the improvement increases when the number of transmitter and receiver

antennas increases. For the 10× 20 MIMO system, the SVD-based estimation

outperforms entry-based cases by around 2.5 bits per transmission for the same
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Figure 2.5: Capacity of networks with M = 5, N = 10, T = 20 and M = 10,
N = 20, T = 40 in Rayleigh fading channel. The channel rank is set to be 1.

power or it has almost 8dB saving in power to achieve the same capacity when

P ≥ 10dB. For the 5× 10 MIMO system, the improvement of proposed SVD-

based estimation over entry-based estimation is about 2 bits per transmission

for the same power or it saves 5dB power to get the same capacity. As a

benchmark, the capacity for the perfect channel case is also shown. We can

also see that as the transmit power increases, performance of the SVD-based

estimation approaches the perfect channel case. In contrast, there exists a

constant gap between the entry-based estimation and the perfect channel case

for both systems.

Figure 2.6 and Figure 2.7 reveal the beamforming capacity for the four 8×8

reduced-rank channels with rank distributions given in Table 2.1. For both

figures, we assume the channel coefficients follow Rayleigh distribution. The
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Figure 2.6: Capacity of networks with M = N = 8, T = 20 for environments
of GBU and GHT in Rayleigh fading channel.

training length is set to be 20, and the pilot S is designed as a 20×8 rectangular

unitary matrix. Figure 2.6 shows the two high rank channel matrix scenarios

GBU and GHT; while Figure 2.7 indicate two low rank channel matrix scenarios

GTU and GRA. For all four environments, the proposed SVD-based scheme

achieves larger capacity than entry-based estimation. At P = 10, the capacity

improvement of proposed SVD-based scheme over entry-based scheme is about

3dB, 3dB, 3.5dB and 4dB for GBU, GHT, GTU and GRA, respectively. There

exists a certain gap between the proposed SVD-based estimation and perfect

channel scenario for all the environments even though large SNR (> 20dB) is

adopted. In addition, we can see that the capacity for high rank scenarios is

larger than low rank cases. This is because that more effective subchannels

are available for signal transmission in high rank environments than low rank

ones, e.g., 6 subchannels may be available in GHT environment, and only 3
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Figure 2.7: Capacity of networks with M = N = 8, T = 20 for environments
of GTU and GRA in Rayleigh fading channel.

subchannels at most are available in GRA environment.

2.5 Summary

In this chapter, we study the SVD-based ML estimation for known-rank MIMO

channels. First, the reduced-rank channel model and the training problem are

explained. Then, we derive SVD-based ML estimation scheme, and obtain

the estimated channel by truncating the singular values in the transformed

observing matrix based on the given knowledge of the channel rank. To evaluate

the estimation performance, MSE and beamforming capacity are used. Our

simulation shows that the proposed SVD-based scheme achieves smaller MSE

and larger capacity than the entry-based schemes, and the improvement is more

remarkable for larger system dimension and longer training length.
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Chapter 3

Rank Detection for MIMO

Channels

This chapter is on the rank detection problem for reduced-rank MIMO chan-

nels. Three threshold-based rank detection algorithms are proposed. In Section

3.1, we introduce the problem and the threshold-based rank detection idea. We

also derive a lower bound on the probability of correct detection conditioned

on an arbitrary rank value which is needed in the proposed rank detection al-

gorithms in later sections. Section 3.3 introduces our first algorithm for rank

detection, which requires a-priori probabilities of the channel rank. In Section

3.4 and Section 3.5, two more multi-threshold-based rank detection algorithms

are proposed, which do not need a-priori rank distribution. Section 3.6 shows

simulation results, where the rank detection accuracy between our proposed al-

gorithms is compared with that of existing ones. In section 3.7, we combine the

proposed rank detection algorithms and the SVD-based estimation scheme dis-

cussed in Chapter 2 for the estimation of MIMO channels with unknown rank.

Simulation results on the MSE of the channel estimation and beamforming

capacity with estimated channel matrix are demonstrated and compared with

those of entry-based channel estimations. Section 3.8 summaries this chapter.
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3.1 Problem Statement and Threshold-Based

Rank Detection

In the previous chapter, we investigated the channel estimation scheme for

known-rank MIMO channel matrices. Naturally, to use the SVD-based ML

estimation proposed in Chapter 2, we need to conduct rank detection first

since in general, the channel rank is unknown. Recall that our reduced-rank

channel matrix H is modeled by an M × N matrix. Let T be the length of

the training process, and the transmitter sends
√

PT/MS, where the T ×M

matrix S is the pilot. With the normalization tr(S∗S) = M , P is the average

training power per transmission. Recall the training model as follows.

Y =

√
PT

M
SH+W, (3.1)

where Y is the T × N received matrix, and W is the T × N noise matrix.

Entries of the noise matrix are assumed to be i.i.d. CSCG with zero-mean and

unit-variance. Assume that S is unitary. Let

S = U

⎡
⎣ Λ

0

⎤
⎦V∗ (3.2)

be the SVD of S, whereU is a T×T unitary matrix, V is anM×M unitary ma-

trix and Λ is anM×M diagonal matrix with positive diagonals. When S is uni-

tary, we have Λ = IM . By left multiplying (3.1) with
√

M/(PT )
[
IM 0

]
U∗,

we have

Ỹ = ΛH̃+ W̃ = H̃+ W̃, (3.3)

where

H̃ = V∗H, W̃ =

√
M

PT

[
IM 0

]
U∗W.
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Let λi and γi be the singular values of H̃ and W̃, respectively, which are in

non-increasing order. With the above training model and tranceiver equation,

the idea of threshold-based rank detection procedure is explained as follows.

Threshold-based algorithm appears to be a natural and common strategy

for such a problem [38]. Let εth be the threshold. The basic idea is to shrink the

singular values of Ỹ, i.e., let the singular values of Ỹ smaller than εth be zeros,

and leave others unchanged. However, the choice of εth will make big difference

on the detected result. If εth is too big, some large singular values smaller than

εth are set to be zeros. Although large singular values are also affected by noises,

they contain important information of the channel. Making them zeros leads

to useful information loss on reconstructing the channel. While, if εth is too

small, some smaller singular values larger than εth are kept unchanged. Since

these smaller singular values are regarded as noises, keeping them unchanged

results in introducing more estimation errors.

3.2 Derivation of a Lower Bound on the Prob-

ability of Correct Rank Detection

In [38], the authors considered an additive perturbation model with i.i.d. en-

tries. Threshold bounds are derived and interpreted in terms of the theory

of statistical significance test. Compared with their results, we are inspired

to derive a more systematic method on the threshold optimization to obtain

higher rank detection accuracy. In what follows, we derive a lower bound on the

probability of correct detection conditioned on reduced-rank MIMO systems,

which is used in the threshold selection for the detection algorithms proposed

in later sections.

To help presenting our results on the lower bound, we first introduce the

following definitions. Define the K ×K matrix F
(1)(μ) and the r × r matrix
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F
(r)(μ), whose (i, j)-th entries are:

[
F

(1)(μ)
]
i,j

� γ(L−K + i+ j − 1, μ), (3.4)[
F

(r)(μ)
]
i,j

� Γ(M − r + i+ j − 1, μ), (3.5)

where

γ(k, u)�

∫ u

0

xk−1e−xdx; Γ(k, u)�

∫ ∞

u

xk−1e−xdx (3.6)

are the lower and upper incomplete gamma functions [47], respectively. For a

central Wishart matrix with ordered eigenvalues, F (1)(μ) and F
(r)(μ) represent

the CDF of the largest and smallest eigenvalue of the matrix, respectively.

If the detected rank equals to the real channel rank, we say that is the correct

detection with the probability P (correct detection|rank (H) = r). Then, we

derive a lower bound on the probability of correct detection, which is proved

after the following proposition.

Proposition 3.2.1. If the rank of H is r, the probability of correct rank de-

tection with threshold εth has the following lower bound:

φr(εth) � C1C2 · det
(
F

(r)
(
4ε2th

))
det

(
F

(1)

(
PT

M
ε2th

))
, (3.7)

where

C1=
r∏

i=1

[(M − i)!(r − i)!]−1 , C2=
K∏
i=1

[(L− i)!(K − i)!]−1 (3.8)

are the functions with respect to the dimension and rank of H and W, respec-

tively.

Proof. We first show that when λr ≥ 2εth ≥ 2γ1, our algorithms will detect

the rank of H as r, which is the correct detection. Recall that σi’s are the

singular values of Ỹ. From (3.3), we have [38, 48] for all i = 1, · · · , K,

|σi − λi| ≤ γi ≤ γ1.
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When λr ≥ 2εth ≥ 2γ1, by noticing that λr+1 = 0 ( since rank(H̃) = r), we

have σr+1 ≤ γ1 ≤ εth. Also σr ≥ λr−γ1 ≥ εth. Thus, with the help of proposed

algorithms in section 3.3, section 3.4 and section 3.5, the rank detection result

is r, which is the correct detection.

Thus, a lower bound on the probability of correct detection is obtained as

follows,

P(correct|rank(H) = r)≥P (λr ≥ 2εth & γ1 ≤ εth|rank(H) = r)

=P (λr ≥ 2εth|rank(H) = r)P(γ1 ≤ εth)

�φr(εth), (3.9)

where the second step is because that γ1 is independent of both λr and the

rank of H.

Recall that our channel is modeled as the product of two full rank matrices,

i.e., H = AB, and the constructed channel is H̃ = V∗H. Notice that H̃H̃∗ =

V∗ABB∗A∗V = V∗AA∗V. Thus the singular values of H̃ are the square roots

of the eigenvalues of V∗AA∗V, which is an M × M central Wishart matrix

with degree r. The cumulative density function (CDF) of the smallest non-zero

eigenvalue of V∗AA∗V is known to be as follows [47]:

Fωr
(μ) = 1− C1 · det(F (r)(μ)), (3.10)

where F
(r) and C1 are defined in (3.5) and (3.8), respectively. Thus,

P (λr ≥ 2εth|rank(H) = r) = C1 · det(F (r)(4ε2th)). (3.11)

Notice that PW̃W̃∗ is a central Wishart matrix with degree K. The CDF of

its largest eigenvalue is known to be [47]

Fω1
(μ) = C2 · det(F (1)(μ)), (3.12)
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where F
(1) and C2 are defined in (3.4) and (3.8), respectively. Thus,

P(γ1 ≤ εth) = C2 det

(
F

(1)

(
PT

M
ε2th

))
. (3.13)

By using (3.11) and (3.13) in (3.9), (3.7) is obtained.

In later sections, we will propose threshold-based rank detection algorithms

whose thresholds are selected based on the maximization of the derived lower

bound φr(εth) and its extensions. Thus, we derive the log-concavity property

in the following proposition to help its maximization.

Proposition 3.2.2. The function φr(εth) in (3.7) is a log-concave function of

εth.

Proof. For the matrices F (1)(μ) and F
(r)(μ), we can show that all their leading

principal minors are positive when μ > 0 from the definitions in (3.4), (3.5),

and the CDFs in (3.10), (3.12). Thus the two matrices are positive definite

and det
(
F

(1)
(
PT
M

ε2th
))

and det
(
F

(r) (4ε2th)
)

are log-concave functions since

the determinant of a positive definite matrix is log-concave [49]. Based on [49],

the product of log-concave functions is also log-concave. This ends the proof.

To our best knowledge, there is no systematic method on the threshold

optimization in the existing literature, especially for random channel models.

In [38], the channel is set to be deterministic and the model corresponds to a

special case of ours for T = M and S = IM . Compared with their results, we

adopt a random channel model and our threshold selection takes into account

the distribution of the channel and the channel rank. In the following sections,

three rank detection algorithms are explained in detail.
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3.3 Rank Detection Algorithm 3.1

Our first rank detection algorithm is a straightforward single-threshold algo-

rithm. In this algorithm, a threshold εth is used to tell whether a singular

value and its corresponding space is due to the channel or the noise effect. If

a singular value is smaller than the threshold, we classify it as the noise effect,

and vice versa. Recall the notation in Chapter 2, where σi is the i-th largest

singular value of Ỹ defined in (2.5). Based on the derivations above, the first

rank detection algorithm is as follows.

Algorithm 3.1

1: if σ1 < εth then

2: The rank of H is detected as 1.
3: for (i = K : 1) do

4: if σi > εth then

5: The rank of H is detected as i; break;

In determining the threshold, we aim at maximizing the overall probability

of correct rank detection. Assume that the a-priori probabilities mass function

of the channel rank, P (rank (H) = r) for r = 1, · · · , K, is known. The overall

probability of correct detection can be calculated and bounded as

P(correct) =
K∑
r=1

P(correct|rank(H) = r)P(rank(H) = r)

≥
K∑
r=1

φr(εth)P(rank(H) = r), (3.14)

where φr(εth) has been defined in (3.9). By considering the a-priori proba-

bilities of the channel rank, we have the following lower bound on the overall
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probability of correct detection

φ(εth)�φr(εth)P(rank(H) = r)

=C2 det

(
F

(1)

(
PT

M
ε2th

))
·

K∑
r=1

C1 det
(
F

(r)
(
4ε2th

))
· P(rank(H) = r). (3.15)

The threshold εth is chosen to maximize the lower bound, i.e.,

ε∗th = argmax
εth

φ(εth). (3.16)

Although φr(εth) has been proved as a log-concave function of εth, in gen-

eral, we cannot prove that φ(εth) defined in (3.15) is log-concave even if our

limited simulation results indicate so. However, according to the eigenvalue

distributions of central Wishart matrix, det
(
F

(1) (4ε2th)
)
is much larger than

det
(
F

(r) (4ε2th)
)
for r = 2, · · · , K [47]. Thus in the summation in (3.15), the

first term (which is log-concave) dominates. So the summation is likely to be

log-concave. As log-concavity is preserved by multiplication, φ(εth) is likely to

be log-concave. With the above discussion, for low computational complexity,

in solving (3.16), we find a zero point (using bisection) of d lnφ(εth)
dεth

and use it

as the threshold. When φ(εth) is log-concave, this method produces the global

optimum of (3.16). If φ(εth) is not log-concave, d lnφ(εth)
dεth

may have multiple

zero-points, and our method can result in a local optimum.

3.4 Rank Detection Algorithm 3.2

To use the first rank detection algorithm proposed in the previous section, the

a-priori probabilities of the channel rank needs to be known. However, for

many practical wireless communication systems, the channel rank distribution
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is unknown to the transmitter and the receiver due to the complexity of the

signal propagation environment. In this case, a rank detection algorithm that

doesn’t rely on the channel rank distribution is required. Thus, we come up

with our second algorithm which gets rid of the requirement on rank distribu-

tion. Instead of using only one threshold as in Algorithm 3.1, K thresholds

are used in Algorithm 3.2. For each possible channel rank, we will have an

unique corresponding threshold. For example, if rank(H) = i, the threshold

is calculated as εth,i. For i from 1 to K, the corresponding thresholds will be

εth,1, · · · , εth,K . These thresholds are also achieved by maximizing the lower

bound on the probability of correct detection, i.e.,

ε∗th,i = argmax
εth,i

φ(εth,i). (3.17)

The lower bound has been proved in Proposition 3.2.2 that is log-concave. Thus

we use bisection finding the zero point of
d lnφ(εth,i)

dεth,i
to solve the maximization

problem.

Our second detection algorithm is as follows.

Algorithm 3.2

1: Initialize i = 1.
2: if σi < εth,i then
3: The rank of H is detected as 1.
4: while (i ≤ K − 1) do

5: if σi > εth,i&σi+1 < εth,i+1 then

6: The rank of H is detected as i; break;
7: i = i+ 1;
8: if (i == K) then
9: The rank of H is detected as K;

In Algorithm 3.2, K thresholds εth,1, · · · , εth,K are compared with their cor-

responding singular values σ1, · · · , σK . To show that Algorithm 3.2 is a valid

rank detection rule, that is an unique detection result will be obtained, we

discuss the following 3 cases which contains all possible scenarios of σi’s.
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First, we consider two extreme cases. The first case is when σ1 < εth,1.

In this case, the largest singular value is smaller than the first threshold. By

using Algorithm 3.2, the rank detection result is 1, i.e., rank(H) = 1. When

σi > εth,i for all i from 1 to K, we achieve the second case. In this case, all the

singular values are larger than their corresponding thresholds. The detected

channel rank is K, i.e., rank(H) = K. Apart from the above two cases, we

have another general case when σ1 > εth,1 and σK < εth,K . In this case, there

must exist at least an i that satisfies σi > εth,i&σi+1 < εth,i+1. With the help of

Algorithm 3.2, the channel rank is detected as the smallest i that satisfies the

above inequality.

3.5 Rank Detection Algorithm 3.3

In this section, we explain our third rank detection algorithm, which can be

seen as an adjustment of Algorithm 3.1 by combining the multi-threshold idea

in Algorithm 3.2.

Recall the notation σi and εth,i defined in Chapter 2 and (3.17), respectively.

The third algorithm is described as follows.

Algorithm 3.3

1: Initialize i = 1, r0 = 0 and ri as an random integer satisfying 1 ≤ ri ≤ K
2: while (ri! = ri−1) do
3: c = ri; i = i+ 1;
4: for (ri = K : 1) do
5: if σri > εth,c then
6: break;
7: The rank of H is detected as ri;

In Algorithm 3.3, iterations are conducted, where in each iteration, single

threshold-based rank detection is performed and the threshold value is set

using the rank detection result of the previous iteration and the corresponding

lower bound on the probability of correct detection. The iteration ends when

the rank detection result of the current iteration is the same as the result
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of the previous one. Although this algorithm requires iteration, fortunately,

our limited simulation results indicate that the algorithm converges very fast

(within 2− 3 iterations).

3.6 Simulations on Rank Detection Algorithms

In this section, simulation results are shown for the three algorithms proposed

in Section 3.3, Section 3.4 and Section 3.5. We simulate the accuracy of rank

detection for different parameters, such as the SNR, the training length, and the

number of transmitter and receiver antennas. We assume all the simulations

are conducted under the Rayleigh fading channel. The setup of channel model

and conducted Monte-Carlo tests are the same as that in Section 2.4. For

Algorithm 3.3, we also investigate the effect on the estimation errors caused by

the choice of the initial rank.

In Figure 3.1, we evaluate the rank detection accuracy of the three proposed

algorithms for different SNR values. For comparison, performance of two ex-

isting rank detection algorithms proposed in [34] and [38] is also simulated. In

[38] a range of the threshold is provided. In this simulation, we choose the

lower bound of the range. To make the results comparable, the MIMO channel

is set to be a 10×20 (M = 10 and N = 20) matrix, and the rank of the channel

matrix is assumed be uniformly distributed. The pilot S is designed as a T×M

rectangular unitary matrix. The training length is set to be 50 and 150. Since

we assume the variance of the white noise is 1, this SNR is equivalent to the

transmit power. First, we can see that the accuracy curves for all 5 algorithms

have increasing trend as the SNR increases. Also, for larger training length,

every algorithm has a more accurate detection result. Comparing the three

algorithms we propose, we can tell that Algorithm 3.1 has the highest accuracy

while SNR ≤ −5dB. When SNR is in between 3dB and 15dB, the performance

of Algorithm 3.3 is close to Algorithm 3.2, both are better than Algorithm
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Figure 3.1: Rank detection accuracy v.s. system SNR forM = 10, N = 20,and
two training length T = 50, T = 150.

3.1. When SNR ≥ 20dB, the accuracy of Algorithm 3.1 and Algorithm 3.3

are approaching 1, but Algorithm 3.2’s is around 90%. One reason for this

is explained as follows. In Algorithm 3.2, the selected rank is the minimum i

satisfying σi > εth,i and σi+1 < εth,i+1. This may lead to errors since there may

be multiple i’s satisfying σi+k > εth,i+k and σi+k+1 < εth,i+k+1, choosing the

minimum i may not be optimal. Compared with the existing algorithm in [38]

(pink curves), our proposed algorithms have much higher success rate when the

SNR is larger than 2dB, where the advantage is over 40% when SNR ≥ 10dB.

Compared with the existing algorithm in [34] (green curves), our algorithms

outperform by about 20% on the accuracy when T = 150.

In Figure 3.2, we investigate the rank detection accuracy of the three pro-

posed algorithms for different training length T . The system dimension is set
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Figure 3.2: Rank detection accuracy v.s. training length (T) for M = 10 and
N = 20.

to be 10× 20 (M = 10 and N = 20), and T changes from 20 to 100. The pilot

S is a T ×M rectangular unitary matrix. Since total transmit power is propor-

tional in T , the detection accuracy has an increasing trend with respect to T

for all algorithms. At SNR= 5dB, Algorithm 3.2 achieves the best performance

among the three algorithms. The success rate is close to 70% when T = 100,

and those of the other two algorithms are 58% and 65%, respectively. When we

increase the SNR, Algorithm 3.2 and Algorithm 3.3 outperform Algorithm 3.1,

especially at 5dB, where the improvement is the biggest. At SNR = 10dB, the

success rate of all algorithms are over 50% for T ≥ 20, and this percentage is

approaching 80% when T = 100. In addition, GLRT-based algorithm in [34] is

used to compare with our proposed algorithms. The figure shows that GLRT-
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based algorithm performs no better than any of our proposed algorithms when

SNR ≥ 5dB and T ≥ 20. Though all accuracy curves can approach 1 when the

training length T or the transmit power P increases, our algorithms are more

accurate than the algorithm in [34].
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Figure 3.3: Rank detection accuracy v.s. the number of transmitter antennas
(M) for N = 5, 10, 15, and 20. T = 100.

Figure 3.3 shows how the rank detection accuracy changes when we increase

the number of transmitter antennas. For M from 5 to 20, we have four values

of N which are 5, 10, 15 and 20, respectively. We assume that each antenna of

the transmitter has constant average transmission power 1dB, and the training

length T is 100. Since each transmitter antenna has constant power, the total

transmit power increases when the the number of transmitter antennas M in-

creases. For Algorithm 3.1 and Algorithm 3.3, the detection accuracy decreases
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slowly when M increases up to the value of N . When M ≥ N , the detection

accuracy goes up to almost 100% dramatically as M increases. Instead, for

Algorithm 3.2, the detection accuracy increases slowly when M increases up

to the value of N . When M ≥ N , the accuracy is ascending but does not

approach 100%. By comparing the three algorithms, Algorithm 3.3 obtains the

best performance for all possible scenarios of the channel dimension. Algorithm

3.1 is slightly worse than Algorithm 3.3 for low dimension channels, and the

difference becomes bigger when both M and N are increasing.
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Figure 3.4: Rank detection accuracy v.s. the number of receiver antennas (N)
for M = 5, 10, 15, and 20. T = 100.

Figure 3.4 considers how the rank detection accuracy changes if the number

of receiver antennas increases. For N from 5 to 20, we have four values of

M which are 5, 10, 15 and 20, respectively. We assume that the average
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training power P = 10dB and training length T = 100. For Algorithm 3.1

and Algorithm 3.3, the detection accuracy decreases while N increases. The

same as Figure 3.3, there also exits a turning point (M = N). When N ≤ M ,

the detection accuracy sharply decreases while N increases. When N > M ,

the curve decreases quite slowly as N increases. Instead, Algorithm 3.2 has a

different trend compared with aforementioned two algorithms. The decreasing

trend only appears when N is larger than a certain value (8 for M = 10, 11 for

M = 15 and 14 for M = 20), and before that, the accuracy has an increasing

trend starting from 80%. But for M = 5, the accuracy curve almost stays

unchanged for different N values.
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Figure 3.5: Rank detection accuracy v.s. transmit power P for network T =
M = N = 10 by using Algorithm 3.3 in Rayleigh fading channel.

In Figure 3.5, we explore the effect of the initial rank value on the rank
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detection accuracy performance of Algorithm 3.3. For simplicity, the channel

matrix is set to be 10 × 10 (M = 10 and N = 10), and the training length

is 10 (T = 10). The rank of the channel is set to be fixed and equals 1. We

can see from the figure that the initial value of the channel rank has negligible

effect on the detection accuracy when the transmit power is in between 2dB

and 18dB. If we have the initial rank which just equals to the real channel rank,

we will get the highest accuracy than the values of other initial rank, e.g., at

P =10dB, the case of r1 = 1 achieves 88% accuracy; while, the other cases of

r1 = 2, · · · , 5 only get 62%. If the initial rank doesn’t equals to the real rank,

the accuracy achieved by choosing different values of r1 is almost the same.

Thus, when 2dB ≤ P ≤ 18dB, the best choice for initial rank is the real rank.

However, since the channel rank is unknown, we may not get the best choice.

When the transmit power is larger than 18dB, all accuracy curves reach 100%,

which means the initial value has no effect on the accuracy at large P .

By comparing all three algorithms via simulations, we conclude that Al-

gorithm 3.3 has the best overall rank detection performance among all three

proposed algorithms. However, Algorithm 3.1 and Algorithm 3.2 have lower

complexity since they do not need iterations. Compared with the existing al-

gorithms in [34] and [38], all three proposed algorithms achieve higher rank

detection accuracy.

3.7 Combination of the Proposed Rank Detec-

tion and Channel Estimation

In this chapter, we assume the channel rank is unknown. To conduct channel

estimation for reduced-rank MIMO systems with unknown rank, the detected

channel rank is required. By using the proposed rank detection algorithms,

the detected rank is achieved. Thus, we combine the SVD-based estimation

scheme and the proposed rank detection algorithms in channel estimation for
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unknown-rank MIMO channels. In this section, the MSE comparison between

the entry-based estimation and the proposed SVD-based estimation scheme is

shown, as well as the achievable beamforming capacity whose expression is as

follows.

C =
r̂∑

i=1

log2

(
1 +

Pi |zi,i|2
σ2
n +

∑r̂

j=1,j �=i Pj |zj,i|2
)
, (3.18)

where r̂ is the detected rank achieved by using our rank detection algorithms.

We set σ2
n = 1, and all the following figures are simulated in Rayleigh fading

channels.
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Figure 3.6: MSE of Ĥ for networks with T= M = N = 5 and T= M = N =
10 in Rayleigh fading channel.

In Figure 3.6, we study the MSE for unknown-rank MIMO channels by

combining the SVD-based estimation scheme and three proposed rank detection

algorithms for two networks. The channel matrix is set to be 5×5 and 10×10,

55



respectively, and we assume that the channel rank is uniformly distributed. The

estimation conducted by all three algorithms have almost the same performance

though the errors caused by using Algorithm 3.1 is slightly larger when the SNR

is in between 8dB and 20dB. Compared to the entry-based estimation, we

can see that our proposed SVD-based estimation has lower estimation errors

and is superior to entry-based estimation by around 0.7dB and 1dB for 5 ×
5 and 10 × 10 channels, respectively. As another benchmark, we simulate

the MSE of the SVD-based channel estimation with known rank. Compared

with this benchmark, the achieved MSEs with unknown rank and by using the

proposed rank detection algorithms are larger. But its performance is close to

or even overlap with the known rank case when the SNR is larger than 20dB.

In addition, compared with the result in Figure 2.2, the improvement of our

proposed estimation scheme over entry-based one is smaller. The reason is that

for Figure 2.2 the rank is known and uniformly distributed.

In Figure 3.7, we also study the MSE for unknown-rank MIMO channels by

combining the SVD-based estimation scheme and three proposed rank detection

algorithms for different system dimensions. The transmit power P is set to be

10dB, and the rank of the channel is assumed to be 1, but it is unknown. We

can see that the combination with Algorithm 3.2 achieves the smallest MSE

among our combination cases. Compared to the entry-based estimation, all our

combinations achieve smaller MSEs, and this improvement increases when we

increase the number of transmitter and receiver antennas. For T = M = N =

10, the MSE obtained by entry-based scheme is 10, while, the MSE achieved by

our combination is only around 3. Compared with the SVD-based estimation

with known rank, the achieved MSEs by using our combination is larger, and

difference increases when we increase the system dimension.

In Figure 3.8, the beamforming capacity with respect to the transmit power

achieved by using different combinations. The system is set to be T = M =

N = 5, and the channel rank follows uniform distribution. For the comparison
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Figure 3.7: MSE(Ĥ) for networks with different dimensions. P = 10dB.
T = M = N . rank(H) = 1.

among the combination of the SVD-based estimation and three rank detection

algorithms, the combination with Algorithm 3.1 is better than the other two

algorithms when P < 8dB. When P > 8dB, three curves are almost overlap.

The reason for this can be explained by combining the result of Figure 3.1.

At low transmit power, Algorithm 3.1 has the highest rank detection accuracy

than the other two, especially for short training length. Since beamforming

capacity highly depends on the accuracy of the detected rank, the combination

with Algorithm 3.1 achieves larger capacity. In addition, we can see that the

proposed SVD-based estimation achieves larger capacity than entry-based esti-

mations when P > 2dB, and this improvement is up to 0.7bits/transmission for

the same P or about 1dB power saving for the same capacity. Compared with

the benchmark of the perfect channel case, there exists a certain capacity loss
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Figure 3.8: Beamforming capacity of network T = M = N = 5 in Rayleigh
fading channel.

for the proposed SVD-based estimation, which is around 2bits/transmission.

This is mainly due to the error in rank detection as it has been shown in Section

2.4.1 that with known rank the estimated channel will have the same number

of subchannels which are allocated power to.

In Figure 3.9, we show the beamforming capacity with respect to the sys-

tem dimension for different combinations. We assume a square channel matrix

with selected training length satisfying T = M = N . The transmit power P is

set to be 10dB. We can see that the capacity increases as M or N increases for

perfect channel information and all combinations, which implies that capac-

ity of MIMO systems can be improved by increasing the number of antennas

instead of improving the transmit power. But for two entry-based estimation

58



2 3 4 5 6 7 8 9 10
3.5

4

4.5

5

5.5

6

6.5

7

M or N

C
ap

ac
ity

 (
bi

ts
/tr

an
sm

is
si

on
)

 

 

Perfect channel information
SVD−based estimation with Algorithm 3.1
SVD−based estimation with Algorithm 3.2
SVD−based estimation with Algorithm 3.3
Entry−based ML estimation
Entry−based LMMSE estimation

Figure 3.9: Beamforming capacity for networks with different dimensions.
P = 10dB. T = M = N . rank(H) = 1.

schemes, the achievable beamforming capacity decreases when we increase the

system dimension. Among all combinations, the combination with Algorithm

3.2 achieves largest capacity when M or N is larger than 5. When M or N is

smaller than 5, the achievable beamforming capacity of the combination with

Algorithm 3.3 is slightly larger than that of the combination with Algorithm

3.2. Compared with the perfect channel information, an apparent capacity

loss is found between our combinations and the perfect channel case, where it

shows 0.3-1.9bits/transmission loss. This difference increases when we increase

the number of the transmitter and the receiver antennas.

Figure 3.10 shows the MSEs achieved by the combination of the proposed

SVD-based estimation scheme and Algorithm 3.2 under the four different reduced-

rank MIMO channels, whose PMFs can be found in Table 2.1. The channel
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Figure 3.10: MSE of Ĥ for networks with T = M = N = 8 by using the PMF
in Table 2.1 and Algorithm 3.2 in Rayleigh fading channel.

matrix is set to be 8 × 8 (M = 8 and N = 8) with training length T = 8.

Similar as Figure 2.4, since the MSEs of the entry-based estimation in four

environments are equal, we choose one as the benchmark. We can see that all

the proposed SVD-based estimations achieve smaller MSEs than entry-based

estimation, and the advantage is up to 5dB power saving for the same esti-

mation errors. Among all SVD-based estimations, the MSE achieved in the

environment of GRA is the smallest, and the system has the worst estimation

result in the environment of GBU. The difference between the best estimation

and the worst one is up to 4dB power saving for the same estimation errors.

The reason for this is the same as the explanation in Figure 2.6 and Figure 2.7.

Different to Figure 2.4, the MSE curves for the channel with unknown rank

is non-linear for the low SNR range. This is because that our proposed rank
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detection algorithm makes more detection errors at low transmit powers.

To sum up, the combination of the proposed SVD-based estimation scheme

and rank detection algorithms is advantageous over entry-based schemes on the

estimation MSE and beamforming capacity. For the MSE, the combination

of the proposed SVD-based estimation scheme and Algorithm 3.3 is slightly

smaller than that achieved by the combination with other two algorithms. For

the beamforming capacity, the results achieved by using all three algorithms

are nearly the same.

3.8 Summary

In this chapter, three threshold-based rank detection algorithms are proposed.

Among the these algorithms, Algorithm 3.1 requires a-priori probabilities of

the channel rank, and other two don’t need the knowledge of the channel rank

distribution. The mechanism of the threshold-based algorithm is to use an

appropriate threshold to tell the important singular values of the constructed

receiving matrix from the noise induced ones. In calculating the threshold,

we derive a lower bound on the probability of correct detection and choose the

threshold to maximize the lower bound. In the simulation results, we show that

our proposed algorithms outperform the existing ones in correctly detecting the

rank. We then combine SVD-based estimation scheme and rank detection for

reduced-rank MIMO channels. Simulation shows that the combination achieves

smaller MSE and larger beamforming capacity than the entry-based estimation.
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Chapter 4

Thesis Summary and Future

Work

4.1 Thesis Summary

In this thesis, we investigate the SVD-based ML estimation and rank detection

for single-user MIMO systems. The estimation of the channel matrix is based

on singular value decomposition, which contains the estimation of the singular

values and the left and right singular vectors, respectively. While most exist-

ing work are on full-rank channel, SVD-based estimation is more suitable for

reduced-rank MIMO channels. We first discuss the reduced-rank MIMO chan-

nel which is modeled as Rayleigh fading and double-Rayleigh fading. Then the

SVD-based ML channel estimation is derived analytically for general training

length and pilot matrix. Simulation shows that the proposed SVD-based chan-

nel estimation achieves smaller MSE and larger beamforming capacity than

entry-based estimations.

Since our SVD-based estimation scheme requires the knowledge of channel

rank, rank detection scheme is considered for channel matrices with unknown

rank. Based on the threshold separation criterion, we propose three threshold-

based algorithms. To obtain the thresholds, we derive a lower bound on the
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probability of correct detection. The thresholds are achieved by maximizing

the lower bound on the probability of correct rank detection. For the three

proposed algorithms, only Algorithm 3.1 requires a-priori probabilities of the

channel rank, while the other two do not require the channel rank distribu-

tion. Simulation shows that the proposed rank detection algorithms achieve

higher accuracy than existing ones. We then combine the SVD-based estima-

tion scheme and rank detection algorithms for MIMO systems with unknown-

rank channels. Simulation shows that the combination achieves smaller MSE

and larger beamforming capacity than the entry-based estimation.

4.2 Future Work

There are several possible directions for future investigations on SVD-based

channel estimation schemes and rank detection algorithms for MIMO commu-

nication systems. Four of them are listed in the following.

1. SVD-based maximum a-posteriori (MAP) estimation

In this thesis, ML estimation scheme is adopted, in which the channel

matrix is viewed as deterministic but unknown. Another approach which

usually achieves better performance is to use Bayesian methods, in which

the channel matrix is viewed as random with known a-priori probability

distribution. Three common estimates of Bayesian methods are MMSE,

mean absolute error (MAE), and MAP, among which MAP is the most

tractable. This is because that MAP corresponds to the maximum of

the a-posteriori distribution, which is similar as the maximum of log

likelihood function in ML. But for MAE and MMSE, they correspond

to the median and mean of the a-posteriori distribution, respectively,

which are more complicated to achieve than maximizing the a-posteriori

probabilities.
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2. Rank detection algorithms at low SNR

Reducing the energy consumption in information and communication

technology (ICT) has always been an attractive topic for modern com-

munication field. One disadvantage of high energy consumption is the

increasing of world-wide CO2 emission, which leads to serious greenhouse

effect. To solve this problem, green communication approaches that func-

tion in the low SNR regime are needed. Thus, the channel rank detection

and channel estimation problems in the low SNR range are very impor-

tant. Based on the numerical simulation results in Figure 3.1, the accu-

racy of the proposed rank detection algorithms is around 20% for 10×20

MIMO systems when the SNR is smaller than 0dB and T = 50. This

is surely insufficient for some communication scenarios, which inspires us

to explore rank detection algorithms that can perform well at low SNR.

One possible direction is to adopt more complicated threshold-based cri-

terion. In [50–52], the following criteria are introduced.

• Criterion 1: σr

σ1
> εth > σr+1

σ1
,

• Criterion 2: σ2
r+1 + σ2

r+2 + · · ·+ σ2
K < εth,

• Criterion 3:
σ2
1
+σ2

2
+···+σ2

r

σ2
1
+σ2

2
+···+σ2

K

< εth.

Then the major challenge is in the optimization of the thresholds.

3. Hard and soft thresholding schemes

In fact, the threshold truncating strategies for rank detection and SVD-

based channel estimation can be categorized into two directions: hard

thresholding and soft thresholding. In the thesis, we use hard thresh-

olding scheme, which compares all singular values of the observed signal

matrix with a certain threshold, and let the singular values less than the

threshold be zero. Even with correct singular value truncation, the sin-

gular values of the remaining dimension are still affected by noises. This
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scheme doesn’t consider the effect of the noise on the eigenvalues of the

channels. Soft thresholding offers an idea to adjust the singular values

of the observed matrix, e.g., subtract a given positive value, and set the

singular values less than the positive value to zero [53]. With appropri-

ate adjustments and values, soft thresholding can be more accurate since

it considers the noise effect on large singular values. Thus, the future

direction may tend to the exploration on soft thresholding schemes.

4. Channel estimation for multi-user MIMO systems

In this thesis, we investigate the channel estimation for single-user MIMO

systems. Actually, multi-user communication systems are more common,

and have higher efficiency on the utilization of time and frequency than

single-user systems. For example, there are usually a base station (BS)

and multiple mobile stations (MS) in a cell, and all MS’s can send infor-

mation to the BS. The channel estimation problem for multi-user MIMO

communication systems is the assurance of high communication quality,

thus it is important to study issues on the channel estimation, especially

for reduced-rank MIMO channels. In [37], the problem was investigated

with the help of time-division multiplexing. Due to the consideration of

time and spectral efficiency, it is more practical and interesting to consider

multi-user MIMO communication systems with concurrent user trans-

missions. To solve the channel estimation problem for multi-user MIMO

systems, the main concern is how to address the interference problems

between different users and between different training sequences. One

possible solution is using joint ML estimation scheme, which means to

estimate all the channels as a block. But the complexity of joint channel

estimation is usually high. Thus, effective but low complexity decoupled

channel estimation schemes will also be explored.
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Appendix A

Calculation on the Mean and

Variance of hi,j

Recall that the channel is modeled as

H � AB, (A.1)

where A is an M × r full-rank matrix and B is a r × N full-rank rectangular
unitary matrix. Entries of A follows i.i.d. CSCG distribution with zero mean
and unit variance. Thus, we have

hi,j = aibj, (A.2)

where ai and bj are the i-th row and j-th column vectors of A and B, respec-
tively. The mean value of hi,j can be calculated as

E {hi,j} = E {ai}bj = (0, · · · , 0)bj = 0. (A.3)

The variance of hi,j is calculated as

Var {hi,j} = E
{
h∗
i,jhi,j

}
= E

{
b∗
ja

∗
iaibj

}
= b∗

jE {a∗
iai}bj. (A.4)

Since the elements in ai follow i.i.d. CSCG distribution, the covariance matrix
of ai equals to identity, i.e., E {a∗

iai} = Ir. Hence, we have

Var {hi,j} = b∗
jbj = ‖bj‖2F < 1 (A.5)
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