
Effects of heterogeneity on spread and persistence in rivers

Frithjof Lutscher

Department of Mathematical and Statistical Sciences, University of Alberta

Department of Biological Sciences, University of Calgary

Corresponding Author. Present Address:

Department of Mathematics and Statistics

University of Ottawa, Ottawa, ON K1N 6N5, Canada

Email: flutsche@uottawa.ca

Fax: ++1-613-562-5776

Mark A. Lewis

Department of Mathematical and Statistical Sciences and

Department of Biological Sciences, University of Alberta

Edward McCauley

Department of Biological Sciences, University of Calgary

February 8, 2006

1



Abstract

The question how aquatic populations persist in rivers when individuals are constantly lost

due to downstream drift has been termed the “drift paradox”. Recent modeling approaches

have revealed diffusion-mediated persistence as a solution. We study logistically growing

populations with and without a benthic stage and consider spatially varying growth rates.

We use idealized hydrodynamic equations to link river cross-sectional area to flow speed and

assume heterogeneity in the form of alternating patches, i.e., piecewise constant conditions.

We derive implicit formulae for the persistence boundary and for the dispersion relation of

the wave speed. We explicitly discuss the influence of flow speed, cross-sectional area and

benthic stage on both persistence and upstream invasion speed.
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1 Introduction

Streams and rivers are characterized by a variety of physical, chemical and geomorphological

features such as unidirectional flow of water, pools and riffles, bends and waterfalls, flood-

plains, lateral inflow and hyporheic zones, hierarchical network structure and many more

(Allan, 1995). These abiotic conditions give rise to a wide range of qualitatively different

habitats for aquatic populations such as periphyton, invertebrates, and fish. Spatio-temporal

variations in temperature, light, flow conditions, and nutrient availability particularly affect

species who do not possess the ability to actively move between different conditions and

thereby choose among or average over these features. These species with limited active mo-

bility in the water column, e.g., periphyton and invertebrates, form the base of a complex
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food-web, and are indicators of ecosystem health (Hill et al., 2000). Natural and human

disturbances may alter these environmental conditions, e.g., through flood events, landslides,

dam and channel construction, water extraction, or land-use patterns in the watershed. In

order to sustainably manage and maintain riverine ecosystems, it is therefore crucial to un-

derstand the effects of heterogeneity on persistence and extinction, invasion potential and

invasibility, as well as competition of such populations.

The question how invertebrates in streams can resist wash-out caused by flow, has been

termed the “drift paradox” (Müller, 1954, 1982). Recent modeling efforts for the drift para-

dox identified a “critical flow speed” below which a population can persist on a long enough

stretch of a river and also spread upstream in form of a moving front (Speirs and Gurney, 2001;

Pachepsky et al., 2005; Lutscher et al., 2005). These models neglect spatial heterogeneities

and assume a homogeneous habitat. Spatial heterogeneities have been considered when

modeling spread and persistence in terrestrial systems, but typically under the assumption

of symmetric dispersal and hence neglecting flow (Shigesada et al., 1986; Cruywagen et al.,

1996), but see Weinberger (2002). Lewis et al. (1996) include flow in the model formulation

but not in the analysis. Cantrell and Cosner (2003) provide some general results that include

flow, but their model formulation is not tied to the geometry of rivers. Since heterogeneities

in riverine habitats can frequently be linked to channel geometry, it is important to include

an appropriate representation of this geometry into the model. While it is nearly impossible

to completely describe the complexity of fluid flow in natural river channels, hydrologists

have successfully employed advection-diffusion equations to describe time-series data of con-

servative tracer injections in rivers and streams (Bencala and Walters, 1983). For a more

recent and mathematically detailed theory of transport in hydrology see Logan (2001). Even

though the equations are spatially one-dimensional, they implicitly capture some essential

aspects of the three-dimensional geometry of the river channel.
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The objective of the present work is to analyze the effects of heterogeneity on persistence

and spread of a single population in a riverine habitat by synthesizing and extending the

approaches and concepts mentioned above. We first use the ideas of Bencala and Walters

(1983) on representations of transport and flow to derive two models for spatio-temporal

dynamics of a population. The first model considers only the pelagic phase and hence simul-

taneously generalizes the model of Speirs and Gurney (2001) by introducing heterogeneity,

and the model of Shigesada et al. (1986) by introducing unidirectional flow. The second

model includes a benthic stage of the population and generalizes the system of Pachepsky

et al. (2005) by introducing horizontal heterogeneity. The importance of a benthic stage for

persistence of populations has been demonstrated frequently (DeAngelis et al., 1995; Dent

and Henry, 1999; Mulholland and DeAngelis, 2000; Pachepsky et al., 2005; Lutscher et al.,

2005).

For both model equations we study persistence of the population through the “critical

domain size”-problem and spatial spread through the speed of traveling (periodic) waves.

These two concepts have a distinguished history in spatial ecology. For convenience of the

reader, we summarize related work in Table 1. The “critical domain size” is the minimal

amount of habitat that a population requires to persist (Skellam, 1951). It results from

the assumption that a population can grow locally within a bounded habitat, but might

be lost from the habitat to uninhabitable exterior by movement across the boundary. The

critical domain size has been studied in continuous and discrete time modeling frameworks

(Kierstead and Slobodkin, 1953; Kot and Schaffer, 1986), and it provides an important tool in

conservation biology and reserve design (Cantrell and Cosner, 1993; Botsford et al., 2001). In

unbounded heterogeneous domains, there is a critical fraction of good habitat that guarantees

population persistence (Shigesada et al., 1986; Van Kirk and Lewis, 1997).

The invasion speed of a population is a crucial quantity in many cases: some invasions may
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be intended, e.g. for biological control agents (Baker and Dunn, 1990), others may threaten

native species or, in the case of an epidemic disease, human health may be at risk (Medlock

and Kot, 2003). Hastings et al. (2005) give a comprehensive overview on ecological aspects

of the subject, Xin (2000) provides a summary of mathematical results on front propagation.

While several measures of the speed of spread are available (Aronson and Weinberger, 1975;

Weinberger, 1982), we focus mostly on the (minimal) speed of a traveling wave (Fisher, 1937)

and discuss the relation to other measures in the Appendix.

Throughout this paper, we consider flow and advection to be caused by the flowing

water in rivers and streams, but many other physical processes induce advective transport of

populations, and our modeling framework and results are widely applicable. Most obvious

examples are coast lines with dominant currents (Gaylord and Gaines, 2000) where no-

fishing zones can create heterogeneity (Botsford et al., 2001), or plug-flow reactors as models

for the gut (Ballyk et al., 1998), where pockets in the gut wall give rise to heterogeneities.

Somewhat less obvious examples of systems with unidirectional flow are phytoplankton in

the water column, sinking due to gravity (Huisman et al., 2002), and terrestrial systems in

the presence of moving temperature isoclines (Potapov and Lewis, 2004).

In the next section we present the two models for population dynamics and movement

in heterogeneous domains. In the following we always assume that the habtiat consists of

periodically varying, alternating patches of good and bad quality. We apply homogenization

theory to recover the homogeneous model on a long spatial scale. In Section 3 we derive

conditions for persistence of the population in an unbounded domain with alternating good

and bad patches. We recover the results from Shigesada et al. (1986) in case of no flow and

show how the introduction of flow changes these results. In Section 4 we focus on the minimal

speed of a traveling periodic wave in an alternating good-bad habitat. We give conditions

under which a population can spread against the flow. Then we turn to conditions for
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persistence on a bounded patch in Section 5. We focus especially on the question how much

heterogeneity is needed for persistence in the case where the homogenized model predicts

extinction.

2 Modeling

We start by deriving an implicitly three-dimensional conservation law for movement of in-

dividuals in rivers and streams. Following Bencala and Walters (1983) and DeAngelis et al.

(1995), we partition the river into the flowing water or pelagic zone and the storage or benthic

zone. We denote by X ∈ R the longitudinal distance in the river and assume that longitudi-

nal movement occurs only in the pelagic zone. In each cross-section, we assume that the river

is well-mixed, and we denote A(X), As(X) as the cross-sectional areas of flowing and storage

zone, respectively. The corresponding densities of individuals are denoted by U(X), N(X).

2.1 Movement dynamics

The two processes that cause longitudinal displacement of individuals are diffusive and ad-

vective transport. The temporal change in total mass of pelagic individuals due to these two

processes in a given test volume is

∂

∂T

∫ X1

X0

A(T,X)U(T,X)dX =
∫ X1

X0

∂

∂X

(
AD

∂U

∂X

)
(T,X)dX −

∫ X1

X0

∂

∂X
(QU)(T,X)dX.

(1)

The change due to the diffusive flux, given by the first integral on the right hand side of (1) is

proportional to the concentration gradient UX , by Fick’s law and proportional to the cross-

sectional area by the assumption on homogeneous lateral mixing. Similarly to Shigesada

et al. (1986), we allow the diffusion constant D to vary in space. The change due to the

advective flux depends on the discharge Q = V A, where V is the flow speed at X. For a more
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Mobile No Flow Flow

homogeneous heterogeneous homogeneous

persistence X Shigesada et al. (1986) X

(unbounded) Cruywagen et al. (1996)

persistence Skellam (1951) Cantrell and Cosner (2001) Speirs and Gurney (2001)

(bounded) Kierstead and Slobodkin (1953)

Invasion Fisher (1937) Shigesada et al. (1986) Fisher (1937)

Kolmogorov et al. (1937) Cruywagen et al. (1996) Pachepsky et al. (2005)

Mobile and No Flow Flow

Stationary homogeneous heterogeneous homogeneous

persistence X X

(unbounded)

persistence

(bounded) Hadeler and Lewis (2002) ? Pachepsky et al. (2005)

Invasion

Table 1: Schematic overview of models and results related to this work. The models in the

top section of the table consider only a single pelagic compartment, i.e., all individuals are

mobile. The models in the bottom section split the population into a mobile and a stationary

compartment, corresponding to a pelagic and a benthic stage. The question of persistence is

divided into persistence in unbounded and bounded habitats. The question of persistence in

unbounded homogeneous habitats, denoted by X, is trivial since it reduces to a non-spatial

problem. In the present work, we fill in the question mark as well as the entire (missing)

column of heterogeneous habitats with flow.
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detailed derivation of (1) from a two-dimensional description, see Appendix 8.1.

Discharge and cross-sectional area are related by the continuity equation for stream flow

(Eagleson, 1970)

∂A

∂T
= − ∂Q

∂X
+ (QLin −QLout), (2)

where QLin, QLout denote lateral flows due to tributaries and groundwater exchange. For

the purposes of this study, we assume that there are no lateral flows and that the channel

geometry does not change in time, so that the discharge is constant.

2.2 Pelagic population

If we consider only the flow compartment and assume that the pelagic population grows

logistically, then the above considerations lead to our first model equation

UT =
1
A

(DAUX)X −
Q

A
UX + (F (X)− µU)U, (3)

where F is the spatially varying growth rate and µ the (spatially constant) factor in the

logistic self-limitation term. In Appendix 8.1, we derive our model equation (3) again, this

time from an individual-based random-walk approach. For constant A > 0 and Q = 0, this

equation is the one studied by Shigesada et al. (1986). For spatially constant coefficients

D,A,Q, F > 0, we obtain the model by Speirs and Gurney (2001).

2.3 Benthic-pelagic population

Many populations with benthic stages spend only a small fraction of their lifetime in the

free-flowing water and do not reproduce there (Allan, 1995). Therefore, we model logistic

growth for the benthic population only and assume a (spatially varying) exchange rate K(X)

between storage and flowing zone. This leads to the system of equations

UT =
1

A(X)
(D(X)A(X)UX)X −

Q

A(X)
UX + K(X)(N − U), (4a)
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NT = K(X)
A(X)
AS(X)

(U −N) + (F (X)− µN)N (4b)

This model reduces to the one studied by Pachepsky et al. (2005) when all coefficients are

assumed constant in space. In the following analysis of the two models, we will usually treat

the simpler model (3) first and more explicitly. Details in the analysis of (4) will be omitted

when they are not markedly different from the simpler case.

2.4 Boundary conditions

In Section 5, we investigate conditions for population persistence in a finite stretch [0, B] of

the river, and hence, we have to introduce boundary conditions for U. Previous studies in

flow-through environments have used two different types of such conditions, namely Dirichlet

or “hostile” conditions (Speirs and Gurney, 2001; Pachepsky et al., 2005), or Danckwerts

conditions (Ballyk et al., 1998; Lutscher et al., submitted). In Appendix 8.2 we use a random-

walk model to understand the differences between these two approaches. Here, we use a

“worst-case” scenario to study persistence, i.e., the hostile boundary conditions. We assume

that no individuals leave or enter the stretch at the upstream boundary but all individuals

leave and none enter at the downstream boundary. Mathematically, this is expressed by

imposing the boundary conditions

DAUX −QU = 0 at X = 0, and U = 0 at X = B. (5)

Biological scenarios that correspond to these conditions could be that the top end is the

source of the river (stretch) while the bottom end is an abrupt change of conditions. These

might include a waterfall, a fast flowing river, a lake or the ocean with different water quality

(e.g., saltwater) or human disturbances (e.g., wastewater).
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2.5 Periodic habitat

As the simplest and most mathematically tractable extension to the constant coefficient

case, we consider a periodically varying habitat with piecewise constant coefficient functions

(Shigesada et al., 1986; Robbins and Lewis, submitted). This corresponds to a river with a

series of pools and riffles, for example. We assume that

A(X), D(X), F (X), AS(X),K(X) =






A1, D1, F1, AS1,K1, X ∈ (0, L1) + LZ

A2, D2, F2, AS2,K2, X ∈ (L1, L) + LZ

(6)

where L1 + L2 = L. Without loss of generality, we assume F1 > F2 and F1 > 0. We refer

to the patches where F = F1 as the “good” patches and the other ones as “bad” patches

because of the difference in growth rates. In fact, we will only consider F2 < 0, so that the

growth rate becomes a death rate in the bad patches. At the boundaries between the two

types of habitat we prescribe matching conditions for the density and the flux. For continuity

of the density, these conditions are given by

lim
X↑L1j

U(T,X) = lim
X↓L1j

U(T,X), lim
X↑L2j

U(T,X) = lim
X↓L2j

U(T,X), (7)

where L1j = L1 + jL, L2j = jL, j ∈ Z. The matching conditions for the fluxes guarantee that

total mass is conserved. They are obtained by replacing the density U(T,X) in conditions

(7) with the flux J(T,X), given by

J(T,X) = D(X)A(X)UX(T,X)−QU(T,X). (8)

2.6 Nondimensionalization

We introduce nondimensional quantities in lower case letters as follows:

T = F1t, X = x
√

D1/F1, U(T,X) = F1u(t, x)/µ, N(T,X) = F1n(t, x)/µ, (9a)

A(X) = A1a(x), AS(X) = A1aS(x), D(X) = D1d(x), F (X) = F1f(x). (9b)
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Then the pelagic equation (3) becomes

ut(t, x) =
1

a(x)
[d(x)a(x)ux(t, x)]x −

q

a(x)
ux(t, x) + [f(x)− u(t, x)]u(t, x), (10)

whereas the benthic-pelagic system (4) reads

ut =
1

a(x)
[d(x)a(x)ux]x −

q

a(x)
ux + ku(x)(n− u), (11a)

nt = kn(x)(u− n) + [f(x)− n]n. (11b)

The nondimensional discharge is q = Q/(A
√

D1F1) and the coefficient functions are given by

a(x), d(x), f(x), ku(x), kn(x) =






1, 1, 1, K1
F1

, K1A1
F1AS1

, x ∈ (0, l1) + lZ

A2
A1

, D2
D1

, F2
F1

, K2
F1

, K2A2
F1AS2

, x ∈ (l1, l1 + l2) + lZ

(12)

with lk = Lk

√
F1/D1, k = 1, 2 and l = l1+ l2. For future reference, we will also use subscripts

to denote the value of the coefficient functions on the good and bad patches, respectively,

i.e., a1 = 1, a2 = A2/A1 and so on.

2.7 Homogenization

Pools and riffles in a river are examples of heterogeneities that typically occur on much

shorter spatial scales than the whole stretch of a river. In this section we derive spatially

homogeneous equations on a large spatial scale by averaging over small-scale heterogeneities.

The derivation of these equations follows the general framework of multi-scale expansions

and is similar to the work by Othmer (1983), who considered equation (10) with q = 0.

We assume that the period l = l1 + l2 = ε $ 1 is small and introduce the small space

variable εy = x. Assuming that the coefficient functions depend on that small space variable

only, we write

d̄(y) = d(εy) = d(x); ā(y) = a(εy) = a(x); ḡ(y, u) = (f(εy)− u)u. (13)
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We assume that the solution of (10) can be expanded as a power series in ε as follows

u(t, x) =
∞∑

k=0

εkuk(t, z, y) (14)

where z = x is the large space variable, each term uk is periodic in y of period one, and for

k ≥ 1 the average over a period with respect to y is zero. The partial derivative with respect

to x translates into the new coordinates as

∂

∂x
=

∂

∂z
+

1
ε

∂

∂y
. (15)

We substitute expressions (14,15) into equation (10) and compare powers of ε. After lengthy

calculations, we find the homogenized form of equation (10) to be

∂

∂t
u0 = D̃

∂2

∂z2
u0 − Q̃

∂

∂z
u0 + G̃(u0), (16)

where

D̃ =
〈ād̄〉H
〈ā〉A

, Q̃ =
q

〈ā〉A
, G̃ = 〈ḡ〉W =

∫ 1
0 ā(y)ḡ(y, u0)dy

〈ā〉A
. (17)

The harmonic and arithmetic means are denoted by 〈·〉H and 〈·〉A, respectively. The term G̃

is the average growth rate weighted by the cross-sectional area, denoted by 〈·〉W . Equation

(16) is simply Fisher’s equation with advection as studied in Speirs and Gurney (2001).

Therefore, the spreading speeds with and against the advection are given by

c± = 2
√

D̃G̃ ± Q̃. (18)

Note that the benthic-pelagic system (11) can in general not be homogenized to obtain the

corresponding equations (3) in Pachepsky et al. (2005). While the same homogenization

procedure as above works for the pelagic equation in (11), the spatial scales in the benthic

equations do not separate, i.e., the benthic population tracks the small-scale variations in

growth rate, f, and/or exchange rates, kn, ku.
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3 Persistence in unbounded domains

In a fragmented habitat, persistence of a population depends on there being “enough” good

patches. In this section, we derive precise conditions for persistence. We compare the results

to the ones obtained by Shigesada et al. (1986) and emphasize the influence of flow, channel

geometry and benthic stage on persistence.

3.1 Pelagic system

Linearizing the pelagic equation (10) at u = 0 and making an exponential ansatz for the

eigenvalue λ, we obtain the equation

d(x)u′′ − q

a(x)
u′ + (f(x)− λ)u = 0, x ∈ [0, l], l = l1 + l2, (19)

together with the matching conditions (7, 8). Thus, the resulting problem is Hill’s equations

with piecewise constant coefficient functions d, a, f. It is known that there is a sequence of

eigenvalues of (19) and that the stability of the zero solution is determined by the dominant

eigenvalue λ (Magnus and Winkler, 1979). The zero solution is stable if λ < 0 and unstable

if λ > 0. The set λ = 0 is called the persistence boundary.

Lemma 3.1 If q ≥ 2 then equation (19) does not have a solution for λ ≥ 0, and hence the

population cannot persist. For 0 ≤ q < 2, the persistence boundary is given implicitly by

sin(αl1) sinh(δl2)
(d2a2δ)2 + α2

2a2d2δα
− cos(αl1) cosh(δl2) + E = 0, (20)

where

α2 = (1− q2/4), δ2 =
(

f2 −
q2

4a2
2d2

)
/d2, E = cosh

(
q

2
(l1 +

l2
a2d2

)
)

. (21)

In the original parameters of the model, the extinction condition q ≥ 2 reads Q/A1 ≥

2
√

F1D1. Therefore, if the advection speed in the good patches Q/A1 exceeds the speed

of a traveling wave in a homogeneously good environment, 2
√

F1D1, then the population

13



cannot persist and is washed downstream. Hence, the critical advection speed for persistence

(Pachepsky et al., 2005) is the same as in the homogeneous model and independent of the

conditions in the bad patches. The precise conditions for persistence, however, do depend

on the parameters in the bad patch. A proof of Lemma 3.1 and details of the derivation of

(20) are given in Appendix 8.3. Setting q = 0 and using some trigonometric identities, one

obtains condition (13) from Shigesada et al. (1986).

To illustrate the effect of flow and channel geometry on the persistence for a pelagic

population, we plot the persistence boundary as given by (20) in Figure 1. Increasing the

flow for fixed channel cross-section reduces the persistence region for the population (left

panel). The flow takes individuals from good to bad patches where they die, and hence

the population can only persist if the length of the bad patches is shorter or the loss rate

in the bad patches is smaller. Increasing the cross-sectional area of bad patches obviously

reduces the population’s overall growth rate and hence makes the population more prone to

extinction (right panel). Without an additional plot, we report that increasing the diffusion

rate in bad patches also reduces the persistence region. Higher diffusion implies again that

more individuals are carried to bad patches where they die.

3.2 Benthic-pelagic system

Next, we turn to the benthic-pelagic system (11). The linearized problem is given by

ut =
1

a(x)
[d(x)a(x)ux]x −

q

a(x)
ux + ku(x)(n− u), (22a)

nt = kn(x)(u− n) + f(x)n. (22b)

If the growth rate on the good patches exceeds the exchange rate, i.e., f > kn then nt > 0

since u ≥ 0, and hence the benthic population will always grow. In this case, the population

can persist, independently of how long or wide the bad patches are and independently of

the discharge. Similar parameter regions of unconditional persistence have been found in

14
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Figure 1: Stability boundaries of the pelagic equation (10) in the f2-l2-plane. The zero

solution is stable above the curve and unstable below. The plot on the left shows that the

persistence region decreases with increasing flow. The parameters are q = 0, 1, 1.9 for the

solid, dashed, and dash-dot curve, respectively. Diffusion is held constant at d2 = 1, the

non-dimensional length of the good patch is l1 = 1 and cross-sectional area is constant, i.e.,

a2 = 1. The plot on the right shows that the persistence region decreases with increasing

cross-sectional area of bad patches. The parameters are a = 0.8, 1, 1.2 for the solid, dashed,

and dash-dot curve, respectively. Discharge is fixed at q = 1, d2, l1 are as above so that the

dashed curves in both plots are identical.
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previous work with stationary and mobile states (Hadeler and Lewis, 2002; Pachepsky et al.,

2005; Lutscher et al., 2005).

From now on, we assume f < kn on good patches. This condition is, of course, always

satisfied on bad patches with f2 < 0 < kn(x). We make an exponential ansatz in (22) and

look for the persistence boundary λ = 0. The resulting system of equations can be reduced

to the single equation

d(x)u′′ − q

a(x)
u′ + g(x)u = 0, x ∈ [0, l], l = l1 + l2, (23)

where

g(x) = ku(x)
(

kn(x)
kn(x)− f(x)

− 1
)

=
ku(x)f(x)

kn(x)− f(x)
. (24)

The function g is piecewise constant with g(x) = g1,2 on good and bad patches, respectively.

On a good patch, we have 0 < f < kn and therefore, g > 0. On a bad patch f < 0 implies

g < 0. Hence, equation (23) is completely analogous to (19) and can be treated similarly.

The following Lemma summarizes the results.

Lemma 3.2 If f > kn on the good patches, then the zero solution of (11) is unstable and

the population can persist, independently of the other parameters. If f < kn on the good

patches and q > 2√g1, then the zero solution is stable and the population cannot persist,

independently of the other parameters. Otherwise, the persistence boundary is given by (20),

where now the parameter definitions (21) are replaced by

α2 = (g1 − q2/4), δ2 =
(

g2 −
q2

4a2
2d2

)
/d2, E = cosh

(
q

2
(l1 +

l2
a2d2

)
)

. (25)

Just as above in the case without the benthic stage, we can rewrite the persistence condition

q < 2√g1 in dimensional terms as

Q

A1
< 2

√
D1F1

K1

K1
A1
AS1

− F1
, (26)
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which is exactly the critical advection velocity for persistence in homogeneously good habitat

as give in equation (8) in Pachepsky et al. (2005).

We examine the effect of varying the exchange coefficients kn, ku on the persistence re-

gion for equation (22). For simplicity, we fix ku = kn to be constant across patches, thereby

reducing the problem to only one parameter. In Figure 2 we plot the stability boundary for

increasing values of kn and see that the persistence region decreases accordingly. As a com-

parison, we plot the stability boundary (20) without benthic stage for identical parameter

values. As kn increases, the stability boundary with benthic stage approaches the one with-

out, in fact for kn = 100 the two are indistinguishable. Here, we do not explicitly consider

possible scalings that relate the benthic case to the case without benthic compartment, but

refer to Pachepsky et al. (2005), where two approximations were discussed.

Without additional plots, we report that, analogously to the behavior in Figure 1, fixing

all other parameters and increasing q or a2, respectively, results in a decreasing persistence

region.

4 Traveling periodic waves

If the persistence condition from the previous section is satisfied, numerical simulations of

(10) show that traveling periodic waves evolve from compactly supported initial data. This

effect was first observed by Shigesada et al. (1986) in the absence of flow. More recently

Weinberger (2002) proved the existence of traveling periodic waves for a general class of

models in periodic habitats. In the presence of flow, the speed of spread is different in the

two opposite directions, as illustrated in Figure 3. In this section, we derive formulae for the

minimal upstream and downstream speeds of such waves and we determine the conditions

for the upstream spread to halt.
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Figure 2: The stability boundary given by Lemma 3.2 for a population with benthic stage

with varying parameter kn = ku = 2, 4, 10 for the dashed, dash-dot, and dotted curve,

respectively. For kn = ku = 100, the curve is virtually indistinguishable from the solid line

that is obtained from (20) for a population without benthic stage with identical parameter

values. These values are d2 = 1, a2 = 2, and q = 1.
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Figure 3: Spread of a pelagic population in a periodically varying habitat with advection

q = 1.5 going to the right. The other parameters are ds = a2 = 1, f2 = −3 and l1 = l2 = 10.

Downstream spread is faster than upstream. At t = 10 the population has already reached

carrying capacity one good patch downstream from the initial good patch, it has only just

begun to colonize the next good upstream patch. The high loss rate in the bad patches leads

to near-zero steady-state density there.
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4.1 Pelagic system

We linearize equation (10) at the trivial solution u = 0 and look for traveling periodic waves

of the form

u(t, x) = u(t + τ, x + l) = ψ(x− ct)φ(x), (27)

where c denotes the wave speed, and φ(x) = φ(x + l) is a periodic function. The analysis in

Appendix 8.4 reveals that ψ is of the form ψ(z) = exp(−sz), where s is the shape parameter

of the wave front. We collect further results from Appendix 8.4 in the following Lemma.

Lemma 4.1 If q ≥ 2 then there are no upstream traveling periodic waves. If q < 2 then the

dispersion relation between the speed of a traveling periodic wave, upstream or downstream,

and its shape parameter is given implicitly by

cosh
(

S(l1 + l2) +
q

2

(
l1 +

l2
a2d2

))
= sinh(σ1l1) sinh(σ2l2)

σ2
1 + (d2a2σ2)2

2a2d2σ1σ2
+cosh(σ1l1) cosh(σ2l2),

(28)

where

σ1 =

√
cs− 1 +

q2

4
, σ2 =

√(
cs− f2 +

q2

4a2
2d2

)
/d2. (29)

Note that the condition q < 2 in this Lemma implies that the critical advection speed for

upstream invasion, i.e., the advection speed beyond which no upstream invasion is possible,

is identical to the critical advection speed for persistence (see Lemma 3.1). This equality

in homogeneous domains was one of the major observations by Pachepsky et al. (2005) and

Lutscher et al. (2005).

In Figure 4 we plot the minimal speed of traveling periodic waves as a function of other

parameters in the system. We indicate by c > 0 the speed in the direction of the flow

and by c < 0 the opposite direction. Without flow (q = 0) the speeds in both directions

are exactly the same. With increasing discharge, the downstream speed increases and the

upstream speed decreases. The speed is approximately linear as a function of the discharge
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q, as could be expected from the homogenized equation (16) and the corresponding speed

formula (18). It is instructive to explore the relationship between the minimal wave speeds

in the heterogeneous versus homogeneous environments a bit further. Using the parameter

values as in Figure 4, we calculate the values of the homogenized coefficients as given in

(17) and compare the behavior of the homogenized to model to the heterogeneous one. For

narrow bad patches (a2 = 0.5) we obtain a spreading speed of c± = ±4/3(1±q) from (18) for

the homogenized equation, which coincides with the lines plotted in Figure 4. For wide bad

patches (a2 = 2), however, the averaged growth rate is negative. Hence the population would

not spread in the homogenized environment, whereas Figure 4 shows that it does spread for

small enough values of q.

The right panel in Figure 4 shows how the wave speed depends on the cross-sectional area

in bad patches. The downstream speed is monotonically decreasing with increasing cross-

section. As the bad patches get wider, the flow speed decreases there so that individuals

move more slowly. At the same time, the larger area of a bad patch incurs higher loss to

the population. The situation is different for the upstream wave. Small cross-sections of bad

patches lead to small loss rate but to very high flow velocity, against which the population has

to move. Large cross-sections of bad patches imply small flow velocity, which would facilitate

upstream invasions, but incur high population loss. The upstream wave moves fastest for

intermediate cross-sections.

We can homogenize the dispersion relation (28) by assuming l1 + l2 $ 1 and using the

expansions of cosh and sinh up to second order. After some algebra, we obtain

c =
(l1 + l2)2s

(l1 + a2l2)(l1 + l2/(a2d2))
+

(l1 + l2)q
l1 + a2l2

+
l1 + a2f2l2
(l1 + a2l2)s

. (30)

The minimal values of c = c(s) are given by

c = 2

√
(l1 + l2)2

(l1 + a2l2)(l1 + l2/(a2d2))
l1 + a2f2l2
(l1 + a2l2)

± (l1 + l2)q
l1 + a2l2

= 2

√
〈da〉H
〈a〉A

〈f〉W ± q

〈a〉A
, (31)

which is exactly the minimal wave speed (18) for the homogenized Fisher equation (16).
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Figure 4: The minimal wave speeds as a function of discharge for two different values of

cross-secion in the bad patches (left panel) and as a function of cross-sectional area in bad

patches (right panel). In the left panel, we consider narrow bad patches (a2 = 0.5) and

obtain the fast downstream (solid) and upstream (dashed) speeds. In the same plot, for wide

bad patches (a2 = 2) the upstream and downstream speeds are give by the dash-dot and

the dotted line, respectively. In the right panel, we consider high discharge (q = 1), which

results in the solid and dashed line for downstream and upstream speeds, respectively. Low

discharge (q = 0.5) results in downstream and upstream speeds given by the dash-dot and

the dotted line, respectively. The other parameters are l1 = l2 = 1, d2 = 1, f2 = −0.5. The

horizontal line c = 0 indicates where upstream waves get stalled.
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Finally, we look at the conditions for the upstream spread to stop, i.e., we want to

characterize maxs<0 c(s) = 0. Differentiating (28) with respect to s and substituting the

conditions c(s) = c′(s) = 0 leads to

1 = sinh(σ1l1) sinh(σ2l2)
σ2

1 + (d2a2σ2)2

2a2d2σ1σ2
+ cosh(σ1l1) cosh(σ2l2), (32)

with σ1,2 as above but with c = 0.

4.2 Benthic-pelagic system

The analysis of traveling periodic waves for the system with benthic stage (11) is, in most

parts, a combination of the analysis above with the idea (24) used to reduce the persistence

problem with benthic stage to the one without. Some details are give in Appendix 8.4. There

are, however, a few differences so that the summary of results in the next Lemma is not as

complete as could be wished for.

Lemma 4.2 Assume that f < kn on good patches. If q > 2
√

ku/(kn − 1) then there are no

upstream traveling waves. If the reverse inequality holds then the dispersion relation between

the wavespeed c and the shape parameter s is given by (28) with σ1,2 defined by

σ1 =

√
cs− g1 +

q2

4
, σ2 =

√(
cs− g2 +

q2

4a2
2d2

)
/d2 (33)

and g1,2 defined as the values on the good and bad patches of g(x) given by (compare (24))

g =
kukn

cs + kn − f
− ku =

ku(f − cs)
kn − (f − cs)

, cs )= f − kn. (34)

There are no nontrivial traveling periodic wave solutions with cs = f − kn.

Solving the dispersion relation from the previous lemma for c = c(s) numerically reveals

that there are several solutions. This was to be expected since the analysis here contains

the case of constant homogeneous environment that was treated in a different way by Lewis

and Schmitz (1996) and Pachepsky et al. (2005). There, it could be shown that of the two
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possible solutions, the larger one is the correct one. The smaller one would lead to oscillatory

solutions at the leading edge of the wave, and hence to negative densities. The dispersion

relation for c(s) depends continuously on the length of the bad patch since it is derived from

the determinant of the matrix in (68), which depends continuously on l2. By continuity then,

the larger solution is also the correct wavespeed in our case, at least for small values of l2.

In Figure 5 we plot the speeds obtained by the previous lemma, assuming, that the speed

with larger absolute value is always the correct one. We compare the speeds to the case

without benthic stage. The most notable difference is that the upstream speed is not linear

with respect to discharge. The population with benthic stage invades upstream faster than

without benthic stage, and the difference increases as q increases.

For the case missing in Lemma 4.2, namely kn < f in good patches, we conjecture

that the population can spread upstream independently of the discharge. This conjecture is

supported by numerical simulations and by the analogous statement in homogeneous habitats.

In addition, it is shown in Appendix 8.4 that if kn < f then there cannot be a biologically

meaningful solution with c = 0, hence, an upstream invading wave cannot be stalled by

changing parameters. A rigorous proof of this conjecture remains future work.

5 Persistence in bounded domains

In this section, we investigate how the graininess of a bounded domain influences persistence

on that domain. We consider the domain [0, b] subdivided into 2n patches, alternating good

and bad of length l1 and l2, respectively. Hence, we have the relationship b = nl = n(l1 + l2).

For simplicity, we only present the case of a pelagic species, i.e., we look at equation (10),

but it is obvious that the treatment of the benthic-pelagic system in Section 3.2 extends to

the analysis here. Boundary conditions are given by (5), i.e., no-flux at x = 0 and hostile at

x = b. To find the boundary between persistence and extinction, we linearize (10) at u = 0
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Figure 5: The figure compares the minimal traveling wave speeds for pelagic only (down-

stream dashed, upstream dotted) to the speeds with benthic stage (downstream solid, up-

stream dash-dot). The parameters are d2 = a2 = 1, f2 = −0.5 and kn = ku = 1.1

and find conditions for the dominant eigenvalue λ = 0. Hence, we study the equation

1
a
[daux]x −

q

a
ux + fu = 0, x ∈ [0, b], (35)

with

daux − qu = 0 at x = 0, u(b) = 0. (36)

This problem can be fully analyzed, similar to the ones in the two previous sections, but the

resulting formulae are somewhat more complicated than the ones for the unbounded domain.

The persistence condition is given implicitly as the zero-set of the determinant of a certain

(4n − 1) × (4n − 1) matrix. Due to the block structure of the sparse matrix, this condition

reduces to a condition on certain products of 2 × 2 matrices. We present the details of the

analysis in Appendix 8.3 and concentrate on the results here.

The critical domain size problem in the presence of flow, i.e., the minimal length of a

river that supports a population, was first explicitly addressed by Speirs and Gurney (2001)

in homogeneous habitats. A more general treatment of the leading eigenvalue of a reaction-

advection-diffusion equation on a homogeneous domain in several space dimensions is given

in Murray and Sperb (1983). With heterogeneity, one may ask how the critical domain
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size depends on the number of subdivisions of the domain. The results are summarized in

Figure 6, left panel. Parameters are chosen in the simplest possible way and such that the

spatially averaged growth rate of the population is zero. Hence, in the homogenization limit,

the population cannot persist. We see that the minimal domain length increases with the

number of subdivisions. For example, whereas a river of length 4 is sufficient to sustain a

population if there are only 2 or 3 alternating pairs of good/bad patches, the population

will be driven to extinction if there are 6 or more subdivisions. As expected, the case with

advection requires a longer domain for persistence.

In the right panel in Figure 6 we fix the domain length to b = 4 and plot the maximum loss

rate in bad patches that a population can tolerate before it goes extinct. We compare this with

the persistence condition as given by Speirs and Gurney (2001) for the homogenization (16).

We see that the population can tolerate larger loss rates in the heterogeneous case, but as the

patches become small, the persistence condition approaches the one for the homogenization.

We want to point out that the case f2 = −1 corresponds to an average growth rate of zero,

hence, if the habitat consists of only two patches, then the population can persist even when

the average growth rate is negative. These results are in line with many other studies that

confirm that increasing the number of subdivisions into good and bad habitats may lead to

extinction of a population, with or without advection, see Cantrell and Cosner (2003) and

the discussion therein, and in particular Cantrell and Cosner (1991).

6 Robustness of results

There are two loss terms included into the models above: One is related to flow when indi-

viduals drift away from a location, the other is mortality given as the negative growth rate

in a bad patch. While dependence of the “flow loss” on cross-sectional are is built into the

model formulation, it is assumed that the cross-sectional area (a2) and the loss rate (f2) in
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Figure 6: Left: Minimal total domain length for a given number of subdivisions in good/bad

patches. Right: Possible loss rates (negative growth rates) in bad patches for population

persistence on a fixed domain length dependent on number of subdivisions in good/bad

patches. See text for details. The parameters are d2 = a2 = 1 and we fix the ratio l1/l2 = 1.

In the left panel, we choose f2 = −1 so that the average growth rate is zero. In the right panel,

we fix the total domain length to b = 4. The curved lines are the results from equation (61).

The straight horizontal lines indicate the growth rate necessary for population persistence

of the homogenized equation (16) on a domain of length 4 according to Speirs and Gurney

(2001), equation (5). Solid lines represent q = 0.3 whereas dashed lines are q = 0.
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a bad patch can be chosen independently. In reality, the two parameters may be linked, for

example through nutrient or light levels. One of the results in the previous sections is that

persistence is decreasing with increasing cross-sectional area of bad patches. In this section,

we discuss whether different biological scenarios satisfy or violate the modeling assumptions,

and we explore how robust the persistence results are with respect to biologically relevant

violations of these assumptions.

In the first scenario, we assume that the river is of constant depth while the width might

be changing. We assume furthermore that the input rate of nutrients is constant per surface

area of the river, for example nutrient input through up-welling or by rain. Then nutrient

concentration, and hence the population growth rate, are independent of cross-sectional area,

so that the modeling assumptions are met. The difference between good and bad patches

might be caused by physical or chemical features of the river bottom or by harvesting.

In the second scenario we assume that nutrients enter the river with a constant rate per

unit length, for example through lateral run-off. In this case, increasing the cross-sectional

area in a bad patch leads to lower nutrient concentration, which implies a higher loss rate.

Hence, the two effects combine; increasing loss rate with increasing cross-sectional area of

bad patches should reduce the persistence region even further. We explored this scenario by

assuming a simple linear relationship between loss rate (f2) and cross-sectional area (a2), at

least for values of a2 close to unity. We set

f2 = (1− ε(a2 − 1))f∗2 , (37)

where f∗2 is the loss rate for a2 = 1, i.e., when the river is of constant cross-sectional area.

(We choose parameters in such a way that the factor in front of f∗2 remains positive.) The

result is given in Figure 7, top left panel, which should be compared to Figure 1. As expected,

the persistence region decreases (compared to the case where f2 is independent of a2) when

a2 increases above a2 = 1 and increases when a2 decreases below unity.
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Figure 7: The stability boundary of the pelagic model (10) with f2 as in (37) for different

values of a2 and ε. In all four plots, the solid curves show the case ε = 0, where f2 = −0.5

is independent of a2 for a2 = 0.8 (upper), a2 = 1 (middle), and a2 = 1.5 (lower). With

dependence on ε, the dashed lines represents the case a2 = 0.8 and the dash-dot lines have

a2 = 1.5. In the top left panel, we have ε = 0.5, the top right corresponds to ε = −0.5, and

the lower panels are ε = −0.8,−0.9, respectively.
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In the next two scenarios we consider the effect of light levels rather than nutrients.

Again, if the river is of constant depth with only the width changing, then the light levels are

independent of cross-sectional area so that the modeling assumptions are met. If the depth

of the river varies but the width remains constant then light levels decrease with increasing

cross-sectional area. If we assume that light is the limiting factor, then bad patches become

worse as their depth increases. Hence, the situation is the same as above in the second

scenario. Increasing the cross-sectional area in bad patches will decrease the persistence

region.

If, however, bad patches are characterized by too high light levels, for example through

the effect of photobleaching, then the situation changes. Increasing the depth now decreases

the loss rate in the bad patches, which should increase the persistence region. So, increasing

the depth generally reduces persistence but in this case might also increase persistence. To

explore if and how the two effects balance, we assumed the simple linear relationship as

above (37), but this time with ε < 0. The results depend on the actual value of ε as depicted

in Figure 7. For ε = −0.5 increasing the cross-sectional area still decreases the persistence

region but not as much as with constant f2. For ε = −0.8 the situation is different. The

positive effect of reduced light at a2 = 1.5 compensates for the general negative effect of

increased cross-section, and the population is more likely to persist than for a2 = 1. For

ε = −0.9 the effect is even stronger, so that the persistence region is even larger than for

a2 = 0.8.

7 Discussion

We studied the effects of flow and heterogeneity on the persistence and invasion of a single

population, with or without benthic stage, in a river. We used a hydrodynamic equation to

relate the cross-sectional area of a river to the speed of the flow, and hence we implicitly
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captured the three-dimensional nature of a river in our explicitly one-dimensional model. We

incorporated heterogeneity as periodically alternating patches. In our analysis, we generalized

previous results from Shigesada et al. (1986) by adding advective flow, and results from

Pachepsky et al. (2005) by adding spatial heterogeneity. We derived implicit formulae for

the stability boundary for persistence and for the dispersion relation for traveling periodic

waves. In addition to previous work, we also considered persistence on bounded heterogeneous

domains. We recovered the threshold character of the critical advection speed (Pachepsky

et al., 2005) as follows. If the advection speed in good patches is larger than the critical

speed, then the population cannot persist nor invade upstream, if it is smaller, then there are

parameter values such that the population can persist and invade upstream. We concentrated

on the effects of discharge and cross-sectional area. Even in its non-dimensional form, the

model still contains too many parameters to explore all the relationships explicitly here, but

we gave the general formulae that can be used to explore the specific relationships of interest

in applications.

Our mathematical analysis rests on linearization at the trivial solution and stability anal-

ysis. It was recently shown by Berestycki et al. (2005) that the linearization at zero does

indeed predict the long-term dynamic behavior of the system without benthic stage and with-

out advection. The result that the linearization at zero predicts the correct wavespeed, again

without a benthic stage, is due to Weinberger (2002). Generalizing the results to systems

with non-mobile stages is future work.

Introducing a benthic stage in the model is biologically reasonable for algae and benthic

invertebrates. The effect of the extra compartment is not simply a linear reduction of the

advection speed experienced by individuals (Speirs and Gurney, 2001), but introduces the

qualitatively different behavior of unconditional persistence and upstream invasion if the local

growth rate exceeds the exchange rate, see also Lewis and Schmitz (1996); Pachepsky et al.
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(2005).

Intensive research efforts focus on understanding and predicting the dynamics of periphy-

ton and benthic invertebrates in river systems. We discuss the applicability of the results

that emerge from this work regarding spatial heterogeneity by considering three cases. The

original model assumed that all parameters are independent whereas in reality some may

be related, e.g., the growth rate may depend on cross-sectional area via light availability.

We found that the qualitative results obtained for independent parameters are robust for a

simple relationship between loss rate and cross-sectional area. This suggests that the general

qualitative results hold across a broad range of ecological scenarios, and that they could be

found in future experimental work. The results in Section 5 directly apply to channelization

and restoration of rivers. Our results indicate a generally negative effect of channelization on

(single) species persistence, i.e., the persistence region decreases with increasing homogeniza-

tion. These findings are supported by recent experimental work on river restoration through

increasing spatial heterogeneity, see Giller (2005) and references therein.

Finally, the results in Lemmas 3.1 and 4.1 indicate that a population that can persist

in a river can also spread upstream. Biologically, this finding clearly makes sense in a ho-

mogeneous environment, but requires extra consideration in the heterogeneous environment

considered here. Upstream range limits may be caused by (gradually) changing environmental

conditions (Lutscher et al., submitted), which are not captured in the periodic heterogene-

ity assumed here. However, situations are conceivable where a species can persist in some

“good” patches but not spread upstream through a bad patch, e.g., Zebra mussels in chains

of lakes in eastern North America. Hence, these species must somehow be dispersal lim-

ited, and strong advection could be one limiting factor. The mathematical formulation as a

reaction-advection-diffusion equation does show this effect. The diffusion operator with its

strong positivity properties combined with a growth term that does not have an Allee effect
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causes the population to spread if it can persist. The result is related to the infinite prop-

agation speed of the diffusion equation, a property that was already criticized by Einstein

(1906). We conjecture that corresponding hyperbolic models with finite propagation speed

(Hadeler, 1999) would be able to capture the phenomenon that a population can persist in

some patches but not spread upstream, but we are not aware of such models incorporating

advection. Similarly, we would conjecture that a porous-media equation with an additional

advective term might be able to capture that phenomenon. Alternatively, we would suggest

that certain individual-based stochastic model analogues to our deterministic model may

allow for local persistence and downstream- but no upstream spread. Altogether, we see

certain limitations in using the diffusion operator to model spatial spread, certainly when

strong spatial heterogeneity is present.

The results obtained above extend to other systems where individuals are subject to unidi-

rectional flow coast lines with ocean currents, vertical advection of phytoplankton (Huisman

et al., 2002), bacteria in the gut (Ballyk and Smith, 1999), vegetation in sloped terrain

(Sherratt, 2005), and effects of climate change (Potapov and Lewis, 2004). In particular, the

results can be applied to reserve design along coasts with longshore currents (Botsford et al.,

2001).

River ecosystems are, of course, much more complex than the model analyzed here. This

model is one more step towards a mechanistic modeling framework for these environments.

A strategic model for competition and resource gradients in rivers is presented in (Lutscher

et al., submitted). The next steps are to include more ecological interactions, for example

model the fate of nutrients explicitly or include a predator into the equations.
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8 Appendix

8.1 Derivation of the movement equation

In Section 2 we used heuristics to derive the one-dimensional movement equation (1). Here we

present a more detailed derivation from a two-dimensional diffusion equation with coordinates

X (longitudinal) and Y (transversal). We may assume that the domain is bounded in the

Y -direction by the X-axis, Y = 0, and by some positive function Y = A(X), the cross-section

at X.

The two-dimensional diffusion equation using Fick’s law with drift in the X-direction is

given by

BT = (D1(X, Y )BX)X + (D2(X, Y )BY )Y − (V (X)B)X . (38)

Alternatively, this equation can be interpreted as the probability density of a single individual

moving randomly with a bias in the X-direction (Aronson, 1983). The no-flux boundary

conditions are BY = 0 at Y = 0 and

D1BXn1 + D2BY n2 − V Bn1 = 0 (39)

at Y = A(X), where nT = (n1, n2) = (−A′(X), 1) is the outward pointing normal.
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We integrate (38) in the Y -direction to get

∂

∂T

∫ A(X)

0
BdY =

∫ A(X)

0
(D1(X, Y )BX)X + (D2(X, Y )BY )Y − (V (X)B)XdY. (40)

The middle term on the right hand side can be integrated using the boundary conditions:

∫ A(X)

0
(D2(X, Y )BY )Y dY = [D1BXA′ − V BA′]|Y =A(X). (41)

Now we introduce the assumption of cross-sectional homogeneity by setting B(T,X, Y ) =

B̄(T,X) and Dj(X, Y ) = D̄j(X). Then (40) becomes

A(X)B̄T = (D̄1B̄X)XA(X) + (D̄1B̄X)A′(X)− (V B̄)A′(X)− (V B̄)XA(X)

= (D̄1AB̄X)X − (V AB̄)X ,

which is the movement term in Section 2 with Q = AV =const.

8.2 Derivation of the boundary conditions

Two different kinds of boundary conditions have been used for the “downstream” boundary

of the advection-diffusion model

Ut = DUXX − V UX , X ∈ [0, b], (42)

namely, the “hostile” condition U(b) = 0 (Speirs and Gurney, 2001; Pachepsky et al., 2005)

and the “Danckwert’s condition” UX(b) = 0 (Ballyk et al., 1998; Lutscher et al., submitted).

We extend the individual random-walk model by Van Kirk and Lewis (1999) to gain insight

as to how these two differ in their biological interpretation.

At time steps dt an individual moves left and right on a grid with step size dx with

probabilities L = (D − (V dx)/2)/2 and R = (D + (V dx)/2)/2, respectively. Expanding the

resulting master equation in Taylor series and applying the parabolic scaling dt, dx → ∞

while (dx)2/(2dt) = 1 gives equation (42), see e.g., (Turchin, 1998). At the boundary X = b,

the individual moves left, i.e., back into the domain, with probability L as above. Of the
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remaining probability 1 − L it leaves the domain with rate αdx and stays otherwise. Then

the master equation at the boundary reads

U(t + dt, b) =
1
2

(
D +

V

2
dx

)
U(t, b− dx) +

[
1− 1

2

(
D − V

2
dx− αdx

)]
U(t, b). (43)

Expanding in Taylor series, multiplying by dx and taking the parabolic limit as described

above leads to the condition

(V − α)U −DUX = 0. (44)

When individuals do not leave the domain, then α = 0 and hence we obtain the no-flux

boundary conditions used at X = 0. If individuals leave the domain at the same rate as the

advection takes them, then α = V and we obtain the Danckwert’s conditions. If individuals

leave the domain at a much faster rate, i.e., α → ∞, then the “hostile” condition U = 0

results.

8.3 Derivation of the persistence condition

In this section, we prove Lemma 3.1 and derive in detail the persistence boundary for a single

pelagic population as discussed in Section 5 on a bounded domain and in Section 3 on an

infinite domain.

To derive the persistence condition for a single pelagic population on a bounded hetero-

geneous habitat, we study the equation

1
a
[daux]x −

q

a
ux + fu = 0, x ∈ [0, b], (45)

with boundary conditions

daux − qu = 0 at x = 0, u(b) = 0. (46)

The habitat [0, b] is divided into 2n alternating good and bad patches of length l1 and l2,

respectively. The parameter values on the good and bad patches are given by (12).
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We rewrite the problem as a set of equations, each with constant coefficients and connected

through the boundary conditions. On the interval [ml,ml + l1] we define wm(x−ml) = u(x)

for m = 0 . . . n− 1. Then each wm is defined on [0, l1] and satisfies

w′′
m − qw′

m + wm = 0. (47)

Similarly, we define zm(x−ml) = u(x) on [ml + l1, (m + 1)l] for m = 0 . . . n− 1. Again, each

zm is defined on [l1, l] and satisfies

d2z
′′
m −

q

a2
z′m + f2zm = 0. (48)

Since no confusion can arise, we will drop the subscripts on d, a, f for the rest of this calcu-

lation.

The boundary- and matching conditions for u translate in conditions for wm, zm as follows.

At x = 0 and x = b we have

w′
0(0)− qw0(0) = 0 zn−1(b) = 0. (49)

At x = ml + l1 we have the two conditions

wm(l1) = zm(l1), w′
m(l1) = adz′m(l1), (50)

whereas at x = ml we get

zm(l) = wm+1(0), adz′m(l) = w′
m+1(0). (51)

The following transformation turns out to simplify things substantially. We set Wm(x) exp(qx/2) =

wm(x) and Zm(x) exp(qx/(2ad)) = zm(x). Then (47, 48) translate into

W ′′
m +

(
1− q2

4

)
Wm = 0, dZ ′′

m +
(

f − q2

4a2d

)
Zm = 0. (52)

By assumption, we have f < 0 and hence, Z is a convex function. If q ≥ 2 then W is also

convex. According to the boundary and matching conditions, W ′
0(0) > 0 and the signs of
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the slopes of adjacent Wm, Zj are identical. Therefore, each Wm, Zm must be an increasing

function, and hence the boundary condition Zn−1(l) = 0 cannot be satisfied. From here on,

we assume that q < 2 so that α2 = 1− q2/4 > 0.

The matching conditions (49–51) translate into the following conditions for Wm, Zm,

W ′
0(0)− q

2
W0(0) = 0, Zn−1(l) = 0 (53)

Wm(l1)eql1/2 = Zm(l1)eql1/(2ad), Wm(0) = Zm−1(l)eql/(2ad), (54)

W ′
m(l1)eql1/2 = adZ ′

m(l1)eql1/(2ad), W ′
m(0) = adZ ′

m−1(l)e
ql/(2ad), (55)

where we have used the relations on Wm, Zm to simplify the relations for W ′
m, Z ′

m. We now

make the ansatz

Wm(x) = Am cos(αx) + Bm sin(αx). (56)

Since f < 0, we may set δ =
√

(q2/(4a2d)− f)/d and write

Zm(x) = Dm cosh(δ(l − x)) + Gm sinh(δ(l − x)). (57)

The matching conditions above translate into conditions for the coefficients Am, BM , Dm, Gm.

After a lot of algebra, these can be conveniently written in matrix form Mξ = 0, where

ξT = [A0, B0, D0, G0, A1, B1, D1, G1, . . . An−1, Bn−1, Gn−1] (58)

(note that (49) implies Dn−1 = 0) and

M =





K1 0 0 0 0 0 0

M1 M3 0 0 0 0 0

0 M2 M4 0 0 0 0

0 0 M1 M3 0 0 0
...

. . . . . .
...

0 0 0 0 M2 M4 0

0 0 0 0 0 M1 K2





. (59)
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The entries of M are matrices of the form

K1 = (q/2,−α), K2 =




−S2E2

adδC2E2



 ,

M1 =




C1E1 S1E1

−αS1E1 αC1E1



 , M3 =




−C2E2 −S2E2

adδS2E2 adδC2E2



 ,

M2 =




E3 0

0 adδE3



 , M4 =




−1 0

0 α



 ,

where

C1 = cos(αl1), S1 = sin(αl1), C2 = cosh(δl2), S2 = sinh(δl2)

and

E1 = e
q
2 l1 , E2 = e

q
2ad l1 , E3 = e

q
2ad l.

In order for (45,46) to have a solution, we require that the coefficients ξ be nonzero, which

in turn requires that detM = 0. The matrix M has dimension (4n − 1) × (4n − 1) so that

computation can be time-intensive. However, we use the particular structure of M to find

a simpler way to compute the persistence condition. Note that M1,M2 are invertible. If

there is a nonzero solution ξ we may assume Gn−1 = 1. Then we can inductively derive the

following condition for A0, B0 :



A0

B0



 =
(
M−1

1 M3M
−1
2 M4

)n−1
M−1

1 K2 =:




ν1

ν2



 . (60)

With the additional condition for A0, B0 from the first row of M, we arrive at the following

formula for the persistence boundary:

qν1 − 2αν2 = 0. (61)

The same ideas as above apply to the derivation of the persistence boundary on unbounded

domains, in fact, things become easier in that case. Because of the matching conditions, the
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real line can now be thought of as one good and one bad patch with periodic boundary

conditions. The argument that there is no solution for q ≥ 2 is even simpler than before

because a non-constant periodic function cannot be convex everywhere. The same ansatz for

W,Z leads to the condition that the determinant of the 4× 4 matrix

Mu =




M1 M3

M4 M2



 (62)

be zero. Cofactor expansion of the determinant and rearranging of terms gives formula (20)

for the persistence boundary.

If we return to the problem on a bounded domain but now increase the length of the

domain by adding patches then we increase n in (60). Then the right hand side in that

equation converges to a multiple of the eigenvector corresponding to the larger eigenvalue. If

we want the left hand side to be neither zero nor infinity, then the matrix in brackets in (60)

must have 1 as an eigenvalue while the other eigenvalues must be less than one in absolute

value. Indeed, if ζ is an eigenvector of (M−1
1 M3M

−1
2 M4)n−1 then ξ = (ζ,−M−1

2 M4ζ)T is a

nonzero solution to Muξ = 0. Hence, in the limit b → ∞ the persistence condition on the

bounded domain becomes the persistence condition on the unbounded domain.

8.4 Derivation of the minimal wave speeds

Putting the ansatz (27) into the linearization of (10) and rearranging terms yields the equation

dφ
ψ′′

ψ
+

(da)′ − q

a
φ

ψ′

ψ
+ cφ

ψ′

ψ
+ 2d

ψ′

ψ
φ′ = −dφ′′ − (da)′ − q

a
φ′ − fφ. (63)

Since the right hand side of that equation is independent of ψ we conclude that the fractions

involving ψ must be constant, and hence ψ is an exponential ψ(z) = exp(−sz), where s is

the shape parameter of the wave front. With this we obtain an equation for φ alone, namely

dφ′′ +
(

(da)′ − q

a
− 2ds

)
φ′ +

(
f + ds2 − (da)′ − q

a
s− cs

)
φ = 0. (64)
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The matching conditions (7, 8) translate into

lim
x↑l1

φ(x) = lim
x↓l1

φ(x), (65a)

lim
x↓0

φ(x) = lim
x↑l

φ(x), (65b)

lim
x↑l1

(φ′(x)− sφ(x)) = lim
x↓l1

da(φ′(x)− sφ(x)), (65c)

lim
x↓0

(φ′(x)− sφ(x)) = lim
x↑l

da(φ′(x)− sφ(x)). (65d)

The equation is linear in φ and the coefficients are constant on the two intervals [0, l1] and

[l1, l]. Therefore we make an exponential ansatz on each of these two subintervals and use

(65) to match the coefficients. We set

φ(x) = A1e
α1x + A2e

α2x, x ∈ [0, l1], φ(x) = B1e
β1(l−x) + b2e

β2(l−x), x ∈ [l1, l], (66)

where

α1,2 =
q

2
+ s ± σ1, β1,2 = − q

2ad
− s ± σ2, (67)

with σ1,2 defined as in (29).

The argument from the previous section that not both arguments α1,2,β1,2 can be real at

the same time because of periodic matching, carries over to the case at hand. For downstream

traveling waves, we have c, s > 0 and for upstream waves, we have c, s < 0. In both cases, the

product satisfies cs > 0. Therefore σ2 is always real, and so σ1 must have nonzero imaginary

part. This gives the necessary condition q < 2. The matching conditions (65) yield the

following linear relationship between the coefficients




1 1 −1 −1

eα1l1 eα2l1 −eβ1l2 −eβ2l2

q
2 + σ1

q
2 − σ1 −( q

2 − adσ2) −( q
2 + adσ2)

( q
2 + σ1)eα1l1 ( q

2 − σ1)eα2l1 −( q
2 − adσ2)eβ1l2 −( q

2 + adσ2)eβ2l2









A1

A2

B1

B2





= 0.

(68)
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In order for a nonzero solution to exist, the determinant of the matrix has to vanish. This

determinant can be computed explicitly by cofactor expansion. Using some trigonometric

identities, one finally arrives at formula (28).

To derive the minimal wavespeed for the benthic-pelagic system (11), we combine the

ideas above with a substitution similar to (24). The ansatz u(t, x) = ψ1(z)φ1(x) and

n(t, x) = ψ2(z)φ2(x) with z = x− ct first gives the condition ψj(z) = Aj exp(−sz). With this

information, the benthic equation reads

csφ2 − knφ1 = (f − kn)φ2. (69)

If f(x) > kn(x) on good patches, then this equation does not have a meaningful solution,

i.e., φj ≥ 0 for c = 0. Hence, if there exist upstream traveling periodic waves, then they can

never get stalled. Assuming cs )= f − kn we solve for φ2 and obtain the following equation

for φ1, which is analogous to (64):

dφ′′ +
(

(da)′ − q

a
− 2ds

)
φ′ +

(
g + ds2 − (da)′ − q

a
s− cs

)
φ = 0, (70)

with g(x) being defined as (compare (24))

g =
kukn

cs + kn − f
− ku =

ku(f − cs)
kn − (f − cs)

. (71)

From here we proceed as above. The condition that one of the exponents in (67) have nonzero

imaginary part translates into the condition on the good patches that again σ1 be purely

imaginary. The critical value for q, is given by

cs− g1 + q2/4 = 0, or q = 2
√

g1 − cs. (72)

The expression under the root is a decreasing function in cs so that the maximal value is

obtained at cs = 0 and given by

q = 2
√

ku

kn − 1
(73)

which, in non-dimensional parameters, is the same as (26).
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