
Give a man a fish and you feed him for a day.
Teach a man to fish and you feed him for a lifetime.

– Chinese Proverb.

University of Alberta

COMMUNITY MINING
DISCOVERING COMMUNITIES IN SOCIAL NETWORKS

by

Jiyang Chen

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

c©Jiyang Chen
Spring 2010

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only. Where the thesis is converted to, or otherwise made available in
digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever

without the author’s prior written permission.

Examining Committee

Dr. Randy Goebel, Department of Computing Science

Dr. Osmar R. Zaı̈ane, Department of Computing Science

Dr. Martin Ester, Simon Fraser University

Dr. Ali Shiri, School of Library and Information Studies

Dr. Guohui Lin, Department of Computing Science

Dr. Eleni Stroulia, Department of Computing Science

Abstract

Much structured data of scientific interest can be represented as networks, where

sets of nodes or vertices are joined together in pairs by links or edges. Although

these networks may belong to different research areas, there is one property that

many of them do have in common: the network community structure, which means

that there exists densely connected groups of vertices, with only sparser connec-

tions between groups. The main goal of community mining is to discover these

communities in social networks or other similar information network environments.

We face many deficiencies in current community structure discovery methods. First,

one similarity metric is typically applied in all networks, without considering the

differences in network and application characteristics. Second, many existing meth-

ods assume the network information is fully available, and one node only belongs

to one cluster. However, in reality, a social network can be huge thus it is hard

to access the complete network. It is also common for social entities to belong to

multiple communities. Finally, relations between entities are hard to understand in

heterogeneous social networks, where multiple types of relations and entities exist.

Therefore, the thesis of this research is to tackle these community mining prob-

lems, in order to discover and evaluate community structures in social networks

from various aspects.

Acknowledgements

I would like to thank many people for making this dissertation possible. First, I

would like to thank my supervisors, Dr. Randy Goebel and Dr. Osmar Zaı̈ane for

their enthusiasm, patience, advice and guidance during all these years. I would like

to thank my committee members, Dr. Guohui Lin, Dr. Eleni Stroulia, Dr. Ali Shiri,

and Dr. Martin Ester, for carefully reading my thesis and providing many valu-

able comments. Thanks to my family for their love and support in all these years. I

would also like to thank my colleagues, Tong Zheng, William Thorne, Daniel Hunt-

ley, Mojdeh Jalali-Heravi, Seyed-Vahid Jazayeri and Deng Kang, for their help in

this research.

Our research has been supported by the Canadian Natural Sciences and Engineering

Research Council (NSERC), by the Alberta Ingenuity Centre for Machine Learning

(AICML), and by the Alberta Informatics Circle of Research Excellence (iCORE).

Contents

1 Introduction 1

1.1 Scenarios and Challenges . 3

1.2 Thesis Statement . 5

1.3 Thesis Contributions . 6

2 A Review of Social Network Analysis 8

2.1 Social Network Analysis: A Brief Survey 8

2.1.1 History . 9

2.1.2 Types of Data . 12

2.1.3 Concepts . 13

2.2 Social Networks and Data Mining 17

2.2.1 Data Mining Tasks for Social Network Analysis 17

2.2.2 Community Mining . 20

3 State-of-the-Art in Community Mining 22

3.1 Community Mining Categorization 23

3.2 Mining on Global Network . 24

3.2.1 Graph Partitioning . 25

3.2.2 Hierarchical Clustering . 28

3.2.3 Recent Approaches . 29

3.3 Mining on Local Network . 32

3.3.1 Problem Definition . 33

3.3.2 Local Community Mining Approaches 34

3.4 Community Evaluation . 36

3.4.1 Global Community Evaluation 37

3.4.2 Local Community Evaluation 40

3.5 Mining Overlapping Communities 41

3.5.1 Common Approaches . 41

3.5.2 Recent Approaches . 42

3.6 Dynamic Community Discovery 44

3.7 Community Discovery with Multiple Relations or Attributes 46

3.8 Entity Ranking . 48

3.8.1 Sociological Approaches 48

3.8.2 Computer Science Approaches 49

4 Research Problem Statement 55

4.1 Community Mining with Domain Knowledge 55

4.2 Local Community Mining . 57

4.3 Overlapping Community Mining 58

4.4 A Community Mining Application in Web Context 59

4.5 Entity Ranking . 62

5 Discovering Communities with Domain Knowledge 66

5.1 Our Elaboration . 66

5.1.1 Generalizing the Max-Min Modularity 68

5.1.2 Algorithm for Community Detection 71

5.2 Experiment Result . 73

5.2.1 Scalability . 74

5.2.2 Evaluation Approach . 75

5.2.3 Synthetic Data . 75

5.2.4 The Karate Club . 77

5.2.5 Sawmill Communication Network 78

5.2.6 Mexican Politician Network 80

5.3 Discussion . 80

5.4 Related Work . 82

5.5 Conclusions . 83

6 Discovering Local Communities 84

6.1 Our Approach . 84

6.1.1 The Local Community Metric L 85

6.1.2 Local Community Structure Discovery 86

6.1.3 Iterative Local Expansion 89

6.2 Experiment Results . 90

6.2.1 The NCAA Football Network 91

6.2.2 The Amazon Co-purchase Network 93

6.2.3 Iteratively Finding Overlapping Communities 96

6.3 Conclusions . 99

7 Discovering Overlapping Communities with Visual Data Mining 100

7.1 Visual Data Mining . 101

7.2 Preliminaries . 101

7.2.1 Community Definition . 102

7.2.2 Requirements for An Overlapping Community Mining Metric103

7.2.3 Example Metrics for Community Detection 104

7.3 Our ONDOCS Approach . 106

7.3.1 Relationship Definition . 106

7.3.2 Ordering Nodes to Visualize Networks 109

7.3.3 Detecting Overlapping Community Structure: Communi-

ties, Hubs and Outliers . 111

7.4 Experiment Results . 114

7.4.1 ONDOCS Scalability . 114

7.4.2 ONDOCS Accuracy . 115

7.4.3 Comparing Metrics within ONDOCS 123

7.5 Conclusions . 123

8 A Community Mining Application: Clustering Web Search Results Based

on Word Sense Communities 126

8.1 Related Work . 127

8.2 Preliminaries . 128

8.2.1 Query Sense Community 128

8.2.2 Extending Modularity Q 130

8.3 Our Approach . 131

8.3.1 Phase I: Keyword Extraction 131

8.3.2 Phase II: Generate Keyword Graph 132

8.3.3 Phase III: Finding Query Sense Communities 133

8.3.4 Phase IV: Community Refinement 135

8.3.5 Phase V: Assign Documents to Labeled Communities 136

8.4 Experiment Results . 136

8.4.1 Data Collection and Labeling 136

8.4.2 Accuracy Evaluation . 137

8.4.3 Parameter Setting . 139

8.4.4 Using Q to Measure Need For Clustering 140

8.5 Conclusions . 142

9 Entity Ranking for Social Networks 144

9.1 The Network Model . 144

9.1.1 Bipartite Network Model 145

9.1.2 K-partite Network Model 145

9.2 Proposed Method . 147

9.2.1 Relevance Score based on Random Walk 147

9.2.2 Algorithm for Multiple Cross Relations 148

9.3 Experiments . 149

9.3.1 Ranking for Conference Entities 151

9.3.2 Ranking for Author Entities 154

9.3.3 Random Walk on Tripartite Graph 155

9.3.4 Discussion . 156

9.4 DBConnect . 157

9.5 Conclusions . 163

10 Conclusion 164

10.1 Conclusions . 164

10.2 Summary of Contributions . 165

10.3 Future Research . 166

Bibliography 169

List of Figures

2.1 An example of original social network diagrams [74] 10

2.2 Different representations of relations A and B on the set X =

{x1, x2, x3, x4} . 14

3.1 Local Community Definition . 33

3.2 Network Community Example for Modularity Measure 39

4.1 The Topic Hierarchy of Community Mining in SNA 56

4.2 Problem of Previous Local Community Metrics 57

4.3 Query Refinement by Google Search 61

4.4 Query Refinement by Yahoo! Search 61

4.5 Query Refinement by Bing (previously known as MSN Search) . . . 62

4.6 Traditional Models for Social Networks 63

4.7 Bipartite Models for Social Networks 64

5.1 A Graph Division and its Complement 69

5.2 Building Complement Graphs . 71

5.3 Algorithm Running Time . 74

5.4 Synthetic Data Results (each point is an average over 50 1,000-node

graphs.) . 76

5.5 The Karate Club . 78

5.6 Social Network in a Sawmill . 79

5.7 Mexican Politician Network . 81

6.1 Problem of Previous Local Community Metrics 87

7.1 Examples for Clique Community and Transitive Community 102

7.2 Algorithm Running Time . 115

7.3 Community Visualizations of the football network with different S

value . 116

7.4 Selecting CT and OT for ONDOCS 118

7.5 ONDOCS Visualizations with different starting nodes 120

7.6 Community Visualizations for Various Networks by ONDOCS . . . 122

7.7 Comparing Metric Q, S and R with ONDOCS Visualizations 124

8.1 Web Page Clustering based on Query Sense Communities 132

8.2 The impact of threshold tdf . 140

9.1 Tripartite Network Model for Multiple Cross Relations 146

9.2 Our Data Structure extracted from DBLP Database 151

9.3 Random Walks on Tripartite Model 156

9.4 DBconnect Interface Screenshot for an author 158

9.5 DBconnect Interface Screenshot for H-Index Visualization 159

9.6 DBconnect Interface Screenshot for conference ICDM 160

9.7 DBconnect Interface Screenshot for topic Data Mining 161

List of Tables

4.1 Membership for sports clubs . 63

5.1 Algorithm Comparison on Real World Networks. 77

6.1 Algorithm Accuracy Comparison for the NCAA Network (Preci-

sion (P), Recall (R) and F-measure (F) score are all average values

for all nodes in the community). 92

6.2 Algorithm Comparison for the Amazon Network. ∗ indicates the

author is J.R.R. Tolkien while # is not. 94

6.3 Shakespeare Example for the Amazon Network 96

6.4 Andersen Fairy Example for the Amazon Network 97

6.5 Overlapping Local Community Examples for the Amazon Network 98

7.1 Comparing Community Mining Metrics 108

7.2 Results on Real World Networks 114

7.3 Result Comparison on the Football Dataset. (∗The right cluster

number is provided as a parameter for the CONGO algorithm.) . . . 117

7.4 Comparing ONDOCS Accuracy with Different CT and OT. (H-FM

means F-measure for Hubs and O-FM means F-measure for Outliers.)118

8.1 Experimental Datasets. 138

8.2 Sense community-based clusters for six datasets (miscellaneous clus-

ters are omitted). 139

8.3 Modularity score for different queries. 143

9.1 Top 10 Related Conferences for Conference using bipartite model:

Conference → Author → Conference 152

9.2 Top 10 Related Conferences for Conference using tripartite model:

Conference → Topic → Author→ Conference 152

9.3 Related Topics for Conference using bipartite model: Conference

→ Topic → Conference ((x), x is the rank of the topic with respect

to the SIGMOD conference . 152

9.4 Top 10 Related Authors for Conference using tripartite model: Di-

rection Conference → Topic → Author → Conference 154

9.5 Top 5 Related Author for Philip S. Yu with most recommended

Topic and Conference to collaborate (A → B means A and B are

co-authors) . 155

Chapter 1

Introduction

Many structured data of scientific interest can be represented as networks, where

sets of nodes or vertices are joined together in pairs by links or edges. Examples

include social networks [210] such as researcher collaboration [148, 149], friend-

ship network [13], the World Wide Web [6] (e.g., the web page hyperlink network

[82, 117, 120]) (WWW), and biological networks (e.g., neural networks [211] and

food webs [219]). A common property of these networks is their community struc-

ture [150], which notes the existence of densely connected groups of vertices, with

only sparser connections between groups. From that perspective, identifying com-

munities can be seen as finding node clusters in a graph. Indeed, this research task

is highly related with clustering, although by somewhat different means (See Chap-

ter 3.2). As a new research field, Community Mining [85], which focuses on the

detection and characterization of such network structure, has received considerable

attention over the past few years. A community can be defined as a group of entities

that share similar properties or connect to each other via selected relations [226].

Identifying these connections and locating entities in different communities is the

main goal of the community mining research.

The ability to detect communities could be of significant practical importance. For

example, groups of web pages that link to more web pages in the community than

to pages outside might correspond to set of web pages on related topics, which can

enable search engines and portals to increase the precision and recall of search re-

sults by focusing on narrow but topically related subsets of the web [72]; groups

1

within social networks might correspond to social communities, which can be used

to understand organizational structures [203], academic collaboration [143, 188],

criminal group detection [68] and even political election [2]. Merely finding that

a biochemical network contains tightly-connected groups at all can convey useful

information by providing evidence that different groups of nodes performing differ-

ent functions with some degree of independence [102]. Moreover, the community

structure influence may reach further than these: a number of recent results suggest

that networks can have properties at the community level that are quite different

from their properties at the level of the entire network, so that analysis that focus

on whole networks and ignore community structure may miss many interesting fea-

tures [152]. For example, we may find that individuals within different community

groups have a different mean number of contacts in some social networks: the in-

dividuals in one group might have many contacts with others while the others in

another group might be more reticent. Example networks are reported in [12, 79]

as sexual contact networks. Therefore, characterizing such networks by only quot-

ing a single figure for the average number of contacts an individual has, and without

considering the community structure, will definitely miss important features of the

network, which is directly relevant to questions of scientific interest such as epi-

demiological dynamics [92].

Most of the existing community mining approaches assume that there is only one

network representing one single relationship, such as the web linkage. We call such

a network a homogeneous network. They also assume the network information is

available and that each entity belongs to only one community. However, in real net-

works, many of these assumptions do not hold. For example, there exist multiple

relations and entity types, each of which can be treated as a relation network. We

call such a network a heterogeneous network, e.g., in a protein interaction network,

proteins are related to each other via interactions in different environment. Some

social networks, e.g. the WWW, can be dynamic or too huge to be accessed com-

pletely for community mining. Also, one entity could usually belong to multiple

communities, e.g., one researcher active in the data mining community and the vi-

2

sualization community of the same time. We call such communities overlapping

communities. In this research, we are particularly interested in finding and evalu-

ating community structures in a social network from different aspects. Below we

show several scenarios that illustrate the usefulness and necessities of the commu-

nity mining research, and of the unsolved challenges that we face.

1.1 Scenarios and Challenges

Scenario 1 (Predict the possible disease infector). Suppose an infectious disease

just breaks out. What we have on hand is a typical human community network. We

have labeled patients and information from the experts, which summarizes the pos-

sibility of infection between certain people. The health institution tries to find those

people who are more likely to be infected next, based on the implicit community

information provided.

Challenge 1. Discover communities in a social network for a certain purpose.

Domain knowledge such as classified examples are provided.

There are quite a few community mining approaches that can be used to gener-

ate communities from this network. However, they usually apply a fixed metric to

all networks, despite the unique characteristics of each one. These characteristics

can be obtained as domain knowledge from experts. Thus, we may identify useful

communities for some networks by one approach, but could fail elsewhere. We

state this problem as Challenge 1.

Scenario 2 (Refine query terms for search engine). Mark is a new graduate

student who just started his Ph.D program. He chose to work on data mining af-

ter he talked to a few professors. However, he basically has no idea of this field,

which topic is popular, which paper is required to read, who is playing an impor-

tant role, etc. He is trying to find related information via a search engine, with

the query term “Data Mining”. Some recommendations of appropriate query terms

3

or name entities regarding different aspects of this field can absolutely help him out.

Challenge 2. Given one entity, find categorized topics that are closely related to

the given one in the form of various communities.

As we have mentioned, one entity does not typically belong to only one community

in real world networks. On the contrary, in most of the cases it is related to multiple

groups. For example, as illustrated in Scenario 2, the name entity “Data Mining”

may appear in various web pages and is related to many other entities: researchers,

conferences, papers, even industrial companies that have related projects; and these

name entities may not be related to each other at all, i.e., in different communities.

An important challenge for community mining approaches is to find multiple com-

munities in which an entity is involved, here referred to as Challenge 2.

Scenario 3 (Recommend future collaborators for researchers). Prof. Jones is

editing a book focusing on his research area. He wishes to find some researchers

who are also in this area, to contribute to the work. He has a candidate list based

on previous research experience and publication list, but still has no idea of which

ones are the best to invite. He also prefers those who are more closely related to

him to make the cooperation easier.

Challenge 3. Measure the asymmetric closeness between entity pairs within com-

munities in the network.

An ideal community mining approach should not only discover the community

structure, but also somehow measure the relationship between any two entities to

rank their closeness. However, in social networks, it often happens that the relation

between two entities are not necessarily symmetric. For example, Prof. Simons

may be the most related researcher to Prof. Jones regarding research interests, but

Prof. Jones may only be one of the many researchers that share similar interests

with Prof. Simons. Another good example is the friendship between children:

4

while Sandy claims George to be his best friend, George only treats Sandy as a

normal classmate. Therefore, measuring the asymmetric closeness between two

entities that are in the same community provides additional interesting features of

the community network.

Scenario 4 (Locate communities for friend network website). Friend network

sites, such as FaceBook and MySpace, maintain a large and dynamic social network

between their users. Every hour there are people joining or leaving the network,

new relations are connected in minutes. Researchers working for these sites want

to create user communities so that more accurate recommendation is possible.

Challenge 4. Identify social communities for real world networks, where the net-

work could be huge and dynamic, also one node can belong to multiple communi-

ties.

In practical situations, community mining algorithms are normally used on net-

works for which the communities are not known ahead of the time. These networks

are too large and dynamic to be accessed frequently and completely. Nodes in these

networks could join one or more communities. The problem is labeled as Challenge

4.

1.2 Thesis Statement

In this work, we investigate the possible issues that prevent existing state-of-the-art

algorithms from discovering accurate community knowledge for particular social

networks. We also demonstrate how we can leverage these community relational

patterns to address the aforementioned challenges. The central thesis statement of

this research is presented as follows:

Approaches of community mining can be implemented to discover implicit com-

munity information on social networks with various characteristics.

5

This research work justifies empirically and theoretically the practicality and fea-

sibility of finding communities in social networks. The major issues addressed to

support the thesis statements of this research are as follows.

• Investigate taking domain knowledge into consideration for discovering com-

munities for networks in different domains.

• Investigate identifying communities with only limited network information.

• Investigate finding overlapping communities by locating accurate parameters.

• Investigate the practicality of applying community mining to improve search

engine performance.

• Investigate ranking entities by computing relevance measures based on the

relations.

1.3 Thesis Contributions

The major contributions of this dissertation can be summarized as follows:

1. We propose a method to include domain knowledge as guiding criteria in

the community detection process by either rewarding or penalizing the met-

ric that evaluates the discovered structure, without increasing algorithm com-

plexity. Our new measure and algorithm improve the accuracy for community

detection over previous algorithms when applied to real world networks for

which the community structures are already known, and also give promising

results when applied to randomly generated networks for which we only have

approximate information about communities. This shows the robustness of

the algorithm against noise.

2. For community mining with only local information, our method proposed in

Chapter 6 requires no parameters and our metric L is robust against outliers.

6

The proposed algorithm not only discovers local communities without an ar-

bitrary threshold, but also determines whether a local community exists or

not for certain nodes.

3. For overlapping community identification, our visual data mining approach

could assist the user in finding appropriate parameters to describe the com-

munities they are looking for. The new metric R can effectively quantify the

relations between entities. The method is scalable and is able to discover

communities, hubs, and outliers in social networks.

4. Our community mining technique, when applied to search engine results to

identify query sense communities on a network of extracted keywords, gives

good results. The unsupervised approach, which categorizes web pages into

meaningful categories with information of the query and the result page con-

tent only, does not require additional information about the query in question

and is feasible for real time page clustering for search engine results. The

use of a community mining metric of the discovered query sense community

structure to assess whether page clustering is required for search results is

new. While previous methods overlook this issue, experimental results show

that our method is accurate.

5. While previous ranking methods focus on homogeneous networks, our entity

ranking approach is useful for heterogeneous networks where there exist mul-

tiple types of entities and relations. We also provide a convenient interface

for users to navigate the ranking and relations.

Organization: This dissertation is organized as follows. Chapter 2 briefly sur-

veys the background of social network analysis. Chapter 3 introduces the state-of-

the-art community mining approaches, evaluations and other related work. Chapter

4 defines the problems and overviews our solution to address the challenges, which

is presented in detail in Chapter 5, 6, 7, 8 and Chapter 9. Finally, Chapter 10 con-

cludes.

7

Chapter 2

A Review of Social Network Analysis

While emerged as an important technique in modern sociology, Social Network

Analysis (SNA) has been a widely used approach in many fields, including an-

thropology, biology, communication studies, economics, geography, information

science, organizational studies, social psychology, and sociolinguistics. The pecu-

liarity of this perspective is that it focuses not only on individuals or other social

units, but also on the relationship between them [135]. In this chapter, our goal is

to give a general review of this aspect and a description of resources and principle

topics covered by Social Network Analysis and Data Mining. In the first section,

we concentrate on the historical and methodological context of SNA. In the second

section, by introducing some recent studies about Social Network and its relation-

ship with Computer Science, in particular Data Mining, we present the research

background of this dissertation.

2.1 Social Network Analysis: A Brief Survey

Many social aggregations can be represented in terms of units composing the ag-

gregation and relations between these units. This kind of representation is called

“Social Network”, which can be defined as a social structure made of nodes that

are tied by one or more specific types of relations. Every node (or unit) is usu-

ally called a “social actor”, which may represent a person, a group, a document, an

organization, a nation and so on. A relation is represented as a linkage or a flow

between these nodes. The set of possible relations is probably infinite: friendship,

8

kinship, dislike, conflict, trade, acquaintance, financial exchange, values, contents,

physical connection, WWW hyperlink, the presence in the same place, and so on.

Therefore, in contrast to traditional social scientific studies, which concentrate on

attributes of individual social actors, Social Network Analysis provides an alterna-

tive view, where the attributes of units are less important than their relationships

and ties with other units within a network. The advantage of such a representation

is that it permits the analysis of social processes as a product of the relationships

among social entities [135].

2.1.1 History

According to Scott [185], there are three main research lines for Social Network

Analysis, led respectively by

• Sociometric Analysts, who mainly use and develop graph theory.

• Harvard researchers, who first studied models of interpersonal relationship

and clique formation, and after 1970 developed many useful ideas in SNA.

• Anthropologists from the University of Manchester, who studied relational

structures characterizing tribal society communities.

Social Network Analysis originated in 1930s, led by three scientists: Jacob

Moreno, Kurt Lewin and Fritz Heider. Moreno developed sociometry [141]. He

started asking people who their friends were and explored how their relations with

others served as both limitations and opportunities for their psychological behavior

and action. He believed that large scale social phenomena, such as the economy and

state, were sustained and reproduced over time by the small scale configurations

formed by peoples patterns of friendship, dislike and other relations. Moreno’s

chief innovation was to devise the “sociogram” (see Figure 2.1) as a way of rep-

resenting the formal properties of social configurations [185]. One of the config-

urations he observed was the sociometric star: an individual was chosen by many

others as a friend. Another early work by Lewin on group behaviour proposed that

the field of social forces where the group was located determines the behaviour of

9

Figure 2.1: An example of original social network diagrams [74]

the group [124]. Lewin argued that the structural properties of this social space

could be investigated mathematically using vector theory and topology. Finally,

Heider pioneered the area of social perception and attitudes. He developed what

is known as balance theory [185]. He believed that the mind seeks balance by try-

ing to hold ideas that are not in conflict with one another, which also applies to

attitudes towards other people [101]. These ideas were soon developed by Frank

Harary and Dorwin Cartwright, who used graph theory to build a powerful formal

tool for social structure analysis [35].

10

Around the same time, Social Network Analysis developed with the studies of

some Harvard researchers, who dedicated their attention to the search for decom-

position and exploration methods of structures composing a graph. In particular,

the research of W. Lloyd Warner and Eltan Mayo, who are the leaders of this move-

ment, about Chicago’s central plant “Hawthorne” was a milestone. The originality

of their studies consisted of the large usage of sociograms [136], and the introduc-

tion of the concept of “clique”.

In the 1950s, researchers from the Department of Social Anthropology at Manch-

ester University pointed their attention at the effective configuration of relationships

deriving from power and conflict between individuals, instead of set up norms and

institutions of a society [185]. This group, led by John Barnes, Elizabeth Bott and

later J. Clyde Mitchell, began investigating how the structure of relations among

people affected not only the individuals but the society as a whole. The term “So-

cial Network” was first introduced in 1954 by John Barnes [17], who gave life to a

remarkable formal development of the analysis of social structures.

Based on Barnes et al.’s work, a group at Harvard led by Harrison C. White in

the 1960s and 1970s further developed the mathematical aspects of social network

analysis, translating many important concepts from social science, such as the no-

tion of “social role”, into mathematical form which allowed them to be measured

and modeled. The central idea is that the search of structure in a network should

not be based on a-priori defined and well-known categories, but on the real rela-

tions among the network nodes and on how these relations structure it, with the aim

to describe the concrete and emergent role structures. This important assumption

makes most modern data mining methods inappropriate for SNA tasks, as we re-

view in Chapter 3. In this context, they introduced the concept of “block model”,

which was intended as corresponding to the role of a group of components of a

social network [132, 215]. Furthermore, Mark Granovetter proposed the important

“weak tie hypothesis” [87], which was shown to be useful in many researches. The

“weak tie hypothesis” argues that if node A is strongly linked to nodes B and C,

then there is a great probability that B and C are linked to each other.

11

Among the many ideas developed by White and his students, one original the-

ory, known as “small world phenomenon” and proposed by Stanley Milgram [139],

revealed to be very interesting. Milgram’s approach concerned the empirical effort

to determine how many steps (or ties) are necessary, in a well-defined population,

so that two different individuals can meet each other [135]. In order to learn more

about the probability that two randomly selected people would “know” each other,

Milgram chose individuals in the U.S. cities of Omaha, Nebraska and Wichita,

Kansas to be the starting points and Boston, Massachusetts to be the end point.

Letters that detailed contact information about the target person were given to the

starting individual. Upon receiving the letter, the recipient was asked to forward the

letter directly to the target person if he personally knew that person. Otherwise, the

recipient was asked to sign their name on the letter and forward the letter to a friend

or relative they know personally that is more likely to know the target. As a result,

64 of the 296 letters eventually did reach the destination. The average path length

fell around 5.5 or 6. Hence, the researchers concluded that people in the United

States are separated by about six people on average. This is the famous “Small

World Experiment”.

To summarize, Social Network Analysis was born from the joint activity of

social psychologists, anthropologists, sociologists, mathematicians, physicians and

economists. Nowadays it is used with profit for research in many fields including

behavioral, social, economical and political disciplines. However, in the era of in-

formation explosion with the rapidly increasing amount and size of social networks,

e.g., the ever-growing World Wide Web (WWW) and Facebook community, the

problem of managing the social information becomes more challenging. Therefore,

it is necessary to apply computer science techniques to social networks to analyze

the structure more efficiently and accurately.

2.1.2 Types of Data

According to Scott [185], there are two principle types of social science data.

• Attribute Data represent the attitudes, opinions and behaviour of individuals,

properties, qualities or characteristics of units or groups. This information

12

are often regarded simply as attributes of particular individuals that can be

quantified and analyzed by the many available statistical procedures.

• Relational Data are the ties, connections and contacts, which relate one unit

to another. Relations cannot be reduced to a property of individuals, but are

properties of the structure of units.

For attribute data, the appropriate methods are variable analysis, whereby at-

tributes are measured as values of particular variables, such as income, profession,

education, etc. For relational data, on the other hand, the appropriate methods are

network analysis, whereby relations are treated as linkages which connect units.

While it is still possible to conduct quantitative and statistical counts of relations,

network analysis methods usually apply qualitative measures of the network struc-

ture. Note that although there are distinct types of data each with their own appro-

priate methods of analysis, there is nothing specific about data collection methods

which are used to produce them. Traditionally, questionnaires, interviews, partici-

pant observation or documentary sources can be consulted in order to generate the

data. Also note that, in this dissertation we are more interested in relational data

and network analysis than attributes and variable analysis.

2.1.3 Concepts

In this section, we first introduce the relation definition and network representation,

which are the basis of Social Network Analysis. Then we describe several important

notions originated from graph theory.

Relation Definition and Network Description

The fundamental concept that all SNA approaches share is the notion of relation.

Let us consider two actor sets, labeled X and Y :

A relation between X and Y is every set of ordered couples where the first ele-

ment belongs to X , and the second element belongs to Y [135].

13

A = {(x1, x2), (x2, x4), (x4, x2), (x3, x2), (x3, x4), (x4, x3)}
B = {(x1, x2), (x2, x3), (x3, x4), (x4, x1)}

List Representation of Relation A and B

x1 x2 x3 x4

x2

x3

x4

x1 0 1 0 0

0 0 0 1

0 1 0 1

0 1 1 0

x1 x2 x3 x4

x2

x3

x4

x1 0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

x1

x2 x3

x4 x1

x2

x4

x3

Network Representation of Relation A and B

Matrix Representation of Relation A and B

Figure 2.2: Different representations of relations A and B on the set X =
{x1, x2, x3, x4}

For simplicity, we now consider the simplest network form, which is a binary net-

work on the set of actors X . There are three kinds of representation of this social

network (see Figure 2.2 for relation representation on set X = {x1, x2, x3, x4}):

• The first description is the simple list of all the elements taken from the actor

set, and the list of the pairs of elements which are linked by a social relation.

• The second description comes from the graph theory: every actor is repre-

sented as a node, the relations defined by pairs of individuals are represented

by edges between two nodes.

• The third description is in a matrix form.

14

There are other kinds of networks, for example, there can be more than one

relation, relations can be weighted or directed, etc. It is also possible to use relations

with more than 2 actors, e.g., ternary relations. However, these relations are not

common in Social Network Analysis: “(binary relational representations) include

the vast majority of the models that have been proposed and applied in the social

network literature to date” [173].

Graph Theory

Graph Theory has been used in several scientific fields such as anthropology, com-

munication, geography and many others. In particular, it plays a crucial role in

Social Network Analysis since it has been used to denote the structural properties

of a network. More specifically, Graph Theory provides to Social Network Analysis

a tool to quantify the network properties, and to formally analyze different charac-

teristics of a network. Therefore, Graph Theory, and more generally a graph, is one

of the best way to represent and detect the social structure which is defined as a

relation (or some relations) connects different individuals of a social group. In the

following we introduce some basic concepts of Graph Theory in SNA, which are

used frequently in this dissertation.

The aim of SNA is to detect and to investigate the structure identified by a set

of relations connecting a set of individuals. We have specified that we only inves-

tigate binary relations between a couple of individuals. However, a binary relation

can be directed or undirected: relations like marriage, neighbour or friendship are

undirected while relations such as “to be parent of” or “to be the best friend of” are

directed relations. Assume in any graph we have n nodes and m edges, an undi-

rected relation can be represented by graph G, where there is no difference between

line (ni, nj) and line (nj, ni) between two nodes ni and nj . Thus an undirected

relation is symmetric: if ni is a friend to nj , nj is also a friend to ni. On the other

hand, for a directed relation where the two ties are different, we need to use a di-

rected graph, where a relation is represented as a set of arcs connecting nodes in the

network. Every couple of nodes connected by an arc is ordered and the order is not

invertible. Note that most of the proposed approaches in this dissertation focus on

15

undirected networks, the directed-network-extensions are possible, even though we

do not cover them herein.

Now we introduce the important notion of subgraph. A graph Gs is a subgraph

of a graph G if the nodes of Gs are a subset of the nodes of G and the edges of Gs

represent a subset of the edges of G [135]. The notion of subgraph is fundamental

for several definitions and metrics in Social Network Analysis. For example, a

clique is a maximal complete subgraph composed by at least three nodes. A clique

is complete because each node in it is adjacent to any other node in the clique. A

clique is maximal because there are no nodes that are not included in the clique and

are also adjacent to all the nodes in the clique [96]. The clique notion is the basis

of many research works that aim to discover groups or communities in the social

network.

We now introduce several quantitative metrics to represent social structure prop-

erties using Graph Theory.

• Node Degree is the simplest and most commonly used metric. The degree of a

node in a graph is defined as the number of edges connecting to that node. The

mean node degree d̄ = 2m
n

, since each edge counts for both ending nodes. It

is more complicated for directed graphs. There are two kinds of node degree

for each node: the in-degree, which is the number of arcs connect to a node,

and out-degree, which is the number of arcs connect from a node. The mean

in-degree and out degree are equivalent: d̄i = d̄o = m
n

.

• Density measures the proportion of edges in the graph over the total number

of possible edges. The density D = 2m
n(n−1)

, where m is the edge number and

the denominator is the edge number for a completely connected graph. For

directed graphs, D = m
n(n−1)

.

• Diameter of a connected graph is the maximum geodesic distance [95] be-

tween any pair of nodes. The geodesic distance is defined as the shortest path

between two nodes in the network.

• Neighbourhood of the node ni represents all nodes that connect to ni. The

neighbourhood size is the number of these nodes.

16

There are many other important metrics and indexes for SNA, however, the listed

ones are most related to our research and are used frequently in this dissertation.

2.2 Social Networks and Data Mining

After the invention of the computer and the Internet in late 20th century, the amount

of published information has increased to a tremendous size. For example, in the

World Wide Web, which can be seen as the world’s largest database, there are at

least 20 billion pages in the indexed web1 and 115,658,964 registered domains2 as

of February 23, 2010. The amount is still increasing in a faster speed. Many of

these datasets are best described as a linked connection of interrelated objects, i.e.,

a social network, for example, a collection of linked web pages, medical data de-

scribing patients, disease, treatments and contacts, or bibliographic data describing

publications, authors and conferences. Therefore, on one hand, computer scientists

apply data mining techniques to extract hidden patterns from the data; on the other

hand, sociologists develop SNA methods to discover properties of the same net-

work. Both research fields aim at the same problem, albeit by somewhat different

means. In this section, we introduce a list of data mining tasks that are also cov-

ered by Social Network Analysis before we define the research area of Community

Mining.

2.2.1 Data Mining Tasks for Social Network Analysis

“Links”, or more generically relationships, among data instances are ubiquitous.

These links often exhibit patterns that can indicate properties of the data instances

such as the importance, rank, or category of the object [81]. By taking links into ac-

count, more complex situations arise. For example, not all links might be observed

at the same time, therefore predicting the existence of links between objects may be

necessary. Mining with links also leads to other derivative challenges focused on

discovering substructures, such as groups or common subgraphs. Here we briefly
1http://www.worldwidewebsize.com/
2http://www.domaintools.com/internet-statistics/

17

introduce several recent data mining tasks that can be broadly categorized as Social

Network Analysis tasks, which focus on social actors, relations, and graphs.

Group Detection

The goal of group detection is to cluster the nodes in the graph into groups that share

common characteristics. A range of techniques have been presented in different

fields to address this general problem, e.g., hierarchical clustering [151], stochastic

blockmodeling [163], spectral clustering [60, 218], edge betweenness [155], etc.

We will discuss related works for this problem in more detail in Chapter 3.

Relational Object Ranking

Ranking is probably one of the most well known data mining tasks, thanks to

Google’s success as a web search engine. The objective of relational object ranking

is to exploit the network relational structure to order a set of nodes within the graph.

The idea has been widely used in the web information retrieval domain [117, 167].

In SNA, measures of centrality [28, 29, 76, 78] are developed to characterize the

network structure to order individuals. See Chapter 3 for more detail.

Relational Object Classification

Relational object classification recently received considerable attention [38, 123,

164]. In this problem, the task is to label the members of a social network from a

finite set of categorical values. The discerning feature of relational object classifi-

cation that makes it different from traditional classification is that in many cases,

the labels of related objects tend to be correlated, thus the challenge is to design

algorithms that exploit such correlations and jointly infer the categorical values as-

sociated with the entities in the graph [81].

Entity Resolution

Nodes in a social network might refer to the same real-world entity, thus identify-

ing and determining the references become a problem. Examples of this problem

arise especially in Natural Language Processing (NLP) [20, 160, 176] and Database

18

Management [24, 62]. Traditionally, entity resolution has been considered as a pair-

wise resolution problem, where each pair is independently resolved as being co-

referent or not, solely based on the similarity of their attributes. In a social network,

however, nodes that connect to the node in question should also be considered. For

example, co-authors of an author in bibliographic data, or co-occurrence links be-

tween name entities in documents could be used to verify the reference of the entity

in question.

Link Prediction

As we have mentioned, some links in the network may be unobserved while oth-

ers are observed. Moreover, a network can be dynamic, i.e. relations in this net-

work may change over time. Examples include predicting links among actors in so-

cial networks, such as predicting friendships; predicting the participation of actors

in events [165], such as email, telephone calls and co-authorship; and predicting

semantic relationships such as “adviser-of” based on web page links and content

[55, 200]. Therefore, link prediction is the problem of predicting the existence of

a connection between two entities, based on other observed relations and attribute

similarity.

Subgraph Discovery

The work on subgraph discovery attempts to find interesting or commonly appear-

ing subgraphs in a set of networks. The discovery of these patterns may be use-

ful for graph classification or other data mining tasks [81]. Subgraph discovery is

analogous to the frequent item set problem in Data Mining, thus many approaches

[107, 122] naturally exploit the Apriori property [4].

Among all these data mining and SNA tasks, we are particularly interested in

group detection and entity ranking. We believe that group detection is the basis of

other SNA tasks and investigating the relations between grouped entities by ranking

would be the next important step.

19

2.2.2 Community Mining

In social networks, which are composed of nodes representing individuals and

edges indicating relationships, a common property is the community structure, which

notes the existence of densely connected groups of vertices, with only sparser con-

nections between groups. For example, WWW pages are more likely to connect

to or to be connected from pages that cover the same topic; employees that work

on related projects in an organization may communicate frequently via email; re-

searchers that have co-authored several papers may work closely on the same re-

search problem; people that call each other more often in the tele-communication

network are usually friends, and so on. The discovery of these groups, clusters or

communities is the basis for many other SNA tasks, e.g., entity ranking, classifica-

tion and resolution.

We define a community to be a social network partition such that entities within

the same community share some common trait or proximity, judged by some defined

entity similarity or relationship metric. Thus, “Community Mining” is the process

of analyzing attributes and relations from different perspectives to discover com-

munities from social networks and extract hidden patterns from communities. In

particular, “community patterns” in this dissertation are discovered and presented

in the form of rankings among related entities in the social network.

In recent years, Community Mining, which focuses on the detection and char-

acterization of social network structure, has received considerable attention in soci-

ology and lately data mining (see Chapter 3). While there are many possible fields

that can benefit from the community mining research, we list a few of them as

follows.

• Search Engines. Identifying highly related web page communities may affect

page rankings of a search engine. Pages that are categorized into the same

word sense community as the target query should be ranked higher than those

that are not. See Chapter 8 for details.

• Customer Services. Detecting customer groups in a tele-community network

may be useful to evaluate the importance of a particular customer. If one is

20

evaluated as a core member of a large community, the service provider may

give more bonus to make him or her stay.

• Academic Collaboration. Locating people that work on the same topic may

help a researcher find future collaborations and possible projects.

• e-Business. Grouping related products can improve the recommendation list

that is shown to the user and accelerate potential sales.

In the next Chapter, we first categorize topics of Community Mining based on

constraints on the social network in question, then present the state-of-the-art solu-

tions for each problem respectively.

21

Chapter 3

State-of-the-Art in Community
Mining

Traditional data mining algorithms, such as association rule mining, supervised

classification and clustering analysis, commonly attempt to find patterns in a data

set characterized by a collection of independent instances of a single relation, which

is consistent with the classical statistical inference problem of trying to identify a

model given an independent, identically distributed (IID) sample [81]. However, a

new emerging challenge that data mining researchers face is solving the problem

of mining richly structured, heterogeneous data sets. Such data sets are usually

modeled as networks or graphs and contain multiple object types, which can be

related to each other in various ways, e.g., commercial data describing relations

between customers, movies and actors or bibliographic data describing relations

between conferences, authors and topics. Naı̈vely applying traditional statistical

inference procedures, which assume that instances are independent, can lead to

inappropriate conclusions about the data [110]. For example, for a search engine,

indexing and clustering web pages based on the text content without considering

their linking structure would lead to bad results for queries. The relations between

objects should be taken into consideration and can be important for understanding

the data structure and knowledge patterns.

The newly emerging research area for these problems refers to data mining tech-

niques that explicitly consider the links or relations between objects when building

predictive or descriptive models of the linked data [81]. Common data mining and

22

SNA tasks include entity ranking, object classification, group detection, entity res-

olution, link prediction and subgraph discovery. In particular, we are interested in

the tasks of group detection and entity ranking. We call this process community

mining. In this chapter, we review related works on these emerging themes.

3.1 Community Mining Categorization

Before introducing details of related works in community mining, we classify the

main research works in this field into seven categories.

• Community discovery with global network information. In a perfect world,

we have full access to complete information of the social network in ques-

tion, e.g., number of communities, size of the node set and edge set. A global

community is a community defined based on global information about the

entire network. That is, one needs to access and see the whole network infor-

mation. The majority of current research works on community mining rely

on this assumption. They are reviewed in Section 3.2.

• Community discovery with local network information. For huge or dynamic

networks, where global information is no longer available, e.g., WWW, we

have to discover communities with only local information, such as neighbour-

hoods and node degrees. A local community is a community defined based

on local information without having access to the entire network. Research

works with this constraint are reviewed in Section 3.3.

• Community evaluation. For many social networks, the ground truth of com-

munities usually does not exist. Thus, evaluation metrics are necessary to

verify the results of various algorithms. These works are reviewed in Section

3.4.

• Overlapping community discovery. While most approaches assume that one

node can belong to only one community, it is usually not the case in the real

world. For example, an author could publish in several different areas, or a

23

person could be an active member of multiple social groups. Research that

focuses on overlapping community discovery is reviewed in Section 3.5.

• Dynamic community discovery. Social network communities usually evolve

over time. One node may belong to one community and change to another

after a certain amount of time. Related works on discovering dynamic com-

munities are reviewed in Section 3.6.

• Community discovery with multiple relations or attributes. In heterogeneous

networks, there are more than one relation connecting social actors. Identi-

fying the importance of different relations before attempting to find commu-

nities is required on such a network. Moreover, in many applications more

informative graphs with attributes are given with their network structure. Re-

lated works are reviewed in Section 3.7.

• Entity ranking. The relations between entities among different communities,

which can be represented as relevance rankings, are interesting to investigate

after the communities in the network are discovered. Related works on entity

ranking are reviewed in Section 3.8.

3.2 Mining on Global Network

Many datasets can be described in the form of graphs or networks where nodes in

the graph represent entities and edges represent relationships between pairs of enti-

ties. For example, the WWW can be viewed as a very large graph where nodes rep-

resent web pages and edges represent hyperlinks between pages. In social networks,

the nodes typically represent individuals and edges indicate relationships, e.g., ci-

tation graphs can be constructed with papers as nodes and references as edges. A

number of community mining approaches, as we review in the following, studied

ways to effectively discover community information from these network structures.

Most of these attempts are based on the simplest kind of network, with a single type

of undirected, unweighted edge connecting unweighted vertices of a single type. An

important common assumption for these approaches is that the complete global net-

24

work information is always available. We now survey several main methods, and

where they fall short.

Past work on the problem of finding groups in networks divides into two main

principal lines of research. The first, which is referred to as graph partitioning

with applications in parallel computing and VLSI (Very Large Scale Integration)

design [65, 71], is described as dividing the vertices of a network into some number

k of groups with roughly equal size, while minimizing the number of edges that

run between vertices in different groups. The second, identified by names such as

block modeling, hierarchical clustering, or community structure detection, has been

pursued by sociologists, physicists and applied mathematicians, with applications

especially to social and biological networks [150, 210, 216]. These two lines of re-

search are really addressing the same question, albeit by somewhat different means.

There are, however, important differences between the goals of the two camps that

make quite different technical approaches desirable [153]. For example, graph par-

titioning approaches usually know in advance the number and size of the groups

into which the network is to be split, while community structure detection meth-

ods normally assume that the network of interests may divide naturally into some

subgroups, which is determined by the network itself but not by the user.

3.2.1 Graph Partitioning

There is a long tradition of research by computer scientists on graph partitioning.

Generally, finding an exact solution to a partitioning task is believed to be an NP-

hard problem, making it prohibitively difficult to solve for large graphs. However, a

wide variety of heuristic algorithms have been developed that give acceptable good

solutions in many cases: METIS [115], flow-based methods [72, 183], information-

theoretic methods [58] and may be the best known Kernighan-Lin algorithm [116],

which improves on an initial division of the network by optimization of the number

of within- and between-community edges using a greedy algorithm, and achieves

O(n3) running time on sparse graphs. The main issue of these methods is that input

parameters such as the number of the partitions and their sizes are usually required,

but we do not typically know how many communities there are, and there is no

25

reason that they should be of roughly the same size. The number and sizes of the

groups should be determined by the network topology but not by the user. More-

over, the number of inter-community edges need not be strictly minimized either,

since more such edges are admissible between large communities than between

small ones [155].

In practice, most approaches to graph partitioning have been based on itera-

tive bisection: find the best division of the graph into two groups, and then further

subdivide those into two until one finds the required number of groups. An impor-

tant family of algorithms following this strategy is the spectral bisection method

[70, 156, 177], which is based on the eigenvectors of the graph Laplacian. The

Laplacian of a n-vertex undirected graph G is the n×n symmetric matrix L whose

diagonal element Lii is the degree of vertex i, and whose off-diagonal element Lij

is -1 if vertices i and j are connected by an edge and zero otherwise [150]:

L = D − A (3.1)

where D is the diagonal matrix of vertex degrees and A is the adjacency matrix. For

example, the vector (1, 1, 1...) is always an eigenvector with eigenvalue zero since

all rows and columns of the Laplacian sum to zero (Dii =
∑

j Aij).

If the network can be perfectly divided into communities, i.e. there are k non-

overlapping groups of vertices (G1,Gk) such that there are only intra-community

edges and no inter-community ones, the Laplacian will be block diagonal. Each di-

agonal block will form the Laplacian of its own, thus there will be k eigenvectors

v1, v2, ...vk with eigenvalue 0. If the network separates well but not perfectly, i.e.,

there are a few edges that do not fit the block-diagonal pattern, there will in general

be one eigenvector with eigenvalue zero, and k−1 eigenvalues slightly greater than

zero, since all eigenvalues of the graph Laplacian are non-negative. These eigen-

vectors, which correspond to non-negative eigenvalues of graph Laplacian of the

network, are approximately linear combinations of the eigenvectors v1, ...vk of the

Laplacian of perfect communities, which are non-overlapping groups of vertices in

the network. Hence, by looking for eigenvalues of the graph Laplacian only slightly

greater than zero and taking linear combinations of the corresponding eigenvectors,

26

one should in theory be able to find the community blocks themselves, at least ap-

proximately [150]. In a particular special case, when there are only two blocks,

since all eigenvectors corresponding to non-degenerate eigenvalues of a symmetric

matrix are orthogonal, it is obvious that all eigenvectors other than the one corre-

sponding to the lowest eigenvalue must have both positive and negative elements.

Therefore, we can find one eigenvector with eigenvalue slightly greater than zero

and elements all positive for one community and all negative for the other. Thus, the

spectral bisection method divides the network into its two communities by looking

at the eigenvector corresponding to the second lowest eigenvalue and separating the

vertices by the signs of their corresponding elements.

Despite its evident success in the graph partitioning arena, spectral partition-

ing suffers from the same issue as the other partitioning methods: the sizes of the

groups into which the network is divided need to be fixed but are not usually known

in advance. Moreover, if we set the group sizes to be free, the spectral partitioning

method (and other methods that minimize the cut size without constraints on the

group sizes) breaks down: the minimum cut size is always achieved by the triv-

ial division which puts all vertices in one group and none in the others. Various

constraints have been proposed to resolve the issue, such as the ratio cut [39, 47,

93, 213], which minimizes not the simple cut size R (R =
∑

i∈group1,j∈group2
Aij)

but the ratio R
n1

+ R
n2

where A is the adjacency matrix, n1 and n2 are again the

sizes of the two groups of vertices. Still, however, this approach is biased in favor

of divisions into equal-sized parts and thus still suffers from the same drawbacks

that make standard spectral partitioning inappropriate for community mining. Re-

searchers soon have realized that cut sizes are simply not the right thing to optimize

because they don’t accurately reflect the intuitive concept of network communities.

Therefore, similarity, or association based methods have been proposed: the nor-

malized cut [187], the min-max cut [60] and the modularity-based method [152].

In more detail, the normalized cut measures the cut cost as a fraction of the total

edge connections to all the nodes in the graph; the min-max method minimizes the

association between two cut sets and maximizes that within each subgraphs; the

27

modularity-based method uses a benefit function Q defined by

Q = (number of edges within communities)

−(expected number of such edges) [75]

This benefit function Q is called modularity [147, 155]. It is a function of the

particular division of the network into groups, with larger values indicating stronger

community structure (more details on the modularity are provided in Section 3.4).

The major disadvantage of the spectral bisection method is that it only bisects

graphs. Division into a larger number of communities is usually achieved by re-

peated bisection, but this does not always give satisfactory results given the com-

munity ground truth.

3.2.2 Hierarchical Clustering

The approaches developed by sociologists in their study of social networks for find-

ing communities, which have been directed almost exclusively at the analysis of

empirically derived network data, are perhaps better suited for our current purpose

than the aforementioned spectral clustering methods, whose performance highly

depends on input parameters.

The principal and most popular technique in use is hierarchical clustering [185].

The main idea of this technique is to discover natural divisions of social networks

into groups, based on various metrics of similarity (usually represented as similarity

xij between pairs (i, j) of vertices, based on the given network information.) There

are a variety of ways of defining the similarity between vertices, e.g. the Euclidean

distance [32, 210] compares the neighbours that two vertices share:

xi,j =
√

∑

k 6=i,j

(Aik − Ajk)2 (3.2)

where x is the similarity measure and A is the adjacency matrix. Another commonly

used similarity measure is the Pearson correlation between columns or rows of the

adjacency matrix [210]. If we define means and variances of the columns as:

µi =
1

n

∑

j

Aij (3.3)

28

σi =

√

√

√

√

1

n

∑

j

(Aij − µi)2 (3.4)

The correlation coefficient is:

xij =
1
n

∑

k(Aik − µi)(Ajk − µi)

σiσj

(3.5)

Related work on similarity measure is also reviewed in Section 3.8.

Hierarchical clustering methods fall into two broad classes: agglomerative and

divisive [185], depending on whether they focus on the addition or removal of edges

to or from the network. Once we have a measure for vertex similarity, in an agglom-

erative method, edges are added to an initially empty network, which has n vertices

and no edges, starting with the vertex pair with the highest similarity. Agglomera-

tive methods have their problems: they tend to find only the cores of communities

and leave out the periphery. The core nodes in a community usually have high sim-

ilarity, and thus are found early in the clustering process, but peripheral nodes that

have weak similarity to others often get neglected. On the other hand, in a divisive

method, we start with the whole network of interest and attempt to find the least

similar connected pairs of vertices and then remove the edges between them. By

doing this repeatedly, we divide the network into smaller and smaller components.

While agglomerative methods may ignore peripheral nodes, divisive methods usu-

ally classify all of them, including outliers, into communities, which would lower

the accuracy of community detection. The procedure of both hierarchical clustering

methods can be halted at any stage and the result components in the network are

taken to be the communities. It has been applied to various social networks with

natural or predefined similarity metrics [7, 52, 85, 134, 151, 155, 211].

The hierarchical clustering method has the advantage that it does not require

the size or number of groups we want to find beforehand. However, they tend to

find only the cores of communities correctly and leave out the periphery, which has

weak similarity and is hard to be placed accurately.

3.2.3 Recent Approaches

After discussing traditional approaches to find communities in networks, we now

describe some more recent community mining algorithms.

29

Girvan and Newman proposed a community finding algorithm based on an inter-

esting measure, called “edge betweenness” [85]. Their method belongs to divisive

hierarchical clustering, which progressively removes edges from a network. The

betweenness of an edge is defined to be the number of shortest paths between vertex

pairs that run along the edge in question, summed over all vertex pairs. This quan-

tity can be calculated for all edges in time O(mn) on a graph with m edges and n

vertices [30]. The algorithm then simply calculates the betweenness of all edges in

the network and removes the one with the highest betweenness, and repeats until no

edges remain or a stopping criterion is met.The main disadvantage of this algorithm

is that it is slow, since the betweenness score must be recalculated in each iteration.

Tyler et al. have suggested modifications based on Monte Carlo estimation to ad-

dress this problem, at the cost of a reduction in accuracy [203]. To evaluate the

result of their algorithm, Newman and Girvan proposed a measure called Modular-

ity (reviewed in Section 3.4), which is a numerical index of how good a particular

division is [155]. Later Newman proposed an alternative agglomerative hierarchical

clustering approach to discover community structure based on a greedy optimiza-

tion of modularity Q over possible divisions [151]. It starts with each vertex in a

separate community on its own and amalgamates communities in pairs, choosing at

each step the pair whose amalgamation gives the greatest increase in Q. The main

advantage of this algorithm is its speed, which is even faster after Clauset et al.’s

modification [52]. In later work, inspired by spectral clustering theory, Newman

proposed a framework to maximize the modularity based on the eigenspectrum of a

modularity matrix [152], similar to the graph Laplacian in graph partitioning algo-

rithms. By building such a matrix and its eigenspectrum, the problem of community

structure detection is equivalent to choosing a division of those eigenvector values

so as to maximize the result modularity. A similar approach has been proposed by

White and Smyth [218] in the computer science community.

Li et al. focused on community structure of name entities extracted from web

pages and blogs [125, 126]. At first, they collect data from Google search result

pages, given query string with specific person names. Then the name entity graph is

generated based on names and relations extracted from these pages. A hierarchical

30

clustering algorithm is proposed to find and merge triangles of name entities as

community cores. Similar to the hierarchical clustering method used in [126], Zhou

et al. proposed a concentric-circle model to locate the cores of communities first,

and then merge them based on appropriate similarity thresholds [234]. However,

both Li and Zhou et al.’s work did not provide a convincing evaluation method to

verify the value of their results. The fact that they focus on locating the community

cores makes their algorithm hard to find community periphery entities.

In contrast to the above methods, where community assignments are determin-

istic, approaches for group detection have been introduced based on the concept of

stochastic blockmodeling [163] from SNA. In that model, positions for the entities

are treated as IID random variables, and relations of a given type between two enti-

ties are random variables dependent solely on the positions of the individuals they

link. Nowicki and Snijders proposed a general stochastic blockmodeling approach

using Gibbs sampling to infer the posterior distribution for positions [163]. Wolfe

and Jensen [220] extended the general stochastic blockmodeling approach by allow-

ing an individual to have multiple position types in order to provide the flexibility to

model multiple roles that one individual may have in different context. Wang et al.

proposed a generalization of the broad stochastic blockmodeling approach that al-

lows joint inference of groups and topics based on observed relationships and their

attributes [207, 208]. Similarly, Zhang et al. proposed several probabilistic com-

munity discovery models for large scale social networks [231, 232]. The network

topology is used to compute the weights of the connections, denoted as social inter-

action profiles of the nodes. On the other hand, visualization methods are applied

to mining research communities based on bibliography data [104, 105]. Interactive

visualization is provided to explore the paper network model, also the local and

global research communities. While appearing to give good results in many cases,

probabilistic modeling and visualization methods share the same disadvantage: the

lacking of evaluation metric limits their value as effective community mining ap-

proaches.

Recently, there are increasing interests in finding communities on the web, each

focusing on a specific set of topics. Aside from the community discovery algo-

31

rithm, this task is challenging in several ways: efficiently retrieving the raw, largely

unstructured data from multiple disparate web resources, e.g., home pages, mail-

ing lists, newsletters; accurately extracting name entities and topics from the docu-

ments; and finally solving the co-reference problem of entities, that two entities with

different names are actually referring to the same object. There are several ongoing

projects, including the DBLife [61, 197], Microsoft Libra [198], and ArnetMiner

[196]. All of the systems discover communities of connected authors, conferences

and journals. However, in our own experience of exploring the systems, there are

still some incorrect instances of these related entities. A related contribution in the

context of recommending future collaborators based on their communities is W-

RECMAS, which is an academic recommendation system developed by Cazella et

al. [36]. The approach is based on collaborative filtering on user profile data of the

Brazilian e-government’s database, and can aid scientists by identifying people in

the same research field or with similar interests in order to help exchange ideas and

create academic communities. However, researchers need to post and update their

research interests and personal information in the database before they can be rec-

ognized and recommended by the system, which makes the approach impractical.

3.3 Mining on Local Network

The problem of finding communities in social networks has been studied for decades.

However, most of the proposed approaches require knowledge of the entire graph

structure. This constraint is problematic for networks which are either too large to

know completely or dynamic, e.g., the WWW. In spite of these limitations, finding

local community structure would still be useful, albeit confined by the little acces-

sible information of the huge network in question. For example, we might like to

quantify the local communities of either a particular webpage given its link struc-

ture in WWW, or a person given his friend network in Facebook. In this section,

we first define the research problem of finding local communities in a network, then

focus our efforts on reviewing existing algorithms.

32

Unknown

Unknown

S

S

S

S

C

B

D

Figure 3.1: Local Community Definition

3.3.1 Problem Definition

Generally speaking, local communities are densely-connected node sets that are

discovered and evaluated based only on local information. Suppose that in an undi-

rected network G (directed networks are usually transformed to undirected ones

first), we start with perfect knowledge of the connectivity of some set of nodes,

i.e., the known local portion of the graph, which we denote as D. This neces-

sarily implies that we also have limited information for another shell node set S,

which contains nodes that are adjacent to nodes in D but do not belong to D (note

“limited” means that the complete connectivity information of any node in S is un-

known). In such circumstances, the only way to gain additional information about

the network G is to visit some neighbour nodes si of D (where si ∈ S) and obtain

a list of adjacencies of si. As a result, si is removed from S and becomes a member

of D while additional nodes may be added to S as neighbours of si. This typical

one-node-at-one-step discovery process for local community detection is analogous

to the method that is used by web crawling systems to explore the WWW. Further-

more, we define two subsets of D: the core node set C, where any node ci ∈ C

have no outward links, i.e., all neighbours of ci belong to D; and the boundary node

set B, where any node bi ∈ B have at least one neighbour in S. Figure 3.1 shows

33

node sets D, S, C and B in a network. Similar problem settings can be found

in [14, 15, 51, 133], however, the metrics used to discover and evaluate the local

community are different, as reviewed below.

3.3.2 Local Community Mining Approaches

Clauset has proposed the local modularity R [51] for the local community detection

problem. R focuses on the boundary node set B to evaluate the quality of the

discovered local community D.

R =
Bin edge

Bout edge + Bin edge

(3.6)

where Bin edge is the number of edges that connect boundary nodes and other nodes

in D, while Bout edge is the number of edges that connect boundary nodes and nodes

in S. In other words, R measures the fraction of those “inside-community” edges

in all edges with one or more endpoints in B. Intuitively, a community with a sharp

boundary would have few connections from its boundary to the unknown portion of

the network, while having a greater proportion of connections from the boundary

back into the local community. Therefore, the community D is measured by the

sharpness of the boundary given by B. Additionally, this measure is independent

of the size of the enclosed community.

Similarly, Luo et al. later proposed the modularity M [133] for local community

discovery. Instead of measuring the internal edge fraction of boundary nodes, they

directly compare the ratio of internal and external edges.

M =
number of internal edges

number of external edges
(3.7)

where “internal” means two endpoints are both in D and “external” means only one

of them belongs to D. An arbitrary threshold is set for M so that only node sets that

have M ≥ 1 are considered to be qualified local communities. M is strongly related

to R. Consider a candidate node set D where every node in D has external neigh-

bours, thus we have |C| = 0 and B = D, which means Bin edge = internal edges

and Bout edge = external edges. The threshold M ≥ 1 is equivalent to R ≥ 0.5.

It is straight-forward to identify local communities with the R or M metric.

Given a starting set D, in every step we merge one node into D from S, which

34

increases the metric score the most, breaking ties randomly, then we update D, B

and S. This process is repeated until all nodes in S give negative value if merged

in D, i.e., ∆R < 0 or ∆M < 0. For large networks, the running time of this

method will be dominated by the time-consuming network structure information

retrieval. Therefore, the algorithm complexity is linear in the size of the explored

subgraph, O(k), if k nodes have been merged into the local community. In the local

community discovery process, it is possible that one node is qualified to be in the

community when it is small at the beginning, but after the community grows to a

certain size, this node may be no longer a qualified member. To solve this problem,

Luo et al. [133] added a “deletion” step in the discovery process to remove any node

that would decrease the M measure after the merging stops. If the starting node is

removed by this step, they consider no local community exists for this node.

Bagrow et al. proposed an alternative method to detect local communities [15],

which spreads an l-shell outward from the starting node n, where l is the distance

from n to all shell nodes. The intuition of their metric is similar to Equation 3.7:

for each l level, the number of edges connecting from the nodes on the lth shell to

the nodes on the (l+1)th shell K l
l+1 is recorded. The algorithm keeps merging the l

shell nodes into the community until K l
l+1 < α, where α is a given parameter. The

performance of this approach highly depends on the parameter l and the starting

node because the result communities could be very different if the algorithm starts

from border nodes instead of cores. The other parameter α is also critical, e.g, if α

is set to a small number, the algorithm may merge many more nodes than necessary

before it stops.

Bagrow later proposed the “outwardness” metric Ω to measure local structure

[14]. The “outwardness” Ωv(D) of node v ∈ B from community D:

Ωv(D) =
1

degreev

(degreeout
v − degreein

v) (3.8)

In other words, the outwardness of a node is the number of neighbours outside

the community minus the number inside, normalized by its degree. Thus, Ωv(D)

has a minimum value of −1 if all neighbours of v are inside D, and a maximum

value of 1− 2
degreev

, because any v has at least one neighbour in D. Since finding a

35

community corresponds to maximizing its internal edges while minimizing external

ones, at each step, the node with the smallest Ω is merged. This metric works fine

to find the most related node for the current community D, but it lacks appropriate

stopping criteria since the algorithm can always find a node with the smallest Ω. The

author bypassed this problem by using arbitrary thresholds, however, the threshold

parameter would be extremely difficult to be accurate when it comes to real world

dynamic and huge networks.

Recently, Xu et al. proposed another similarity metric between a node pair (i, j)

for their approach SCAN [221], we call this metric S:

Sij =
|Ni ∩ Nj|
√

|Ni| ∗ |Nj|
(3.9)

where Ni is the neighbourhood of node i, including i itself and all nodes connect-

ing to i. Therefore, metric S normalizes the number of common neighbours by

the geometric mean of sizes of two neighbourhoods in order to compare the neigh-

bourhood structure of the two vertices in question. Since this metric only requires

local information such as the neighbourhoods of the nodes, we classify it as a lo-

cal community detection metric, although it was originally proposed to find global

communities in networks.

3.4 Community Evaluation

As we have reviewed, many community mining algorithms do excellent jobs of re-

covering known communities both in artificially generated random networks and

in real-world examples. However, in practical situations these algorithms will nor-

mally be used on networks in which the communities are not known, i.e., there is

no ground truth for the mining problem. This leads to a new problem: how do

we know whether the communities found by the algorithms are good ones? Com-

munity mining algorithms can produce communities even for completely random

networks which have no meaningful community structure at all, how to measure

the structure that is found for these “structureless” networks? How can we compare

between different community results to find the “best”ones for a given network?

36

These questions show the necessity of an evaluation method for community mining

approaches.

3.4.1 Global Community Evaluation

To address the evaluation problem for community mining approaches, researchers

have typically resorted to human knowledge and ad hoc assessment [33, 34, 125,

126, 193]. They applied their approaches on real world databases and used com-

mon sense to validate whether the extracted communities are accurate or not. For

example, several researchers [33, 34, 193] applied their algorithms on the DBLP

data [25], which provides bibliographic information on major computer science

journals and conference proceedings, then evaluated the performance by showing

that the result is making sense, e.g., ICDE is found in the same community with

VLDB and SIGMOD. Li et al. [125, 126] focused on finding name entity commu-

nities extracted from Google search result pages with the key name entity as the

query term, then evaluated them by common knowledge about these entities, e.g.,

Hillary Clinton, Bill Clinton and Monica Lewinsky are in the same community in

their result, as expected. Evaluating community mining results on real world data

by common knowledge is interesting, but this method is not convincing enough to

show the generality of the proposed approaches. Moreover, it is nearly impossible

to compare the results between different algorithms, if they are close to each other.

To deal with this problem, Newman and Girvan [155] proposed a measure of

the quality of a particular division of a network based on a previous measure of

associative mixing [147]. They called it the modularity. The modularity measure is

based on the intrinsic linking structure of the graph. Consider a particular division

of a network into k communities, we define a k × k symmetric matrix e, of which

each element eij is the fraction of all edges in the network that link vertices in

community i to vertices in community j. The matrix trace Tr(e) =
∑

i eii gives the

fraction of edges in the network that connect vertices in the same community i, and

clearly a good community division should have a high value of this trace. However,

the trace alone is not a good indicator of the quality, since placing all vertices in one

single community would give the maximal value 1 while giving no information of

37

the community structure at all. The authors further defined the row sum ai =
∑

j eij

to represent the fraction of edges that has at least one end in community i. So, a2
i

is the expected fraction of edges within community i if the edges were distributed

randomly on the network. Thus, the modularity measure is defined by:

Q =
∑

(eii − a2
i) = Tr(e) − ‖e2‖ (3.10)

where ‖x‖ indicates the sum of the elements of the matrix x. In other words, the

modularity measures the fraction of the edges in the network that connect vertices of

the same type, i.e., within-community edges, minus the expected value of the same

quantity in a network with the same community division but random connections

between the vertices [85]. If the number of with-in community edges is no better

than random, we get Q = 0. Values of Q that are close to 1, which is the maximum,

indicates strong community structure. Q typically falls in the range from 0.3 to 0.7

[85], and high values are rare.

The modularity approach, first proposed in [151, 155] and since pursued by

a number of authors [52, 63, 90, 91, 152, 153], has been proved highly effective

in practice for community evaluation [57]. However, there are three major prob-

lems for the Q measure. First, the modularity requires information of the entire

structure of the graph, which is problematic for huge networks like the WWW. To

solve this problem, Clauset [51] proposed a measure of local community structure,

called local modularity, for graphs which lack global knowledge. Secondly, recent

research showed that modularity-based methods have a resolution limit and may

fail to identify communities smaller than a certain scale [73]. Possible solutions

include recursive algorithms based on modularity optimization [180]. Finally, as

pointed out by Scripps et al. [186], the modularity only measures existing links on

the network, but does not explicitly consider the absent links between two nodes in

the same community. In other words, the modularity only measures how good the

discovered community structure fits the existing links (connected vertices should

be in the same community), but fails to measure how good the structure fits the

absent links (disconnected vertices might not be necessarily in the same commu-

nity). Therefore, it is adequate to compare algorithms on the same network, but

38

G

A

B

CD

E

F
H

I J

K

Community 1
Community 2

G

A

B

CD

E

F
H

I J

K

Community 1
Community 2

N

M
L

Figure 3.2: Network Community Example for Modularity Measure

not for comparing one network to another. For example, the two networks shown

in Figure 3.2 have the same number of edges and the same Q, which is 0.360, but

the intuition is that the community division in the second network is worse, since

it has more disconnected node pairs within community 1, which is not considered

by the Q measure. Therefore, modularity fails to compare the community structure

between different graphs. To solve this problem, Scripps [186] proposed two ra-

tios p and q, measuring the fraction of links within communities and absent links

between communities, respectively. The drawback of their method is that the inter-

39

pretation is not clear since there are two measures: a mining result can have higher

p but lower q than the other, which makes it hard to compare the quality of differ-

ent community structures. In Chapter 5, we propose a new evaluation measure to

increase the accuracy of community detection, which not only solves this particular

problem by taking unrelated node pairs (defined by domain knowledge) into con-

sideration, but also makes it possible to compare the community structure quality

between different graphs.

3.4.2 Local Community Evaluation

As we have discussed in Section 3.3.1, the network information that can be used to

discover and evaluate local communities is very limited. More specifically, for one

local community, the only information we have are the network structures within

the community and the connections from community nodes to other parts of the net-

work. Therefore, local community evaluation metrics are usually simple. We have

introduced several metrics in Section 3.3.2, including R [51], M [133], Ω [14] and

S [221]. Among them, M measures the “outwardness” of the whole community,

while R measures that of the boundary node set and Ω focuses on that of single

nodes on the boundary. S evaluates the local community from a different perspec-

tive by quantifying the relationships between every pair in the same community,

which is calculated based on the similarity between their neighbourhoods. Exist-

ing local community algorithms usually greedily maximize one of these evaluation

metrics in order to discover a local community.

Another popular method for local community evaluation is by human knowl-

edge or synthetic “ground truth”. Researchers either extract communities from

real world networks and manually verify the results, or apply mining algorithms

on computer generated data and compare the results with the generated “ground

truth”. For example, a network among products of Amazon.com, where each node

represents an item and each connection indicates the two items have been frequently

purchased together, has been used for local community discovery [51, 133] and the

generated communities consist of DVDs, CDs and books, thus relations are easy to

justify. Synthetic data are also heavily used [14, 51] since researchers could just

40

create “ground truth” to evaluate their experimental results.

3.5 Mining Overlapping Communities

The goal of overlapping community mining is to find communities in the network

with the assumption that one actor can belong to one or more communities. This sit-

uation is common in the real world, but most community mining algorithms would

fail under this circumstance, e.g., spectral clustering or hierarchical clustering based

on greedy modularity maximization. Note that mining overlapping communities is

a problem for both global or local social networks, however, it is more common to

identify overlaps in global networks, since local networks usually provide limited

structural information which is only adequate for identifying one community.

3.5.1 Common Approaches

Generally speaking, there are two common ways to detect overlapping communities

in a network. One natural idea is to first globally partition the network and then lo-

cally expand the discovered communities to locate overlapping components. Wei et

al. [212] first partition the network into seed groups of the overlapping community

structure using existing spectral clustering method. A locally optimal expansion

process is then applied to greedily optimize Newman’s Modularity Q measure. Li

et al. [125] generate overlapping communities of named entities, i.e. people names,

organizations, from web contents and text documents. They first collect a set of rel-

evant documents on the named entity by submitting the entity as a query to Google

and extracting the text from search result pages. A named entity graph can be gen-

erated by connecting all entity pairs that have co-occurred in the sentences. They

then locate cores of communities by merging triangle, thus a community expands

predominantly by triangles sharing one common edge. Since one node can be a

part of multiple different triangles, it may belong to different communities of corre-

sponding triangle groups. Similarly, Baumes et al. [19] initialize community cores

using the Link Aggregate (LA) Algorithm and then refine the peripheries by an

Iterative Scan (IS) procedure.

41

The other main research direction for this problem is based on fuzzy cluster-

ing. Zhang et al. [233] combine modularity and a fuzzy c-means clustering al-

gorithm to identify overlapping communities. Their method combines a general-

ized modularity function, spectral mapping, and fuzzy clustering technique. The

nodes of the network are projected into a d-dimensional Euclidean space which is

obtained by computing the top d nontrivial eigenvectors of the generalized eigen-

system Ax = tDx. Then the fuzzy c-means clustering method is applied onto

this space based on the general Euclidean distance to cluster the data points. By

maximizing one generalized modular function for varying d, the number of clusters

can be obtained. The final overlapping community assignment matrix determines

the final clusters with a designated threshold. Nepusz et al. [144] argued that ev-

ery node is allowed to belong to multiple communities with different membership

degrees, represented by a single real value uki ∈ [0, 1] for each node i and commu-

nity k. Since the U = [uki] matrix encodes the membership values in a compact

form, they define the similarities of the vertices as S = U T U . The similarities

are then optimized using gradient-based constrained optimization methods in order

to make connected vertices similar and disconnected nodes dissimilar. Thus, the

fuzzy community detection problem becomes a constrained optimization problem,

given parameters such as the number of the clusters. Nicosia et al. [162] extend the

modularity definition to evaluate the overlapping community structure in the more

general case of directed networks, by redefining Newman’s modularity function for

directed graphs using out-degree and in-degree of each node. Similar to Nepusz et

al.’s work, they also model overlapping community structures by using an array of

“belonging factors” [αi,1, αi,1, ...αi,k] to represent how strong one node i belongs to

community k with the requirement ∑k=1 αi,k = 1. Thus the modularity of having

a connection between i and j in community k is weighted by the belonging factors

of i and j to that community.

3.5.2 Recent Approaches

Recently, Palla et al. [170] proposed the CFinder system to partition complex

networks into overlapping communities. Since a typical community usually con-

42

sists of several complete subgraphs that tend to share many of their nodes, they

define a community, or more precisely a k-clique community, as a union of all k-

cliques (complete subgraphs (cliques) of size k) that can be reached from each other

through a series of adjacent k-cliques, where “adjacent” means two k-cliques shar-

ing k − 1 nodes and k is a given parameter as clique size. There are some parts of

the whole network that are not reachable from a particular k-clique, but they poten-

tially contain their own k-clique communities. Therefore, a single node can belong

to several communities. They also claim that in most cases, relaxing this definition,

e.g., by allowing incomplete k-cliques, is practically equivalent to decreasing k. A

heuristic algorithm is then proposed to first locating all cliques of the network and

then identifying the communities by carrying out a standard component analysis of

the clique-clique overlap matrix. They later apply their method on multiple datasets

to capture patterns in networks of the collaboration between scientists and the calls

between mobile phone users [169].

Gregory proposes the CONGA algorithm [88] based on the betweenness cen-

trality measure [155]. The “betweenness” of edge e is defined as the number of

shortest paths, between all pairs of vertices, that pass along e. A high betweenness

means that the edge acts as a bottleneck between a large number of vertex pairs and

suggests that it is an inter-cluster edge. Gregory extends the approach for overlap-

ping community detection by adding a second operation: splitting a node. A best

split is found for each node with the maximum betweenness after split. Gregory

later improves his approach on running speed and proposes a heuristic algorithm

named CONGO [89]. In this approach, an additional parameter h, which is the

parameter of the local region of the node in question, is taken when calculating the

best split option. This changes tremendously in reducing the running time, from

O(m2n) to O(n log n), where m is the number of edges and n is the number of

vertices. He also shows that the second algorithm CONGO (h = 2) provides the

same level of performance as CFinder on synthetic networks, and is ideally suited

for finding overlapping communities in very large networks. For smaller networks,

h can be increased for more accurate results.

While all of the above methods successfully detect overlapping communities,

43

some major problems exist. Most methods do not consider outliers, which are nodes

that are weakly connected to the community and belong to no communities, thus

many outliers would be classified as community members, i.e., they force outliers

into existing clusters. Additionally, the fact that they intentionally focus on over-

lapping communities makes them find or force overlap even for data without such

structure. More importantly, many approaches require parameters that are not only

difficult to determine but also very sensitive, e.g., number of communities [88, 233],

community density [125, 170], or size of a local community region [89].

3.6 Dynamic Community Discovery

In analyzing social networks, one property has been largely ignored, which is the

fact that these networks tend to change dynamically. Indeed, the ongoing changes

of a network and its possible causes may be among the most interesting properties

to observe [199]. Moreover, the rapid growing electronic networks, such as emails,

blogs, friendship sites and mobile networks, provide an abundance of dynamic so-

cial network data to support such explicitly dynamic analysis. When dealing with

dynamic social networks, most studies would either analyze a snapshot of a time

point, or an aggregation of all the network information over a large time window.

Both approaches may miss important tendencies of these dynamic networks.

Typically, a dynamic community mining problem is defined as follows [22,

199]: A social network is first modeled as an undirected graph G = (V, E). To

model dynamic interactions in G, there is a set X = {i1, ..., in} of individuals

(nodes), and a sequence H =< P1, P2, ..., PT > of observations. Each Pt is a col-

lection of non-empty and pairwise disjoint sets. The interpretation is that, for a time

step t, the individuals were observed interacting with each other. Some individuals

may not be observed at all at certain times. In other words, all nodes were assumed

to be in the graph from the beginning, even though they may only be observed in the

very end of the time window. The dynamic community structure thus is determined

by the evolving connections in the network.

The evolution of communities in large social networks, such as membership,

44

growth and disbandment, is becoming increasingly prominent especially for social

networking sites such as MySpace and Facebook. By monitoring friendship links

and community membership on a social network site, and co-authorship and con-

ference publication in a bibliography database, Backstrom et al. [13] studied how

the evolution of these communities related to properties such as the structure of

the underlying social networks. They find that the propensity of individuals to join

communities, and of communities to grow, depends in subtle ways on the under-

lying network. For example, the tendency of an individual to join a community

is influenced not just by the number of friends he or she has within the commu-

nity, but also crucially by how those friends are connected to one another [13].

Falkowski et al. proposed an interactive visualization tool to analyze the dynamics

of subgroups in an online student network [67]. Decision-tree techniques are also

used to identify the most significant structural determinants of candidate properties.

Sarkar et al. [182] proposed to associate each entity with a point in a Euclidean

latent space for modeling relationships that change over time and then optimize the

global likelihood to generate the communities. Berger-Wolf et al. [22, 199] pro-

posed a framework for identifying dynamic communities. They proved that finding

optimal grouping is NP-hard and proposed heuristics trying to maximize the amount

of “similarity” preserved from one time step to the next. Sun et al. [192] proposed

an alternative method, GraphScope, to discover communities in large time-evolving

graphs without any parameter. They focus on bipartite graphs, e.g., senders and re-

ceivers in an email dataset, and treat source and destination nodes separately. Each

graph in the time stream is encoded based on the Minimum Description Length

(MDL) principle and find the best partition by minimizing the encoding cost. In

particular, their approach adapts to the dynamic environment by automatically find-

ing the communities and determining good change points. More specifically, if

the partition encodings do not change much over time, consecutive snapshots have

similar descriptions and can be grouped together into a time segment. Whenever

a new social network snapshot that cannot fit well into the old segment appears,

GraphScope introduces a change point, and starts a new segment at that time-stamp.

Those change points automatically detect drastic discontinuities in time [192].

45

3.7 Community Discovery with Multiple Relations or
Attributes

Most of the existing methods on community mining and social network analysis

assume that there is only one single social network, representing a relatively homo-

geneous relationship, such as the page linkage in WWW. However, in reality, there

are always a variety of relations that co-exist and each relation plays a different role

for a particular case. Therefore, mining such multi-relational social networks by as-

suming only one relation may miss much valuable hidden information. We need to

quantify the significance of different relations in order to discover true communities

in such circumstances.

The relation identification problem here for community mining is fundamen-

tally related to the feature selection problem [64] in Machine Learning, which has

received much attention as part of the process of classification and clustering. Fea-

ture selection is a process that selects and optimizes a subset of original features,

measured by an evaluation criterion [131]. It aims at finding a linear combination

of the original features that can better represent the intrinsic structure of a data set

based on given criterion. Unfortunately, it requires explicit vector representation of

the objects, which is hardly available for relational networks. There are many no-

table feature selection methods in Machine Learning, such as Principal Component

Analysis (PCA) [112] and Linear Discriminant Analysis (LDA) [138].

Although feature selection for machine learning and data mining has been well

studied, little work on relation selection for community mining has been done. Cai

et al.’s work [33, 34] is among the earliest research efforts on this topic. Given some

examples with different community labels, Cai et al. proposed a regression-based

algorithm, which tried to find a combined relation which makes the relationship

between intra-community example as tight as possible and, at the same time, the

relationship between inter-community examples as loose as possible. A possibility

matrix is built as target relation matrix based on the information an domain expert

provides. (The value can be 0 or 1 if the expert is certain, and can be a percent-

age number if the user is uncertain whether the two objects belong to the same

46

community or not.)

M̃ij = Prob(entity i and j belong to the same community) (3.11)

The algorithm aims at finding a linear combination of the existing relations to opti-

mally approximate the target relation matrix. Let a = [a1, a2, ..., an]
T ∈ Rn denote

the combination coefficients for different relations. Since M is symmetric, ans

m(m − 1)/2 dimensional vector v can be used to represent it. Thus, the approxi-

mation problem can be characterized as the following optimization problem:

aopt = argmina‖ṽ −
n
∑

i=1

aivi‖
2 (3.12)

Since this unconstrained least squares solution might not be a satisfactory solution,

the author normalized all the weights on the edges in the range [0, 1] and put a

constraint ∑n
i=1 a2

i ≤ 1 on the above objective function. Such a constrained regres-

sion problem is called Ridge Regression [97] and can be solved by some numerical

methods [26]. If the examples provided by the expert belong to only one commu-

nity, the authors propose a similar algorithm based on the minimum cut on the graph

[33].

Cai et al.’s work is among the earliest attempts to discover communities in a

multi-relation social network. Such networks are quite common in the real world

and need new mining algorithms to dynamically combine influences from multiple

relations to form communities. However, it is difficult for experts to provide high

quality examples for Cai’s algorithm. Even they do, the learning performance of

the algorithm is limited by the size and makeup of the examples.

While most proposed community mining methods only use network structure

data, in many applications more informative graphs with attributes, which are rep-

resented as feature vectors of vertices, are provided. To detect communities in such

networks, Moser et al. proposed the CoPaM algorithm to find all maximal dense

and connected subgraphs with similar feature values [142]. Compared to their work,

this thesis focuses more on the network structure and relations, rather than attributes

of vertices in the network.

47

3.8 Entity Ranking

Thanks to Google’s big success as a search engine, the most famous and profitable

community mining task may be that of entity ranking, whose main objective is to

order or prioritize sets of objects within the network based on the relations among

them and the overall linking structure. The problem of ranking these entities has

been studied mainly in two fields, in particular, computer science and sociology,

which have developed quite different approaches as we now describe.

3.8.1 Sociological Approaches

In the domain of Social Network Analysis (SNA), entity ranking tasks focus on

ranking individuals in a given social network in terms of a measure of the impor-

tance, referred to as centrality. Measures of centrality have been the subject of

research in the SNA community for decades [210], and focus on aspects of the lo-

cal or global network structures as seen from the location of the given object in the

graph. Centrality measures on the graph vertices are first introduced in the analysis

of social networks [28, 76], but at present they are commonly used in the analy-

sis of many real world networks. Many centrality measures have been studied in

the literature [28, 78]; among them the degree centrality [76] and the eigenvector

centrality [28, 29] have been most deeply investigated.

Degree Centrality

The simplest and perhaps the most intuitively obvious conception of a measure of

the node centrality in a network is some function of the degree of a point, which

is simply the count of the number of other nodes that are adjacent and in direct

contact or connection to the current one. Unfortunately, many proposed degree-

based measures are often unnecessarily complicated [76] and they only measure

the local network structure.

Eigenvector Centrality

Eigenvector centrality is based on the intuition that connections to high-scoring

nodes should contribute more to the score of the node in question, than equal con-

48

nections to low-scoring nodes. Let A be the adjacency matrix of the network and

Ai,j = 1 if node i and node j are connected and 0 otherwise. Let xi denote the score

of the ith node. For the ith node, the centrality score is defined to be proportional to

the sum of the scores of all nodes that connect to it:

xi =
1

λ

N
∑

j=1

Ai,jxj (3.13)

where N is the total number of nodes and λ is a constant. The equation can be

rewritten as

X =
1

λ
AX

or

AX = λX

which is the well known eigenvector equation. The ith component of this eigenvec-

tor gives the centrality score of the ith node in the network.

In general, there will be many different eigenvalues λ and eigenvector solu-

tions. However, the additional requirement that all the entries in the eigenvectors

be positive implies that only the greatest eigenvalue results in the desired centrality

measure (proved by the Perron-Frobenius Theorem) [154]. In the link mining re-

search field, there are many variants and applications of the eigenvector centrality

measure, among which Google’s PageRank perhaps is the most famous one.

3.8.2 Computer Science Approaches

In the context of web information retrieval, entity ranking leads to a crucial prob-

lem for search engines: how to rank documents that are connected to each other

by hyperlinks. At first, the occurrence of a search phrase within a document is one

major factor within ranking techniques of any search engine. To achieve a more

accurate ranking, the concept of link popularity was developed to take into consider

the structural context. Following this concept, the number of links that connect to a

document measures its overall importance. Therefore, a web page is generally more

important if many other web pages link to it. However, these measures are vulner-

able to noise, for example, webmasters can easily bias them by creating masses

49

of inbound links or repeatedly adding keywords for their doorway pages. Search

engines apply a variety of different ranking technique to solve these problems; the

PageRank [167] and HITS [117] algorithms are the most notable approaches.

PageRank

The intuition of the PageRank algorithm is that a document is considered more im-

portant the more other documents link to it, however, those incoming links do not

count equally: a document is ranked higher if other high ranking documents link to

it. In other words, the PageRank score of any document is always determined re-

cursively by the PageRank score of other documents, which is based on the linking

structure of the whole network. PageRank can be loosely interpreted as a probabil-

ity distribution used to represent the likelihood that a web surfer randomly clicking

on links to visit any particular page and occasionally jumps to a new page to start

another traversal of the link structure. The PageRank computations usually require

several iterations until the approximate values reflect closely enough the theoreti-

cal true value. Although this approach seems to be very complex, Page and Brin

managed to put it into practice by a relatively trivial algorithm as the following.

PR(u) = (1 − d) + d(
PR(p1)

L(p1)
+ ... +

PR(pn)

L(pn)
)

or

PR(u) = (1 − d)/N + d(
PR(p1)

L(p1)
+ ... +

PR(pn)

L(pn)
)

where PR(u) is the PageRank of page u, PR(pi) is the PageRank of pages pi that

link to page u, L(pi) is the number of outbound links on page pi, N is the number

of the documents in collection and d is a damping factor, which is set between 0

and 1, to control convergence of the computation.

PageRank can be described as a model of user behaviour, where a web surfer

clicks on links at random with no regard towards the page’s content [31]. At first,

the page’s PageRank is the probability that this random surfer visits it. The chance

that the surfer clicks on one link is solely decided by the number of links on that

page. Thus, the probability for the random surfer reaching one page is the sum of

probabilities of following the links that connect to this page. The surfer can get

50

bored sometimes and stop following the link, and jumps to another page at random.

Therefore, the probability is reduced by the damping factor d, which is the probabil-

ity that the surfer will keep clicking and is generally set around 0.85 [31]. Lawrence

Page and Sergey Brin have published the two different equations of their PageRank

algorithm in different papers [31, 167]. They do not differ fundamentally from each

other. However, the second version’s Pagerank of a page is the exact probability for

a surfer reaching that page after clicking on many links. The algorithm then forms

a probability distribution over all web pages so that the sum of all pages’ PageRank

equals one. On the other hand, the first version of PageRank is an expected value

for the random surfer to visit a page, i.e., when we restart this procedure as often

as the web has pages. For example, if the web has 1000 pages and a page had a

PageRank score of 3, then we would expect the surfer to reach that page for three

times on average if he restarts for 1000 times.

The main disadvantage of PageRank is that it favors older pages, because a new

page, even a very popular one or very related to the query, will not have many

inbound links unless it is part of an existing site. It also suffers from link spamming

and other similar spamdexing 1 methods, which deliberately modify HTML pages

to increase the chances of these pages being placed close to the beginning of search

engine results. Since PageRank focuses on page ranking on WWW, which is a

single relation network, it is also not appropriate for our community mining needs.

The PageRank algorithm has many variations and extensions. For example, lin-

guists have used PageRank to automatically rank WordNet synonym sets according

to how strongly they possess a given semantic property, such as positivity or nega-

tivity [66]; A web crawler can also use PageRank as one of the importance metrics

to determine which URL to visit next during a crawl of the web [49].

HITS

Jon Kleinberg’s Hypertext Induced Topic Selection (HITS) algorithm [117] as-

sumes a slightly more complex process than PageRank, by modeling the web as

being composed of two types of web pages: hubs and authorities. Hubs are pages
1http://en.wikipedia.org/wiki/Spamdexing

51

that link to many authoritative pages while authorities are pages that are linked to

by many hubs. Each page is assigned hub and authority scores. An authority score

estimates the value of the content of the page, computed as the sum of the scaled

hub values of the pages that point to that page. A hub score estimates the value of

its links to other pages, computed as the sum of the scaled authority values of the

pages it points to. These scores are, like PageRank, calculated by an iterative algo-

rithm that updates the scores of a page based purely on the linkage of the documents

of the web, thus, the hub and authorities scores are also steady-state distributions of

the respective random processes. However, different from PageRank, HITS has two

separate random walks: one with hub transitions and one with authority transitions,

on a corresponding bipartite graph of hubs and authorities [158, 178].

After HITS and PageRank were introduced, a number of algorithms have been

proposed based on them. In order to yield more accurate PageRank results for

search engines, Haveliwala [98] and Jeh and Widom [109] proposed Topic-Sensitive

PageRank to precompute a set of biased PageRank vectors, which emphasize the ef-

fect of particular representative topic keywords to increase the importance of certain

web pages. Those vectors are used to generate query-specific importance scores for

pages at query time. Bharat and Henzinger [23] and Chakrabarti et al. [37] im-

proved HITS by exploiting web page content to weight pages and links based on

their relevance. Cohn and Chang [53] propose an analogue to HITS based on max-

imizing the likelihood of probabilistic models. To compare and combine the two

algorithms, Ding et al. [59] introduced a unified framework to include both PageR-

ank and HITS; Ng et al. [157, 158] analyzed the stability of PageRank and HITS to

small perturbations in the linking structure; Cohn and Hofmann [54], and Richard-

son and Domingos [179] proposed probabilistic models incorporating both content

and link structure, inspired by HITS and PageRank, respectively.

The common goal of PageRank, HITS and all other related algorithms discussed

above is to achieve a global ranking of entities in a static graph connected via a spec-

ified relation. Alternatively, other variations of entity ranking include approaches

that rank entities relative to one or more relevant entities in the graph and methods

that rank objects over time in dynamic graphs. Jeh and Widom’s SimRank [108]

52

computes a purely structural score that is independent of domain-specific informa-

tion. The SimRank score is a structure similarity measure between pairs of pages

in the web graph with the intuition that two pages are similar if they are related

by similar pages. Unfortunately, SimRank is very expensive in computation since

it needs to calculate similarities between many pairs of objects. According to the

authors, a pruning technique is possible to approximate SimRank by only comput-

ing a small part of the object pairs. However, it is very hard to identify the right

pairs to compute at the beginning, because the similarity between objects may only

be recognized after the score between them is calculated. Similar random walk

approaches have been used in other domains for the same problem. For example,

the Mixed Media Graph [171] applies a random walk on multimedia collection to

assign keywords to the multimedia object, such as images and video clips, but a

similarity function for each type of the involved media is required from domain ex-

perts. He et al. [99] propose a framework named MRBIR using a random walk on

a weighted graph from images to rank related images given an image query. Sun et

al. [193] detect anomaly data for datasets that can be modeled as bipartite graphs

using the random walk with restart algorithm. Several other systems use random

walk and related methods for keyword search and tuple ranking in databases: Ob-

jectRank [103] applies random walk algorithm on the tuples following links in the

citation network and the database schema; RelationalRank [80] builds a data at-

tribute graph based on tuples in the query result and applies random walk on these

attributes to rank them; BANKS system [3] first creates trees of tuples that are

found as query results, then ranks these trees based on the global ranking of tuples

and weights of connections between these tuples. Recent work by Tong et al. [202]

proposed a fast solution for applying random walk with restart on large graphs, to

save pre-computation cost and reduce query time. White and Smyth [217] define

and evaluate a host of metrics to compute the similarity between a given entity and

one or more reference entities in a graph. On the other hand, dynamic graphs such

as email networks and telephone call records that capture event data and change

over time bring new challenges for ranking entities. The time ordering of events

and link structure change over a given time interval limit the use of static ranking

53

methods. For this problem, O’Madadhain et al. [165, 166] discussed a series of al-

gorithmic properties for dynamic entity ranking and proposed a ranking algorithm

based on potential flow that satisfies specific requirements for dynamic networks.

In our research, we are particularly interested in ranking entities for a given

object in a multiple relational network, and use the result to understand the explicit

community structure of the graph.

54

Chapter 4

Research Problem Statement

In Chapter 3, we have reviewed the state-of-the-art works on Community Mining,

which is an emerging research area with many interesting problems. In this chapter,

we define the questions this dissertation tackles, why they are unanswered and why

they are worthwhile to answer. For the topics (see Figure 4.1), we are particularly

interested in identifying and detecting different kinds of communities (overlap or

non-overlap) in homogeneous networks with various network assumptions (global

network or local network), while most of the previous approaches only focus on

finding non-overlap communities in a global network. Moreover, we are also inter-

ested in ranking entities in heterogeneous networks to understand relations between

social actors.

4.1 Community Mining with Domain Knowledge

To solve the problem of mining communities in a social network, where global

network information can be fully accessed, various relation-based methods have

been developed, such as the spectral clustering approaches [60, 187, 218] and

modularity-based algorithms [52, 155]. The identification of such community de-

tection relies on some notion of clustering or density measure, which defines the

communities that can be found. However, previous methods always apply the same

structural measure on all kinds of networks, e.g., biological network, bibliograph-

ical network, social network, hyperlink network and so on, despite the distinct

dissimilar characteristics of these networks. These significant network character-

55

Community Mining
in SNA

Global Network

Overlap

Local Network

No Overlap Overlap No Overlap

Most Approaches This Dissertation

Figure 4.1: The Topic Hierarchy of Community Mining in SNA

istics may be hard for community mining algorithms to observe directly, but can

be summarized and explained by experts in the corresponding field and provided

to the mining process as domain knowledge. The accuracy of community mining

approaches would definitely improve by taking extra domain knowledge into con-

sideration.

To solve this problem, in Chapter 5 we present a new community mining mea-

sure, Max-Min Modularity, which considers both connected pairs and criteria de-

fined by domain experts in finding communities. We use it to estimate the com-

patibility between the discovered communities and the link structure. Generally

speaking, our Max-Min Modularity compares the difference between the fraction

of links that occur within communities to the fraction that would be expected to oc-

cur if the links were randomly distributed; in addition, it also considers the fraction

of user-defined related node pairs within communities to the expected fraction of

such pairs. Based on this measure, we specify a hierarchical clustering algorithm

to detect communities in networks. More details of the algorithm and experiment

results can be found in Chapter 5.

56

4.2 Local Community Mining

While domain knowledge can be used to improve the performance of community

mining algorithms, such knowledge is not always available, even the connection

structure would be impossible to access completely for some huge networks. Re-

call that we have defined the problem of local community mining in Chapter 3:

local communities are densely-connected node sets that are discovered and evalu-

ated based only on local network information, and the only way to acquire more

structural knowledge of the network is to include one candidate node into the local

community at each step and explore its neighbourhood (see Figure 3.1).

O 1

O 2

O 3

O 4

O 5

O 6 O 7
O 8

O 9

O 10 O 11

B 1

B 2

B

C

S

S

D

Figure 4.2: Problem of Previous Local Community Metrics

We have reviewed several metrics to discover and evaluate local communities.

(See Equation (3.6) and Equation (3.7).) Indeed algorithms using these metrics are

able to detect interesting communities in complex networks, however, their results

usually include many outliers, i.e., the discovered communities have a high recall

but low accuracy, which reduces the overall community quality. Figure 4.2 illus-

trates the problem for state-of-the-art local community metrics R and M . In the

figure, we have a local community D, its boundary B and nodes O1, ..., O11, which

are outliers since they are barely related to nodes in D. Without loss of generality,

let us assume that all nodes in S, except O1 and O9, will decrease the metric score

57

if included in D. Now if we try to greedily maximize the metric M (Equation 3.7),

all outliers (O1 to O8 and O9 to O11) will be merged into D one by one. The reason

is that every merge of node Oi does not affect the external edge number but will in-

crease the internal edge number by one. R is marginally better. It stops the merging

on O2 and O10 since further expansion would not change the in and out degrees of

boundary nodes. However, algorithms using R would still merge any other nodes

in to D as long as it connects to an equal number of nodes inside the boundary

and outside the local community node set. Therefore, in addition to real members,

the resulting community by R and M algorithms would contain many weak-linked

outliers, whose number can be huge for some networks, e.g., the WWW.

Several techniques [14, 15, 51, 133] have been proposed to identify local com-

munity structures given limited information of a network. However, parameters

that are hard to obtain are usually required. Moreover, communities discovered by

these algorithms include many outliers and thus suffer from low accuracy, as we

have shown in Figure 4.2. In Chapter 6, we propose a new metric, which we call

L, to evaluate the local community structure for networks in which we lack global

information. We then define a two-phase algorithm based on L to find the local

community of given starting nodes and compare the algorithm’s performance with

previous methods on several real world networks. We also propose a community

discovery process for large networks that iteratively finds communities based on

our metric.

4.3 Overlapping Community Mining

For problems presented above, we have assumed that one node belongs only to one

community, however, recent studies have revealed that network models of many

real world phenomena exhibit an overlapping community structure, i.e., a node can

belong to more than one community, which is hard to take into account with clas-

sical graph clustering methods where every vertex of the graph belongs to exactly

one community [170]. This is especially true for social networks, where individuals

can connect to several groups in the network as hubs. Furthermore, in real networks

58

we also have another node category, which belongs to no community, i.e., outliers.

Therefore, a typical social network consists of communities, hubs and outliers. It

is essential for community discovery methods to identify nodes in these three cate-

gories, since the isolation of hubs and outliers can be crucial for many applications.

Unfortunately, a precise description of what community, hub and outlier really are

would be different across various domains, or even across different networks of

the same domain. Therefore, most proposed approaches [88, 89, 144, 170, 221]

for overlapping community detection require the user to describe the communities

they are looking for by giving parameters, e.g., community size, density range, the

number of communities, etc. However, appropriate settings of these parameters

are usually extremely hard to determine without tedious and repeated beforehand

testing. Moreover, arbitrary parameters may over-restrain the space in which com-

munities are found and lead to inaccurate results.

In Chapter 7, we first propose a list of requirements for an appropriate over-

lapping community mining metric, based on our observations of social network

characteristics. After reviewing the advantages and disadvantages of existing met-

rics, we propose the R (Relation) metric to measure the similarity between any pair

of entities in a social network, then show its advantages by comparison with exist-

ing metrics. We then propose our visual data mining approach ONDOCS (Ordering

Nodes to Detect Overlapping Community Structure), which generates preliminary

visualizations of the network in question by ordering nodes based on their reach-

ability scores (RS) to help the user understand the network structure in order to

choose appropriate parameters. Selected parameters are then used to extract com-

munities, hubs and outliers from the network. More details of our approach and

experiment results can be found in Chapter 7.

4.4 A Community Mining Application in Web Con-
text

As we have introduced in Chapter 2, there has been a surge of interests on commu-

nity mining in social networks, because accurately discovering groups in networks

59

can benefit myriad research fields. As an example, here we apply our understand-

ing of community mining and adopt proposed metrics and algorithms to solve a

real problem in the web information retrieval domain. By giving a solution to this

problem using community mining metrics and algorithms, we show that community

mining, as a promising research area, is important for many applications.

As we know, existing search engines often return a long list of search results,

ranked by their relevance to the given query. Since web pages, on different aspects

(meanings) of the same query, are usually mixed together, users have to go through

the long list and examine titles and content sequentially to locate pages of interest

to their information need. For example, when the query “jaguar” is submitted to a

search engine looking for information about the Mac system, a user might have to

sift through a large number of pages about automobile or animals. The sought for

pages might be buried very deep. While the underlying retrieval model and ranking

function is vital for search engines, organization and presentation of search results

is also capital, and could significantly affect the utility of a search engine. However,

compared with the vast literature on page ranking and retrieval, there is relatively

very little research on how to improve the effectiveness of search result organization

[209].

Popular search engines such as Google, Yahoo! and Bing deal with this prob-

lem by recommending refined queries to the user to focus on specific topics. For

instance, after the query “jaguar” is submitted to the search engine, several queries

including “jaguar animal”, “jaguar cars” etc. are listed along search results as can-

didates for further query refinement (See Figures 4.3, 4.4, 4.5). The refinement

strategy works generally well, however, its effectiveness is limited for two reasons:

First, candidate queries are usually acquired from a list of most frequent queries that

contain the submitted query word, according to previous search records, but some

topics of interest might not be popular enough to be included in the recommended

queries. For example, as shown in the figures, none of the three search engines sug-

gest “jaguar mac” or anything similar because the Jaguar Mac Operating System is

less queried compared to the search history of jaguar the car and jaguar the animal.

Second, the search result for refined queries might still contain mixed information

60

Figure 4.3: Query Refinement by Google Search

Figure 4.4: Query Refinement by Yahoo! Search

and pages on different topics. For example, the ranking list for “jaguar car” might

contain pages about car sales, company business, manufacturing or new model pre-

sentations. It is possible that the result will be finally clear after several refinement

attempts though, if the user does not run out of patience before that.

Although we believe that an appropriate solution to this problem is to (online)

cluster search results into different groups so that users can select their required

group at a glance. Previous document grouping approaches usually require high

quality training data to build a classifier, which is infeasible due to the dynamic

nature of the web and the need of a realtime answer. Some unsupervised clustering

approaches for search engine result organization exist. However, since clustering

methods always generate groups of documents, even when unnecessary. A metric

is required to indicate whether page clustering is helpful for the user. Otherwise,

the user would be confused when document clusters are reported for a list of search

result pages which are on the same topic.

We apply community mining ideas to solve this problem. In Chapter 8, we

reformulate the search result organization problem as a query sense disambigua-

tion problem and apply a community detection algorithm to cluster pages based

on discovered senses of a given query. We first parse the crawled documents and

transform the documents into lists of related keywords. Given a query and a list

of documents returned by a search engine, our method generates a keyword net-

61

Figure 4.5: Query Refinement by Bing (previously known as MSN Search)

work based on the corresponding document keyword lists, and detects query sense

communities by an unsupervised hierarchical algorithm. The documents are then

assigned to different refined query sense communities based on Term-Frequency-

Inverse-Document-Frequency (TF-IDF) scores to form clusters. More importantly,

we propose to use the modularity score of the discovered query sense community

structure to measure the page clustering necessity. More details of our approach

and experiment results can be found in Chapter 8.

4.5 Entity Ranking

Ranking, i.e., a process of positioning entities on an ordinal scale in relation to

others, is an important task that has a significant role in community mining and

many other applications. In large databases, users would prefer the top-k partial

tuples that are most related to their queries rather than a long list of tuples in a

random order. In social networks, the ordering task is also challenging. One typ-

ically measures closeness of related entities in the network by a relevance score,

which is computed with certain similarity metrics based on selected relationships

between nodes in a graph. However, most of the existing approaches focus on rank-

ing for homogeneous networks, which only contains one type of social relation,

e.g., PageRank and HITS for web hyperlinks, or ObjectRank and RelationalRank

for database tuples. While these methods are indeed successful, ranking for hetero-

geneous networks, which consists of multiple types of social actors and relations,

62

Club Mark David Zhang Rebecca
Golf x x x

Tennis x x
Basketball x x
Swimming x x x

Table 4.1: Membership for sports clubs

Mark

David Rebecca

Zhang Mark

David Rebecca

Zhang

David

Mark

Zhang

Mark

Rebecca

Mark

Zhang David Rebecca

Zhang

SwimmingTennis
BasketballIn the same club

(a) (b)

Golf

Golf Tennis Basketball Swimming

(c)

Figure 4.6: Traditional Models for Social Networks

are also interesting to investigate. There are many real world applications that can

take advantage of this ranking. For example, there are seeds, peers and file types

(multimedia, text, etc.) for P2P system data; conferences, authors and research top-

ics for research publication data; books, readers and categories for a library system;

customers, movies, genre and actors for a movie purchase database. Quantifying

the relations between these entities by ranking could be of significant importance

for tasks such as academic collaboration, customer service, etc.

Traditionally, richly structured datasets are naturally represented as networks,

where each node represents an entity and the edges between nodes indicate the

relations that connect two entities. The term entity refers to any single instance in

the dataset, e.g., authors in a bibliography database. An example of such data model

for a small social network between four people (Table 4.1) is shown in Figure 4.6

(a): nodes are connected to each other if their corresponding people are in the same

63

Mark David Zhang Rebecca

Golf Tennis Basket−
ball ming

Swim−

People entity partite

Club relation partite

Figure 4.7: Bipartite Models for Social Networks

sports club. However, heterogeneous networks have multiple types of relations and

entities, thus the traditional model cannot represent such network. Although we can

use multi-edges between nodes to represent different kinds of relations (Figure 4.6

(b)), such model would become too complex to analyze when there are a number of

relations. We can also model this network by using several single relation graphs

(Figure 4.6 (c)), one for each relation. However, the increase in the number of

relations may generate too many graphs, and nodes in different graphs are usually

redundant. In oder to rank entities as well as various relations between them, we

separate them as different graph partites. For example, in the social network shown

in Figure 4.6, we have one partite for people, and another partite for sports clubs.

The fact that one person is in a certain club is represented by an edge connecting an

entity node and a relation node. Therefore there are no connections within a partite,

i.e., people are only related to each other via sports club membership in this social

network. We represent this model for heterogeneous social network as a bipartite

graph, as shown in Figure 4.7. Compared to the traditional model, our model is

able to represent a large number of social relations and how they connect different

entities.

In order to solve the ranking problem in heterogeneous networks, we assign rel-

evance values to entities in different partites. We then generate useful ranked lists of

64

entities based on this relevance assignment. More specifically, we first construct a

k-partite graph based on the social relations, then apply a random walk approach on

the graph to obtain rank values for nodes. Simply put, a random walk is a sequence

of nodes in a graph such that when moving from one node N to the subsequent one

in the sequence, one of N ’s neighbours is selected at random but with considera-

tion for an edge weight. The relevance of a node, or the importance of a node B

with respect to a node A, is the static steady state probability that the sequence of

nodes would pass by B when the random walk starts in A. This probability, often

estimated by a relevance score, is computed iteratively until some convergence (i.e.

when no further changes in the probabilities are observed). A variation of this idea,

which we advocate in our approach, is the random walk with restart. Given a graph

and a starting point A, if at each step, we select a neighbour of the current point

at random proportionally to the edge weights and move to this neighbour, or with

probability Prestart go back to the initial node A, the sequence of points selected is

a random walk with restart (RWR) on this graph. Note that since the random walk

algorithm has a start point, the ranking we obtain is only for one specific entity: the

starting point in the graph.

In Chapter 9, we propose our approach to model heterogeneous social networks

and present an iterative random walk algorithm on these models to compute the

relevance score between entities. We also investigate the influence of different ran-

dom walk directions on a k-partite graph model. To illustrate the effectiveness

of our approach we used the DBLP bibliography database1 to generate bipartite

(author-conference) and tripartite database graphs (author-conference-topics) for

tuple ranking. Topics are frequent n-grams extracted from paper titles and abstracts.

1http://www.informatik.uni-trier.de/∼ley/db/

65

Chapter 5

Discovering Communities with
Domain Knowledge

Many community mining approaches have been developed to discover communities

in networks. However, none of them distinguish the intrinsic features of the domain

of the network in question. In other words, the same structural measure has been

applied to all kinds of networks, despite their different characteristics, which can be

achieved from domain experts. In this chapter, we present a new metric, Max-Min

Modularity [43], to include domain knowledge as guiding criteria in the community

discovery process. Then we propose a hierarchical algorithm based on this metric

to find communities. More specifically, the domain knowledge in our approach

is represented as a set of pairs of nodes, i.e, our approach takes a pair of nodes

as “related nodes” or “unrelated nodes” to help the mining process. The research

problem of this chapter is defined in Chapter 4.1.

5.1 Our Elaboration

Communities are defined to be densely connected groups of entities in a relational

network, i.e., nodes in a strong community should be related to all other nodes in

the same community. However, the original modularity measure (See Chapter 3)

does not consider absent links. In other words, it only checks whether connected

vertices are placed in the same community, but ignores disconnected vertices that

share the same community. Therefore, to more thoroughly evaluate a network divi-

sion, we should not only reward the evaluation score if connected vertices are put

66

in the same community, but also penalize the score if disconnected vertices are in

the same community. However, a “disconnection” could possibly be an unobserved

connection, which is very common in biological and social networks, so it is dan-

gerous to assume disconnection to be a negative sign of the community structure.

Therefore, while connected pairs remain as positive signs of a strong community

structure, we separate the disconnected pair set into two categories based on knowl-

edge provided by domain experts: the related pair set, in which pairs of nodes are

possibly related, and unrelated pair set, in which pairs of nodes are certainly un-

related. We only penalize our measure score if we see unrelated pairs share the

same community. Based on this criterion, we proposed a user-defined community

structure measure, we call it Max-Min (MM) Modularity.

The idea of our Max-Min Modularity is based on the intuition that a good divi-

sion of a network into communities is not merely one in which the number of edges

between groups is smaller than expected, but also one in which the number of un-

related pairs within groups is smaller than expected. Only if both the numbers of

between-group edges and within-group unrelated pairs are significantly lower than

would be expected purely by chance, can we justifiably claim to have found sig-

nificant community structure. Equivalently, we can examine the number of edges

within communities and unrelated pairs between communities and look for divi-

sions of the network in which this number is higher than expected. These two

approaches are equivalent since the total number of edges/pairs is fixed, therefore

any edges/pairs that do not lie between communities must necessarily lie inside one

of them [152].

Generally speaking, our evaluation attempts to maximize the number of edges

within groups and minimize the number of unrelated pairs from the user-defined

unrelated pair set within groups at the same time, therefore we named it Max-Min

Modularity. Note that maximizing the edge number within groups does not auto-

matically minimize the unrelated pair number, e.g., if we have no network knowl-

edge, thus have no related pairs, and unrelated pairs as disconnected node pairs,

consider a node that only connects one member of a community with size n, max-

imizing the within-group edge number by including that node in this community

67

would increase the unrelated pair number by n − 1.

5.1.1 Generalizing the Max-Min Modularity

The modularity Q can be transformed from its original form, which is community-

based, to a node-based form. Given an unweighted and undirected network G =

(V, E), |V | = n, |E| = m, let Axy be an element of the adjacency matrix of G:

Axy =

{

1 if vertices x and y are connected
0 otherwise

(5.1)

Assume the network is divided into k communities and node x belongs to commu-

nity Cx, the fraction of edges that fall between community i and community j is

defined as follows:

eij =
1

2m

∑

xy

Axyφ(Cx, i)φ(Cy, j) (5.2)

where the φ function φ(i, j) is 1 if i and j are the same community and 0 otherwise.

The degree dx of a vertex x is the number of edges that connect to it: dx =
∑

y Axy.

Therefore, the fraction of edges that have at least one end in community i is:

ai = 1
2m

∑

xy Axyφ(Cx, i)
= 1

2m

∑

x dxφ(Cx, i)

From all the equations above:

Q =
∑

i(eii − a2
i)

=
∑

i[
1

2m

∑

xy Axyφ(Cx, i)φ(Cy, i)
− 1

2m

∑

x dxφ(Cx, i)
1

2m

∑

y dyφ(Cy, i)]

= 1
2m

∑

xy[Axy −
dxdy

2m
]
∑

i φ(Cx, i)φ(Cy, i)

Define Pxy = dxdy

2m
, we have the modularity Q as follows:

Q =
1

2m

∑

xy

[Axy − Pxy]φ(Cx, Cy) (5.3)

We see that the original modularity has already measured the first part of MM Mod-

ularity:

Qmax =
1

2m

∑

xy

[Axy − Pxy]φ(Cx, Cy) (5.4)

thus we only need to measure the other part, which is minimizing the unrelated pair

fraction within communities. It is obvious that, if a division contains very few unre-

lated node pairs within communities for a graph, the same division will have equiv-

alently few connected node pairs within communities for the complement graph,

68

F

G

A

D

B

E

C

Community 1

Community 2

C

F

G

A

D

B

E
Community 1

Community 2

Original Graph Complement Graph
No Related Pair Definition

Figure 5.1: A Graph Division and its Complement

which is a graph on the same vertices as the original network such that two nodes

are connected if and only if they are defined as an unrelated pair in the original

graph. In other words, the better this division is for the original network regard-

ing containing few unrelated node pairs within communities, the worse it is for the

complement graph as a community structure since there are equally few connected

node pairs within communities (See Figure 5.1). Therefore, we can compute the

modularity score for a division on the complement graph of the network. The lower

Q score we get, the better community division we have for the original network.

Note that, although building a complement graph can be very expensive especially

when the original graph is sparse, our method does not require extra computation

or materialization of this complement graph, since we only need to maintain and

update the related pair set defined by domain experts. Other information we need,

which is the node degree and number of edges, can be easily achieved from the

structure of the original graph.

More precisely, given an unweighted graph G = (V, E), V = {vx|1 ≤ x ≤ n},

E = {ex|1 ≤ x ≤ m} and the user-defined criteria U to define whether two

disconnected nodes i, j are related (i, j) ∈ U or unrelated (i, j) /∈ U , we create

69

G′ = (V, E ′), such that if and only if (i, j) /∈ E and (i, j) /∈ U, (i, j) ∈ E ′, i.e., G′

is G’s complement graph. A′ is the adjacency matrix of G′’: A′
ij = 1 iff Aij = 0

and (i, j) /∈ U . We define Qmin as

Qmin =
1

n(n − 1) − 2m − 2|U |

∑

xy

[A′
xy − P ′

xy]φ(Cx, Cy) (5.5)

φ(Cx, Cy) = 1 if Cx and Cy are the same community, 0 otherwise. |U | is the

number of pairs in U . Similarly, P ′
xy is the expected probability of an edge between

vertices x and y in a random graph:

P ′
xy =

(d′
x)(d

′
y)

2m′
(5.6)

where d′
x is the degree of node x in G′, and m′ = n(n−1)−2m−2|U |

2
. Since d′

x =

n − dx − ux, we have

P ′
xy =

(n − dx − ux)(n − dy − uy)

n(n − 1) − 2m − 2|U |
(5.7)

where ux and uy are number of nodes that are disconnected from but defined as

related nodes with x and y. Now we want to maximize Qmax and minimize Qmin

at the same time. Fortunately, it can be achieved by maximizing the following term

QMax Min:
QMax Min = Qmax − Qmin

=
∑

xy[
1

2m
(Axy − Pxy)

− 1
2m′

(A′
xy − P ′

xy)]φ(Cx, Cy)

The higher QMax Min is, the better community division we get. Note that we choose

to use Qmax−Qmin instead of Qmax

Qmin
for QMax Min, since the former equation allows

us to compute the ∆ modularity between every pair of nodes. Also note that it is

easy to extend the MM Modularity for weighted graphs by using the weight in

degree computation for Qmax and Qmin.

We present an example for user-defined criteria in the following. In social net-

works, the neighbourhood around nodes are usually as important as direct connec-

tions. Thus we naturally define disconnected people as related pair if they connect

to the same intermediary person. Therefore, we define U as if (i, j) /∈ E and there

is such k that (i, k), (k, j) ∈ E, we have (i, j) ∈ U . By applying this criterion,

we reward the MM modularity for connected pairs in the same community, penal-

ize it for pairs that are in same communities and have no shared neighbour, and do

70

B

C

G

A

D

E

F

G

A

D

E

F

B

C

G

A

D

E

F

B

C

G G’ G’’
Original Graph Complement Graph for Unrelated Pair

No Related Pair Definition
Complement Graph for Unrelated Pair

That Share Neighbours
Related Pair = Disconnected Pair

Figure 5.2: Building Complement Graphs

not reward or penalize pairs that are disconnected but share neighbour nodes. An

example for building complement graphs for this criterion is shown in Figure 5.2.

Other constraints can also be applied to define related pairs, as discussed in Section

5.3.

5.1.2 Algorithm for Community Detection

Here we propose a new method to evaluate the quality of the discovered community

structure based on the MM Modularity. We may consider, if a high value of the

metric represents a good community division, one can simply optimize QMax Min

over all possible divisions to find the best one. However, to find the optimal value of

QMax Min is very costly: to carry out a complete search of all possible divisions for

the optimal value of QMax Min would take at least an exponential amount of time,

and is thus infeasible for large networks. Therefore, we propose a hierarchical

clustering algorithm HMaxMin (see Algorithm 1) to greedily optimize the MM

Modularity to find the approximate optimal value.

Recall that we reward the modularity for connected pairs, penalize it for unre-

lated pairs, and do nothing for disconnected but related pairs. Merging a pair of

nodes between which there are no edges at all can never result in an increase in

QMax Min, thus in step 2 we only compute and store modularity scores for con-

nected pairs in a sparse matrix. In step 3, we greedily merge the pair of commu-

71

nities which provides the highest modularity gain into one community and update

the modularity matrix as well as the related pair matrix. For updating the modu-

larity matrix, we first treat all pairs between community i and j as unrelated, i.e.,

|i| ∗ |j| pairs, then add the extra deducted value for related pairs (note that Qirjr
=

1
2m

(0−Pij)−
1

2m′
(0−P ′

ij) if i and j are related and Qij = 1
2m

(0−Pij)−
1

2m′
(1−P ′

ij)

if they are unrelated, thus Qirjr
= Qij + 1

2m′
).

Algorithm 1 Hierarchical Clustering Algorithm HMaxMin to greedily optimize
QMax Min

Input: A social network G = (V, E), V = {vi|1 ≤ i ≤ n}, E = {ex|1 ≤ x ≤
m}, Adjacency Matrix A, the user-defined criteria U .
Output: A division of V : C1, C2, ...Ck.
1. Assume each node is the sole member of one of the n communities. Build
related pair matrix S, Sij equals the number of related pairs between community
i and j:

Sij = 1 iff (i, j) ∈ U .
2. Compute the symmetric sparse matrix containing ∆Qxy for each connected
pair x, y:

∆Qxy = 1
2m

(1 − Pxy)−
1

2m′
(0 − P ′

xy).
Save each matrix row both as a balanced binary tree tx and as a max-heap hx.
Save the largest element of each matrix row along with the x y label in a max-
heap H . For each node x, we set: ax = dx

2m
, a′

x = d′x
2m′

.
3. While (pop heap(H) > 0)
Select the largest element H and the corresponding
x, y. Update ∆Q by merging y row (column) into x
row (column) such that:
if community z connect to both x and y in G:
∆Qxz = ∆Qxz + ∆Qyz

if z only connect to x in G and connect to y in G′:
(|y| equals the number of nodes in community y)
∆Qxz = ∆Qxz + 2a′

ya
′
z − 2ayaz −

2|y||z|
m′

+ 2Syz

m′

if z only connect to y in G and connect to x in G′:
∆Qxz = 2a′

xa
′
z − 2axaz −

2|x||z|
m′

+ 2Sxz

m′
+ ∆Qyz

Mark y row (column) in ∆Q and S as merged.
Update S by adding y row (column) into x column.
Update new ax = ax + ay, new a′

x = a′
x + a′

y

Update tx, update all hz, update H .
4. Label merged nodes in the same unmarked row to be in the same community,
as C1, C2, ...Ck.
5. Return C1, C2, ...Ck.

For algorithm complexity, consider we have n nodes and m edges. In step 2 we

72

only need to consider those pairs connected by edges, of which there will be at any

time at most m. If we use nx to represent the number of neighboring communities

of community x, we have nx elements for the x row in the sparse matrix. In step

3 of Algorithm 1, since we need to merge y row into x row, we will have nx + ny

insertions in the worse case. Since the rows are stored as balanced binary trees, each

of the insertions take O(logn) in the worst case. Therefore, updating the matrix in

step 2 takes O((nx + ny) log n) time. Similarly, we only need to update the heap

for the k row if community k is adjacent to community x or y. We need to do

at most nx + ny updates of hk, each of which takes O(log n) time, for a total of

O((ni + nj) log n) time. Updating the related pair matrix S takes O(|Sy|) (Sy is

the number of elements in the y row of S), however, we can always choose y so

that |Sy| ≤ |Sx|, therefore, updating S takes O(1) time. Since each merge takes

O((ni + nj) log n) time, the total running time is the O(log n) times the sum over

all degrees of the merged communities along the dendrogram. In the worst case,

each node would contribute its degree to all of the communities it belongs to, along

the path in the dendrogram from the node to the root, which makes the total degree

2m, therefore, if the dendrogram has depth D, the algorithm runs in O(mD log n)

time in a sparse graph. The approximate optimal Q value is also accumulated as

the algorithm goes along. Thus, our algorithm includes domain knowledge but still

runs in the same complexity as the similar algorithm proposed in [52].

5.2 Experiment Result

In this section, we apply our MM Modularity and the HMaxMin algorithm to detect

communities on various social networks, including several data sets collected from

real networks with ground truth as well as a synthetic data set which is randomly

generated with given parameters, such as graph size and community numbers. The

domain knowledge used is the example presented in Section 5.1.1: if (i, j) /∈ E

and there is such k that (i, k), (k, j) ∈ E, we have (i, j) ∈ U . In other words, the

generic domain knowledge given to the algorithm is represented in the form of pairs

of disconnected nodes that could be related. All the experiments were conducted

73

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.2 0.4 0.6 0.8 1

R
un

 T
im

e
(s

ec
)

Number of Nodes or Edges (in millions)

nodes
edges

Figure 5.3: Algorithm Running Time

on a PC with a 3.0 GHz Xeon processor and 4GB of RAM.

5.2.1 Scalability

To test our algorithm on large datasets, we ran our algorithm on the largest compo-

nent of the collaboration network of scientists posting preprints at www.arxiv.org

[151], which has 27,519 nodes and 116,181 edges, and the IMDB network between

actors who share involving movies [106], which has 47,436 nodes and 379,196

edges, within 376 and 1,037 seconds, respectively. To further evaluate algorithm

efficiency, we generated ten random graphs of vertices ranging from 10,000 to

500,000 and the number of edges ranging from 20,000 to 1,000,000. Figure 5.3

shows the performance of our algorithm on those networks. It clearly reflects the

O(mD log n) complexity of our approach.

However, we do not have ground truth to validate our result for such large

datasets, thus we turn to synthetic data and real world datasets to evaluate the ac-

curacy of our algorithm. Danon et al. [57] found that the modularity method out-

performed all other methods for community detection of which they were aware, in

most cases by an impressive margin. Thus maximization of the modularity to be

perhaps the definitive state of the art method of community detection. Therefore, we

74

compared our HMaxMin algorithm with a similar hierarchical clustering algorithm

FastModularity [52], which optimizes Newman’s modularity to measure commu-

nity structure, to show that our MM Modularity is more accurate for community

detection tasks by including domain knowledge.

5.2.2 Evaluation Approach

To evaluate how closely each community in the result matches its corresponding

community in ground truth, we adapt the Adjusted Rand Index (ARI) [223] as the

performance metric for accuracy. The ARI measures how similar are the partition

of objects according to the real communities (R) and the partition in an algorithm

result (P). Denote a, b, c and d as the numbers of object pairs that are in the same

community in both R and P , in the same community in R but not in P , in the

same community in P but not in R, and in different communities in both R and P ,

respectively. ARI is defined as follows.

ARI(R, P) =
2(a ∗ d − b ∗ c)

(a + b) ∗ (b + d) + (a + c) ∗ (c + d)

The more similar the two partitions (larger a and d, smaller b and c), the larger the

ARI value. ARI will be 1 if R and P are identical and 0 if P is a random partition

for the graph.

5.2.3 Synthetic Data

To test the performance of our algorithm on networks with varying degrees of com-

munity structure, we have applied it to a large set of randomly generated graphs.

Each graph was constructed with 1000 vertices and 5 communities, each of which

had 200 vertices. At first, each vertex was connected to 6 other randomly cho-

sen nodes in the same community and had no connection to nodes in the different

communities, thus we get 3000 within-community edges. Then we added a num-

ber of between-community edges, x, into the graph. Both ends were randomly

chosen and each node could only connect up to 4 nodes in different communities

so that within-community connections for all nodes were supposed to be stronger

than between-community connections. This produces graphs which have a known

75

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 600 700 800 900 1000 1100 1200 1300 1400 1500

A
dj

us
te

d
R

an
d

In
de

x
(A

R
I)

Between-Community Edges (x)

Community Detection on Random Graphs

Our HMaxMin Algorithm
FastModularity

Figure 5.4: Synthetic Data Results (each point is an average over 50 1,000-node
graphs.)

community structure, but are essentially random in other respects. Moreover, we

can control the “noise”, i.e., between-community edges, by adjusting x. Similar

synthetic data generation methods have been used in [51, 85].

Using these graphs, we tested and compared the performance of HMaxMin al-

gorithm and FastModularity with different x, as shown in Figure 5.4. As the figure

shows, HMaxMin performs well, with a > 0.7 average ARI on graphs with less than

1500 between-community edges (50% of the within-community edges). HMaxMin

begins to “fail” when x approaches more, however, there may not exist any commu-

nities in such circumstances. On the same plot, we also show the performance of the

algorithm based on the original modularity Q (FastModularity) and, as we can see,

that algorithm performs measurably worse than our algorithm. Interestingly, the

performance of the two algorithms are about the same when the community struc-

ture is clear and strong, but when we increase the noise edge numbers, the accuracy

of HMaxMin drops much slower than FastModularity. Therefore, it is reasonable

to believe that our algorithm is more robust in finding community structure for data

76

Ground Truth FastModularity HMaxMin ImprovementCommunities Comm. ARI Comm. ARI
Karate Club 2 3 0.680 2 1.00 47.1 %

Sawmill Network 3 4 0.664 3 1.00 50.6%
Mexican Politicians 2 3 0.255 3 0.359 40.7%

Table 5.1: Algorithm Comparison on Real World Networks.

with considerable noise.

5.2.4 The Karate Club

While random mid-size networks provide a reproducible and well-controlled testbed

for community discovery evaluation, it is also desirable to test and compare the per-

formance of our algorithm on real world networks. Since ground truth of large

datasets is hard to come by, we have selected three network datasets, for which

the community structure is already known from other sources. Table 5.1 shows

the detected community number and the ARI score of result structures of both al-

gorithms. The first network is drawn from the well-known “karate club” study of

Zachary [224]. In this study, relations between 34 members of a karate club over

a period of two years are observed. During the study, a disagreement developed

between the administrator and the teacher of the club, which eventually made the

club split into two smaller ones, centering around the administrator and the teacher,

represented by node 34 and node 1. Then Zachary was able to construct a network

of friendships, using a variety of measures to estimate the strength of ties between

members of the club.

Note that the user-defined criteria we used for the karate network and all the

following experiments is a heuristic rule for social networks where we believe the

neighbourhood around people are as important as direct relations, thus disconnected

people are treated as related pairs if they share the same intermediary friends. In

other words, this criterion only penalizes the MM modularity for pairs that are in

the same community and have no shared friends. We reward the score for connected

pairs and do not reward or penalize sharing-neighbour pairs.

77

Max−Min Modularity Ground TruthFastModularity

Figure 5.5: The Karate Club

In Figure 5.51, we show a unweighted network structure extracted from Zachary’s

observations. The actual divisions of the club following the break-up, as revealed

by which club the members attended afterward, are indicated by node colours. We

also show the results after feeding the network into HMaxMin (represented by node

shape) and FastModularity (represented by closed area) in the figure. As we can

see, FastModularity not only incorrectly generates one extra community, but also

classifies node 10 into the wrong community2, while results of our algorithm per-

fectly match the ground truth. In other words, the MM Modularity is better than the

original as a predictor of subsequent social evolution of this friendship network.

5.2.5 Sawmill Communication Network

As a further test of our algorithm, we turn to the communication network of em-

ployees in a sawmill3. This data is collected in order to analyze the communication

structure among the employees after a strike. An edge in the network means that
1All following network figures are generated using Meerkat [5].
2The result in [151], which showed that FastModularity find two communities with only one

misclassified node, is incorrect, confirmed by M. Newman in private communication.
3This dataset is collected from the Pajek Project [168].

78

FastModularity Max−Min Modularity Ground Truth

Figure 5.6: Social Network in a Sawmill

the two connected employees have discussed the strike with each other very often.

As Figure 5.6 shows, there are three groups according to age and language. The

Spanish-speaking young employees (the top group) are almost disconnected from

the English-speaking young employees (the left group), who communicate with no

more than two of the older English-speaking employees (the right group). All ties

between groups have special backgrounds. For example, Alejandro is most profi-

cient in English and Bob speaks some Spanish, which explains their connection.

Bob owes Norm for getting his job, which may be the reason that they developed a

friendship tie. Finally, Ozzie is Karl’s father [168].

In Figure 5.6, we show the communities of the ground truth, our algorithm and

FastModularity, indicated again by the node colour, shape and closed area. As

we can see, both algorithms correctly identify the Spanish-speaking group, which

is a clique. However, FastModularity inaccurately classifies Ozzie into the young

79

English-speaker group and generates an extra community for the older English-

speaker group although Sam strongly connects the two separated groups. On the

other hand, HMaxMin again perfectly detects the ground truth, as revealed by the

sociology research.

5.2.6 Mexican Politician Network

For our next example, we look at a more complex relation network between politi-

cians in Mexico (also collected from the Pajek Project [168]), which describes a

social network between Mexican politicians in the 20th century. Edges represent

significant social ties between the politicians, represented by nodes. Two groups

within this network have been competing for power against each other (Figure 5.7),

which are civilians (the top group) and members of the military force (the bottom

group).

As we can see in Figure 5.7, this network has significantly more between-

community connections than the previous two networks, which makes it harder

for community mining algorithms to detect the communities correctly (as shown by

the experiments on synthetic data). As the figure shows, FastModularity finds most

members of the civilian group (red nodes), but it separates the military group (yel-

low nodes) into two communities and makes several mistakes around the periphery.

On the other hand, HMaxMin also detects three communities, one for the civilian

group, one for military group and one in the middle, mainly containing periphery

nodes. Although it is hard to argue which partition is better simply by observation,

Table 5.1 shows that the HMaxMin algorithm achieves a better 0.359 ARI score

than 0.255 of FastModularity.

5.3 Discussion

Recently, community mining is increasingly attracting attention as an area of study

and faces many challenges in developing community structures. Newman’s Mod-

ularity has been proved to be effective and is thus pursued by many researchers,

however, it has three main problems as we reviewed in Chapter 3. Our Max-Min

80

FastModularity Max−Min Modularity Ground Truth

Figure 5.7: Mexican Politician Network

modularity solves the third problem of modularity shown in Figure 3.2, which does

not consider absent links, by including the factor of user-defined related node pairs

in the quality measure process, thus not only the detection accuracy is improved

by taking advantage of domain knowledge, but community structure in different

graphs can be compared. The Max-Min modularity idea can be easily extended to

its local version, where global information about the graph is unavailable, and can

be used in the recursive community detection to improve the community resolu-

tion. In networks such as biological and social networks, where connections can be

unobserved, only considering the connected pairs might be inaccurate for commu-

81

nity structure detection. While other algorithms cannot handle such case, our MM

modularity-based methods can achieve information from link prediction [128], and

extract appropriate criteria for community detection. Additionally, our algorithm

still runs in O(mD log n) time, which is the same as previous modularity-based

algorithms.

5.4 Related Work

In the field of theoretical computer science, correlation clustering [16, 40, 195] con-

siders a complete graph on n vertices, where each edge (u, v) is labeled either +

or − depending on whether u and v have been deemed to be similar or different.

Similar to our problem, the goal is to find a partition that agrees as much as possible

with the edge labels, i.e., a clustering that maximizes the number of + edges within

clusters and minimize the number of − edges inside clusters. However, while cor-

relation clustering assumes the graph is complete and each connection is either

positive or negative, such assumption is not true for community detection, where

graphs are usually sparse and many of the edges are unobserved, i.e. labeled as

0. Moreover, while existing methods [83, 84] for correlation clustering require the

user to specify parameters that are usually hard to determine [1], e.g., the number

of clusters, our algorithm does not require parameters.

The idea of considering domain knowledge as related/unrelated pairs in this

chapter is analogous to the notions of must/cannot links in semi-supervised cluster-

ing [18, 205, 206]. However, in semi-supervised clustering, the labeled data is used

for cluster initialization [18] and the link constraints must be satisfied [205, 206].

Moreover, the number of clusters k is usually required as the starting parameter. On

the other hand, our algorithm does not require parameters and the domain knowl-

edge in our work is used to guide the bottom-up hierarchical clustering process,

instead of generating initial communities. The given related/unrelated pairs are not

enforced to be in the same/different communities, but contribute in calculating a

metric score which evaluates the “closeness” of two communities.

82

5.5 Conclusions

We have described a new measure based on modularity for community structure and

a hierarchical clustering algorithm HMaxMin for detecting communities from var-

ious networks. Different from other similar algorithms, which use one pre-defined

similarity measure for all kinds of networks, our approach takes domain knowl-

edge into consideration and thus improves the community detection accuracy. The

proposed measure not only considers to maximize connected node pairs but also

to minimize unrelated pairs in the same community, thus provides a considerable

improvement over the original modularity, which only measures the existing con-

nections within communities. While giving a penalty for all absent links might be

too strict, domain knowledge is incorporated in our model to boost performance.

Our change on the modularity has a big impact on community detection, and fur-

ther improves the high accuracy that modularity-based method already achieves.

We have applied the algorithm to randomly generated networks and a set of real

world networks with ground truth for validation. We have also applied the algo-

rithm on large networks to show its scalability. The experimental results confirm

the accuracy and effectiveness of the proposed measure and algorithm for commu-

nity structure detection.

83

Chapter 6

Discovering Local Communities

There has been much recent research on identifying global community structure

in networks. However, most existing approaches require complete network infor-

mation, which is impractical for some networks, e.g. the WWW or the cell phone

telecommunication network. Local community detection algorithms have been pro-

posed to solve the problem but their results usually contain many outliers, which are

nodes that are weakly connected to the community and should not be included. In

this chapter, we propose a new measure of local community structure [44], coupled

with a two-phase algorithm that extracts all possible candidates first, and then op-

timizes the community hierarchy. We also propose a community discovery process

for large networks that iteratively finds communities based on our measure [46].

We compare our results with previous methods on real world networks such as the

co-purchase network from Amazon. Experimental results verify the feasibility and

effectiveness of our approach. The research problem of this chapter is defined in

Chapter 4.2.

6.1 Our Approach

Existing approaches discussed in Chapter 3 are simple. However, an effective local

community detection method should be simple, not only because the accessible

information of the network is restricted to merely a small portion of the whole

graph, but also because the only means to learn more knowledge about the structure

is by expanding the community, by one node at one step. With all these limitations

84

in mind, we present our L metric and the local community discovery algorithm in

this section.

6.1.1 The Local Community Metric L

Intuitively, there are two factors one may consider to evaluate whether a node set

in the network is a community or not, which are strong node relations within the

set and weak relations between inside nodes and the rest of the graph. Therefore,

almost all existing metrics directly use the internal and external degrees to represent

these two significant factors, and identify local communities by maximizing the for-

mer while minimizing the latter. However, their community results might include

many outliers and the overall community quality is questionable. (See Chapter 4.2

for explanation and Section 6.2.1 for experiment examples). The important miss-

ing aspect in these metrics is the connection density, not the absolute number of

connections, that matters in community structure evaluation. For instance, even if

there are one million edges within one node set N and no outward links at all, it

is doubtful to identify N a strong community if every node in N only connects to

one or two neighbours. Therefore, we propose to measure the community internal

relation Lin by the average internal degree of nodes in D:

Lin =

∑

i∈D IKi

|D|
(6.1)

where IKi is the number of edges between node i and nodes in D. Similarly,

we measure the community external relation Lex by the average external degree of

nodes in B:

Lex =

∑

j∈B EKj

|B|
(6.2)

where EKj is the number of connections between node j and nodes in S. Note that

Lex only considers boundary nodes instead of the whole community D, i.e., the

core nodes are not included since they do not contribute any outward connections.

Now we want to maximize Lin and minimize Lex at the same time. Fortunately, it

can be achieved with the following equation:

L =
Lin

Lex

(6.3)

85

Note that it is possible to quantify the density Lex by other means, e.g., average

connections from the shell nodes to community nodes to measure Lex. However,

this method fails for the local community identification problem because the shell

set is usually incomplete. For example, while the friend list of user A is available

in Facebook, the list of the users that choose A as a friend is hard to obtain.

6.1.2 Local Community Structure Discovery

Using L to evaluate the community structure, one can identify a local community

by greedily maximizing L and stopping when there is no remaining nodes in S

that increases L if merged in D. However, this straight-forward method is not ro-

bust enough against outliers. Take Figure 6.1 as an example. Although Lin for O1

would decrease because O1 only connects to one node in D, the overall L might

increase because the denominator Lex decreases as well (O1 only connects to one

node outside D). Therefore, it is still possible to include outlier O1 in the commu-

nity. To deal with this problem, we look further into the metric instead of simply

maximizing the score in a greedy manner. We note that, there are three situations

in which we have an increasing L score. Assume i is the node in question and L′
in,

L′
ex and L′ are corresponding scores if we merge i into D, the three cases that may

result in L′ > L are:

1. L′
in > Lin and L′

ex < Lex

2. L′
in < Lin and L′

ex < Lex

3. L′
in > Lin and L′

ex > Lex

Obviously nodes in the first case belong to the community since they strengthen

the internal relation and weaken the external relation. Nodes in the second case,

e.g., O1 in Figure 6.1, are outliers. They are weakly connected to the community

as well as the rest of the graph. Finally, the roles of nodes in the third case cannot

be decided yet, since they are strongly connected to both the community and the

network outside the community. More specifically, when we meet a node i, which

falls into this case during the local community discovery process, there are two

86

O 1

O 2

O 3

O 4

O 5

O 6 O 7
O 8

O 9

O 10 O 11

B 1

B 2

B

C

S

S

D

Figure 6.1: Problem of Previous Local Community Metrics

node types. First, node i can be the first node of an enclosing community group

that is going to be merged one by one; Second, i connects to many nodes, inside or

outside the community, and can be referred to as a “hub”. We do not want hubs in

the local community. However, it is too early to judge whether the incoming node is

a hub or not in the exploration process. Therefore, we temporarily merge nodes in

the first and third cases into the community. After all qualified nodes are included,

we examine each node by removing it from D and check the metric value change

of its merge again. Now we only keep nodes in the first case. If node i is a member

of an enclosing group, L′
ex should decrease because all its neighbours are now in

the community as well, while hub nodes would still belong to the third case (see

Algorithm 2). Finally, the starting node should still be found in D, otherwise, we

believe a local community does not exist. (see Algorithm 3.)

The computation of each L′
i can be done quickly using the following expression.

L′
i =

Ind+2∗Indi

|D|+1

Outd−Indi+Outdi

|B′|

(6.4)

where Ind and Outd are the number of within and outward edges of D before

merging i, and should be updated after each merge; Indi and Outdi are the number

of edges from node i to the community and the rest of network; B ′ is the new

boundary set after examining all i’s neighbour in D. In the discovery phase, L′
i need

87

Algorithm 2 General Local Community Identification
Input: A social network G and a start node n0.
Output: A local community with its quality score L.
1. Discovery Phase:
Add n0 to D and B, add all n0’s neighbours to S.
do

for each ni ∈ S do
compute L′

i

end for
Find ni with the maximum L′

i, breaking ties randomly
Add ni to D if it belongs to the first or third case
Otherwise remove ni from S.
Update B, S, C, L.

While (L′ > L)
2. Examination Phase:
for each ni ∈ D do

Compute L′
i, keep ni only when it is the first case

end for

Algorithm 3 Single Local Community Identification
Input: A social network G and a start node n0.
Output: A local community D for node n0.
1. Apply algorithm 2 to find a local community D for n0.
2. If n0 ∈ D, return D, otherwise there is no local community for n0.

88

to be recomputed for every node in S to find out the one with the maximum ∆L,

thus the complexity of the algorithm is O(kd|S|), where k is the number of nodes

in the D, and d is the mean degree of the graph. However, in networks for which

local community algorithms are applied, e.g., the WWW, and where adding a new

node to D requires the algorithm to obtain the link structure, the running time will

be dominated by this time-consuming network information retrieval. Therefore, for

real world problems the running time of our algorithm is linear in the size of the

local community, i.e., O(k). Note that in Algorithm 2 we begin with only one node

n0 while the same process could apply for multiple nodes to allow a larger starting

D, C, B and S.

6.1.3 Iterative Local Expansion

Algorithm 3 is for identifying one local community for a specific set of starting

nodes. However, we could apply this algorithm iteratively to cover the whole graph

or a large section of the graph if the iterative process is terminated. In other words,

instead of one-node-at-one-step, we expand as one-community-at-one-step to dis-

cover the community structure in the network. See Algorithm 4.

Algorithm 4 Iterative Expansion Algorithm
Input: A social network G, a start node n0 and the community number m (op-
tional).
Output: A list of local communities.
1. Apply algorithm 2 to find a local community l0 for n0.
2. Insert neighbours of l0 into the shell node set S
3. While (|S|! = 0 && (i ≤ m))

Randomly pick one node ni ∈ S.
Apply algorithm 2 to find a local community li
for ni.
Remove ni and nodes in S that are covered by li.
Update S by neighbours of li that are not covered
yet.

4. Output m local communities l0, l1, l2..., lm, m could be given as a stop param-
eter if necessary.

In algorithm 4, we recursively apply the local community identification algo-

rithm to expand the community structure. Every time we find a local community,

89

we update the shell node set, which is actually a set of nodes whose community

information is still unclear. Note that here we accept identified local communi-

ties even if the starting node is not included. The shown algorithm stops when

we have learned the whole structure of the network; however, we could also give

parameters as stopping criteria if exploring the whole network is unnecessary or

impractical, such as the number of discovered communities (m), or the number of

nodes that has been visited (k). The algorithm could also be parallel and have mul-

tiple starting nodes, where several local community identification procedures start

simultaneously from different locations of the network. Obviously, the complexity

of the Algorithm 4 is still O(kd|S|).

As previously discussed, in real world networks, one entity usually belongs to

multiple communities. However, most of the existing approaches cannot identify

such overlapping communities. Fortunately, even though we do not specifically

focus on finding the overlapping property, our approach is able to discover overlap-

ping communities, since in our algorithm nodes could be included in multiple local

communities based on their connection structure.

6.2 Experiment Results

Since the ground truth of local communities in a large and dynamic network is hard

to define, previous works usually apply their algorithms on real networks and ana-

lyze the results based on common sense, e.g., visualizing the community structure

or manually evaluating the relationship between disclosed entities [15, 51, 133].

Here we adapt a different method to evaluate the discovered local communities. We

provide a social network with absolute community ground truth to the algorithm,

but limit its access of network information to local nodes only. The only way for

the algorithm to obtain more network knowledge is to expand the community, one

node at a time. Therefore, we can evaluate the result by its accuracy while satis-

fying limitations for local community identification. Based on our observations,

the greedy algorithm based on metric R [51] (we refer to it as algorithm R) out-

performs all other methods for local community detection. Furthermore, similar to

90

our approach, R does not require any parameters while other methods [14, 15, 133]

rely on given parameters. Therefore, in this section we compare the results of our

algorithm and algorithm R on different real world networks to show that our metric

L is more accurate for local community detection. We evaluate our method by the

traditional Precision, Recall and F-measure metric. Consider we have our result

and the ground truth cluster, Precision and Recall are defined as

Precision =
TruePositive

TruePositive + FalsePositive

Recall =
TruePositive

TruePositive + FalseNegative

and F measure

F measure = 2 ∗
Precision ∗ Recall

P recision + Recall

which is actually the harmonic mean of precision and recall,

6.2.1 The NCAA Football Network

The first dataset we examine is the schedule for 787 games of 2006 National Col-

legiate Athletic Association (NCAA) Football Bowl Subdivision (also known as

Division 1-A) [221]. In the NCAA network, there are 115 universities divided into

11 conferences1. In addition, there are four independent schools, namely Navy,

Army, Notre Dame and Temple, as well as 61 schools from lower divisions. Each

school in a conference plays more often with schools in the same conference than

schools outside. Independent schools do not belong to any conference and play with

teams in different conferences, while lower division teams play only few games. In

our network vocabulary, this network contains 180 vertices (115 nodes as 11 com-

munities, 4 hubs and 61 outliers), connected by 787 edges.

We provide this network as input to Algorithm 3 and algorithm R. Every node

in a community, which represents one of the 115 schools in an official conference,

has been taken as the start node for the algorithms. Based on the ground truth

posted online, the precision, recall and f-measure score of all the discovered local

communities are calculated. We average the score for all schools in one conference
1The ground truth of communities (conferences) can be found at

http://sports.espn.go.com/ncf/standings?stat=index&year=2006

91

2006 NCAA League Algorithm Results
Greedy Algorithm R Our Algorithm

Conference Size P R F No Comm. P R F
Mountain West 9 0.505 0.728 0.588 0 node 0.944 1 0.963
Mid-American 12 0.392 0.570 0.463 1 nodes 0.923 1 0.96
Southeastern 12 0.331 0.541 0.410 3 nodes 1 1 1

Sun Belt 8 0.544 0.891 0.675 3 nodes 1 1 1
Western Athletic 9 0.421 0.716 0.510 4 nodes 0.6 1 0.733

Pacific-10 10 0.714 1 0.833 0 nodes 1 1 1
Big Ten 11 0.55 1 0.710 9 nodes 0.729 1 0.814
Big East 8 0.414 0.781 0.534 5 nodes 1 1 1

Atlantic Coast 12 0.524 0.924 0.668 3 nodes 1 1 1
Conference USA 12 0.661 1 0.796 1 nodes 1 1 1

Big 12 12 0.317 0.465 0.355 5 nodes 1 1 1
Total 115 0.488 0.783 0.595 34 nodes (29.6%) 0.927 1 0.952

Table 6.1: Algorithm Accuracy Comparison for the NCAA Network (Precision
(P), Recall (R) and F-measure (F) score are all average values for all nodes in the
community).

to evaluate the accuracy of the algorithm to detect that particular community. Fi-

nally, an overall average score of the precision, recall and f-measure score of all

communities is calculated for comparison.

The experiment results are shown in Table 6.1. We first note the disadvantage

of metric R we reviewed theoretically in Chapter 4.2, which is the vulnerability

against outliers, has been confirmed by the results: for all communities, Algo-

rithm R gets a higher recall but a much lower precision, which eventually leads

to an unsatisfactory f-measure score. On the other hand, the accuracy of our algo-

rithm is almost perfect, with a 0.952 f-measure score on average. Second, we see

that our algorithm does not return local communities if starting with some nodes

in the network, namely 34 of the 115 schools representing 29.6%. (Note that in

these cases the local community is considered not existent and is not included in

the average accuracy calculation even though the starting nodes are not outliers.)

However, this result actually shows merit of our approach instead of weak points.

Generally speaking, in one local community, nodes can be classified into cores and

peripheries. It would be easier for an algorithm to identify the local community

if starting from cores rather than peripheries. For example, if the algorithm starts

92

from a periphery node i in community c, the expansion step might fall into a differ-

ent neighbour community d, which has some members connecting to i, due to lack

of local information. The process would become more and more difficult to return

to c as it goes along, because members of d are usually taken in one after another

and finally the discovered local community would be d plus node i, instead of c.

Fortunately, our algorithm detects such phenomena in the examination phase since

i will be found as an outlier to d. Therefore we do not return the result as a local

community for i since we already realize that it is misdirected in the beginning. As

a possible solution for this problem, we can always start with multiple nodes, by

which we provide more local information to avoid the starting misdirection. Note

that while our algorithm handles such situation, algorithm R returns communities

for every node without considering this problem, which is one reason for its low

accuracy. Also note that another work [133] has a similar “deletion step”, however,

their approach depends on arbitrarily provided thresholds.

6.2.2 The Amazon Co-purchase Network

While mid-size networks with ground truth provide a well-controlled testbed for

evaluation, it is also desirable to test the performance of our algorithm on large real

world networks. However, since ground truth of such large networks is elusive,

we have to justify the results by common sense. We applied our algorithm and

algorithm R to the recommendation network of Amazon.com, collected in January

2006 [133]. The nodes in the network are items such as books, CDs and DVDs

sold on the website. Edges connect items that are frequently purchased together by

customers, as indicated by the “customers who bought this book also bought these

items” feature on Amazon. There are 585,283 nodes and 3,448,754 undirected

edges in this network with a mean degree of 5.89. Similar datasets have been used

for testing in previous works [52, 133].

We first show discovered local communities for one popular book (The Lord of

the Rings (LOR) by J.R.R. Tolkien), which is used as the starting node. The results

are shown in Table 6.2. While both algorithms find interesting communities, we

see that our algorithm detects books by authors other than Tolkien but are strongly

93

Algorithm Items (Books) in the Local Community

Both

Smith of Wootton Major∗
The Lord of the Rings: A Reader’s Companion#

The Lord of the Rings: 50th Anniversary, One Vol. Edition∗

(The starting node) The Lord of the Rings [BOX SET]∗

L

On Tolkien: Interviews, Reminiscences, and Other Essays#

Tolkien Studies: An Annual Scholarly Review, Vol. 2#

Tolkien Studies: An Annual Scholarly Review, Vol. 1#

A Gateway To Sindarin:
A Grammar of an Elvish Language from J.R.R. Tolkien’s Lord of the Rings#

J.R.R. Tolkien Companion and Guide#

The Rise of Tolkienian Fantasy#

Perilous Realms: Celtic And Norse in Tolkien’s Middle-Earth#

R

Farmer Giles of Ham & Other Stories∗
Smith of Wootton Major & Farmer Giles of Ham∗

Roverandom∗

Letters from Father Christmas, Revised Edition∗

Bilbo’s Last Song∗

Farmer Giles of Ham :
The Rise and Wonderful Adventures of Farmer Giles∗

Poems from The Hobbit∗
Father Christmas Letters Mini-Book∗

Tolkien: The Hobbit Calendar 2006∗

Table 6.2: Algorithm Comparison for the Amazon Network. ∗ indicates the author
is J.R.R. Tolkien while # is not.

94

related to the topic, i.e., they are all about the history and content of the fantasy

world. On the other hand, more than 90% of the books in R’s community are written

by Tolkien. Moreover, after reading the reviews and descriptions on Amazon, we

found that many of the books are for children, e.g, Letters from Father Christmas

and Farmer Giles of Ham & Other Stories. These books are not related to dragons

and magic at all, but are included in the local community because they weakly

connect to the starting node due to the fact that they share the same author, as we

have discussed in Chapter 4.2.

The next example is the local communities discovered by two algorithms for

a classical book, which is The Arden Shakespeare Complete Works by William

Shakespeare. The results are shown in Table 6.3. For this book, we can see that

the result community of the L algorithm becomes a subset of the result community

of the R algorithm. However, while books that are found by both algorithms seems

to be related to the starting book, algorithm R again includes noises in its result.

For example, The Book of Classic Insults is an obvious outlier. It is weakly linked

to the book Shakespeare’s Insults: Educating Your Wit, which again confirms the

weaknesses of algorithm R. Note that the communities we find here are based on

the network structure and the starting node, instead of the content. While there are

much more Amazon books on the subject of Shakespeare, only books shown here

are identified to be in the local community given the starting book.

In the above two examples, the local community identified by L is smaller than

that of R, which typically includes more noise. However, this is not always the

case. In this example, we show that our L algorithm not only avoids noises in its

community result, but also locates more valid community members than R. Table

6.4 shows the experiment result for the starting book Fairy Tales by Hans Christian

Andersen. Apparently, the local community discovered by L does not include out-

liers. Moreover, it contains more related books, which are all about children’s fairy

tales, than the result community of algorithm R.

95

Algorithm Items (Books) in the Local Community

Both

All the Words on Stage:
A Complete Pronunciation Dictionary for the Plays of William Shakespeare

Shakespeare’s Bawdy (Routledge Classics)
Shakespeare A to Z:

The Essential Reference to His Plays, His Poems, His Life and Times, and More
Shakespeare’s Metrical Art

Shakespeare and the Arts of Language (Oxford Shakespeare Topics)
(The starting node) The Arden Shakespeare Complete Works

Only in R

Shakespeare’s Insults: Educating Your Wit
The Book of Classic Insults

A Dictionary of Shakespeare’s Sexual Puns and Their Significance
Coined by Shakespeare: Words and Meanings First Penned by the Bard

Shakespeare and the Art of Verbal Seduction
Brush Up Your Shakespeare!

Table 6.3: Shakespeare Example for the Amazon Network

6.2.3 Iteratively Finding Overlapping Communities

After evaluating the accuracy of the L metric and our algorithm for single com-

munity identification, here we apply Algorithm 4 on the Amazon network to find

overlapping communities iteratively. Table 6.5 shows several local community ex-

amples of our result. Note that start nodes of some communities may be removed

by our algorithm. Such communities are not included using Algorithm 3 for single

local community identification in earlier experiments.

The first community has 19 nodes, originating at the book Mozart: A Cultural

Biography. It naturally includes other books about the life and music of the leg-

endary musician. Similarly, we have another 15-node-community about the famous

Polish pianist Chopin. The third community is a book series, which is the Cam-

bridge Companions to Music. Finally, the fourth community and fifth community

contain books about English grammar and William Shakespeare. Note that many

other global community detection algorithms, e.g., FastModularity [52], become

slow for such huge networks. Moreover, they may not apply if the global network

information is unavailable.

Aside from local communities of books in Amazon, our approach also finds

overlaps between communities. For example, the two books The Cambridge Com-

96

Algorithm Items (Books) in the Local Community

Both Grimm: The Illustrated Fairy Tales of the Brothers Grimm
(The starting node) Andersen’s Fairy Tales

L

Aesop’s Fables
The Complete Hans Christian Andersen Fairy Tale

The Complete Brothers Grimm Fairy Tales
The Classic Treasury Of Aesop’s Fable

Aesop’s Fables: A Classic Illustrated Edition
The Golden Book of Fairy Tales

The Random House Children’s Treasury
The Complete Fairy Tales of Charles Perrault

The Classic Treasury of Hans Christian Andersen
A Child’s Book of Stories

Great Big Treasury of Beatrix Potter
Mother Goose: The Original Volland Edition

Children’s Stories from Dickens
HarperCollins Treasury of Picture Book Classics: A Child’s First Collection

Original Mother Goose
Classic Fairy Tales

The Random House Book of Fairy Tales
The Random House Book of Nursery Stories

The Everything Fairy Tales Book:
A Magical Collection of All-Time Favorites to Delight the Whole Family

R

Mushroom Girls Virus:
A Guide to the Identification and Study of Our Commoner Fungi

with Special Emphasis on the Edible Varieties
Book Designed to Help

The Illustrated Fairy Tales Of Hans Christian Andersen
Life Of Buddha

1001 Nights: Illustrated Fairy Tales from One Thousand And One Nights
Grimm’s Fairy Tales (Audio CD)

Table 6.4: Andersen Fairy Example for the Amazon Network

97

Items (Books) in the Local Communities
1 Mozart: A Cultural Biography
2 The Cambridge Companion to Mozart (Cambridge Companions to Music)
3 The Mozart Compendium: A Guide to Mozart’s Life and Music
4 Mozart: The Golden Years
... ...
19 The Complete Mozart: A Guide to the Musical Works of Wolfgang Amadeus Mozart
1 Chopin In Paris: The Life And Times Of The Romantic Composer
2 The Cambridge Companion to Chopin (Cambridge Companions to Music)
3 Chopin (Master Musicians Series)
4 Chopin: The Man and His Music
5 Chopin’s Letters
... ...
15 The Parisian Worlds of Frederic Chopin
1 The Cambridge Companion to Schubert (Cambridge Companions to Music)
2 The Cambridge Companion to Mozart (Cambridge Companions to Music)
3 The Cambridge Companion to Chopin (Cambridge Companions to Music)
4 The Cambridge Companion to Stravinsky (Cambridge Companions to Music)
5 The Cambridge Companion to Ravel (Cambridge Companions to Music)
... ...
9 The Cambridge Companion to Beethoven (Cambridge Companions to Music)
1 The New Webster’s Grammar Guide
2 Hardcover, Longman Grammar of Spoken and Written English
3 Editorial Freelancing: A Practical Guide
4 The Oxford Dictionary for Writers and Editors
... ...
52 Modern American Usage: A Guide
1 Shakespeare’s Language
2 Imagining Shakespeare
3 Hamlet: Poem Unlimited
4 ... A Complete Pronunciation Dictionary for the Plays of William Shakespeare
... ...
66 William Shakespeare: A Compact Documentary Life

Table 6.5: Overlapping Local Community Examples for the Amazon Network

98

panion to Mozart (Cambridge Companions to Music) and The Cambridge Compan-

ion to Chopin (Cambridge Companions to Music) are found both in the community

of the book series and the community of the subject. One could easily justify there

is indeed some overlap.

6.3 Conclusions

In this Chapter, we have reviewed problems of existing methods for constructing lo-

cal communities, and propose a new metric L to evaluate local community structure

when the global information of the network is unavailable. Based on the metric, we

develop a two-phase algorithm to identify the local community of a set of given

starting nodes. Our method does not require arbitrary initial parameters, and it can

detect whether a local community exists or not for a particular node. Moreover, we

extend the algorithm to an iterative local expansion approach to detect communities

to cover large networks. We have tested our algorithm on real world networks and

compared its performance with previous approaches. Experimental results confirm

the accuracy and the effectiveness of our metric and algorithm.

99

Chapter 7

Discovering Overlapping
Communities with Visual Data
Mining

Finding global or local communities is an important task for the discovery of un-

derlying structures in social networks. While existing approaches give interesting

results, they typically neglect the fact that communities may overlap, with some hub

nodes participating in multiple communities. Similarly, most methods cannot deal

with outliers, which are nodes that belong to no germane communities. The defini-

tion of overlapping community is usually vague and the criterion to locate hubs or

outliers vary. Existing approaches usually require guidance in this regard, specified

as input parameters, e.g., the number of communities in the network, without much

intuition. In this chapter we present a general list of requirements for a metric for

overlapping community mining. We review advantages and disadvantages of exist-

ing metrics and propose our new metric to quantify the relation between nodes in

a social network. We then use the new metric to build a visual data mining sys-

tem [45], which first helps the user to achieve appropriate parameter selection by

observing initial data visualizations, then detects and extracts overlapping commu-

nities from the network. Experiment results verify the scalability and accuracy of

our approach on real data networks and show its advantages over existing meth-

ods. An empirical evaluation of our metric demonstrates superior performance over

previous measures.

100

7.1 Visual Data Mining

Most community mining approaches apply data mining algorithms, e.g, agglom-

erative hierarchical clustering for a bottom-up merge, or partition clustering for a

top-down split. Having noted that community mining is also a data mining pro-

cess, we believe that the idea of visual data mining could be helpful in the mining

process, both to guide the mining towards goals, and to better understand the re-

sults, since visualization and interaction capabilities enable the user to incorporate

domain knowledge to finding communities in social networks. Generally speak-

ing, the areas of data mining and information visualization offer various techniques

which effectively complement one another supporting the discovery of patterns in

data. Whereas traditional (algorithmic) techniques are analyzing the data automat-

ically, information visualization techniques can leverage the data mining process

from an orthogonal direction, by providing a platform for understanding the data

and generating hypotheses about the data based on human capabilities such as do-

main knowledge, perception, and creativity [11]. In the past few years, visualiza-

tion techniques have been specifically designed to support human involvement in

the data mining process. For example, Ankerst et al. [9] propose an interactive

decision tree classifier based on a multidimensional visualization of the training

data. They later extend the work [10] to include categorical attributes to interac-

tively build decision trees and thus support a much broader range of applications.

Similar visual data mining ideas are also applied in [94, 201] to help users deter-

mine parameters for decision tree construction and classification rule discovery. In

this chapter, we apply visual data mining on the problem of overlapping community

discovery in order to help the parameter determination.

7.2 Preliminaries

In this section, we propose our observation for overlapping network communities

and provide a list of requirements for a good measure for community detection. We

discuss two existing measures based on those requirements.

101

...

(A) Clique Community

...

...

(B) Transitive Community

Figure 7.1: Examples for Clique Community and Transitive Community

7.2.1 Community Definition

Recent research has proposed community detection methods in two different ways

based on various motivations and similarity measures. First, hierarchical methods

[155, 151] tend to find communities globally so that nodes, which are more densely

connected to nodes in the same community than outside nodes, are grouped to-

gether; second, density-based approaches [221] classify nodes into communities

based on their local structure, i.e., nodes are in the same community if they share

many neighbours. In experiments, these two approaches typically yield noticeably

different results on the same datasets. They actually target two different kinds of

communities. On one hand, hierarchical methods partition networks by greedily

maximizing an objective function, which increases for pairs of connected nodes

that are in the same community and decrease for pairs of disconnected nodes also

in the same community. Their methods favour communities where every node con-

nects to everyone else in the same community, which we call Clique Communities

(Fig 7.1 A). On the other hand, density-based approaches expand communities from

nodes that are structurally dense, i.e., have enough neighbours, judged by appropri-

ate parameters. Therefore, these approaches do not consider global properties but

only the local network structure. They find communities where nodes may not di-

rectly connect to many others in the same community but are indirectly connected

to every other node via some connections, which we call Transitive Communities

(Fig 7.1 B). The difference between them is analogous to hierarchical-based and

density-based methods in the data clustering field [227].

No matter how communities are defined, there are two major issues for over-

lapping community mining that remain to be addressed. First, each pair of nodes

102

should be measured by their similarity or relationship; second, pairs with high sim-

ilarity or strong relationship should be put in the same community. Although it is

the algorithm (hierarchical or density-based) that decides the community type to

be found (clique or transitive), a good similarity metric is vital for both clique and

transitive community structure detection. We present the requirements of a good

metric in the following section.

7.2.2 Requirements for An Overlapping Community Mining Met-
ric

It is easy to confuse graph partitioning with community mining since these two

lines of research are really addressing the same question, which can be described

as dividing vertices of a network into some number of groups. There are, however,

important differences between network characteristics of the two camps that make

quite distinct approaches and metrics desirable. For instance, in social network

community mining, the relation between two nodes is asymmetric. (Take MyS-

pace.com as an example: user A might list user B as one of his best friends while

he is not even in the friend list of user B.) Thus, existing measures and approaches

that are shown to be effective for some graph partitioning may not fit for community

mining, since they do not take these differences into consideration. In the follow-

ing, we propose a list of requirements, which we believe should be satisfied by a

good metric for community mining.

1. A metric should measure the similarity between every pair of nodes.

A similarity score between two nodes is required for all algorithms to decide

whether to put these two nodes into one community or not. The metric should

be able to measure all pairs, connected or disconnected. Metrics, which do

not consider disconnected pairs of nodes, may be able to find some commu-

nity structure, but they naively assume that these nodes should not be in the

same community.

2. A metric should reflect not only similarity but also dissimilarity.

In other words, the metric not only measures whether two nodes should be

103

in the same community but also measures whether they should not be in the

same community. For instance, the metric should provide a means to solve

a disagreement while merging a node n in a community when some existing

nodes relate to n and others do not.

3. A metric should consider the asymmetric nature between pairs.

The pair asymmetry in social networks means that Relation(i → j) 6=

Relation(j → i), e.g., consider people pair (i, j) where i has many friends

and is j’s only friend, i is much more important to j than j is to i. For directed

graphs, we have Similarity(i → j) 6= Similarity(j → i). For undirected

graphs, where the similarity measure are usually required to be symmetric,

the asymmetric nature between the node pairs should still be considered.

4. An overlapping community metric should handle both hubs and outliers.

We think there are three kinds of nodes in a social network: hubs (nodes

that have many connections and can be seen as community overlaps), outliers

(nodes that have very few connections and do not belong to any community)

and normal nodes (nodes that have some connections and belong to a com-

munity). The influences of hubs and outliers to community discovery have to

be minimized by the metric.

7.2.3 Example Metrics for Community Detection

Newman et al. proposed the modularity Q as a quality measure of a particular divi-

sion of a network [155]. For a social network with k communities, the modularity

is defined as Q =
∑k

c=1[
ec

m
− (dc

2m
)2] where m is the number of edges in the net-

work, ec is the number of edges between nodes within community c, and dc is the

sum of the degrees of the nodes in community c. The modularity Q measures the

fraction of the edges in the network that connect vertices of the same community,

i.e., within-community edges, minus the expected value of the same quantity in a

network with the same community division but with random connections between

the vertices. Q can be transformed as a sum of similarity scores for all node pairs

104

[52, 152]:

Q =
∑

Qij =
∑

i,j

(
Aij

2m
−

di

2m
∗

dj

2m
) (7.1)

where Aij = 1 if nodes i and j are connected, 0 otherwise, di, dj are the degree of

node i and j, m is the edge number. Note that Qij = 2 ∗ (
Aij

2m
− di

2m
∗

dj

2m
) since

each pair (i, j) is calculated twice in the sum as (i, j) and (j, i). Also note that,

Qij represents the difference between the probability of the event i ↔ j (node i

and j are connected) in the given graph structure (P (i ↔ j) = Aij

m
) and that in a

random model with the same number of vertices, edges and degrees (P (i ↔ j) =

2 ∗ di

2m
∗

dj

2m
). (See [155, 152] for detail.)

The modularity Q provides a similarity score for all pairs of nodes. Whether the

score is positive or negative depends on whether two nodes are connected or not,

which reflects both similarity and dissimilarity. By taking the global information

(the total edge number m) into consideration in the score calculation such that the

higher degree the nodes have the lower score the pair gets, modularity handles the

influence from hub nodes. However, the measure neglects the asymmetric nature

between pairs in social networks by assuming P (i → j) = P (j → i). More-

over, the method fails to handle outliers. Since outliers have small degrees and can

achieve high scores given the formula, they are usually inaccurately merged first

into a community by hierarchical algorithms.

Recently, Xu et al. [221] proposed another similarity measure S:

Sij =
|Ni ∩ Nj|
√

|Ni| ∗ |Nj|
(7.2)

where Ni is the neighbourhood of node i, including i itself and all nodes connecting

to i. This metric normalizes the number of common neighbours by the geometric

mean of the two neighbourhoods’ sizes in order to compare the neighbourhood

structure of the two vertices in question.

The S metric considers the local structure of compared nodes (the common

neighbour number) as well as their local attributes (the sizes of both neighbour-

hoods), thus it minimizes the similarity score from any nodes to both hubs and

outliers. However, this metric does not measure dissimilarity, e.g., the score will al-

ways be zero if two nodes share no neighbours, disregarding the network structure,

105

and it fails to include pair asymmetry as well. Although this metric is easy to be

extended for all pairs of nodes, it was originally proposed for connected pairs only.

Additionally, even though the S metric considers the neighbourhood size of the two

nodes in question, it neglects the degrees of other nodes in the neighbourhood, i.e.,

every node in the neighbourhood is weighted equally as 1 disregarding whether it

is a hub, an outlier or a normal node.

We have summarized two state-of-the-art similarity metrics for community min-

ing and analyzed their advantages and disadvantages (See Table 7.1). While they

successfully find communities for some datasets, they are not particularly designed

for overlapping community mining and thus do not meet all the requirements we

list above.

7.3 Our ONDOCS Approach

In this section, we first present our characterization of the relation between nodes,

then introduce the algorithm to generate network visualizations, and then show how

to extract overlapping communities based on observed parameters.

7.3.1 Relationship Definition

Originally, ONDOCS is inspired by the OPTICS algorithm proposed by Ankerst et

al. [8], where points are ordered for data clustering. However, unlike their cluster-

ing approach, we do not have a distance measure between nodes, so we need to de-

fine a new node relationship. The existing community metrics reviewed in Section

7.2 are designed to find optimal communities of a specific type, i.e., Q for clique

communities and S for transitive communities, which means they focus only on

partial aspects of network structure. We think that comparing the community struc-

ture to a random model, in which nodes are randomly connected in a network, is a

better way to quantify node relations. The intuition is that community structure can

be identified as that which is non-random; so developing a measure with a notion of

random connections should help identify non-random structure. The neighborhood

around any two nodes in question is also important in assessing their relationship.

106

Therefore we proposed a new measure R to combine these two aspects, defined as

follows for undirected networks:

R(i, j) =
Relation(i → j) + Relation(j → i)

2
=

∑

x∈Nj
r(i, x) +

∑

x∈Ni
r(x, j)

2
(7.3)

where Ni is the neighbourhood of node i, including i itself and all nodes that con-

nect to i. The similarity between node i and j is defined as the average of R(i → j),

representing the relationship from i to j’s neighbourhood, and R(j → i), repre-

senting relationship from j to i’s neighbourhood. R(i → j) is defined as the sum

of relation scores r between i and all nodes in j’s neighbourhood, similarly for

R(j → i) with respect to j and i’s neighbourhood. Next, in order to quantify the

relation r(i, j) between node i and j, we compare the probability of the event that i

and j are connected in the original graph G to a random model, where we only keep

the same node number n and node degree k1, ..., kn and leave the rest random. In

such a random model, it is obvious that the probability of node i having a connec-

tion to any other node is P (i) = ki

n−1
(similarly, P (j) =

kj

n−1
). Here we assume G is

undirected so that the event of i connecting to j and j connecting to i is equivalent,

thus the probability of i and j being connected is the maximum of P (i) and P (j):

P (i ↔ j) = max(P (i → j), P (j → i)) = max(P (i), P (j)) =
max(ki, kj)

n − 1
(7.4)

Now we define the relation score r(i, j) between node i and j:

r(i, j) = Aij −
max(ki, kj)

n − 1
(7.5)

where Aij = 1 if nodes i and j are connected in G, 0 otherwise. The extension for

R on directed or weighted graphs is straightforward. The proposed metric R, r and

the random model are justified in the next section.

Analyzing the R measure

We evaluate our R metric using the requirements listed in Section 7.2. First, R as-

sesses similarity for both connected and disconnected pairs of nodes. Two nodes are

measured by the relation between them and their neighbourhoods. Second, while

107

Metric Metric Requirements
All Pairs Similarity & Dissimilarity Asymmetry Hub & Outlier

Q All Yes No Only Hub
S Connected No No Both
R All Yes Yes Both

Table 7.1: Comparing Community Mining Metrics

the relation score r between each pair will be positive for connected pairs and neg-

ative for disconnected ones, R in Equation 3 considers all pairs within the local

neighbourhood so that the R score represents an overall similarity, therefore R(i, j)

can be positive even if r(i, j) is not. Similarly, R(i, j) can be negative even if r(i, j)

is not. Third, the R metric is divided into two parts: R(i → j) and R(j → i), each

of which represents the similarity between one node and the other’s neighbourhood.

The asymmetric characteristic of social networks is thus considered. Finally, the in-

fluence from hubs or outliers to other nodes are minimized. Hubs have big degrees

which lead to large max(ki,kj)

n−1
and small r scores. Outliers have small neighbour-

hoods so R is small since there are few pairs to contribute in the sum. Therefore, as

shown in Table 7.1, the R metric satisfies all requirements for a good community

mining measure.

We now justify the formula for the relation score r and the random model pre-

sented in Section 7.3.1. Recall that the intuition behind the r score is to compare

the probability of the event E, that two nodes i and j are connected, in the original

graph structure with the probability of the same event in a random model, which

has the same node number and degrees. Only if the probability of having these

two nodes connected in the random model is low, does the fact that they are indeed

connected show us strong relationship. Since the probability of E in the original

graph is simply 1 or 0 given the network structure, we only need to answer the

following question: In an undirected graph G with n nodes, degrees k1, ..., kn and

the rest random, what is the probability of event E? In this model, it is obvious

that the probability of the event A: i connecting to j, equals to ki

n−1
and the prob-

ability of the event B, j connecting to i, equals to kj

n−1
. However, either A or B

confirms E, therefore we set P (E) = max(P (A), P (B)). In other words, with

108

respect to i, the probability of selecting j as one of i’s neighbours is ki

n−1
. We

cannot achieve a higher score unless kj > ki, thus the probability of the fact that

two nodes are connected is decided by the node with the higher degree. Note that

P (E) 6= P (A) ∗ P (B) since the two events A and B are dependent on each other.

7.3.2 Ordering Nodes to Visualize Networks

Now we can generate network visualizations by ordering nodes based on their re-

lation scores. Given the relationship function we defined above, for a node ni, we

create a list of nodes li ordered by their relation to ni from high to low. (Note that

we can limit candidate nodes to those which have R > 0, i.e., they are connected

to or share at least one neighbour with ni.) We define the kth value in this list to be

lik. Here, our approach takes one input parameter s. However, as we will show in

Section 5.2, s does not strongly affect the output. In practice, we usually generate

several visualizations with s ranging from 2 to 8 and let the user make a choice

based on their observations. For a node ni, we define its community score Cs to be

the sth value in its node list li, i.e., Cs(ni) = lis, and Cs(ni) = 0 if there are less

than s nodes in the list. Then we define the reachability of node j with respect to i

as

reachs(i, j) =

{

R(i, j) if Cs(ni) > R(i, j)
Cs(ni) otherwise

Intuitively, the parameter s represents the expected number of nodes that one node

is similar with in order to be a member of any community. Cs is the lowest rela-

tion score between node i and its similar neighbours in one community. Then the

reachability score from node i to j (reachs(i, j)) is the relation score between node

i and j if j is not among the top s nodes of li and is the community score of i other-

wise. Thus, reachs(i, j) measures the community relationship between i and j. It

is their direct distance score if i and j are far away from each other, and equals to

the community radius of i if j is close enough. Therefore, a decreasing order of the

reachability scores (RS) indicates a node list for i, starting from i’s most related

neighbours to the least ones.

We present our algorithm to generate node lists ordered by their reachability

scores in Algorithm 5. More specifically, our algorithm creates an ordering of net-

109

Algorithm 5 The ONDOCS Algorithm: Network Visualization
Input: A social network G with n nodes and m edges, a start node nstart and
possible s values s0, s1, s2....
Output: A list of nodes L with their Reachability Scores RS for each s.
1. Sort a node list li for each node ni, ordered by their relation score to ni, from
high to low.
2. For each s :
Initialize a max-heap h, insert nstart in h with RS = 0.
Select the sth largest element in li for each node ni as its community score

Cs(ni).
While (there is still nodes in heap h) :

Pop the node α in h with largest value ε.
Store α in Ls with RSα = ε.
For all nodes x in lα:

If x /∈ h, insert x into h with reachs(α, x).
If x ∈ h, update its value if reachs(α, x) is larger.

Update max-heap h.
3. Return list Ls with RS values for each s value.

work nodes, additionally storing a reachability score RS(i) for each node i. It starts

at a given node nstart and inserts nstart into a max-heap structure h, which is main-

tained to store the reachability of candidate nodes. At each step, the node j, which

has the highest reachability score in h, is chosen to be the next node in order and the

popped score is stored as RS(j). All nodes that are in j’s neighbourhood are then

inserted into h with their reachability according to j if they are not yet in h. The

value in h is updated if the node is already in h and its new score is higher. Then

h is updated to maintain its max-heap property. Therefore, the top node of heap h

has the highest RS value to one of the nodes that have already been included in the

list L, i.e., the RS score for each node in the list represents its highest reachability

from any of the prior nodes in the sequence. The algorithm stops after all nodes in

the network are visited.

The computational complexity of ONDOCS is O(n log n) for dense graphs and

O(n) for sparse ones. The list generation and sort step takes O(c log cn) where

constant c is the average number of similar nodes for each node. Note that based

on our relationship function, one node can only be similar to another if they are

connected or share one or more neighbours. In step 2, there are n insertions to

110

the heap h and updating h for each insertion takes O(logn) time for dense graphs

and O(1) for sparse networks. Thus, the actual running time of our algorithm on

experimental networks is O(n) as shown in Section 5.2.

In summary, given a network with a list of s values, Algorithm 5 produces a

sequence of nodes with their reachability scores for each s value, which can be vi-

sualized as a 2-D graph by tools such as GNUPlot [86]. The visualizations show

interesting community information such that nodes in the same communities are

consecutive in the list with high RS scores while the RS score apparently drops

between two groups of community nodes (See Figure 7.3). The goal of visual data

mining is to help users acquire accurate parameters by observing this phenomenon,

which is presented in the next section. (A detailed example of how to choose the pa-

rameters is given in Section 7.4.2 and Figure 7.3 after explaining the experiments.)

7.3.3 Detecting Overlapping Community Structure: Communi-
ties, Hubs and Outliers

We have generated lists of nodes given specific s values, where we found that the

ordering of the corresponding RS values has interesting community properties. For

example, if we start from one node i, we will first visit other nodes in i’s com-

munity in sequence. This is because the reachability score from i to these nodes

are higher than nodes outside i’s community. Therefore, each community can be

seen as a group of consecutive nodes with high RS scores. In a 2D visualization,

these groups are represented as curves in a “mountain” shape or peak. A noticeable

drop of subsequent RS scores after a “mountain” indicates that this community has

ended, which is represented as a curve in a “valley” shape or trough. The “valley”

between two “mountains” represents a set of hubs, which belong to several commu-

nities. For instance, if we start from nodes in community α, the fact that hubs have

neighbours from different communities makes RS scores of hubs lower than that

of those single-community nodes in α but still higher than nodes in communities

other than α. Therefore, after all single-community nodes in α are visited, hubs are

next to follow before nodes in other communities, which form the “valley” between

“mountains.”

111

As we have discussed in the introduction, there is no global community defini-

tion, thus communities in specific networks need to be defined by parameters given

by the user. For this purpose, our visual data mining approach generates visualiza-

tions with different s values first. After the user selects the suitable one based on

their observation, they need to further provide two parameters to define the com-

munities in this network, Community Threshold (CT) and Outlier Threshold (OT).

While such parameters are usually hard to obtain for previous methods, parame-

ter selection for our approach becomes easy since we provides a visualization of

the network structure with “mountains” representing strongly related communities,

and “valleys” representing hub nodes that connect to both communities. Outliers

are usually found at the end of the list, since their RS scores to any other nodes

in the network are low. Examples of choosing parameters for real networks are

presented in Section 5.2. Note that we do not require k, the number of communi-

ties to discover, as a parameter. The number of communities is a byproduct of the

mining process given the parameters OT and CT which are determined by the user

after exploiting our visualization output. The visualization of the network helps the

user understand the structure first and then decide about reasonable thresholds for

communities and outliers, i.e not the numbers per se but has a similar effect.

Given the two parameters CT and OT , our algorithm works as the following:

from the first node in the sequence as the starting community, we scan all nodes

along the list. One node ni is merged into the current community if RS(ni) ≥ CT .

If CT > RS(ni) > OT , ni is classified as a hub. If OT ≥ RS(ni), it is an outlier.

Since the first node of a community in the list has a low RS score, e.g., the starting

node has RS = 0, we refine the outlier and hub nodes by moving any node ni into

corresponding communities if we have RS(ni+1) ≥ CT . (Also see Algorithm 6)

The complexity of Algorithm 6 is θ(n).

To represent that hubs can belong to k communities, for each hub node i, we use

a vector of “belonging factors” v = (f(i,1), f(i,2) ... f(i,k)) where each coefficient

f(i,k) measures the strength of the relationship between node i and community k.

For every community Ck, we can quantify the Overall Relationship between i and

112

Algorithm 6 The ONDOCS Algorithm: Overlapping Community Structure Detec-
tion

Input: A list L of nodes n0, n1, ... and their RS scores, the Community Threshold
CT and the Outlier Threshold OT .
Output: A list of communities c0, c1, ..., hubs h0, h1, ... and outliers o0, o1,
1. Create a community c, set k = 0.
2. for each ni ∈ L do

If RS(ni) ≥ CT , classify ni as a community node.
else if CT > RS(ni) > OT , classify ni as a hub.
else classify ni as an outlier.

end if
If i is not classified as a community node but RS(ni+1) ≥ CT

classify i as a community node.
end if
If ni is a community node, insert ni into c.

else (ni is a hub or an outlier)
If |c|! = 0, save c as a community ck for output

reset c for the next community, increase index k by 1
end if

end if
end for

3. Return communities c0, c1, ..., hubs h0, h1, ... and outliers o0, o1,

Ck as

OR(i,k) =

{

∑

x∈Ck
R(i, x) if

∑

x∈Ck
R(i, x) > 0

0 otherwise

We then normalize the vector to get the coefficients so that we have ∑k
x=1 f(i,x) = 1.

Therefore, one node can belong to many communities at the same time, weighted

by the relationship value in the range [0, 1] and the sum of belonging coefficients to

communities is the same for all nodes in the network, except outliers.

In summary, the community mining process is aided by visual data mining in

our approach. Instead of asking the user to arbitrarily provide vital parameters, we

generate visualizations of the network in question so that the user is able to observe

the structure and relations between communities before they give parameters. After

appropriate parameters are determined, hubs and outliers are extracted together with

communities. Note that another advantage of our approach is that while parameters

are easy to be altered, the impact on the change of discovered communities can be

clearly perceived by observing the visualization.

113

Datasets Vertices Edges
Runtime / s

CONGO [89] CF [170] ONDOCSh = 3 h= 2
football [221] 180 787 8 2 1 < 1

protein protein [170] 2640 6600 114 11 3 11
blogs [89] 3982 6803 41 8 4 12
PGP [27] 10680 24316 772 104 >20000 62

word association [170] 7207 31784 15922 230 102 161
blogs2 [89] 30557 82301 15148 380 319 269

cond-mat [146] 27519 116181 > 20000 1486 490 544

Table 7.2: Results on Real World Networks

7.4 Experiment Results

Here we evaluate the ONDOCS approach using both synthetic and real world datasets.

The performance of ONDOCS is compared with CFinder [170] and CONGO [89],

which are shown to be two of the most efficient algorithms for finding overlapping

communities [89]. Note that they apply different mechanism to generate overlaps

(See Chapter 3.5), instead of defining similarity metrics and visual data mining. The

comparison is measured by the well known F-measure score and Adjusted Rand In-

dex (ARI) [223] (See Chapter 5.2.2). All experiments were conducted on a PC with

a 3.0 GHz Xeon processor and 4GB of RAM.

7.4.1 ONDOCS Scalability

To evaluate the scalability of our algorithm, we generated ten random graphs of ver-

tices ranging from 10,000 to 500,000 and the number of edges ranging from 20,000

to 1,000,000. The edges are randomly distributed in the network. Figure 7.2 shows

the performance of our algorithm on those networks. It clearly shows that, although

the running time of ONDOCS is O(n log n) in the worst case, our approach actually

runs very close to linear time with respect to the number of vertices and edges.

To further evaluate the efficiency of the algorithm, we apply three algorithms

on several real-world networks. Table 7.2 shows the source of each network, its

statistics, and the execution times for CONGO to compute the entire dendrogram,

CFinder (v1.21) to generate solutions for 3 ≤ k ≤ 8 and ONDOCS to create dataset

114

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.2 0.4 0.6 0.8 1

R
un

 T
im

e
(s

ec
)

Number of Nodes or Edges (in millions)

nodes
edges

Figure 7.2: Algorithm Running Time

visualizations for 2 ≤ s ≤ 8. From the table, we can see that ONDOCS works well

overall, while CONGO’s running time increases dramatically with respect to h and

CF’s clique detection becomes slow on some particular networks. However, we do

not have ground truth to validate the accuracy of our results for these datasets, thus

we turn to several real world datasets with ground truth to evaluate the accuracy of

our approach.

7.4.2 ONDOCS Accuracy

The first dataset we examine is the schedule for 787 games of 2006 National Col-

legiate Athletic Association (NCAA) Football Bowl Subdivision (also known as

Division 1-A) [221]. In the NCAA network, there are 115 universities divided into

11 conferences. In addition, there are four independent schools at this level, namely

Navy, Army, Notre Dame and Temple, as well as 61 schools from lower divisions.

Each school in the division plays more often with schools in the same conference

than schools outside. Independent schools do not belong to any conference and play

with teams in different conferences, while lower division teams play only very few

games. In our network vocabulary, this network contains 180 vertices (115 nodes

115

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100 120 140 160 180

R
ea

ch
ab

ili
ty

Node Sequence

(a) S=3

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20 40 60 80 100 120 140 160 180

R
ea

ch
ab

ili
ty

Node Sequence

(b) S=4

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20 40 60 80 100 120 140 160 180

R
ea

ch
ab

ili
ty

Node Sequence

(c) S=5

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20 40 60 80 100 120 140 160 180
R

ea
ch

ab
ili

ty

Node Sequence

(d) S=6

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20 40 60 80 100 120 140 160 180

R
ea

ch
ab

ili
ty

Node Sequence

(e) S=7

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20 40 60 80 100 120 140 160 180

R
ea

ch
ab

ili
ty

Node Sequence

(f) S=8

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100 120 140 160 180

R
ea

ch
ab

ili
ty

Node Sequence

Community Threshold
Outlier Threshold

(g) S=2

Figure 7.3: Community Visualizations of the football network with different S value

116

Data Setting
Algorithms

CONGO (h=2) CF (k=4) ONDOCS (s=2)
(CT = 4.5, OT = 2)

115 Nodes Cluster 11∗ 11 11
in Hub 92 6 0

11 Clusters ARI 0.047 0.945 1.00

Plus 4 Hubs
Cluster 11∗ 12 11

Hub 100 8 3
F-measure 0.038 0.167 0.857

Cluster 11∗ 12 11
Plus 4 Hubs Hub 96 8 3

and Hub F-measure 0.04 0.167 0.857
61 Outliers Outlier 0 61 61

Outlier F-measure 0 1.00 1.00

Table 7.3: Result Comparison on the Football Dataset. (∗The right cluster number
is provided as a parameter for the CONGO algorithm.)

as 11 communities, 4 hubs and 61 outliers), connected by 787 edges. (The same

dataset has been used in Chapter 6 to evaluate local communities.)

First, the ONDOCS approach generates several visualizations with different s

values for the user to choose. We show all visualizations for 2 ≤ s ≤ 8 in Figure

7.3. As we can see, most images are very similar to each other. The only one that

shows a different structure is the visualization for s = 8. Recall that the parameter

s represents the expected number of nodes that one node is similar with in order

to be considered as a community member. When s is raised to a large value, some

communities might disappear if their size is smaller than s. In this case, ONDOCS

visualizations only show the structure of communities whose size is greater or equal

to s. The larger the s value is, the smoother the curves are and the fewer “spikes” we

have. Nevertheless, we have seven visualizations that clearly represent the network

structure, where there are 11 communities, a few hubs and a set of outliers.

The parameter selection is solely based on users’ visual interpretation of the

visualized network. First we choose the visualization with s = 2, where the com-

munity structure is shown in most detail since pair relations are mostly measured as

direct distance. In Figure 7.4, we note that nodes in sequence from 120 to 180 are

barely related to the rest and can be considered as outliers, therefore we set OT = 2.

117

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100 120 140 160 180

R
ea

ch
ab

ili
ty

Node Sequence

CT Range

OT Range

CT Lower Bound
CT Upper Bound
OT Lower Bound
OT Upper Bound

Figure 7.4: Selecting CT and OT for ONDOCS

CT OT = 2 OT CT = 4.5
Cluster Hub H-FM Outlier O-FM Cluster Hub H-FM Outlier O-FM

4.0 9 3 0.857 61 1.0 1.0 11 16 0.30 48 0.880
4.5 11 3 0.857 61 1.0 1.5 11 4 0.75 60 0.991
5.0 11 3 0.857 61 1.0 2.0 11 3 0.857 61 1.0
5.5 11 6 0.8 61 1.0 2.5 11 3 0.857 61 1.0
6.0 12 7 0.77 61 1.0 3.0 11 3 0.857 61 1.0

Table 7.4: Comparing ONDOCS Accuracy with Different CT and OT. (H-FM
means F-measure for Hubs and O-FM means F-measure for Outliers.)

118

Note that OT can also be set as 2.5, or any other close number. Different OT value

will not give completely different results and the impact can be perceived directly

from the visualization. Furthermore, we see a community usually ends with a RS

score between 3 and 5, thus we set CT = 4.5 so that all communities are separated.

The range of possible thresholds are shown in the figure. Table 7.4 shows results

of varying CT and OT in the range. As can be noticed, it is quite easy for one to

select parameters given the network visualization, and the results are stable enough

for a large range of parameters.

To evaluate how algorithms detect overlapping community structure, we pro-

vide the data to our algorithms in three different ways. At first, we give only 115

community nodes and connections between them, then we measure the accuracy

of discovered communities by the ARI score based on the ground truth, which is

the conference assignment. Then we add the 4 hubs and their connections into the

network. Although these hubs clearly belong to multiple communities, we do not

have exact ground truth for overlapping community structure, i.e., which commu-

nities these hubs should go. However, we do have ground truth for which nodes are

hubs (outliers) and which are not. Therefore, we measure the accuracy of the output

hubs and outliers by the F-measure score, which is defined as the harmonic mean of

precision and recall. Finally we give the complete network with communities, hubs

and outliers. Table 7.3 shows the experiment results for the three algorithms. As we

can see, the CONGO algorithm always detects overlaps, even for the first network

where there are only community nodes. Additionally, it requires the cluster num-

ber as the input parameter, which is usually unavailable for real world networks,

and it still fails to find any outliers. The CF algorithm gives its best result when

k = 4, where it detects all outliers and finds 12 clusters, which is very close to

the truth. However, CF also finds hubs when there is no overlap and the accuracy

of its overlap detection is low with only a 0.167 F-measure score. Our ONDOCS

algorithm works the best overall. It finds all outliers and only detects hubs when

there is indeed some overlap between communities. The hub detection accuracy is

not perfect, however, when we look into the data, we find out that the only missing

hub team (Temple) plays half of its games (6 out of 12) with teams from the Mid-

119

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100 120 140 160 180

R
ea

ch
ab

ili
ty

Node Sequence

(a) Start from Hub Node “Navy”

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100 120 140 160 180

R
ea

ch
ab

ili
ty

Node Sequence

(b) Start from Hub Node “Temple”

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100 120 140 160 180

R
ea

ch
ab

ili
ty

Node Sequence

(c) Start from Outlier Node “Maine”

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100 120 140 160 180

R
ea

ch
ab

ili
ty

Node Sequence

(d) Start from Outlier Node “Furman”

Figure 7.5: ONDOCS Visualizations with different starting nodes

American conference, which explains why it is classified into that community. Note

that the result of our algorithm depends on two parameters (CT and OT), however,

we believe that appropriate values are easy to find based on direct observation on

network visualizations.

In ONDOCS, the node sequence might change if we choose different node nstart

to start with. For previous experiments, we choose a community node to start the

process. In Figure 7.5, visualizations that start from hub nodes and outlier nodes

are shown. However, as we can see, a community, represented by a “mountain”

curve, is found first. It is because our algorithm intends to visit the closest nodes in

the sequence, which have higher RS scores, before nodes that are far away. Thus,

no matter where the start node is, the closest community is found first, followed by

other communities ordered by their RS values. Hubs are found as “valley” between

120

communities.

We also apply our algorithm on other real world networks, including the Politi-

cal Book network [119], the Mexican Politician network [168], the Dolphin network

[155] and the Les Miserables network [118]. Although we do not have exact over-

lapping truth for these networks, approximate community structure information is

provided by previous research. In the Political Books dataset, nodes represent po-

litical books sold by Amazon.com and edges represent frequent co-purchasing of

books by the same buyers, as indicated by the “customers who bought this book also

bought these items” feature on Amazon. Nodes are manually labeled as “Liberal,”

“Neutral,” or “Conservative” by Mark Newman [145]; In the Mexican Politicians

dataset, edges indicate social relations between people and nodes represent politi-

cians, who are classified based on their background as “Citizen” or “Military”. The

Dolphin Network gives the community structure of a group of bottle-nose dolphins.

The network can be approximately divided into four main groups [155]. Finally,

the Les Miserables network represents the coappearance network of characters in

the novel Les Miserables. Note that for these datasets, we only have indefinite com-

munity information instead of perfect ground truth, which is the common case for

overlapping community detection and evaluation. We show visualizations for these

datasets generated by ONDOCS in Figure 7.6. One can see that the images cor-

rectly depict the approximate community information we have. Accurate CT and

OT values should be easy to determine based on these figures. Also note that if

the reachability plots are not clear for some datasets, the users may have problems

selecting parameters. This could be the case when a large number of real commu-

nities exist, where the plot would present a jagged graph with many close peaks for

a vague community structure. This is a limitation of the visualization and may be

addressed by increasing the screen real-estate or a progressive hierarchical method,

which selects parameters for each level of the community hierarchy. However, it is

nevertheless reasonable to believe that other approaches with no visual data mining

support, when faced with a large number of existing communities, would provide

less information and do even worse in the mining process.

121

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20 40 60 80 100 120

R
ea

ch
ab

ili
ty

Node Sequence

(a) Political Book Network

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25 30 35

R
ea

ch
ab

ili
ty

Node Sequence

(b) Mexican Politician Network

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70

R
ea

ch
ab

ili
ty

Node Sequence

(c) Dolphin Network

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80

R
ea

ch
ab

ili
ty

Node Sequence

(d) Les Miserables Network

Figure 7.6: Community Visualizations for Various Networks by ONDOCS

122

7.4.3 Comparing Metrics within ONDOCS

We have reviewed previous community mining metrics (Q and S) and proposed our

relational metric R. We then evaluated them from a theoretical perspective. Here

we apply these three metrics to measure the similarity between two nodes in our

ONDOCS system and compare the images generated for several real world datasets

respectively in order to further evaluate the effectiveness of the metrics.

The visualizations for four different datasets based on metrics Q, S and R are

shown in Figure 7.7(a) to 7.7(l) respectively (s is set to 2 for all metrics). We see

that the plots using the R metric accurately depict the network structure since they

match the vague community information that we have for those datasets. On the

other hand, visualizations using the S metric are ambiguous and the community

structure is hard to read. Also note that the R visualizations provide a much wider

range for the user to observe accurate CT and OT values to detect the right number

of communities than the S visualizations. Finally, visualizations based on the Q

metric do not show any community structure. The reason is that Q does not consider

local structure thus similarity scores of all node pairs are smaller than and close to

1 after node ordering, which makes the plots into a nearly-horizontal line.

7.5 Conclusions

In this chapter, we first propose a general list of requirements for a good similar-

ity metric to detect overlapping communities. We analyze existing metrics based

on those criteria and then propose a new similarity metric R which satisfies all

of those requirements. A visual data mining approach for overlapping community

detection in networks is then proposed based on metric R. The method first gener-

ates lists of nodes, ordered by their reachability scores. Network visualizations are

then provided to help the user determine important parameters. Finally, overlapping

communities, i.e., communities, hubs and outliers, are extracted based on these pa-

rameters. Experiment results show that our approach not only scales well for large

networks, but also achieves a high accuracy for real world networks. Unlike previ-

ous approaches, our method only detects overlap when overlap exists. Moreover,

123

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120

R
ea

ch
ab

ili
ty

Node Sequence

(a) Political Book by Q

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20 40 60 80 100 120

R
ea

ch
ab

ili
ty

Node Sequence

(b) Political Book by S

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20 40 60 80 100 120

R
ea

ch
ab

ili
ty

Node Sequence

(c) Political Book by R

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35

R
ea

ch
ab

ili
ty

Node Sequence

(d) Mexican Politics by Q

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25 30 35

R
ea

ch
ab

ili
ty

Node Sequence

(e) Mexican Politics by S

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25 30 35

R
ea

ch
ab

ili
ty

Node Sequence

(f) Mexican Politics by R

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

R
ea

ch
ab

ili
ty

Node Sequence

(g) Dolphin Network by Q

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70

R
ea

ch
ab

ili
ty

Node Sequence

(h) Dolphin Network by S

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70

R
ea

ch
ab

ili
ty

Node Sequence

(i) Dolphin Network by R

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80

R
ea

ch
ab

ili
ty

Node Sequence

(j) Les Miserables by Q

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

R
ea

ch
ab

ili
ty

Node Sequence

(k) Les Miserables by S

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80

R
ea

ch
ab

ili
ty

Node Sequence

(l) Les Miserables by R

Figure 7.7: Comparing Metric Q, S and R with ONDOCS Visualizations

124

appropriate parameters are easy to obtain by means of visual data mining. The ef-

fectiveness of R over previous metrics are also confirmed by comparing ONDOCS

visualizations.

125

Chapter 8

A Community Mining Application:
Clustering Web Search Results
Based on Word Sense Communities

After presenting works on community mining with different assumptions, in this

chapter we propose a solution for a real problem, which is web search result clus-

tering, based on community mining metrics and algorithms [42]. Effectively orga-

nizing web search results into clusters is important for any search engine, since it

facilitates user’s quick navigation through relevant documents. Traditional cluster-

ing techniques generate page clusters even when the original search result contains

no ambiguity. However, in that situation the organization effort is unnecessary and

will only distract the user. In this chapter, we reformulate the document cluster-

ing problem as a query sense community detection problem. Given a query and

a list of documents returned by a certain web search engine, our unsupervised ap-

proach detects query sense communities in the extracted keyword network. The

documents are then assigned to several refined query sense communities to form

clusters. We use the modularity score of the discovered keyword community struc-

ture to measure page clustering necessity. Experimental results verify our method’s

effectiveness impact on real search engine data and show its advantages over tradi-

tional clustering methods. (This work has been filed as patent [225] in December

2008 and is currently under review).

126

8.1 Related Work

Organizing search engine results. In general, there are two ways to organize the

information returned by search engines. The first, and the most popular approach,

is to rank results by perceived relevance. This is applied by most popular search en-

gines, including Google, Yahoo!, MSN Search, etc. However, this method is highly

inefficient since there are usually thousands of retrieved pages for a typical query,

and most users just view the few top results, possibly missing relevant information.

Additionally, the criteria used for ranking might not fit the user’s needs. Finally, a

majority of the queries tend to be short, thus making them non-specific or imprecise

[181]. A query might have multiple meanings, thus the inherent ambiguity in inter-

preting a word or phrase in the absence of its context means that a large percentage

of the returned results can be irrelevant to the user [121].

Another way to organize documents is by clustering: query result pages are or-

ganized into groups based on their similarity between each other. The idea of clus-

tering search results has already been applied in industry and commercial web ser-

vices such as Vivisimo [204], Kartoo [114] and Koru [140]. Hearst et al. [100, 175]

proposed the Scatter/Gather algorithm to cluster top documents returned from an

information retrieval system. Zamir et al. [228, 229] proposed to cluster query

result pages based on the snippets or contents of returned documents using the Suf-

fix Tree Clustering (STC) algorithm. Chim et al. [48] combined the STC model

with the TF-IDF weight to improve its accuracy. In [121], the authors proposed a

monothetic clustering algorithm to assign documents to clusters based on a single

feature, which is used as cluster labels. In [56] search engine results are grouped in

a tree of word meanings using WordNet. Zeng et al. [230] proposed a supervised

learning approach to extract relevant phrases from the query result snippets, which

are used to group search results. Wang et al. [209] proposed an approach to learn

from search logs for a more user-oriented partitioning of the search results. Simi-

larly, Freyne and Smyth [77] recently proposed a Collaborative Web Search (CWS)

approach to record and reuse search histories to learn a preference model for a user

group.

127

There are other methods for document clustering [194] and document catego-

rization [111] but do not apply to the search engine result groupings as they either

require training or are not efficient enough for speedy realtime categorization. To

summarize, all of the above methods are able to find document clusters but the

effectiveness in practical search engine result partitioning is questionable. In addi-

tion, the performance of supervised classifiers is limited by the training data, which

is hard to achieve for the dynamic web. Moreover, none of the proposed methods

measures clustering necessity.

Word Sense Disambiguation. Selecting the most appropriate sense for an am-

biguous word in a sentence, i.e., Word Sense Disambiguation (WSD), is a central

problem in Natural Language Processing (NLP). The solution of this problem im-

pacts many other tasks, including reference resolution, coherence and inference.

WSD methods can be generally classified into three types: methods that make use

of information provided by dictionaries [174, 137, 127], e.g. Wordnet [69]; meth-

ods that use information gathered from training on a corpus (supervised training

methods) [159, 50]; and methods that use information gathered from the raw data

(unsupervised methods) [222, 24]. Similar to our approach, Pantel et al. proposed

an unsupervised centroid-based clustering method to automatically discover word

senses [172]. As Chen et al. suggested in [41], text classification methods are help-

ful for organizing search results, since keywords and phrases can also be treated as

features of web pages. While previous WSD works focus on distinguishing word

senses, we further create representative keyword communities related to discovered

senses of a query in order to categorize search result pages into clusters.

8.2 Preliminaries

8.2.1 Query Sense Community

The Contextual Hypothesis for Sense states that the context in which a word appears

can be used to determine its sense [184]. For example, a web page discussing Jaguar

as a car is likely to talk about other types of cars, car companies, etc. Whereas, a

page on Jaguar the cat, is likely to contain information about animals. Naturally,

128

the words or phrases that frequently appear in the document together with Jaguar

the car, e.g., engine, Ford and vehicle, are very unlikely to also appear frequently

in web pages about Jaguar the cat, and vice versa. Moreover, there are extremely

few pages that discuss both senses of Jaguar in detail at the same time. Therefore,

the senses of the word Jaguar and other words or phrases that frequently appear

together with one of the senses can be used to cluster search result pages for this

particular query “jaguar”, which is the intuition of our approach.

We define a query sense community as a group of words or phrases that co-

occur together frequently in a set of search result pages for a particular query.

There are a variety of definitions for “keyword co-occurrence”, e.g., two words

appear in the same document, within a given word range distance d or in the same

paragraph, etc. We define two words to “co-occur” if they are located in the same

sentence. Note that similar to many WSD algorithms in NLP area, e.g. [161], we

only treat nouns as keywords in our approach and ignore other lexical categories

such as verbs, adjectives, adverbs and pronouns to avoid noises. Words in these

categories may appear frequently in various contexts, thus they can be strongly

related to several senses of the same query in the same time. Also note that our

query sense does not equal to but includes the traditional understanding of word

sense. For example, as shown in Table 8.3 of Section 8.4.4, the query “tiger woods”

has three query sense communities, which are related to the video game named by

the player, his golf career and his new-born child. All these communities are about

the very same “Tiger Woods” but are discussed in different page set s, thus we treat

them as separate “senses” of the query. However, our method merges communities

that share the same word sense and are from the same pages, as we explain in

Section 8.3.4.

Now assume that we have generated a keyword graph G, where each node rep-

resents a unique keyword/phrase and the edge between two nodes represents their

relations, the edge weight w is the frequency of the two corresponding keywords

co-occurring in one sentence in the documents (details are given in Section 8.3.1),

how can we find word sense communities on this graph? To solve this problem, we

extend Newman’s Modularity metric [155] to its weighted version and then use a

129

hierarchical algorithm on the keyword graph to detect query sense communities.

8.2.2 Extending Modularity Q

In this dissertation, we have proposed several metrics, which are designed for com-

munity mining in different situations. The Max-Min Modularity in Chapter 5 gives

the best performance if complete network information and domain knowledge are

available. The local metric L in Chapter 6 only detects a local community for given

starting nodes. The visual data mining approach in Chapter 7 is designed especially

for overlaps, with visual aids to determine the parameters. Unfortunately, all of

these new metrics are inappropriate for the word sense community discovery prob-

lem. For this problem, in particular, we have access to the complete network, thus

it does not belong to the local community discovery problem. Moreover, we do not

have domain knowledge and it is very hard to generate such knowledge because the

web context is too dynamic to model, even for the best linguists, thus the Max-Min

modularity is not appropriate. Finally, word sense communities may have overlaps,

but global thresholds for hubs and outliers do not exist. The option of providing vi-

sualizations for every particular query is unrealistic for a search engine, and would

also increase the complexity of the user interface. Therefore, in order to find query

sense communities from the weighted keyword network, we use a different metric

by extending the modularity to its weighted version. We believe that it is the best

available metric for this particular problem, after analyzing all other possibilities.

The modularity extension (the original definition can be found in Chapter 3) is as

follows:

Given an undirected network G = (V, E), |V | = n, |E| = m, let Axy be an

element of the adjacency matrix of G.

Axy =

{

w if vertices x and y are connected
0 otherwise

where w is the edge weight. Also, Pxy = wxwy

2W
where wx is the total weight of all

edges connect to x and W is the total weight of the network. Qweighted equals to:

Qweighted =
1

2W

∑

xy

[Axy − Pxy]φ(Cx, Cy) (8.1)

130

Assume node x belongs to community Cx, the φ function φ(Cx, Cy) is 1 if Cx and

Cy are the same community and 0 otherwise.

8.3 Our Approach

The basic idea of our approach is to cluster search results based on the query sense

communities discovered by community mining algorithms using the modularity

metric. Given an input query, the general procedure of our approach (shown in

Figure 8.1) is listed as follows.

• Phase I: Extract keywords from crawled documents. Keywords may be any

sequence of characters that might be searched, and include words and phrases

in any language.

• Phase II: Build a keyword graph based on the corresponding keyword lists.

• Phase III: Find query sense communities using a clustering or community

mining algorithm on the word graph.

• Phase IV: (optional) Refine detected communities by merging similar ones

and deleting outliers. (An outlier here is a community that is too small).

• Phase V: Assign pages to sense communities to generate and label clusters.

8.3.1 Phase I: Keyword Extraction

The first step to discover query sense communities from web pages is to build the

keyword network, weighted by the frequency of the co-occurrence between key-

words in sentences. However, keyword extraction is usually too slow for realtime

search, thus it should be done offline and the keyword lists stored and indexed to-

gether with the crawled web pages by the search engine during the crawling process

whenever possible. For practicality, we proceed on-line as follows: given a query

q, we send q to the Google search engine and retrieve the top k returned web pages.

We parse the content of text pages (such as pages ending with .html, .php, etc.)

and ignore multimedia pages since we are not able to extract keywords from them.

131

Keyword
Network

Communities
Sense

Return
Result

Refined Page
Cluster

Search
Engine

Submit
Query

Document List
Ranked

Corresponding
Keyword ListExtraction

KeywordCrawled
Documents

User

Time consuming
But should be done offline

Phase I

Phase IV

Generate

Phase V
Phase III

Phase IIOne−To−One

Figure 8.1: Web Page Clustering based on Query Sense Communities

Irrelevant information such as HTML tags and javascript code is stripped and only

text is recovered.

We use Minipar [129], a broad-coverage English parser, to parse the clean text.

Minipar is able to transform a complete sentence into a dependency tree and classify

words and phrases into lexical categories. All retrieved keywords are then stemmed

using the Porter Stemming Algorithm [190] and stopwords are removed. Again,

note that although keyword extraction here is slow since Minipar parsing is time-

consuming (500 words/second on a normal PC [172]), it should be done offline

during web page crawling and indexing by the search engine, therefore the running

time of our approach during query time is not affected by this step.

8.3.2 Phase II: Generate Keyword Graph

After text parsing and stemming, each page is represented as a list of pairs of key-

words, confirmed to be in the same sentence. Assume a search engine now receives

a query q from a user, it generates a ranked document list consisting of k result pages

and also provides k keyword lists corresponding to these documents, as shown in

132

Figure 8.1.

The first online phase of our approach is to build a keyword graph from those

k keyword relation lists, where each node represents a keyword and edges between

nodes represent relations between corresponding keywords while the edge weight

w is the co-occurrence frequency of the two keywords. However, it is neither accu-

rate nor practical to include all listed keywords in the graph since words that only

appear a few times in the documents are usually unrelated to the particular sense

or the context. Moreover, a larger graph would make our approach slower and less

effective for realtime search. In order to find important keywords in these docu-

ments to build the keyword network, we measure the importance of keywords by

the Document Frequency (DF) score, which is calculated by dividing the number of

documents containing the keywords by the number of all documents. We then se-

lect those keywords that have DF score higher than a given threshold tdf (discussed

in Section 8.4.3) to be the nodes of the keyword network. (Note that stopwords are

removed before this.) Two nodes are connected if we find the pair of corresponding

keywords in any list and the weight of the edge is the pair frequency over all lists.

The words in query q are removed since they certainly belong to all sense commu-

nities. We use the DF score instead of TF-IDF to filter keywords because we want

to build a keyword network that represents a global property of this document set.

Unfortunately, the TF-IDF score only indicates the importance of a keyword for a

particular document. Therefore, the DF score is used to select these generally im-

portant keywords. Whether they have strong community structure or not is revealed

by the community mining algorithm and the modularity score.

8.3.3 Phase III: Finding Query Sense Communities

Any modularity-based clustering algorithm could be applied here to find query

sense communities. Here we adapt a hierarchical clustering algorithm to find the

clusters by greedily optimizing the modularity score [52]. It starts with every node

being a community of its own, then at each step, it merges a pair of communities

that increase the overall modularity the most and stops when there is no such pair.

Since a high modularity score represents strong community structure, the intuition

133

of this algorithm is to greedily optimize the overall modularity. Details of the algo-

rithms are as follows: Given a weighted keyword network, three data structures are

maintained.

• A sparse matrix containing ∆Qij for each pair i, j of communities with at

least one edge between them. Each row of the matrix is stored as a balanced

binary tree and as a max heap. The ∆Q matrix is initialized as follows.

∆Qij =

{

1
2W

− wxwy

(2W)2
if i and j are connected

0 otherwise

• A max-heap H containing the largest element of each row of the matrix along

with the labels i, j of the corresponding communities.

• A vector array with element ai = wi

2W

The algorithm then greedily merges pairs of communities that give the highest mod-

ularity gain as follows:

• Pop the max-heap with the largest element of each row of the matrix ∆Q.

• Select the largest ∆Qij , merge the two communities, update ∆Q (described

blow), the heap H and aj (a′
j = ai + aj), increment Q by ∆Qij .

• Repeat until there is no ∆Qij > 0

Merging community i and j by updating ∆Q as follows.

∆Q′
jk =

∆Qik + ∆Qjk if community k is connected to
both i and j

∆Qik − 2ajak k is connected to i but not to j
∆Qjk − 2aiak k is connected to j but not to i

The complexity of this algorithm is O(mD log n), where m is the edge number,

n is the node number and D is the depth of the cluster dendrogram [52]. While

other online phases run in linear time, the efficiency of our approach depends on the

community detection algorithm. In a web search, the number of returned documents

can be huge. However, since we only select keywords with a high DF score, the size

of the keyword graph is stable in the thousands in our experiments, thus the running

134

time of the algorithm is a matter of few seconds on a single PC, which is fast enough

for a search engine service. Moreover, the modularity score as an outcome of the

algorithm can be used to measure the strength of the sense community structure,

which indicates whether document clustering is necessary or not, as can be seen in

Section 8.4.4.

8.3.4 Phase IV: Community Refinement

Using a modularity-based clustering method, we have discovered query sense com-

munities from the weighted keyword network. However, before they can be used to

categorize documents, we need to refine the structure for the following two situa-

tions:

• Delete noise communities, which are formed by keywords that always co-

occur no matter what the page is about, e.g., we observe keywords trademark,

privacy and policy always form a strong three-words-community.

• Merge communities that focus on different aspects of the same query sense

and appear in the same page set, therefore it is not necessary to separate

them. e.g., we observe two communities for the sense of eclipse as astronom-

ical event, one focus on how to observe the event, the other introduces the

phenomenon from a scientific prospective, and they are from the same page

set.

Fortunately, simple heuristics can be applied to solve the problem. For noise

communities, we observe that they are usually small in size. Therefore, we remove

all communities that have fewer nodes than 5% of the total keywords (note that this

threshold is stable enough. Varying it from 5% to 10% does not affect the result).

For merging communities, recall that we assume that there is only one primary

query sense for a given query in one web page, thus if two communities share the

same query sense, they are likely to be covered by the same pages. Therefore,

we calculate the overall TF-IDF score (described in Section 8.3.5) of pages for

these two communities, and compare the two sets of pages whose scores exceed

a threshold tmerge (discussed in Section 8.4.3). If the size of overlapping pages is

135

more than half of one of the page set, we merge the two communities in question.

These heuristics work well as shown by our experiments in Section 5.2.

8.3.5 Phase V: Assign Documents to Labeled Communities

Our final step is to assign pages to communities and label them. In order to assign a

page p to its most related query sense community, we calculate the overall TF-IDF

score of p for all communities and assign p to the one that has the highest score.

If more than one candidate community has the highest score, we categorize p as

miscellaneous. The overall TF-IDF score of p for community c is defined as the

sum of TF-IDF scores of all keywords, which belong to community c, for p.

We use the dependency-based word similarity data1 [130] to label the clusters.

For a keyword w in community c, we use the number of words in c that are sim-

ilar to w as an overall ranking for w. We select keywords that have high overall

ranking as c’s label. We also tried other methods to label the clusters. For example,

we have labeled the clusters by the most frequent words or words with the largest

neighbourhood. However, their accuracy is not promising judging by the manual

labels. More accurate document cluster labeling methods may apply here; however,

cluster labeling itself is a research topic per se and thus is beyond the scope of this

application.

8.4 Experiment Results

We conducted several experiments to validate the effectiveness and accuracy of the

proposed approach. We use the ARI metric, which is introduced in Chapter 5.2.2,

to evaluate the accuracy of our approach.

8.4.1 Data Collection and Labeling

We constructed our datasets using the Google search engine and partitioned the

results manually to create the ground truth for evaluation purpose. At first, we sub-

mitted ambiguous queries to Google and parsed result pages in the top returned
1The dependency-based word similarity data can be downloaded at

http://www.cs.ualberta.ca/∼lindek/downloads.htm

136

results. Pages that do not contain any keyword pairs were removed. To evaluate

our idea of community mining for page clustering, we intentionally merged result

pages from several related queries to create datasets that have strong query sense

communities, e.g., the amazon dataset is merged with results from queries “ama-

zon river”, “amazon warrior” and “amazon company”, and so is the java (island,

coffee or programming language) and eclipse (Mitsubishi car model, obscuring of

a celestial body, or programming development platform) datasets. To evaluate the

approach on real queries, we queried the word “jaguar” and “salsa” only to cre-

ate jaguar (animal, car or mac system) and salsa (dance/music or recipe) datasets.

Table 8.1 shows the labeled datasets that are used for accuracy experiments.

In order to build ground truth to evaluate our results, we asked four graduate

students to manually classify all pages into pre-defined clusters using a vote system,

i.e., a page is classified to the cluster which most people agree on. If votes do not

agree, we have a fifth person make the final decision to break the tie2. Pages can

also be labeled as miscellaneous if the person does not think they belong to any of

the pre-defined clusters. Note that while the experiment datasets are categorized

by human, our approach absolutely does not rely on such manual labeling. The

exercise involving human labeling is solely to gather ground truth for empirical

experimentation.

For practicality, we kept the Google page sets small to be manually labeled.

However, to illustrate the approach on a larger set, we used a subset of the standard

text data set Reuters-215783 and selected three document categories with about the

same size, to simulate a query with three senses. (see Table 8.1). Totalling about

950 documents, each is treated as a parsed page for a query.

8.4.2 Accuracy Evaluation

We have applied our method on the six datasets and show the results in Table 8.2

(the miscellaneous cluster for all datasets are omitted in the table). We compare our

method with an effective variation of K-Means [113], which is a common algorithm
2The labeled dataset can be downloaded at http://www.cs.ualberta.ca/∼jiyang/WWW/.
3http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

137

Dataset Manual Labels Page Set Size
amazon river, warrior, company 114

java software, island, coffee 119
eclipse car, astronomy, java 125
jaguar car, animal, mac 101
salsa dance, sauce 85

Reuters* Trade, Crude, Money-fx 946

Table 8.1: Experimental Datasets.

of document clustering [189]. Note that while other document clustering algorithms

[21, 229, 228] usually require parameters as metric thresholds, which are extremely

hard to set generally for various search queries, we do not need any parameters for

the clustering.

For the K-Means algorithm, every extracted keyword is treated as a feature, thus

one document is represented as a vector of keyword TF-IDF scores. The distance

between two documents is defined as the squared Euclidean distance between two

vectors. Note that we use the final community number discovered by our approach

as k to feed the k-means algorithm. While our approach detects k automatically

based on senses of query words, other unsupervised algorithms often rely on such

critical parameter, thus our approach is more appropriate for real time search result

page clustering, where such information is unavailable.

From the table, we see that for datasets (amazon, java, eclipse) that are merged

by three different senses of the same word, our approach achieves high accuracy,

which validates our assumption that a query sense community relates to its corre-

sponding document cluster. For real datasets (jaguar, salsa, reuter) with noise, our

method can no longer achieve ARI score higher than 0.8. However, our method still

works measurably better than the K-means algorithm and detects the right number

of clusters. Note again that the running time of our clustering approach depends on

the size of the keyword network while other clustering methods (etc. K-means) rely

on the size of the document set, thus our approach is able to handle large document

sets very fast since the number of extracted keywords is always stable regardless of

the number of returned pages.

138

DataSet Manual Label Extracted Label ARI score Q scoreOur Method K-means
River lake, river, water

Amazon Warrior girl, battle, woman 0.888 0.693 0.367
Company computer, consumer

Coffee coffee, fruit, tea
Java Island island, mountain, city 0.889 0.728 0.403

Software software, interface
Car engine, car, video

Eclipse Astronomy sun, picture, moon 0.931 0.765 0.428
Java software, interface

Animal animal, wildlife, forest
Jaguar Car car, vehicle, sedan 0.785 0.114 0.471

Mac database, software

Salsa Dance music, dance, teacher 0.642 0.605 0.405Sauce garlic, tomato, sauce
Trade budget, tax, tariff

Reuter Crude oil, crude, supply 0.618 0.504 0.222
Money-fx currency, market, dollar

Table 8.2: Sense community-based clusters for six datasets (miscellaneous clusters
are omitted).

8.4.3 Parameter Setting

Parameter tdf is used to select keywords based on their DF score. The lower it is,

the more noise keyword we get in the network. On the other hand, our approach

might not be able to detect small-scale communities if it is set too high since the

keywords in those communities are already filtered out. In Figure 8.2, we vary tdf

from 0.03 to 0.1 with step 0.01 for several datasets. The parameter value for the

optimal performance depends on the keyword community structure of the dataset

in question, however, we see that best results are mostly obtained in range 0.03 ≤

tdf ≤ 0.05.

We further study the threshold tmerge for community refinement. In experi-

ment datasets, we observed merging in the java dataset, where the software sense

splits into programming and company development, and the salsa dataset, where the

dance sense splits into teaching salsa and introducing salsa. We vary tmerge from

0.05 to 0.5 with step 0.05. For the java dataset, communities are mistakenly merged

when tmerge ≤ 0.1, and correct merging stops when tmerge ≥ 0.4. Corresponding

139

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
dj

us
te

d
R

an
d

In
de

x
(A

R
I)

IDF threshold

Keyword Extraction Threshold

jaguar
amazon

reuter

Figure 8.2: The impact of threshold tdf

values for the salsa dataset are 0.05 and 0.3. Therefore, the merging accuracy is not

very sensitive to the parameter tmerge; a good range can be 0.15 ≤ tmerge ≤ 0.25.

In all of our experiments, we set tdf = 0.05 and tmerge = 0.2.

8.4.4 Using Q to Measure Need For Clustering

Obviously, a list of result pages does not need clustering if it only contains one

primary sense of the query. The stronger its sense community structure, the more

confusing the result could be. Fortunately, our method allows the strength of the

community structure to be measured by the Q score, which is an outcome of the

hierarchical clustering algorithm. The Q score is close to 0 if there is only one

sense. The more separated the discovered communities are, the higher the Q score

is and the better the search result documents are to be clustered. Typically, in Social

140

Network Analysis, Q ≥ 0.3 indicates strong community structure [155]. However,

in our experiments, we observe that 0.1 might be a good threshold to decide whether

to cluster or not for the page clustering task.

In Table 8.3, we show automatic-labeled page clusters and corresponding Q

scores of the detected sense community structure of various queries. For ambigu-

ous queries that have strong sense communities, we further manually refine and

submit the query to our system until the returned Q score is close to 0, which indi-

cates no more clustering is necessary. As we can see, the results are very promising.

The query columbia has many communities including educational institution, river,

state, court, film company, etc. but the refined query british columbia has only one

sense. There are two communities, vehicle and planet, for query saturn, and only

one for query saturn car. Matrix provides three communities, which are computer

tools, the movie and math, and no further clustering is required for matrix movie.

Table 8.3 also shows other similar examples, such as blizzard (weather and com-

pany), latex (file format and allergy), trailblazer (scientific researcher, book series,

electronic technology and car model) and mouse (laboratory experiment, computer

device, animal and Mickey Mouse). Surprisingly, we have to refine our query twice

to achieve a query string with no ambiguity for query tiger (animal, business, sports

and software) and query casablanca (movie and city). The reason is that our refined

query tiger woods (game, career and child) and casablanca city (capital and hotel)

still show some community structure, although with a lower Q score.

To summarize, our approach generates a high Q score for queries that have

several meanings in the web search context. The score decreases when we further

refine the query to eliminate some of the meanings and finally reaches or becomes

very close to 0, which indicates no community structure in the returned documents,

i.e., there is only one main sense for this query. Therefore, the Q score should be a

strong candidate for the necessity metric of page clustering.

141

8.5 Conclusions

This chapter proposed an approach for search result organization based on query

sense communities in web pages. Our unsupervised method not only bypasses the

problem of handling large result page sets by extracting and analyzing frequent key-

words and phrases, but also it is able to achieve high clustering accuracy for real

queries. We also show that the modularity score Q can be used to measure whether

a page clustering is required. Experimental results confirm the accuracy and effec-

tiveness of the proposed approach. Possible future work would be extending the

approach to build a document hierarchy based on merged topics and discovered

senses and providing a more accurate cluster labeling.

142

Query Extracted Cluster Label Q Score Refined Query Q Score

columbia

student, professor, institute

0.369 british columbia 0

park, town, area
order, court, request

river, water, lake
state, district, county
market, film, product
season, mph, game

saturn vehicle, technology, model 0.259 saturn car 0.012heat, water, hydrogen

matrix
system, tool, database

0.330 matrix movie 0.033character, film, movie
order, equation, rule

blizzard snow, wind, weather 0.234 blizzard game 0.006software, product, computer

latex file, format, user 0.401 latex allergy 0patient, treatment, hospital

trailblazer

student, professor, director

0.324 trailblazer chevrolet 0.076boy, kid, book
network, phone, technology

car, vehicle, engine

mouse

model, study, cell

0.316 mouse keyboard 0interface, keyboard, device
animal, rat, cat

film, art, character

tiger

animal, wildlife, habitat

0.356 tiger woods 0.209business, market, industry
game, team, player

software, user, version

tiger woods
game, mode, player

0.209
tiger woods

0.033tournament, career, record daughter
daughter, kid, child

casablanca movie, film, theater 0.270 casablanca city 0.145city, service, hotel

casablanca city capital, town, region 0.145 casablanca 0.004restaurant, hotel, park city hotel

Table 8.3: Modularity score for different queries.

143

Chapter 9

Entity Ranking for Social Networks

The significant increase in open access digital information has created incredible

opportunities for modern social network analysis and data mining research, espe-

cially in exploiting significant computational resources to determine complex re-

lationships within entities. In this chapter, we consider the problem of analyzing

heterogeneous social networks and explaining relationships between entities in or-

der to rank entities based on a notion of relevance. For this purpose, we propose

a link analysis-based method from the random walk class, which can be deployed

to discover interesting relationships amongst entities of relational social networks

that would otherwise be hard to expose [226]. We demonstrate our ideas on the

DBLP database, where we exploit structural variations on relationships between

authors, conferences and topics. We also present a navigational interface to view

the ranking.

9.1 The Network Model

As mentioned in Chapter 4.5, we can consider the web as a network over a binary

relation between pages. It can be well represented by a bipartite graph, where two

partitions contain the page set and edges between partitions represent the hyperlinks

that connect corresponding pages. We now generalize this idea to heterogeneous

social networks.

Given a social network D = (X, Y, RX↔Y), where entity set X = {xi|1 ≤ i ≤

n} and relation set Y = {yj|1 ≤ j ≤ m} (there are n entities in X and m relations

144

in Y), RX↔Y represents the connections between X and Y : r(xi, yj) ∈ RX↔Y if

xi has relation yj, e.g., if xi represents an author and yj represents a conference,

r(xi, yj) could mean that the author xi has published a paper in conference yj. We

refer to RX↔Y as the cross relation between X and Y .

9.1.1 Bipartite Network Model

As we have shown in Chapter 4.5, a social network D = (X, Y, RX↔Y) can easily

be transformed to a undirected bipartite graph G = (X, Y, E), where X and Y are

node sets (X = {xi | 1 ≤ i ≤ n}, Y = {yj | 1 ≤ j ≤ m}) and E is an edge set

(E = {e(xi, yj) | r(xi, yj) ∈ RX↔Y }), i.e., each partite represents an entity/relation

set and edges represent connections between entities and relations. We assume the

edges are undirected, but they can also be directed for some social networks, such as

the web. The weight of edge e(xi, yj) is w(xi, yj), which can be 1 for an unweighted

graph, or non-negative value for a weighted graph, where the weight is the sum of

the weights of relation yj edges that connect entity xi in the original network. One

important property of the structure of the bipartite model is that nodes in X that are

similar to each other usually connect to similar nodes in Y . Therefore, we could

achieve the ranking by generating the adjacency matrix of graph G and applying a

random walk algorithm on that matrix starting from a given node.

9.1.2 K-partite Network Model

We have presented the bipartite network model for a social network D = (X, Y, RX↔Y)

which has only one type of cross relation, namely RX↔Y . However, real world net-

works might have multiple cross relations between several types of entities and

relations. For example, there are seeds, peers and file types (multimedia, text, etc.)

for P2P system; conferences, authors and research topics for research publication

data; customers, movies, genre and actors for a movie purchase database. We may

have more correlated entities in other fields, however, in this dissertation, we exper-

iment on graphs that have cross relations between three types of entities, network

models for more can be achieved by extending the graph model and applying the

proposed method.

145

X1 1Y

X2

X3

X4

X5

Xn

3Y

2Y

4Y

5Y

Ym

Z2 Z3 Z4 Z5Z1 Z l

Cross Relations:

.
. ..

Concept Set X Concept Set Y
Conference Author

Topic Concept Set Z

Conferences Authors

Random Walk Direction 2:

Topics
Random Walk Direction 1:

(B) Random walk on Tripartite Graph(A) Tripartite Network Model

Figure 9.1: Tripartite Network Model for Multiple Cross Relations

We now consider a social network D′ = (X, Y, Z, RX↔Y ↔Z↔X), and we have

RX↔Y , RY ↔Z and RX↔Z as cross relations between these three different types

of entities. We naturally use an undirected tripartite graph G′ = (X, Y, Z, E ′) to

model the data: two entity nodes are connected if they are related. Figure 9.1 (A)

shows the tripartite network model for the social network.

Applying random walk algorithms on a k-partite graph can be interesting, since

the direction of the random walk need also to be taken into consideration. For ex-

ample, assume we have a tripartite network model representing relations between

conferences, authors and topics (Figure 9.1 (B)), there are two possible ways to ap-

ply a random walk: assuming we start from authors, walk from author to conference

to topic and then back to author, or walk from author to topic to conference and then

back to author. Random walk algorithms with both directions rank authors based

on the frequency of sharing the same topics and conferences, but there are slight

differences due to the walking sequence. Nevertheless, starting from an entity in a

particular partition, the random walker need to walk through all related partitions

and then return to the beginning partition. By that we no longer need to arbitrarily

set the authority transfer probability [103], however the sequence of involved parti-

tions are required for the random walker to jump among different types of entities.

We investigate this problem in more details in Chapter 9.3.3.

146

9.2 Proposed Method

In this section, we first define the relevance score and describe the random walk

approach in Section 9.2.1, then present the ranking algorithm for entity sets with

multiple cross relations in Section 9.2.2.

9.2.1 Relevance Score based on Random Walk

For the problem of relevance ranking in the network model, we believe that two

objects are similar to each other if they are related to similar objects. Therefore,

we consider that an entity is most related to itself and can be assigned a score of

1. We denote the relevance score between entities α and β by rs(α, β). We know

that rs(α, β) ∈ [0, 1] and rs(α, β) = 1 iff α = β. Now the problem of internal and

external ranking in the network model can be described as follows:

Given a node α in partition X of the network model, we want to compute a

relevance score for all nodes β ∈ X (internal ranking) and all nodes γ in other

partitions (external ranking). For each partition, the result is a one-column vector

containing all relevance scores of the entities with respect to α.

The basic intuition behind our approach is to apply random walks with restart

(RWR) from the given node α, and count the visitation frequency that the walk does

on each node in the k-partite network model, i.e., the relevance score of node β is

defined as the probability of visiting β via a random walk which starts from α and

goes back to α with a probability c. In more detail, RWR works as follows: assume

we have a random walker that starts from node α. For each step, the walker chooses

randomly among the available edges from the current node it stays. After each

iteration, it goes back to node α with probability c. The final steady-state probability

that the random walker reach node β is the relevance score of β with respect to α:

rs(α, β). We choose the random walk approach to compute the relevance score

because it gives node β high ranking if β and α are connected by many nodes; this

is because the random walker has more paths to reach β from α. The purpose of the

periodic restart of the random walk is to raise the chance that close related nodes

are visited more often than other nodes.

147

9.2.2 Algorithm for Multiple Cross Relations

For a social network with multiple cross relations, we first model the related entities

as an undirected k-partite graph. Without loss of generality, we present our algo-

rithm on a tripartite network model G′ = (X, Y, Z, E ′), it can be easily extended to

more complex models. Assume we have n nodes in X , m nodes in Y and l nodes in

Z, we can represent all relations using three corresponding matrices: Un×m, Vm×l

and Wn×l.

In matrix U , U(α, β) denotes that there is an edge from node α to node β in

G′. If we want to initiate a random walk starting from a node in X represented

by row α to Y , the probability of taking the edge (α, β) is proportional to the

edge weight over the weight of all outgoing edges from α in X to Y . Therefore,

we normalize them such that every column sum up to 1: Q(U) = col norm(U),

Q(UT) = col norm(UT). We then construct the adjacency matrices of G′ after

normalization:

JXY =

(

0 Q(U)
Q(UT) 0

)

JXZ =

(

0 Q(W)
Q(W T) 0

)

JY Z =

(

0 Q(V)
Q(V T) 0

)

We now transform the given node α into a (n + m + l)× 1 vector ~uα initialized

with all 0 except the value for start node α, which is set to 1. Then we need to

achieve a (n + m + l) × 1 steady-state vector ~uα, which contains relevance scores

over all nodes in the graph model with respect to α. The steady-state vector can

be computed based on the following lemma using the RWR approach. Note that,

in the lemma, vector ~vα is initialized in the same way as ~uα and is representing the

probability of restarting random walk in each iteration.

Lemma 1 Let c be the probability of restarting random walk from node α and P

is the adjacency matrix. Then the steady-state vector ~uα satisfies the following

equation:

~uα = (1 − c)P~uα + c~vα

148

Proof: The adjacency matrix P is a Markov matrix, where every entry of P is non-

negative and every column of P adds to 1. We know that multiplying a nonnegative

~u by a Markov matrix produces a nonnegative ~u′, whose components also add to

1. We have the pattern for Markov chains: if P is a positive Markov matrix, then

its eigenvector is the steady state vector. More details for the proof can be found in

Chapter 8 in Strang’s book [191].

Algorithm 7 applies the above lemma repeatedly until ~uα converges. For all

experiments, the restarting probability c is set to 0.15 and converge threshold ε

is set to 0.1, which give the best performance for RWR according to experiment

results in [193]. In step 3, the k-partite structure of the graph model is used to save

the computation of applying Lemma 1. The result vector ~uα(1:n), ~uα(n+1:n+m) and

~uα(n+m+1:n+m+l) respectively represent vectors of first n, m and last l elements of

~uα, and contain the relevance score for X , Y and Z nodes.

In algorithm 7, the random walk starts from X to Y , then to Z and finally

returns to X . The algorithm applies the random walk repeatedly until the vector

converges. As mentioned in Section 9.1.2, there are several possible directions of

random walks in a k-partite network model, which could lead to different ranking

results. Algorithm 7 describes the direction of X → Y → Z. The computation

sequence and involving matrices in step 3 of the algorithm would be different if the

random walk direction is changed.

9.3 Experiments

We tested our ranking approach on the DBLP database, the data structure of which

is shown in Figure 9.2. As a social network, DBLP originally has only two entity

types: conference and author. Papers are relations that connect these two kinds of

entities. In order to test our approach on k-partite network models, we extracted

a third type of entities from DBLP data, which is the research topic. Details are

explained below.

In the DBLP database, we safely discarded all journal publications since they

are only a small fraction compared to the whole database. We also observe that

149

Algorithm 7 Random Walk Algorithm for Multiple Cross Relations
Input: starting node α, tripartite graph model G′, restarting probability c, con-
verge threshold ε.
Output: relevance score vector ~x, ~y and ~z for X, Y, Z nodes.
1. Compute the adjacency matrices JXY , JY Z and JXZ

of the graph model G′.
2. Initialize ~uα = ~vα = 0, set element for α to 1: ~uα(α) = ~vα(α) = 1.
3. While (∆~uα > ε)

~uα(n+1:n+m) = (Q(UT) ∗ ~uα(1:n))
~uα(n+m+1:n+m+l) = (Q(V T) ∗ ~uα(n+1:n+m))
~uα(1:n) = (Q(W) ∗ ~uα(n+m+1:n+m+l))
~uα = (1 − c)~uα + c~vα

4. Set vector ~x = ~uα(1:n), ~y = ~uα(n+1:n+m),
~z = ~uα(n+m+1:n+m+l).

6. Return ~x, ~y, ~z.

authors in different research areas publish in a certain group of conferences and

seldom publish across multiple areas, i.e., the undirected author-conference graph

can be partitioned into several nearly non-overlapping subgraphs, where few edges

between authors and conferences connect across partitions. Therefore, it is un-

necessary to run the algorithm on the whole graph, instead, we applied a graph

partitioning algorithm first and then performed random walks only on the parti-

tion containing the given node. There are several algorithms available for graph

partitioning. Note that the proposed random walk approach is independent of the

selected partitioning algorithm. In our work, we used the METIS algorithm [115]

to partition the large graph into 10 subgraphs of about the same size. We examined

all our experiments on the biggest partition with 1,170 conferences and 35,926 au-

thors. This partition includes most conferences in the area of Database and Data

Mining, e.g., KDD, SIGMOD and VLDB.

Since DBLP data provide paper titles as the only content-related information,

we obtained as many paper abstracts as possible from Citeseer 1, then extracted

topics based on keyword frequency from both titles and abstracts. At first, we

manually selected a list of stop words to remove meaningless but frequent words,

e.g., “approach”, “using”. Then we counted the frequency of every co-located pairs
1http://citeseer.ist.psu.edu/

150

Author Name
Author ID

Author ID
Author ID
Author ID

...
Paper ID

Conf ID
Conf Name

Proc ID
Conf ID
Year

Paper ID
Proc ID
Title

Keyword ID
Keyword

Paper ID
Keyword ID
Keyword ID

...
Keyword ID

Publications

Authors

Conferences

Original Data Structure

Topics

Supplemented Topics

Figure 9.2: Our Data Structure extracted from DBLP Database

of words (stemmed bi-grams) and selected the top k most frequent bi-grams as our

topic entities (k=1000 in our experiments). We chose to represent topics by bi-

grams because most of the research topics can be well described by two words,

e.g., artificial intelligence, software engineering and machine learning. Moreover,

we added several tri-grams, e.g. Support Vector Machine, World Wide Web, if we

observed both bi-grams from them (e.g. Support Vector and Vector Machine) to be

frequent.

9.3.1 Ranking for Conference Entities

After we extracted conference-author-topic data from the DBLP database to build

the network model, we checked whether entities with high relevance scores are truly

related to the given node. In the following, we select related entities with top 10

relevance scores for given conferences and verify that the result makes sense in the

academic context.

Table 9.1 and Table 9.2 shows the top 10 relevance ranked conferences for a

given conference α in the bipartite (without topics) and tripartite (with topics) net-

151

α KDD ICDM SIGMOD VLDB
1 VLDB KDD VLDB SIGMOD
2 ICDE ICDE ICDE ICDE
3 NIPS VLDB PODS DEXA
4 ICML PAKDD DEXA PODS
5 SIGMOD SIGMOD EDBT CIKM
6 ICDM ICML CIKM EDBT
7 IJCAI SDM KDD KDD
8 AAAI IJCAI DASFAA BDA
9 PKDD PKDD SSDBM ER

10 CIKM NIPS ER DASFAA

Table 9.1: Top 10 Related Conferences for Conference using bipartite model: Con-
ference → Author → Conference

α KDD ICDM SIGMOD VLDB
1 VLDB VLDB VLDB ICDE
2 ICDE ICDE ICDE SIGMOD
3 SIGMOD KDD DEXA DEXA
4 NIPS NIPS CIKM SAC
5 DEXA SIGMOD DASFAA DASFAA
6 PAKDD PAKDD SAC CIKM
7 IJCAI DEXA ER ER
8 SAC IJCAI IJCAI IJCAI
9 ICML SAC SIGIR SIGIR

10 SIGIR ICML KDD KDD

Table 9.2: Top 10 Related Conferences for Conference using tripartite model: Con-
ference → Topic → Author→ Conference

α SIGMOD PODS SAC VLDB
1 Database System Database System (1st) Genetic Algorithm (15th) Database System (1st)
2 Relational Database Query Language (13th) Neural Network (6th) Relational Database (2nd)
3 Management System Concurrency Control (17th) Web Service (5th) Information System (4th)
4 Information System Relational Database (2nd) Information Retrieval (12th) Management System (3rd)
5 Web Service Deductive Database (> 20th) Information System (4th) Data Modeling (10th)
6 Neural Network Query Optimization (11th) Data mining (9th) Data Management (7th)

Table 9.3: Related Topics for Conference using bipartite model: Conference →
Topic → Conference ((x), x is the rank of the topic with respect to the SIGMOD
conference

152

work model. Note we do not make any claim on which list is better, since comparing

ranking results itself is still an open problem. The list based on a conference-author

network implies that the given conference α shares researchers with these con-

ferences who have high relevance scores. One can observe that our ranking puts

database conferences as the most relevant conferences for SIGMOD and VLDB.

For KDD and ICDM, however, it appears that database conferences are the most

relevant. This is due to historical reasons since prominent data mining authors used

to and still publish in VLDB, SIGMOD and ICDE venues. The ranking changed

in the tripartite graph list since the network model now includes topics, which in-

crease relevance scores of conferences that share the same research topics with the

given conference. For example, after the topic set is taken into account, PODS is no

longer top 10 related to SIGMOD. Instead, we see SAC appear in the list due to the

similarity of covered research topics. As we can see in Table 9.3, the most related

topics to SIGMOD and VLDB (1st for SIGMOD in Table 9.1) are almost the same,

while SAC (6th) and SIGMOD share several topics as well. On the other hand,

PODS (ranked as 13th), which is surprisingly not in the top 10 related conferences

for SIGMOD based on a topic-included network model, does not have many topics

in common with SIGMOD (except “relational database” and “database system”).

As mentioned before, topics in our experiments were extracted from paper titles

and abstracts when available. A better topic extraction means could lead to even

better rankings.

Table 9.4 shows the top 10 related authors for SIGMOD, ICDM and KDD. All

of these authors are researchers in the database and/or data mining area, and have a

large number of publications in DBLP with attached topics related to the topics of

the conferences in question. Notice that our ranking tends to favor objects center

to the social networks. In other words, if an author is highly connected to other

authors related to a conference α, and is central in the social network of topics and

other conferences related to the conference α, our approach would tend to rank this

author high vis-à-vis this conference, which justifies why Jiawei Han for instance

is ranked the highest for SIGMOD.

153

α SIGMOD ICDM KDD
1 Jiawei Han Jiawei Han Philip S. Yu
2 Hans-Peter Kriegel Philip S. Yu Hans-Peter Kriegel
3 Michael Stonebraker Jian Pei Nick Cercone
4 Elisa Bertino Masaru Kitsuregawa Eamonn J. Keogh
5 David J. DeWitt Wei Wang Shusaku Tsumoto
6 Philip S. Yu Eamonn J. Keogh Wei Wang
7 Georges Gardarin Hans-Peter Kriegel Rakesh Agrawal
8 Elke A. Rundensteiner Hongjun Lu Masaru Kitsuregawa
9 Michael J. Carey Ming-Syan Chen Christos Faloutsos

10 Hongjun Lu Osmar R. Zaı̈ane Jian Pei

Table 9.4: Top 10 Related Authors for Conference using tripartite model: Direction
Conference → Topic → Author → Conference

9.3.2 Ranking for Author Entities

We ranked various entities (conferences, topics, authors) with respect to a given

conference in previous experiments. However, the given entity to start the random

walk is not limited to one particular set, it can be any entity across the k-partite net-

work model. For example, we can also rank related topics, conferences and authors

for a given author or topic. Among these possibilities, ranking author for author

could provide promising potential collaboration recommendations for researchers,

i.e., high relevance score between authors implies that their research topics and

fields, which are represented by conferences, are very similar.

We applied our random walk algorithm on the conference-author-topic network

model. We removed all the researchers that have already co-authored a paper with

the given author from the ranked list. Therefore, there are no direct collaboration

connections between the given author and the listed authors. In Table 9.5, we list

the top 5 authors recommended as possible future collaborators for Philip S. Yu.

To validate our results, we show the paths between them, i.e. degree of separa-

tion (A → B means A and B are co-authors) and their most frequent topic and

conference in common. Obviously, all recommended collaborators are strongly

connected, only one or two steps away via co-authorship, to Philip S. Yu, and the

listed topics and conferences are apparently all relevant to his research interests.

154

Path: Philip S. Yu → ... Future Collaborator Top Topic Top Conf.
→Jiawei Han→Martin Ester→ Hans-Peter Kriegel Similarity Search ICDE

→Jun Yang→ Hector Garcia-Molina Database System ICDE
→Jiawei Han→Beng Chin Ooi→ Elisa Bertino Data Mining ICDE

→Yun-Wu Huang→ Elke A. Rundensteiner Data Stream CIKM
→Balakrishna R. Iyer→ Divyakant Agrawal Data Stream VLDB

Table 9.5: Top 5 Related Author for Philip S. Yu with most recommended Topic
and Conference to collaborate (A → B means A and B are co-authors)

9.3.3 Random Walk on Tripartite Graph

As mentioned in Section 9.1.2, there are two possible directions of random walks

in a tripartite graph, (and C2
k options for a k-partite graph), which could lead to dif-

ferent ranking results. To choose the most appropriate direction for a given network

model is an interesting and unsolved problem. We experimented on the conference-

author-topic database from DBLP and present our result in the following.

Assume we start from an author node to rank related authors for that author,

the two possible random walk directions of the conference-author-topic database

are: author → conference → topic → author and author → topic → conference

→ author (Figure 9.1 (B)). Each entity set affects the final ranking result based on

its cross relations, e.g., relation set conference↔author affects the relevance score

result since authors that published in the same conference as the given author would

have high ranking. Usually those relation sets are not equal in significance, for

example, one may think relations between topics and authors are more important

and should be emphasized more in the random walk than other relations. We need to

investigate influence changes of different directions to find the appropriate sequence

of entity sets that the random walker should follow, based on the importance of these

entity sets.

Given author “Jiawei Han”, we run the random walk algorithm on the bipartite

network model between authors and conferences (AC), on the bipartite network

model between authors and topics (AT), on the tripartite graph following the di-

rection author → conference → topic → author (ACT), and on the tripartite graph

following the direction author → topic → conference → author (ATC). We se-

lected authors with top k (k=200) relevance score as a test list for the given author.

155

ATC

AT

ACT

11 AC ACAT

30

Total Recommendation: AT=AC=ATC=ACT=200

88

9

46
86

4532

Figure 9.3: Random Walks on Tripartite Model

We show the result in Figure 9.3, where numbers in the overlapping area of the

circles represent the number of authors that these ranking lists share. For both di-

rections, most of the authors in the list (81.5% of ATC, 82% of ACT) can be found

in either AT or AC, which confirms the initial observation that each entity set has

influence on the result of the multiple cross relation model. However, their influ-

ences change for different directions. AT contributes 32 authors to ATC and that

number increase to 46 for ACT . On the other hand, AC’s contribution drops from

45 for ATC to 30 for ACT . The experiment shows that, for author “Jiawei Han”,

the influence of entity sets on the ranking is increasing following the sequence of the

random walk, i.e., topics are more emphasized in ACT and conferences are more

important in ATC, as the last partition of the random walk. In order to investigate

whether this phenomenon is general, we run the same experiment on more random

authors, whose results all show similar characteristics. Therefore, we believe that

the random walk direction in a tripartite graph for the multiple cross relation model

can affect the relevance ranking result. The later the entity set is visited by the

random walk, the more influence it has on result scores and the more important it

should be. Similar behaviour is expected for k-partite graphs.

9.3.4 Discussion

Ranking entities in a social network, where objects are cross-linked with each other

via multi-type links, is important in discovering the rich semantic information these

156

links may contain and in identifying the paramount relationships among objects.

Due to limitations of the DBLP database, it is hard to extract accurate topics for

conference papers since the only available content-related information are the title

of the paper and incomplete abstracts from Citeseer. In experiments where we used

only single keywords as topics, we observed that the majority of the entities of ACT

or ATC (see Section 9.3.3) can be found in AT , and the change of direction did

not affect much AT ’s contribution. In other words, inaccurate topic-author/topic-

conference relations have an overwhelming influence on the random walk in the tri-

partite graph model and the result ranking score. Using bi-grams greatly improves

the quality of relations and ranking results. Better performance can be expected if

the topics are extracted or provided more accurately. However, classifying topics is

itself a huge research issue and is out of the scope of this dissertation.

9.4 DBConnect

In the above, we use DBLP data to generate bipartite (author-conference) and tri-

partite (author-conference-topics) graph models, where topics are frequent n-grams

extracted from paper titles and abstracts. Moreover, we present an iterative random

walk algorithm on these models to compute the relevance score between entities to

understand the relations between communities. We now present DBconnect [226],

which is an interactive interface for navigating the DBLP community structure, as

well as recommendations and explanations for these recommendations.

After the author-conference-topic data extraction from the DBLP database, we

generate lists of people with high relevance scores with respect to different given

researchers. DBconnect, which is a navigational system to investigate the commu-

nity connections and relationships, is built to explore the result lists of our random

walk approach on the academic social network. Figure 9.4 shows a screenshot of

the author interface of our DBconnect system. There are eight lists displayed for a

given author in the current version. Clicking on any of the hyper-linked names will

generate a page with respect to that selected entity. We explain details of each of

the lists below.

157

Figure 9.4: DBconnect Interface Screenshot for an author

• Academic Information

Academic statistics for the given author are shown in this list, which con-

tain three components: conference contribution, earliest publication year and

average publication per year are extracted from DBLP; the H-index [214]

is calculated based on information retrieved from Google Scholar2; approx-

imate citation numbers are retrieved from Citeseer3. The query terms for

Google Scholar and Citeseer are automatically generated based on the author

names. Users can submit an alternative query which gives a more accurate re-

sult from the search engines. We also provide a visualization of the H-index.
2http://scholar.google.com/
3http://citeseer.ist.psu.edu/

158

Figure 9.5: DBconnect Interface Screenshot for H-Index Visualization

One can click the “See graph” link beside the H-index numbers. Figure 9.5

shows an example of H-index visualization.

• Related Conferences

This list is generated by the random walk, which starts from the given au-

thor, on an author-conference-topic model and is ordered by their relevance

score, in descending order. These are not necessarily the conferences where

the given researcher published but the conferences related to the topics and

authors that are also related to the reference researcher. Clicking on the con-

ference name leads to a new page with topics and authors related to the chosen

conference.

• Related Topics

This list is ordered by the relevance scores from a random walk on the tripar-

tite model. Clicking on the button “Publications” after each topic provides

the papers that the given author has published on that topic, i.e. the papers

of the given author that contains the N-gram keywords in their titles or ab-

stracts. Similarly, these are not necessarily the topics that the given author

has worked on, but the topics most related to his topics, attended conferences

159

Figure 9.6: DBconnect Interface Screenshot for conference ICDM

and colleagues.

• Co-authors

The co-author list reports the number of publications that different researchers

co-authored with the given person.

• Related Researchers

This list is based on the bipartite graph model with only conference and au-

thor entities. The result implies that the given author is related to the same

conferences and via the same co-authors as these listed researchers. In most

cases, most related researchers to the given author are co-authors and co-

authors of co-authors.

• Recommended Collaborators

This list is based on the tripartite graph author-conference-topic. Since co-

160

Figure 9.7: DBconnect Interface Screenshot for topic Data Mining

authors are treated as “observed collaborators”, their names are not shown

here. The result implies that the given author shares similar topics and con-

ference experiences with these listed researchers, hence the recommendation.

The relevance score calculated by our random walk is displayed following the

names. Clicking on the “why” button brings the detailed information of the

relationship between the two authors. For example, in Figure 9.4, relations

between Philip Yu and Osmar Zaı̈ane are described by the topics and con-

ferences they share, and the degree of separation in the co-authorship chain

(A → B means A and B are co-authors). Here, the “Share Topics” table

lists the topics that these two authors both have publications on and the “Re-

lated Topics” table shows the topics that appear in the Related Topics lists of

both authors. Similarly, the “Shared Conferences” table displays the confer-

ences that the two authors have attended and the “Related Conferences” table

161

shows the conferences that can be found in the Related Conferences lists of

both authors.

• Recommended To

The recommendation is not symmetric, i.e., author A may be recommended

as a possible future collaborator to author B but not vice versa. This phe-

nomenon is due to the unbalanced influence of different authors in the social

network. For example, Jiawei Han has a significant influence with his 196

conference publications, 84 co-authors and H-index 63. He has been recom-

mended as collaborator for 6201 authors, but apparently only a few of them

is recommended as collaborators to him. The Recommended To list shows

the authors that have the given author in their recommendation list, ordered

by the relevance score.

• Symmetric Recommendations

This list shows the authors that have been recommended to the given author

and have the given author on their recommendation list.

Note that while there is some overlap between the list of related researchers and the

list of recommended collaborators, there is a fundamental difference and the dif-

ference by no means implies that collaboration with the missing related researchers

is discouraged. They are simply two different communities in the network even

though they overlap. The list of related researchers is obtained based on a conference-

author bipartite graph. The list of recommended collaborators could be perceived

as a more distant community and thus as an interesting discovery since it is ob-

tained with relations from topics and we use a RWR on a tripartite graph au-

thors/conferences/topics. The explanation on the why collaborators are recom-

mended (i.e. common conferences and topics, and degree of separation) establishes

more trust in the recommendation. A systematic validation of these lists is difficult

but the cases we manually substantiated were satisfactory and convincing.

Clicking on any conference name shows a conference page. Figure 9.6 illustrates an

example when the entity “ICDM” is selected. Conferences have their own related

162

conferences, authors and topics. Note that the topics here mean the most frequent

topics used within titles and abstracts of papers published in the given conference.

Clicking on the topics leads to a new page with conferences, authors and topics

related to the chosen topic. Note again that this relationship to topics comes from

paper titles and abstracts. Figure 9.7 shows an example when the topic “Data Min-

ing” is selected.

9.5 Conclusions

A wide range of social networks can be described as related entities sets and can

be modeled as k-partite graphs, such as P2P networks, author-conference relation-

ships, customer-movie rental records, etc. In this chapter, a model and algorithm

for multiple cross relations are presented and the consequences of different random

walk directions are investigated. We validate results of the algorithms on existing

publication databases. Our experimental results confirm the accuracy and effec-

tiveness of the proposed methods. We also present DBconnect, which can help

explore the relational structure and discover implicit knowledge within the DBLP

data collection.

163

Chapter 10

Conclusion

10.1 Conclusions

In this Ph.D study, we have tackled several social network community mining prob-

lems from different aspects. We summarize our solutions as follows.

1. A solution to the problem stated in Chapter 4.1 has been proposed: as shown

in Chapter 5, we propose the Max-Min Modularity metric to include domain

knowledge, which is provided by domain experts, as a new guiding criteria

in the community detection process without increasing algorithm complex-

ity. Therefore, distinct properties of different networks could be used to help

community mining.

2. We propose a new metric in Chapter 6 for the problem stated in Chapter

4.2. We analyze the drawbacks of previous approaches and correct them by

using the connection density to evaluate the local community structure so that

outliers can be detected. We propose a greedy algorithm to discover local

communities based on our metric.

3. For the problem discussed in Chapter 4.3, we propose a visual data mining

approach (ONDOCS) in Chapter 7 to help finding overlapping communities.

A new metric is defined based on proposed metric requirements. Network

visualizations are then generated by ordering nodes based on their relation

scores. Thus appropriate parameters for overlapping community identifica-

164

tion are easy for the user to decide after observing generated network visual-

izations.

4. In Chapter 8, we solve a real problem for web search engines, which is de-

fined in Chapter 4.4, by community mining approaches. We propose an algo-

rithm to identify query sense communities on a network of keywords that are

extracted from search result pages. These pages are then classified into differ-

ent sense communities based on the keywords they contain. We also propose

to use the modularity metric to assess whether page clustering is necessary

for a particular query.

5. Finally, we propose a solution in Chapter 9 for the problem of ranking enti-

ties in heterogeneous social networks, which is defined in Chapter 4.5. For

social networks with multiple relations and entity types, we first transform

the network into a k-partite graph and then apply a random walk algorithm

on the network model to generate rankings for a given starting node.

10.2 Summary of Contributions

This Ph.D dissertation makes the following contributions:

1. We propose a method to include domain knowledge as guiding criteria in

the community detection process by either rewarding or penalizing the met-

ric that evaluates the discovered structure, without increasing algorithm com-

plexity. Our new measure and algorithm improve the accuracy for community

detection over previous algorithms when applied to real world networks for

which the community structures are already known, and also give promising

results when applied to randomly generated networks for which we only have

approximate information about communities. This shows the robustness of

the algorithm against noise.

2. In contrast to existing local community mining approaches, our method pro-

posed in Chapter 6 requires no parameters and our metric L is robust against

165

outliers. The proposed algorithm not only discovers local communities with-

out an arbitrary threshold, but also determines whether a local community

exists or not for certain nodes.

3. For overlapping community identification, our visual data mining approach

could assist the user in finding appropriate parameters to describe the com-

munities they are looking for. The new metric R can effectively quantify the

relations between entities. The method is scalable and is able to discover

communities, hubs, and outliers in social networks.

4. Our method to identify query sense communities on a network of extracted

keywords gives good results. The unsupervised approach, which categorizes

web pages into meaningful categories with information of the query and the

result page content only, does not require additional information about the

query in question and is feasible for real time page clustering for search en-

gine results. The use of a community mining metric of the discovered query

sense community structure to assess whether page clustering is required for

search results is new. While previous methods overlook this issue, experi-

mental results show that our method is useful.

5. While previous ranking methods focus on homogeneous networks, our entity

ranking approach is useful for heterogeneous networks where there exist mul-

tiple types of entities and relations. We also provide a convenient interface

for users to navigate the ranking and relations.

10.3 Future Research

Community mining is increasingly attracting people’s attention as an area of study.

Nevertheless it faces many challenges, including accurate data extraction, entity

ranking, relation selection, community evaluation and discovery. Each has received

significant attention in the literature, and is known to be rather challenging itself.

In this dissertation, we have proposed solutions in many aspects of community

mining problems, however, there is still much left to do. Possible future work can

166

be summarized as follows:

• Domain knowledge is represented as node pairs in our approach, i.e, our ap-

proach takes a pair of nodes as “related nodes” or “unrelated nodes” to help

the mining process. However, knowledge in some networks might not be

represented in this form. For example, a group of genes can belong to the

same category in a biological network. It would be redundant to transform

this type of knowledge into a set of node pairs. A better way of knowledge

representation may be necessary.

• Web pages need to be classified into different sense communities once these

communities are discovered. In Chapter 8 we use a straightforward method,

which classifies a page to the sense community that has the largest sum of

frequencies of keywords that belong to both the page and the community. To

achieve a more accurate result, other factors, such as the topic of the page or

the importance of the keyword, may be necessary to take into consideration.

• Again in Chapter 8, our sense communities are labeled using NLP rankings

based on a different database. These generated labels show the content of the

communities, to some extent, but a better cluster labeling method is desired

to practically improve the usability of our approach.

• In this dissertation, relations in a multiple-relation social network are consid-

ered to be equal. For example, when we transform the network into a bipartite

graph in Chapter 4, the weight of every connection is 1 regardless of which

relation this connection is. However, in the real world, different relations in

the same social network have different significance levels and thus should be

ranked. How to improve the performance of community mining approaches

by taking advantage of relation ranking is an interesting topic.

• In Chapter 9, we justify our ranking results in a bibliographical database by

common sense. However, we do not evaluate the results systematically. Such

metric for ranking evaluation is very hard to define, if not impossible. We

167

are not aware of any feasible approaches to evaluate our rankings. Further

investigation is desired.

• We focus on social relations in this dissertation. However, attributes can also

be important for community mining. How to extend proposed methods to

incorporate attribute analysis would be a very interesting topic.

• We assume the social network to be “static”. It would be interesting to inves-

tigate the possibility of extending the metrics and algorithms proposed in this

dissertation to discover and rank communities in a dynamic social network.

168

Bibliography

[1] E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, and A. Zimek. Robust, com-
plete, and efficient correlation clustering. In Proc. 7th SIAM International
Conference on Data Mining (SDM’07), 2007.

[2] L. A. Adamic and N. Glance. The political blogosphere and the 2004 u.s.
election: divided they blog. In LinkKDD ’05: Proceedings of the 3rd inter-
national workshop on Link discovery, pages 36–43, 2005.

[3] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe, and S. S. Parag.
Banks: Browsing and keyword searching in relational databases. In VLDB,
pages 1083–1086, 2002.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In
VLDB, pages 487–499, 1994.

[5] AICML. http://www.machinelearningcentre.ca/.

[6] Reka Albert, Hawoong Jeong, and Albert-Laszlo Barabasi. Diameter of the
world-wide web. Nature, 401:130–131, 1999.

[7] L. A. N. Amaral, A. Scala, M. Barthelemy, and H. E. Stanley. Classes of
small-world networks. Proc. Natl. Acad. Sci., USA97:11149–11152, 2000.

[8] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering
points to identify the clustering structure. In SIGMOD, pages 49–60, 1999.

[9] M. Ankerst, C. Elsen, M. Ester, and H.-P. Kriegel. Visual classification: an
interactive approach to decision tree construction. In KDD, pages 392–396,
1999.

[10] M. Ankerst, M. Ester, and H.-P. Kriegel. Towards an effective cooperation of
the user and the computer for classification. In KDD, pages 179–188, 2000.

[11] M. Ankerst and D. A. Keim. Visual data mining, Tutorial at SIAM Int. Conf
on Data Mining 2003.

[12] S. O. Aral, J. P. Hughes, B. Stoner, W. Whittington, H. H. Handsfield, R. M.
Anderson, and K. K. Holmes. Sexual mixing patterns in the spread of
gonococcal and chlamydial infections. American Journal of Public Health,
89:825–833, 1999.

[13] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation
in large social networks: membership, growth, and evolution. In KDD, pages
44–54, 2006.

169

[14] J. P. Bagrow. Evaluating local community methods in networks.
J.STAT.MECH., page P05001, 2008.

[15] J. P. Bagrow and E. M. Bollt. Local method for detecting communities.
Physical Review E, 72(4), 2005.

[16] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. In Machine
Learning, pages 238–247, 2002.

[17] J. A. Barnes. Class and committee in a norwegian island parish. Human
Relations, 7:39–58, 1954.

[18] S. Basu, A. Banerjee, and R. J. Mooney. Semi-supervised clustering by seed-
ing. In ICML, pages 27–34, 2002.

[19] J. Baumes, M. K. Goldberg, and M. Magdon-Ismail. Efficient identification
of overlapping communities. In ISI, pages 27–36, 2005.

[20] D. Bean and E. Riloff. Unsupervised learning of contextual role knowledge
for coreference resolution. In Proc. of HLT/NAACL, pages 297–304, 2004.

[21] F. Beil, M. Ester, and X. Xu. Frequent term-based text clustering. In KDD,
pages 436–442, 2002.

[22] T. Y. Berger-Wolf and J. Saia. A framework for analysis of dynamic social
networks. In KDD, pages 523–528, 2006.

[23] K. Bharat and M. R. Henzinger. Improved algorithms for topic distillation
in a hyperlinked environment. In Proceedings of SIGIR-98, pages 104–111,
Melbourne, AU, 1998.

[24] I. Bhattacharya and L. Getoor. Iterative record linkage for cleaning and in-
tegration. In DMKD ’04: Proceedings of the 9th ACM SIGMOD workshop
on Research issues in data mining and knowledge discovery, pages 11–18,
2004.

[25] DBLP Bibliography. http://www.informatik.uni-trier.de/ ley/db/.

[26] A. Bjorck. Numerical methods for least squares problems, SIAM 1996.

[27] M. Boguñá, R. Pastor-Satorras, A. Dı́az-Guilera, and A. Arenas. Mod-
els of social networks based on social distance attachment. Phys. Rev. E,
70(5):056122, 2004.

[28] P. Bonacich. Power and centrality: A family of measures. Am. J. Social,
92(5):1170–1182, 1987.

[29] P. Bonacich and P. Lloyd. Eigenvector-like measures of centrality for asym-
metric relations. Social Networks, 23(3):191–201, July 2001.

[30] U. Brandes. A faster algorithm for betweenness centrality. Journal of Math-
ematical Sociology, 25:163–177, 2001.

[31] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search
engine. In WWW, pages 107–117, Brisbane, Australia, 1998.

[32] R. S. Burt. Positions in networks. Social Forces, 55:93–122, 1976.

170

[33] D. Cai, Z. Shao, X. He, X. Yan, and J. Han. Community mining from multi-
relational networks. In PKDD, pages 445–452, 2005.

[34] D. Cai, Z. Shao, X. He, X. Yan, and J. Han. Mining hidden community in
heterogeneous social networks. In LinkKDD ’05: Proceedings of the 3rd
international workshop on Link discovery, pages 58–65, 2005.

[35] D. Cartwright and F. Harary. Structural balance: a generalisation of heider’s
theory. Psychological Review, 63:277–293, 1956.

[36] S. C. Cazella and L. O. C. Alvares. An architecture based on multi-agent
system and data mining for recommending research papers and researchers.
In Proc. of the 18th International Conference on Software Engineering and
Knowledge Engineering (SEKE), pages 67–72, 2006.

[37] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and S. Ra-
jagopalan. Automatic resource list compilation by analyzing hyperlink struc-
ture and associated text. In WWW, 1998.

[38] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categorization
using hyperlinks. In SIGMOD, pages 307–318, 1998.

[39] P.K. Chan, M. D. F. Schlag, and J. Y. Zien. Spectral k-way ratio-cut parti-
tioning and clustering. In Proceedings of the 30th International Conference
on Design Automation, pages 749–754, 1993.

[40] M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative infor-
mation. In FOCS, page 524, 2003.

[41] H. Chen and S. Dumais. Bringing order to the web: automatically categoriz-
ing search results. In CHI ’00, pages 145–152, 2000.

[42] J. Chen, O. R. Zäıane, and R. Goebel. An unsupervised approach to cluster
web search results based on word sense communities. In Proceedings of
IEEE/WIC/ACM International Conference, pages 725–729, 2008.

[43] J. Chen, O. R. Zäıane, and R. Goebel. Detecting communities in social net-
works using max-min modularity. In Proceedings of the SIAM Data Mining
Conference, pages 105–112, 2009.

[44] J. Chen, O. R. Zäıane, and R. Goebel. Local community identification in
social networks. In Proceedings of the International Conference on Advances
in Social Network Analysis and Mining(ASONAM), pages 237–242, 2009.

[45] J. Chen, O. R. Zäıane, and R. Goebel. A visual data mining approach to find
overlapping communities in networks. In Proceedings of the International
Conference on Advances in Social Network Analysis and Mining(ASONAM),
pages 338–343, 2009.

[46] J. Chen, O. R. Zaı̈ane, and R. Goebel. Detecting communities in large net-
works by iterative local expansion. In CASoN, pages 105–112, 2009.

[47] C. K. Cheng and Y.-C. Wei. An improved two-way partitioning algorithm
with stable performance. IEEE. Trans. on Computed Aided Design, 10:1502–
1511, 1991.

171

[48] H. Chim and X. Deng. A new suffix tree similarity measure for document
clustering. In WWW, 2007.

[49] J. Cho, H. Garcia-Molina, and L.Page. Efficient crawling through url order-
ing. In WWW, 1998.

[50] M. Chodorow, C. Leacock, and G. A. Miller. A topical/local classifier for
word sense identification. Computers and the Humanities, 34(1-2):115–120,
2000.

[51] A. Clauset. Finding local community structure in networks. Physical Review
E, 72:026132, 2005.

[52] A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure
in very large networks. Phys. Rev. E, 70:066111, 2004.

[53] D. Cohn and H. Chang. Learning to probabilistically identify authoritative
documents. In ICML ’00: Proceedings of the Seventeenth International Con-
ference on Machine Learning, pages 167–174, 2000.

[54] D. Cohn and T. Hofmann. The missing link - a probabilistic model of docu-
ment content and hypertext connectivity. In NIPS, 2001.

[55] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam,
and S. Slattery. Learning to construct knowledge bases from the world wide
web. Artificial Intelligence, 118(1-2):69–113, 2000.

[56] H. Cui and O. R. Zaiane. Hierarchical structural approach to improving the
browsability of web search engine results. In DEXA Workshop on Digital
Libraries, pages 956–960, 2001.

[57] L. Danon, J. Duch, A. Diaz-Guilera, and A. Arenas. Comparing community
structure identification. J. Stat. Mech, page P09008, 2005.

[58] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-
clustering. In KDD, pages 89–98, 2003.

[59] C. Ding, X. He, P. Husbands, H. Zha, and H. D. Simon. Pagerank, hits and a
unified framework for link analysis. In SIGIR ’02, pages 353–354, 2002.

[60] C. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max cut algorithm
for graph partitioning and data clustering. In ICDM ’01: Proceedings of the
2001 IEEE International Conference on Data Mining, pages 107–114, 2001.

[61] A. Doan, R. Ramakrishnan, F. Chen, P. DeRose, Y. Lee, R. McCann,
M. Sayyadian, and W. Shen. Community information management. IEEE
Data Engineering Bulletin, Special Issue on Probabilistic Databases, 29(1),
2006.

[62] X. Dong, A. Halevy, and J. Madhavan. Reference reconciliation in complex
information spaces. In SIGMOD, pages 85–96, 2005.

[63] J. Duch and A. Arenas. Community detection in complex networks using
extremal optimization. Phys. Rev. E, 72:027104, 2005.

[64] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification, Wiley-
Interscience, 2nd edition, 2000.

172

[65] U. Elsner. Graph partitioning - a survey. In Technical report 97-27, Technis-
che University Chemnitz, 1997.

[66] A. Esuli and F. Sebastiani. Pageranking wordnet synsets: An application to
opinion-related properties. In Proceedings of the 35th Meeting of the Asso-
ciation for Computational Linguistics, pages 424–431, 2007.

[67] T. Falkowski, J. Bartelheimer, and M. Spiliopoulou. Mining and visualizing
the evolution of subgroups in social networks. In Web Intelligence, pages
52–58, 2006.

[68] A. M. Fard and M. Ester. Collaborative mining in multiple social networks
data for criminal group discovery. In CSE (4), pages 582–587, 2009.

[69] C. Fellbaum. WordNet: An Electronic Lexical Database (Language, Speech,
and Communication). The MIT Press, 1998.

[70] M. Fiedler. Algebraic connectivity of graphs. Czech. Math. J., 23:298–305,
1973.

[71] P. O. Fjallstrom. Algorithms for graph partitioning: A survey. Linkoping
Electronic Articles in Computer and Information Science, 3(10), 1998.

[72] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient identification of web
communities. In KDD, pages 150–160, 2000.

[73] S. Fortunato and M. Barthelemy. Resolution limit in community detection.
PROC.NATL.ACAD.SCI.USA, 104:36, 2007.

[74] L. Freeman. Visualizing social networks. Journal of Social Structure, 1(1),
2000.

[75] L. C. Freeman. A set of measures of centrality based upon betweenness.
Sociometry, 40:35–41, 1977.

[76] L. C. Freeman. Centrality in social networks - conceptual clarification. Social
Networks, 1:215–239, 1978.

[77] J. Freyne and B. Smyth. Cooperating search communities. In Proc. of 4th
International Conference on Adaptive Hypermedia and Adaptive WebBased
Systems (AH’2006). Lecture Notes in Computer Science, pages 101–111.
Springer Verlag, 2006.

[78] N. E. Friedkin. Theoretical foundations for centrality measures. Am. J. So-
cial, 96:1478–1504, 1991.

[79] G. P. Garnett, J. P. Hughes, R. M. Anderson, B. P. Stoner, S. O. Aral, W. L.
Whittington, H. H. Handsfield, and K. K. Holmes. Sexual mixing patterns of
patients attending sexually transmitted diseases clinics. Sexually Transmitted
Diseases, 23:248–257, 1996.

[80] F. Geerts, H. Mannila, and E. Terzi. Relational link-based ranking. In VLDB,
pages 552–563, 2004.

[81] L. Getoor and C. P. Diehl. Link mining: a survey. SIGKDD Exploration
Newsletter, 7(2):3–12, 2005.

173

[82] David Gibson, Jon M. Kleinberg, and Prabhakar Raghavan. Inferring web
communities from link topology. In Hypertext, pages 225–234, 1998.

[83] A. Gionis, H. Mannila, and P. Tsaparas. Clustering aggregation. In ICDE,
pages 341–352, 2005.

[84] I. Giotis and V. Guruswami. Correlation clustering with a fixed number of
clusters. In SODA, pages 1167–1176, 2006.

[85] Michelle Girvan and M. E. J. Newman. Community structure in social and
biological networks. In Proceedings of the National Academy of Science
USA, 99:8271-8276, 2002.

[86] Gnuplot. http://www.gnuplot.info/.

[87] M. Granovetter. The strength of weak ties. American Journal of Sociology,
78:1360–1380, 1973.

[88] S. Gregory. An algorithm to find overlapping community structure in net-
works. In PKDD, pages 91–102, 2007.

[89] S. Gregory. A fast algorithm to find overlapping communities in networks.
In PKDD, pages 408–423, 2008.

[90] R. Guimera and L. A. N. Amaral. Functional cartography of complex
metabolic networks. Nature, 433:895–900, 2005.

[91] R. Guimera, M. Sales-pardo, and L. A. N. Amaral. Modularity from fluc-
tuations in random graphs and complex networks. Phys. Rev. E, 70:025101,
2004.

[92] S. Gupta, R. M. Anderson, and R. M. May. Networks of sexual contacts:
Implications for the pattern of spread of hiv. AIDS, 3:807–817, 1989.

[93] L. Hagen and A. B. Kahng. New spectral methods for ratio cut partitioning
and clustering. IEEE. Trans. on Computed Aided Design, 11:1074–1085,
1992.

[94] J. Han and N. Cercone. Ruleviz: a model for visualizing knowledge discov-
ery process. In KDD, pages 244–253, 2000.

[95] F. Harary. Graph theory, MA: Addison–Wesley, 1969.

[96] F. Harary, R. Z. Norman, and D. Cartwright. Structural models, New York:
Wiley, 1965.

[97] T. Hastie, R. Tibshirani, and J. H. Friedman. The elements of statistical
learning, Springer-Verlag, 2001.

[98] T. H. Haveliwala. Topic-sensitive pagerank. In WWW, pages 517–526, 2002.

[99] J. He, M. Li, H. Zhang, H. Tong, and C. Zhang. Manifold-ranking based
image retrieval. In MULTIMEDIA: Proceedings of the 12th annual ACM
international conference on Multimedia, pages 9–16, 2004.

[100] M. A. Hearst and J. O. Pedersen. Reexamining the cluster hypothesis: scat-
ter/gather on retrieval results. In SIGIR’96, pages 76–84, 1996.

174

[101] F. Heider. Attitudes and cognitive orientation. Journal of Psychology,
21:107–112, 1946.

[102] P. Holme, M. Huss, and H. Jeong. Subnetwork hierarchies of biochemical
pathways. Bioinformatics, 19:532–538, 2003.

[103] H. Hwang, V. Hristidis, and Y. Papakonstantinou. Objectrank: Authority-
based keyword search in databases. In VLDB, pages 564–575, 2004.

[104] R. Ichise, H. Takeda, and T. Muraki. Research community mining with topic
identification. In IV ’06: Proceedings of the conference on Information Vi-
sualization, pages 276–281, 2006.

[105] R. Ichise, H. Takeda, and K. Ueyama. Community mining tool using bibli-
ography data. In IV ’05: Proceedings of the Ninth International Conference
on Information Visualisation (IV’05), pages 953–958, 2005.

[106] IMDB. http://www.imdb.com/.

[107] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for min-
ing frequent substructures from graph data. In PKDD, pages 13–23, 2000.

[108] G. Jeh and J. Widom. Simrank: a measure of structural-context similarity. In
KDD, 2002.

[109] G. Jeh and J. Widom. Scaling personalized web search. In WWW, pages
2271–279, 2003.

[110] D. Jensen. Statistical challenges to inductive inference in linked data, 1999.

[111] X. Ji and W. Xu. Document clustering with prior knowledge. In SIGIR,
pages 405–412, 2006.

[112] I.T. Jolliffe. Principal component analysis, Springer Series in Statistics, 2nd
edition(2002).

[113] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu. An efficient k-means clustering algorithm: Analysis and
implementation. IEEE Trans. Pattern Anal. Mach. Intell., 24(7):881–892,
2002.

[114] Kartoo. http://www.kartoo.com/.

[115] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular
graphs. Journal of Parallel and Distriuted Computing, 48(1):96–129, 1998.

[116] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. Bell System Technical Journal, 49:291–307, 1970.

[117] J. Kleinberg. Authoritative sources in a hyperlinked environment. In Pro-
ceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 1998.

[118] D. E. Knuth. The stanford graphbase: A platform for combinatorial comput-
ing, Addison-Wesley, Reading, MA (1993).

[119] Valdis Krebs. http://www.orgnet.com/.

175

[120] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew
Tomkins. Trawling the web for emerging cyber-communities. Computer
Networks, 31(11-16):1481–1493, 1999.

[121] K. Kummamuru, R. Lotlikar, S. Roy, K. Singal, and R. Krishnapuram. A
hierarchical monothetic document clustering algorithm for summarization
and browsing search results. In WWW, pages 658–665, 2004.

[122] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In ICDM,
pages 313–320, 2001.

[123] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In International
Conference on Machine Learning, 2001.

[124] K. Lewin. Principles of topological psychology, McGraw-Hill, 1936.

[125] X. Li, B. Liu, and P. S. Yu. Discovering overlapping communities of named
entities. In PKDD, 2006.

[126] X. Li, B. Liu, and P. S. Yu. Mining community structure of named entities
from web pages and blogs. In AAAI-CAAW, 2006.

[127] X. Li, S. Szpakowicz, and S. Matwin. A wordnet-based algorithm for word
sense disambiguation. In In Proceedings of the 14th International Joint Con-
ference on Artificial Intelligence, pages 1368–1374, 1995.

[128] D. Liben-Nowell and J. Kleinberg. The link prediction problem for social
networks. In CIKM, pages 556–559, 2003.

[129] D. Lin. Principar: an efficient, broad-coverage, principle-based parser. In
Proceedings of the 15th conference on Computational linguistics, pages 482–
488, 1994.

[130] D. Lin. Automatic retrieval and clustering of similar words. In Proceed-
ings of the 17th international conference on Computational linguistics, pages
768–774, 1998.

[131] H. Liu and L. Yu. Toward integrating feature selection algorithms for clas-
sification and clustering. IEEE Transactions on Knowledge and Data Engi-
neering, 17(4):491–502, 2005.

[132] F. Lorrian and H. C. White. Structural equivalence of individuals in social
networks. Journal of Mathematical Sociology, 1:49–80, 1971.

[133] F. Luo, J. Z. Wang, and E. Promislow. Exploring local community structures
in large networks. In WI ’06: Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Web Intelligence, pages 233–239, 2006.

[134] M. Marchiori and V. Latora. Harmony in the small-world. Physica A,
285:539–546, 2000.

[135] F. Martino and A. Spoto. Social network analysis: A brief theoretical review
and further perspectives in the study of information technology. PsychNology
Journal, 4(1):53–86, 2006.

176

[136] E. Mayo. The social problems of an industrial civilization, London; rout-
ledge and Kegan Paul, 1945.

[137] R. Mihalcea and D. I. Moldovan. A method for word sense disambiguation
of unrestricted text. In Proceedings of the 37th annual meeting of the Asso-
ciation for Computational Linguistics on Computational Linguistics, pages
152–158, 1999.

[138] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. R. Mullers. Fisher dis-
criminant analysis with kernels. In Neural Networks for Signal Processing
IX, 1999. Proceedings of the 1999 IEEE Signal Processing Society Work-
shop, pages 41–48, 1999.

[139] S. Milgram. The small world problem. Psychology Today, 1(1):60–67, 1967.

[140] D. N. Milne, I. H. Witten, and D. M. Nichols. A knowledge-based search
engine powered by wikipedia. In Conference on information and knowledge
management (CIKM), pages 445–454, 2007.

[141] J. Moreno. Who shall survive, New York: Beacon Press 1934.

[142] F. Moser, R. Colak, A. Rafiey, and M. Ester. Mining cohesive patterns from
graphs with feature vectors. In SDM, pages 593–604, 2009.

[143] Mario A. Nascimento, Jörg Sander, and Jeffrey Pound. Analysis of sigmod’s
co-authorship graph. SIGMOD Record, 32(2):57–58, 2003.

[144] T. Nepusz, A. Petroćzi, L. Neǵyessy, and F. Bazso.́ Fuzzy communities
and the concept of bridgeness in complex networks. Physical Review E, 77,
016107, 2008.

[145] M. Newman. http://www-personal.umich.edu/∼mejn/netdata/.

[146] M. E. J. Newman. The structure of scientific collaboration networks. In
PNAS USA, 98:404-409, 2001.

[147] M. E. J. Newman. Mixing patterns in networks. Physical Review E, 67,
2003.

[148] M. E. J. Newman. The structure and function of complex networks. SIAM
Review, 45(2):167–256, 2003.

[149] M. E. J. Newman. Coauthorship networks and patterns of scientific collabo-
ration. PROC.NATL.ACAD.SCI.USA, 101, 2004.

[150] M. E. J. Newman. Detecting community structure in networks. Eur. Phys.
J.B, 38:321–330, 2004.

[151] M. E. J. Newman. Fast algorithm for detecting community structure in net-
works. Physical Review E, 69, 2004.

[152] M. E. J. Newman. Finding community structure in networks using the eigen-
vectors of matrices. Physical Review E, 74, 2006.

[153] M. E. J. Newman. Modularity and community structure in networks.
PROC.NATL.ACAD.SCI.USA, 103, 2006.

177

[154] M. E. J. Newman. Mathematics of networks, in the new palgrave encyclope-
dia of economics, 2nd edition, Palgrave Macmillan, Basingstoke, in Press.

[155] M. E. J. Newman and M. Girvan. Finding and evaluating community struc-
ture in networks. Physical Review E, 69, 2004.

[156] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an
algorithm. In NIPS, pages 849–856, 2001.

[157] A. Y. Ng, A. X. Zheng, and M. I. Jordan. Link analysis, eigenvectors and
stability. In IJCAI, pages 903–910, 2001.

[158] A. Y. Ng, A. X. Zheng, and M. I. Jordan. Stable algorithms for link analysis.
In Proc. 24th Annual Intl. ACM SIGIR Conference, 2001.

[159] H. T. Ng. Integrating multiple knowledge sources to disambiguate word
sense: An exemplar-based approach. In In Proceedings of the 34th An-
nual Meeting of the Association for Computational Linguistics, pages 40–47,
1996.

[160] V. Ng. Semantic class induction and coreference resolution. In ACL, 2007.

[161] I. Nica, A. Montoyo, S. Vázquez, and M. Antònia Martı́. An unsupervised
WSD algorithm for a NLP system. In NLDB, pages 288–298, 2004.

[162] V. Nicosia, G. Mangioni, V. Carchiolo, and M. Malgeri. Extending mod-
ularity definition for directed graphs with overlapping communities, Eprint
arXiv:0801.1647 at arxiv.org. 2008.

[163] K. Nowicki and T. A. B. Snijders. Estimation and prediction for stochas-
tic blockstructures. Journal of the American Statistical Association,
96(455):1077–1087, 2001.

[164] H.-J. Oh, S. H. Myaeng, and M.-H. Lee. A practical hypertext catergorization
method using links and incrementally available class information. In SIGIR,
pages 264–271, 2000.

[165] J. O’Madadhain, J. Hutchins, and P. Smyth. Prediction and ranking algo-
rithms for event-based network data. SIGKDD Explor. Newsl., 7(2):23–30,
2005.

[166] J. O’Madadhain and P. Smyth. Eventrank: a framework for ranking time-
varying networks. In LinkKDD ’05: Proceedings of the 3rd international
workshop on Link discovery, pages 9–16, 2005.

[167] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation rank-
ing: Bringing order to the web. In Technical report, Stanford University
Database Group, 1998.

[168] Pajek. http://vlado.fmf.uni-lj.si/pub/networks/pajek/.

[169] G. Palla, A.-L. Barabasi, and T. Vicsek. Quantifying social group evolution.
Nature, 446:664–667, 2005.

[170] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek. Uncovering the overlapping
community structure of complex networks in nature and society. Nature,
435:814–818, 2005.

178

[171] J. Pan, H. Yang, C. Faloutsos, and P. Duygulu. Automatic multimedia cross-
modal correlation discovery. In KDD, pages 653–658, 2004.

[172] P. Pantel and D. Lin. Discovering word senses from text. In KDD, pages
613–619, 2002.

[173] P. Pattison. Algebraic model for social networks, Cambridge University
Press, 1993.

[174] S. Patwardhan, S. Banerjee, and T. Pedersen. Using measures of semantic
relatedness for word sense disambiguation. In Proceedings of the Fourth
International Conference on Intelligent Text Processing and Computational
Linguistics, pages 241–257, 2003.

[175] P. Pirolli, P. Schank, M. Hearst, and C. Diehl. Scatter/gather browsing com-
municates the topic structure of a very large text collection. In CHI, pages
213–220, 1996.

[176] S. P. Ponzetto and M. Strube. Exploiting semantic role labeling, wordnet
and wikipedia for coreference resolution. In Proc. of HLT/NAACL, pages
192–199, 2006.

[177] A. Pothen, H. Simon, and K. P. Liou. Partitioning sparse matrices with eigen-
vectorsof graphs. SIAM J. Matrix Anal. Appl., 11:430–452, 1990.

[178] D. Rafiei and A. O. Mendelzon. What is this page known for? computing
web page reputations. In WWW, pages 823–835, 2000.

[179] M. Richardson and P. Domingos. The Intelligent Surfer: Probabilistic Com-
bination of Link and Content Information in PageRank. In NIPS, 2002.

[180] J. Ruan and W. Zhang. Identifying network communities with a high resolu-
tion. Physical Review E, 77:016104, 2008.

[181] M. Sanderson. Word sense disambiguation and information retrieval. In
SIGIR ’94, pages 49–57, 1994.

[182] P. Sarkar and A. W. Moore. Dynamic social network analysis using latent
space models. SIGKDD Explor. Newsl., 7(2):31–40, 2005.

[183] V. Satuluri and S. Parthasarathy. Scalable graph clustering using stochastic
flows: applications to community discovery. In KDD, pages 737–746, 2009.

[184] H. Schütze. Automatic word sense discrimination. Comput. Linguist.,
24(1):97–123, 1998.

[185] J. Scott. Social network analysis: A handbook, Sage, London 2nd edi-
tion(2000).

[186] Jerry Scripps, Pang-Ning Tan, and Abdol-Hossein Esfahanian. Exploration
of link structure and community-based node roles in network. In ICDM,
2007.

[187] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE. Trans.
on Pattern Analysis and Machine Intelligence, 2000.

179

[188] A. F. Smeaton, G. Keogh, C. Gurrin, K. McDonald, and T. Sodring. Analysis
of papers from twenty-five years of sigir conferences: What have we been
doing for the last quarter of a century. SIGIR Forum, 36(2):39–43, 2002.

[189] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clus-
tering techniques. Proceedings of Workshop on Text Mining, KDD’00, pages
109–110, 2000.

[190] Porter Stemming. http://tartarus.org/ martin/PorterStemmer/.

[191] Gilbert Strang. Introduction to linear algebra, Wellesley-Cambridge Press, 3
Edition, 1998.

[192] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu. Graphscope: parameter-
free mining of large time-evolving graphs. In KDD, pages 687–696, 2007.

[193] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighborhood formation
and anomaly detection in bipartite graphs. In ICDM, pages 418–425, 2005.

[194] M. Surdeanu, J. Turmo, and A. Ageno. A hybrid unsupervised approach for
document clustering. In KDD, pages 685–690, 2005.

[195] C. Swamy. Correlation clustering: maximizing agreements via semidefinite
programming. In SODA, pages 526–527, 2004.

[196] The ArnetMiner System. http://www.arnetminer.org/.

[197] The DBLife System. http://dblife.cs.wisc.edu/.

[198] The Microsoft Libra System. http://libra.msra.cn/.

[199] C. Tantipathananandh, T. Berger-Wolf, and D. Kempe. A framework for
community identification in dynamic social networks. In KDD, pages 717–
726, 2007.

[200] B. Taskar, M. Wong, P. Abbeel, and D. Koller. Link prediction in relational
data. In in Neural Information Processing Systems, 2003.

[201] S. T. Teoh and K.-L. Ma. Paintingclass: interactive construction, visualiza-
tion and exploration of decision trees. In KDD, pages 667–672, 2003.

[202] H. Tong, C. Faloutsos, and J. Pan. Fast random walk with restart and its
applications. In ICDM, pages 613–622, 2006.

[203] J. R. Tyler, D. M. Wilkinson, and B. A. Huberman. Email as spectroscopy:
automated discovery of community structure within organizations. Commu-
nities and technologies, pages 81–96, 2003.

[204] Vivisimo. http://www.vivisimo.com/.

[205] K. Wagstaff and C. Cardie. Clustering with instance-level constraints. In
ICML, pages 1103–1110, 2000.

[206] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl. Constrained k-means
clustering with background knowledge. In ICML, pages 577–584, 2001.

180

[207] X. Wang, N. Mohanty, and A. McCallum. Group and topic discovery from
relations and text. In LinkKDD ’05: Proceedings of the 3rd international
workshop on Link discovery, pages 28–35, 2005.

[208] X. Wang, N. Mohanty, and A. McCallum. Group and topic discovery from
relations and their attributes. In NIPS, pages 1449–1456, 2006.

[209] X. Wang and C. Zhai. Learn from web search logs to organize search results.
In SIGIR’07, pages 87–94, 2007.

[210] S. Wasserman and K. Faust. Social network analysis: Methods and applica-
tions, Cambridge University Press, 1994.

[211] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ net-
works. Nature, 393:440–442, 1998.

[212] F. Wei, C. Wang, L. Ma, and A. Zhou. Detecting overlapping community
structures in networks with global partition and local expansion. In APWeb,
pages 43–55, 2008.

[213] Y.-C. Wei and C. K. Cheng. Toward efficient hierarchical designs by ratio
cut partitioning. In Proceedings of the IEEE International Conference on
Computer Aided Design, pages 298–301, 1989.

[214] Michael C. Wendl. H-index: however ranked, citations need context. Nature,
449(403), 2007.

[215] H. C. White, S. A. Boorman, and R. L. Breiger. Social structure from multi-
ple networks. American Journal of Sociology, 81:730–780, 1976.

[216] H. C. White, S. A. Boorman, and R. L. Breiger. Social structure from multi-
ple networks: I. blockmodels of roles and positions. Am. J. Social, 81:730–
779, 1976.

[217] S. White and P. Smyth. Algorithms for estimating relative importance in
networks. In KDD, pages 266–275, 2003.

[218] S. White and P. Smyth. A spectral clustering approach to finding communi-
ties in graphs. In Proceedings of the 5th SIAM International Conference on
Data Mining, 2005.

[219] R. J. Williams and N. D. Martinez. Simple rules yield complex food webs.
Nature, 404:180–183, 2000.

[220] A. P. Wolfe and D. Jensen. Playing multiple roles: Discovering overlapping
roles in social networks. In ICML-04 Workshop on Statistical Relational
Learning and its Connections to Other Fields, 2004.

[221] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. Scan: a structural cluster-
ing algorithm for networks. In KDD, pages 824–833, 2007.

[222] D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised
methods. In In Proceedings of the 33rd Annual Meeting of the Association
for Computational Linguistics, pages 189–196, 1995.

[223] K. Y. Yip and M. K. Ng. Harp: A practical projected clustering algorithm.
IEEE TKDE, 16(11):1387–1397, 2004.

181

[224] W. W. Zachary. An information flow model for conflict and fission in small
groups. Journal of Anthropological Research, 33:452–473, 1977.

[225] O. R. Zäıane, J. Chen, and R. Goebel. Method of producing web search
result. patent filed 072-56.

[226] O. R. Zäıane, J. Chen, and R. Goebel. Dbconnect: Mining research commu-
nity on dblp data. In Joint 9th WEBKDD and 1st SNA-KDD Workshop ’07
(WebKDD/SNA-KDD’07), 2007.

[227] O. R. Zaı̈ane, A. Foss, C.-H. Lee, and W. Wang. On data clustering analysis:
Scalability, constraints, and validation. In PAKDD, pages 28–39, 2002.

[228] O. Zamir and O. Etzioni. Web document clustering: A feasibility demonstra-
tion. In Research and Development in Information Retrieval, pages 46–54,
1998.

[229] O. Zamir and O. Etzioni. Grouper: a dynamic clustering interface to Web
search results. Computer Networks, 31(11–16):1361–1374, 1999.

[230] H.-J. Zeng, Q.-C. He, Z. Chen, W.-Y. Ma, and J. Ma. Learning to cluster web
search results. In SIGIR ’04, pages 210–217, 2004.

[231] H. Zhang, C. L. Giles, H. C. Foley, and J. Yen. Probabilistic community
discovery using hierarchical latent gaussian mixture model. In AAAI, pages
663–668, 2007.

[232] H. Zhang, B. Qiu, C. L. Giles, H. C. Foley, and J. Yen. An lda-based com-
munity structure discovery approach for large-scale social networks. In Pro-
ceedings of the IEEE Conference on Intelligence and Security Informatics,
pages 200–207, 2007.

[233] S. Zhang, R. Wang, and X. Zhang. Identification of overlapping community
structure in complex networks using fuzzy c-means clustering. Physica A,
374:483–490, 2007.

[234] W. J. Zhou, J. R. Wen, W. Y. Ma, and H. J. Zhang. A concentric-circle model
for community mining in graph structures, Technical Report MSR-TR-2002-
123, http://research.microsoft.com/research/pubs/,2002.

182

