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Abstract

Single image matting refers to the problem of accurately estimating the
foreground object given only one input imageislta fundametal technique in
many image editing applications and has been extensively studied in the literature.
Various matting techniques and systerhave been proposednd impressive
advance have been achieved in efficienthextracing high quality mattes
However existing matting rathods usually perform well for relativelyniform

and smooth imageonly but generate noisy alpha mattes for complex imaljee

main motivation of this thesis is to develapnew matting approacthat can
handle complex images. Waxamnine the color sampling and alpha propagation
techniquesn detail which are two popular techniques employed by matayes
of-the-art matting methodsto understand the reasowhy the performance of
thesemethods degrade significantly for complex imaglse main contribution

of this thesis is the development of two novel matting algorithms that can handle
images with complex texture patterii$ie first poposed matting method is aimed

at complex imageswith homogeneous texture pattebackground A novel
texture synthesis scheme is developedtiiize the known texture information to
infer the texture information in the unknown region and thilsviate tle
problems itroduced by textured backgroundThe second proposethatting
algorithm is forcomplex mages with heterogeneous texture patter#s new
foregraund andbackground pixels identification algorithim used tadentify the

pure foreground andbackground pixels in the unknown regiand thus
effectively handle thehallengesof large color variatin introduced bycomplex
images. Our experimental resultshow thatthe proposed matting methods can



effectively handle images with complex background and generate cleaner alpha
mattes than existing matting methods.
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Chapter 1: Introduction

Single image matting refers to the problem of accilyatstimating the
foregroundobject given only one inputmage.lt is a fundamental technique in
many image editing applications and has been extensively studied for more than
two decades. The first formal introduction of the matting problesby Porter

and Duff in 19841]. The original purpose of their work is to introduce the alpha
channel as the way toblend the foreground and backgroundmages.
Mathematically, a givenmagel is considered to be a linear combination of a

background imagB and a foreground imadeusing thecompositing equation:

CG|1O+ 1 | 6 (1.1)

where the alpha matte takes on values in the range[0,1]. The pixel with
corresponding = 1€i Ois said to be gureforeground or definite background
pixel, respectively. Otherwise, it is a mixed pixel. The task of singteage
matting is to accurately estimateF andB, given only the input imag©For an

image with three color channels, there are three equations and seven unknowns at
each pixel Hence, single image matting is inherentlgn underconstrained
problem. Most existing matting approaches require the user to provide some prior
knowledge about the image foreground and background and also make different
assumptions about the image statistics to constrain tpeséd problem to be
tractable. Once the alpha neats estimated, the foreground im&gean then be
reconstructed and compted with a new background using Equation 1A.

matting example is showm Figure 1-1. The alpha matte is estimated using the
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robust maing algorithm[2]. We can see that with the accurately estimated alpha
matte, the girl is well extracted from the input image and blended with a different

background image.

Estimated alpha matte

Reconstructed foreground Composite Image

Figurel-1: A matting example, generated by robust matjitjg

User input plays an important role in almostdalthe existing matting methods.
If a given image is interpreted according to the compositing Equationonlyl
then infinite solutions existAn obvious solution i = 1, that is'G= "Owhich
means thatvhole image is foreground pr= 0, that is'G= 6 which means that

thewhole images backgroundUsing useiinput isto take advantage of thes e r 6 s
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perception of what is background and foregrowmd hence, can redudhe
solution space. The most common way of user inptd ietthe user divide the
input image into three regions: dafe foreground region, definite background
region and unknown regioithis user specified thrdevel pixel map is callethe
trimap. Oneexampleof atrimap is shown in Figure1-2. The trimap for
the input image inhe first row of Figure1-2(b) is shown in the first row
of Figurel1-2(a), where the black region denotbe definite background
region, the white region the definite foregnal region and the grey region the
unknown regionStarting with the trimap, thenatting problem is simplified to
estimating , F and B for pixels only in the unknown region based on the
information of known foreground and background pixdlbe matting result
shown in the second row éfigure 1-2(a) is generated bgn iterative matting
algorithm(3].

Generally speaking, better matting results can be achieved with more accurate
trimap since less unknown pixels are needed to be estimated and marme kno
information aboutthe background and foreground are availabfe.desirable
trimap is thus the one that covers as many as posbkibtiefinite foreground and
background pixels. On the other hand, providimgaacurate trimap is a tire
consuming processspecially wherthe foreground objedtas a large number of
semitransparent regions or holes. So a good and practical matting algorithm
should take into account the balance between the accuracy of the matte result and
the amount of user effort require8ome recently proposed matting methods
allow the user to specify only a few foreground and background scribbles which
can be considered asvery coarse trimapClosedform matting[4] is such an
example. As shown in the first row Bfgure 1-2(b), the white scribbles specify
the definite foreground and the black scribbles specify the definite background
and the matting result of closéorm matting is kown in the second row of
Figurel-2(b).

12



(a) Iterative matting (b) Closed-form matting
with trimap with scribbles

Figurel-2: Different matting algorithms with different user input

Starting with the user specified trimap,ffdient matting methods have
different ways of utilizing the known foreground and background information and
make different assumptions of the image statisticsotee thematting problem.

In general, gisting matting methods can be roughly divided itiieeé categories:
the color sampling based methoffs 5-8], the alpha propagation based methods
[4, 9-12] and the optimization based methdéds3, 13] which combine bothhe
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alpha propagation and color sampling methdd® ®lor sampihg based matting
methods, which assume colsmoothness in a small neighblbood and sample
nearby definite foreground and background pixels to interpolat@pha value of
an unknown pixel Alpha propagation based matting methods asstivaethe
alphavalues ofneighbouing pixelsarecorrelated with some local image statistics
and propagate the known alpha values into the unknown refin@me are also
some recently proposeaptimizationbasedmatting methodsvhich combine both
color sampling and alpharopagatiortechniques.

Current matting methods cachievegood results on relatively uniform and
smoothimages. Howeverfor compleximages, for example if the background
contains highly textured regionghe accuracy of these methods degrades
significantly. The reasonis becausethe large color variance in the complex
background violatethe underlying assumptisrof both the color sampling and
alpha propagation based methods. fhercolor sampling based methods, due to
the large variation opixel cdor in the backgroundtexture a small number of
background samples frora nearby definite background region may not be
sufficient to capture the true backgrouoalor of the unknown pixel For the
alphapropagatiorbased methods, strong edges indbmgdex backgroundsome
of which may be everstronger tharthe edgesseparatingthe foreground and
backgroundvill blockthe alphavalues tgpropagag to the unknown regian

The focus of this thesis i® addresshe difficulty introduced bycomplex
images in single image mattingWe give a detailed analysis @fhy existing
matting methodscannot handle complex imagand then propose two new
algorithms that have better performance than existing matting methods in
handling images with complex background, esgléy with textured background.
To tackle the problem of complex single image matting, fisst gart with the
case where the image background contains homogeneous texture patterns and
develop a novel texture synthesis based matting metioch can utilize the
known texture information tfer the texture information in the unknown region

and thusalleviate tke problems itroducedby textured backgroundlThen for
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matting with complex image which has heterogeneous texture patterns, we
developa new foreground and background pixels identification algorithm which
canidentify the pure foreground andackground pixels in the unknown region
and thuseffectively handle thehallengeof large color variationntroduced by
complex imags.

Though this thesis focusedon single image matting, it is worth mentioning
that there are some extensions of single image matting which ens@a
information other than the single input image. An examplarogéarly matting
system is called blue screen mattjig] which deals with input images that are
shot againsta constanicolored background. It is easy to infer from the
compositing Equation 1.1 that knowing the true constant background Bolor
simplifies the matting problem a lot. More recently, some special imaging systems
are designed toseextra information in extractingnaccurate matte, such tiash
matting[15] in which the input is a pair of flash and nft@ash imagesmatting
using a camera arrgl6] to captureinput images from different viewpoints,
video matting[17] which pulls a highquality alpha matte and foreground from a
video sequenceajefocusvideo matting [18] which is a specialized video matting
techniqueusing multiple synchronized e streams that shaifee samepoint of
view but differ in their plane of focudVhile utilizing additional information can
lead tonoticeablamprovement of the matte quality, single image matting remains
the foundation of all the matting systems. Sodbetributiors made by this thesis
to singlecompleximage mattingwill benefit a broad range of existing matting

applications.

15



Chapter 2:
Background and Related Works

As introduced in the previous chapter, single image matting itself is-pasdd
problem. Evenwith the user specified trimap, additional assumptionsttier
image are needed for estimatiapigh quality matteGenerally, gisting matting
methods can be divided into three categosdesoding to the assumption they
make for an image color samplig based methods, alpha propagation based
methods and theoptimization based methods which combibeth alpha
propagatiorandcolor samplingnethods Color sampling based matting methods,
which assume color smoothness in a smalghbouhood and sample agby
definite foreground/background pixels to interpolate #ipha value of the
unknown pixe] are discussed in section 2.1. Alpha propagation based matting
methods assume that the alpha values of neighigppixelsare correlated with

some local imagstatistics and use such correlation to propagate the known alpha
values into the unknown region. Existing alpha propagation based matting
methods are reviewed in section 2.2. While pure color sampling based methods
and pure alpha propagation based metheash have their own weaknesses,
combining these two approaches is expected to improve the matting result than
using individual approach alone. Some recently proposed alpha optimization
based methods which combine both color sampling and alpha propagaion a

briefly reviewed in section 2.3.
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2.1 Color Sampling Based Matting Methods

Color sampling based matting methods make the local smoothness assumption on
image statistics that there exists local correlation betva@etmknown pixelQ

and its nearby knowrforeground and background pixels. Usually for each
unknown pixelg a set of nearby known foreground and background pixels are
sampled and the colors dfigse samples are assumed to be closthe true
foreground and background colof@&nddy) of ‘@ Hence these color samples

can beused to build color models to estimé@andd, and compute thalpha

value ofl,.

The generaldea ofcolor samplingand color model building is quitatuitive;
however, implemening a practical matting algorithm that works for general
imagesrequires several importagtiestiongo be answered-or example, how to
def i ne t breh ofondeqixgBhHow many samples should be collected
for each unknown pixelsHow tobuild reliable color models that can accurately
estimate’@ and 6, ? Existing color sampling based methods deal with these
guestions in different ways and we give the details of them in the following

sections.
211 Mi shi madés Met hod

Mishima [7] developed a blue screen matting technique based on representative
foreground and backgrourshmples. As showRigure2-1(a), sincea blue screen

is used as the controlled background, all the background pixels are dssume
form only one color clusterand areapproximated n the color space by a
polyhedron(triangularmesh). Allthe foreground pixels form anoth@olyhedron
outside the background on&hen for an unknown pixel, italpha value is
estimated by calculatings relative position to the twpolyhedrasas shown in
Figure2-1(e).
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2.1.2 Knockout

Unlike Mi s hi ma 6 sthe Kretkdub systeni5] works with unconstrained
foreground and backgrouné&or an unknown pixel, the system computes its
foreground coloi@ by extrapolatingnearby known foreground colords shown
in Figure2-1(b) & (f), "@is calculated as theeighted sum oheaby foreground
color samplesand the weights are proportionaltteir spatial distancet® |. The
background coloBy is first calculated ri the sameway and then refined by
consideringts relative positiorto | and"@. The dpha value for each color channel
is estimated individually using the corresponding chann@anddy. Finally,|

is estimated athe weighted sm of the three alphg&alues,where the weight is
proportional to the foreground and backgroudifference in the corresponding

color channel.
213 Ruzon and Tomasi 6s Met hod

Whi | e Mi s hiamdh &nockaut sisteich use ngarametric sampling
schemeRuzon and Tomagiroposed gparametric sampling algorithim 2000

[8]. In their approachthealpha values are measured alonganifold connecting
the Afronti er scolor distribueoa.t he otwpgcttdhhe Afrontie
defined and the color model is bualtesummarized as follows:

(1) A narrow band around the foreground boundary is considered as the skeleton
of the unknown region. Some anchor points are selected alorgkéfeton to
divide the unknown band into intervals, as showRigure2-1(c).

(2) A local spatial windows defined for each anchor point whicbvers a local
unknown regiona local foregroundegionanda localbackground regio.

(3) Nonoriented Gaussian distributions used as the localofeground and
backgroundcolor models and estimated based on the local foreground and
backgroundgixelsfor each window in the CHEab color spacgl9].

18



(4) For each local window, nearbforeground and backgroundGaussians
candidates are connectedile rejecting some connections accordtogcertain
fintersectio® andfangled criteria.

(5) The observed coi of an unknownpixel is assumed to be drawn from a
Gaussian distribution, which is modeledaasintermediate distributioaf a pair

of foreground and backgroundGaussians The mean and covariance of the
intermediate distribution is linearly interpolated by a pairfafgroundand
backgroundGaussiardistributionsand the alpha value is estimated according to
the linear weight, as shown kigure2-1(g). Thebestalphavalueis defined as the
one thatcorrespondso theintermediate distributiofor which the observed color

hasthe maximum probability.

Mishima Knockout Ruzon-Tomasi Bayesian

Background

T Cola, o

®

Figure2-1: lllustrationof the color models of different matting methods.

The main drawback of Ruzomgnampodentddomasi 6s n
Gaussiangs a local color model works well only when the local region has small
color variance. Local regions with large color variance will result in l&tgeg
errors Also, the alpha valudor each unknown pixel is estimated indeg@ently,
which couldmake the final alpha matte not smooth enough.
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2.14 Bayesian Matting

Bayesian matting proposed I8huang et alin 2001 [6] usesa similar idea of

using the Gaussian distribution as local color modelsRas z on and Tomasi 0:
algorithm, butalsoincludessomeimprovementn the main drawbacks of Ruzon

and Tomasi 6s met hwosta stiding windeasiseuded & loaliecte .

neighbouring pixels for each unknown pixadshown inFigure 2-1(d). Second,

not only the pixels in the local foreground and background windows are used to

estimate the Gaussian distributiobst also the estimated vakief Fs, Bs andUs

of the nearby pixels araised inthe estimation of the current Gaussian

distribution. Finallythealpha estimatiois formulatedas amaximum a posterior

(MAP) problem which is a well studied technique underBhagesian framework

in statistics Mathematically, for an unknown pixéR | 4, "@anddy areestimated

by

= G "OMagp, , O(QA@ 0l &) +0Q + 0 &g + 0 ¢ (2.1)
where((d is the log likelihood) ¢ = & M (@. The first term is measure

0 @0l ¢ = AQ 4@ (1 | 6”& (2.2)

where thecolor variance, ¢ is computed in the local windaw his termis simply
the estimation residuaccordingto the compositing equation and regularized
with the local color variance "Q is estimatd as he probability of being drawn
from a local foreground Gaussian distribution. Theefiroundpixels in the
nearby definite foreground region are collected to estimatgrianted Gaussian

with mean'OandcovarianceB 'O 0 "@ is thendefined as

20



7@ 0Y%g(@ "9/2 (2.3)

0 64 Is calculated in the same way by using background sanagleshiown in
Figure 21 (h). 0 | o Is treated as a constafiguation 2.1 is solved by iteratively
estimating'®, 64 and| ¢ usingthe following steps:

(1) Fix| 4to solve for@anddy as

tg + D&, é Va1l 1&).§ O_ +50rQ@yl.é
v 2 1, 21 2 8 12 4 2 (2.4)
Oq(l | @)/,,@ +6 + (Dl | a) /,,@ o ‘|’5 o+ gl | (}()/n(x
where Qs a 3*3 identitymatrix.
(2) Fix"@andoy to solvefor| 4 as
e, 6' ", 6‘

T RQ e

When thereare multiple foregroundor background clusters, th@gptimization
is performed for each pair of foreground and background clustershanplair
which gives the maximum likelihood is chosen.

When the input image haa uniform background and a fine trimap is
provided,Bayesian mtting can generate quite accurate alptaites However,
for a complex image, the underlying assumption of Bayesian matting is violated
andthe results tend to be very noigyr instanceif the inputimagehas a highly
textured backgroundising Gaussiangistribution to model the local colors which
has a large color variance is not suitable. Alsahé trimap is coarsefor the
unknown regionwhich is far away from the definite foregrounchda ddinite
background regionsthe correlations betweethe unknown pixels andthe
foregroundand background samples are weak. Helarzge estimation erronsill
result forterms0 '@ and 0 64 in Equation 2.1. More detailed analysis is

presented in section 3.1.
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2.1.6 Optimized Color Sampling in Robust Matting

All the color sampling methods discussed so far use all the pixedslonal
window as color samples to buigddocal color model. However, when the image
has complexoreground and/or background patterns, some local windows will
have large color variance and itmre often the cas¢éhan notthat only a small
number of pixels in the local window have strong relation with the unknown
pi xel s. Sel ect i rgimafedhe alpha vakies mfpthe eusknoivro
pixels is then vital in getting high quality matte, which inspae<ptimized color
samplingprocedure called robust mattifgj.

The main idea of robushat ti ng i s to select Agoodo s a
explain the color of the unknown pixels as a linear combination of themselves.
Speifically, as shown inFigure 2-2(b), for a foregroundand backgroungbixel
pair (3% ‘) adistance ratidYQ("C'f,)(’jT‘} is definedas theratio of between (1he
interpolation residue (that is the distance between the unkipoveh color,®,
and the color it would havé&predicted by the linear model Equation 1.}, and

(2) the distanceetween the foreground/background pair:

® (4C* (1 |69
A 0%

Yo 6@ = (2.6)

wherg ¢ is computed as Equation 25. In the example shown iRigure 2-2(b),
the distance ratio will be much higher for péi®,6,) than for pair ("@,05)
indicatingthat the latter is a better choice for estimating #hgha value foiQ
The distance ratialone will favor sample pairs that are widedgparatedn the
color spacein which casdhe denominator "G? 62 will be large.Since most

pixels are expected to

22



—~—— T .- e o i @
| Tl RS Ebcn ol
Unknow&\ ] ey o ¥
o PR ® - Y 74
\l I/ ~ %
| 4 B ®
] . d
e 0 . @ bl g ® 9
ki ©
Foreground . v ‘o F ° o

B A
L3 l 5 ©

Figure2-2: Color sampling schemerfoobust matting

be fully foreground or backgroungjxels with colors that lie nearby in color
space tothe foreground and backgrounsamples are more likely to be fully

foreground or backgrourttiemselves. Thus, for each individual sample two more

weights 0 (G} and0 (69 are defined a$ " =10 exp{ " (%) ?) 04
andb 6@ =10 exp{ 6° 'Q 2/'QE}, where’ 05 and'G¢ arg respectively,
the minimum distances between foreground/backgrosauhple and theurrent
pixel, i.e.,minq "G Q andmin-q 6 @ Q.

Combining these factors, the finabnfidencevalue"S'Q"C'f?é7‘3 for a sample

pair is defined as

QAR = exp Yo('G26 92 ¢02 Py 69
» (2.7)
where, is fixed to be QL.

For each unknown pixel, the confidence value for all tbeground and
background sample pairs are computednaBquation 2.7 The estimated alpha
values of the three pairgith the highest confidencare selected and the average
alpha value is used dise initial guess othe alpha value for the unknown pixel,
which will be further adjustecdoy an optimization processlo effectively
accommodate for théigh color variancesn the background and foreground

regions, arelatively large number of foregrounaind background pixels are
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sparsely selected along the boundary ofuhknown region to form the s®le
set, as shown iRigure2-2(a).

2.1.5 Global Color Models

All the color sampling scheméntroduced above can be considered as local color
sampling in the sense that they asstinathe unknown region is a narrow band
between the definite foreground and definite background boundaries and collect
nearby sampleso approximatdocal color modelsThis assumption wilhot hold

if the trimap provided by the user is very coarseansists ofjust a few paint
strokes, wher¢he majority ofunknown pixels are very far away from tkieown
foreground and lEkgroundsamplesand have very weakorrelationswith them

To tackle this problem, some global color sampling methods are proposed
recently which can estimate relatively good mattes with roughly specified trimaps.
For example the iterative matting appreh [3] estimats the global Gaussian
Mixture Models (GMMs)for definite foreground and backgrourwblors and for

an unknown pixel, samples are drafsom all the Gaussians the hope ta@over

all the possibilities that its foregrouthdckgroundcolor could haveThe geodesic
matting approacH9] also usesa mixture of Gaussians to model the global
foreground and background color distributiansthe CIE-Luv space, and fast
kernd density estimation method®0] are used to reduce the computational
complexity of constructing PDFsHdowever, usinghe GMMs as the global color
models for complex foreground and background suffers from the problems of
insufficient samples antarge estimation errors and the performance of these
global color sampling methods are not significantly better than the local color

sampling methods.
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2.1.7Summary

Exploiting the local smoothness characteristic of natural images by sampling
nearby defiite foreground and background pixets estimate the alpha values of
unknown pixels is intuitive and proves to be quite effective for solving the
otherwise iltposed matting problem. For those color sampliaged methods
introduced in thichapter to wdc well, their assumption on the local smoothness
must hold and th&imap provided should bef sufficient detailsHowever, & is
discussedn Chapter3, when the input image becomes complex, the large color
variance presented in the image violates th@ahmess assumptions of these

methods and theperformancevill degradesignificantly.

2.2 Alpha Propagation Based Matting Methods

As discussed in the previowsection in color sampling based methods, the
information provided by nearby foreground and backgtb samples becomes
less reliable i complex scenwhere the color variance is largeo avoid this
problem some recentlgroposed matting approachleave taken a differenway

than estimating the true background and foreground of unknown pixels. Instead
these methods directly model the affinities between the alpha values of
neighbouing unknown pixels by using some intrindacal image statisticsThe
alpha values of the unknown pixels dhen solved by propagatiripe known
alpha values into the unkwn regionsusing these alpha affinities.

The alpha propagation basegbproacheshave two major advantageghen
compared withcolor samplingbased approaches. First, affinities are always
definedin a smallneighbouhood, usually between immediatalgnnected pixels
or pixels in a 3x 3 window. In such a small window, the correlaticarmong
pixelsare usually strongndthus the local smoothness assumption typidadigs,
even for moderately complex images. On the contrary, whemglg trimap is

coarse,n samplingbased approachesamples whictare collectd far from the
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target pixel, may omay not be useful at alAlso, the defined affinitienforce
the resulting matte to be locally smooémdthus fundamentallganavoid matte

discontinuitesfrom which samplingbased approaches suffer.
2.2.1 Poisson Matting

With the assumption that the intensity of image foreground and background are
locally smoothPoisson mattinll2] employsa simple linear relation between the
change ofimage intensity and thehange ofilpha value. The derivation is briefly
described as following. By takinthe partial derivatives on both sides of the
matting equatiori.1, one ged

NP= (@ Bl g+ (V@ (1 | ¢) N8 (2.8)

wheren =

is the gradient operatdBy assuming thapanddy arelocally

|
J|

smooth] 4@+ (1 | ¢) 10qis relatively srall compared with("@  0g) ¢,
andcan be omitted in Equation 2.8. Then thatte gradient can be approximated

as

1

N ¢ = o) 6(1“"@ (2.9)

It simply means thathe matte gradient iproportional to thegradientof image
intensity To estimate the absolute gradient vali@, 64 needs to be estimated
first. In the system@ando, are simply chosen as the nearest foregroamd
background colors for the unknown pixel.

The final matte is then conatted by solving Poisson equationstba image
lattice as:
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with the Dirichlet boundary condition which is consistent with the psevided
trimap.Ll is the uknown region in the trimagsolving thePoissonequation is a
well studied problem and in the original paper, a solver usiagssSeidel
iteration with oveirelaxationis used.

If local smoothness assumption made for the image holds,tthesforming
and simplifying the matting problem intsolving the Poisson equatiolis
technically soundHowever once the imageonsists ofcomplex scereand the
local smoothness assumption is violated, theglected term (1"@+ (1
| &) 104 is no longer negligibleand samplingnearestknown foreground and
background pixels to estimai@ andog will also introduce large errerin the
whole derivation andhence,noticeable nois@nd erroran the inal matte result
are commonly observedo alleviate the above mentionptbblens a set of local
filters and operations are defined in the propasedem, which enables the user
to manually correct the final matte bgolving the local Poisson equation
Although good results can be achiewedhis way, it is often a timeonsuming

process for the user and the desired results are not always easy to achieve.
2.2.2 Random Walk Matting

A common smoothness teyalso known as affinityisedin many spectral image

segmentation approach§®l] is definedas:

Wij = exp( ﬂ) (21])

where, is a free parameter whiab set bythe user according to experienceior
adjustedautomatically based osome local image statisticsh& randomwalk

matting systenf10] uses a generalized form of th#inity defined in Equation
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2.11 with the modification that color distancase not measured in the original
RGB space, but in the channels creabgdusing Local Presemwy Projections
(LPP) techniquef22]. Theprojections defined by the LPP algorithm are given by

solvingthe following generalized eigenvector problem:

ZLO W= _d00 0 (2.12)

whereZ is the %N matrix with eacti@as a columnpD is the diagonamatrix
defined byOg= Qqand L is the graph Laplacian matrix giviey

Qg ™meEQ
Op= 0@ WAL QF KWL | (2.13)
0 : £5CN 0 0Q

The solution ofthe genaalized eigenvector problem of (2)lis denoted a®),

where each eigenvector is a ron@fThe finalalphaaffinity then isdefined as

(2.14)

It is shownin the original papethatthe alpha propagation works better in the
LPP-projected space than the original RGB color spade discriminatingthe
boundaries betwedoregroundand backgroundegions Thiswork is the first to
bring up the questiof which color space ismore suitable for the matting
problem since most othe existing approacheapply their analysis in the RGB
space.

With the alpha affinity defined in Equation 2.14 and $ipecified alpha value
for the definite foreground and background pixels according to the trimap, the
final alpha values of unknown pixels can then be solved lbgndom walk
algorithm Given an unknown pixel, its alpha valisadefinedto be the probabily

28



that a random walker starting from thiscation will reach a pixel in the
foreground beforeeachingthe background, when biased to avoid crossing the
foreground boundaryt is shown thathese probabilities can be calculated exactly

by solving a sygm of linear equations.

2.2.3 Geodesic Matting

Instead of calculating the probability that a random walker will reteh
foreground first starting from an unknown pixel, tiedesianattingapproach9]
measures the weighted geodesic distance that a ranetkar will travel from its
origin to reach the foreground. In tlapproach the geodesic distance computation
is linear in time andchas minimal memory requirenmds. Hence, itallows the
system taachieve fast and highuality segmentation and matting usiagewuser
scribbles, when the affinities between pixels are assigned properly.
Mathematically, the geodesic distar@g) is simply the smalleshtegral of
a weighedfunction over althe paths on the image lattice fropixel @to pixel )

defined as

1
Q@ = %f |0 goq(N) 1N (2.15)
0

wherel-(1) is a path connecting the pixélg (for p = 0 andp = 1 respectively).
The weightW is set tobethe gradient of the likelihoothat apixel belongs to the
foregroundi.e., @ = 0d46). To compute this likelihoodthe userspecified
foregroundandbackground peels are used to traim mixture ofGaussiasusng
fast kernel density estimation method$20], resuting in the foreground
probability distribution functionKDF) P(x/F) and background PDP(x/B), and

5y 0(a9
Ud 0 Is setto be6 50+ 0(a15)"
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The geodesic distance from an unknown pigeb the foregrounds defined as
Op @ = ming . (W), and its distance to the backgrouadiefined ina similar
way.

Finally, the alpha value is estimated as:

o ey (2.16)
where®o @ = Ogd ! ¢0-4d), is the locally adjusted foregroundeight. The
idea is to combine the geodesic distaiixgd with the locally recomputed
foreground probability. The parametecontrolsthe smoothness of the edges. The
background weighibs & is computedn asimilar way.

The major advantage of this approach is ttet formulationis based on
weighted distance functios (geodess), which can be solved as a first order
geometric HamiltorJacobi equation in computationally optimal lingamne. This
is particularly favorable for video matting where computatiooamplexity
remairs to be a serious issue.

The disadvardge of the proposed system is that the welgi set in a rather
simple way, and will not work well when the foregrouawd background color
distributions have large overlaps, where the PBpgF) and P(x/B) cannot be
estimated properly. However, the oposed geodesiadistancebased mading
framework is quite general. Hence, the PDF estimagtep could be potentially
improved by using more sophisticatdéscriminatemodels when dealing with

complex scenes.

2.2.4 Closedform Matting

As shown in the previousections, Poisson mattinguses nearest known
foreground background pixels to estim@e Oy in Equation 2.9and geodesic

matting usesuserspecified foregrouncand background pels to train global
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color models, both of which are similar in the spirit to the color sampling scheme
and thus have the same inherent problem of colmpbag based methods that
the sampling based estimation may not be accurate and rdthestrecently
proposedclosedform mattingapproachj4f can be <consi der ed
alpha propagation method that avoittee sampling andestimation stepby
explicitly deriving a cost functionfrom local smoothness assumptions on
foreground and backgroundolors F and B, and show that in the resulting
expression it is possibl® analyti@ally eliminateF and B, yielding a quadratic
cost functiononly in U, which can be easily solved as a sparse linear system of
equations.

The undrlying assumption made in closéatm matting is the color line model
[23], which assumethatthe trueforeground and background colors of each pixel
is a linear mixture of twaonstant foreground and backgroucmlors F and B
over asmall window(typically 3 x3 or 5¢ 5) centered at thatixel. Under this
assimption t is then shown thatthe alpha values in a smallindow 0 can be

expressed as

o= PG+ @l o (2.17)

w

whereGrefers tothe color channels, ané® and®are constants in theindow.

The matting cost function is then defined as

Ol.Gd = ( (o @@ @+ &) g

B0V &
which is the overall prediction error of the color line model plus a regularization

term. Furthermoreg$* anddcan be eliminated from the cost functigielding a

guadraticcod in| alone:
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o] =10 (2.19)

whereL is anN x N matrix, whosei( j)-th element is:

*mmwnom e (@ g9 (@ )22

wheret  is a %3 covariance matrixX,qis a 31 mean vector of theolors in a
window U, and'@is the 3x 3 identity matrix.

The matrixL, which is calledthe matting Laplacian is the most important
analytic result from this approach. The optimal alpalaesare then computed as

I =daae M, .o o= 180, LTI (2.21)

which is essentially a problem of minimizing a quadratic error semdthus can
beobtainedby solving dinear system
By comparing the affinit defined inEquation 2.20with the one definedn
Equation2.11 we can see that they both have shene property that nearby pixels
with similar colorstend to havéhigher affinity values,while nearby pixels with
larger color differencetend tohavesmadl er affinity values. However, the matting
affinity in Equation2.20 is more powerful than the one defined in Equation 2.11
because in Equation 2.11 the scaling parameteri s a gl obal constant
Equation 2.20 more localizegarameterstlle covariance, and meard,) are
used. As a result, this localized adaptive setting leads to a significant

improvement in performance, as demonstratdd]in
2.2.5 Spectral Matting

Further analysis has been conducted on the proposed matting Lapilacian

Equation2.20, resulting in an automatic matting approaedfiedspectral matting
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[11]. This is the only approach that tries gall out a foreground matte in a
completely automatic fashion.
In this agroach the input image is moddl as a convex combinatiai K

image layers as

P= 1§ (222

where"(,;‘:f2 iIs the kth matting component of the image. The most important
conclusion from this approach is that the smallest eigenveofotise matting
LaplacianL span the individual matting componenfghe image, thus recovering
the matting components o&én image is equivalent to finding a linear
transformation of the eigenvectors. Detaid¢elps are as follows:

(1) Compute the eigenvectorslobsO= [(},8 ,¥], soE is aN x K matrix (N

is the total number of pixels);

(2) Initialized)bby applying a kmeans algorithm on the smallesigenvectors,
and project the indicator vectors of the resultolgsters onto the span of the

eigenvectorE:
| 2= 00 & (223

(3) Computethe matting components by minimizing an energy functifined

as

Booll @' + 11 | £}, wherg @= 0i® (2.24)

subject taB a = 1.7 is choseno be 09 for a robust measure.
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(4) Group componentsnto the final foreground matte by testingarious
combinations of matting components and computhng corresponding cost as
0] = W . To do this moreefficiently the correlations between the matting

componentyia L are precomputed as

B Qa=( 9 (2.25)

and the matting cost can be computedbas = @B ®, whereb is a K-
dimensional binary vector indicating the seleatethponents.

(5) When wusero6s input i s praovantagesfd, t
by solving a grapiabeing problem using thenin-cut algorithm. Details can be
found in[11].

The spectral matting approach derives an analogy between spauairal
image segmentation and image maftirand thus provides waery interesting
theoretical result. This work is a milestone in theonetadting research. However,
in practice, this approach is limitéd images thtaconsist of a modest number of
visually distinct componentsas pointed out byhe authors. For these images,
many otherapproaches can be used to generate higher quality mattes, although
more user inptarerequired. Furthermore, given the fact that the sizE is N
xK, the memory consumption of this approach is very hayig hece, the

practical applicatio range of this approachlisited.
2.2.6 Summary

Alpha propagation based methods generally produce seragiftha matte and
are more robust compared color sampling based methods because the local
smoothness assumption is usuadigtisfied in a small window, though the
performance of different alpha propagation methods vary with their specific

derivation of the alpha affinitief2oisson matting mas strongassumptions on
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the smoothness oforeground and background colorsand will introduce

significant errors when dealingith complex scenes. The clostm matting

derives the affinity by conducting very insightful analysis tbe theoretial

aspects of the matting problerand has significantlybetter performance than
otheralpha propagation basepproaches.

There arealso somedrawbacks ofalpha propagation based metho#gst,
unlike samplingbased approaches, most approaches focus orestistatingthe
alpha values, and only then estimate true foreground cfdonsnknown pixels
based on preomputed alphas, rather than estimatimgm jointly for an optimal
solution. Secondly, the alpha matte is estimated propagation fashion, from
known pixels to unknown oneshus small errors could be propagated and
accumulatedo producebigger errorsAnd when there are strong edges in the
unmarked background or foreground region, the propagationbwilbblocked
because of the local smoothness assumption is violated, ygtdeimonstrated in
Chapter 3.

2.3 Alpha Optimization by Combining Color Sampling
and Alpha Propagation

The Markov Random Fields(MRFs) [24-25] style energy function are quite
popular in many recently proposemptimizatiorbased computer vision and
graphics system1, 2628], which isdefined by two terms:

O="0y+ _Q (2.26)
The first term on the riglgide @, is usually called the data termvhich represents

the semanticgoal of the optimizationproblem For example, in the object
segmentation problem, thisrm might enforce¢hat pixels whose colors artoser

35



to the known objectolors and further away from background colors should be
classified as foreground:he data term is usualhe sum of a set of pgixel
data cost®, a, ;= B;'Q, a, wheredis apossible labethatthe pixel iy can be
assigned toThe second terr) is called the smoothness termhich encourages
the preservation of smoothness of some image statistics beteegrbouing
pixels. Usually Q is defined as the sum of spatially varying horizontal and
vertical nearesheighboursmoothness costey: (¢, %), Q = B am Gq (4, %),
where denote all theneighbouing pixels pair according ta predefined
neighbouing system. Once the energy function is defined, variety of
optimization tools can beemployed to minimize it in closefdom or
approximately.

For the matting task, the form of the MRFs energy provides a natural way of
unifying the color sampling approaches and the ajplbpagation approaches
into an optimization frameworkntuitively, the sampling techniquekscussed in
Chapter 21 are caphle of analyzing the dist@es between an unknown pixel and
the knownforeground and background colors. Hertbey can be used to assign
data costs to pite as the semantic constraint. The affinities define@hapter
2.2 represent the relationships between nearby pixgig;h can be employed to
set smoothnesscosts for neighbouing pixel pairs. By combining different
sampling methods and affinities insangle optimizatiorprocess, more accurate

and robust mattingolutionsare expected

2.3.1 Iterative Matting

The iterative matting approagB] is the fiist to formulate the matting task as a
MRFs style optimization problem. Starting wilparse user inputs such as a few
foregroundand background paint scribbles, the alpha values of those unknown
pixels ina narrow band around the frontier of the definibeeground regions

estimated by solving an optimization problem and by iteratiesiending the
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foreground frontierthe alpha values are gradually propagated fthenknown
pixels tothe unknown onesln eachteration the energyunction to be minimize

is defined as

O=  Qylg + _¢ Qlalo (2.27)

any QONT

The data cos@, | ¢ is constructed using theolor sampling methodThe
aphavalues areliscretizedinto K levels andthe likelihoodid @), which is the
probability of pixel @ with alpha levelQ is estimated based on nearby known and
previously estimated alphaghe data cost is then defined for each of the possible

states £as

Oef Q)

BQQE 1 079( ¢‘)

QL =1 (2.29)

The neighbouhood costQ | ¢,| , is defined using the classiaffinity in

Equation2.11, as

Qlalo =1 expl (a |o)A3) (2.29)

where,; is set to be @ empirically.

With the MRF defined above, finding a lalbgy, which means computinidpe
Ulevel for eachpixel with minimum energy corresponds to the MAP estimation
problemiis solved by using the loopy belief propagation (BP) algorifR9].

This approach opens &w avenuefor matting research to exploringays to
significantly reduce usér<fforts that are traditionally requirefbr creating
accurate trimaps, especially for images with large portmfhsemitransparent

foreground where the trimap is difficulf not impossibleto create accurately
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However, it also presents two major limitatioriBhe global color sampling
scheme is used to guide the matte propagatvbich requires the freground and
background to havdistinct, well separablecolor distributons. Furthermore, the
expensive notlinear belief propagation optimization process is employed
multiple times tocreate a matte, whickould converge to undesirablecal
minima. Therequired processing time of this approach is usually very long, which

is undesirable in an interactive setting.
2.3.2 Easy Matting

In the easy matting systejh3], the energy function to be minimizesldefined as:

0 © 2
1 P P (o 14)
52 TR =% o e

avr QL@L

(2.30)

s (Q)

where N is the number of pixelss(&) definesthe neighbouhood of z and

L) ? is the estimation residueorf pixel & accordingto the compositing
eguation Both the data term and theighbouhood term are designed in a similar
way as in the iterative mattirapproacHh3], except that no exponential mappings
are employedThis greatly simplifies the optimization procdsscauseEquation
2.30is aquadratic functionand theenergyfunction can be easily minimized by
solvinga set of linear equations usitige conjugate gradient method.

Another improvement made in this approach over previous ongmtighe

weightain Equation2.30is dynamically adjusted rather tharanually fixed, as

=q (@)’ (2.3))

wherek is the iteration counandb is an predefined constant whicls set to be
3.4 in the systemin early iteration, the value ais large, whth emphasizes

more on the neighbouhood term,and hencesncourage the alpha values in the
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foreground and background regions to smoothly spoeadLater on when the
propagation of alph&ncounter the object boundary where discontinarists
the iteraibn count has increased so thfa¢ value ofis decreasedn which case
the dataterm play a more important rolén estimating thealphavalues. This
dynamic weight setting helps the iterative algorithm awbépping into bad local
minima in early stages.

2.3.3 Robust Matting

The robust matting method [2] uses the optimized color samplingcheme
described in Section 26 as the data terrand thematting Laplaciarderived in
closedform mattingas the smoothness termesulting in a wetbalancé system
capable ofgenerating high quality results while maintaining a reasonable degree
of robustness against different user inputs. The energy function rronmized

in this approacls defined as

0= Qo la)?* (@ Rla 10¢>05)? +_¢01.0b (3

o

wherel o and"Qarg respectively, thestimated alpha arttie confidence valug
the color sampling step as described Bection 21.6, andV0| ,Q® is the
neighbouhood energy defined in EquatioR.18, where the parametessand b
can be analytically eliminated in the optimization process.

In [2], minimizing the energy function defined in Equati@rB2 is interpretedas
solving a corresponding graph labweg problem as showim Figure2-3, where -o
and g are virtual nodes representing pdioeeground and pure backgrouriche
white nodes represent unknown pixels the image latticeThelight red nodes
represent the foreground pixednd light blue nodeghe backgroundpixels

marked by the user. A data weight is defined between each auixeh virtual
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node to enforce the datmnstraint, and an edge weight is defined between two
neighbouing pixels to endrce theneighbouhood constraint.

Numerically, similar to theclosedform matting approach[4], the energy
function to be minimized is defined as a quadratic function gnandcan be
solved using a linear system solver. The Laplacian matrix ifirtear system is

defined as

O mEQ
U= @ WEEQRI Q8 KTE | (2.33)
0 : €5 000

where w-gq= B L is a sparse, symmetric, positidefinite matrix with
dimensionN x N, whereN is the number of nodes the graph, including athe
pixels in the inage plus two virtual nodes; and . WIS exactly the same as
the one defined in Equatidh20if i andj areneighbouing pixels; otherwiseog,

is equalto the data cosb-go0r W if j is a virtual node.

Figure 2-3: Matting is formulatd as solving a graph lalie problem in obust
matting

Note that the confidence vali@plays an important role in kicing the data

cost andthe neighbouhood cost in Equatiod.32. This ismotivated by the fact
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that color sampling will not be always reliatite every pixel and bad estimations
are typically associated witlbw confidence values. Hencesing the confidence
value to tone dowimcorrectdata costs and leteighbouhood costs take over for

those pixelswill produce better mattes with less noise.
2.3.4 Summary

Both color samplingpased methods aralpha propagation based methods have
their own advantages and disadvantag€slor samplig basedmethods work
better when the foreground and background color distribution have less overlap in
the color space and tightly specifié#dmaps are provided but generate noisy
mattes if the underlying assumption is violat€dn the other hand, alpha
propagation based metlodre more robust to coarsely specified trimaps and
generate smooén mattes, but may not be as accurate as color sampling based
method when the local color variation is large even with distinct foreground and
background color digbutions. By combining these twomethodologiesnto a
unified optimizationframework the advantages of these twtethodologiesare
utilized and agood balance between accuracy and robustnassachieved
However when the images complex,even the statef-the-art combinedmatting
methods give poor quality results becaugbe underlying assumptionsre
severely compromised due to the large color variation of the complex foreground

andbackground, whiclare discussenh the next chapter.
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Chapter 3:

Complex ImageMatting

3.1 Motivation

Thoughcurrent matting methods can get good results on relatively uniform and
smoothimages, the accuracy of these methods degrades significantly when the
imagesaremore complexFigure 3-1 shows one such examplehe input image
is a conposite image with textured backgrourithree powerful matting methods
are testedand none of them can generate a satisfactory alpha ntagere 3-2
showsanotherexamplewhich is taken froni30]. In the imagehe doll is taken
against areal background scene which contains compéxture patterns.The
matting results of four top ranking matting methodE3 are shown in Figure-3
2 and we can see that thipha mattegenerated are very noisy

The reason for the poor matting resshhown inFigure 3-1 and Figure 3-2 is
becausehe highly textured background violaehe underlying assumptisrof
both the color sampling and alpha propagation based methodsthieocolor
sampling based methods, due to thegdawariation ofpixel color in the
backgroundtexture a small number of background samples frammearby
definite background region may not be sufficient to capture the true background
color of the unknown pixed For the alphapropagationbased methodsstrong
edges in theomplexbackgroundsome ofwhich may be evestronger tharthe
edgesseparatinghe foreground andackgroundwill block the alphavalues to

propagat to the unknown regian
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Robust matting Closed-form matting

i

Bayesian matting Ground truth

Figure3-1: Poor alpha estimatidue to textured background

A |

Robust matting Closed-form matting

K3

Trimap Bayesian matting Poisson matting

Figure3-2: Poor alpha estimatldue tocomplexbackground

In order to gainbetter understanding of thehallenges posed bgomplex
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badground we present in this sectiandetailed analysis of the failure cases of
some existing matting methods for complex imageshasvn inFigure 3-1 and
Figure 3-2. We usetwo popularmatting methodss illustration in our analysis
robust matting[2] and closedform matting [4], which are respectively,the
representativee of the color sampling based matting methods and alpha
propagation based matting methatiscussedn Chapter 2, and amecognized in

the research community to produce high quality matting results. Hence, we
believe thatour analysisis general enough to reveal the fundamental diffieslt

of most if not all, matting methodsvhen dealing witttomplexbackground.

Color sampling based matting approachmslect nearby foreground and
backgroundsample pixels to interpolaggxels in the unknown regioWhen the
background is uniform and smooth, a small number of samplesuffreient to
capture the variation dhe background colorlf the background is complex and
in particular, has large color variation there isa higrer chance that the
background sampleray not includethe desiredtrue backgroundampledor the
unknownpixels. Theficolor interpolation part of Figure3-3 showsan example of

such failureof robust mattinglue o insufficientnumber ofsample. For an

Composite pixel
[ ]

‘ ] —__ inaccurate interpolation

M HMN

@ Background samples
L
L Pl

— — misclassification
-

®
Unmarked background

Figure 3-3: Demonstration ofthe failure of robust matting due tasufficient

background samples.
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unmarked backgroungixel in the unknown regiarthe backgroungamples are
collected from nearby pixels along the boundaries of definite background regions.
We can see that in this examplene of thebackground samplesan serve as a
good estimation of the background for the unknown pixel (in this case the correct
result is to identify the unknown pixel as a pure background pixeip
consequenceof inaccurate background estimatiam two-fold: 1) Unmarked
background pixels in the unknown region may be misclassified as composite
pixels and incorrect alpha values Mie computed?) Inaccurate alpha values are
estimated for composite pixels in the unknown region due to the lack of proper
background sampleSimply increasing the number of samples isa@asibleor
a good solutiorior robust mattingln robust maing, every background sample is
combined with every foreground samplefited the foregrounébackgound pair
which has the minimuninterpolationresidue. A large number of background
samples will incur an unaffordablecomputation cost.Furthermore blindly
increasing the number of sampli®es noguaranteehe inclusion of appropriate
backgroundsamples.

Alpha propagation based matting approachesfalswith textured background.
Generally the alpha values arsupposed t@ropagatewithin the foregroundand
the background regions and stopped by the strong edges at the bduetdaagn
the foreground and backgroundhe challenge of textured background is that the
background itselinay containmany strong edges whickvill prevent the alpha
valuesfrom prgpagatingeven among the unmarked background pixels in the
unknown region.Figure 3-4 shows an example of howalpha propagations
blocked inclosedform matting. Themultiplicationsigns indicate the strong edges
where the alpha propagation into the diamshdped regiois blocked though
the whole region is actually unmarked backgraubding a color model to
eliminate such unwanted blockage of alpha propagation is suggested by the
authors ofclosedform matting However, building an accurate color model in the

presence of texture is also a difficult problem.
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® > Blocked alpha propagation

Figure 3-4: Demonstration otthe blockage ofalpha propagationusing closed
form matting.

The same analysis also applies to the doll exampld=igure 3-2. While the
texture pattern in the horse example is regular and homogeneous, the background
in the doll example is more complex and contains heterogeneous texture patterns.
From the matting results of existing methods we can see that the main difficulty
arises from the background flag and book regiariere the strongdgesof the
texture patterns prevetite effectiveness of alpha propagation and the large color
variation makes it very difficult for the color sampling scheme to getdgoo
samplesas illustrated ifFigure3-5.

The motivation of this thesis is to address the above mentioned problems
introduced by complex image. We first start with ttese where themage
backgroundcontains homogeneous texture patterns as the one sholiguire

3-1 and develop a novel texture synthesis based matting methiod canutilize

46



the known texture information tmfer the texturenformation in the unknown
region and thuslleviate tle problems itroducedby textured backgroundhen

for matting with complex image which has heterogeneous texture patterns as
shown in Figure 3-2, we developa new foregroundbackground pixels
identification algorithm which caientify thepureforeground/background pixels

in the unknown regiomnd thuseffectively handle thehallengesf large color
variationintroduced bycomplex imags.

e Unmarked background

e
e

Color interpolation | \

Vi
|
|

e Background samples

Blocked alpha propagation

Figure 3-5: Demonstration othe failurecaseof robust mattingand closedorm
mattingduecomplex backgrountbr the doll example used iRigure3-2.

3.2 Complex Image Matting by Texture Synthesis

In this section we propose a néexture synthesis basedlor sampling scheme

which can effectively handle thehallengesntroduced by textured background.
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The basic idea of our method is to leverage the texture informattite definite
backgroundegion to provide good background samples tloe unknown pixels.
Our method works bfjirst applyingtexture synthesis in the unknown region, with
the definite background dlse source texture and theknownregion as the target
texture.Notice that recentlyhiere is a similampainting schem@roposedn [31]
to solve matting problentheir method is designed only for ntexture images.
After synthesisfor thoseunmarked backgrouhpixels in the unknown regiothe
synthesized backgrounuixels will serve agjood background samples for them
since the synthesized pixels are controlled to have similarsratutheobserved
values of thosainmarked backgund pixels. For the composite pixels in the
unknown region, though the corresponding synthesized background pixels are not
suitable background samples for thaheir coherentelation with neighboring
synthesized pixels can hailized to find appropsate backgroumd samples in the
definite background texture

In the following, firsta brief review of the optimization based controllable
texture synthesisechnique is given in section 3.2Then n section3.22, we
demonstratéow the controllable temte synthesis technigwan be usetb solve
the textured background matting problem. Adapted alpha estimation and
optimization framework for textured backgroursd discussedn section 3.2.3.

Finally theimplementation details are discussedection3.24.
3.2.1 Controllable texture synthesis

Given an input texture example, the goal of texture synthesis is to create a new
output texture which looks simildout not identicako the input textureln [32],
the texturesynthesis procedurss modelled aghe @timization of an energy
function which measures the similaribetweenthe input and output textuse
Given an input texture), the texture energy of the output texttres formulated

as:
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Qx z = Xy Z (3.1)

i G

where®’ is a subset o over which we want t@accumulatethe texture energy,
Xyis a vector formed by concatenating the pixelshia neighbarhood centered
on pixel p with a predefined neighlohood width w and z;is a similarly
constrictedneighbarrhood indwhoseappearancés most similar toc; usingthe
Euclidean norminformally, the texture synthesis procedure works as follows: for
each neighbarhoodx; in the output texturesampling in the source texture the
most similar neighbarhood z; to replacex;,. When two or more sampled
neighbarrhoods overlap, the synthesized value of the overlapped pixel is
computed to be the average value of all the sampled pixelssurheof square
differences between the synthesizedxpl value and the sampled pixel value is
defined as the texture energy of the synthesized pixel. Iteratively minimizing the
accumulated texture energy over a set of designated pixels in the output texture
will gradually evolve the output texture to becosmailar to the input texture.
Additional desired properties of the output texture can foHilled by

augmenting the texture energy function witinstraints, e.g.,
Ox =Q x z; +_Q(xu) (3.2)

whereu is the control variableand_ is the relative weighting coefficient. This is
called controllable texture synthesis. The optimization of this energy function can

bedone through an EMke algorithm which alternates the optimization over one

of xand z; while fixing the otherMore details can be found j&2].

3.2.2 Texture synthesis based color sampling

Our goal is to extend the above texture synthesis technique to provide good

background sames for the unknown pixels. Using the definite background
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region as source texture to perform unconstrained texture synthesis in the
unknown region works well only when the background texture is regular. To
handle background with neeggular or irregulatexture, we need to constrain the
texture synthesis process in the unknown region. Usually a large portitwe of
unknown pixels are just unmarked background and foreground pixels with
relatively few boundary pixels that are true composite pixels. In ¢aty those
unmarked background pixels are what we want to synthesize. Hence, we can
apply the controllable texture synthesis methio the unknown region with the
additionalcontrol of using th@bservedixel values of the unknown region as the
target \alues for the synthesizdzhckgroundpixels. So we define thecontrolled

textureenergyas:

Ox =Q x z +_yxiu (3.3)

=Xy oz A_ () u()?

i & 1

where x(n) is the synthesized colour of pixp)u(n) is the observed colour of
pixel p and othetermsaredefined before

The function of the controlled energy term is to match the texture pattern of the
unknown region using texture samplesniréhe definite bekground regionSo
after synthesis, there will be a high chance for the unmarked background pixels to
be consistenwvith or similarto their corresponding synthesized background pixels.
Then for the unmarked background pixels, the corresponding syntiheekads
will serve as good background samples. To find good background samples for the
composite pixels in the unknown region is a more challenging problem. Since
composite pixels do not have the same texture pattern as the background texture,
usually wecannot find suitable texture samples in the definite background region
to match the texture pattern of composite pixels. In this case, we use the
coherence property of texture to find good background samples for the composite

pixels.
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Figure3-6: Using coherence property to find background samples.

We use the example Figure3-6 to illustrate the concept of texture coherence.
In the synthesized background imagethe neighbarhoods centered apixels
p_x and g_x are sampled froneighbarrhoods centered gtixels p_zandqg_z
respectively in the source textur@. The purple square in the input image is a
composite region and we want to find good background samples for it. In the
synthesized background, we denote the dffsetween the purple square region
and pixes p_x and g_x aso andoy, respectively. Tien in the source texture
image if we shift the pixelp_z and q_z by the same offsgf and oy,
respectively,we can get two background samples for the purple square region

(shownas small red square and blue squaréhe source texture image), which
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are very close to the true backgrousfdthe purple square region becausehaf
texture coherence property.

In summary, to find good background samples for pixels in the unknown region,
we first do the controlled textersynthesis in the unknown region using the
definite background as the source texture and the observed color of the unknown
pixels as the target color for synthesizing background pixels. After synthesis, for
each synthesized pixel p_x, we will have a cgpmnding pixel p_z in the source
texture where p_x is sampled from. Then with a-ge&ned set of offsets
0 ={ ,€1€2€35€y}, pixelp_z+ £qin the source texture becomes a background
sample for pixep x+ €qin the unknown regianNotice that the zero offset
means using the corresponding synthesized background pixel as the background
sample which is designated for the unmarked background pixels.

Though we have only discussed how to find background samples so far, the
same texire synthesis based scheme can be used to find foreground samples as
well by synthesizing foreground texture the unknown region. So in the
following discussion, we assume that both background and foreground samples
are obtained using the texture synthdémsed scheme.

3.2.3 Alpha estimation and optimization

After the background and foreground samples for the unknown pixels are
collected, the next step is alpha estimation and optimization. In this section we
show how to adapt the alpha estimation and optimozatramework used in
robust matting to handle textured background.

Given a pixel in the unknown region with observed valwnd its background
sampled = {61,628 6% }and foreground sampléd= {'3,"3 8 "G}, we want
to select a paiof foreground sample and background sarﬂﬂ'ﬁé?} that can
best explain the value @f. In [2] a distance ratio'YQ("é?(’in) is defined to
measure the fitness of using a linear combination of foreground and background

samples to interpolate the unknown pigel
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Yo "REQ = 3.4
Yo G0 5 6% (3.4)
where Nis the estimated alpha:
8 8RS 89
NE 3.5
| &5 598 (3.5)

To incorporate the fact that most unknown pixels are just unmarked foreground
or background pixels, each individual sampke associated with additional
weights ("G} and (69 defined as

1 "Rzexp P 8 Uae(EDP 62) (3.6)

1 6%=exp 69 6 Yaeya® 6@) (3.7)

Finally, a confidence valu&g" 26 9 for the sample paif26 3 is defined as

v_("CRE Q2 A » 0
,‘Q"C;?é 79 — 'QJJ‘] YQ( d?O (3 ﬂ . (j) ﬂ 0 (38)

where, is fixed to be 0.1.

In robust matting, the highest confidence vémﬁjﬁ?(’f% for an unknown pixel
0 is used as its final confidence value and serves as an indicator of how to
compute the alpha value for the unknown pixel: a high confidence value means
that the estimated alpha value using colour samples is relcable, while a low
confidence value means that no good sample pair is found to interpolate the
unknown pixel or the unknown pixel is a potential unmarked background or

foreground pixel, in which case the method resorts to using alpha propagation to
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compue the alpha value for the unknown pixel.

As discussed irsection 3.1, textured background tends to block the alpha
propagation. The way that robust matting defines the confidence value cannot
resolve this issue: potential unmarked background andyrfowed pixels are
assigned low confidence so that their alpha values are obtained through alpha
propagation, which suffers from the problem of blocked alpha propagation when
the background and/or foreground are textured.

When the potential unmarked gcound and foreground pixels are identified,
they can serve as the nalpha seedso to fa
unmarked background and foreground regions. Assigning high confidence value
to potential unmarked background and foreground pigais achieve this goal.

We follow [33] to define new weights Iij} and] Nip 9 as (though the original

motivation in[33] is not to handle textured background/foreground)
1N = exp  acigAR 6@2) "R 6 ° (3.9)

I NP2 = exp QY 8R) 6 b (3.10)

which will result in asigning high confidence values for potential unmarked
background and foreground pixels.

For each unknown pixél, the highest confidence valieof all the sample
pairs {"C"f?é?} is used as the final confidence value and teresponding
estimated alpha is denoted|asWe follow [4] to do alpha optimization usirthe
estimated alpha values as soft constsaamd using the matting Laplaciaras the

smoothness term. The optimization problem is formulated as
| =daa@e o (1) 1) (3.11)

where the diagonal matrikis defined as irf33] with each diagonal elemehy

regularized with ;0 s correspondingg confidence value
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fa=1 ¢Q (3.12)

wherel is set to bel0 3. Optimal alpha values can be cortguli by solving a
sparse linear system obtained thifferentiating Eqation 3.11and setting the

derivatives to zero.
3.2.4 Implementation details

The width0 of the sampling neighlushood in texture synthesis is an important
parameter that should be large enotg capture the structure information of the
source texture. The setting of is usuallyad hoc for unconstrained texture
synthesis. For our controlled texture synthesis, however, a small neigbbd
size is enough since we have the target textureuidegthe synthesis. In our
implementatiorn) is set to be 5.

The weighting coefficient _ in Equation 3.3is set to bethe number of
neighbairrhoods that can overlap at tk@me pixel, which in our cageg0 = 25,
so that the samplegeighbouhoods and thebserved pixel value will have equal
influence on the synthesized value.

The dominant computation cost in the texture synthesis is the nearest neighbo
search in the source texture for each neightmod in the output texture. When
the definite backgroundegion (the source texture) is large, the time cost for
direct searching becomes unaffordable even with a small neididmd size. We
follow [34-35] to use the parallel-koherence search to do the nearest neighbo
search. The accelerated texture synthesis poses negligible overhead on the whole
matting process.

The design of offset sét decideshe number of samples in tf@eground and
backgroundegions to beollecied for an unknown pixel. While more foreground
and background samples give more robust alpha estimation for the unknown pixel,

the time complexity for alpha estimation(ig¢¢ 2) when the number of foreground

55



and background samples g¢) . In our impgementation we set that each
unknown pixeld gets background samples from all the synthesized background
pixels within a 5 by 5 neighluhood centered & and the same for foreground
samples. So for each unknown pixeh total of 25 background pixelnd 25

foreground pixels are collected.
3.2.5 Experimental results and discussion

Figure 3-7 shows the matting result of our methadd the comparison with
other matting methodsn the input imge and trimap shown iRigure 3-1. The
matte result for robust [B@.tForclosedforms gener at
matting we use its authorsodé original i mpl e
use our own implementation. We can see that our method achieves significant
improvement over the three matting methods and congpamsth the ground

truth image shows that our matting result is quite accurate qualitatively.

' '
‘

Robust matting Closed-form matting

LLY

Ourmethod Bayesian matting Ground truth

Figure3-7: Comparison of different matting methods for input image in Fity. 3

56



r .

Trimap Closed-form matting Our method Flash matting

Figure3-8: Comparison with flash matting

The example irFigure3-8 is used in flash mattinfl.5] to demonstrate that how
no-flash and flash image pair can be combined to generate accurate alpha
matte for challenging matting problem. The texture background in tH&asto
input image confuses most existing matting methods. AMitladditional flag
input image flash matting can generate quite impressivétingresult, while our
methodusing onlyone neflash input imagecan generate matting result that is
comparable to that of flash matting.

To quantitatively measure the performance of our pregasethod, we ruthe
expeimentsusing data seh [37] along with the other three matting methods to
do the comparison. The sameperimental methodology as[i87] is used. There
are a totabf 6 testimages with known ground truth as showrFigure3-9. Each
input image is tested using difent matting algorithms on 10 different trimaps
from coarse to finen accuracy.The Mean Squared Error (MSE) with respect to
the ground truth is used as quantitative measurement. Table 1 shows the
experimental resultsT1-T6 are six test images. X:Yh each cellrepresents
minimum MSE : maximunMSE on thecorrespondingest imageWe can see
that the results of our method azemparablewith the best results of the other

three methodsNotice that for image T5, which has complex texture background,
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our result is significantly better than other matting methods,datihg the
effectiveness ofour method in handling with complex texture background.

Figure3-9: Test images with ground truth takenorh [37]

Tablel: MSE of different matting algorithms

Bayesian | Closedform Robust
_ _ _ Our method
matting matting matting
T1 356: 873 86:102 53:88 50:83
T2 380:1374 110:264 48:132 54:105
T3 150:820 58:& 40:73 45:65
T4 312:786 95:321 102:250 98:202
T5 460:940 176:426 203:452 34:82
T6 50:97 32:62 30:53 35:48

Though we have achieved satisfactory matting ltesan images with
homogeneoutextured background, the challengknatural image matig is that
the background can be arbitrarily complex atah exhibitinhomogeneous,
globally varying textureOur observation is that if the texture patterns in the
background are relatively regular and sufficient representative texture samples are

specified as definite backgroune.g. T5 then our method can generateich
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better matte resudtthan existing methoddn other cases, our method generates
results that are comparable to that by other methbus.input imagen Figure
3-10 shows an example of such complex backgrowitd different but relatively
regular texturesThe blurred trees, grass and halos in the background all show
some texture patternBy utilizing the texture informationsuch asthe halo
texture pattern in the red rectangle region and the tree texture pattern in the yellow
rectangle regionour methodreate cleaner alpha matte than existing methods.
However, when the complex image background contains relatively irregular or
random teture patterns, it is more difficult for the texture synthesis process to
collect sufficient texture samples for synthesising the unknown region. As shown
in  Figure 3-11, the background regioaf the image contains irregulagxture
patterns like the flag and the cover of the bddkon close observation of the
input image and the trimap, we can see that the definite background region
actually cannot provide enough texture samples to synthesis the texture patterns in
the unknown region. As a result, the matting result of our texture synthesis based
method is quite noisy. So to handle the case of complex image with arbitrary
texture patterns, especially random and irregular texture patterns with insufficient
samples, we developnather matting method which is based on identifying
unmarked foreground and background pixels. Details are given in the following

section.
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Bayesian matting Closed-form matting Our method Robust matting

Bayesian matting Closed-form matting

Figure3-10: Complex image background with relagly regular textures
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Input Image Trimap Texture synthesis based method

Figure3-11: Example image with complex background.

3.3 Complex Image Matting by Unmarked Foreground

and Background Pixels Identification

In this section we proposernew matting métod baedon identifying unmarked
foreground/background pixelahich can effectively handle thehallengesof
large color variationntroduced bycomplex image Themainidea of our method

is to identify pure foregroundind background pixels in the unknowregion as
shown inFigure 3-12(d). The turquoisepixels are identified background pixels
and the pink pixels are identified foreground pixels. These identified foreground
and background pixels can servefiaa | p h a oeverenteshe alghablockage
issue discussed in section 3 dadilitate the alpha propagation through unmarked
background and foreground regiofi$is unmarked foreground and background
pixels identification based matting method is called UFBPI mativg.pregnt

in the following sections several heuristaesignedd selecthe pure foreground

andbackground pixels with high confidence.
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3.3.1 Interpolation error thresholding

(b)

©) | d)

Figure 3-122 Candidates of pe foreground/background pixels after different
selecting steps of our proposed method

In robust matting, for each unknown pixel, a set of foreground and background

samples are collected and all the possible foreground/backgsamglepixel

pairs are ied to find the best interpolation for the unknown pixel. We follow the
same sampling schem&s in robust mattinghowever, with the purpose of
screening out those unknown pixels with large interpolation ®a®icandidates

for pure foreground and backgmed pixels.In particular,the foreground and
background samples are collected along the boundarigsowi foregroundand
background regiong=or each unknown pixé, all the sample paif§?6 % are

tried to estimate :
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and the interpolation error for the p&icf6 Tf} is defined as:
0dB2= 6 (C*+ 1 | 69 (3.14)

We denote the minimal interpolation error for thleknown pixeld as'Q. A
smalker interpolation errofQy indicates thatthere is a higher chanahat the
unknown pixelo is a composite pixel. Since our purpose asidentify pure
foreground/background pixels, we can use the interpolation error to first filter out
true composite pixels. So only the unknown pixels with interpolagiwar Q
larger than a threshold val(ig are selected for further analysishe setting of the
threshold valué¥ is discussed in sectioB.3.3. One example of the result of
interpolation error thresholding is shown kigure 3-12(b) with yellow pixels

denoting selected pixels.

3.3.2 Adaptive foreground/background distance thresholding

The main criterion we use to decide whether an unknown pixel is a pure
foreground/background pixel or a composite pixel is its colour distance to the
definite foreground and background regions. In robust matting, each winkno
pixel 6 is comparedwith its foreground and background samples and the colour
distance is used as an indication of whether oronist a pure foreground or
background pixel. As discussed in section 3, when the image is complex, the
foreground and backgroundrsples collected from the boundaries of the definite
foreground and background regions may not be sufficient to capture the large
variation of the foreground and background col@o.we propose that, in order

to find good foreground and background samgtEsthe unknown pixeb, a
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direct search for similar pixels in the definite foreground and background regions
is used. Denote a 5 by 5 window centered at the unknown@ix®lo;, Then the

most similar windowwg, goin the definite background region is found based

the accumulated colour distance over all the pixels in the window. The same
search is conducted for the definite foreground region and the best matching
window &g, -nis found. For each unknown pixelin the windowwg, all the
pixels in he background matching window;, goare added to the set 0B s
background samples; and all the pixels in the foreground matching window
¢ rmare added to the set@d s f or e g r 6@ Nalv fos anramkhoers
pixel 8, its dstance to the background and fgreund is defined as the minimum

colour distance to its background and foreground sandgjead @ respectively:

Q6 =a®q 652 6 , 65N &g (3.15)

Oob =0y T 8, G (2.16)

A smaller background distan€& 0 indicates a higher chance that theknown

pixel 0 is a pure background pixel and the same inference applies to the
foreground distanc®p 0 . Our goal is toset the threshold valué¥ 6 and

"¥ 6 for each unknown pixd) adaptively so that we consideras a candidate

of pure background pixel if

Q86 Y6 (3.17)
and a candidate of pure foreground pixel if

000  "%0 (3.18)

The threshold valug¥ 6 for theunknown pixeld is computed as follows. The

definite background regiospecified inthe trimap is first dilated using a 3 by 3
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squarestructuring element. We denote the set of pixels whichratbe dilated
background region but not in the original background regiod@sn. Since
pixels inbdggyo are near the boundary tife definite background region, they are
most likely pure background pixels and thdistance to tb backgroundre quite
informative for defining the threshold value for the background distance of
unknown pixels. Again, foa5 by 5 windowwg centered at an unknown pixe)

we search foithe most similar windowig, zowWhose center pixel i Oggs0

based on the accumulated colour distance over all the pixels in the window. The

threshold valu€y o is then defined as:

1 .
Y06 = Qs (@ a50) (3.19)

HWg aa -

where pixelw 2 50is an nknown pixelin window g goand#mg gois the
total number of such pixels (which is at least 1 since the center pixg} gf,is
always an unknown pixel by definition)he rationale behind the design of
"Y 0 is that if 0 is a composite pixel or pure foreground pixel, then its
background distance should be larger than the background distance of those pixels
in the matching windowwg go, most of which are assumed to be pure
background pixelsAnd if 0 is a pure backgumnd pixel, its background distance
will be similar to those pixels in the matching windawy, g0, which makes
"¥ 6 , the average background distance of the pixels in the matching window, a
good candidate of the threshold value. The foregroustrte threshold value
"% 0 is defined using the foreground matching windoyy -oowith a similar
definition as’y 0 .

After applyingthe foreground/background distance thresholding, candidates of
pure foreground/background pixelsr the doll exampleare shown inFigure
3-12(c), with the turquoise pixels denoting candidates of pure background pixels

and pink pixels denoting candidates of pure foreground pixels. Unknown pixels

65



with both forgground and background distance smaller tharcaisesponding
foreground and background threshold values are not selected due to their
ambiguities.From the thresholdetesults we can se¢hat many unknown pixels
are identifiedcorrectlyas pure foregrouhand backgroundandidatesbut some
unknown pixels are obviously misclassifiafe refine the results by imposing a
smoothness constraint that atentified background candidate declaredas a
pure background pixel only when the number of identifieckgeound candidates
in its neighbarhood is larger than a threshold valyeg, . In our implementation,
we set theneighbouhood to be a 3 by 3 square anf; to be 7.The same
constraint is applied to the foreground candidatésknown pixels declareds
pure foreground and background pixefter applying the smdlbness constraint
areshown inFigure3-12(d).

After the unmarked background and foreground pixels are identified, they can
serve as the fnalpha seedso to facilitate |
backgound and foreground regionale follow [4] to do alpha optimization using
the userspecifiedtrimap together with the identified backgrouadd foreground
pixels. The finalmating result is shown irFigure 3-14. We can see that the
matting result has significant improvement over the three existing popular matting

methods.
3.3.3 Setting of interpolation error threshold value

The threshold vak ™% for interpolaton error introduced in section 3.3.1
contros how many unknown pixels can enter the next steforefgroundand
backgrounddistancethresholding We show inFigure 3-13 how the choice of
different™4 valuescan affect the final matting result of the doll example. We can
see thata larger value of ™% will filter out more unknown pixels anfewer
foregroundandbackground pxiels are identifietlencethe complex background

may not be handled effectiyehs shown in the case 6i = 100. On the other
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hand,a smallervalue of ¥ allows more unknown pixels t@proceedto the next

thresholding

Matting result for 7= 10

T.=100 Matting result for 7= 100

Figure3-13: The matting results of choosimgfferent threshold values for
interpolation error.

step whichalso increases the chance of introducing false positves of identified
foreground and background pixels, as shown in the casg ©fl that on the
right side of the doll there are some sdransparent hair pixels identified as pure

foreground pixels. The general ridased on ouexperience is tha largevalue
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of ™ is suitable for images with relatively smooth background and foreground
and a small value of ™4 for images with elatively complex background and

foreground.

3.3.4 Experimental results and discussion

The final matting resulbf the proposed methofwvith ™% = 1) for the doll
example is showin Figure3-14. We can see that with the help beidentified
foreground and background pixels, the background wathplextexture patterns
is effectively handled andhe matting result of our proposed methess much
cleaner than théur popularmatting methods. Other than the doll example, we
also caduct several qualitative and quantitative experiments to verify the
effectiveness of our methods in handling complex image

The test ase inFigure 3-15 is taken from[30]. The challenge of this image is
that in the upper right part of the image, the bridge in the background is cluttered
by the hair of the toy. From the trimap we can see that there is no suitable
backgoundsamples in the nearby definite background boundary for the cluttered
region. Hence, the color samplisgheme useth robust matting fails in this case
and misclassifies the bridge as foregrouma.closedform matting, the bridge in
the upper right art of the image is cut off from the bridge in the lower right part
of the image by the hair of the toy, so the known al@iaesfrom the lower right
part of thebridge cannot propagate to the upper right paithe bridge. That is
why closedfrom mattng also fails in this case. In the bottom left figureFidure
3-15, we zoom into the upper right part of the image and show the pure
backgroundpixels inturquoiseand pure foreground pixelsn pink identifiedby
our proposed ethod. It can be seen from the matting result of meposed
method(with %= 100)that these identified background pixels are quite helpful in

correctly recognizing the background bridge.
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Input image Robust matting Closed-form matting
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Proposed method Bayesian matting Poisson matting

Figure3-14: Matting result of the proposed method for the doll example

The on example irFigure3-16 is taken fron{37]. We can see that the texture
patterns in the background caused the existing matting methods to generate
obvious artefacts while our meth@dith "% = 1) handles the textured background

very well and generates very clean matte results.
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Figure3-15: Comparison of different matting methodstbe troll example.
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