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ABSTRACT .

-

“An '1sothermal elaStohydrodynamic‘- lubribation' of

mater1als’ of both 1low and hlgh elastlc modu11 was be1ng

4

studled A phys1cal elastohydrodynamlc lubrlcatlon model for

materlals f of l W elastic modulus was. postulated. ’%he

governing equations for the model are the, momentum and

continuity equat10ns, for flu1d and the Hert21an equatlonsf

¥4

- for, solld A numer1cal solution of f1nd1ng the m1n1mum f1§m'

thlckness of the form h;.n/(u Y172 was presented over a w1de‘

vrange of loads, between w /(U Y172 = 0,9 and 20. The results

'were found to have a good. agreement< with the earlier

experlmental.results; ST e

w

A theoretical approach was also used to analyze the,

elastohydrodynamlc lubrlcatlon problem under lamlnar reglme,

PR |

i’

iy

,The govern1ng equatlons for the\theoretlcal analy51s are the‘,

ba51C‘elast1c1ty equatlon together fw1th the momentum andif

,cont1nu1ty equatlons Results of f11mhth1ckness and pressure,*

'_prof1les for dlfferent h;}n vere obtalned whlch were then

used to f1nd veloc1ty d15tr1but1on/ loadfcapacity, and.drag.

The impacts of pressure- dependent viscosity and elastic

‘deformation  on - the ﬁianalysis of "elastohydrodynamlc'

lubrication were examlned» The var1at1 ns of load and drag

with h,,,. were noted Present theoret1 al results were foundn

to have a good agreement with the earller experlmental and

tbeoretlcal results.

iv
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E - =_Ycung’s modcius~ b‘~' .J - : (Vf‘
E;,E; =délas;ic mcduli‘bf'sc}ids in ccntact’ )
1. v 1 1-v1 1-v3 R “
— = = (— )
E' . 2 E, E; . “
f,,f, = functions defined.bnyquatidné(Z 21)
 F>n ' s drag per unlt length of cyllqder v
'Eo'Fh = drag per - un1t length of cylinder -
‘ at . y 0 and y=h- respectlvely
G = shea;—medulus
h . l= film thlckness-
" h; = h at x,equ;ls +a
.‘hk = refecence film thickness
vgwc = h athhicH précsure is”ma#imuh
hmin = minimum film thickness
h,, = film thickness at the exit
: ﬁm = minimum separatlon over the ‘Hertzian
contact zone - s
he .. = central film thickness
L, °* = reference width ‘
m = slope of thc tiited*pad surface
p. = lcbricant gage pressure
'pk = reference pressure
pné‘ . = maximum film presshré .
Po | = makimum Hertzian pressure = 2w/7a
q = redﬁced pressufé-
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1. INTRODUCTION

‘1.1 Statement of the Elastohydrodynamic problem'
_Elastohydrodynamic lubrication, unlike classical
hydrodynamic lubrlcatlon .takés into cons1derat10n _ the
variation in the v1sc051ty.of a lubricant £film w1th pressure
and the’ elastlcbd%formatlon of the; bounding solids " The
solution 'ot {fllm shape and pressure proflle for a contact
thus requlres a 51multaneous solutron of the contlnuaty ‘and
‘dmomentum equatlons for the f1u1d and the elast1c1ty equatlon
for the solid with a v1sc051ty which changes along the fllm'
as the pressure varies. _ o
When the bounding solids are made ofamaterials of - high
elastic . modulus ,e. g | metal, elastic deformatlon is
-relatuvely small as compared to the fllm thlckness.' High
f1lm pressures are generated and cause a large changes in
;tlubr1cant v1sc051ty along the film. On the other".hand‘ for
low.'elastlc - modulus boundlng solids ,e.g. rubber elastfc
deformation'is relatlvely'large' as compared to the film
th1ckness. .The .film pressures generated between sott
lcontacts are 1nsuff1c1ent to cause 51gn1f1cant increases in
f;the lubr1cant viscosity ,1n sharp contrast with the metalllc‘
case. Tmerefore, the lubrlcant in‘ thls case ' may be
considered isoviscous. . P -
Though much’ attention has been paid - the; problems

'concernlng the - lubrlcatlon"of metalllc gears,' roller

bear;ngs and cams, recently there istan_increasing. interest



inl‘the 1ubr1cat10n ‘of soft7 elastic surfaces which finds
/itself " important in_ the lubrlcatlon of, for 1nstance,
‘reciprocating seals, flex1ble pad thrust bearlngs and motor
car tyres aquaplan1ng on wet roads. |

| In »thel present \study, analysls will be made under
lam1nar reglme for both hlgh and low elastlc moduli bounding
solids under 1sothermal elastohydrodynamic 1lubrication
condition. B . o | ‘

The geometry of the boundlng solids are chosen as two

:,rotatlng elastlc cyllnders with a thin lubricant f11m in

between. This particular geometry is chosen because of the
fact that many contacts ‘between machlne components can be
represented by cyllnders whlch‘ prov1de good-geometrical.'
agreement with the proflle of the undeﬁormedlsolids in . the
>§mmed1ate vicinity of the contact. |

" In eummary, results obtained from'the present study are
(1) film profiles.

(ii) bressure brofiles from which 1load capacity can be
obtained. | |

(iii) Velocity'?profileS' from\ which 'drag force can be
¢ : ) ’

computed.

.

1.2 Review of relevant literature | N
The early 1nterest in the subject of elastohydrodynamlc"
;lubrlcatlon arose’ from the«study of gear lubrication, Martln
.[1] approached the gear lubrication problem by con51der1ng

”_the equ1valent problem of the lubrlcatlon of a cylinder near.

)



a plane with the assumptions that-the 1ubricating contacts
were rlg1d and lubricant was isoviscous and 1ncompre551ble

From hls work three useful relations were obtained.

=-0.672~(h,:,.,.)”2 S (1.1a)
7 U‘ | 4 . . '
p* =1.074——e— - (1.1b)
max (hpmin)! . : ‘ ' .
: U ‘ -
w'=2.,448 = . (1.1¢)

min
However, film'thickness predicted by his utheory could not
account for the existence of fluid films which were thick
enough to prevent severe metallic contact in gears,

In tne earlyv?960'si ;ears lubricated by a hydrodynamic
action was confirmed by,direot filn thickness measurements
in disc machine designed to simulate gear tooth contact.
Crook [2], using a capacitance technique, measured the fllm
thickness which was of the order of 2x10““mm (10‘5 1nches)

Peppler [3] and Meldahl [4] examined the effect of
elastic deformation in the gear %ubrication problem. Neither
Peppler's nor Meldahl's work suggested  that elastic
Qeformation alone could be“respois}bfgﬁtof\tgg_existence of
a continuous fluid film-betneen gear teeth.

Gatcombe [5] examined the‘influence of high pressure

upon lubricant viscosity. His work suggested that the effect

of the viscosity—pfessure characteristics of a ‘lubricant

alone could not account for the exlstence of a continuous

o

flu1d f11m in .gear contacts



_Grubin [6] developed an approximate £film tnickness
formular which included rhé effect of elastic d}stortion and
'preésnre dependent= viscosity; He assumed that the elastic
distortion would take the form of Hertzian deformation under
highly loaded conditions. His'predicted;values of the‘filn
thickness were~orders of.magnirude greeter thanwthatVOf-'tne
Martin's, and consistent with the formation of.a'continuous
fluid film between gear teeth. One useful relatlon emanatlng
from his work in terms of d1men51onless quantltles is
ho=1. 176(g Ut et (e ) . ‘ l T (1.2)
However, the exact features of the contact mechanism do not
emerge from this simple analysis. . . . _

Dowson 'and" Whitaker [7] presented a solutlon to the
problem of elastohydrodynémic lubrication of highly loaded
elastic cylinders with ‘the variation of viscosity with
‘pressure under isothermal &ondition.'A numerical method‘ﬂis
developed which enables a pressure curve to be found which
satisfies the elastic and hydrodynamic compatibility of the
system. However their method suffers from the fact that
adjustment of‘the pressures during’iteration has to be done
manually and required experienced guessing, and that it is
only applicable for very heavily loaded contacts. One useful
relation obtaining from this work in terms of dimensionless
quantities.is‘

min=0. 985(9')3- (u )°'7/(w He | (1.3)

Osterle and Stephenson [8] obtalned elastohydrodynamic

solution for ’hard' materials by'.a direct approach. His



analysls 1ncluded not only the effeg{ of pressure dependent
‘v1sc051ty and elastic distortion but leo the effect of
compressibility of the lubricant., quever, ne results were
obtained for 'soft' elastic maferials%%éa
Herrebrugh [9] ‘Showed\ that th hgdrodynamlc and
elast1c1ty equations in elastohydrodynamlc lubrlcatlon ‘can
-be ‘combined into one single ‘integral equatlon A numerical
solution of this integral equation for constant ‘viscosity
Qas presented. However, the resulting solutlons were only
claimed to be approximate. v ' %»
Cheng [10] presented the isothermal elastog;gtodynamlc
"tBeOrf for the full range of pressure- vasc051ty
, " _
parameter,g'.” His work . suggested that for smaIIFValues‘of
g\, the lubrlcant could be treated.,as isoviscous flu1d
| In Ehe- late 1960 s, 1ncrea51ng 1nterest was glvéﬂ tow
the eiastohydrodynamlc problem lubr1cat1on for materials’ og.
low elastic modulus. Roberts and Tabor [11] employed an‘
iﬁterfer@metric' technique to study the fluid film
1ubsication of rubber. He showed that she deformed shape of
rubber surface took the shape of a tilted pad surface along
sost of the contact region.
| Higginson [12] presehted/ a model experiment  in
elastohydrodynamic lubrication/ of rubber. From his pressure
measurements he found the deleopment of a near—Hertzian
pressure curve as load 1ncreas d.
Roberts and Swales [13] tudled ‘the elastohydrodynaﬁic'
luerication' of a rubber cylinder slldlng over a glass plate
. . / , .

!

/

/
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using an Optical interference technique. They also used an
iterative proeesst similar to [7] to solQe the basic
%ubrication aéd) elastrc equations simultaneous;y. and .
obtained solutions mainly for lightlj loaded contacts. They
found the discrepaney between theory and experiment at light
loeds and high speeds, this might be accounted for by
'side—ieakage effects; o

~

Baglin and Archard [14] presented an analytlc solution

" of this problem, whlch was 51m11ar to the type of Grubin

theory except they used simplied Hertzian displacement
equation. In addition, they required to find a criterion for
the pressure at the inlet edge of aAneerly Hertzian region
to ensnre that the necessary dlstr1butlon of pressure ‘'was
generated within the He5t21an zone, Thelr results of the
.m}n;mum film thlckness had to be modlfled by a factor of
0.8, in order to provide a comparison with the earJder
computer solutions [9]% | .

| Swales, Dowson and Latham [15] described a
comprehensive experimental and theoretical treatment of the
lubrication of soft‘elasticpmaterials. The effect of inlet
starvation on oii‘film thickness was also investigated. The

. ! .
experimental study involved a sliding contact between a

rubber cylinder and a "%mooth plane. ‘Pressure and film-

~thickness profiles were measured at the same "time, wusing

g

“wpiezoelectic and capacitance transducers respectively. The
R L

Nk . - : .
o.ytheoretical work was similar -to that described on detail

slsewhere [7], except the 1lubricant was . assumed to be

o
S,
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isoviscous. Again the method suffers the same d1ff1cult1es*
as stated previously In addition, they found that it was

'

difficult to*achleve solutlons for the case of large surface
displacements. They were unable to decide whether the reason
for - the 1nstab111ty lay with the -equations or with the
computing methods. 1In general; vthey ' found both the

experimental and theoretical results were cpmpatable.

1.3 Equivalent Cyiindets )

In- tne present study, a film of relatively short widthjr
will be considered between the cbntacts.v Thefeforev the
undeformed " solids can be' sufficiently represented by two
cylindersﬁin the region of the contact zone. -These two
_chinders‘ can further be represented by e.geometrieelly
‘equivalent cylinder near a rigid plane as shown in Fig(1).
The geometrical requirement is that the gap between'the.
cylinders in the original;and equivalent contact shOuld be
the same at equal valués of. x.

If the centres of the two cylinders 1lie on the same
;side'cot“the common’ tengent at the contact point then the

radius of the equivalent cylinder takes the form of
= - T - Where R1>R2 . . ””. R

Force components on the 1n1t1al and equ1valent systems shown
N 8

1n F1g(1) can be related as follows

For hydrodynamic force .in vertical direction:

Wy1=Wy,=w,=J p dx o : - (1.5)



Cyiinders

(a) E

hy=R;~/Ri-x? & x*/2R,

Similarly

h; & x'/2R;

Hence

heh, +h,+h; R -
®h,+(x2/2) (1/R\+1/R;)
=he +x* /2R

where 1/R=1/R,+1/R,

"Fig(1) Representation of a
cylinders by an eguivalent ¢

i

‘Equivalent Cylinder

l}’

(b)

(1.4)

contact between two
Ylinder near a plane



For hydrodynamic‘force in horizontal direction:

wer==1 p dh,=-(J px dx)/R, - O (1.6a)
“xz==l p dha=(f px a)/R; - 7 (1.eb)
we==J p dh==(J px dx)/R o (1.6c)
Hencé )

w{i=(§/R1)w, and w.;=(R/R;)w, - (1.6d,e)

For drég force components:

F,=F =/ 7 dx=/{ u(du/ay) |- dx ‘ (1.7a)
"h h ‘ y=h |

Fi=Fo=/ 7o dx=/ u(du/dy)}, .o dx | © (1.7b)

1.4 General aSSuﬁptions -
Tﬁe asSumétion; which will be madelih the analysis are:

stated below ; o | |

(1) The cylinders are.infiniéély long i.e. side lﬁékage is

neglected and flow becomes two dimensional.

(2) a1l inertia effects are neglected. . | =

(3) The width of the contact region is much. smaller than the

radii of the cylinders.

(4)'The fiim thickness is much smaller than the width of the

contact. -

(5) The flow’is jn steady state.

(6) The lubricant is incompressible.

(7) There is no slip at the boundaries. '

(8) The solids will be treated as perfecgly elastic and in a

cqnditiph of plane strain. |

(9)  The contact will be represented by .an equivalént

cylinder near a plane.



2. PHYSICAL MODELLING APPROACH IN SOFT CONTACT

2.1 Description of the elastohydrodynamic model

A phySical elastohydrodynamic lubrication model as
_Shown in Fig(Z) 1s postulated from 'which a numerical
solution of find1ng the minimum film thickness is 'presented.'
under 1sothermal condition. The theory of elastohydrodynamic
lubrication “of vhigh elastic moduluS'~materials was not
developed until ~Grubin [6] 1ncluded the effect of elastic
distortion of the bounding solids and the pressure dependent
viscosity of the lubricant. However little attention has_
been paid to the development of the theory for soft
materials in, b\ which 3 deformation  rather than
pfessure—viscosity effect becomes dominant. The lubricant in.
such case can be regarded as isoviscous fluid as suggested
by Cheng [10]. ’ | -

Since there is no 51gn1f1cant increase in pressure due
to pressure- v1sc051ty effect in the case of soft contacts,
the generated pressure of the lubricant must be entirely due
to hydrodynamlc action“ i.e., a ' converglng bearing
: conflguratlon must ex1st ‘along the pressure zone. In the
light of thlS configuration and'_the interferometric study__
done by Roberts' and Tabor [11], it is postulated that the
deformed cylinder under elastohydrodynamic lubrication w1ll_
have a shape like tilted- pad surface of f1n1te slope along

most of the contact region as shown in Fig(2a).

\‘.

10
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Fig(2) Geometry of lubrication film ang
. model pressure distribution



Furthermore,

;J by Higginson [12],

were

found

from

to be.

dlstrlbutlon as shown in

experlment

cylinder out51de the 'tilted pad regxon will be the

4

pressure

12

the film pressure measurements done

profiles‘-for 1ncrea51ng load

,

very close: to that of Hertzian pressure 

Flg(Zb) In the 1light of this.

‘1t is postulated that the deformed shape of the

that in a dry contact.

same ;as

2.2 General equations for fluid : ‘

The general equatlons
flow of an incompressible lubricant through an infinitely
long rotatlng cyllnder and a plane slider, as shown in
_ 1
Fig(2), are the momentum equat1ons in the x and y dlrectlons
and the cont1nu1ty equation. &he general form of the
equations may be listed as follows:
Xx-momentum equation
du 9u 1 dp  ®u 3y . o
UtV e () (2.1)
0x 3y . p dx ax?* dy? - '
'y-momentum equation with body force neglected
d3v. 3V 1 3p  3*v dv !
Ut Vs me () (2.2)
dx 3y .p 3y 0x? 9y? -
- Continuity equation
du ov s
—+—-=0 (2.3)
ox dy
In all the later analysis, the following velocity
boundary conditions will be ‘adopted.

y=0

u=-uy,v=0

governing the steady, laminar

(2.4a,b) -
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y=h u-—uz,v=-uz(ah/ax) N o (2.4c,d)
Partlcularly for the presently dlscussed model the

following pressure bOUndary conditions w111 be adopted

x=te : p=0 . ) (2.5a)

Xx=-a : p=0 ‘ o L 5 (2.5b)
N dp B o :

x=0 : psp =p, and —=0 : ’ O (2.5¢c,d)

max -, dx

2.3 Specialized equation for lubrication
For representative lubricating fflﬁs, the inertia
forces can be. shown to be negllglble oompared w1th the

ibiséous force by the follow1ng order of magnltudg analy51s

Selecting approprlate__.reference quantltles, the’

variables can be express€j as follows:
x=xL,
y=yh,
_u=uu,
V=VV,

P=pPp«

Now substituting all the transformed varijgbles into the -

governing ' Equations(2,1) to (2.3), aKa ‘comparing the

= ffeletive'magnitdde Qf‘the viscous terms with the inertia

terms in each of the ﬁomentum equations, we obtain
For cont1nu1ty equatlon

du v, L, av

—+(

- )—=0 S N
ox Ukhk ay '

.
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It is noted that, au/dx and : av/dy arg-of order 1.

Consequently, the ' term wv,L,/uyh,  must ~be of order 1.

B

.Choosing viLy/uchye=1; ve.can write v,= uk(hk/pg) which will

be used in the order of magnitude anélYSiS for the ﬂmomentum )

eguations.

For the x-momentum equation
.90 80 p. 3P 1 hy, * 3'G 3%0
LUtV —+ [((—)  —+—1]
~ 9x 9y pui 9x Ref} L,  0x? ay’

Since thg lubricating film is Yefy thin as compared to
the w§d£h ‘of. tﬁe confgct regiqg, i.g. hk/Lg<<1; therefore
the viscous term i’u/axz is negligibly small compared to
3’u/ay’. If Re:;:T, then;qpe inertia terms can be neglected

compared to viscous‘tefm.-Hencé'ohly pressure and viscous

forces  will be present. CQnSequently,Equatioh(Z.1) reduces

. to ' L

'.ap‘ d0%u . . - o
—mp— : A (2.6)

ox Oy? ' . &

In fact, Ref is much less than one in ‘most 1lubrication
situations.

For the y-momentum equation: - e
8V 3V Ly * Py 8p 1 hy * 329-23%%

l:l——_+\-7fj.=“(—) —+ [(=) —t—
dx 03y _ hy pui dy Ref 'L, = 09x? 3y?

]

Since‘hk/Lk<<];‘therefore 3:v/0y?*>>33v/3x?*; and if Rel<<1,
inertia terms can be»neglected as compared to viscous term.

Consequently EQuation(2;2) reduces to

ap 9d?%v '
- dy dy? . e e
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Ndw comparing thé terms on the r1ght hand - side of
' Equatlons(Z 6) and (2 7), we have .
From Equation(2.6) ‘
- %
Bp Uy Rt
—-=(l-l'——)—_—
9x h ay?
From Equation(2.7)
P he u, 37
————-(u——)——— ‘
ay Lk h2 ay i
It is noted that dp/dy 'is (h,/L,) times the order of
n magnitude of ap/dx. Slnce h, /Lk<<1 thei‘variation "of.'"
pressuré' across the lubrzcant film is qu1te 1n51gn1f1cant
‘Therefore the momentum equation fq; the y-direction can be
omitted altogether. Thus write, 0p/3xxdp/dx.

Now the reduced set of ‘équations' only includes
© X—momentum equatlon and cont1nu1ty equatlon of the follow1ng.
'forms. | R
‘X~momentum eqdation:

' ' g .

dp o%u L _ ‘ ‘

& =p— S . E (2.8)
dx dy? & ‘
,Cont1nu1ty equatlon:'
du v : : : . : . _
—_—t—=0" . - . (2.9)
Jax ay E ” ' .

Furthermore, Equations(2.8) and (2.9) can be combined
. into onevsingle eqguation as desc?ibed“below
-Integrat1ng Equatlon(z 8) twice w&thcnespect to y, yLest m~a,~w"

1 dp y? e e
o HE -_..7+wg:1y,+<;.; O T L

. -
oS
7
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Applying boundary cohditfon$(2.4a,c), leads to

1 1 dp h - . .
ci=—(uy-uz)—— — = and C2=-U,

h u dx 2

Hence the velocity distributjon is

.. 3.dp y* hy vy o . . v _ .

U= __[_—-_-]+_(u1—uz) -u, . (2.10)°
udx 2 2 h '

Integrating EQuation(Z.Q) with respect to y, leads to
T ~

o h oh h :
—J u dy-(-u,)—+[v] =0 .
o0x 0 ox ¢] .

Applying boundary conditions(2.4b,d) the second and ‘ third
terms of the above equation will cancel each other out.
.Substituting'fhe‘expression.for u in'Equation(2.10) into the

above equation, and then carryihg the'integration, leads to

e
__[...__‘.__]=——_ ‘ ‘ . (2.11)

which is the famous Reynolds eéuation.

Upon integrating Equation(2.11) with respect to x, leads to

1 dp h® U SRR |
= — —=-—htc, ' \
u dx 12 2 )

Now applying boundary condition(2.5d), leads to’

i;Qhéfe»h lS def;ned -as ‘the- flbm'thlckness at Whlch pressureh -

.. - .
- e ey Y e - ..~“ ot [ @ oW

is maximum. Hence e e ;I.':‘“:..;”
. dp.. - h-h, o - - Lol e
cememmpul () T T _ ‘ (2.12)
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wmﬁ6h~dimensfgna?i;gjf;:fby“ introducing  the  following

17
2.4 F1lm thxckness equatzon with Hertzxan relations

In reglon I, as shown in Fig(2a), the film thickness

‘variation is linear with x and of slope m. It takes the form.

h=h,, ,*m(x+a) (2.13)
'Hence 4 A .
he=hm, »+ma | - (2.14)

In région II, the film thickness will take the shape of
Hertzian displacement. |
h=h;+6
But ffom Equation(2.13)
h,=h,, ,+2ma
Therefore
h=hpn,*2ma+d (2.15)
From Hertzian relations{16] |

1—v, 1-vi ¢ X x? X X%,

o= E—)apo I"(— 1/2—1n|[—+(.__1)1/2]l|} (2.16a)
a a? a a? '
4 1‘0% 1-v3 | | |
a=(—[ ] wR) /2 . (2. 16b)
m E‘ Ez
2w _
s ' (2.16c)
ma . . |

"f‘2 .5 Non-dxmens1onal procedure

Using the Hert21an relat1ons in -BEquations(2.16), ‘the

-Equat1onsL2.12),w N ;(2; ,7 :2:féﬁd ) . (2.15)  can -bé'

dimensionless variables.

ol e e s e e e ] e s e et e A LB AT, i A1 s 4 a v iy e e
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x n s p . Uu W
‘x:-=_vhl,4h‘,=,— ’ b= ’ p'=— r Ut = ’ W E—
a R "R EV E'R - E'R

L3

Equation(2.12) is non-dimensionalized to

dp*  8w® h*rhy | | ,
L———==6U" (——) 12 ( ) . (2.17a)
dx; T h*3 .

Substituting thé_dimensionless form of Equation(2.14) into

the above equation, yields

dp* 8w* h*-hi -m(Bw*/m)'/2
—=-6U" (—) /2 { ) > (2.17b)
dx; m ht? ' :

13

Equation(2.13) representing %¥ilm thickness in region I is

non-dimensionalized to

. 1" .

h*=hg.+m(—) "/ 2 (1+x7) , (-1=x;<1) : (2.18)
m

Equation(2.15) represenfing film thickness in region. II is

non-dimensionalized to

. 8w’ ' ‘
h*=hg i +2m(—) '/ 245+ | (x;21) (2.19)
‘ . |
- where
.
8 =—w  {|X1(x{7-1) " 2-1n|[xi+(x;2-1) "/ 27|}
- .

The corresponding non-dimensional boundary conditions become

Xi=+o : p*=0 (2.20a)
X;=-1 : p'= ‘ ' (2.20b)
'x:=0 } p'=p* =ps . (2.20c)
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2.6 Numerical analysis

In this section numerical methods will be described for
the solutions f hi. and m through the pressure
equationf2.17b), sebject to the boundary. conditiéns(Z.ZO),
-where the film thickness is given by Equations(2.18)-and
(2.19) in regions I and 11, reséectively. Ihput parameters
-U“and w* &uét be given to define a particular problem, |

Initially, the pressure equaEion is solved in the first
half of region I by first assuming hy;, and m, and applying
boundary conditions(é.ZOb) at x;=-1. The préssure ‘equation
is then integrated, using Simpson's fule, in the pqsitive
x;-direction . and boundary condition(2.20c) is checked. If it
is ng} satisfied, a new value of h},, is tried, but with m
remaining constant, until the boundary conditién(2.20c) is
sa£isfied. Tﬁen with these values of new hj,, and m, the
pressure quaﬁion(2.17b) is again integrated in the positive
x-direction between xi=-1 énd X;=+o, and bouhdary
co;dition(é.ZOa) is checked. If it is not satisfied, a new
valege of m is tried. The whole~prOCess is repeated until the
assumed values of hni, and m satisfy all the boundary
conditions(2.20). . |

In acﬁual numerical procedure, it is'assumed that p*=0
at x;=+» reaches its asymptotic value when the magnitudes, of
the pressure and pressure gradieﬂt become less than a
specified fraction (10°°) of the maxiﬁum pressure ana,

maximum pressure gradient, respectively. Also the relative

error allowance on matching p'(max)=p¢ at x:=0 is specified
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o ‘be le;swtﬁen {ofid_,fg ST

| A Newton Raphson Lteratlve”Mteqhn1que is employed to
converge hm;n and m on the solutlons, ThlS technlque, Wthh:
is ‘quadratically convergent, can be used because of the factl

. that a .pair of _nonlineat- equatlons ‘can be set up as . thee
fundtionsﬁof:two.ve;iables, hmin and m. Bas1cally, thlS pair

.of nonllnear eqnations is derlved from the. boundary

__cond1t10ns(2 20) and is of the follow1ng form T,
e _o _“dpfd . o _
‘f1(hm.,,,m) I - ';[-—-—-J-'dx:' TRe L o (2.21a)
x;=-1 . dx? ' | o - : N oo
. YA, I,_.,..,_.. ;,..__ - .. PR R ; e ... .
and ’ /< - '
-'x:=1 dp* Xi=+e dp° /
f‘z_(hr;”‘n‘ ,m)=_1" [_'— ]dx, + ¢ :"'LE"“"“ }d}f': Tome 0'(2":2’15b)'"
' EEPERTES SEE dx CorooxgsToodxy T T e
R S AR
It is noted that in order £o satlsfy all “the boundary "
cond1tlons(2 20), the assumed values of h;,,, and m must”bef

the roots of the functions f, and £f,,
i.e. ff(h;;n,m)=f2(h;‘n,m)=0:
The roots are found by Newton Raphson iterative method as

descrlbed below.

[T I [af, af, 1 [ 7
m m —_ f,
am ahm;n
. of, of ,
h%ln ‘ ;Wn fz
L Jt+H | ]t _am ohn nJt | Jt

.
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,(suff1c1ent condltlon only) 1s that if

SRR
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All the partial derivatives are approximated by Qmakihg’”

" a smeil change in the value of a vériebie'and dividing the:

change in value of the function by the change in value of

_the variable. Mathematically, it takes the f&rm

af1,2‘ fI,Z(m+Arhmln) =f,,2(m,hp,0)

R

om . ) A

Bfy s £y o (m b a*A)~F; o (m,hh )

1w

ahmin - A

The subscript t,inaicates the number of the iteration.

" The ' iterations are carried out until the differerice .between

~ two consecutive sets of values is less than a specified

relative error allowance {(10-°).

AT crlterlon for convergenqeﬂ' Of "~ Newton's method |

af1eueaf; L . '
e Py . . . (2.22a)..
‘om ahmyn : : S : ’
.ahld-- AN
of, of,
. <1 N | | (2.22b)
am 3h i ] | '

on an interval about the root,.the method will converge for.
any initial values of h;.n and m in the interval.

. The method of ch0051ng the initial guesses of h:,, and

m is based on the physical insights from Equation(2.17a). We

"observed that decreasing hj,;,., with m held constant, will

increase the entire pressure distribution. It is because the
term  (1/h*?®) in Equation(2.17) becomes large as hp,

decreases. On the other hand, decreasing'm, with hpi. held
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constant, will lower the entire pressure distribution. It is

.

because the term (h*-hi) in Equation(2.17a) becomes small as

N

" m decreases. It was found that pressure was more sensitive

to min than to m., After few trlals, better 1n1t1al guessesf

satlsfylng the convergence cr1ter1a(2.22) are pbtalned ,and;<_

then used in Newton's‘?method for finding convergent

solutions of hg,, and m.

2.7 ResultS'and.dischssioﬂ

Results.obtained from the previously described methdd

. are presenfed in"Figs(3) and~"€_).t Input data glven in

-~ e -

Appendlx 1 have been used -to- obtaLn ‘these results’

Referrlng to Flgs(3) through (5) it is noted.that,fat~f

a-given~speed the mlnlmum fllm thlcknesses for . both rlgld

<

and elastic cyllnders are decreased as load increases. At

T very lightﬂibads;"predicthnS" of minimum film. thickness

~obtained by rigid cylinder theory. are in -good agreement with

the present results. It is because surface deformation under

such condition 1is insignificantly.small as compared toAthe

thickness of the . film, However, as load increases,

deformation becomes_Jinqreééiﬁgly,,impg:;ant. ~Under . such;

cases, the minimum fiim"ihickneéér obtained'ﬁ:fﬁom;flfhéfff;'

elastohydfodynamic model - is fouﬁd to be mﬁch hiéher gﬁén
that predicted by rigid cylinder thedry. ‘It 1is simply
because cylinder is deformed at increasing loads. .It is also
observed that ,at’higher loads, the minimum film thickness

becomes very insensitive to change in load.

e
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It is indicated, from Flg(6) that at a glven load the
minimum fllm thlc&ness 1s 1ncreased as speed 1ncreases Thls
1ncrease -in mlnlmum fllm thlckness due to change‘ln speed is
found to.be qu1¢e uniform~ -along any-given load.

~In order _to examlne Athév accuracy of .the»fpresent~

results, it is- necessary to compare the presently -obtained.

results with -the experlmental- data [15}. For the sake of

'comparison Jhmia/(Ur) oz is plotfed adainst'?w“7TU‘Y4’z as. , ..

shown . in Flg(7) -The dlscrepancy between the present and
experlmental results at light loads and high speeds 1is due
- to the ‘effect of side-leakage. Whereas, the dlscrepancy at
‘high 1oads.reMealsltﬁat';Eﬁet asscded flia’ proflle {s no
longer 'true.”HoweQer; reasonably good agreement is f0undmin-
}the range of 0. 9Sw /(U*)72<20.0. Most, the englneerlng
. appllcatlons _in practice fall w1th1n this-rahge of loading. ‘
Therefore, the descrlbed model, based on the " concept of
Hertzian y defordation associated with a tilted-pad
configuratioo shown in Fig(2), is proved to be useful in the

analysis of the elastohydrodynamic 1lubrication of soft

materials.
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'_; 3. 1 General appgoach'

P

“

3. THEORETICAL SOLUTION.IN LAMINAR JREGIME

[ o
-~ T LN LU A

ar - ™ . .
. o e e L S, IV DLy m . LB 4. e ..o -

;'g‘.ﬁ vA ,eheoretxcal 'psolutlon «tQ t,: eJastohydrodynamlc

oo w oo ks e K] - PR

problem must con51der the ba51c equatlons of elast1c1ty -fot

h the sol1d ~and equations * of ‘momentim and contlnulty for

i

flu1d Though the analysxs in Chapter 2 yields a useful

approxlmate - solutlon for - film thickneSs_ and pressure

distribﬁtjdn;,lt vdoes ‘not tell us the actual pressure

s proflle,_and fllm?thkﬁkn85$ﬁlﬁw&be cqntaqt reglone Thus, 1n”“

e ;?a

‘Qmégnyto examlne thf actual detaxls of the problem in -a

variety of condltlons, the ba51c elast1c1ty, momentum and
continUity eqdations must be solved 51multaneously Thef“
initial geometry of the physical problem as shown in Flg(B)

»

w1ll be considered.

3.2"Equéti0hs for fluid

As described in Chapter 2, 'the equations fog fluid
comprising of moment um Haha cont1nu1ty equatlons may be
comblned to form one 51ngle Equat10n(2 11) of the form
a 1 dp h® U dh

_.[_——-—]=—, —_—— - ) (3.13)
dx u dx 12 2 dx | ] ’

- where U=u,+u, ' - _ k3.1b)

This equation is based on the asshmptions that the flow is

——

laminar, i.e., at low Reynolds number, the viscosity is
constant across the film, and the width of the contact
region is small compared to the iength of the cylinder so

29
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Fig(8) Equi?alent cylinder and its coordinate system
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. -that side leakage can be neglected, '

* Now #pplying boundary condition(3.2b), leads to

‘Hence integrated form of Equation(3.1a) becomes

B At L HEP R ISR S VSO N U
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P TR

v

The above equation is subject to the following boundary

conditions:

dpr ) . . ‘
X=Xy "t p=—=e0 S o (3.2a,b)
N dx - - - SRR ' e
X=+» : p=0 . - (3.2c)

Equation(3.1a) is integrated with respect to x, to yield

1.dp h? U
—_ ——,—— —h+Cu

u dx 12 2

U
C a="ho
2

dp " " he-h
=6U0u ( ) . (3.3)
dx . h? i .

At heavily loaded contact, especially in metallic

'contactﬁ pressure-viscosity effects will arise, The

viscosity may be considered to increase exponentially abdve
their atmospheric pressure values, and of the form

u=u§exp(ap) _ ' ‘ - (3.4)

Introducing Equation(3.4) into Equation(3.3), yields

dp ho-h : v
expl-ap)—=6Uuq (~——) . . {3.5)
. -."‘ dx hl ! . . .

Since one of the boundary conditions(3.2) has been used in
finding the constant,.c,, Equation(3.5) is therefore ‘only
subject to the remain;:é\ﬁwo boundary cqnditions:

X=Xo ¢ p=0 . . y : ' (3.6a)

e —— e ol L
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x=+> : p=0 . ' (3.6b)
Now it 1is convenient to introduce a new variable g [7],
known as_reduced prgssure; such that

4G shomh e e

’——-GUuo( =) T T (3.7)
"where
' ‘ »
dg dp ' '
—s=exp(-ap)— ~ ' ’ o, (3.8)
dx dx

Integrating Equatlon(3 8) w1th reqpeqt to X. from.tha houtlemi.. .

. . E) 4 "
:f-w~-" ‘b“‘f""?w.’ o n ;v_o_n,aa. s ‘e - .

p01nt ,xo, to some general p01nt ,x, we oObtain

q . v .
J dg=/{ exp(—ap)dp : : ' - (3.9)
QXO pr . .‘ R L. R ..

From the boundafy condition(3.6a), Pxo 1S zero. If gxo 18

set equal to zero, the fuhétionh q will satisfy the same

boundafy conditions at x, as the pressure, p. Thus from

Equation(3.9), we get |

o . L |

q==[ 1~exp(-ap) ] : ' (3.10)
o . .

‘It can be readily seen that -Equétion(3.10) also
satisfies the second boéoundary Agbndition(3.6b). Hence the
function g satisfies the same boﬁndaty coﬁdifioh as the
pressure p, that fs
? X=X, : g=0 | ' (3.11a)
k=+m.: g=0 ‘g_ , (3.11b)
Thus this problem can be solved iﬂdependently. ‘ﬁence, once
Equation(3¥7), resprgs;hting.the.pre55ure distribution that

would occur in an isoviscous lubricant of viscosity wo,is
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solved then the actual pressure dlstrlbutlon can: be found by o

Equat10n(3 0). That is

. 1 1 e
p=—1n(— ] c(3.12)

, ,11 « “1-aq
‘."Equation(3.12) is valid only - when aq<3;; i.e. Q<1/d. If
1q>1/a,'the.aCtuai pressure"goes'_tof infinity ' éhy51cally,
‘pressure -will -never ' become 1nf1n1ty because hlgh pressure

will deform the_surfaces,lnto such a shape that_the_presSure

. »
.~ remajins finite,. .. . . e+ e A - o o a4
" RO S "..lv4,.,‘o v r e s o P T L e T e e e P . ;
o

3.3 Elasticity equation

.. In  elastohydrodynamic luhrjgatipn.vsituat{on,‘ it is
reasonable to assume that the bound;né”soiids— ;r¢ﬂ>i§ a .
condition of piane ”stra;n. Tt is due to the fact that the

i -y,

‘width of the presSure régldn 18 very small. compared with the

- o

rrrr

radlus and length of. the boundlng SOlldS‘ So the stressesi
and displacements are uniform along the length except inear“
mthehends.ndnfadd;t;dn(fthls tactﬁfugther%allqgs uF to assume
that the surface displacements and stresses4of the hounding,
solids can be approximated by those of semi;infinite selids
' subject to the sdme normal load. The " f1na1 fllm thlckness 1s$
therefore obtalned by _addlng the vertical dlsplacement to"

Coe

the initial thickness of the film. e
First consider a line load on a semi-infinite solid as
shown in Fig(9).

Under plané strain condition, i.e. w=constant and

05/0z=0, where ¢ is a dummy variable, we obtain

IR PR
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Fig(9) Line load acting on a semi-infinite solid




N . - : Lb . ; } - -
,‘,wtr dxrect straln o ’
S B Ly me—t Ez=—-=0 . " - e L . . . .
SAx Byl ez T e e
'For"shéar“sfrain\‘:“f - uﬁﬂul; .'f": e e
WA Teuew . avoaw
Txy=—Ft—o, T xg=———=0 , Yy 5—+—=0
dy ox 9z 9x S .0z 3y

Therefore only stresses 0%,0,,0, and Txy are required to be
. _ N ) .

considered.

Hooke's law relates strains to stresses as fbllows:

1 aU . . R

e =—[o, v(o +0,) )=—o o ‘,' (3.13a)
B - dx o L o ..
ey=—[o,-vlo,+0,)]=— (3.13b)
E ay
€:==[0,-v(0,+0,))=t—=0 (3.13¢)
Txy 2(1+v) 3y av
7xy=f'—=_“7xy‘—+_ (3.13d)
G E dy 9x :

From Edﬁation(5.13c) yields'

0.=v(o.+o,) ' . ’ (3.14)
Eof ' a solution ' to 'exist. 'both equ111br1um aﬁd

compatibility equatlons subject to the approprlate boundary

condltlons must be satlsfled

Equ111br1um equatlons in two dimensional form are

00, 37,

—_—

ox 0y

=0 ' (3.15a)
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two dimensional- form is.-- --- = 1

. - soe s
s e - . L. e s . s

“Compatibility equation in’.

'-“.'az- 32

-

(=t (outg, =07 "7 S C(3.16)

9x? 3y?
It is convenient to introduce a stress function ¢ (x,y)
such ‘that:

3%¢ 3% 2%¢

0, =—

) OysS—— | Tyy==

(3.17)
oy? ax?* - " 9x0y ‘

Equations(3.17) ’automatically 'sétisfies : equilibrium
equations(3.15), but the compétibility zgquation(3.16)
becomes SR o R g |

RO - -

0' d‘'¢ 3¢ ' , :

+2 —t——=0 (3.18)
ox* 9x?*3y? ay* ' '
w . R ' . .

-

The folloﬁinngousginegq'st;ess_fgnc%ron satisfies the
equilibrium and compatibility equations for the case shown
in.Fig(9),
wr fsin 8
¢=—--——-——___

-

Then we have the following stresé{éomponents - A r

1 0¢ 1 08%¢ 2w cos 6

o S —t— = —

r r or r?* p@o? T r

These stress equations. satisfy the natural boundary
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conditions, - namely stress free at thé SurfaceJ i.e. 0o_=0 at

r

+0 as r-o,
Tr . B

vfgggog;excebtfat r=0, and o
L TIE T s .éonvénientﬂuim tthe!fﬁreséntf”pfdbiém to use

L A
- -

cartesian coordinates for the stress function and stresses.

Stress. function becomes . -

v X
¢=-—x tan”' - .
T 'y

and-stress -field

- 0%'¢  2wx'y . _
O x= == (3.19a)
ayz- 1r(X-2+y2)z )
9%*¢: 2wy’ . . : )
0y === - ‘ (3.19b)
9x? w(xi+y?)? L R _

T -0 2wxy?
Tey= ——— ' (3.19¢c)
0xdy w(x?+y?):?

Introducing ~Egu_qfcions(é.m)n © 'd@nd (3.19) - into

Equafgbn(3.13a,b) and integrating we get , -
w o X | Xy | ' '

u=-—[(A+B)tan ' — - (A-=B) —]+f(y) - ‘ (3.20a)

. m y ] ‘x1+y2 : .

. w ‘ Y2 . xZ .

v=-—[A{ln(x*+y?) - —1 - B J+£(x) - ‘ (3.20b) -

T . xz+yz . v.xzﬁ.yz

>

where f{y) and f(x) areAIfunctiqns of y and x only,

Y
[y

.. . . ,
respectively; and A=(1-v?)/E, B=-v(1+v)/E.
'Now by symmetry at any valu€ of y
~u(-x)=u(x)

Hence - f(y)=0
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" To find f£(x), Equations(3.13d) “and "(3.19¢) |
ou av_ E - 2wxy? o | S T

JE AU (A P - ST (3.21)
dy 9x 2(1+v) 1rr(x,»’+y’«)-z

leferentlatlng Equat10ns(3 20) -éndv-theh introducing them

intc Equat10n(3 21) ylelds

Hence f(x)=constant

Therefore, 'Equations(i.ZO) give the displacements anywhere’
in the body due to a line load at the origin. iBut we are
Primarily concerned with the,vertical surface'displacement,
“e{'V‘;t y =0, due to a surface'pressure p(s) betweef X=s,
and.x=s;_as shown in Fig(10). This displacement can be found
by ‘replacing w and vain‘ (3.20b) w1th (p ds) ;and  (x-=s)-

L
respectlvely, and then integrating w1th respect to S, we get

o (1-v¥ Sz v ’ '
v =-——— |/ p(s)ln(x-s)* ds + constant (3.22)
y=0 TE- S, .

In the_ contact between two solids, both surfaces will
be deformed by the . surface pressure, and if the subscripts 1
S
and 2 are used to denote the two contacting soljds, the sum

of the surface displacements become -

4 S, ‘

vix)s——n0 p(s)ln(x-s) ds + constant (3.23)
TE" Sy

where

T o1 (1-v,2) (1-v,2)

—=—[— + -]

E' 2 E, E,

Elasticity equation similar to the one derived above * was



p(s)

Fig(10)Distributed load between

X=s, and x=s,

39
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also used. by Dowson and Whltaker [7] in their analysis of *
:surface dlsplacement ‘ B -

| I£ is noted that, from Chapter 1, Equation(1.4)
represents the filﬁ_fhickness in lubricating rigid contact.
Therefotre,” the resulting film thickness in lubricating
elastic contact can be obtained by adding the surface
displacement to the undeformed ‘parabolié film thicknesé,
- that is’ |

b, X 2

h(x)=h \+ — + v(x) © (3.24)
c 2R

where v(x) is defined by Equation(3.23) and the central film

thickBess, h,, can be determined from the ,lhbrication' of

rigid contact.

3.4 Non-dimensional procedure

Fquations(3.7), (3.11), (3.12), andg (3.24) can be
non-dimensionalized by ihfroducing the following
dimensionless Qariablés. |

x‘:x/R,.q‘=q/E', p =p/E', h{gg/;;

0
h&=hc/R, h*=h/R, g‘=aE", X4=Xo/R
v'=v/R, s*=s/R, U’=Uu,/E'R

Equation(3.7) is nop-dimensionalized to

dq* hs-h*
__=6U‘( ) (3.25)
dx* h*? A
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which is subject to the boundary conditions(3.11) in

dimensionless form

+

X'=x5-: q'=0 ‘ | (3.26a)
X'=te 1 g'=0 . (3.26b)
Equation(3.12) is non-dimensionalized to

1 1 :
P =—1in(————) 3.27)
g’ 1-g°q" -

Equation(3.24) is nan dimensignalized to

. x"l’
h* (x*)=h'+—o sy (x*) (3.28a)
c A
2 .
where
Vix)=-— D(x) + C (3.28b)
g
and
S3 h '
D(x*)=J (p"(s°) ln(x"-s°)] ds" ' (3.28¢c)
S 1' ,/
L

The constant, C, may be determined by specifying the
minimum film thickness as will be described in the next
sertion of numerical method. Therefore, from Equations(3.25)

to (3.28), the solution depends on th?ee'parameters, namely .

g', 1" anA blia.
. .z v

.
- BT
Numericna! 'ﬂchnquﬁﬁ x

-

3.5 Numerical nﬁa1y§£§?;l;
SRR Ny . :
“sfinding the solution for the

#a

pressure equation(3.25) 7 subject to the boundary

conditions(3.26) with the film thickness equation given by

requations(3.28) wiil be described.
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3. 5. 1 Solution for the pressure cquatxon.'r

'It is noted that from th boundary condlt1on(3 26a)

”the outlet pblnt X5, is unknown. The way 6 locate x¢ is
that by flrst assuming a value of x;‘and; applylng fboundary
T

condition(3.26a) at _,thatﬂ' p01ntivzwhenﬂ the pressure
equation(3.25) is integrated in the .positfveu x*-direction.
pBoundary condition(3.26b) is then - Cchked,”JIgfitV%s)not
"satisfied, a new gueSS'of nzeis-tr{ed ' o -

The method of choos1ng and correct1ng the assumed value
of x¢ is based on the fact &hat moving x; to the rlght will
s decrease the entire pressurevdlstrlbut1on whereas mov1ng”x3
to thenleft w1ll 1ncrease the Pressure d15tr1but1on This
will‘vallow us to find upper and lower bounds for xo. Since
if the assumed value of x5 is too far rlght to thed actual

value, then preSsure becomes negative whlle 1ntegrat1ng in

the p051t1ve X d1rect1on' hencW an _upper bound. .- On the

contrary, if ‘the assumed value of %3 is too far left to the

actual solutlon, then’ pressure becomes too h1gh at the

inlet;‘ hence an lower’ bound. - Once. the bounds for outlet .

point are found, the solut1on for xo can be easily obtalned-

by a simple bisection method _ ‘ ,
In aetual numer1ca1 procedure, 1t is adopted that q O
"at x'=+e reaches its asymptot1c value when the magn1tudes of
the _pressure ‘and pressure' gradlent become less than a

spec1f1ed fract10n(10") of t he. max1mum pressure and max1mum

pressure gradient, respect1vely Equat10n(1 la) in Chapter 1

.”fﬁw1ll g1ve a r0ugh guess for the- putlet p01nt X0

-
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It * should be noted that 'rhe"film thickness is.

con51dered to be fixed when Xo is belng 1terated with /the
pressure equatlon(3 '25). Once "x§ is- fopnd, the actual
preséure drstr;butlon, -p‘, can be obtained 'by
| Equerion(3:2f)} .
- (
. 3.5.2 Solution for the film thickness equation

Once 'the pressure distrfbption: is determined‘forpa
given initial film thickness, it 1is time to evaluate a
correspondiné film thickness variation from Equation(3.28a).

This requires the evaluation' of ‘the .defprmation integral

\/5 . B S i .
" D(x*) in thation(B.ZBc).{The expression, D(x*), contains a

singularity in the integrand; i.e.. In(x*-s*)=+-= as x*=s”
~.and sbfit_cannot be evaluated by straight forward numerical
“integration. This difficulty is removed if the pressure is

pexpressed by a function» wvhich enables the integral to be

performed analytlcally In the present’ study, D(x*) is’

evaluated by d1v1d1ng the presshre' curve into su1tab1e

segments. Each segment contains three pressure p01nts and is
¢

'erepresented by a second degree polynomlal of the form

(s )=a+bs* +cs " - » | C(3.29)

where a, b, and c are constants for one- segment For the

purpose of computatlon the :origin is taken atu the second

pressure point of each_Segmeht'as shown in Fig(11) . Three
. B . o ) y . .

pressure points of known positions are allocated to each

segment’ and their ' respective coordinates referring to the

new origin can be easily found. With respeet to the new:

]

T e et g e e e S e VR U T e Toe AT 2 S TR S TR
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'Fig(11)Coordinate system of each pressure segment
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e
origin, the new coordinates for the 'three_gpressure point;
becohe' (st,pi-1), (0,p}) and  (S3,P7+1). ‘They ére then': 
su?sfitutéa”iﬁto EqUation(B.ZS). ‘Consequently, we -Sbtaiﬁ?i

three similtaneous eqUaéibns from which con§£ants a, b and‘é;

“can be determined in each segment, The constants are found

to be
a=pi
pi.iv@a pi-1—a 1
c=(— — ——
- S2 S, 5275,
pi..-a
= - -S3 C ¥
Sz
With  the - pressures, p*(s*), in . the form of

Equation(3.29), we can now integrate Edﬁation(B.ZBc) without
any difficulty. The surface displacements dﬁé'vto each
individual pfessure segment can be found as*desCribed below:

LY

For each segment, we have

0.
N+

o
-

D(R‘Y=!“ Kfa+b§‘+cé")'ln(i’-é’)] ds*

‘ﬁ(

where x'=x'-x! , 8%=x!.,-x! and S3=x1.,-x}
It is noted that the integral
Sy ] :
J[s*" 1n(x*-s*)} as- , '
s ,
=[1/(n+1) 1{183¢ " 1 )=x*(n+ 1) In|x* =83 = (§3(n+rVegoCne1))
1n|x°-$; - [/ 183 =85y - /0] x°
§3"-51") ... - [1/2) %m0 (53F-877) - k7" (83-8%))

Hence, a séries'of value of D(x') at a given point x* ,where

displacement is of interest, can be determined from each
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préséufe segment;'Therefore, the actual displacement due ‘to

. the entire pressure distribution at the same point x* can

then be determined by - superposing the results of D(x*)

- obtained from each pressure segment, i.e.

k- _ : ’
D(x*) = Z D(x*) . § . (3.30)

“where Kk = total number of pressure segement. Rearranging

"Equations(3.28), we get

Y
X< ?

4
(h*-C)=h'+~—-—[D(x")]
c 2 "

\

. Using Equation(3.30), the function (h*-C) may be evaluated

at every partition point. Then, after the minimum value of
this function ié found, the prqper constant ¢ méy be added
to tﬁev function so as to give the.desired minimum film
thickness, h;in; “
3.5.3 Film thickhess'iteration.' )
With the numerical mgthodé.described in the ‘above two
sections (3.5.1) and (3.5.2), we ére able to find the
pressure;digtribution from a g%ven~film thickness and the
film thiqkness from a given pressure distribu;iqn. This
procedure allows us to chéck any given film thickness to see
if it is a compgtible elastohydrodynamic solution, That is, -
if a film thickness hj is given, the correspbnding pressﬁre
distribution can be obtained from Equations(3.25) and
(3.27). The pressure is then used to generate a  new film

-
thickness hj; through Equations(3.2§). If hy equal to hg,

b
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then hj and its assoc1ated pressure dlStrlbUthn satlsfy the
elastohydrodynamic equations. If hj does not equal to h}, a
'method of choosing and correctlng h? must be develbped éo
that compatlble solutlon may be obta1ned In the present
analysis, the resultlng film h; is used as the- .new guess for
‘h;. This scheme of iterative procedure for film thickness is
based on the fact that if the ptessure is too high at a
given peint, there will be teovlarge'a deforma¥ion and the
film “thickness wili be leréet. Thicker films usnally result
in lower pressures. Hence there is a self correctlng feature
for this 1terat1ve scheme’wh;;h should lead to a convergent
“§blution. It was found that the above scheme did not bring
convergence - in- the cases where deformatlons were large
compared to the filmwthickness. The problem of divergence is
removed by introducing a weighting-factor,‘ﬁ, which weighs
each new film with the previous fiim. This will prevent too
large a change in f11m thickness in one iteration. Now |
(hi)  =Bh3+(1-8) (i) e - (3.31)

new old :
where the weighting factor <1, * and B=1 represents the
original iterative scheme. |

As nentiéned before in ~ section .(3.5,2), the proper
constant C may also be added to the new h} in EQUation(3;31)
to make the minimum value of hj} agree. with the'waesinea‘
minimum film - 'thickness, hynin, before a new 'préSsure
dietribution is being iterated.

It was- found that either the film tnickness, or the .

\ max.imum‘ pressure or load capacity of. the pressure
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distribution corresponding to a given filmfthickness cenj be
,.used to check for convergence.

The rigid film profile ean first be employed to
initiate the - iterative procedure. Hdwever,' several-
iteratiohs are required before a convergent solution can be
obtained,

| Once the convergent solurions of rhe film thickness and
the .correspondlng pressure dlstrlbutlon are determlned the.
load. capac1ty, veloc1ty fleld and drag force can be obtalned
from Equations (1.5), (Z.WQ , and (1.7), respecrlvely. The
dimensionless form of thése equations can be written as

follows: .

Dimensionless load cepacity is of the form
w'=/  prdx° , | o (3.32)

Dimensionlessvvelocity is of the form

1 dp* . » y* . . -
U'=— ———(y*2-h* y-uz)-uy (3.33)

2 dx*' . h+' . . .

Dimensionless drag is of the form

oo u’ - . e ‘ ‘
Fref  —dx" ; S (3.34)

3.6 Results and discussion
In this sectlon results obtalned from the prev1ously

descrlbed method w1ll be" presented for - both low and hlgh

- elastic modulus materials under four different conditions,

namely
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(i) rigidchlinder_with constant viscosity."

(ii) rigid cylinder with pressuré—dependént"viscosiby.

(iii) elastic cylinder with constant viscosity.

(iv) eléstic cylinder with prgséurejdependenf“visdosity.

Input data given in Appendix II has been employed to obtain

these results. - 9 ;fﬁm_:“l
-As-mehtioned in the previous secfion-(3.4), fgsulté Aof

film thickness and‘pressure distribution a;é depéndent upon

three parameters, namely

(i) minimum film thickness. parameter, h;,,.

(ii) speedAparameﬁér, U, |

(iii) pressure-viscosity parameter, g’ : '
-

+

In. the present study, the influence of hmi; and g*g%pon

film shape and pressure distribution will be examined.

3.6.1 Results and diécussion'for soft material

Fof“ materials of low elastic modﬁlqs, i.e.agg becomes
small, Fiqs(fé)' through (14) show ~ some  pressure
distribufions, under fouwr different conditions for three
different minimum._film tﬁickﬁésses. To examiné the
'significaﬁce df the préssure-viscosity effect, the pressure
distributions.obtaiﬁed from gonstant viscosity are _éompared
with that from pressurefdeﬁéndént viscosity. It is noted
~that there is{no difference .in pressure in both cases. This

means that the p@ressure-viscosity effect méy be neglected

~and only the deformation effect need to be considered in the

analysis of lubrication of soft contact. Hence, the

2
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»
/

lubricant in such case can be treated as isaoviscous fluid'

This supports the arqument made prev1ously in Chapter 2 that

fluid’ is isoviscous. It is also noted that the pressure

distribﬁ%ion obtained from elastohydrodYnamic theory 1is:

" found to be hlgher that that predicted by rigid hydrodynamic

_ theory’“?he dlffeéﬁnoés -are mostly prominent at small values

!'9’

‘pressure distribution.

of hhi..

a

It is observed from.Flg(TS) that as hg, is lowered,
W ; .(

the outlet p01nt:sta §§§ht£hﬁﬁg to the left resultlng }D"

ralslng the entire pressure dggtr;butlon This 1chauaedauby ;’
deformation of the bounding sol1d dug Yo the hydrodynamlc
pressure generated in the fluid film. Max1mum pressure is
also observed to shift toward the outlet as h;“" decreases.
In addltlon Flg(15)valso shows that small.decrease in tow

L

values of NW.., can cause a large increase in the entire

7

Figs(16) through (18) show the - corresponding
elastohydrodynamic film thickness for threeddifferent values
of hyin. Fi§(16) represents the one at - lightly loaded

conditio%gj\btere deformation is relatively small compared

to the film thickness. Fig(17) represents the one at

: pole

o

intermediate loads, where deformation Starts becoming.
important. It 1is also noted ffom Fig(17) that a nearly
tilted—pad region is apparent. This supports the argument

made previously in Chapter 2 that tilted-pad region does

~exist for larger loads. Fig(18) represents the one at heavy

loads where deformation is relatively large compared to the
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film thlckness. The locatlon of h,,,.n is found to be shlftlngt'
to the left as hpyi, decreases, Th1s accounts for the shift
of maximum pressure as mentioned in the previous paragraph.

Velocity proflles at three different locations are
shoﬁn in Figs(TQ)ﬂ'through (21). " Referring to Fig(19), a
linear veloc1ty dlsgrlbutlon is noted at the outlet. It is
because the- pressure ,gradlent at the outlet 1is zero" In
Fig(20 ! bulgy parabollc velocity profile is observed at
homin. This shows the presence of favorable pressure
gradient. Flg(21) represents the velocity distribution at
the inlet. Back-flow 'is noted at y >1. 2x10". It is due to
the presence of adverse pressure gradlent

Figs(22) and (23) respectlvely show the varlatlons of

load and drag for dlfferent values of h;,,. As h;,n lowers

. from 6x10°* to 4.5x10° ¢, the percentage increases in load

1hnd drag are found to be 75% approximately. But as min

“s-lowers from 4.5x10°* to 3x104‘, the per%fntage increases are

about 150%. Thus, a trend of rapid rate of increase in load
and drag 1s noted as h,., gets smaller. The drag at y*=0 is

'tound%to be three times the drag at y'=h"

3.6.2 Results and discussion for.hard material

For materials of hlgh elastlc modulus,'i;e. g’ hecomes
large, pressure distributions under ”;four different
conditions for three different minimum film thicknesses are

presented in Figs(24), (25) and (26). To study the impact of

the pressure-viscosity effect, the comparison between
x
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pféssure Adistributions obtained from pressure-dependent
viscosity and constast viscosity is .made in the case of
'iigid.cylinder. It is found that ‘there is a significant
increase in pressﬁne due to pressure-viscosity effect
betiween x*=0.0 and x*=0.02 for all three values of i
This effect is obsérved to be 1ncreas1ngly significant with

decrea51ng hmin. 10h'-thé other hand, the effect of

deformation with constant viscosity is examined. It is noted

that pressure distributions obtained from deformation ‘alone
are found to be much less than that from pressure- viscosity
alone. This shows that the pressure-viscosity effect is mote
1nfluent%/l than, the deformatlon effect.

Fig(24) suggests that for relatlvely high values ¢f

hnin, the effect of deformation can be'neglected, Only the .

effect of pressufe—viscosityvis important. In such cases,
the elastohydrbdynamic pressure distribution can ‘be
accurately obtained by considering the case ~of r}gid
cylinder with viscosity varies‘B with pressure. However,
Figs(25) and (26) show that as hyni. gets lower, the pressure

distribution, obtained by considering pressure-depentent

viscosity alone, starts deviating from the true solution.

This shows that, even though deformation is small, the
- Ay . -
effec. 5 ¢f pressure-viscosity and elastic . deformation are
& .
now becomin< equally important. Therefore, in order to get

an elastohydrodynamic solution, both effects must be

considered. The actual maximum pressure is found to be two

times higher_than that i the case of rigid cylinder with
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pressure-dependent viscosity, and is. four times higher :Ihan

that in rigid and elastic cylinders both with constant

oW
.

viscosity. This significantly ' increase “‘fﬁ pnessufé‘
undoubtedly deménstrates g fhe ‘importance of
elastohydrodynamib theory.

Referring to Fig(27), a smali decrease in low values of
hmin can give rise to a large incre;se in the entire
pressure distribu;ion. This increase in pressure, however;
is not only due to the effect af’deformation as described in
the + previous section for soft materials, but also
significantly due to the pressure-viscosity effect. Such an
increase in-pressu;e is found t§ be'much drastic in the case
of hard material, i.e. g° becomes ‘large. Tﬁe reason 1is
simply due to the influence of presSure*dependent.viscoéity
in hard contact. It is_observed‘that the maximum pressure
and the outlet point are slightly shifting to the left with

decreasing hmi.. But this shift is not as sharp as that 1in

soft paterial. The reason is due to the fact that hard =

‘material has high elastic modulus, .i.e. higher resistance to

defofmation; therefore, the area subject to deformatinn is
relatively small as compared to that in soft contact. This
can be well illustrated in Figs(28) to- (30).

Figs(31) through (33) réspéctiVely present the velocity
profiles at three differeﬁt locations. Referring to Fig(31),
the velocity distribution at the outlet is Iuniﬁdrm across
the fluid film;:sipce there exists zero pressure gradient.

Fig(32) shows that, due to the  presence . :fayorable
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pressure gradient, the bullet—shape‘ veloc1ty profile is
ohserved at the place where film thickness is minimum. The
maxiﬁum velocity occurs- at the middle of the minimum
thickness of the film and is about 1.6 times higher than-the
sliding speeds. Fﬁrthermore, in order to satisfy the floww
continuity,  this local max imum veloc1ty must be the global
max imum veloc1ty in the entire }lu1d field., Fig(33) shows
the wvelocity proflle at the inlet of the flow. Reverse flow
1s observed at the central part of the film because of the
presence of adverse pressufe gradient, ‘ | \
Referring to Figs(34) and (35), variations of load and
drag for different minimum film thicknesses are noted. As
ha i n lewers froﬁ 9;5x10f; to 8x10° s, the  percentage
increases in load and drag are about 39% and 17%,
respectively. Whereas, as hni, lowers from‘8x10'5 to 6.5°°%,
the petcentage increases =*a£e about 128% and 35%,
respectively. A tremendous rate of increase in load with
small decrease of low values of h;,, is observed. The rate

&

of increaSe in load is mhgh faster than that founé soft -

material. The rate of 1ncrease in drag is similar to that
found in soft contact. It 1s noted that -the drag at y =0 and

Yy =b" are equal becausggof the flow symmetry.
o S
In order to éﬁgdxﬁ the accuracy of the theoretical

results, a comﬁ%r1§on is made between the present

. A
theoretical results with the earlier experimental and

theoretical result’s obtained by others. For the sake of
B ‘)

comparison, hpin/(U*) 72 is'blottedf against w*/(U*)'/? 3y



55

k)

shown in Figs(36) and (37). Reasonably good

”

agreement is
found.
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~ 7" 4. CONCLUSION
A study% vas’ made_onfan]iSOthermal elastohydrodynamic
lubrication‘of materials ny both . low and' high elastic
- modull.: The descrlbed phy51cal model based on’ the concept'
.of . Hertzian, defq;matlon assoc1ated~ w1th a tllted pad‘
surface,, for materials of low elast1c modulusvwas proved to,h
be useful in predlctlng 1the~ m1n1mum f f1lm thlckness[
: min/(U )’/2,' over' a w1de range of loads, w /(U )"2'»= 0.9
to 20. “In the range of condltlons where elastlc deformation
Awas 1mportant it was found that for a glven load ;nd speed,
f the mlnimum film thlckness was much greater than the rrgld
cyllnder theory would 1nd1cate. The 1ncrease 1n m1n1mum f1lm
thlckness due to change in speed _was found - to be qulte'
N unlform along any g1ven load . o e
| ‘Results obtalned 'from:7 the theoretical analysis’
lndicated that for 'lubricatfon 1of' soft materials Hwith
?g‘;0.933 the effect. of pressure dependent v1sc051ty could
be neglected Only the effect of elast1c deformatlon should,
) be cons1dered in such cases.x HoweVer,.yfor_ lubr1cat1on f_
hard  materials  with | g'—3ooo ‘ both effects [ofV
° pressure v1scos1ty and elastic. deformatlon were found to Jbe
' \equally :Vlmportant in;‘the Lgeneratron fof the- resulting
pressure dlstrlbutlon.. Oyer:hthe 'range where deformatlon'
became 1mportant 1t was noted that for a g1ven m1n1mum f1lm'
thlckness and speed load capac1ty was much hlgher than ‘that -
: obta1ned by’ rlgld cyl1nder theory Drag and load were found
to be ;ncreased. w1th decreas1ng mlnrmum- fllm thlckness.a
o ' - e
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: Small decrease i low values of the m1n1mum f11m thlckness
*would cause a large 1ncrease in load In,othe; words, when

deformatlon-.1s slgnlflcant, _mlnlmum film - thickness - was

fslightig_dependent on ioad.i‘ ‘ 1])ﬂ ST
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Fig(21)fVelggi;y distribution at inlet
for hg, ,=0.45x10"° for elastic cylinder
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Ce v . . .0 APPENDIXT

I &\: o  % ; ;“;5   15Iﬁbu£adata ) B ‘f .._, { 

| Radius of cylinder (R) . 0.0685m -

’ Magégiax.bf cyi;nder | L rubber | |
Atmosﬁhériéxabsolutg'Yiscosity'(h95 ' ‘0.T38 Ns/m* ™
Moduiug'of eléstig}t& (EZJ | | %f24xi0‘ N/m?

Poisson's ratio (v2) | ; :"- 0.5 |

\' Cyljnéef rot;ting speed (uz) ' ' 0 ) ‘

| Slidef speed (u,) o | iQ.Sé'm/s - '2.37 ﬁ/s

Load, (w) . = ’ 525 &/mf— 57800 N/m

v [y
!

)
b



C oW

_ | APPENDIR 1. oL
' Input data for soft 'material o
Radius of. cyllnder (R, SR o - 0.0635 m
Matgrial of cyllnder A o tubber ,
TR
Atmospheric absolute v1scos1ty (uo) .'0 138 Ns/mz
. . &» L
Modulus of elast1c1ty (E ) 24x10¢ N/m2 N
Poisson's ratio (v,) OQSf e
leindéf‘fotating‘speed (uy) 0. '
Slider speed (u,) . { 1.185 m/s
Pressure v1sc051ty exponent (a) | _»‘1 45%10°* m?/N
Mmd;A)m fil %hlckness (hm,n) , A ‘ 905x10"‘mm toc
: \5t>' \S\ji::> ' - 3.81x10',2 mm .
. «
< .‘ . \ ‘
. |(\Jﬂ% f
el > {



4 .
N .

. Input daté;fo: hard material

b

\._

Radlus of cyllnders (R, R ) K 0.0508 m
"Materlal ‘of cyl1nders o ) | _  sfeél |
Atmospheric absolute viscogpity (uo) : 0.138 'Ns/m? -
:.Modulus of elast1c1ty (E,, E;) o ;2Q;7x10'°'N/ﬁf
Poisson' s rat1¢ (vy,vz) . | n-_~ 0.3 ‘ ’
‘Cylinder rotatlng,speeds"(u1, uz)_v- 1 §.O48.m/s~ :
Pressure'v{scoSify exponent‘(a) ;: i1;32x1d%',m’/§ %%
Minimgm £ilm thickness (hm,,) ,‘.1{651x10"’mm to

3.048x10°° mm



