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ABSTRACT

The empirical Bayes approach is applicable to statistical decision problems
when one is experienced with an independent sequence of Bayes decision problems
each having similar probability structure. It has been argued that much can
be gained by using the data available from the first n decision problems for the
(n+1)3t decision problem. There has been a great deal of work done on empirical
Bayes problems in the case of uncontaminated data. In this thesis (Chapters 1,
2 and 3) we extend empirical Bayes rules for the case where the observed data
are contaminated (errors in variables). Specifically, we study squared error loss
estimation and linear loss two-action problems. We construct both Bayes and
empirical Bayes rules. Asymptotic optimality and rates of convergence of the
proposed empirical Bayes rules are investigated uniformly over a class of prior
distributions for two types of error distributions.

In Chapters 4, 5 and 6 of this thesis we consider the problem of nonpara-
metric density estimation at the boundary region. Compared to interior points
estimation, this is rather formidable due to  the boundary effect” that occurs at

the boundary. We extend the local polynomial fitting method to the case of den-



sity estimation, and in particular for estimating a density at the boundary region
(Chapters 4 and 5). Optimal end-point kernels are obtained. The implementation
of bandwidth variation functions is extensively discussed. Furthermore, a new
way of removing the boundary effect is proposed. Chapter 6 proposes another
new method of boundary correction for kernel density estimation. The technique
is a kind of generalised reflection method involving reflecting a transformation
of the data. In simulations, this new method is seen to clearly outperform an
earlier generalised reflection idea. It also, overall, has advantages over boundary
kernel methods and a non-negative adaptation thereof, although the latter are

competitive in some situations.
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Introduction

The work in this thesis is presented in six papers which have been prepared

for publication.

In Chapter 1, “ Bayes and Empirical Bayes Estimation with Errors in Vari-
ables,” we consider the following estimation problem. Suppose the parameter #
is distributed according to some (prior) distribution G, and one is to estimate §
based on a random variable X with X, given 8, being distributed according to

the continuous one-parameter exponential family. That is,
Fxip(z) = u(z)c(8)e’*, — oo <z < oo,

where u(z) > 0 if and only if z > —oco and ¢(f) = (f e’*u(z)dz)™". Let the loss
function be squared error loss. But assume that X is not directly observable, and

because of measurement error or the nature of environment, one can only observe
Y=X+e¢

where the random disturbance or the random error € is independent of (X,¥8)
and has a known distribution F.. Under squared error loss, the Bayes estimator

based on the contaminated data Y = y is the posterior mean E(0|Y = y); i.e.,

b(y) = BOIY =y) = [ 0fvu(s)dG(8)/ fr(v)

Ja 0 I3 fxie(y — z)dF(z)dG(9)
fr(y) ’

where G is the prior distribution on  which is the support of G, and

fr@) = [ Fruw)dG(o)

with
fre@) = [ fruly - 2)dFsa)
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If we assume that [, [0] f22, fxie(y — z)dF(z)dG(6) < oo uniformly in y, then by
Fubini’s theorem we obtain

° By — 2)dF.(z) — %, =2 fy (y — z)dF.(z)

u(y—z)

S(y) = — I2% fx(y — z)dF(z) ’

where

Fx(z) = /Q C(0)u(z)e=dG(6).

When G is unknown, é¢ is not available. Assume that we have obtained a random
sample of contaminated data Y;,Ya,..., ¥, where Y; is distributed according to
the same marginal distribution Fy with density fy. Using these data, we are able
to construct an empirical Bayes (EB) estimator of é¢ by using the deconvolution
method. We prove that the proposed EB estimator is asymptotically optimal
uniformly over a class of priors in the sense that the Bayes risk of the EB estimator
converge to the Bayes risk of §¢ which achieves the minimum Bayes risk w.r.t.
G over all estimators for which the risk is finite.

In Chapter 2, “Empirical Bayes Estimation for the Continuous One-Parameter
Exponential Family with Errors in Variables,” we improve the results obtained in
Chapter 1. By constructing an improved EB estimator of dg, the Bayes estimator
of @, we obtain uniform convergence rates of the proposed EB estimator over a
class of priors for different types of error distributions. Since the convergence
rate of the EB estimator is extremely slow when the error distribution is ‘super-
smooth’, we propose two models in which the convergence rate can be improved
significantly.

In Chapter 3, “Empirical Bayes Two-Action Problem for the Continuous One-
Parameter Exponential Family with Errors in Variables,” we study the empirical
Bayes linear-loss two-action problem for the continuous one-parameter exponen-
tial family when the observed data are contaminated (errors in variables). A

new empirical Bayes testing rule is constructed, and its asymptotic optimality
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uniformly over a class of prior distributions is established. Uniform rates of con-
vergence of the corresponding regret (excess risk), which depend on the type of
the error distribution, are also obtained for two types of error distributions. Our
results are compared with the ‘pure’ observed data results of the literature.

In Chapter 4, “On Kernel Density Estimation near End-Points with Appli-
cation to Line Transect Sampling,” we consider the problem of estimating a
density at the boundary region and its application to line transect sampling.
Line transect estimation of population density of objects, such as animals or
plants, is intimately related to the estimation problem of f(0), the value of the
detection density at the left end-point 0. Nonparametric estimation of f(0) is
rather formidable due to boundary effects that occur in nonparametric curve
estimation. It is well known that the usual kernel density estimates require mod-
ifications when estimating the density near endpoints of the support. Here we
investigate the local polynomial smoothing technique as a possible alternative
method for the problem. This method has shown a number of advantages over
other popular nonparametric estimation methods in the case of regression func-
tion estimation. By mimicking the techniques for regression function, we obtain
a local polynomial density estimator. It is observed that our density estimator
also possesses desirable properties such as automatic adaptability for boundary
effects near end-points. We also obtain an “ optimal kernel” of order (0,2) in order
to estimate the density at the end-points as a solution of a variational problem.
Various bandwidth variation schemes are discussed and investigated in a Monte
Carlo study.

In Chapter 5, “On Nonparametric Density Estimation at the Boundary,” we
generalize the results of Chapter 4 to higher order kernel case. We propose a new
and intuitive method of removing boundary effects in density estimation. QOur
idea, which replaces the unwanted terms in the bias expansion by their estimators,

offers a new way of constructing boundary kernels. Further, we show that the
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class of boundary kernels obtained from the local polynomial fitting method is
a special case of ours. Furthermore, one easy way of constructing the optimal
end-point kernels is proposed. We also discuss the choice of bandwidth variation
functions at the boundary region. The performance of our results are numerically
analyzed in a Monte Carlo study.

In Chapter 6, we propose a new method of boundary correction for kernel
density estimation. The technique is a kind of generalised reflection method
involving reflecting a transformation of the data. The transformation depends on
a pilot estimate of the logarithmic derivative of the density at the boundary. In
simulations, the new method is seen to clearly outperform an earlier generalised
reflection idea. It also, overall, has advantages over boundary kernel methods and
a non-negative adaptation thereof, although the latter are competitive in some

situations. We also present the theory underlying the new methodology.



Chapter 1

Bayes and Empirical Bayes Estimation with

Errors in Variables

1. Introduction

Consider the following estimation problem. Suppose 8 is distributed accord-
ing to some (prior) distribution G, and one is to estimate § based on a random
variable X with X, given 6, being distributed according to some distribution
Fx|¢ with Lebesgue density fxs. Let the loss function be squared error loss. But
assume that X is not directly observable and because of measurement error or

the nature of environment, one can only observe
Y=X+c¢ (1.1)

where the random disturbance or the random error € is independent of X. Assume
that € has a known distribution F.. We investigate the problem of estimation of
0 based on Y with squared error loss. In this paper, it is of our interest to de-
velop both Bayes (in the case when G is known) and empirical Bayes (in the case
when G is unknown) estimators for the preceding problem. In Section 2 below,
we obtain the Bayes estimator of § w.r.t. G. In Section 3, an empirical Bayes (EB)

A version of this chapter has been published. Shunpu Zhang and Rohana J. Karuna-
muni. Statistics and Probability Letters. Vol. 33, 23-34, 1997.



estimator is constructed when X, given 0, is distributed according to the contin-

uous one-parameter exponential family; that is, for some a > —oo,
fxio(z) = u(z)c(8)e™ (1.2)

where u(z) > 0 if and only if z > a and ¢(0) = (f e*“u(z)dz)!.

Empirical Bayes estimators are constructed based on the data gathered from n
independent repetitions of the same component problem (-Robbins(1956,1964)).
Under the present model, then the problem occurs independently with the same
unknown G throughout, there is a sequence of independent random vectors
(6:;, X:,Y:),t = 1,2,..., where the random variables §;'s and X;’s are unobserv-
able, and the ;’s are i.i.d. with the same distribution G. Conditional on 8;, X;
is distributed according to fxjs,. Only Y:’s are observable, where ¥; = X; + ¢
with ¢; and X; are independent. For the (n + 1)*-problem, (empirical Bayes)
estimator é,(y) dependson Y3, ....Y, and Yoy =Y, n > 1.

There are a number of practical situations in which one may face with the
type of problem described above. For example, Y could be the measurement
made on an item manufactured using certain equipment. (Usually, more than
one measurements are made on successive items.) If one wishes to estimate
some parameter § of the equipment, subject to squared error loss, one may have
available measurements Y}, Yz, ..., ¥, on items manufactured using the same type
of equipment in the past.

The history of the standard empirical Bayes estimation problem is such that
the only problem that seems to have been considered thus far is the situation
where the random variables X; are observed without an error. The literature is
too extensive to warrant a complete listing here. For empirical Bayes estima-
tion in the family (1.2) see, for instance, Yu(1970), Hannan and Macky(1971),
Lin(1975), Efron and Morris(1973), Singh(1976, 1979), Van Houwelingen and



Stijnen(1983) and Singh and Wei(1992). For additional references, the reader is
referred to the monograph of Maritz and Lwin(1989).

The proposed EB estimator and its asymptotic optimality are given in Section
3. Proofs of the main results are deferred to Section 4. Results of a simulation

study are given in Section 5. Section 6 contains concluding remarks.

2. The Bayes Estimator

Under squared error loss, the Bayes estimator based on the contaminated

data Y = y is the posterior mean E(8]Y = y); i.e.,

oy) = EOIY =) = [ 0fve(u)dG(0)/ fr w),

where G is the prior distribution on {2 and
frt) = [ frio(y)dG(o) (2.1)
with
y—a
fru@) = [ fxuly — 2)dF(2).

Then

boly) = I fxlo(;yzy-’;!)ch(z)dG(a) .

If we assume that [y |0] [ fxje(y — z)dF.(z)dG(0) < oo uniformly in y and if
fx|e is given by (1.2), then by Fubini’s theorem we obtain

_ 22 JaOfxu(y — 2)dG(6)dF(z)

éc(y) fr(y)
Jis Sy = 2)dF(a) - [ Sl fr (y — 2)dF(z)
= . (2.2)
fr(y)



where
fx(z)= /Q C(8)u(z)e*dG(6) (2.3)

with u(z) is as given in (1.1) and u()(z) denotes the first derivative of u(z).
When a = —o0, then (2.2) becomes

> [ - =)dF(e) ~ [, 8 £ (y — 2)dFo(z)

bc(y) = = ey — 2)dF(2) (2.4)

Example 2.1. Consider the exponential family in (1.2) with u(z) = e==/2 and
C(8) = (27)~1/2e~%/2; that is, for each —oo < 8 < 00, fxjs(z) = (27) V2~ (==9/2,
where —0o0 < £ < co. Then } = (—00,00) and @ = —oo0. Then the Bayes esti-

mator ég(y) given by (2.4) is equal to
2, 2 =y — 7 — ) ST dG(6)dF (=)
< 2% Fme” T dG(0)dF (=)

—z—a)

f.«,(y —z) [So Fpme” “=%4G(6)dF. (r)
=, %0 e dG(0)dF (2)

bc(y) =

(2.5)

Further, suppose that the prior on Q is Go = Normal(0,1). Then (2.5) reduces
to
—z)2
— 1%, ey — )~ S dF(a) + %00 - 2) e 4R (z)
o me‘ = 4"'dF¢(x)

[2.(y — 2" dF(a)
2 f= e~ 4F,(z)

600 (y )

Example 2.2. Consider the scale exponential family with Lebesgue densities
given by fxje(z) = 8e~% for z > 0, where 8 > 0. Then 2 = (0,00) and a = 0.
Then the Bayes estimator ég(y) given by (2.2) is equal to

Lo [ 82" 0~=1dG(8)dF(z)

o) = R T 0 RGO (2) (20

8



Further, suppose that the prior on Q is Go = Gamma(a, 8),a > 0,8 > 0. Then

the Bayes estimator (2.6) reduces to

20 B(B+ 1) 2o dFo(2)
2o B=5apprrdFe(2)

B+1) ¥ (y — z+a)"P*DdF (z)
oy —z+a)"BHIdF (z)

b6, (y)

3. An Empirical Bayes Estimator

In this section we shall consider the case where the prior G is not completely
known. Assume that a sequence of contaminated observations Y;,Y3,...,Y, is
available, where Y;’s are i.i.d. according to the marginal distribution Fy with
density fy given by (2.1) when fxs is given by (1.2). At the (n + 1)* problem,
the estimator 6, is allowed to depend on all of the past observations as well as
the (n + 1)* observation. Hence, é, is a measurable function of Y1, Y2, ..., ¥, and
Ya+1 =Y. In order to construct &,, we shall first construct estimators of fx and

M) based on ¥4, 2, ..., Ya, where fx is given by (2.3) and fi) is the first derivative
of fx. Let ¢, denote the characteristic function of the error variable €. Let q:':,,
denote the empirical characterisric function defined by @n(t) = % 1 exp(itY;).
For a nice kernel K, let ¢x be its Fourier transform with ¢x(0)=l. For z > 0,

then we define

fO(z) = 51; / : exp(—~itz)(—it) i (ths) ‘2"((:)) dt (3.1)

as our (kernel) estimator of f()(z), { = 0, 1, where A, is the bandwidth (k, — 0 as
n — 00). Here we assume that [t'¢x(thn)/dc(t)| is integrable on (—o0,00). The
construction of (3.1) is due to Stefanski and Carroll(1990). A similar construction
is studied by Fan(1991a,b; 1992) and Zhang(1990). In the special case when /=0,
denote f) by f,. Under the model (1.1), the estimator (3.1) can be rewritten in



the kernel form

1 & z-Y;
fv(xl)(z) = nhi+l ZIK"‘( A J)a (3.2)
n j= n

where

) —it)
Ku(z) = -21; /_ - exp(—itz)%g—t)-dt.

In view of (2.2), we shall estimate ¢ through fx and f{). Let

158 fWO(y — 2)dF(z) — V72 W=D £ (y — 7)dF,(z)

Suly) = = -2 M) 3.
w fa(y) (33
with
)= { A= DRG) S AR > A
An otherwise,

and f) being the type of kernel estimator of f{ given by (3.1) for [ = 0, 1, where
A, is a sequence of positive numbers such that A, — 0 as n — co. Let R(é,,G)
denote the Bayes risk of 6, given by (3.3) w.r.t. G. Then R(6,,G) = E(é, —0)?,
where the expectation F is over the random variables Y1, Y3, ..., Y5, Yoy and 6.
For the Bayes estimator ¢ given by (2.2), R(ég,G) achieves the minimum Bayes
risk w.r.t.G. That is, R(ég,G) = infs R(d,G), where the infinimum is over all
estimators d for which R(d,G) < oo. For convenience, denote R(é¢g, G) by R(G).
Then R(G) is the Bayes envelope value of the problem. This motivates the use

of the excess risk (regret)
R(6.,G) — R(G) = E(6, — §)* - E(bc — 6)?

as a measure of goodness of the estimator §,. Restricting G to those with finite

Bayes risk, the excess risk satisfies (Lemma 2.1 of Singh(1979))

0 < R(6,,G) — R(G) = E(6, — 6c)*. (3.5)

10



Empirical Bayes estimator 6, is said to be asymptotically optimal if limy,—.co R(én, G)
= R(G) (-Robbins(1956,1964)). To state main results of this paper, which es-
tablish the asymptotic optimality of the EB estimator §, given by (3.3) under
various conditions, we need following assumptions on the kernel and the error e:
(A1) K(-) is bounded, continuous and [ [z|*K(z)dz < co.

(A2) The Fourier transform ¢x of K is a symmetric function and satisfies
Pr(t) =1+ O(|t|?), as t — 0.

(A3) ¢x(t) =0, for [¢| > 1.

(A4) The characteristic function ¢, of € satisfies @¢(¢) # 0, for any ¢.

(AS5) |#e(t)||t|exp(|t|P/¥) = do (as t — oo) for some positive constants 8,7, do
and a constant Sp.

(A6) |[t'dx(thy)/dc(t)| is integrable on (—o0,00), [ =0, 1.

(A7) |¢(t)tP] > dg as t — oo, for some positive constants dy and 3.

(A8) S |¢r(t)tPH|dt < oo and [, |$x(t)tPH|2dt < oo, for some positive con-

stant S and [ =0, 1.

The assumptions (A1),(A2) and (A3) imply that K is a second-order kernel
function.

For convenience, consider the following class of priors

Fs = {G:G isaprioron Q such that sup|fx(z)|< B
with fx is given by (2.3)} (3.6)

for some finite positive constant B.

Theorem 3.1. Let fxjg be given by (1.2) with a = —o0. Let G € Fg, where
Fp is given by (3.6). Further, suppose that the distributions G and F, are
such that fx given by (2.3) is twice differentiable on (—o0, 00), fq 82dG(8) < oo,

11



o S 101t (y—2)dF{(2)dG(8) < o0 niformly iny, and E [, (458=51)" dF (=)
< oco. Furthermore, assume that the condtions (A1) to (A6) hold. Then, for the
bandwidth k, = O((log n)~*/?) and the sequence A, = o((logn)~'/?) (see (3.4)),

we have
n]-i{g R(8s,G) = R(G), (3.7)

where R(6,,G) is the Bayes risk of the EB estimator 6, defined by (3.3) with

a = —o0, and R(G) is the minimum Bayes risk.

Theorem 3.2. Assume that the hypotheses of Theorem 3.1 hold now with
the conditions (A1) to (A8) replaced by the conditions (A1) to (A4),(A6),(AT)
and (A8). Then, for the bandwidth &, = O(n~Y/#+5) and A, = o(n=1/(B+5)),

we have
nli.%lo R(6,,G) = R(G). (3.8)

The distributions normal and Cauchy satisfy the assumption (AS5) above,
whereas gamma and double exponential satisfy (A7). A kernel satisfying (A1),
(A2), (A3) and (A8) can be easily constructed; see, e.g., Fan(1991a,b;1992).
We now revisit Example 2.1 and investigate the validity of assumptions made in

theorems above for this example.
Example 2.1 (continued). Let the error distribution F, = Normal(0,1). Then
. satisfies (A4) and (AS5) with 8 = 2. Since fxjo(z) = 7‘;;(3"("’)2/ 2, we have

fr(e) = [ Fx(@)dG(0) = —= [~ =9 1taG ()

for any prior on Q = (—o0,00). Hence, by Theorem 2.9 of Lehmann(1959), one

obtains
Wy L _(r— g)e-(==00/2
Pz)= o= /_ _~(z=0)e dG(6)

12



and
@y L [P a2 (072 U —(z-6)2/2
(e) = 7= /_ (@ 0y 4G(0) ~ = /_‘: e dG(8).
Then
sup lfg)(z)lgB, where B =4/2/7; for any G.

Also, it is easy to show that [, [ 10| fxs(y — z)dF(z)dG(0) < oo uniformly

in y. Denote
p=E [/_: (-’%gfz‘;—))zdﬂ(z)] .
Then

p=E [ I :(Y _ x)zda(z)] <2EY?*+ [ : 22dF.(z), where

EY? = /:yzfy(y)dy

= /_m y? [m fx(y — z)dFe(z)dy
% /-: y’ /:: _/:: g"(v-:-a)2/2e-z2/2dzdde(e)
G /;: -O:o yze’(y’e)z/*‘dde(g)
o] o0 _ 2 -(y—0)2/4 o0 2
% /_oo /:oo(y b dydG(0)Cs /_ _ 6°dG(6)

Cz + Cs / )

n Al

IN

where C;, C, and Cj are some finite positive constants. Thus, p < oo if [2, 62dG(6)
< oo. That is, if G is such that [ 62dG(6) < B, then the assumptions of
Theorem 3.1 are satisfied. Similarly, for fxje(z) = 71276-(;--0)2/2 , it is easy to
show that the assumptions of Theorem 3.2 are satisfied if [%_ 6?dG(0) < B and

F. = Gamma(l, p) distribution for some constant p > 1.
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4. Proofs

In this section we prove Theorem 3.1 above. The proof of Theorems 3.2 is
similar. First, we state two lemmas useful in proving these theorems. For proofs

of the lemmas, see, e.g., Fan(1990a,b; 1992).

Lemma 4.1. Under the assumptions of (A1) to (A6) and with the choice
hn = O((log n)~2/#) of the bandwidth, one has

sup  sup E|f0(z) — £ ()| < Const. x (logn)~22-/% (4¢.1)
~co<zrLoo GEFp

for | = 0,1, where f¥(z), fx(z) and Fp are given by (3.1),(2.3) and (3.6), re-

spectively.

Lemma 4.2. Under the assumptions of (A1) to (A4),(A6),(A7) and (AS8),
and with the choice A, = O(n~1/(#+5)) of the bandwidth, one has
sup sup E|f(z) - fxgé)(:v)l2 < Const. x n~22-0/(8+5) (4.2)
-oLz<oo GEFp
for = 0,1, wheref¥)(z), fx(z) and Fjp are given by (3.1),(2.3) and (3.6), respec-
tively.

Proof of Theorem 3.1. From (2.2) and (3.3) with 2 = —oo and by (3.5),

we obtain

(> =]

0 B8, )~ RG) = [ E(&aly) - 6a(v) fr(w)dy, (+3)

where E denotes the expectation w.r.t. ¥1,Y3,...,¥; and 0. From (2.2) and (3.3)
together with the C, — inequality (Loéve (1963), p. 157) yield

E(6x(y) - 6c(v))?

< 2F

[f:‘; (fy — =) = fi'(y = 2))dF(z)
fa(y)
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oo, W08 (. (y — 7) — fx(y —2))dF=)]
fa()

fl’(y) fn(y)z §2
28 [( fa(@) )] o)

<

o [ [l =2) - P~ )dm)]
fa(y)?

u { (12, S22 faly — 2) — fxly x))dn(z)]’}

Fay)?

fr(®) = faly)
faly) ) (+4)

Since f,(y) > A, (see (3.4)) and by the moment inequality , one obtains

125306

the 1*term of RHS of (4.4) <4A7°E [ Z Oy —z) — fO(y — 2))*dF.(z)
=427 [7 E(fO(y - 2) — fP(y ~ 2))*dFe(2)(4.5)

Similarly,

0 Uy —
the 2"term of RHS of (44) < 4A7? (_" (v 3))
u(y — z)

E(fM(y —z) — f(y ~ 2))%dF(z). (4.6)

-0

Now consider

@) =R\ () = f@))
( fa(®) ) - E( NN )I[f (¥) 2 A

v (HZ 50 )f"(”)) Ifv(y) < Ad
= Jl,n + J2 ns (4-7)

where J; , and Jp, are the first and second terms of RHS of (4.7). By definition
(3.4) of f.(y), we note that

Jin < ATE(fa(y) = fr@)?Ifr(y) 2 Al (4.8)
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= 87E{(far) — S @IPI [ faly — 2)dF2)]| 2 Ad]

+(ale) = S @PI [ Faly = 2)dFU)] < Anl} T (y) 2 4]
= ATE {( = 5ty = 2)EL@) ~ 5 @) 11 [ faly = 2)dF)] 2 )
HBa = fr @I [ faly = 2)dFU@)] < Bul}HTfr(y) 2 Al
87E{([ fuly~2)iFs2) ~ fe @I [ fuly ~ 2)dF(2)] 2 Ad]
(" faly - 2)Fe) ~ @V [ fuly - 2)F@)] < Bl
I(fr 2 A)
= A7E ([ (aly —2) - fxly = )] Tlfr 2 2]
< A B(faly - 2) - fxly — 2)PdF@)HIfr 2 Ad)

A

by the moment inequality. By combining (4.4),(4.5),(4.6),(4.7),(4.8) and using
the fact that Jo, < 4I(fy(y) < An), we obtain

E(éa(y) ~ bc(y))*

N

wn:*{ [T B0y - ) - O - 2)dF(z)
=) u(l)(y 2:)
+EWIr(w) 2 &) [ : Efaly ~2) - fx(y ~ 2)dF =)}
HBW)[fr(y) < A
CiAZ? { (logn)~%/* / ® dF(z)

s [ (=) 4

+(log )P 5%(y)I[fr(y) = Anl}
+46é(y)l[f1’(y) < An]: (4'9)

IN
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where the last inequality is obtained using Lemma 4.1 and C, is a constant

independent of n and y. Now from (4.9), we see that

E(6.(y) — 86(y))* < M(y),

where M(y) = Cs + Cs [ (“20=21)" dF.(z) + C16%4(y), with Cs,Ce and Cr
being constants independent of n and y. Observe that [, M(y)fr(y)dy <
oo by the assumptions of Theorem 3.1. Also, from (4.9) with the choice of
An = o(logn)~1/#), we see that limn—. E(82(y) — c(y))? = 0 for each fixed
y. Then, by an application of the dominated convergence theorem, we obtain

limn—co /<, E(6:(y) — 6c(v))*fr(y)dy = 0, under the assumptions of Theorem
3.1. The result (3.7) now follows in view of (4.3).

Proof of Theorem 3.2. The proof of (3.8) is verbatim the same as that of
Theorem 3.1, except now that A, = o(n"*/(#+%)) and Lemma 4.2 are used in-

stead of A, = o((logn)~/#) and Lemma 4.1.

5. Simulation Results

To study the convergence of the regret R(6,,G) — R(G) of the proposed
estimator (3.3), we have conducted simulation studies, and some of the results
are reported here. Specifically, the following two cases of the results are presented

here.

Case I: We take fxpp(z) = Vt-;e‘(”a)z/z, prior g(4) = 7%;6-02/2, —00<8< oo,
and the error distribution F, as the standard normal distribution. Further, we

assume that the bandwidth k, = v/2(logn)~'/? and the sequence A, in (3.4) as
A, = V3(logn)~1.

17



Case II: Here, we take fxjp(z) = 712_1(3-(1_9):/2, g(8) = ;7‘2—";'”2/2 and the er-
ror distribution F. as Gamma(l,1) dsitribution. Also, we assume h, = n-1/6
and A, =n"1/4,

For both cases, we used a second-order kernel,

48cos T ( 15) l44sinz

1 — =
rxs

5
3 2~-—=), —oo<z <00
z z

K(z) =

rzd
The Fourier transform of the above kernel is ¢x(t) = (1 —¢?)% for [t| < 1 and
éx(t) = 0 otherwise. Then the deconvolution kernel density estimator (3.2) is
with the following kernel

t2

*2—’;?) dt, l= 0, 1.

Ku(z) = (—Erl—)l—/a1 t!(cos tz) ! (sintz)!(1 — t*)exp (

Under the above specifications, we calculated the regret R(6.,G) — R(G) (see
(3.5)) of our estimator for n ranging from 10 to 300. The integrals in the estima-
tor (3.3) are evaluated by numerical integration. For the two cases considered,
our simulation results are exhibited in Figure 1. The figure represents the be-
haviour of the regret R(6,,G) — R(G) as n ranges from 10 to 300.

Figure 1 about here

We find that the regret decreases to zero faster in Case II than in Case I
That is, the rate of convergence of the regret appears faster in Case II compared
to Case I, see Section 6 for more elaboration on this issue. A number of the other
variations of the cases I and II were also considered. Again, the patterns were
very similar to those of Figure 1. Overall, the simulation results indicate that the
nature of convergence is fairly satisfactory for moderate values of n. For small

values of n (n < 30), the convergence is slightly conservative.
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6. Concluding Remarks

In this paper we have introduced both Bayes and empirical Bayes problems
with contaminated data (errors in variables) and obtained Bayes and empirical
Bayes estimators under the squared error loss. In the latter case, it is shown that
the proposed empirical Bayes estimator is asymptotically optimal. For these re-
sults, we only assume that the prior G has first few absolute moments finite. In
the empirical Bayes estimation problem considered here, we can obtain rates of
convergence for the regret R(6,,G) — R(G). However, the techniques involved in
obtaining such rate results are markedly different from the approach used here.
As the referee correctly guessed, the rate of convergence of the regret is extremely
slow when the characteristic function of the error variable satisfies the condition
(A5). However, when ¢, the characteristic function of e, satisfies the condition
(A7) then the rate of convergence of the regret is rather comparable when com-
pared with the direct (or pure) data case, see Zhang and Karunamuni (1995)
for more details. Our results revealed that the presence of errors in observation
affect the performance of empirical Bayes estimators. In applications, thus, one
needs extra care in identifying the error distribution if errors are likely to occur
in observation.

A great deal of work has been done recently with measurement error models
(errors in variables) in the nonparametric front; see, e.g., the work of Stefanski
and Carroll(1990) and Fan(1991a,b; 1992) and the references therein. However,
to the best of our knowledge, no work is reported in the literature on either
Bayesian or empirical Bayesian settings with errors in variables. We believe that

the present work will fill in this gap a little, and clearly further research is needed.
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Chapter 2

Empirical Bayes Estimation for the Continuous
One-Parameter Exponential Family with

Errors in Variables

1. Introduction

The empirical Bayes approach of Robbins [14, 15] is applicable to statisti-
cal decision problems when one is experienced with an independent sequence of
Bayes decision problems each having similar structure. The statistical similarity
in these decision problems includes the assumption of an unknown prior distri-
bution G on the parameter space involved. Robbins argued that much can be
gained by using the empirical Bayes approach which uses the data available in
the first n decision problems in the (n + 1) decision problem. Since Robbins’s
initiation of this idea, many papers evolved on developing empirical Bayes proce-
dures and their asymptotic properties as the number of problems, n, approaches
infinity; see, e.g., the monograph of Maritz and Lwin [13] and the review article

of Susarla [20]. Most of these empirical Bayes methods have treated situations in

A version of this chapter has been accepted for publication. Shunpu Zhang and Rohana

J. Karunamuni. Statistics and Decisions. Vol. 15, 1997

23



which the observed data is uncontaminated.

Work on empirical Bayes problems in which the observed data is contaminated
( errors in variables) first appeared in Zhang and Karunamuni [24]. They discuss
both Bayes and empirical Bayes problems of squared error loss estimation and
exhibit an asymptotically optimal empirical Bayes estimator for the continuous
one-parameter exponential family. In this paper, we study an improved empirical
Bayes estimator and investigate the rates of convergence of the corresponding
regret (excess risk).

Section 2 describes the estimation problem in the one-parameter exponential
family and its empirical Bayes analogue with errors in variables. It also constructs
the proposed empirical Bayes estimator, which is the subject of our investigation.
Section 3 discusses the performance of our empirical Bayes estimator. In particu-
lar, uniform rates of convergence results of the corresponding regret are exhibited
for two types of error distributions (here, the uniformity is over a class of prior
distributions, G). Compared to the ‘pure’ data case, a slow rate of convergence
is observed. However, it appears that this is an inherent expense that one has to
pay when dealing with contaminated data. Proofs of the main results are given
in Section 3. Section 4 discusses possible adjustments to improve the slow rate
of convergence of some results in Section 2.

There has been a great deal of work done on empirical Bayes problems, in
particular on squared error loss estimation problem for exponential families, in
the case when the data is not contaminated; see, for example, the work of Yu
[22], Hannan and Macky [10], Lin [12], Efron and Morris [6], Singh [16, 17], Van
Houwelingen and Stijnen [21], Singh and Wei [18] and Datta [3, 4, 5], among

others.
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2. The Empirical Bayes Estimation Problem with Errors

in Variables

Let (X, ) be a random vector, where 8 has a prior distribution G and,
given #, X has a density fxjs(z) with respect to Lebesgue measure on the real
line. The pair (X, 8) is unobservable. Instead we observe Y, where Y = X + ¢
with € denoting the random error. We assume that e is independent of (X, ) and
has a known distribution F.. This is the situation one generally encounters in
analyzing contaminated ( errors in variables) data due to the measurement error
or due to the nature of the environment. In this paper, we assume that fx(z)

is the one-parameter exponential family, i.e.,
Fxip(z) = u(z)c(8)e’*, —0 < z < 00, (2.1)

where u(z) > 0, c(d) = [[ e’ u(z)dz]™ and Q = {8 : ¢(d) > 0}, the natural
parameter space. Consider the Bayes statistical decision problem for squared
error loss estimation of § using Y. If [y 0] [, fxe(y — z)dF.(z)dG(8) < oo
uniformly in y, the Bayes decision rule can be shown to be (see Zhang and

Karunamuni [24])

% Oy — z)dF(z) — [%, L2023 £ (4 — 2)dF(z)

5G(y)= - -co fx(yjoz)':;}zz;) y (2'2)
where
fx(z) = /ﬂ o(8)u(z)e*dG(9) (2.3)

and vV and f,({l’ denote the first derivatives of u and fx, respectively. The Bayes
estimate ¢ minimizies the risk among all estimates. Its Bayes risk w.r.t. G is
denoted by R(G), the Bayes envelope value of the problem. If G is known, then
we can use 8¢ and attain B(G). (It is assumed that G is such that R(G) < .)
This paper considers the case that G exists but it is completely unknown.
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Suppose now that the above decision problem occurs (n + 1)-times leading to
the random vectors (6;, X;, Y;,€),t = 1,2, ...,n + 1, where the each pair (6;, X;)
has the same probability structure as (8, X) given above, Y; = X; + ¢;, and the
X:’s and the ¢;’s are independent. The random vectors {(8;, X;, €;)}24 are unob-
servable and {Yj,..., ¥a41} is the only available observable data at the (n + 1)*
problem. In this setup, a generalization of the empirical Bayes approach of Rob-
bins [14, 15] is applicable wherein one constructs estimates of the form é,(y) =
6n(y; Y1,...,Y5) with Y41 = y to estimate 0,4,. Since E(0p.41|Y1,.... Yas1) =
E(6n41|Yn41), it follows that ég defined by (2.2) continues to be Bayes in the

empirical Bayes problem. This motivates the use of the excess risk (regret)

R(én,G) — R(G) as a measure of goodness of the estimator &,.

DEFINITION 2.1. A sequence of estimates {§,} is said to be asymptotically

optimal w.r.t. G with order a, if
0 £ R(6,,G) — R(G) < c1a,,

where ¢; is a positive constant (independent of n but may depend on G) and

{a.} is a sequence of positive numbers such that a, — 0 as n — oo.

DEFINITION 2.2. A sequence of estimates {6,} is said to be asymptotically

optimal uniformly over a class of priors G with order b, if
0 < sup(R(én, G) — R(G)) < c3b,,
Geg

where c; is a positive constant (independent of » but may depend on G) and {5,}
is a sequence of posotive numbers such that b, — 0 as n — oo.
We shall find the sequence {b,} in Definition 2.2 for the following empirical

Bayes estimator 6,. Our §, is motivated by the fact that in view of the right
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hand side of (2.2), we need good estimators of fx and fg) based on Yi,..., Y,.
We use following kernel estimators of f)(P(l =0,1; f(o) = fx).

Let ¢.(t) denote the characteristic function of the error variable . Let ¢,
denote the empirical characterisric function defined by ¢,(t) = T exp(itY;).
For a nice symmetric ( about 0) kernel K, let ¢x be its Fourier transform with
éx(0)=L1. If the function [t/ (th.)/d(t)] is integrable, define the kernel estima-

tor

() = 2L / > ezp(~itz)(—it)’¢x(th,,)q;"(t)dt (2.4)

T J=co (ﬁe(t)

as the estimator of fi'(z), where k., is the bandwidth ( b, — 0 as n — oo). This
type of estimators are proposed by Stefanski and Carroll {19] and exclusively

studied by Carroll and Hall [2] and Fan [7, 8 ,9]. Define

00 s\l
Kou(z) = -2—17; /_ ) ezp(—itz)(—q-;—g—/‘é,%tldt.

Note that (2.4) can be rewritten as a kernel type of estimate

1 & r-Y;
fr(zl)(x) = nRHL Z;Knl(—’:—i),l =0,1. (2.5)
n = n

The fact that ¢x is real-valued and even implies that K, is real-valued, and so
is f{)(z); see Stefanski and Carroll [19] for more details. In view of (2.2), we can

estimate 6 through fx and fg), where fx is given by (2.3). We define

% fD(y — z)dF(z) — [, XU £ (4 — £)dF.(2)

~0 “u(y-z)

on(y) = &~ 2)dF(z) (2.6)

At
as our estimate of ég, where for ¢ > 0, [b]. is ~¢, b or ¢ according as b < —c,
5] < ¢, or b> ¢, and f (1 =0,1; fO = f,) are given by (2.5). The preceeding

idea of truncation is due to Singh [17].
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Let R(6n,G) denote the Bayes risk of (2.6) w.r.t. G. Restricting to G to
those with finite Bayes risk, then the excess risk R(6,,G) — R(G) satisfies ( by
an application of Lemma 2.1 of Singh [17])

0 < R(6x,G) — R(G) = E(6, — 65)%, (2.7)

where R(G) is the Bayes envelope value and é¢ is given by (2.2). Rates of con-
vergence of the right hand side of (2.7) are given in the theorems below. First,
we state some basic assumptions on the kernel K and the error variable . More

assumptions will be given in the theorems.

(A1) The kernel K is a symmetric function about 0 on (—o0, o) and is of order
k. That is, K satisfies f°0 K(y)dy =1, [ y’K(y)dy =0for j = 1,....k — 1,
and [, y*K (y)dy # 0.

(A2) |6:()] > 0 for all ¢.

We also need to impose some smoothness conditions on the unknown densities

fx's given by (2.3). Define
Fair = {G: G is a prior on § such that sup |f¥‘)(x)[ < B} (2.8)

for some finite constant B > 0 and an integer £ > 1.

THEOREM 2.1. For any G € Fpx, suppose that the distributions G and F.
(the distribution of €) satisfy fq I3, |01 fx1s(y — z)dF.(z)dG(8) < oo uniformly in
y. Further, suppose that (A1) and (A2) hold and the following conditions are
satisfied:

(B1) ¢k(t) =0 for |t| 2 1;

(B2) |&e(t)l[t]~Poezp(|t]?/v) = do (ast — o0) for some positive constants B,~, do
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and a constant Bo;

(B3) for some § (L <6< 1) and§>0

o |y)(Y — z) ]ﬁgﬂy 25(1+€
E ———=| dF, < 00, ElY|G-29 < oo,
R T T R Rt

u(Y — z)
w(Y — z)

sup E{IYIHE [/“’

GeFpx -0

dF((x)] } <o

and
(B4) for somet’ >1

—1)\ -1
sup EclO[** (E'GIOI'L’—z(:"”)) < co.
F

GeFp .k
Then, by choosing the bandwidth h, = (4/7)Y?(log n) /8, we have
sup [R(8x,G) — R(G)] = O ((logn)™**1/7), (29)
GeFpg .k

where 6, is given by (2.6).

THEOREM 2.2. For any G € Fax, suppose that the distributions G and F.
(the distribution of €) satisfy fo J2o 101 fx1e(y — z)dF,(z)dG(8) < oo uniformly
in y. Further, suppose that (A1), (A2), (B3) and (B4) hold and the following
conditions are satisfied:

(C1) =, |6k (t)tPH|dt < oo and [, |pxc(2)tPH 2 dt < oo, for some constants
8>0andl=0,1, and

(C2) |8c(£)tP| = do as t — oo, for some constants do >0 and § 2 0.

Then, by choosing the bandwidth h, = O (n‘ll (2("“"’)“)), we have

sup [RB(6n,G) — R(G)] = O (n~2K-1/(k+0}+1)) (2.10)
GE€Fpx

REMARK 2.1. The examples of error distributions satisfying (B2) are normal,
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mixture normal and Cauchy, and the examples of distributions satisfying (C2)
include gamma, double exponential and symmetric gamma distributions. These

two types of distributions are called ‘supersmooth’ and ‘ordinary smooth’ distri-

butions, respectively (Fan [7, 8, 9]).

REMARK 2.2. The rates of convergence in Theorem 2.1 is extremely slow com-
pared to that of Theorem 2.2. This fact can be attributed to the smoothness of
the distribution of the error variable €. From the proofs below, it will be clear
that the rates of convergence of the regret R(6,,G) — R(G) are obtained via the
rates of convergence results of (E f{)(z)— ff‘f)(:z)) and Varf{)(z),l = 0,1 for each
z, where f{)(z) is given by (2.5). Estimation of fx (the marginal density of X,
see (2.3)) and its derivatives based on Y, knowing Fr, is a deconvolution problem;
see, e.g., Stafanski and Carroll [19] and Fan (7, 8, 9]. It is well-known now in
the nonparametric deconvolution literature that the smoother the error distribu-
tion F. is, the harder the deconvolution will be; see Fan [7] for further details
on this point. We believe that the deconvolution is rather inevitable in the EB

estimation problem we discussed above when dealing with the contaminated data.

REMARK 2.3. In practice, the conditions in Theorems 2.1 and 2.2 are easy
to verify, see the examples given below. The rate of convergence of Theorem 2.2
is rather compatible (but slightly slower) with the rate obtained in Singh [17] for
the direct (or pure) data case. From a practical point of view this means that
the errors which have an ordinary smooth distribution cause a little damage to
the performance of the proposed EB estimator. But, the errors which have a

supersmooth distribution will have a considerable effect on the performance of

the EB estimator.
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REMARK 2.4. A kernel which satisfies conditions (A1) and (B1) can be con-
structed as follows: First, choose a real-valued symmetric function ¢x with the
support [—1,1] and satisfying ¢x = 1 + 0(¢¥). For example, for k = 2, take

¢x(t)={ (1-£)3 f-1<t<l

0 otherwise.

(2.11)

Then, the Fourier inverse K of ¢k is a k** order kernel function since ¢x(0) =1
entails [, K(t)dt =1 and

o Q
/ t'K(t)dt = ¢"i[(0) =0, forl=1,...k—1.

For example, the Fourier inverse of (2.11) is

48 cost 15 144sint 5
_—) - 2—- = — . 12
—t (1 t2) s ( ) o <t<oo.  (212)

2
REMARK 2.5. Assumption (A1) simply says that K'(-) is a k¥** order kernel. As-

K(t) =

sumption (A2) ensures that the true density fx(z)is idetifiable from the model
Y = X +e. Assumption (B1) is only required for Theorem 2.1, where the tail of
the characteristic function of the error distribution € converges to 0 at an expo-
nential rate. In Theorem 2.2, this assumption is relaxed to (C1). (B3) and (B4)
are technical assumptions for achieving the rates of convergence of the regret in

the theorems.

It is worthy to note that (C2) includes the model where only 100p% (0 <

p < 1) of the data are obtaibed with error and the remaining data are error-free.

That is
Y=X+e (2.13)

with P(e = 0) = 1 ~ p and P(e = €*) = p, where € is the error variable with
distribution F.. and the characteristic function ¢..(t). Denote the characteristic
function of € by &... Then

$e(t) = (1 — p) + pdes (). (2.14)
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If Re(ges) > 0, then |@(t)] > 1 — p. Here ‘Re’ means the real-part of ¢... Thus,
¢ satisfies (C2) with 8 = 0 no matter what the ¢" is, supersmooth or ordinary

smooth.

COROLLARY 2.1. For any G € Fgx, suppose that the distributions G and
F. satisfy fq [, 6] fx16(y — z)dF(z)dG(8) < oo uniformly in y. Further, sup-
pose that (A1), (B3), (B4) hold and the following conditions are satisfied:
(D1) [ | (t)t'|dt < oo and [, |¢x(t)t'*dt < co, for I =0, 1.

(D2) Re(¢e-(t)) 20, for all t.

Then, by choosing the bandwidth h, = O (n"ll (2""’1)), we have

sup [R(6;,G) — R(G)] = O (n—2k6-1/@k+1)) (2.15)
GEFp.k

Corollary 2.1 is a direct consequence of Theorem 2.2. The proof will be omitted.

When the error distribution is ‘supersmooth’, the rate of convergence in The-
orem 2.1 is too slow to be practical. Since the very common normal distribution
is supersmooth, it is natural to find some ways by which the rates of convergence
can be improved. However, Corollary 2.1 exhibits that the rate is not much af-
fected if the data are partly contaminated even if the error € is supersmooth. We
now propose another model, under which the rate of convergence can be as good

as that we obtained from the uncontaminated data.

Assume that all the data were contaminated but the noise level can be con-

trolled. That is

Y=X+g¢, (2.16)
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where € = o€, 0o parametrizes the noise level. Then
$e(t) = pe(oot)- (2.17)

With the corresponding EB estimator defined by (2.6), we have

THEOREM 2.3. Let 0o = O(n~Y@ ) for some positive constant c. For
any G € Fpx, suppose that the distributions G and F satisfy [ /23, 10| fxie(y —
z)dF.(z)dG(0) < oo uniformly in y. Further, suppose that (A1), (A2) with € is
replaced by €, (B3) and (B4) hold and the following condition is satisfied.

(B1) [, |éx(t)t![2dt < oo.

Then, by choosing the bandwidth h, = O (n‘l/ (2"“)) , we have

sup [R(6,,G) — R(G)] = O (n~2k5-1/C2k+1)) (2.18)
GEFp .k

EXAMPLE 1. Consider the exponential family in (2.1) with u(z) = e~='/? and
c(6) = (2r)"Y2e~%/2. Then fxpe(z) = (27)2e~E=0/2 _o0 < £ < 00. Also,
the natural parameter space @ = (—o0,00). The marginal density (2.3) of X is
now

fx(z) = @r)~? / T =124 ). (2.19)
Case (1): Suppose that the error distribution F, is N(0,1). Then ¢, satisfies
(B2) with 4 = 2. From (2.19), by repeated differentiation under the integral

sign (by Theorem 2.9 of Lehmann [11]), we obtain
#(z) = (~1)* [~ Hi(e - )fxu(2)dG(0)

for any G, where Hj is the k** Hermite polynomial. Thus, sup, | fj(f)(z)l <
(27)"1/2 %, |aj|, for any G, where a; is the j* coefficient of the k** Her-

mite polynomial. Therefore, G € Fp,, where B = (2m)-1/2 2;5:0 la;|. Also,
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Ja J22, 161 fxin(y ~ 2)dF(2)dG(8) < [, 161dG(8) < oo if Eglf] < co. Since
WWy—z) _ —(y — z), we have

u(y—z)

u(y —z)

o) | =W [ leldF@) < Iyl + €y

L.

for some finite constant C;. By the C,-inequality,

uM(y — )

< Csly|®/0- 1+ C,
u(y — z)

25/(1~26)
ng(z))

(o 2]

(L

for some finite constants Cs and C,. Thus, to verify (B3) , it is enough to prove
SUPGeFy E|Y[#0+8/(0-2) < oo for some k™! < § < 1/2 and £ > 0. Now, the

marginal density of Y is

Few) = [ frly —2)aFua) = [ [ (@m) e 0 4G 0)dF(a).
Then, with ¢ = 26(2 + £)/(1 — 26), by routine algebra we have

By = @o 2 [T [T [ jylte b= 2aG(o)dF(<)dy
= @02 [ : [ lypreteanss [/ Z e~==30-0 124z dydG(6)
Cs /_ : /_ : Iyt~ 4dydG(8)
<caf [ " ly — 8l aydG(s)
+Cs /_ ‘: 10[* /_ : == /4444G(8)
< Cs+Cs /_: 1[*dG(8) < oo,

IN

where Cs, Cy, Cs and Cg are finite positive constants. Therefore, supges,, E|Y[* <
oo if supges,, El0I* < oo. Let t' = ké(> 1), then (B4) is equivalent to
SUPger, , £6l0/** < co. Combining above results, we see that

supgery, B0 B < oo (for 1/k < 6 < 1/2,€ > 0) is sufficient for
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(B3) and (B4). K 1/k < § < 1/2 — 1/k, then the assumption needed is

SUPGeFp . Eg|0*** < oo.
Case (2): Suppose the error distribution F is Gamma(l,p) with density

fe(z) = r(lp)

P le %,z >0,p> 1.

Then ¢, satisfies (C2) with 8 = p. The Bayes estimator éc(y) defined by (2.2)

now reduces to
Je f)((l)(y —z) -[r(lx;)-zp—le-zdz + oy —z)fx(y - z).r%”.xp-le—zdx
I5° fx(y — ) gz le=dz

where fy(z) is given by (2.19). The EB estimator 6, defined by (2.6) now takes

éc(y) =

3

the form

5y = [0 =)yt + = Dyl mde]
5 faly —2)g5e" te2de -

Similar to Case (1) above, we can show that for 1/k <§ < 1/2,

SUPGeFp . EGIQIZkEV%? < oo is enough for (B3) and (B4). For 1/k < 6 <

1/2 — 1/k, the assumption becomes supger, , FEg|0]%* < oco.

EXAMPLE 2. Consider the exponential family in (2.1) with u(z) = 2= + 72
and ¢(9) = ENE (1+21eﬂ’ oy Then
_ _ _ o0 eoz)
fx(z) = (1) V2~ (2 + ) /- R ior -5dG(6). (2.20)

Since '—‘%5’-)- = —4(y —z), similar to the proof in Example 1, we can prove that

(B3) and (B4) are satisfied if supger,, Eclolzwvzf‘lf:"i < oo, forl/k <6 <
1/2,€ >0 and e ~ N(0,1) or € ~ Gamma(l,p), p > 1. Details are omitted here.

3. Proofs

In this section we prove Theorem 2.1 above. The proofs of Theorems 2.2

and Theorem 2.3 are similar. First we state five lemmas useful in proving these
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theorems. For proofs of Lemmas 3.1 and 3.2, see Theorems 3.1 and 3.2 of Fan

[7]. Also, see Fan [8, 9].

LEMMA 3.1. Under the assumptions of (A1), (A2), (B1) and (B2) and with
the choice h, = (4/ */)%(log n)~Y# of the bandwidth, we have

sup sup E|fO(z) - (l)(z)l < Const. x (logn)~*<-V/8 (3.1)
~oo<Lz<0 GEFp

for I = 0,1, where f,(")(x),fx(z:) and Fp are given by (2.4), (2.3) and (2.8),

respectively.

LEMMA 3.2. Under the assumptions of (A1), (A2), (C1) and (C2) and with
the choice h, = O(n-I/(Z(k+ﬁ)+l)) of the bandwidth, we have

sup sup E|f(z) - 0 (2)] < Const. x n~k-M/(E+A)+1) (3.2)
-0z GG}'B,k

for [ = 0,1, wheref{)(z), fx(z) and Fp are given by (2.4), (2.3) and (2.8), re-

spectively.
The following lemma is a version of Singh-Datta inequality, see Datta [3].

LEMMA 3.3. For every pair (Y,Y’) of random variables and for real numbers
y#0,¥,0<L<ooand <y <2

(’— ~Lia L) <2yl {E[Y’ 9+ (F’y-l + L).'EIY - y["} . (3.3)

LEMMA 3.4. Let 6,(y) and ég(y) be defined by (2.6) and (2.2), respectively.
Then for any 0 < ¢ < 1, we have

E(6a(y) — ba(¥))?
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<2 {0 ([T B - 0) - By - ldreE)

o [u@(y — z
AP

w355 ([ Bty =) — fixly — DIAE) | 106600 < B57)
+ 2/6c(y) PI(16c()! > k1), (3.4)

Elfaly —2) — fxly— z)ldﬂ(z))

where C, is a finite positive constant independent of , y and G.

PROOF OF LEMMA 3.4: Write

E(Sa(y) — 6c(®))? = E(8a(y) ~ 86(¥))I(16c(y)] < h77)
+ E(6(y) — 66())*I(16c(y)| > A7)
= Il + Ig.

Then, by straightforward simplifications we obtain, for 0 <t <1,

L = El.(y) - o)zt PI(18c()] < A7)
2, fO(y — 2)dF(z) — [ A fo(y — £)dF(z)

—© u(y-z)

%o fo(y — z)dF(z)

~ [fi’?,o Ny - 2)dFe(z) — [0 T2 fx(y — 2)dF()

= F

AT!

JZe fx(y — z)dF()

Rt

2
A 2h;1}
I(l6c(y)l < B
) D (y—z
< (2h;1)2_tE { 12, fM(y — z)dF.(z) = |25 '_)-(!—lfu(y - z)dF.(z)

I6s()| < h2Y)
E { o {0y — 2)dF,(z) - [, SR £ () _ 2)dF(z)

u(y=z)
= fuly — 2)dF(z)
1=, (g — )dF(a) = I, 2858 fu(y — z)dFe(z)
1= fx(3 — 2)dF(2)

TAN

u(y—z)

J26 faly — 2)dF(z)
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2 S - 2)dF(z) - % Tl fx(y ~ 2)dFd(a)
1%, fx(y — 2)dFd(z)

A 2h;‘}
I(|8c(y)l < ")
= (27) A,

where A(y) denotes the expectation term. By an application of Lemma 3.3

followed by the Holder inequality we have

[ (1P -2 - v - =) dE(e)

Aw) < 267 {E

= ull(y — z)
- [ 5 el = 9) - ity ~ ) dF()

t

)

(y —z) — fx(y — z)) dF (2)

+ (16c(y) +2R1)'E ||
1(6a(y)| < h7")
27w {[B][ (10w -2) - R - ) dFe)

o y(1) z ¢
B /oo u_u-(‘g—y__)l(f“(y_r) fX(y—-‘L‘))dF(z)]

+ Usat)l + 263 [B] [ (alo ~2) - sy ) 4R )]}
H18a(9)] < 47
27w { (B [ |10 - 2) - 0 - )| dFule)

= |u)(y — z)
+f u(y - 2)

+ (o) + 265 (B [ 1faly - ) = fxly - )| dFe(z))'}
I(i8e()| < b7)
2s7w {0 (B [T |10 -2) - 1 - 2| aRa))

u(y —z)

+C‘( u(y — 7)

+ Qsat) + 287 (B [ 1ty ~2) = fxly =)l dFi(a)) }

IA

IN

faly = 2) = Fxly )] dFe(z))

IN

B [ iy =2) ~ fxly = 2l dFo))
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I(l6c(v)l < kD),

the last inequality follows from the C; — inequality, where C, is the coefficient

from the C, — inequality. Thus, by Fubini’s theorem we obtain
-] [ 4
L s 2w {0 (7B -2) - B - 2lre)

o |y (y — 2
va ([0 15

+ 343t ([ Blfuly = 2) = fely — o)A (@) |
H186(3)] < 53 35)

Elfaly — ) — fx(y - :z:)[ch(.‘B))

Obviously,
L < 46c(y)PI(16s()l > k') (3.6)

Combining (3.5) and (3.6) completes the proof.

LEMMA 3.5. For model (2.16), under the assumptions (A1), (A2) with € is
replaced by ¢, and (E1) [, |¢x(t)t![?dt < oo, | = 0,1. With the choice of the
bandwidth k, = O (n=Y/(*+1), we have

sup  sup E[f{(z) - fi(z)] < Const. x n~(=0/G+1) (3.7)
-wo<z<oo GEFg &

for | = 0,1, wheref{)(z), fx(z) and Fp are given by (2.4), (2.3) and (2.8), re-
spectively.
PROOF: Write

ElfP(z) - Q@) < IEfO2) - Q@) + (Var f{(z))*/?
J1+ J;.
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One can easily prove that J; = O(hE™), for all z and G € Fi , see Fan [7]. Fur-
ther, note that sup_,¢yco0 SUPGerz, Sr{(y) < C for some finite positive constant
C, by Lemma 1 of Bickel and Ritov [1]. Since ¢.(t/hn) = de(oot/hs) = ¢e(t)

when oo = O(hy) = en~Y/(2%+1)_ for some positive constant c. Then

o lox@®ER (= et
[ temort = L. e

Therefore

1 2

VarfO(z) < —5F

R . / : |Kni(9)I? fr(z — hay)dy

nhl+2
1

sup  fr(y) 3 /_oo | Kni(y)|* dy

2 | e
O [t
2 mjnc|'¢z(t)|2 /_ : ok (t)t'*dt

-Y,
Kl

IA

IN

IA

<
< C

under assumptions (A2) with e replaced by é and (E1), where C is a finite
positive constant independent of n, = and G. In different locations, it may take
different values. Then, J; = (Cemr) "+ for all z and G € F . Combining J;
and J; and choosing hn, = O (n"'/ (2"‘”)) completes the proof.

PROOF of THEOREM 2.1: By Lemma 3.1 and 3.4 with ¢t = 2§(< 1) in Lemma
3.4 and the bandwidth h, = (4/7)¥(logn)='/8 , one obtains

E(64(y) — 66(y))?
< 23-25(10g n)2(1°5)/ﬁf;'25(y) {01(10g n)-%(k-l)/ﬁ (/°° ng(a:)) 26
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oo Ju(W(y —
+ C,(logn)~25/8 ( /_ "u(;y_ :)’ )

+ otogmy - ([ ar(@) b H(sets)] < 57
+ 4aa(w) PI(8(w)] > b7
< Collogn) 724118 f720(y)
~25/8 ( [T vy — z) x -1
+ {0+ catogme ([ 0= Nar ) sttsot < )

+ 4|66(y) PI(16c(¥)] > k1), (3.8)

da(x))”

where Cy, Cy and C; are finite positive constants independent of n, ¥ and G.

Note that R(G) < oo is guaranteed by E§? < co. By (2.7) and (3.7), we have

R(§,G) - R(G)
= E(6,(Y) — 66(Y))?
< Cologn)*®-2 {0y [™ fi-2%(y)dy

=) o |4,(1) (9 —
+Cutogny? [ ([ [l

+4E[6c(Y)P1(|6c(Y)] > ;7).

25
dn(x)) f;‘r’”(y)dy}

But

- e ¥id ’_ ’
Elsa(V)PI(a(¥)] > h7t) < {Bl6a*} " {EI(ss(x)] > 1)},
for any ¢’ > 1. By Markov inequality, we get

El6c(Y)PI(|6c(Y)| > h3')
< {Eléa(y)lzt'}l/‘l {Elac(y)l2(k5-1)gl/(gr-1)}(t'-l)/t' h,zt(ks'l)
< hi(kb'—l) {EIOI”'}I/" {Elalz(kb._l)t,/(tl_l)}(t'_l)/tl ,

for 6 > 1/k. Thus,
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R(6,,G) ~ R(G)
< Coflogn) 502 {Cy [~ F-¥(y)dy

rcutognr s [ ([ [0 D ar ) f%:”(y)dy}

- - e ¥4 _ . @-1)/¢
+ 4(logn) 2(k6—1)/8 { EIGI”} { Elalz(k& )¢/ (¢ 1)} )

So, if
. o |uM(y—z 2% 4
(i) suPery, S (I 2% |5iSR2| dFu(2)) fE7(9)dy < oo,

(ii) supgery, J o ft~ > (y)dy < o0, 2nd

n, [ 2kE=-1)¢
(iii) suPgery, E|0|2”( €=t ) < oo, for some t' > 1,
we have
sup [R(6n, G) — R(G)] = O ((logn)*#=1/7) (3.9)
GeFp.x

For simplicity of the assumptions, we give sufficient conditions for (i) and (ii) to

hold. For any £ > 0, using the Hélder inequality followed by the C, —~inequality,

L. (f: %55‘) dFe(x))% ¥ )y

= [T @+l

© |ull(y —z)
(14 [y])?0+ (/_w Ty—2)
o0 2§
< ( /_ _a+ Iyl)"”"dy)

(/_:(1 +ly) 5 (/.: .

u(y — z)
<a{[2(L

26
dﬂ(z)) 1-25(,)dy

1-2§

ch(:z:)) =

fY(y)dy)

ul(y - z)

u(y — z) )ﬁ%

dF.(z) fr(y)dy
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1-~28

w7 R ([T 2= ch(z))ﬁ%zfy(y)dy}
=Cy {E ( I ——-—"::();Y_’:)’) dFe(z))m

26 1-26
oo |y(IHY — T-25
26(1+0) u(Y - 1)
+ ElY| == (./-oo uw(Y —z) dF,(:c)) } !

where C; is a finite positive constant independent of n, y and G. Then,

o 00 u(l)(y - x) )28
- I JF. 128, \dor < ’
Gzlfl:g'k -/—co (~/—oo u(y —_ :L') ($) Y (y) Y o
if
0 u(l)(Y —z) ) 1-25
E ————|dF. <
a?}g,k (/_oo uw(Y —z) (z) o0
and
o (1)(Y —z) =1
Ely|iss ( u iF. ) o
GZI;'I;_,: l l ’ ,/_oo U(Y _ 2) (3) (o o]

Similarly, we can show supger,, E1Y| TEE < oo, for some £ > 0, is sufficient
for (ii). Further, notice that the RHS of (3.8) is independent of G. Hence the
result.

PROOFS OF THEOREM 2.2 and THEOREM 2.3: The proofs are the same
as that of Theorem 2.1 except that now we use Lemma 3.2 in the proof of Theo-

rem 2.2 and Lemma 3.5 in the proof of THEOREM 2.3, instead of Lemma 3.1.

References

[1] Bickel, P.J. and Ritov, Y.: Estimating integrated squared density derivatives:
Sharp best order convergence estimates. Sankhya, Ser. A 50, 381-393 (1988).

43



[2] Carroll, R.J. and Hall, P.: Optimal rates of convergence for deconvolving a
density. J. Amer. Statist. Assoc. 83, 1184-1186 (1988).

[3] Datta, S.: Asymptotic optimality of Bayes compound estimators in compact
exponential families. Ann. Statist. 19, 354-365 (1991).

[4] Datta, S.: Nonparametric empirical Bayes estimation with O(n~'/2) rate of a
truncation parameter. Statistics and Decisions, 9, 45-61 (1991).

[5] Datta, S.: Empirical Bayes estimation in a threshold model. Sankhya, Ser.
A, 54, 106-117 (1994).

[6] Efron, B. and Morris, C.: Stein’s estimation rule and its competitors-an em-
pirical Bayes approach. J. Amer. Statist. Assoc. 68, 117-130 (1973).

(7] Fan, J.: On the optimal rates of convergence for nonparametric deconvolution
problems. Ann. Statist. 19, 1257-1272 (1991).

[8] Fan, J.: Global behavior of deconvolution kernel estimators. Statistica Sinica
1, 541-551 (1991).

[9] Fan, J.: Deconvolution with supersmooth distributions. Canad. J. Statist.
20, 155-169 (1992).

(10] Hannan, J. and Macky, D.W.: Empirical Bayes squared-error loss estimation
of unbounded functionals in exponential families. Report No. RM- 290,
Dept. Statistics and Probablity, Michigan State University. (1971).

[11] Lehmann, E.L.: Testing Statistical Hypothesis. Wiley, New York (1959).

[12] Lin, P.E.: Rates of convergence in empirical Bayes estimation problems.

Continuous case. Ann. Statist. 3, 155-164 (1975).

[13] Maritz, J.S. and Lwin, T.: Empirical Bayes methods. 2™ edition. Chapman
and Hall, London (1989).

[14] Robbins, H.: An empirical Bayes approach to statistics. Proc. Third Berkeley
Symp. Math. Statist. Prob. I, University of California Press, 157-163 (1956).

44



[15] Robbins, H.: The empirical Bayes approach to statistical decision problems.
Ann. Math. Statist. 35, 1-20 (1964).

[16] Singh, R.S.: Empirical Bayes estimation with convergence rates in non-
continuous Lebesgue-exponential families. Ann. Statist. 5, 394-400 (1976).

[17] Singh, R.S.: Empirical Bayes estimation in Lebesgue-exponential families
with rates near the best possible rate. Ann. Statist. 7, 890-902 (1979).

(18] Singh, R.S. and Wei, L.: Empirical Bayes with rates and best rates of conver-
gence in u(z)C(0) exp(—z/0)-family: Estimation case. Ann. Inst. Statist.
Math. 44, 435-449 (1992).

[19] Stefanski, L.A. and Carroll, R.J.: Deconvoluting kernel density estimators.
Statistics, 21, 169-184 (1990).

[20] Susarla, V.: Empirical Bayes theory,. Encyclopedia of Statistical Sciences
(eds. S. U. Kotz and N. L. Johnson), Vol. 2, 440-503, Wily, New York,
(1982).

[21] Van Houwelingen, J.C. and Stijnen, Th.: Monotone empirical Bayes esti-
mators for the continuous one-parameter exponential family. Statist. Neer-
landica, 37, 29-43 (1983).

[22] Yu, Benito Ong.: Rates of convergence in empirical Bayes two-action and
estimation problems and in extended sequence-compound estimation prob-
lems. Ph.D. Thesis. Michigan State University, East Lansing, Michigan
(1970).

[23] Zhang, C.H.: Fourier methods for estimating mixing densities and distribu-
tions. Ann. Statist. 18, 806-830 (1990).

[24] Zhang, S. and Karunamuni, R.J.: Bayes and empirical Bayes estimation with

errors in variables. Statist. Prob. Letters, 33, 23-34 (1997).

45



Chapter 3

Empirical Bayes Two-Action Problem for the
Continuous One-Parameter Exponential

Family with Errors in Variables

1. Introduction

Let (X, 6) be a random vector, where ¢ has a prior distribution G, given
8, X has a density fxs(z) with respect to Lebesgue measure on the real line. The
pair (X, 8) is not observable. Instead, we observe only Y, where Y’ = X + ¢ with
¢ denoting the random error. We assume that ¢ is independent of (X, 6) and has
a known distribution F, on (—o0, 00). This is the situation when one encounters
in analyzing contaminated data (errors in variables) due to measurement error
or due to nature of the environment. In this paper, we assume that fxg(z) has

the following form:
fxip(z) = u(z)C(8)e’*, —0 <a <z < b < oo, (1.1)

where v > 0 on (a,b) and C(8) = ([° u(z)e**dz)™". Let Q denote the natural
parameter space, ) = {0 : C(6) > 0}. We study the testing problem, Hy : § < 6o
against H; : § > 6, based on an observation Y with the loss function L(4,0)

Results of this chapter were presented as an invited talk in the international meeting
“Statistical Research for the 215t Century” held in November, 1996 in Montreal in
honor of Professor C. R. Rao. A version of this chapter has been submitted for the
proceedings of this meeting, which is to be published as a special issue of Journal of

Statistical Planning and Inference.
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= max {# — 0,0} for accepting Ho, and L(f,1) = max{fy — 6,0} for accepting
H,. If 6(y) = Pr{acceptingHo|Y = y} denote a randomized decision rule for the
preceding testing problem, then its Bayes risk with respect to (w.r.t.) G is given
by

R(6,G) = [ ac(w)(v)dy + [ L(6,0)4G(6), (12)
where
ac(y) = [ Ofrie(v)dG(O) = bofv(y) (L9)
with
fr(w) = [ fru()dG(o) (L4)

and fyjs(y) denotes density of Y given 8, i.e., fyie(y) = [ f x1e(y —z)dF.(z). Then

a Bayes rule w.r.t. G (i.e., a minimizer of (1.2)) for the present testing problem

is given by

6o(y) = { L Hasly) <0 (1.5)

0 elsewhere,

where ag is given by (1.3). Let R(G) denote the Bayes risk of §g w.r.t. G :
R(G) = R(4,G) = inf R(8,B). (1.6)

The quantity R(G) is called the Bayes risk envelope value of the problem.
When the prior G is not completely known, then the Bayes rule (1.5) is not
available. The empirical Bayes (EB) approach considers the situation where
G is unknown but information is available from the past experiences. Sup-
pose now that the above decision problem occurs (n + 1)-times leading to the
random vectors (8;, X:,Y;, &), ¢ = 1,2,...,n + 1, where the each pair (X, 65)
has the same probability structure as (X,0) given above, Y¥; = X; + ¢;, and
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the X;’s and the &;’s are independent. The random vectors {(6;, X;, &)} are

unobservable and {Y;,...,Ya41} are the only available observable data at the
(n + 1)St-problem. In this set up, a generalization of the EB approach of Rob-
bins (1956, 1964) is applicable wherein one constructs testing rules of the form
6a(y) = 8a(y; Y1,...,Ya) with Yoy = 3 to make a decision about 8,4;. Since
E(8ni1|Yi, .. -, Ya41) = E(0n41|Yn41), 8 defined by (1.5) continues to be Bayes
in the EB problem. This motivates the use of the regret (excess risk) as a measure

of goodness of an EB rule é,.

Definition 1.1. A sequence of EB testing rules {6,} is said to be asymptot-
ically optimal w.r.t. G with order a, if

0 < R(6x,G) — R(G) < c1an,

where ¢; is a positive constant (independent of n but may depend on G) and

{a,} is a sequence of postiive numbers such that a, — 0 as n — oo,

Definition 1.2. A sequence of EB testing rules {6,} is said to be asymptot-
ically optimal uniformly over a class of priors G with order b, if

0 < sup (R(6,,G) — R(G)) < czbn,
Geg

where ¢; is a positive constant (independent of n but may depend on G) and {b.}

is a sequence of positive numbers such that b, — 0 as n — oo.

Work on EB problems in which the observed data are contaminated first
appeared in Zhang and Karunamuni (1997a, 1997b). They discuss the EB es-
timation problem with squared error loss. There has been a great deal of work
done on the linear loss two-action problem for the continuous one-parameter ex-

ponential family in the case of uncontaminated data, that is of the ‘pure’ data
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case. A notable work includes Samuel (1963), Yu (1970), Johns and Van Ryzin
(1972), Van Houwelingen (1976), Stijnen (1985), Karunamuni and Yang (1995)
and Karunamuni (1996), among others.

The proposed EB testing rule is given in Section 2 and its asymptotic prop-

erties are considered in Section 3. The proofs are deferred to Section 4.

2. The Proposed Empirical Bayes Rule

A natural estimator of the Bayes rule é¢ defined by (1.5) can be obtained
by estimating ag defined by (1.3) based on the past observed data Yi,...,Yn.
Note that

[ 650)d60) = [ 6 [ froly — 2)dF(z)dG(0).

Thus, if f; |6 [ fxje(y — z)dFe(x)dG() < oo then by Fubini’s theorem

[ofu@idc®) = [~ [ ofxaly - 2)dG(0)dF,(=)

- [C - - [T LD

) ey fx = 2)dEa),

where fx(z) = Jg fxe(z)dG(6) and ffyl) denotes the first derivative of fx. Then

ag can be written as [see (1.3)]

<O

asly) = [ A-2)dFi=) - [

-0

uW(y —z)

s = 2)E(e)

QO

~00 [~ fxly - 2)dFu(z)
= [ Rw-2dFe) - [ vly-)fxlu - 2)F),  (21)

where v(t) = u)(t)/u(t) + 0. It is natural to estimate ag(y) via estimating
fx and fg) in (2.1). Let ¢.(t) denote the characteristic function of the error
variable . Let ¢, denote the empirical characteristic function defined by $,,(t) =

n~! L%, exp(it Y;). For a nice symmetric (about 0) kernel K, let ¢x be its Fourier
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transform with ¢x(0) = 1. Then a kernel estimator of f}?, the £tB derivative of
fx (£=0,1), is given by

fOz)= — / exp (—itz)(—it)px(thn) z:((:)) (2.2)
where h, is the bandwidth (k, — 0 as n — oo). [Here we assumed that the
function [t{@x(thn)/P.(t)| is integrable on (—o0, 00).] This type of estimators are
proposed by Stefanski and Carroll (1990) and exclusively studied by Carroll and
Hall (1988) and Fan (1991a, 1991b, 1992). Define

Kuelz) = E),l? - exp (mita)(—it)* 5:%% . (2.3)

Then (2.2) can be written as a usual kernel type estimator:

1 & -Y;
fO(z) = T ngl{nz (£ " L) (2.4)

for ¢ = 0,1. The fact that the function ¢x is real-valued and even implies that
K, defined by (2.3) is a real-valued function, and so is f{) defined by (2.4); see
Stefanski and Carroll (1990) for more details. In view of (2.1), an estimator of

ag is defined by
aly) = [ O -2)Fe) - [ oly-)fuly-2)dFla),  (25)

where f9(¢ =0,1) is given by (2.4). Our proposed EB testing rule is now defined
by

0 elsewhere.

5aly) = { I ifon(y) <0 (2.6)

By (1.2), the uncondiitonal Bayes risk of (2.6) is given by

R(6,G) = E [ ac)éa(w)dy + [ L(6,0)dG(8). 2.7)
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3. Asymptotic Properties of §,

In this section, we investigate asymptotic properties of R(d,,G) — R(G),
the regret of §,, where R(G) is given by (1.6). First we state some assumptions

on the kernel K [see (2.2)] and the error variable ¢ :

(A1) The kernel K is a symmetric function about 0 on (—o0, 00) and is of order
r, where r is some positive integer. That is, K satisfies [°3  K(y)dy =1,

J2. ¥ K(y)dy =0forj=1,...,(r~1) and JZ, y"K(y)dy # 0.
(A2) The characteristic function of ¢ satisfies |¢.(t)| > 0 for all ¢.

(A3) [, |tdx ()] e(t)|dt < oo for £ =0, 1.

We also require that the distributions G and F, (the distribution function of
g) satisfy

(A4) Jo J22 101 fx16(y — z)dF.(2)dG(F) < oo uniformly in y, and

(A5) for some 0 < § < 1 and positive constants B; and B; (independent of
G),

/" lac)l=*dy < Brand [ lea)*( [ vty ~ 2)ldFu(=)) dy < B,

where ag is given by (2.1).

Now define a class of prior distributions by

Fg,» = {G: Gisa prioron Qs.t. sup,|f{(z)| < By,
and (A.4) and (A.5) are satisfied} (3.1)
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for some constant By > 0, where r is as used in (Al) and f}{) is the rtlt derivative

of fx.

Theorem 3.1. For some integer r > 1 and constants 0 < 6 < 1, B; > 0
(i = 0,1,2), let Fg,, be defined by (3.1). Further suppose that K and F. are
such that (A1) to (A3) hold, and the following conditions are satisfied:

(B1) éx(t) =0 for |¢| > 1.

(B2) |¢(t)] ltI™® exp(|tl’/7) = 7o as [t] — oo for some positive constants

B, v and 7o are a constant fo.

Then, by choosing the bandwidth h, = O((log n)~/#), we obtain

sup (R(6x,G) — R(G)) = O((log n)~*"~1/%), (3.2)

GEFpy,r
Theorem 3.2. For some integer r > 1 and constants 0 < § < 1, B; > 0 (z=

0,1,2), let Fag,, be defined by (3.1). Further suppose that K and F, are such
that (A1) to (A5) hold, and the following conditions are satisfied:

(C1) f=, [ (t)l |t|P* dt < oo and 25, |pr(£)t°+[2dt < oo.
(C2) |¢.(t)t?] > 7o as [t| — oo for some constants 7o > 0 and § 2 0.

Then, by choosing the bandwidth h, = O(n™ T AT ), we obtain

sup G € Faor(R(6nr G) — R(G)) = O(n™ Tr4aHT). (3.3)
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Remark 3.1. The examples of error distributions satisfying (B2) are normal,
mixture normal and Cauchy, and the examples of distributions satisfying (C2)
include gamma, double exponential and symmetric gamma distributions. These
two types of distributions are called ‘supersmooth’ and ‘ordinary smooth’ distri-
butions, respectively (Fan (1991a, 1991b, 1992)).

Remark 3.2. Theorem 3.1 indicates that the rate of convergence of §, is extremely
slow for very common error distributions such as normal. Fan (1991a, 1991b)
showed that when estimating fJ(Yl) based on the observations ¥, ..., Y, with super-
smooth errors, the optimal rate of convergence is of the order O((log n)~"-1)/5).
For the pure data case, Karunamuni (1996) showed that the optimal rate of con-
vergence of monotone EB testing rules for the present problem is the same as
that of estimators of f{). In view of these facts and Johns and Van Ryzin (1972),
it is clear that the rates of convergence in Theorems 3.1 and 3.2 are in the best
possible forms. Furthermore, the errors which are distributed according to a su-
persmooth distribution will make a considerable impact on the performance of

the proposed EB rule and need to be concerned in application.

Remark 3.3. In practice, the conditions of Theorems 3.1 and 3.2 are easy to
verify. Also, the convergence rate of Theorem 3.2 is compatible with the rates
that have been obtained in the literature for the pure data case of non-monotone
EB rules, see Johns and Van Ryzin (1972). This means that the errors with an
ordinary smooth distribution cause only a little damage to the performance of

the proposed EB testing rule.

Remark 3.4. Kernel functions satisfying (Al) are easily available in the ker-
nel density literature; see, e.g. Singh (1977). Assumption (A2) ensures that the
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true densities fx are identifiable from the model Y = X + . Kernels satisyfing
(A1), (B1) and (C1) can be constructed by the method used in Fan (1992).

In some practical situations not all the observations are contaminated, but
partially contaminated. Assume that only 100p% (0 < p < 1) of the data are
measured with error and the remaining data are error free. Then, we have the
model Y = X +¢ with P(¢ =0) =1—p and P (¢ = €*) = p, where " is an error
variable with distribution F.. and the characteristic function ¢... Then the char-
acteristic function of ¢ is given by ¢.(t) = (1 — p) + pd.-(t). If Re(¢.-) > 0, then
|#<(¢)| > 1 — p, where ‘Re’ means the real-part. Thus, ¢ satisfies (C2) with 8 =0
no matter what the distribution of €” is, i.e., supersmooth or ordinary smooth.
Corollary 3.1 below is a direct consequence of Theorem 3.2, and, therefore, its

proof will be omitted.
Corollary 3.1. For some integer r > 1 and constants 0 < § <1, B; >0 (z =

0,1,2), let Fg, . be defined by (3.1). Further suppose that K and F. are such
that (Al) to (A5) hold, and the following conditions are satisfied:

(D1) J=, [¢x(t)tldt < o0 and [, |6x(t)t[?dt < oo.
(D2) Re (¢e+(2)) 2 0 for all .
Then, by choosing the bandwidth %, = O(n~ #4T), we obtain
sup (R(6:,G) - R(G)) = O(n~ F5). (3.4)
Ge}-Bo,r

Remark 3.5. The rate in (3.4) is exactly the same rate of Johns and Van Ryzin
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(1972) for the pure data case. Their rate is the best available rate for non-
monotone EB testing rules for the pure data. Note that the proposed EB rule of
the present paper is also non-monotone. Therefore, the situation is as good as
the pure data case when the errors are partially contaminated even if the errors
are supersmooth. Van Houwelingen (1976) and Karunamuni (1996) have shown
that montone EB testing rules exhibit faster rate of convergence compared to
non-monotone ones. However, investigation of such rules for the present setup is

beyond the scope of the present paper.

We now exhibit another model under which the rate of convergence can also

be as good as that of the uncontaminated data case, while all the data are con-

taminated with supersmooth errors.

Assume that all the data are contaminated but the error level can be con-
trolled. That is, Y = X + & with € = 0¢é, where o¢ parametrizes the error level.

This model has been proposed by Fan (1992). Then, ¢.(t) = @:(oot).

Theorem 3.3. For integer r > 1 and constants 0 < § < 1, B; ( = 0,1,2),
let Fg,r be defined by (3.1). Also, let g9 = O(n~ e ). Further suppose that
K and F, are such that (Al) to (A5) hold with ¢ replaced by &, and that (D1)
holds. Then, by choosing the bandwidth &, = O(n~ 2—'147), we obtain

sup (R(6.,G) ~ R(G)) = O(n~ 531). (3.5)

eFEo R

Example 1. Consider the exponential family in (1.1) with u(z) = e=="/ 2 [(—c0s0)(Z)
and C(0) = (27) /%€ /2 I o0,00)(6). Then, fxyo(z) = (2x) 2= (=/2, —00 <

T < 00, and the natural parameter space ! = (—o0, 00). The marginal density of
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fx(@) = (272 [~ e l2agp). (3)
Case (i): Suppose that the error distribution F, is N(0, 1), the standard normal
distribution. Then ¢. satisfies (B2) of Theorem 3.1 with 8 = 2. By repeated
differentiation under the integral sign (by Theorem 2.9 of Lehmann (1986)), the
kth derivative of fx is given by

o0

(@) = (-1 [ Hulz - 0)fx(2)dG(0), (3.7)

for any G, where Hj is the kB Hermite polynomial. Thus, sup, |f¥(z)| <

(27)1/? Zf=0 |a;| for any G, where q; is the jth coefficient of the k! Hermite

polynomial. Therefore, G € Fp, . if Bo = (2r)~1/? T7_;a;|, provided (A4) and
(A5) are satisfied. Note that

/Q/_: 18] fxie(y — z)dF.(z)dG(6) < /_: 16]dG(6) < oo,

if Eg|0| < co. Thus, (A4) is satisfied if Eg|f| < co. Note that v(y —z) = —(y —
)+ 0. Therefore, |v(y—2)| < ly—al+160l and J ly~aldF(z) < lyl+/ |aldFe(z).
Now by the C,-inequality,

o0 o §
| laa@*( [ vty - 2)ldF.(2) dy

< [ la@)*( [ v - aldFu(a) + 16ol) dy

*® 1-6( [ 5 s [ e
<c [~ el ([ Iy -aldFu(a)) dy + Calbol’ [ lac )ty
< [ Wilac@)dy+Cs [ lac(y)dy, (38)

where C; and C; are some positive constants (independent of G). Now, for any

£ > 0, by Holder inequality,
[ lecw)~4dy
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= [T @+ O + )y dy

< ( T+l 0ay) ([~ @+ Iag(y)ldy) ™

< Cof [T+ )+ Nag(y)dy}

<C{ [ lactlldy + [ Iyl 0Nag(y)ldy} T, (39)

where C3 and C, are some positive constants (independent of G). Similary, we

can show that

[ wblecwiay < Ge{ [ Wt ac(y)ldy

co 1-§
+ 7 lglfee-tag(y)lay ) (3.10)

for some constant Cs > 0. In view of (3.8), (3.9) and (3.10), we see that (A3) is
satisfied if

[ e /a-Oa(y)idy < C (3.11)

for some constant Cs > 0 (independent of G). Since F, = N(0,1) and

s / ) /9(27" ) H2(ly — 2 — 0] + 00l + |y — zl)e~E===D"12dG(0)dF.(z)
<C / °° / {e~W-9*/4 4 o==2=0112 | |g|e=(v-2-01*/2}e~=/2G(§)dz
-00 JQ

< Cs{/r;e-(y-OP/G/oo e—(\/ix—(y-a)/\/g)zﬂdz dG(o)

-00

e I e e L)
Q

-0

+ / |6]e=w=91/4 /°° e~ VZe=(=0 VD) /24 4G3(9)
Q

-00

< Cof /‘2 e~W-9/84G(g) + /Q |6]e=0=911dG(9)
~(-072/4
+ /0 e dG(9)} (3.12)

@)l =| [~ P -2)dFz) - [ vly ~)ix(y — 2)dFu(a)
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for some constants C; > 0 (¢ = 7,8,9) (independent of G). Thus, from (3.11) and
(3.12),

[ e lag(y)idy
Ciof / / % |y — 052+ 1-0)==07 16 4y, 4(9)
QJ—-co
+ /ﬂ |6|5@+E/(1-8) /_ ) e~ =018 0y 4G(8)
+ 1017 Iy = o1eea-e-6-07 sy ()
Q —co
s5@+6)/(1-5+1 [Z —~(y—6)2/4
+ /Q 16] [ e dy dG(6)

+ /9 /.: |y — 6|FA+0/(1-0)=(—01 14y 4G(6)

+ / jgjpe+ara-s [~
Q

IA

e~ 4y dG(9)} (3.13)

-0
for some constant Cyo > 0 (independent of G). Hence, from (3.13) it is clear that
(3.11) holds if Eg|g|6(3+¢)/(1-9)+1 < C}; for some constant C;; > 0 (independent
of ). In other words, the assumption (A5) reduces to a single moment condition

of the G's and G € Fp, . if Eg|f|C+/(1-0+1 < Cy,.

Case (ii): Suppose the error distribution F, is gamma (1, p) with density f.(z) =
(T(p))~'zP~le~=, £ > 0, p > 1. Then 4, satisifes (C2) of Theorem 3.2 with § = p.
Similar to case (i) above, we can again show that (A5) reduces a single moment
condition Eg|g|53+8/(1-8+1 < C,, for some constant C;; > 0 (independent of

G),0<é<land £>0.

Example 2. Consider the exponential family in (1.1) with u(z) = (26 +
€72 (- o0,00)(2) and C(6) = 77/2(V/2/2+2e7 1) 1e~ 18] _, )(6). Then, fxjs(z)

is a bimodel density and

fx(z) = w-1/2e-z’(2 + e—z’)/.x ek(\/i/2 + 2592/8)’16’02/8dG(9).
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Since u™(y —z)/u(y —z) = —4(y—z)(e WV 4 20 ) [{2e= =71 22N},
it is obvious that [v(y — z)| < [uM(y — z)/u(y — z) + Oo] < 4|y — z| + [6al-
Following similar steps as in Example 1, we can again show that (A4) is satisfied
if Eg|0] < oo and (AS5) is satisfied if Eg|g|5?+8/(1-9)+1 < O, for some constant
Ci3>0,0<é<land §>0.

4. Proofs

In this section, we shall prove Theorems 3.1, 3.2 and 3.3. Only Theorem 3.1
is proved in details, since the proofs of Theorems 3.2 and 3.3 are similar. First
we shall state a few lemmas. Lemmas 4.1 and 4.2 are due to Fan (1991a, 1991b).
The proof of Lemma 4.4 can be found in Johns and Van Ryzin (1972).

Lemma 4.1. Under the assumptions (Al), (A2), (B1) and (B2), and with the
choice h, = O((log n)~'/?) of the bandwidth, we have

sup sup Elf,gt)(z)—fl(\f)(z)l < Const. x (log n)~-9/2 (4.1)
z GGGB,,-
for £ = 0,1, where (9 is given by (2.2), and
Gs, = {G: G is a prior on Q such that sup |f{(z)| < B} (4.2)
z

for some constant B > 0.

Lemma 4.2. Under the assumptions of (Al), (A2), (C1) and (C2) and with
the choice k, = O(n~1/((+8)+1)) of the bandwidth, we have

sup sup E|fO(z) — f(z)| < Const. x n~{r=0/@r+A)+1) (4.3)
z GGB,r

for £ = 0,1, where f and Gp,, are given by (2.2) and (4.2), respectively.
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Lemma 4.3. Consider the model Y = X + ¢, where ¢ = 0¢é with o9 =
O(n~Y/r+1)), Then under the assumptions (A1) and (A2) with € replaced by
¢ and (D1), with the choice of the bandwidth A, = O(r~/(?r+1)), we have

sup sup E|f9(z) — f{(z)] < Const. x n~(r=0/(r+1) (4.4)

Gegﬂ,r

for £=0,1, where f{ and Gp, are given by (2.2) and (4.2), respectively.

Lemma 4.4. Let R(6n,G) and R(G) be defined by (2.7) and (1.6), respectively.
Then

0< R(6x,G) — R(G) < [ laa(u)lPr{lea(y) - ac(®)] 2 lac()lHy, (45)

where ag and a, are given by (2.1) and (2.5), respectively.

Proof of Theorem 3.1. By Lemma 4.4 and by the Markov inequality, for 0 < § < 1,

< [ lac@)Elea(y) - acy)ldy. (46)

R(6.,G) =BG £ [ lac)IPr{lon(y) - ac(y)] 2 lac(y)l}y

By applying the C,-inequality followed by Lyapunov’s inequality and using Fu-
bini’s theorem, we obtain
oo §

Bloay) ~as@)* < Cu{B| [ (S0 - 2) - £y - 2))dF.(=)|

00 §

+E| [~ vy = 2)(fuly - 2) - fxly — 2))dFul2)['}
o §
< Cu( [ By -2) - 2y - 2)ldF(2))

+Cu( [ vy - 2)IElfaly = 2) - fxly - 2)ldFi(2)’
(4.7)
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for some constant Cy4 > 0 (independent of G). From Lemma 4.1, (4.6) and (4.7),

for some constant Cis > 0 (independent of G), we have

sup (R(8,G) = R(G) < swp [ lac(®)'*Elaa(y) - ac(y)l’dy
GeFg,r Ge€Fp /-0

<[ lec@)™* sup  Elan(y) — acly)l’dy
-0 GeFp,r
< Ou [ lec@)I*( [ sw Efy—2)~ 2y - 2)laF(=) dy
+Cu [ lec@P( [ by =2 sup_Elfaly - =)~ fuly ~ 2)ldFu(z)) dy
S C15(10g n)-ﬁ(r—l)/ﬁ ‘/;00 IaG(y)ll-de

+Cis(log 1) [~ lac@)*( [ Ivty - 2)ldF.(z) dy
= O((log n)~1/%)

by the assumptions of Theorems 3.1. This completes the proof.

Proof of Theorems 3.2 and 3.8. The proofs are similar to that of Theorem 3.1
above, except, that we use Lemma 4.2 and Lemma 4.3 in the place of Lemma 4.1

of the proofs of Theorem 3.2 and Theorem 3.3, respectively.
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Chapter 4

On Kernel Density Estimation Near Endpoints

with Application to Line Transect Sampling

1. Introduction

An important problem in population biology is estimation of the density
of objects, such as animals or plants, in a study area. A convenient method
of doing so is the line transect sampling method. An observer moves along the
transect line and records from each object he/she detects either the perpendicular
distance z from the line or the radial distance r and the angle § (z = rsin#).
In practice, several transects would usually be selected, but sampling techniques
will not be discussed here; the reader is referred to Buckland et al. (1993) for
experimental guidelines. The present work deals with perpendicular distance
models for ungrouped data. The basic assumptions that the models of this paper
rely on are (Buckland (1985)):

(1) Objects are randomly distributed.

(ii) Objects on the transect line are seen with probability 1.

(iii) Any movement of objects before detection is slower relative to the speed
of the observer and is independent of the observer.

(iv) Perpendicular distances are recorded without error.

(v) Sightings are independent events.

A version of this paper has been submitted for publication.
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(vi) No object is recorded more than once.

The density D of the objects may be estimated from the equation D =
nf(0)/2L, where f(0) is an estimate of f(0), L is the length of the transect
line and n is the number of objects sighted (see, e.g., Buckland et al. (1993)).
A number of parametric models have been proposed for f, and there is exten-
sive literature for use of the maximum likelihood technique as the criterion for
estimation of f(0); see, e.g., Gates, Marshal and Olson (1968), Burnham and
Anderson (1976), Pollock (1978), Ramsey (1979), Quinn and Gallucci (1980),
Burnham, Anderson and Laake (1980) and Buckland (1985). For additional ref-
erences the reader is referred to the recent monograph by Buckland et al. (1993).
Bayesian estimation of f(0) is investigated in Karunamuni and Quinn (1995). It
is a standard practice that if there are theoretical reasons for supposing that the
detection density has a given parametric form, then parametric modelling may
be carried out. Otherwise, robust or nonparametric methods such as Fourier se-
ries, splines, kernel methods or polynomials might be preferred. A nonparametric
Fourier series estimator of f(0) is given by Burnham et al. (1980) and a Hermite
polynomial estimator is due to Buckland (1985). Kernel estimates of f(0) and D
are investigated by Buckland (1992) and Chen (1996).

Nonparametric estimation of f(0) is particularly difficult due to boundary
effects that occur in nonparametric curve estimation problems. Such effects are
well known to occur in nonparametric density estimation when the support of the
density has a finite endpoint (0 is an endpoint in the present situation). They are
a major problem both for application and asymptotic theory. Theoretically, the
rate of convergence at boundary points is slower than that at the interior points.
See Gasser and Miiller (1979), Hall (1981), Rice (1984), Schuster (1985), Gasser
et al. (1985), Cline and Hart (1991) and Marron and Ruppert (1994), among
others, for further discussions on this topic. In the literature, on the problem of
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estimating density at the boundary points by the kernel method, a number of
solutions (adjustments and modifications) have been proposed:

(i) The reflection method (Schuster (1985), Cline and Hart (1991) and Sil-
verman (1986)). [This method is specially designed for the case f)(0) = 0,
which is the shape criterion of Burnham et al. (1980, p. 47). Kernel estimates
of £(0) of Buckland (1992) and Chen (1996) are established under the preceding
assumption.]

(ii) The use of “boundary kernels” (Gasser and Miiller (1979), Gasser et al.
(1985) and Miller (1991)).

(iii) The transformation technique (Marron and Ruppert (1994)).

The purpose of this paper is to study the local polynomial fitting method.
Fan (1992) and Fan and Gijbels (1992) introduced the local polynomial smooth-
ing technique in the context of nonparametric regression function estimation.
They showed that their method of smoothing has very high asymptotic efficiency
among all possible (nonparametric) smoothers, including those produced by ker-
nel, orthogonal series and spline method in estimation of a regression function.
Further, they have observed that their method removes boundary effects as well
as other disadvantages mainly in estimation problem of regression function.

An attempt to estimate f(0) without boundary effects and a careful inves-
tigation of the local polynomial smoothing technique in the context of density
estimation at boundary points form the basis of this paper. In the next section we
derive a density estimator via the local polynomial fitting method. To implement
the techniques developed for the regression problem by Fan (1992) and Fan and
Gijbels (1992), we generate pseudo variables Y3, ..., ¥; (response variables) based
on the observed sample Xj, ..., X, (explanatory variables). (Recall that in the
regression problem one observes two variables, the response variable Y and the

explanatory variable X.) We observe that our local polynomial fitting estimator
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also possesses somewhat similar nice properties exhibited by the correspoding re-
gression estimator of Fan (1992) and Fan and Gijbels (1992). That is, the kernel
functions derived via the local polynomial fitting method automatically adapt
for boundary effects at the boundary region, see Section 3. Another interesting
feature that we notice is that, in the interior region, the preceding mentioned ker-
nels coincide with ( up to a normalizing constant) those of the “optimal kernels”
derived by Gasser et al. (1985). Furthermore, we argue that the local polyno-
mial fitting method provides an intuitive explanation for the “boundary kernel”
proposal of Gasser and Miiller (1979) and Gasser et al. (1985). In Section 4 we
obtain an optimal kernel in order to estimate the density at the endpoints, as
a solution of a variational problem. Section 5 presents numerical comparisons
between various boundary kernel methods. Section 6 discusses the estimation
problem of f(z) at the boundary region under the shape criterion. Finally, in
Section 7 an illustration of the techniques and its capabilities are displayed using

two examples from line transect sampling.

2. Local Polynomial Density Estimation

Assume that f(z) is a probability density function with support [0, a], a <
00. Our goal is to estimate f(z). To derive an estimator of f via the local
polynomial fitting method, we first assume that we have the pseudo data ¥; =
f(X1), Ya = f(X3), ..., Ya = f(Xn) corresponding to the observed data X;, Xa,
..y Xn. It is obvious that

f(z) = E[f(X)|X =z].

Now we view 1], Y2, ..., Y}, as response variables and X, X3, ..., X, as explanatory

variables. Since (X1,Y), (X3,Y3), ..., (Xs,Y,) are independent and identically
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distributed (i.i.d.) random vectors, we can use the local polynomial smoother to

fit f(z), the regression function in this case. That is, minimize ~
n 14 2 X
> [Y — Y bi(a)e - Xj)f] x (2==) (2.1)
i=1 j=0

with respect to (w.r.t.) b;, where K is a non-negative kernel function with support
[-1,1] and k = hy (hn — 0 as n — oo) is the smoothing parameter. Let b;(z)
(j = 0,1,...,p) denote the solution of the least square problem (2.1). Then
f‘”’(:}:) = (—1)"v!5,,(a:) is an estimator of f(*)(z), the v** derivative of f(z),

v=0,1,...,p. Denoting

1 (-‘B—Xl) .. (.’B—Xl)p

X = 1 (.‘B —Xz) .es (:8 —'Xz)p

1 (z-X,) ... (z=-X,)7

Y: bo(z)
Y = Y5 , b(z) = b‘(f’)
Y. 5,(.1:)

and W =diag (K (5‘—,;"*)), the n x n diagonal matrix of weights, the solution to

(2.1) is given by

bz) = (XTWX)'XTwy

-1

Sno(z)  San(z) .. Snp(z) T o(z)
_ Sn1(z)  Sn2(z) .. Snpni(z) Tna(z)
Snp(Z) Snp+1(z) ... Sazp(7) T p(z)
= 57 T (2.2)
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where

Sni(z) = gx (” —hx;) (z—-X:), 7=0,1,...,2p
and
Tuste) = K (257) (2 = X%, 5 =01,
Hence )
bu(z) = eTb(z) = ZW" =) (2.3

where e, = (0,0,...,0,1,0,...,0)T with 1 at the (v + 1) position and W>(t) =
eISTI(1, th, ..., (th)P)TK(2).

The inverse of the matrix S, in (2.2) exists when the kernel function K is
nonnegative and the samples Xj, ..., X, contain at least p distinct X; with non-
negative weights. The following lemma shows that (2.3) can be represented as a

kernel type estimator which only depends on X;,7i=1,2, ... n.

Lemma 2.1. Assume that the density function f(z) is continuous and positive
on [0, a], and satisfies sup, | f)(z)| < 00, i = 1,2. Then b,(z) = b,(z)(1 +0p(1)),

where

- 1 & . /z-X;

b(e) = e L K3 (557 (2.4)
with

K;(t) = eIS71(1,t, ..., tP)TK(2), (2.5)

and the matrix § = (s;;), where s;; = [t/ K (t)dt, 0< j, I < p.

The proof of Lemma 2.1 is given in the Appendix. Lemma 2.1 shows that one

can use (—1)"v!b,(z) as an estimator of f(*)(z). A similar estimator has been
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derived by Fan et al. (1993) in the context of nonparametric regression function
estimation. The kernel function K;(t) defined by (2.5) is called an equivalent
kernel, and it is of order (v,p + 1) up to normalizing constants; see Gasser et al.
(1985) and Fan et al. (1993). Using an equivalent kernel, the asymptotic mean
squared error of a kernel estimator of the type (2.4) in the interior region depends

on
S ( / K;Z(t)dt) S (2.6)

“Optimal” polynomial kernels of orders (0, 2), (0, 4), (1, 3), (1, 5), (0, 6) and (2, 4)
have been derived by Gasser et al. (1985) in the sense of minimizing (2.6) among
all “minimal” kernels (Gasser et al. (1985)). When the kernel K in (2.5) is chosen
as K(t) = 3(1 — t*)]_1,y), our equivalent kernels K defined by (2.5) coincides

| JEag 0T

with optimal kernels of Gasser et al. (1985) up to a normalizing constant. Also, it
is easy to show that if we choose K as %I[—l.ll’ i.e., the minimum variance kernel,
then the induced kernels (2.5) also satisfy the minimum variance property as in
the regression case (Fan et al. (1993), Gasser et al. (1985) and Granovsky and
Miller (1989)). In this paper, our main interest is to study the performance of
the kernel estimator f*) (z) = (—1)”v!5,,(z) at the boundary region including the
endpoints , where &,(z) is given by (2.4).

3. Boundary Kernels

3.1. Equivalent Boundary Kernels
Assume that a constant bandwidth 4 is used in the interior / = {z: h <z <
a — h}. Denote B, ={z:0<z<h}and Bp={z:a—h <z < a} as left and
right boundary regions, respectively. Also, define
K.a(t), zel
Root)={ K.ot), ceBs (3.1)
KI’?(t), z € Bp,
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where ¢ = z/h, K,. is a boundary kernel with support (—1,¢], 0 < ¢ < 1,
see Definition 3.1 below, and K{_ has support [—c,1) with K, .(t) = K] (~t).
Boundary kernels have been investigated by Gasser and Miiller (1979), Gasser et
al. (1985), Miiller (1988, 1991) and Miller and Wang (1994).

Definition 3.1 A boundary kernel K, . is said to be of order (v, k) if

0, F=0,v—1,041,. k—1
/ Koo(t)tidt =1 1, j=uv (3.2)
-1
Bv.k(c)’ j = ky

where B, i(c) < oo. In the interior region I, B,i(c) = B,x(l) and we require
that B, k(1) # 0. In the boundary regions B and Bp, it is not always possible
that Byx(c) # 0 for all 0 < ¢ < 1. But, it will be seen below that at least
we can require B, x(0) # 0. We now derive (equivalent) boundary kernels by the
polynomial fitting method of the previous section. In this paper, we only consider
the left boundary point, and, by symmetry, the right boundary point can also be
treated similarily.

Consider a sequence of points £ = ch (0 < ¢ < 1) in By. Define the moments
of K now by sj. = f°, u/K(u)du. The equivalent kernel K; . defined by (2.5)

now leads to an equivalent boundary kernel
K; (1) = e;S7M (L1, .., )T K (1), (3.3)

where S, = (3j+{,c)05j'lsp and S;! = (s;j,'c)oq <" Thus, the local polynomial
fitting method adapts automatically for boundary effects. Fan et al. (1993) have
derived equivalent boundary kernels in the regression context. It is easy to show

that K defined by (3.3) satisfies

c . 0, 7=0,.,v-1v+1,..,
/ K ()t = { 7 Ty P
- 1

] ]=v’
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i.e., K;_ is of order (v,p + 1). Since the optimality of the equivalent kernels
induced from the Epanechnikov kernel in the interior region, it is our interest
to investigate the properties of the equivalent boundary kernels at the bound-
ary. The analytic representation of equivalent boundary kernels K for the left
boundary (defined by (3.3)) of orders (0, 2), (0, 4), (1, 3), (1, 5), (2, 4) and (0,
6), induced from the Epanechnikov kernel K(t) = 3(1 — #2)Ij_; are presented
below, which will be used to obtain the bandwidth variation function in Section 5.

order (0, 2):
12(1 - tz)I[.l'I]

> () = 8 — 16¢ + 24¢® ~ 12¢® + (15 — 30c + 156%)¢
order (0, 4):
- 60(1 - tz)I[—m] - ; 2
Koo(t) = (1 4 ¢)8(501 — 900c + 510c% — 100c® + 5¢t) [4(38 — 456¢ + 2964
—8057¢® + 11970¢* — 10395¢° + 5320c® — 1635¢™ + 300c® — 25¢°)
—35(c — 1)%(—37 + 370c — 1119¢* + 1220c® — 617c* + 150¢® — 15¢°)¢
+56(52 — 624c + 1956¢* — 2873¢® + 2220c* — 900¢® + 180c® — 15¢7)¢?
—210(c — 1)3(—9 + 90c — 75¢* + 20c® — 2c*)#9]
order (1, 3):
Y
Ko(t) = 60(1 — ) -1y [—5(c — 1)*(—4 + 16c — 12 + 3¢%)

(1 +¢)8(24 — 33c + 12¢? — c3)
+8(16 — 5lc + 66¢% — 36¢> + 6¢*)t — 35(c — 1)*(c — 4)t?]

order (1, 5):

10(1 — ¢2) Iy y
(1 4+ ¢)10(1334 — 2995¢ + 2280c? — 730c® + 90ct — 3c5)
[~1764(c — 1)2(—28 + 504c — 3084c? + 8073c® — 10410c* + 7365¢°

K (t) =

—3000c® + 705¢" - 90¢® + 5¢7) + 1344(656 — 8500c + 45360¢°
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~121800c% + 188160c* — 178227c° + 106050c° — 39615¢” + 90002
—~1120c® + 56¢1°)¢ — 5292(c — 1)2(—726 + 6243¢c — 18028¢* + 223263
—13910c* + 4535¢® — 720c® + 40c”)¢? + 12096(496 — 4670c + 14840c>
~23415¢% + 20580¢* — 10325¢° + 2870c° + 2870c% — 400¢” + 20c°)¢°
~19404(c — 1)*(—158 + 1059¢ — 1204c* + 508¢® — 90¢* + 5¢°)¢1]

order (0, 6):

K* (t) _ (1 + C)-12(1 - tz).[[_l,ll
0.c3%7 ™ (14407 — 37926¢ + 37065¢% — 16660c3 + 3465¢* — 294¢5 + 7¢8)
[1344(422 — 12660c + 196230c* — 1410305¢® + 5727270¢* — 14245008¢°

+23083970c° — 25347420¢7 + 19288710c® — 10286290¢° + 3849510c'°
—1000860c'* + 176890c'? — 20580c™ + 1470c™* — 49¢1%) — 52920(c — 1)?
(—205 + 5740c — 57628¢* + 266868c® — 652658¢* + 918372c° — 792068°
+434588¢” ~ 153855¢% + 34888¢® — 4900c™° + 392¢'! — 14¢')t + 20160
(3124 — 93720c + 856428c% — 3869349¢° + 10041510¢* — 16313694¢°
+17418870c® — 12530553¢” + 6122256¢® — 2016875¢° + 436170c°
—~58590c!! + 4410c'? — 147c'3)¢? — 194040(c — 1)>(—791 + 22148¢
~141204¢? + 387996¢% — 546594c* + 437052¢° — 207552c° + 58548¢"
—9399¢® + 784¢% — 28¢1%)3 + 221760(746 — 22380c + 156378¢>
—483009¢® + 823290c* — 848823¢° + 548688¢° — 223188¢” + 55860c°
—8155¢ + 630! — 21¢' )¢ — 1513512(c — 1)*(—43 + 1204¢

—5764c® + 8428¢® — 5560c* + 1876¢° — 328¢° + 28¢7 — %)%

order (2, 4):

60(1 - tz)I[_l'I]
(1 + ¢)3(501 ~ 900c + 510c? — 100c3 + 5c4)
[56(52 — 624c + 1956¢% — 2873¢% + 2220c* — 900c® + 1805 — 15¢7)

Koo (t) =
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—490(c — 1)*(~77 + 290c — 279¢* + 100c* — 10c*)t + 560(c — 2)
(=92 + 290c —- 335¢* + 150¢® ~ 15¢*)t? — 4410(c — 1)?
(=17 + 10c — ¢?)#3]

For some important cases of c, the equivalent boundary kernels of order (0, 2)

are shown in Figure 1.

Figure 1 about here

Remark: The equivalent boundary kernels of order (0, 2) are in fact the bound-
ary kernels suggested by Gasser and Miiller (1979) where they obtained them
by multiplying the interior kernel by a linear function. The local polynomial fit-
ting method offers an intuitive explanation for their arguments. The equivalent
boundary kernels of order (0, 2) correct the boundary effects by increasing the
order of the kernel by 1 at the boundary. In the context of regression problem,
Fan et al. (1993) have indicated that increasing the order of the kernel by 1 at
the boundary is more convincing than keeping the same order at the boundary
as in the interior. The reason is that if we use the minimum variance kernel
K(t) = 3It-1, in (3.3), then the order of equivalent boundary kernels will in-
crease by 1 at the boundary while keeping the same minimum variance property.
Since the equivalent boundary kernel is in fact a product of a linear function and
an interior kernel, we can see that increasing the order by 1 at the boundary is
not necessary. It will be clear in Section 4 that the optimal boundary kernel of
order (0, 2) at ¢ =0 is in fact a polynomial of degree 2, not 3.

3.2. Bandwidth Variation Function
Recall that a constant bandwidth 4 is used in the interior region I. For z in

By, write for the local bandwidth k(z) = b(z|k)h for some function b : (0,1] — R*
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with 5(1) = 1. Then at z = ch for the estimator (2.4) with K> replaced K;.
given by (3.3), we obtain

Bias(bi,2) = i HARP 00 a) [Tk
and
Var(b, z) = hb(c)]wf(z) e

Write B, p41(c) = [£, #*1K (t)dt and V,(c) = JE1 (K (2))*dt. Then the leading

terms of the asymptotic mean squared error (MSE) are

a6 s (35)]

vl)?
¥ n[,,é(cfpm FO. (b( )) (34

Assume that the local bandwidth is chosen optimally at £ = h, then it minimizes

MSE(b,,z) ~ [

the preceding expression (3.4). Differentiating (3.4) w.r.t. h yields

. [ ((p+ 1?20 + 1 FO) V(1) JT; 33)
2n(p + 1 = v) (f®+1(0))’ [B, pu1 2
Substituting 4 into (3.4), we obtain

2(2u41) obl obl
) (ul)? [f‘”“’(u)] i 5 vp+1(1)1—"‘2’:=+“=’<°(p+1—v))iﬁf
MSE(b,,z) ~ e

f(0)™ 2”3 ((P + 1)') "'“’3 [V (l)]3P+3 (2v + l)2p+3n 2p+3

{[b(c)ﬁ““ v (b(i)) T2 +‘; (-I-)S FBtle,)l(l)]z
[b(c)PE*1-) [Bu,m (chj)r} : (3.6)

Then the optimal bandwidth variation function b is the solution of the variational

problem of minimizing

1 y Vo(1)(2v +1)
oG (b(y)) Y B G Ty
2
(b(y)) 21 [B.,.p+1 (b—(”ﬁ)] . @
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under the requirement 5(y) > y; compare with Miiller (1991).

Since Byp41(t) has a zero for some ¢ € (0,1), (3.7) won’t yield solutions for
which b is smooth in y, thus leading to jumps in the estimated curve. Instead,
Miller (1991) suggests to assume that, in (3.7), Bype1 (55 is fixed at Bypes(1)
and then try to minimize (3.7). The defect of this method is that b(-) is only
optimal at z = h. Since it is the most important case to estimate the density at

the endpoint, it is required that the bandwidth variation function is optimal at

z = 0. Assuming B, ;41(0) # 0, we suggest using
|Bup+1(0)| + (Bups1(1) — | Bups1(0)]) y/b(y)

as an approximation to By p+1 ;(”5)—) of (3.7). Unfortunately, the above two meth-
ods wouldn’t yield an optimal b which is smooth in y. But, later we shall see that
our method at least gives an optimal bandwidth variation in the sense of mini-
mizing MSE at z = 0 and z = k. This issue will be further discussed in Section
5, 1.e., in simulation studies. As Miiller (1991) suggested, an obvious choice of &
will be b(y) =1 for all 0 < y < 1, which means no bandwidth variation at all.

A natural question is whether the optimality can be carried into the boundary
uniformly when we use the equivalent kernel K;_ (see (3.3)) induced by the
Epanechnikov kernel. In the next section, we shall investigate optimal kernels for
end-points estimation. We shall find a kernel of order (0, 2) and shall show that
1t is optimal in the sense of minimizing MSE at the (left) end-point. Surprisingly,
it is not the equivalent kernel induced by the Epanechnikov kernel.

4. Optimal Boundary Kernels at the End-points

Here we investigate the most important case of order (0, 2) kernels for

the left end-point 0. The right endpoint can be treated similarly. From (3.2),
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boundary kernels should satisfy the conditions

(i) J°. Koo(t)dt =1

(4.1)
(ii) ffoo tKo'Q(t)dt = 0.
Now (3.6) reduces to
1 ‘/0(1) 4 2
5750+ Ty O a0 (42

Minimizing (4.2) w.r.t. (0) under the restriction b(0) > 0, we obtain the mini-

mizing value

oo [ Ye(0) [Boa (1)) *
b‘o)“{va(l) [Bu,z(onz} ' (43)
Substituting 6°(0) back in (4.2), one obtains
5 [[Boa@P M6t
4{ (Boz(L)T } oL - (¢4

So the problem of minimizing MSE (at the left end-point) becomes the problem
of finding a boundary kernel Koo which minimizes [Bo2(0)]? [V5(0)]*. That is,

the Koo which minimizes

T (Kop) = ( /_ l ::21{0,.3(t)dt)2 ( /_ : Kg'o(t)dty : (4.5)

The functional T (Kop) is invariant for an “equivalence class” of kernels (see

Gasser and Miller (1979)).

Lemma 4.1. For any boundary kernel Koo(t) of order (0, 2) with exact one
change of sign on (—co, 0], we have [0 2K, o(t)dt # 0.

The proof of Lemma 4.1 is given in the Appendix.
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By Lemma 1 of Gasser and Miiller (1979), J2 2 Ko o(t)dt may be normalized
without affecting the solution to (4.5). We take

0
/ £2Koo(t)dt = —1. (4.6)

Now, if AK represents a small deviation for an extremum sub ject to conditions

(4.1) and (4.6), then the variation of

[ : K2,(t)dt + A, [ [ : Koo(t)dt — 1] + A [ [ : Ko,o(t)tdt]

1]
W [ [ Koottt + 1]

-0

should be zero, where A;, A, and A; are the Lagrange multipliers. Hence,

0

aq a
2 / Koo(t)AK(t)dt + Ay / AK(t)dt + A / AK(t)tdt

0
+ Az / AK(t)t3dt = 0.
-0
Therefore
2Ko0(t) + A1 + Aot + A3t =0

and hence

AL = Aot — A3t

Kop(t) = = 5

(4.7)

Thus, the calculus of variation yields polynomials of degree 2 as possible solutions
to the minimizing problem (4.5). But it is not difficult to see that T in (4.5) can
be made as small as possible with a suitable choice of 7, where v, 0] is the support
of Koo(t). To get around this problem, we restrict our attention to the class of
kernels with only one change of sign on their support. There are two reasons for
choosing such a kernel: 1) A kernel with more than one change of sign on its
support usually causes significantly larger variance, 2) Lemma 4.1 ensures that
such a kernel satisfying [°_ t2Ky (t)dt # 0, which further ensures the existence
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of the optimal bandwidth variation function at z = 0, see (3.8). For Kgpo defined
by (4.7), there are at most two roots such that Koo takes value 0. Also (4.1)
shows that Ko has at least one root in its support. Naturally we can take the left
most root as the left end point of the support, denote it by 7. Thus, Koo(y) =0
and it is essential that Koo(y) = 0 in order to make the estimator smooth (see
Miller (1991) and Miiller and Wang (1994)). With the above specifications and
under the conditions (4.1) and (4.6), the optimal kernel Koo(t) given by (4.7) is

MU Ty 2 Meycg
Koo(t) = > s % == (4.8)
otherwise.
Normalizing the support of Ky(t) in (4.8) as [—1,0], Ko,0(t) becomes
6+ 18t +12¢2, -1<t<0
Ko(t) = (4.9)
0, otherwise.

Starting from Ko(t), naturally we expect the other boundary kernelsfor0 < c¢ < 1
are of order 2 with support [-1,¢]. In fact, for a boundary kernel K., under (4.1)

and another assumption that K.(—1) =0,0 < ¢ < 1, we can show that

(1l +¢) [t(1 —2¢) + 3=2etl] ) <4<
Kc(t)={ (L +0) (11~ 2) 7] =r=¢ (4.10)

0, otherwise.

Note that K.(¢) is a natural continuation of Ko() (given by (4.9)) and the
Epanechnikov’s kernel K,(t) = 3(1 = ) I_1y. That is, putting ¢ = 0 and
¢ =1 in (4.10) one obtains K and Kope, respectively. Interestingly, Miiller and
Wang (1994) have derived the same boundary kernel using a different approach.

Theorem 4.1. Among all the end-point kernels of order (0, 2) with one change

of sign on [~1,0], the kernel Ky(t) defined by (4.9) is optimal in the sense of

minimizing MSE at z = 0.
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The proof of Theorem 4.1 is given in the Appendix. Although the kernel (4.9)
is the optimal kernel at the left end-point, the optimality of K. (given by (4.10))

at other boundary points remains unknown.

5. Simulations

In this section, we estimate the density f given by f(z) =e%, z > 0, at

the left boundary region using order (0, 2) kernels. The two boundary kernels

that are employed are (see (4.10) and (3.3))

. 12 32 -2c+1
Ac(t) = m(t + 1) [t(l - 26) + +} [~1.q

and
12(1 —t?)
(1 + ¢)*(3c* — 18¢ + 19)
{8~ 16c + 24c* — 12¢® + (15 — 30¢ + 15¢)} fi_1q.

Ky .(t) =

For (5.1), we have

-1+ 6¢c-3¢?
10

.
b

B(c) = /cch(t)tzdtz

12(2 - 3¢ + 3¢?)
5(1 +¢)3

Vi) = [ (k) dt=

i

For (5.2), we have

' . - 23663 46c4
B'(c) = 2, K5 o(t)t?dt = L 56(6:198:-1&:633) :

N _ pe - 2 0 _ 48(1184-3936c+6600c3—6345c3 43345 48915 +99c
Vi(e) = J2, (KO,c(t)) dt = =< 35(1+c)5(-19+18c-3?‘):5 :

(5.1)

(5-3)

(5.4)

Figure 2 gives the values of B(c), V(c), B'(c) and V'(c) at the boundary region

(0,%). The x-axis of the figure represents values of ¢ ranging from 0 to 1.
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Figure 2 about here

From (3.6), MSEat z=ch,0<c<1,is

50 = o (g () * et (7)) e

where Vo(y) = JZ; K3, (t)dt and Boz = [¥; Ko, (t)t3dt, with b(c) is determined

by minimizing

ek (b(cc)) + a5 (ﬁ) ' (56)
For kernel (5.1), since By2(0) = —0.1 and Boa(1) = 0.2, we approximate By , (b—(";)-)
by 0.1 (& +1). Using (5.3), the optimal bandwidth variation, b (c) say, (one
which minimizes (5.6) with the above Bjy,) is shown by the thin-bold line in
Figure 3 (top). The optimal bandwidth variation when we fix Bos(-) at Bg (1)
is also calculated, by(c) say. The latter is shown by the thick-bold line in Figure
3 (top). They both have discontinuity points, so they won’t yield smooth esti-
mators. We also compared their MSE values as well. It is clear to us that by
gives better results than ;. Furthermore, b, in Figure 3 (top) shed some lights
on how to choose an approximation to the optimal bandwidth variation function.
We propose
Method 1: Choose constant bandwidth variation, i.e., bs(c) = 1.
Method 2: Use the line which connects the points (1,1) and (0,2) as the band-
width variation function, i.e., by(c) =2 —c.

Method 3: Define

4c? —4c+2, ¢<0.5
bs(c) =
1, ¢ > 0.5.

Functions b3, b4 and bs are also exhibited in Figure 3 (top) for comparison.
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Figure 3 about here

Note that methods 2 and 3 give optimal bandwidth variation at z = 0 and
T = h in the sense of minimizing (5.6). That means b, and bs minimize (5.6) at
c=0and c=1.

For kernel (5.2), a similar analysis is done, but now with by(c) = 1.86174 —
0.86174c and

bs(c) 3.44696¢% — 3.44696¢ + 1.86174, ¢<0.5
5 C) =
1, c>0.5.

Again, b; (i = 1,2,3,4 and 5) are displayed in Figure 3 (bottom).

In the following, all the MSE values are computed from (5.5). Figure 4 (top)
exhibits MSE values (w.r.t. ¢, 0 < ¢ < 1) of estimating f(z) = e~%, z > 0, by
three different bandwidth variation choices (namely, b3, b, a.nd bs) with kernel
(5.1) in the boundary region (0,4), where A = (ng—%!—-—l()l)) the local optimal
bandwidth (see (3.5)). With n = 200, & = 0.59567839. (In practice, k can be
approximated by the cross-validation method, etc.)

Similarly, Figure 4 (bottom) displays MSE values (w.r.t. ¢, 0 < e < 1) by b3,
by and bs with kernel (5.2).

Figure 4 about here

Note that b;’s with kernel (5.1) are different from 5;’s with kernel (8.2), although
they are obtained using the same method of choosing the bandwidth variation.
Both plots in Figure 4 (top and bottom) reveal that b4 and b5 are better than
b3 near the left endpoint. At the points near z = A (or ¢ = 1), b3 (namely, no
bandwidth variation) yields good results. Overall, b; and b5 are good choices of

bandwidth variation functions.
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Figure 5 (top) compares MSE values (w.r.t. ¢, 0 < ¢ < 1) for kernels (5.1) and
(5.2) with bandwidth variation function bs. Figure 5 (bottom) compares MSE
values (w.r.t. ¢, 0 < ¢ < 1) for kernels (5.1) and (5.2) with bandwidth variation
function bs. We find that at the points near z = 0, kernel (5.1) is better than
kernel (5.2). This confirms Theorem 4.1, according to which kernel (5.1) is opti-
mal at £ = 0. At the points near z = h (or c = 1), kernel (5.2) is better. So, we
can conclude that linear polynomial smoothing method brings some optimality
near z = h but not to the left endpoint 0, whereas kernel (5.1) is optimal at the

left endpoint. This optimality, however, doesn’t prevail to the points near z = h.

Figure 5 about here

We also compared the performance of kernels (5.1), (5.2), Miiller’s kernel
(referred to Miiller (1991)) and the Epanechnikov kernel (without a boundary
correction) for estimating the density f(z) = e~*, ¢ > 0. The bandwidth varia-
tion function that was employed in the simulation for the first three kernels was
b4, i.e., Method 2. For comparison, the theoretical optimal bandwidth is adopted
at z = h. The number of replications is 100. The sample size was n = 200.
Summary results are presented in Figure 6. The x-axis is for values of z from 0

to 2.

Figure 6 about here

Clearly, the Epanechnikov kernel didn’t remove the boundary effect, since it was
implemented without a boundary correction. The kernels (5.1) and (5.2) have
good comparable performances in approximating the true density, f(z) = e%,

z 2 0. They both perform better than Miiller’s kernel. We also noticed the
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optimality property of kernel (5.1) for estimating the density at the endpoint

z=0.

6. The case of f(V(0) =0

The order (0, 2) boundary kernels discussed in the previous sections are used
to obtain the second order term and to cancel out the first order term in the bias
expansion. But, when f()(0) =0, the first order term disappears automatically.
Assume that the bandwidth % is used in the interior of the support of f(z), where
f(z) is a density with support [0, a], a < 0o. Then, the usual kernel estimator of

fis

(6.1)

fz) = %gfx(” .

where K is a kernel of order (0, 2) with support [—1,1]. The bias expansion of

flz)at z=chis
Bias(f,z) = f(z) ( [ 1 K(t)%dt — 1) + -’;—zf(z)(z) [ 1 LK)t (6.2)

In (6.2), the first order term of h doesn’t appear. But, obviously, f(z) is not a
consistent estimator of f(z) at £ = ck for 0 < ¢ < 1. To get around this problem,
a number of methods have been suggested in the literature. Two popular ones
are the so-called cut-and-normalized kernel method (Gasser and Miiller (1979))
and the reflection method (Schuster (1985) and Silverman (1986, p. 31)). The
cut-and-normalized kernel method in fact uses an order (0, 1) kernel with support

[—1,c] in (6.1). The order (0, 1) kernel is referred to a kernel K. which satisfies
/ cl K.yt =1, (6.3)

with the condition that K. is nonnegative. In our investigation, we have observed

that the local polynomial fitting method discussed in Section 2 with p = 0 (i.e.,
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the constant fit ) yields a cut-and-normalized kernel. Define
3
K(t) = Z(l - tz)I[_m]. (6.4)
The constant fit equivalent kernel induced by (6.4) is (see (2.5))

K;(t) = ) 1,q- (6.5)

3
2+3c—a
When ¢ = 1, (6.5) becomes (6.4), so KZ(t) provides a natural continuation of
K(t), keeping the nonnegativity property intact.

We now compare the above constant fit method with the reflection method.
First, let’s recall the reflection method. Assume that we have a random sam-
ple Xi, ..., X, from an unknown density f. Then, the estimator of f from the

reflection method is

f@)+f(~z)  zelo,h)
fiz) =1 f(z) z€fha—h], (6.6)
f(z)+f(2a—z) z€[a—h,q

where f(z) is defined by (6.1) and K is a usual nonnegative order (0, 2) kernel

[ (557) + & (55
[ (557 (555 -]

So, one can view f1(z) as the usual kernel estimator with the kernel

function. For z = c4,

M-

fi(z)

EN]
-

1
nh “
L

h 4

=1

I~

Kl(t) = K(t) + K(t - 2). (6.7)

From the facts that f°, K}(t)dt = 1 and Kl(t) > 0, the reflection method is in
fact a boundary kernel method with the boundary kernel (6.7). To get a bet-
ter understanding of the difference between the constant it kernel (6.5) and the
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boundary kernel (6.7) derived from the refletion method, we plotted them for
different values of ¢ with K given by (6.4) in Figures 7 and 8. We see that (6.7)
looks very much like the cut-and-normalized kernel (6.5) except that (6.7) is not
smooth inside its support, while (6.5) is.

Figures 7 and 8 about here

It is generally believed that an unsmoothness of the kernel function will re-
sult in an unsmooth density estimator. Therefore, a natural question is “ Is it
necessary to use the reflection method at the risk of obtaining an unsmooth esti-
mator?” One may argue that (6.7) can be smoothen if we use a smoother kernel
K. Figure 9 below shows that the plot of the kernel from the reflection method
with K (t) = $8(1 —¢2)2]_,,}, which is smoother than (6.4). Now the kernel (6.7)
1s a smooth function. However, a smoother kernel will increase the variance of the
estimator. So, if our purpose is to minimize MSE, the smoother-kernel method

is not preferred.

Figure 9 about here

A comparison between the performance of the kernel (6.5) and (6.7) was done
as well. As in Section 5, here again we face the problem of choosing the bandwidth
variation function. For a kernel K. which satisfies (6.3) and f defined by (6.1)

with K replaced by K, at z = ch, the asymptotic bias and variance at z = ch

are
ias(F. o) = B £2) ‘2
Bias(f, ) = % £)(0) /_ PRtz (6.8)
and
Var(f, z) = % /_ 1 K2(t)dt. (6.9)
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Therefore,
MSE(f, =) = 2 (@) [ rraa] + 19 1 CKX)d.  (6.10)

Assume that A is chosen by (3.5), then

L

h= ,: /0 ﬁl KXt 2} n=%. (6.11)
[F@(0) (12, 22K (¢)dt)

Using a similar discussion as in Subsection 3.2, we obtain the optimal bandwidth

variation function as

< Kf(t)dt] s [ L tz.r{(t)dtJ'g (6.12)

b(e) = [ LK (t)dz < CK.(2)dt

Here, b(c) makes sense for every 0 < ¢ < 1, since f€, 2K (t)dt >0 for 0 < c < 1.

For K(t) and K(t) defined by (6.4) and (6.5),

ez 38 —9c+3c2)
/_1[K°(t)] dt—20—15c2+5c3

and

~24+4c—6c2 +3c3
5(c —2) ’

/ " 2K (t)dt =
-1

then, the optimal bandwidth variation function is
L
L

(6.13)

bl = [ 3(8 — 9c + 3c?)
(c) = (c+1) (=2 +4c—6c2 + 3c3)2J

For K!(t) defined by (6.7) with K given by (6.4),
SRS = 1223 4 36 _ 0.6
and
[ Rt =02~ 0.75¢ 4+ 26 — 156* 4 0.256,

87



then, the optimal bandwidth variation function is

- — 0.665 t
1.2 -3¢ +3c% — 0.6¢ ] (6.14)

bl(c) =
15(0.2 — 0.75¢ + 2¢? — 1.5¢3 + 0.2565)2

Figure 10 displays 6™ and b' for 0 < ¢ < 1. Note that 57(0) = 6'(0). In fact, we
can also see that K(t) = K{(t). Thus, the constant fit method is equivalent to

the reflection method at £ = 0 when the same interior kernel is used.

Figure 10 about here

Figure 11 gives the MSE values of the constant fit method and the reflection
method with K defined by (6.4). The estimated density is f(z) = Hz + 1)e=,
z 2 0. The bandwidth variation functions 4*(c) and bt(c) given by (6.13) and
(6.14), respectively, are employed. For the purpose of comparison, MSE values
are calculated from (6.10) and the theoretical optimal bandwidth at z = 4 is em-
ployed. In practice, this bandwidth can be approximated by the cross-validation
method or by the plug-in method. From F igure 11, it is clear that the reflection
method performs slightly better than the cut-and-normalized kernel method at
about one-third of the boundary region near the endpoint. At the other two-third
of the boundary region near z = k, the reflection method is obviously inferior
to the cut-and-normalized kernel method. We also computed the IMSE (inte-
grated MSE) values of the two estimators at the boundary region. The IMSE
value from the reflection method is 0.004424794, whereas the IMSE value from
the cut-and-normalized kernel method is 0.004385766. All indications are that
the cut-and-normalized kernel method (or the constant fit method) marginally
outperforms the reflection method. Another advantage of the cut-and-normalized

kernel method is that it needs less computation than the reflection method.
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Figure 11 about here

In conclusion, we recommend the use of the cut-and-normalized kernel method
with a bandwidth variation function in practice. I our interest is only on the
estimation of the density at the end-points, then there is no difference between
the two methods, taking the bandwidth variation into consideration. Chen (1996)
discussed the problem of estimating animal abundance using the kernel method.
In his paper, he estimated f(0) by the reflection method, under the shape criterion
fM(0) = 0. Though his simulation results are good, they can be improved further

by using a bandwidth variation function.

7. Examples

In this section, we are mainly interested in the cases where the data are peaked
at £ = (. In estimating the animal abundance, many methods have been sug-
gested. The Fourier series method is one of the most popular methods that is
frequently used in practice. We now compare our boundary kernel method with
the Fourier series method. Assume that the true model is the truncated expo-
nential model of Crain et al. (1979), where the density of the detected right angle

distance X is

flz) = Aezp(—Az)

= <z< 7.
1_wp(_hu),o clw (7.1)

—

with w being the distance from the travel path beyond which no object can ever
be detected. In simulations, we used the boundary kernel (5.1), which is optimal
at z = 0. The bandwidth variation function &, is employed at z = 0. The optimal
bandwidth at z = A is approximated by using the reference density method (see
Silverman (1986) and Chen (1996)). We chose the exponential density f(z) =
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Aexp(—Az), £ 2 0, as our reference density. Since

1/5
N [15}'(0)] i

FEI0)?
151/5/\—177._1/5,

and since the expectation of the random variable X with density Aexp(—\z),
z >0, is A~L, it is natural to use h = 15Y/5E(X)n=1/5 as the estimator of h. For
the Fourier series method, we computed the estimates for terms ranging from
one to six. In simulations, We generated 100 replications of the samples from
the model (7.1) with w = 100. For each sample, the sample size was chosen as
100. Table 1 summarizes the simulation results: fp,;((]) denotes the Fourier series
estimate of f(0) when the estimator contains ¢ number of terms, i = 1,...,6.
The values in the parentheses are the corresponding MSE values. The boundary
kernel estimate of f(0) is denoted by f(0) in the table. Entries in the table are
averages over 100 replications.

Note that the values of f(0) are very close to the true values of f(0) consis-
tently for all values of A. Furthermore, Table 1 indicates that f (0) is a better
estimate than fp','(O) for all 2 = 1,2,...,6 and for all A considered. For example,
when 1=0.15, the true value of f(0) is 0.15. The estimates frg(0) and f(0) are
0.08953989 and 0.1408818, respectively, and the correspoding MSE values are
0.003675134 and 0.0005483571, respectively.

We also computed the estimates without taking the bandwidth variation into
consideration. These values are not reported here, and they are not better than
those values of the Fourier series method. Therefore, it appears that use of a
bandwidth variation function is very important to guarantee the good perfor-

mance of the kernel estimator.
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Table 1. Comparison between the boundary kernel method

and the Fourier Series method

A=0.05 A=0.10 A=0.15
£(0) 0.05033918 0.1000045 0.15
fr1(0) 0.02445792 0.02809392 0.02915134
(0.0006705535) (0.0051713006) (0.014604443)
fr2(0) 0.03207089 0.04221390 0.04613698
(0.0003377232) (0.0033414883) (0.0.010788065)
fr3(0) 0.03643933 0.05257510 0.06043987
(0.0002027705) (0.0022551197) (0.008023476)
fra(0) 0.03918505 0.06012749 0.07217877
(0.0001410504) (0.0016017385) (0.006062488)
frs(0) 0.04103015 0.06576078 0.08173865
(0.0001094010) (0.0011924119) (0.004671730)
fre(0) 0.04236107 0.07010664 0.08953989
(0.00009284404) (0.0009232401) (0.003675134)
£(0) 0.04751006 0.09171048 0.1408818
(0.00006672282) (0.0002812265) (0.0005493571)

As a second example, we calculated the estimate for Ruffed grouse data (Gates
(1979)), which shows a peak at £ = 0 and has been discussed in Buckland (1985).
The boundary kernel method can not be applied directly since the data are
grouped. To get around this problem, we first fitted a parametric model for
the data ( this idea was suggested to us by Professor S. T. Buckland). The range
of this data is from 0 to 30, which is grouped into six equal-length intervals. Since
this data shows a peak at z = 0, it is reasonable to fit this data by the following

exponential model
f(z) = dezp(~Az), = > 0. (7.2)
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A natural estimator of A is

n

A S BT ¥ T5ns 1 12.5ms + 1757 1 22.5ns + ZT5m"

where n; (i = 1,...,6) are the number of observations in each group, n = ¥, n;.

Next, we generated random samples according to the density (7.2) with A
replaced by X for each group interval, keeping the number of observations un-
changed. we then used the boundary kernel method to find an estimate using
these pseudo data. Our estimate of f(0) is £(0)=0.1229497 with the standard
error = 0.001194368. The preceding values are averages of 100 replications. The
above estimate f(0) is slightly higher than the value reported in Buckland (1985).
We believe that our estimate is more accurate than Buckland’s, since the polyno-
mial method implemented in his paper is mainly efficient when the data exhibit
a shoulder at z = 0. Also, a small standard error indicates that our method of
dealing with the grouped data is convincing.

From the above simulation results, one can see that the boundary kernel
method is very promissing in estimating the density when the density exhibites
a peak at z = 0 and has an exponential-type density. In addition, it is obvious
that the boundary kernel method can be used for any type of data, whatever the
true model is. However, the choice of bandwidth is also rather crucial for better
results. The method of choosing the optimal bandwidth by using a reference
density may be sensitive to the choice of the reference density. A wise choice
of h is the use of the cross-validation method, though the computation may be
burdensome. In the cases where one has some information about the true density,

the reference density method may be a good choice.
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APPENDIX: Proofs

Proof of Lemma 2.1. First note that (see (2.2))

z—-X.-

Snie) = LK (355 @~ Xy

=1

= ES.;(z)+op (‘ /Var[s,.,,-(z)]) :

(A.1)

Assume the support of K is [-1,1], by a change of variables followed by an appli-

cation of Taylor formula,

ES. i(z) =

—

Var([S,,;(z)] <

n/K (z;u) (z — u) f(u)du

nh [ 11 K()(thY f(z — th)dt

awi#t [ K0P { )~ th 1) + S 1)

-

k¥ f(z) [ 11 K(t)#dt(1 + o(1)).
nEK? ("—'hﬁ) (z - X,)%

n [ K* ("‘ . ") (z — w)¥ f(u)du
a1 [ 11 KX(O)% f(z — th)dt

0 (nh¥*).

By combining (A.1), (A.2) and (A.3), we obtain

Suilz) = nk* £(z) [ 11 K(t)#dt (1 +op(1)).
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Now b,(z) defined by (2.3) can be rewritten as

Fi — T

o) = il
h L, K(t)dt, R [Y K (t)tdt, .. hPfL K(f)edt |
h? 1, K(t)tdt, R 1 K(t)tdt, .. RPHRJLOK(t)tPtldt

RP¥L L K (t)tedt, hPYR [l K(t)er¥idt, ... R L K(t)t%Pdt
-(1, z—Xiyon (2= Xi)P)TK (-’—"hi) Y: (1 + op(1))

= Z eTDxag (h.‘1 h2, .., h—(”“))

nf(a: r"l
-1
FLK(t)dt, 1 K(t)tdt, ... [ K(t)trdt
JLK(t)edt, [ K(t)t3dt, .. [i K(t)tPtidt
[l K@)trdt, [1 K ()P, ... [l K(¢)t%Pdt

Diag (1,7, ..., RP) (Lz = X;y ooy (2 — Xi)P)T

K (" ;X‘) FUX6) (1 + 0p(1)
= nhv+1f(x) Z 751 ( T —’;X;’ i (:z: —hX,-)p)

K ( Y,

25) £ (14 05 (1) (A.5)
Since K has support on [—1,1], it is enough to consider the points such that
g—h < X; <z+h But,forz—h < X; < z+h, we have f(X;) = f(z)(1+0(1))

under the assumptions of the lemma. Combining the preceding result together

with (A.5) completes the proof.

Proof of Theorem 4.1. Define pg(t) = 6(1 + 3t + 2t?). Suppose K(t) = Ko(t) +
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AKoy(t) is also a kernel of order (0, 2) satisfying conditions (4.1) and

/_° R)tdt = /° Ko(t)t2dt = —0.1, (A.6)

compare with (4.6). Then by (4.1) and (A.6), we obtain

./_0 Kz(t)dt = /0 [KO(t)'*'AKo(t)]zdt

/ [Ko(t) + AKo(2)] tdt}

24 {/. " [Ko(t) + AKo(e)] 4 + 110}

0
- / K3(t)dt + / [2Ko(t) — 12 — 36¢ — 24¢*] AKo(t)dt

~12 { [Ko(t) + AKo(t)] dt — 1}
~36 {

+f (; (AKo(t))? dt

> [ ged+2 [ [Ko(e) ~ po(t)] AKo()ds, (A7)

-0

since [°_ (AKo(t))*dt > 0. So, to prove f°_ K*(t) > f°_ K2(t)dt it is enough

to show that
/_ ® [Ko(t) — po(t)] AKo(t)dt = — /_  ro(t)AKo(t)dt > 0, (A.8)

since Ko(t) = po(t)]i-1,0- In other words, [~ po(t)AKo(t)dt < 0. We claim that
the only change of sign of K(t) in (—oo, 0] occurs at some point ¢ < 0, goes from
— to +. Suppose the contrary is true. Then, by the second mean value theorem
for integrals (see, e.é., Stromberg (1981, p.238)), there exist two points §; and &;

such that —oo < £ < €2 <0 and
0= /_ ° Rt =6 /" R(t)dt + & /: R(t)dt. (A.9)

But, RHS of (A.9)< & /2 K(t)dt < 0, and this is a contradiction with the left

hand side of (A.9). Thus, our claim is true.
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Now to prove (A.8), consider the following two cases:
Case (a): ¢ € [-1,0].
Case (b): ¢ € (—o0, —1).

If ¢ € [-1,0], then [~L po(t)AKo(t)dt < 0 is immediate, since po(t) > 0
for t < —1, and AKy(t) = f{(t) < 0 for t < —1. Now consider the case ¢ €

(—o0, —1). Then, again by the second mean value theorem for integrals,

[ maks@td = [ pot)AKo(t)dt + [ maks(a

~00O

- ?L:Il /_" AKy(t)tdt + 3%"—’1 ) " AKo(t)t4A.10)

for some w; and w; such that —oco < w; < ¢ < wy < —1. Observe that pg(t) > 0
for £ < ~1 and that E‘ltm is a monotonely increasing function for ¢ < —1. Then,

by the fact that % AKq(t)tdt > 0, we obtain from (A.10),

/ ! o) AKo(t)dt < P22 / ' AKo(t)tdt.
-0 Wy -0

Thus, it is enough to show that _—-010 AKo(t)tdt > 0. But, this follows in view of

the following equation:
o . o _ -1
o=/ _ R(tdt = /_ Rttt + /_ _ AKq(t)(t)tat.

This completes the proof.

Proof of Lemma 4.1. From the proof of Theorem 4.1 above, we noticed that
the only change of sign of Ky 0(t) in (—o0, 0], at some point ¢ < 0, goes from —

to +. Thus, by the second mean value theorem for integrals, we obtain

0 . @ 0
/ Koo(t)?dt = / Koo(t)dt + /@s Koo(t)t2dt

-0

é 0
= v / " Koa(t)tdt +v; /¢ Koo(t)tdt  (A.11)
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for some v; and vy such that —co < v; < v3 < 0. But jfoo Kop(t)tdt > 0 and

J5 Koo(t)tdt < 0. Thus, from (A.11),

0 é Q
Koo(t)t?dt < v, { / Kop(t)tdt + A Ko,o(t)tdt}

-00 —_C0

0
= U I(o'o(t)tdt

-00

= 0.

This completes the proof.
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Chapter 5

On Nonparametric Density Estimation at the

Boundary

1. Introduction

Boundary effects are well known to occur in nonparametric density estima-
tion when the support of the density has finite endpoints. Specifically, suppose
that fx is a probability density function with support [0,1]. Let Xj, ... ,X, be

a random sample from fx. Then, the conventional kernel estimate of fx is

we) = 2k (557), 0.1

=1
where K is a kernel function of order (0, 2) with support [~1,1] (i.e., [}, K(t)dt =
0, [}, tK(t)dt = 0 and [}, t2K(t)dt # 0), and h is the bandwidth (A — 0 as
n — oo). Assuming that ff\g), the second derivative of fx, is continuous in a

neighborhood of the left endpoint 0, we have for z = ¢k, c € [0, 1],

Efu(z) = fx() /_"1 K(t)dt - hfP(z) /‘1 tK(t)dt+-’§f§§’(x) /-1 12K (£)dt
+o(h?). (1.2)

When ¢ = 1, (1.2) gives the usual interior bias expansion. When ¢ € [0,1), f.(z)
is not a consistent estimator of fx(z), since [, K(t)dt # 1. This is known as
the boundary effect at the left boundary. A similar phenominon occurs at the

right boundary. To remove these boundary effects, a variety of methods have been

A version of this chapter has been submitted for publication.
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developed during the past two decades. See, for instance, Gasser and Miiller
(1979), Rice (1984), Gasser et al. (1985), Schuster (1985), Silverman (1986),
Cline and Hart (1991), Karunamuni and Mehra (1991), Miller (1991), Hall and
Wehrly (1991), Jones (1993), Marron and Ruppert (1994) and Cowling and Hall
(1996). In the context of the nonparametric regression estimation, Fan (1993)
and Fan et al. (1993) revived the local polynomial fitting method. It has been
shown that this method can automatically adapt to boundary effects. Zhang and
Karunamuni (1995) extended this method to the case of density estimstion. They
showed that the local polynomial fitting method in density estimation yields a
class of boundary kernels. The idea of using boundary kernels to remove bound-
ary effects first appeared in Gasser and Miiller (1979). Since then, a variety of
boundary kernels have been suggested. Most studied boundary kernels are the
so-called smooth optimum kernels (Miller (1991)). The problem with these ker-
nels is that they are not intuitive, since they put zero weights on the estimated
point. Miller and Wang (1994) noticed this defect and derived another class of
boundary kernels of order (0, 2). Later, Zhang and Karunamuni (1995) derived
the same kernels by the local polynomial fitting method and showed that the
kernel was in fact optimal among a class of boundary kernels in the sense of min-
imizing the mean squared error (MSE). The purpose of the present paper is to
extend the results of Zhang and Karunamuni (1995) to the general case and to
propose a new method to remove boundary effects. During the preparation of this
paper, we learned that a more general result of Zhang and Karunamuni (1995),
similar to the present paper, has been proved in a technical report of Cheng at
al (1995), where they not only proved the optimality of the above stated order
(0, 2) boundary kernel, but also obtained the optimal kernels of other orders as
we have done in this paper.

However, there are number of notable differences between the results of our

paper and the paper of Cheng et al. (1995). Here, we discuss the following
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important issues but not in theirs: (1) We propose a new and intuitive way to
remove boundary effects by replacing the unwanted terms in the bias expansion
by their estimators. Interestingly, our method offers a new way to construct
boundary kernels. (2) We show that the class of boundary kernels derived from
the local polynomial fitting method is a special case of ours. (3) We give an
explicit geometric characterization of the class of kernels, which the optimality
is based on, and that was obscured in Cheng et al. (1995). Also, an easy way
to construct the optimal endpoint kernel is proposed. (An endpoint kernel is
referred to as a kernel that is used to estimate a density at an endpoint of its
support.) (4) We also discuss the important problem of choosing the optimal
bandwidth when estimating a density at the boundary and provide an easy and
general method to choose the bandwidth at the boundary.

~ Section 2 of this paper describes the method we propose to remove boundary
effects. Section 3 gives some examples of the boundary kernels derived from
the method of Section 2. Section 4 discusses the problem of how to choose the
bandwidth variation function at the boundary region. In Section 5, the optimal
endpoint kernels amomg a class of so-called minimal kernels are obtained. Some

numerical results are given in Section 6.

2. Density estimation without boundary effects

From (1.2), it is clear that the term —A f)((l)(z) JS, tK(t)dt is the main source
of the boundary effect. Without this term, f.(z)/ f, K(t)dt will be a consistent
estimator of f(z). In fact, (1.2) implies that

E{ fa(z) + o1 tK(t)dthf)((l)(z)} = Fel@)+ A2 f)((z)(:z:) Jo, 2K (t)dt

F k@& T [ K()dt PO

+o(h?). (2.1)
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From (2.1), we note that a linear combination af,(z) + Bk f)(z) would serve as

an estimator of fx(z), where @ and B need to be determined and

) = 3k (25

=1

) (22)

is an estimate of fi)(z) with K being a kernel of order (1, k), k£ > 2, with
support [-1, 1] (see (2.11) for the definition of order of kernels).

We now extend this idea to more general case. That is, consider the estimation
problem of f{), the v* derivative of fx, v > 0 (when v = 0, f{’ = fx). Assume
that K, is a kernel of order (v,k), v < k — 1, with support [-1, 1]. Then, the

usual kernel estimate of fx)(a:) is

) = e LK (55 (23)

Assume that ff‘fk) is continuous in a neighborhood of z = 0. Then, for z = ch,

c €[0, 1], we have

Ef)(z) = hm f K, (322) f)dy
- hu+l{fx(z) / K, (t)dt - hfP(z) / tK, (t)dt+,

(= kh) 8(2) / tEK,(t)dt + o(R¥)}. (2.4)

When ¢ < 1, f{*)(z) is not consistent for f{(z). In order to remove this boundary
effect, we suppose that a sequence of polynomials Ko(t), Ki(t), ..., Kx-1(t) is
available, where K;(t) is a kernel of order (i, k), k; > k, =0, 1, ..., k~ 1. Then,
f)(z) is a kernel estimator of the form (2.3), v =0, 1, ..., ¥ — 1. By repeating

a calculation similar to (2.4), we obtain

Ef9z) = fx(z) [:Ko(t)dt—h fO(z) / tKo(t)dt

+CRE 40 [ kgt + o)

114



Ef®e) = fx(e) [ Kl —hP) [ tkatyat
w1 [ ko)t + o(h))

Ef¢) = —lfx(e) [ Kia()dt = hfP) [ tKia(t)dt
+= ") B gy /_ lt"Kk_l(t)dt-{-o(h")}.

Thus, the following linear combination (of f{®)(z), ..., f{*~1)(z)) is defined as our

estimator of f )(z)

fO(z) = kz_: a:k' f9)(z), (2.5)
=0

where coefficients a; (i = 0, ..., k — 1) are to be determined. We now show that

the estimator in (2.5) can be written in the usual form (2.3). Simple algebra

yields
Ef9z) = fx(z) [/ S:_:la,l((t dt] hfP(z) [/ kz—:la,tK(t dt]
1=0
+...+( ) B (z) [/clfa,th(t)dt]w(hk)
-1 =0

To remove the boundary effect, i.e., to cancel out the terms f}(P, 0<i<k-1,

i # v, we need

(a0 J¢, Ko(t)dt + -+ + @ [, Kia (t)dt =0
ag [, tKo(t)dt + - - + Ggy 5, t K1 (t)dt =

‘ ' - (2.6)
ao fZ; t" Ko(t)dt + - - - + @gy [Z, " K1 (t)dE = -;1;., =

| Qo 5 tk-lKo(t)dt +--taea [ t* 1Ky (t)dt =
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Denote

[Eod S Ka@d . [ Kead )

6 JE, tKq(t)dt S tKi(t)dt ... [S tKe(t)dt

JS Ko (t)dt S K (1)dt . fS tFTTKG (E)dE

Then, (2.6) can be rewritten as

(o0 )
sT| U = (—omyme |- (2.7)
Qk-1 -

o0 )

LEMMA 2.1. The matrix S is regular.

The proof of Lemma. 2.1 is given in the Appendix. From Lemma 2.1 and (2.7),

we obtain
(a0, @1, s @k1) = (0, ..., (=1)*v!/A",...,0)S L. (2.8)
Now, from (2.5) and (2.8), one has
RONE
) = (0,an.maen)| @) (2.9)

hk-lf;(zk-l)(z) /

(Ko (=5%)
n z=X;
= #2(0,.-.,(—1)"'0!,...,0)5'1 K ( h )

=1

s (5)

1 il .’L‘—X,'
= nh”*ng"'c( h )’
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where

Ko(t)

Ki(t)

Koe(t) = (0, ..., (=1)"01, ...,0)S (2.10)

Ki, (t)

DEFINITION 2.1. A function K, (-) with support [-1,¢],56>0,0<c<1,is
said to be a kernel of order (v, k) if K, satisfies

0 F=0, ey v=1, 041, o k—1
[ Kueltydt ={ (—1ywt j=v (2.11)
£0  j=k

When 0 < ¢ < 1, K, is called a boundary kernel. When ¢ =1, K, ; is the usual

interior kernel of order (v, k).

LEMMA 2.2. The kernel K, . defined by (2.10) is a kernel of order (v, k) for

0<c<1l. Whenc=1, K,. = K,, where K, is a (v, k)t** order interior kernel.

Proof. Write

( /_ °1 K..(t)dt, /_ °1 tK, (t)dt, .., /: t"“K,,,,_.(t)dt) = (0, .y (<1)*, ..., 0)S

T
e Ko(t)dt < Ku(t)dt .. [, Kia(t)dt

[ tKo(t)dt [ tKy(t)dt ... [° tKe i (t)dt

St K (t)dt [ 5K (t)dt ... O tF1IKGq(t)dt
=(0,...,(-1)"!,...,0).

Now K,1(t) = K,(t) is obvious from (2.10).
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One important application of Lemma 2.2 is that the estimator f(*) defined
by (2.9) will automatically adapt to boundary effects. Further, (2.10) offers a
way to construct boundary kernels. Examples of such kernels are given in the
next section. Since boundary kernels K, . defined by (2.10) are formed by taking
a linear combination of different order kernels, we shall call them “Combined

boundary kernels.”

3. Combined boundary kernels

The purpose of this section is to study more about boundary kernels defined
by (2.10) and give a few examples of combined boundary kernels.
Assume that functions K, (0 < v < k—1) in (2.10) are polynomials of degree
k with support [-1, 1]; that is, K,(t) = 5. Aist’. Since by assumption K, is of
order (v, k), K, must satisfy
/1 K (o)t = { 0 F=0, e v—1, 041, ., k=1 )
-1 (-1t j=w.
Now (3.1) together with K,(—1) = 0 lead to a system of k£ — 1 linear equations

for the coefficients Mgy, -y Ak,ut

(o0 )
2 0 % . B[,
0 2 0 .. =G|,
3 # T =1 e (3.2)
1 -1 1 .. (=1)F Abw
\ 0 )
Denote
2 0 g 1_(_115-}1 T
3 k+1
0 %2 o . U2
S+ _ 3 k+2
1 -1 1 .. (-1)
(k+1)x (k+1)
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Then, it is easy to show that S* is regular. Thus, from (3.2),

(Aows oo Akp) = o, ..., (—l)uvlv 0..., 0)(5+)-11

and hence
Ko(t) 1
Ki(t t
4) =v(ESH?| ], (3.3)
Ki1(t) t*
where
1 0 .. 0 0
0 -1 .. 0 0
—1Y-1(k — 1!
0 0 ... (-D)Yk-1)0 et 1)
LEMMA 3.1. With Kj, ..., Kx-; given by (3.3), we have
K..(t) = (0, .., (-1)", 0,..,0)
2 -1
c+1 e N | 1
fa ep S RE
1_(o1)etl kb2 _qyk+2
gl e 0 t*
1)
t
= (0, ..., (=1)*v}, 0,..., 0)(S")*]  |. (3.4)
tk )

The proof of Lemma 3.1 is given in the Appendix. The regularity of S* can be
proved along the same lines of Theorem 5 of Gasser and Miiller (1979). Lemma
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3.1 implies that K, . is a polynomial of degree k satisfying

c . 0 1 =0, ., v—-1, v+1, ..., k-1
[ Kueyfds = ’ ’ (3.5)
-1 (-1)*v! j=w.

and K, (-1) =0, i.e., K, is of order (v, k).

We now give a few examples of combined kernels with Kj, ..., K;; given by

(3.3).

EXAMPLE 1. Order (0, 2). Let Ko(t) = 3(1 —¢*) and K, (t) = 3(3t2 + 2t — 1).
Then, the combined boundary kernel of order (0, 2) is

2 _
Koult) = Tomelt —20)e + 2240 (36)

see Figure 1. At ¢ = 0, (3.5) becomes Kgo(t) = 12t + 18¢ + 6. We call it an

endpoint kernel.

Figure 1 about here

EXAMPLE 2. Order (0, 4). Let Ko(t) = 33(3 ~ 1082 + 7¢%), Ky(t) = £(3 -
20t — 30¢% + 28¢° + 35t%), K,(t) = 33(—21 + 84t + 2102 — 140¢° — 245¢*). Then,
the combined boundary kernel of order (0, 4) is

—5+_c)§[3(69 — 828 + 2292¢% — 2676¢° + 1525¢* ~ 400¢° + 50¢%)

4(1
(3 - 1022 + Tt*) ~ 5(c — 1)*(31 — 310c + 333c* — 100 + 10c*)

Ko'c(t) =

(3 ~ 20t — 30t + 28¢% + 35t*) + 35(c — 1)?

(25 — 250¢ + 255¢% — T6c® + 10c*)(—~1 + 6t2 — 5¢%)

~5(c — 1)*(7 = T0c + 69¢* — 20¢® + 2¢*)

(=21 + 84¢ + 210t% - 140t — 245¢4)] (3.7)
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see Figure 2. The corresponding endpoint kernel is Ko o(t) = 20(1 + 10¢ + 30¢2 +
356 + 142%).

Figure 2 about here

EXAMPLE 3. Order (1, 9). Let Ko(t) = 3(3+3t — 582 —56%), Ky () = B(:— 1),
and K,(t) = 12(5¢3 +3t2 — 3t —1). Then, the combined boundary kernel of order
(1,3) is

30

(1+¢)°
+4(16 — 39c + 30c® — 5c3)(¢* — t)

Ky (t) = [—3(3 — 2¢)(c — 1)*(3 + 3t — 5% — 5t°)

—5(5 — 2¢)(c — 1)*(5¢% + 3t2 — 3¢t — 1)), (3.8)

see Figure 3. The corresponding endpoint kernel is K;o(t) = —60(1 + 8¢ + 15¢% +
8¢3).

Figure 3 about here

The endpoint kernel described in Example 1 above possesses an important
property- it is optimal in the sense of minimizing the mean squared error in the
class of all kernels of order (0, 2) with exact one change of sign in their support
(Zhang and Karunamuni (1995)). In Section 5, we shall prove that the endpoint
kernels in Example 2 and 3 are also optimal.

Zhang and Karunamuni (1995) constructed a class of boundary kernels for
estimating density functions based on the local polynomial fitting method de-
veloped by Fan (1992) and Fan et al. (1993) in the context of nonparametric
regression function estimation. See, Cheng et al. (1995) for a different way to

use the local polynomial fitting method in estimation of a density function. The
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boundary kernels of order (v, k) derived in Zhang and Karunamuni (1995) are of

the form
K, (8)=(0, ..., (=1)%0!, 0,.., O)M7I(L, ¢, ..., t*-"IYTK(2), (3.9)

where K is a nonnegative weight function and M = (m;;) is a matrix with
mjy = [ ¢ HK(t)dt,0 < j, | < k—1. When ¢ =1, K7, is the interior kernel of
order (v, k). If K is chosen as $(1 —*)I_; y}, K, is the optimal kernel of order
(v, k) among the class of minimal kernels. See Gasser et al. (1985) and Zhang
and Karunamuni (1995) for more details. The next result shows that (3.9) is a
special case of (2.10).

THEOREM 3.1. K Ki(¢), (: = 0, .., k—1) in (2.10) are given by K7 (t)
(¢=0, .., k—1), where K7, (i = 0, ..., k — 1) are defined by (3.9), then
Kye(t)=K; . for 0 <v < k—1and 0 <c<1, where K, is given by (2.10).

4. Boundary adaptive bandwidth

Although the boundary kernels derived in the previous section automati-
cally adapt to boundary effects, the choice of the bandwidth at the boundary
regions plays an important role in determining the performance of the estimator;
see Miiller (1991) and Zhang and Karunamuni (1995). In this section, we discuss
various bandwidth variation functions suitable for applications.

For any boundary kernel K}. € L, = {f: [ f%dz < oo} of order (v, k),
write Bus(c) = [Co K (t)t5dt and V,(c) = [°,, (K£,(1)) dt. For = = ch,
0 < ¢ £ 1, assume that a local bandwidth k(z) = b(z/h)h is used, where A will
be specified later in this section and & [0, 1] —» R* is a bandwidth variation
function such that b(1) = 1. Then, the leading terms of the asymptotic MSE of



f+(u) (:I:) = hv-l»l E;—q Ic (z—-;‘!") atz=chis

MSE(/{%,2) = s O s [Bw-c (ﬁ) ]

£(0) .
+ i) ],Mm(b( )) (1+o(1)). (4.1)

Assume that the optimal bandwidth (say k;) is chosen at z = hy. Then, h;

minimizes (4.1) for ¢ = 1. Differentiating the expression (4.1) w.r.t. h, we obtain

_ { (k)20 + 1)F(O) V(1) }* w2
20k —0)[OO)BLDF ~

The corresponding MSE for & = &, is

MSE(f®,z) = [2(k—v)173f(0) SR [£06)(0) B, (1)) S { - (b(c))T
n (kl) oy [(2v + 1)V, k(l)]§Z+i b(c)2o+1

(2v + 1)V, (1) 2(k—v) [ r -5 (s
2(k —v)[B k(l)]zb( 9 (5( )) " - 3

Then, the optimal bandwidth variation function (c) is the solution of the varja-

tional problem of minimizing

Vak (3(%)) (2v + 1)V, k(1) 2(k—-v) [ < 2 ’,
et A= B | B (b(c))} ! (44)

under the requirement that b(y) > y. Generally, the minimization problem (4.4)
does not yield a solution which is a smooth function in Y. A variety of methods
have been proposed to remedy this situation and to obtain suboptimal solutions.
For more details, see Miiller (1991) and Zhang and Karunanuni (1995).
Assuming that B,x(0) # 0 it is natural to require that the bandwidth is
chosen optimally at = = 0. Let hq denote the optimal value of % at z = 0. Then

h _{ (kD320 + 1) f(0) Vi (0)} #
° 7 1 2n(k = v) fO(0)[ By (0)]F
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The preceding expression together with (4.2) give

ho _ {[Bv,k(l)]%,k(O) }m— |

ki | [Bu(0)]2V, k(1)
Then, a suboptimal choice of b(c) would be
oy [ [ Bus(V)Vk(0) | 7
h@=t-{e=1) ({[Bu,km)mk(n} - 1) ' “9

Another reasonable choice of b(c) can be obtained as follows: Substitute V;, ; (ﬁ)
and By (55) in (4.4) by Vi a(y) and Byu(1)—(Sign(Bu (1)) [ Bux(0)|~Bux(1))(y—

1), respectively, 0 <y < 1. Then, minimize

Var(y) | (v +1)Vor(1) .
(o T Bk = B ) [Bes(D)

~(Sign(Buk(1))|Bui(0)| = Bk (1))(y — 1)I” (4.6)

w.r.t. b(y). The resulting minimizer is

{ (B (V] Vo (0 S
Vok (1) [Bui(1) — (Sign(Bui(1))|Buk(0)| = Bur(1))(y — 1))

Note that (4.6) is the optimal choice of b(-) at z = 0 and 1.

)

bg(c) =

5. The optimal endpoint kernel

In this section, we shall restrict our attention to estimation of a density at
the left end-point, i.e., f(0). The right endpoint can be treated similarly.
With the optimal choice of the bandwidth at z = 0, i.e., ko, from (4.3), we

obtain
e 0 Ly, o)
MSE(f+0),0) = @SOS OB, 0) F (Y, (0) B
ME(RTL0) (k)5 (20 4 1) B [2(k — o)) BT
xn~ S, (5.1)
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For definition of f}("), see circa (4.1). Thus, to minimize (5.1) it is enough to

minimize
To(Koo) = | Buk(0)[*+* (Vo k(0)) .
For any two functions f, g € L,([a, b}), denote the inner product of f, g by
5
<f.g >=/ f(t)g(t)dt, —o00 <a <b< oo.
Then,
To(Ku,o) = I < Ku,O’ tk > [2u+1 < Ku,o, I{u'o >k—" . (5.2)

Then, we have the following lemma.

LEMMA 5.1. Define a mapping Hy: L2 — L, such that Hy f(-) = (A*F1)71f(-/A).
Then, To(Kyo) = To(HrKyg) for all A > 0. (That is, T is invariant under scale

transforms.)

The proof of Lemma 5.1 is immediate from (5.2). Also, see Granovosky and
Miiller (1989). Lemma 5.1 implies that the support of K,q or B,x(0) can be
normalized without affecting the solution. This makes it possible to choose an
optimal kernel for endpoint estimation. Since B, (0) may be zero, the problem
of minimizing (5.2) could be degenerate. To get around this difficulty, we restrict

our attention to the following special class of kernels.

DEFINITION 5.1. An endpoint kernel of order (v, k) is said to be minimal
if it has (k — 1) changes of sign on its support. We shall denote this class of

kernels by Ni-;.

LEMMA 5.2. An endpoint kernel of order (v, k) has at least (kK — 1) changes
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of sign on its support.

The proof of Lemma 5.2 is given in the Appendix. Lemma 5.2 explains that
a minimal endpoint kernel of order (v, &) has to be of degree (k — 1) polynomial
with at least (k — 1) real roots on its support. If the support is defined by the
outmost roots of the polynomial, then, it has to be of degree at least £ with &

real roots on its support.

LEMMA 5.3. (i) For the minimal endpoint kernel K}, of order (v, k) with
support [—1, 0], [2, K},(t)t*dt # 0.
(ii) For the minimal endpoint kernel with its support defined by its outmost root,

its coefficients are all positive (or negative) according to v is even (or odd), re-

spectively.
The proof of Lemma 5.3 is given in the Appendix as well.

THEOREM 5.1. Assume that K},(t) is a polynomial of degree k satisfying

0 , 0 =0, .y =1, v+1, ., =1
[ Kkt = ’ vohovd (5.3)
-1 (-1 j=v
and
K} (-1) =0. (5.4)

Then, K}(t) is the optimal kernel in the sense that it minimizes To(K,0) W.r.t.

the class of minimal endpoint kernels.

Cheng et al. (1995) showed that the kernel (3.9) with K (t) = (1 +t)Jj—1, g(2)

is optimal in the sense of minimizing MSE among all nonnegative K. To prove
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Theorem 5.1, it is enough to prove

(i) K}o(t) defined by (5.3) and (5.4) is the same as K, defined by (3.9) with
K(t) =1 ~t)-1, o-

(i) Me—1 = {K}o(2), for all K > 0}.

The proof of Theorem 5.1 is given in the Appendix. Note that (3.4) provides
the solution to the equations (5.3) and (5.4). The endpoint kernels defined by
(3.7) and (3.8) are optimal.

6. Numerical results

In this section, we plan to demonstrate the importance of choosing a band-
width variation function at the boundary by using the kernels defined by (3.7)
and (3.8), which are of orders (0, 4) and (1, 3), respectively, and are optimal at
the endpoint. The case when the kernel is of order (0, 2) has been discussed by
Zhang and Karunamuni (1995). We assume that fx(z) = e~ I(g, o)(z) through-
out the simulation. For simplicity of comparison, we shall use the true density

values whenever they appear.

For the kernel defined by (3.7), we obtain (see Section 4)
~1 4 20c — 602 + 40c® — 5¢*

Bos(c) = 126
v _80(2 —21c + 117 — 205¢° + 165¢* — 45¢° 4 5¢°)
balc) = 91 + o) '
i
2 )
hy [8—(214/—%%] = 3.243132n"%
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MSE(f*,z=ch1)) = —F—

1
X V (b(c)) +5(21) b(c)s[B ( )]2
b(c) *\b(c)

ba(c) = 256(2 — —2lc + 117¢2 ~ 205¢% + 165¢* — 45¢° +5c6)
29 = (T +50)2(L + o)

In order to compare by, b; with the constant bandwidth variation function (&(-) =

(6.1)

I
)
!
o

b(c)

1), we calculated their corresponding MSE values from (6.1) for 0 < ¢ < 1. The
MSE values are plotted in Figure 4 below. Both plots show that the bandwidth
variation functions significantly decrease MSE values, while the performance of b;
and b, is similar. The same phenomenon was observed for order (0, 2) boundary

kernels in Zhang and Karunamuni (1995).

Figure 4 about here

A similar comparison was done with the order (1, 3) boundary kernel defined
by (3.8). In this case,

3(1 —4c+22

Bl_s(c) = 7
240(8 — 17¢c + 11¢?)
Vig(c) = (L +c)°
Ry = 315%n~}.
#(3)?

MSE(fl,z=ch1) =

st ()"
% {‘/1.3 (650)) b(c)4[313 (__).)] }n"’v'. (62)

b(e)
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bhic) = 2—c

16(8 — 17c + 112) | ¥
ba(e) { (T+oF }

Also, the MSE values are calculated from (6.2) w.r.t. b, b; and b(-) = 1 and were

plotted in Figure 5. Again, our conclusion is the same as that of the previous one.

Figure 5 about here

Figures 4 and 5 demonstrate that the use of a bandwidth variation function
at the boundary is very important and that improve the performance of the esti-
mator greatly. Since the simplicity and the better performance of b,, we suggest

to use b, as the bandwidth variation function in practice.

Appendix: Proofs

Proof of Lemma 2.1. Assume that the highest degree among Ko, K1, ..., Ki-1
is {, then
l -
Ki(t) = Z.Bijt',, 1=0, .., k—1.
j=0
If S is singular, there exist ap, ..., ak-1, (not all equal to zero) such that

k=1 ¢ k-1 c

I
Yo / K (t)dt =Y o / S Bit™idt =0, m=0, 1, ..., k—1. (A1)
i=0 Y-1 i=0 “~1lj=0
By simple algebra, (A.1) can be written as
c2_1 cl+1_ -1 {41
c+1 = ———i—)—-‘ =
2-1 S-1 gHi_(~1)i+3
2 3 +2
. . x
ch+l -(-IL"'“ 3 _(~1)h+2 ¢l+k_(_1)l+k
+1 k+2 T+E
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Poo P - ﬂ(k-uo\ a )

ﬂtn .311 ,B(k.-l)l Ofl =0 ( A.2)
Ba Pu - Bi—-yp ) \ -1 )
Denote
8-1 ()i
ct1 = - TH1
é-1 2-1 dH2-(-ni+?
C = 2 3 +2
ck+l_(_1)k+l ck+2_(-1)k+2 cl+k__(_1)l+k
k1 F+2 I+k
and
Boo B - Bik-1)0
B /9?1 [3}1 /3(k-—1)1
Ba Bu - B-iy
Then, (A.2) becomes
(a1}
Qi
=0 (A-3)
Qk-1

We first claim that B is column independent. Otherwise, there exist fo, ..., fk-1
(not all equal to 0) such that 521 8:K;(t) = 0. Write 8. = min{f;: i #0, i=
0, ..., k—1}. Then

k-1

BiKu(t)=— Y BiKi(t)
i=0, i¥is
and
1 . k-1 1 .
0% [ Bt Kuu(t)it = -;=o¥¢;. 6 [ e Ki() =o0.
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The fact that B is column independent implies that { + 1 > k. This further
implies that C is row independent ( also, see Gasser and Miiller (1979)). Since
B is column indenpendent and C is row independent, there exist two matrices

@, P with |Q| = %1, |P| = £1 such that
CQ = (C1,0), PB =(B{,0),
where C; and B; are regular metrices. Then,
CB=CQQ™'P'PB =(C1,00Q" P7'(B],0).

M 11 1‘{12

Denote Q1P =
My Mj

) . Then we have

Mi:, M
CB = (C1,0) ( Hu M ) (BT,0)T = C1 My By,

where M), is regular. So, rank(CB) = rank(Ci My, B,) = k. Therefore, CB is
regular and the only solution to (A.3) is 0. This proves that S is regular.

Proof of Lemma 3.1. From (2.10) and (3.3),

K,.(t) = (0, ..., (=1)"2!, 0,..., 0)SV(§+)"?
tlc

Note that (0, ..., (=1)*v!, 0,..., 0) is a 1 x k vector, S is a k x k matrix, V is
k x (k4 1) matrix and S* is a (k + 1) x (k + 1) matrix. To prove (3.4), it is

enough to prove

(0, v (=1)"0), 0.0y 0)SIV(SH)™ = (0, ..., (=1)?2, 0, ..., 0)(S*)"2.
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This is equivalent to prove that

(©, oy (=1)01, 0,..., 0) ( 7 Q) ( v ) (54!
A 1 i

= (0, ceoy (__1)1:0!’ 0 3oy 0)(5.)-1’

where (0, ..., (=1)*v!, 0 ,..., 0) is a 1 x (k + 1) vector with (—1)"v! at its vth
place, A is a 1 x k vector to be determined later and V; = (0, 0, ..., 0,1)1x(k+1)-
So, it is enough to prove

B
Vi Cc1

C is corresponding to A of the above expression. Note that

Foko®dt Kl . [ Kea®d |
S — ffl tKO(t)dt ffl tKl(t)dt ffl th—l (t)dt

Je R Ko (t)dt  fS tF R ()dt ... [ tFT Ko (t)dt

Denote (S*)™! = (3;;)0<j, < then, by (3.3). S = (sij)ogi, je» Where sij =

(=1)4! ¢, (s + skt + ... + s§t7)dt. Simple calculation leads to

(1 0 .. 0 Sgo P .4
s = 0 -1 .. 0 st sh . ST
\ 0 O ose (—l)k_l(k - 1)! 3&_1)0 3&_1)1 .rs sz.k-'l)k
([ c+1 °2—2'1- (-1t e D)
2-1 ii Ck+1_‘_1)k+1
2 3 k+1
ck+1 _(_Dk+l K+2 ‘(‘1)k+2 3k -(-—12”‘
\ k+1 k+2 2k }

- V"/]_'%—
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So

(-2

Consequently,
Vv, 0
LHS of (A4)=S+| " ~ ]. (A.5)
0 1
Since the soiution to the following equation
N (o )
2.0 % k+1 Ao .
0 3 0. gt a
i = 0
1 =1 1 ... (=1) Ak :
( \ (—1)Fk! )
is (Aos A1, ooy Ae) =(0, 0, ..., (=1)FE1)(S+)7L, it follows that
(stos sty o SERA, — 1, oy (-DF)T =1. (A.6)
Define
C= (3:.07 slt,lv eey st,lc)V2 (A.7)

Then, by (A.6), (A.7) and the fact that K,(—1) =0,v =0, ..., kK — 1, we have

T
iv: 0) v (V)T
0 1 Stos Sty s SHk 1, ~1, ..., (-1)F

= (S*)71s~ (A.8)

This together with (A.5) completes the proof.
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Proof of Theorem 3.1. From (3.9)

Ko(t) ) 1
@ 1 Diag, -1, 2, oy (—175(E - DM O
Kia(t) e
1)
t
= DM'| = | K(@),
tk-l)

where My = (m; )ogj, I<k-1 is @ matrix with m;, = [2, i+ K(t)dt. Then,
1
K,o(t) = (0, ..., (1), ..., 0)S'DM! t K(t).
tk;l

Since

t
KZ ()= (0, .y (=1)%0!, ..., )M | [ K(2),
tk-l
it is enough to prove S~!DM[! = M~! or equivalently M = M; D~'S. This can

be proved along the same lines of proof of Lemma 3.1.

Proof of Lemma 5.2. We shall only prove the case when v = 0. Assume
the support of the endpoint kernel Kgy(t) is [-, 0] for some 7 > 0. Decompose
[-r, 0] into j subintervals I, I, ..., I; defined by the points where a change of
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sign occurs, and by -7 and 0. Then, the following matrix is regular.

Jr, tK&a()dt ... [y, tKdo(t)dt
M= : : :
Jr VKSo(t)dt ... [it7Kgo(t)dt

Otherwise, there exist {1, ..., @;} # {0, ..., 0} such that
i
/I ‘ga;t‘l{o*a(t)dt =0,1=1,2, ., j.

Since Kg(t) does not change its sign in I, Y, it has a root within ;. In
total, this gives j roots not equal to 0 and one root at 0. We conclude that
{e1, s a5} =10, ..., O}

Now we prove that j > k. If j < k, then the matrix M would map the vector
{1, ..., 1} to 0 by the moment conditions. Thisisa contradiction to the regularity
of M.

Proof of (i) of Lemma 5.3. By Lemma 5.2, if I2. KFo(t)t*dt =0, then there
are at least k changes of sign on [-r,0]. This is a contradiction to the assumption

that K,o(t) is minimal.

Proof of (ii) of Lemma 5.3. Lemma 5.2 implies that all the roots of KFo(t)
are negative. This fact together with S t° K}y (t)dt = (—1)"v! completes the

proof.

Proof of (i) of Theorem 5.1. It is obvious that K}, and K7, satisfy (5.3) and
(5.4), since they are both (v, k)** order endpoint kernels. Note that a polynomial
of degree k is uniquely determined by (5.3) and (5.4). Hence the result.

Proof of (ii) of Theorem 5.1. For any boundary kernel function Ko € Nia1,
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by definition of N1, K0 has k—1 changes of sign on its support. Assume that
K, has m roots outside its support and on its boundaries. Denote them by %;,
vy tm. Define K(t) = d(z — t1)...(z — tm), where d is a normalizing constant,
which makes K(t) > 0 and [}, K(t)dt = 1. By (3.9), K7, is uniquely determined
by K(t). This means that K, can be written in the form of (3.9).

On the other hand, assume that K,o € {K(o(t), forall K > 0}. From
Lemma 5.3, K, o has at least k—1 changes of sign on its support. Since K(t) 20,
this means (0, ..., (=1)?v%, 0,..., 0)M~1(1, ¢, ..., t*1)T has at least k—1 changes
of sign on the support of K(t). Since (0, ..., (=1)*v!, 0, ..., 0OM-1(1, ¢, ..., tk-1)T
is at most a polynomial of degree k — 1, it has to have exactly k —1 changes of
sign on the support of K (t). Therefore, Ky € Ni-1.
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Chapter Six

An Improved Estimator of the Density
Function at the Boundary

1. Introduction

Let f denote a probability density function with support [0, o), and con-
sider nonparametric estimation of f based on a random sample X;, ..., X, from

f. Then the conventional kernel estimator of f at z is given by

(1.1)

re =ik (557)
where K is a non-negative symmetric kernel function with support [~1,1], and &
is the bandwidth (b — 0, as n — 00). For z = ¢k, 0 < ¢ < 1, the estimate f.(z)
is not a consistent estimate of f(z). This is known as the boundary effect.

There has been an extensive literature on how to correct this boundary effect.
Some well-known methods are summarized below:

(i) The reflection method (Schuster (1985), Cline and Hart (1991) and Silver-
man (1986)). This method is specially designed for the case f(}(0) = 0, where
f@) denotes the first derivative of f.

(ii) The boundary kernel method (Gasser and Miiller (1979), Gasser et al. (
1985), Miiller (1991), Jones (1993), Cheng et al. (1995) and Zhang and Karuna-
muni (1995, 1996)). This method is more general than the reflection method

in the sense that it can adapt to any shape of densities. However, a drawback

of this method is that the estimates might be negative. To correct this deficiency,

A version of this chapter has been submitted for publication.
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some remedies have been proposed, see Jones (1993).
(iii) The transformation method (Wand, Marron and Ruppert (1993) and

Marron and Ruppert (1994)).
(iv) The pseudo data method (Cowling and Hall (1996)).

The boundary kernel related methods usually focus on getting the bias as one
wants it, the price for that being an increase in variance. It has been gradually
gotten through to researchers that this variance inflation is important, reflecting
a real practical phenomenon, and so such methods do in fact allow for improve-
ment (Cowling and Hall (1996)). Approaches involving only kernel modifications
without regard to f are always associated with larger variance. To make the all
important reductions in variance, one has to do something involving functions
of f near the boundary (as done here). Whereas ordinary reflection has a bad
bias but has low variance (in Jones (1993), among others), f-dependent gener-
alizations of such a method are well worth exploring to see if one can improve
the bias but hold on to the low variance. It seems the answer is yes! Cowling
and Hall (1996)) already have one version of this, but it is not clear from their
paper whether the variance is kept in check for all f, it seems not from their
Table 2. The present work can be viewed as an improvement of a particularly
sensible class of methods which can keep variance down. Our method is a com-
bination of methods of pseudo-data, transformation and reflection. Furthermore,
the proposed estimator is non-negative everywhere. In simulations, we show that
this idea produces smaller mean squared error (MSE) values compared to other

methods for almost all shapes of densities.

2. The Methodology

As in Cowling and Hall (1996), we also need to generate some pseudo data.
We aim to generate the pseudo data beyond the left endpoint of the support of
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the density f such that the pseudo data offers a natural extension of the density f
outside its support locally. Our method of generating pseudo data combines the
transformation and reflection methods, consisting of the following three steps:

(1) Transform the original data Xj, ..., X, to g(X}), ..., g(X) while keep-
ing the original data, where g is a non-negative, continuous and monotonically
increasing function from [0, 0o) to [0, o).

(2) Reflect g(X3), .., 9(Xn) around the origin so we have —g(X}), ..., —g(Xx).

(3) Based on the enlarged data sample —g(X1), ..., —g(Xa), X, ..., Xn, the
new estimator is defined as

fulz) = %i {K (z—_h}—) +K (x—J’—SI’Z—(X—))} : (2.1)

i=1
where K is a usual kernel function as in (1.1).
In order to define the transformation g. we first need to obtain explicit forms of
the bias and variance expressions of the estimator (2.1). Under certain conditions

on g and f, it is easy to show that (see Lemma 1 of Appendix) for z = ch,

0<c<]1,
Efale) - f(z) = h [ (¢ = K(@t2fM(0) - g (0)£(0)
+£’2-2- £ /— cl 2K (t)dt + /c l(t —¢)?K(t)dt]

h2 1
T2 U (t — ¢)2K(t)dt{g®(0)£(0)

+3g3(0)[fM(0) - g () f(O)]} + o(4?) (2:2)
and
varu(@) = LU [* koyae +2 7 KK @e-nafL+0(1)).  (23)

[Here @ and g® denote itB derivatives of f and g, respectively, with f©@ = f

and ¢ = g.] A simple consequence of (2.3) is

Varfa(z) < % /_ 11 K(t)%dt. (2.4)
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The primary goal of our transformation g is to eliminate the first order term in

the bias expression (2.2). So, it is enough to let

)
g®(0) = 21;(0()0). (2.5)

Combining (2.5) with the assumptions in Lemma 1 of Appendix, g should satisfy

(i) g71(0) =0,

(i) gM(0) = 1,

)

(i) ¢(0) = X9,

(iv) g is monotonically increasing.

Functions satisfying conditions (i)-(iv) are easy to construct. Based on ex-

tensive simulations, we find that the following transformation adapts to various

shapes of densities well:
g(z) = = + dz* + Ad*s°, (2.6)
where
d = f1(0)/f(0) and 3A > 1. (2.7)

For g defined by (2.6) and for z = ch, 0 < ¢ < 1, the bias term (2.2) can be
written as
Bhie) - f(e) = = {0 PR+ [ ¢~ K@
[FRO)F
—6(A - I)W /c (t - c)2K(t)dt} +o(h?). (2.8)

An interesting case of (2.8) is when A = 1. Then (2.8) becomes
BAu(0) - £(0) = S FOO) [ PR (e + [ (¢ - K]+ o(8?)
and
R A2 1
[Efa(e) = F@) < 1FDO) [ PR +o(h?).
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The preceding inequality shows that the boundary bias is even less than the inte-
rior bias while (2.4) shows that boundary variance is at most twice of the interior.
So, we can expect the MSE behavior of the estimator (2.1) at the boundary points

to be similar to that of the interior points.

2.1. Estimation of g

The transformation ¢ defined by (2.6) is not available in practice, since d
defined by (2.7) is unknown. A natural estimator of d, and hence g, can be
obtained by directly substituting corresponding kernel estimators of f(0) and
F1(0) in (2.7). However, the resulting estimator suffers a great variability, which
in turn affects the performance of our estimator (2.1). A better estimator of d is
obtained as follows. Note that d can be written as d = & log f(z) |z=0. So, d can

be estimated by
- log fa(h) — log fA(0)

dn ; , (29)
where
Fulh) = Falh) + = (2.10)
£a(0) = max (£(0), ) 2.11)
with
falh) = H T K (255)
(2.12)

fr:(o) = ;# ?:1 K(O) (%‘) ’

where K is a usual kernel, K(q) is a so-called end-point kernel satistying
1] 0 0
/ Kot)dt=1, /  tK@(t)dt =0 and / Ko (t)dt #0,
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where

ho = b(0)h

and
s0) = 41 x| Koeparf [ eRo0a] [ K(erat.

The rationale for choosing hg is that the local optimal bandwidth for estimating
£(0) is b(0) times the local optimal bandwidth for estimating f(k) (see Zhang
and Karunamuni (1995)). Furthermore, the factor 1/n? in (2.10) and (2.11) is
employed to make f2(k) and f;(0) bounded away from 0. As we shall prove later,
it really does not affect the statistical properties of f3(k) and f7(0). It is shown

in Lemma 2 of Appendix that

E|fi(R) — f(R)[F = O(R*)
(2.13)

E|f;(0) = f(0)[* = O(h®),
for any integer k > 2, provided f(® is continuous near 0. A direct consequence

of (2.13) is the following results (see Lemmas 3 and 4 of Appendix)

E|fa(h) — f(R)IF = O(h*)
(2.14)

E|£a(0) = f(O)[F = O(h*)

and
E|d, — d|F = O(R*), (2.15)

for any integer k > 2, where dy, fa(k) and fn(0) are given by (2.9), (2.10) and
(2.11), respectively.
We therefore define

gn(2) = T + dnz? + Ad2Z® (2.16)
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as our estimator of g(z), where d, is defined by (2.9)

2.9. The Proposed Estimator
Based on g, defined by (2.16), our proposed new estimator of f corresponding

to (2.1) is defined as
frew(z) = ;17{2“: {K (1-' ';X;) + K (f__tgll:(l‘).) } ) (2.17)

=1

It is easy to see that for z > k, (2.17) reduces to

frol) = -3 K (255),

=1

which is the usual interior kernel estimator. So, (2.17) is a natural boundary
continuation of the usual estimator. Also note that the only data that need to be
transformed are those within 4AA/(4A — 1) of the boundary. It is also important
to remark here that the estimator (2.17) is non-negative, a property shared with
other reflection estimators (see Jones and Foster (1996)) and the transformation-
based estimator of Marron and Ruppert (1995)) but not most boundary kernel

approaches. The properties of the bias and variance of (2.17) are discussed in the

following theorem.

Theorem 1. Assume that f(z) > 0 for z = 0, &, and f(® is continuous in

a neighborhood of 0. Then, for z = ¢k, 0 < ¢ < 1, we have
|E frew(z) — f(2)| = O(?) (2.18)
and
Varfae(z) = O (i) (2.19)
new - nh H *

where frew is given by (2.17).

The proof of Theorem 1 is deferred to the Appendix.
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3. Simulations

To compare the performance of our proposed estimator frew defined by
(2.17) with other existing estimators, extensive simulations were carried out.
The other well-known estimators used in the comparison are the boundary kernel
estimator, the pseudo-data method estimator and the non-negative boundary
correction method estimator, defined as follows.

The boundary kernel estimator is defined as (see Zhang and Karunamuni

(1995))

- 1 & z—-X;
Fole) = - 2 Ko (F5) (31

where ¢ = mm{%, 1}, K| is a boundary kernel satisfying K1)(t) = K (&) he =
b(c)k with b(c) = 1 — (¢ — 1)(5(0) — 1) and b(0) as defined in Section 2 (see circa

(2.12)). In simulations, we employed the following kernel and boundary kernel

. 3
K(t) = Z(l — ) 1)

and
12 3 ~2c+1 o
Ko(t) = m(l +1) |(1 =2}t + —————| [-1.a; (3.2)

respectively, where [4 denotes the indicator function on the set A.

Zhang and Karunamuni (1995) have shown that K{o) defined by (3.2) at ¢ =0
is the optimal end-point kernel under some restraints other from those in Miiller
(1991), i.e. K(g)(t) minimizes MSE when estimating f(0). Note that for the
above K and K(), b(c) = 2 —c. Therefore h. = (2 —c)h. When ¢ =0, ho (= 2h)
is the optimal bandwidth for estimating f(0). Zhang and Karunamuni (1995)
demonstrated that the use of hy reduces the MSE values to about half of that
when the fixed bandwidth % is used. The factor b(c)(= 2 — ¢) is called the
bandwidth variation function (see Miiller (1991)).
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The pseudo-data method estimator is defined as (see Cowling and Hall ( 1996))

) g () e

where Xy = —5X(i/3) — 4X(2i3) + —139X(q, i =12, ..., n, X is the ith-order

fen(z) = —{

statistic of X1, ..., Xa, and m is an integer such that nh < m < n. In our
simulations, we used m = n5*1. The above rule of generating X(_; is called the

best three point rule by Cowling and Hall (1996).

The non-negative boundary correction method estimator is defined as (see

Jones and Foster (1996))

fre(z) = f(z)exp {% - 1} , (34)

where

K. is the cut-and-normalized kernel (see Gasser and Miiller (1979)) and

P _ ld , z — X —f

fa) = () 3 Ko (—h(—’) :

=1
where K| is a boundary kernel. Note that, except the pseudo-data method,
the other three methods of estimation locally modify the estimator only in the
boundary region. For the interior points z > h, they yield the same estimator.
The optimal global bandwidth is defined by (see Silverman (1986, pp 39-40))

- J2, K(t)dt N
h= {[ﬁl 2K (t)dt]? f{ f‘”(z)sz} nos (3.5)

was implemented as the bandwidth throughout simulations. The reason for using
(3.5) as the bandwidth is that the comparisons based on the optimal bandwidth
are more convincing than comparisons based on approximated bandwidths which

might - because of the quality or otherwise of the bandwidth selection method -
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might be misleading. Also, a global rather than local bandwidth choice is made
because this is much the more likely to be used in applications.

Qur simulations consist of two parts. In the first part, we calculated the
bias, variance and MSE values of the four estimates when estimationg f(0). The
sample size n = 200. Thirteen different shapes of densities were considered. For
densities (1) to (9), f(0) # 0. The summary results are reported in Table 1. The

values in Table 1 represent the averages over 500 repetitions.

[ Table 1 about here|

In the second part of the simulation, we examined the behavior of each estimator
inside the boundary region. This was done by plotting ten typical realizations of
each estimator. Figures 1 to 5 represent these behaviors for five different densities
inside the boundary region as well as for a part of the interior region. Figure 5

represents density estimates over the full domain [0, 1].

Figures 1 to 5 about here

Discussion: By close examination of Table 1 and Figures 1 to 5, it is apparent
that for densities (1) to (4) in Table 1, which satisfy f(*)(0) < 0, the estimator
faew is by some way the best among the four considered. Also, fon is better than
fB for densities (1) to (3) and f1r appears to be the least favorable one in all
these cases - its MSE values are more than three times those of fye,,. Figure 1,
which is concerned with density (2) shows clearly the variability associated with
f.zp and also points out an unattractive performance of fc}{ up to one bandwidth
away from the boundary. For densities (5) to (9), which satisfy f(0) > 0, fp
is the best one among the four. But f,,,w takes a fairly close second place to fa,

except in one case (i.e., for (5)). For densities (7) to (9), which satisfy f)(0) > 0,

152



foar shows the largest MSE values among the four estimators. It also looks worst
on Figures 2 and 3 which are concerned with densities (6) and (9). The other
three estimators being roughly comparable in this case, although fF also suffers
somewhat in comparison with f,m,, and fg. Though fz has a better performance
over other three for densities (5) to (9), it tends to take negative values when
f(0) is close to 0.

For densities (10) to (12), which satisfy f(0) = 0, fi1r is the best one among
the four, whereas fae, again takes second place except in (10), in which case fs
has roughly the same performance as f1F, and ferr matches fnw, the two being
not so good. Note that f1r needs a little modification to insure f(z) in (3.4)
is not equal to 0. Also, fz has a marginal edge over fou for densities (10) and
(11), but fcg shows a better performance over fg for density (12). Moreover,
fg has rather unappealing feature that it tends to take negative values when
£(0) = 0 (the proportion of negativity of fg are 5%, 85% and 100%, respectively,
for densities (10), (11) and (12)). This is perhaps the major feature of Figure 4.

Finally, we discuss the performance of the estimators at £ = 0 for the density
(13). Since the density (13) has a pole at z = 0, the true value of f(0) does
not exist. However, f(0) can be approximated by the four methods above. For
this density, the bandwidth is subjectively chosen as h = 0.18 to ensure that the
density estimator is smooth in the interior region. Table 1 shows that Frew has
the smallest variance among the four estimators. fer has the smallest average
value among the four; f;r gives the largest average value and the largest variance
as well. From Figure 5, one can see that f,.,w, fg, and pr suggest the existence
of a pole at £ = 0, and for completely fails in this case. It appears that fir
seems the best one for this model, closely followed by fg.

It is worthwhile to mention that the use of the bandwidth variation function
b(c) = 2 — c for fg. It has been observed that the MSE values of f5 would be
almost doubled without the use of the bandwidth variation function. If fp is
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employed without b(c), then clearly the estimator facw becomes the best one for
densities (1) to (9), while the performance of fg would be similar to that of fJF,
or even worse than fyr in some cases.

In conclusion, we see that overall fnm is the best choice among the four com-
petitors considered. It steadily outperforms fcr for densities (1) to (9) (which
only beats it once). Indeed, the performance of feu is very disappointing and
this estimator cannot be recommended for use. fnm overwhelmingly defeats f,rp
for densities (1) to (4), and remains a bit better elsewhere except when f(0) = 0.
It has the edge on fp (with bandwidth variation function) too for densities (1)
to (4), loses out only a little when f(!)(0) > 0, and any losing out when f(0) is
close to 0 is outweighted by the negativity of fa.

Appendix: Proofs

Lemma 1. Assume that f®)(-) and g®)(-) exist and continuous. Further, assume
that g=1(0) = 0, g™ (0) = 1, where g~! is the inverse function of g, f) and g(*)
are the it* derivatives of f and g, respectively, i > 0. (f@ = f, g©® = g). Then
for £ = ch, 0 < ¢ < 1, we have

Efu@) - fz) = b [ (t-IK®RFV0) - ¢ (0)F0)]
h? c c
+5 A0 /‘ EK()dt+ /ﬁ (t— K (B)dd

2 o,
-5 [t - PR
+gOO00) ~ PO O} +o(k) (A1)

and
Varf.(z) = L (0)[/ K(t)%dt +2 / K(t)K(2c — t)dt](1 +0(1)).  (A2)
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Proof: Note that

Efuz) = 7 [EK (= ’hxl) LK (z +1(XI))]

= f(=) /_ K(t)dt ~ hfO(a) /_ 1 tK(t)dt+I-(2)T(ﬂh2 /_ °1 2K (t)dt

+71L-EK (-"'—“L—%(—@) + o(h?) (A.3)
and
~EK (———h )

=+ [ (FHEY) e

flg7! (== + ht))
= / KO e Thy

Flg (= h)
= [ KO o

f(g7(0)

- [ o { =
) -1 () -1  (2) (-1 -1
+(t — o)k (971(0)f (y[g(l()(z)g)_l(g))]gg (0))£(g~1(0))
- o [T OO 01 0)10)
2 [gM)(g~2(0))]¢
_3g®¥(g71(0)[g™M(g71(0)f M (g7 (0)) — ¢ (9’1(0))f(g"(0))]] }
[eM)(g71(0)]°

dt + o(h?)
= / " K(t)dtf(0) + A / (¢ ~ K (2)de[F(0) — gD (0)£(0)]

+%i /j(t ~ )2 K (t)dt{ P (0) — g¥(0)£(0) — 3¢ (0)
[FD(0) — g@(0)£(0)]} + o(h?). A

Combine (A.3) and (A.4) to obtain
Bfae) = f(a) [ Kt +f0) [ K(2)at
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+h{=f0(a) [ K@+ [ (¢ - JKOHFO©) — PO FO]}

2 po [ ki + S [ @ - PROE0) - 900
~3PO)[FD(O) - g SO} + o). (A3)

By the existence and continuity of f)(-), for z = ch, we have

F(0) = f(z) = chfO(z) + S FO)(z) + o(h?)
fO(z) = FD(0) + chfP(0) + o(h) (A.6)

£2)(z) = FO(0) +o(1).
By substituting (A.6) into (A.5), we obtain
Efu@) = f(@)+h [ (6= OK@ERIN0) - dM(0)fO)]
2 po) [ e+ [ @~ K@)
2 [ - KO 00)
+3g)[FD(0) - ¢ (O)F(O)]} + ().

This completes the proof of (A.1). To prove (A.2), note that

Varfule) = Ve (% [K (557) +x (ﬁ_gh(ﬁ)]}

=1

)

ol 5 (2 )

h
A (K () + & ()

=1

ol () (22
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where

with

In

and

I

- den{r(552) v (x2320)

[ zh ) (z+i(xl))}}
_ _;_ [K(zh (z+i(X1))]

- (B[ (557) #x (2}

= Il +127

- hihf/ [K (z;y) +K(£—%@)]2f(y)dy
- L [ JE(ZY) fwa+ [ & (z—”%’(y—’)zf(y)dy]
+%/K(z;y) (x+y(y)) f(y)dy

= L+ I,

1 c L flg7'(z — ht))
n_ﬁ [h /;1 K(t)zf(l' — ht)dt + h[z K (t)zg(j_)(g-l(z —_ ht))dt]

L ke oo ¢ oz g7 ((c = t)h))
L [ [ K@ (e~ tmdt+ [ K@) g(l)(g-l((c_t)h))dt]

f(9) -
ol A(t)2dt(1 +o(1)).

Ip = % [ K@K (x—fi(:‘—ht)) f(z — ht)dt

= ;23 K@t)K (z+g((;-t)h)) F((c ~ t)h)dt.

Since g(®)(-) is continuous in a neighborhood of 0, by a Taylor’s expansion of order

2, we see that for some 0 < § < 1,

s(c=1) = 9(0) + (e~ )he®(0) + XL gz - gn)
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= (c—t)h+ 9@ (8(c - t)h)
= (c—t)h+O(h?) (A.7)

(c —t)%h?
2

Substituting g((c — t)k) defined by (A.7) into f;2, we have

e = = [ K@K(@e~1)+O(R)f((c~ )h)dt

_ 2_1%:’1 [ K@K (e~ )1 + (1)
Now combine I,; and [;; to obtain
L= f-@ [ /_ K(t)?dt +2 / K(#)K (2 - t)dt] (L +o(1)).

Similarly we can prove that

¢ = () e (24
- o(8) (%)

Therefore,
Va.rfn( )= -‘&0—)-[/ K(t)%dt + 2/ K(t)K(2c - t)dt](1 + o(1)).

This completes the proof.

Lemma 2. Let fi(h) and f:(0) be defined by (2.12). Suppose that f()(-)

is continuous near 0. Then

" Elfz() — F(R)[F = O(h%) (A.8)
E|£2(0) — F(0)[F = O(h%), (A.9)

for any integer k > 2.
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Proof: By the C;-inequality,

E|(f7(h) — Efx(R)) + (Ef;(R) — f(R)
< C{Elf;(h) —Eff(R)[* + [Ef;(R) — f(A)I}
Ck(fl + I-g), (A.10)

Elfa(k) — f(R)F

where C is a constant as a result of applying the C,-inequality (Loéve (1963),
p. 157).

Since I; = —==E IE,_I [ ( ‘hX ) —EK ("—‘h&)] Ik, applying the C,-inequality
repeatedly in I;, we obtain

- C h—X; h—-X; ,
o S (5

=1

C h—-X; h—X:\|F
= WEK( h )"EK( A )
C h—-X\[f B—-X\[f
S SEipE {C"EI ( h l) +C’°EK( h 1) ]
for some constant C > 0. Since
k
’K (h X‘) = /K(I‘;—y) f(y)dy
1
— k _
= /_ K £ - )yt
= O(h)
and
h—X
ex (252) = [ (A5 e
= O(k),
we have
. 1
I = 0 (—py ) = O, (A.11)
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Also, since it is well-known that Efz(k) — f(h) = 2L20) f1 K(£)2dt + o(h?), we
have

L = [Efi(k) - f(R)*
= O(h%). (A.12)

(A.8) is now proved by combining (A.10), (A.11) and (A.12). Similarly, we can
prove (A.9).

Lemma 3. Let f,(h) and f,(0) be defined by (2.10) and (2.11). Suppose that
f@)(.) is continuous in a neighborhood of 0. Then
Elfa(h) — f(R)| = O(h**) (A.13)
E|fa(0) — £(0)| = O(h**), (A.14)

for any integer k > 2.

Proof: The proof of (A.13) is obvious. We only prove (A.14). Note that

E[£2(0) ~ f(0)* = Elfa(0) = F(O)[*Iigsays 351 + Elfn(0) = F(0)FIisyor 4
= EI£3(0)  FOF Iz 31+ Bl = FOFlysares
< EI£3(0) = FO)1* +E|= = 2(0) + £3(0) ~ FO) fucszorc:yy
+E| ~ f0) Iyzoisn

1
< E[£:(0) - f(O)I* + CkEl‘n-z - f;(o)lkf[o<f;(0)<;1,-]

k
+CLEI0) = FO)Plocsmest + e (35) + CelAOFEL o<
k
< (Cu+ DELF(0) - SO +2Ck () +GREIf(0) - FO) Tzorso

nzl \
< (2Cx + DEIFO) - SO +2C ()
= O(h%*),
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where Ci is a constant from applying the C,-inequality. Hence the result.

Lemma 4. Let d, be defined by (2.9). Assume that f(z) > 0 for z = 0, A

and f()(-) is continuous near z = 0. Then
E|d, — d|f = O(kF), (A.15)

for any integer k > 2.

Proof: Consider
k

_ log f(h) —log f(0) " _ |log f(k) — log f(0) _dk}
- R

= Ck[Jl + Jz], (A.16)

dn

Eld, —djf < Ck{E

where Cy is a constant again from applying the C;-inequality. Note that

= p|lgfa(h) ~log fu(0) _ log f(h) ~log f(0) [*
L =

; ;
< [Bllog (k) log F(R)* + Ellog fo(0) ~ g FO)]

By applying Taylor’s expansion of the function log(-) and by (A.13) and (A.14),

for some 0 < § < 1, we have for z =0, A,

_ :1: A - fn(z)-f(z)
E|log fa(z) — log f(z)| E @) + 6(Ja(z) — F(2)

Elfa(z) — f(2)I*

1
(1= 8)f(=))*
= O(h%*).

Therefore

Jy = O(k"). (A.17)
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Also, by Taylor’s expansion of log f(-), we have
_ | f2(0)£(0) - [ (0)
Jo = |k 0 + o(h)
= O(kF). (A.18)

k

By combining (A.16), (A.17) and (A.18) complete the proof.

The proof of Theorem 1 is somewhat tedious because of the dependency of
gn on X1, ..., Xn. The idea of our proof is as follows. First, for every X;, we
construct a transform g¢.;(z) which only depends on Xj, ..., Xi—1, Xit1, -ory Xn-
Using these gn;’s, we obtain the pseudo data —gn1(X1), ..., ~gnn(X,). Define

Foew(z) = %g {K (%) +K (Lg;(x—))} . (A.19)

It is obvious that gn;, ¢ = 1, ...,n are very close to g,. The only difference
between g,; and g, is that g,; depends on n — 1 observations while g, depends

on n observations. Corresponding to d,, we define

_ log fuu(h) = log fui(0)

dni 7 , (A.20)
where
1
Fulh) = £l + (a21)
and
i(0) = max (£30), 2;) (A.22)
with
fh) = %I fl:# K (h—‘h)-(-) Li=1, e n (A.23)
=1,l#1
f2:(0) = n—}zzl_%;_zfo ('-T?) i=1, . n (A.20)
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The definition of &, ko K and Kq) are the same as before. It can be seen that
d.; is independent of X;. We state following lemmas without proofs. They are

similar to Lemmas 2, 3 and 4.

Lemma 5. Let f3;(h) and f3;(0) be defined by (A.23) and (A.24), respectively.

nt

Suppose that f()(-) is continuous in a neighborhood of 0. Then

Elfr::(h) - f(h')[k = O(h2k)1 1= 1: ey Ty

and
E(f5:(0) — FO)F = O(r%), i =1, .., n,

for any integer k > 2.

Lemma 6. Let f,;(h) and fn;(0) be defined by (A.21) and (A.22), respectively.
Suppose that f(?)(.) is continuous in a neighborhood of 0. Then

E|fni(k) — F(R)|F = O(R%¥), i =1, .., n, (A.25)
and
Elfx(0) — F(0)[* = O(R%*), i =1, .., n, (A.26)

for any integer k > 2.

Lemma 7. Let d,; be defined by (A.20). Assume that f(z) > 0 for =z = 0,

h and f@(.) is continuous near 0. Then

1 .
Eldm’ - dnlk = 0 (;;Tc_h—Zk_—T) yt=1, .., n, (A,27)
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and
Eld.: —dif = O(r%), i=1, .., n, (A.28)

for any integer & = 2.

Proof of Theorem 1. For z =ch, 0 < ¢ < 1, we have
Efueu(z) = f(z) = (Efacw(2) = Efscw(2)) + (Efacu(z) — Efa(2))
+(Efa(z) - f(z))
= K1+ K, + Kj,

where K1 = Efoew(z) — Efrcu(2), K2 = Efaeu(z) — Efa(z) and K3 = Efa(z) -
f(z). From a.pplying Taylor’s expaasion, note that

|K1| = nh ZE{ (-’B+g’:(Xi))__K(x"l‘gzi(xi))}l
T + ga(X5) T + gni( X:)
< Gnp{x(Z55) -« (=55
1 g ) (T Gni(Xi) | gn(Xi) = gni(Xi) | gn(Xi) — gni( X2)
- e (40 ) s

where 0 < § < 1 is a constant.

Since for any d, z > 0 and A > 1,

g(z) = z+dz*+ Ad*:?

= z(l+dz+ Aaﬂx2)
44 -1
= Ad 2+
[(\/—z+ \/_ 4A]
> 4A-1 z,
= 4A

it is easy to see that g(z) > & for z > ph, where p = ;34-. Hence

gn(X:) — gni(Xi) T + (1 — 8)gni( Xi) + 69n(X5)
0 ¢ S o (0o
I[O(X. <ph} } l
S g [E(gn(X:) ~ gni(Xi)) o< xi<pnlls
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where C is a constant (in different positions, it may take different values). It is

obvious that

Elgn(Xi) - gni(Xi))[I[OSXiSPhI = El(dn - dni)Xile[OSX.‘Sph]
+A( — &) X Tog x, <pn]
< p*R’Eld, — dni| + ApPRPE|d2 — d2y.

Now (A.27) implies that

Eldy —dni| < (Eldn —dpif?)2
=0 (—1—) : (A.29)

nh3/2

Therefore, by (2.13), (A.27).(A.28) and (A.29), we have

Eld2 —d%,| = Eldn — dnlldn + duil
E(|dn — dni]ldn — d + dni — d + 2d})

S E(Idn - dni”dn - d[) + E(Idn - dm'”dm' - d') + QdEIdn - dm’l
< (Eldn — duil*)?(Eldn — dP)?
+(Eldn — duil?)? (Eldn; — dI*)? + 2dE|d, — duil
1

=0 (nh3/2) ’

Then
hl/z
Elgn(X:) — gni( X)) ogx.<pn) = O (—n—) . (A.30)

Consequently,

1
Kl = 0(=7)
= o(h?). (A.31)



Similar to the proof of Lemma 2.1, we obtain
Efre(z) = f(2) [ K(0)dt —hf V() [ tK()at
-1 -1

+.f(2)2(:c) h? /_"1 t K (t)dt + L1 fn_:EK (E_":-"L‘()_('l) +o(h?). (A.32)

nh & R
Note that
() o]
and
(el |a)] = ["x (2t920) i

= [ (2Ee0) ey

_ R LK) f(emt(t = o)h)dt
(g2t — 9)R))

L f (!];11(0)
= h K —_—
[ x® [g“’(g;f(on

+(t — ey GO Vet (O) - 951 (921 (0)) f(971.(0))
[ (g2 )P
Re=op {g,‘&’(g:f(e))f“’(g;f(o)) ) CC)
2 w (g (O))]*
_ 39891 (9))[% (921 (0)) /M (951(60)) — gu2 (921 (6)) £ (921 (6))] H it
PO
1 1
= hfO [ K@)t +4* [ (t = K (2)dt[f(0) — 2dma £(0)]

B
+5 / (t — o) K(2)Adt,

where 0 <0< (t —c)h < k.
By the monotonicity of g.; and the fact g,1(z) > gz, ¢ = (44 — 1)/(44), we
know that for any 0 < 6* < k, g (8%) < % — 0, as n — oo. Since g,(‘ll)(z) =
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1+ 2dz + 3Ad% 22 > 3432 > 0, for A > 1/3, gy, )(.1:) = 2d,; + 6Ad%,z and
¢®(z) = 6Ad2,, simple a.lgebra. leads to |A| < Ay = O(|dn1|*) for some k& > 2.
By (A.28), Eld%,| = Eldu — d +d[* < CkEldus — d|* + Cild]* = O(*) + Cild[*.
Therefore, for sufficiently large n, EA; is bounded. By (A.33), EK (-’ig"—‘(—&l) =
RF(0) [1 K (t)dt+h? [X(t — ) K (£)dt[f(0) —2Edn, £(0)] + £E [} (t— )2 K(t) Adt.
Since |E [1(t — ¢)2K(t)Adt] < E f1(t — *K(t)|Aldt < [}(t — c)2K(t)dtEA,,
E f}(t — c)?K(t)Adt is bounded. Then

EK (’”—in’l‘hl@) = hf(0) / " K(t)dt
+ 't — QK(8)dt[fD(0) — 2Edy f(0)] + O(FY).  (A.34)
Substituting (A.34) into (A.32), we have
Efou(z) = f(z) / ° K(t)dt ~ hfV(z) / “ tK(t)dt + h2&;(”—) / " PR (1)dt
+£0) [ K+ b [~ IK0at 1090 - 270 ] 1 o)
(A.5) shows that
Efi(z) = f(z) /_ 1 K(t)dt - hfW(z) /_ °1 tK(£)dt + hﬁfQ—;(’ﬂ /_ et
+£(0) [ K@i+ | '(t = K(£)dt[fD(0) — 2£(0)d] + O(h).

Hence

Kzl = |[Efaew(z) ~Efa(2)]
= |—2h / (t — Q) K (2)dtf(0) 2=
= o),

1(Edm —d)|

since [Edn; ~ d| < E|dn; — d| < (Elda; — d|?)!/? = O(h) by (A.28). But (2.8)
proved that |[K3| = O(h?). Now combining above results complete the proof of
(2.18).
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Now we prove (2.19). Using straightforward calculations,
- _ 1 i r—X; T+ gn(‘XPi )
Varfew(z) = n2h2Va.r§:1{K( . ) +K( :

- oe§ [ (255 (202)]

=1

+Z[ (z+g,.(X)) K(zw;;.-(x,-))]

i=1

£l () (24

i=1

e )

=1

N WVarZ [K (x +g;:(X,-)) K (z +g;:;(X,-))]

=1

n T + gni( Xi) z + g(Xi)
+———n2 % Varg1 [K (——————h ) -K (—-—h (A.35)
= A’I1 + l‘/[z -+ A/I3,

IN

where M; (i = 1, 2, 3) denotes the ith term on the right hand side of the inequality
(A.35). Note that (2.3) shows that M; = O(Z:). Then it is enough to prove that
M, = O(Z) and M3 = O(;;). Consider

e s [Z {K (z-f-g;:(Xi)) x (mng(xf))}]?

4 n n(X) m(X) n{< + m(X) - ( n(X) m'(X,’)) 2
—n2h2 {gg hg K()( g a_Z g )}
= h2 Z:IE[g,.(X ) — guil X2 [Km (x + aga(X:) +h(1 - a)gm-(Xi))]

2h2 ZE[-%(X ) = 9ni( X)) To< x: <ot

=1
where 0 < @ < 1 and C is a positive constant. Similar to (A.30), we can prove

Elga(X:) — gai(X:) 2 o< xicon = O (i) .

n2

1=0(ks) =< ()
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Again by straightforward algebra,

(Xi) — 9(Xa) KO (3 + 6gni( Xi) + (1 — 8)g(X:)

_ 4 = Ggni
1‘{[3 = n—zp—Va.rZ h 5

=1

2 ely (X — V) 2
< nfh“E {g(gm-(X;) - g(Xi))I[OSXeSph]K(I) (z + 8gni(X:) -’{: (1 5)g(X,)) }
gy (X _ 3\ 12
- nfh“E g[g"i(xi) ~ 9(XiI* Tosxisonl] [K M (z + 8gni(Xs) Z‘ (1—-6)g(Xs) )]
+n2’8h4 Y. E(gni(X:) — 9(Xe))(903(X;) — 9( X)) o< x:<pm fiogx;<oh]
1<i<i<n

h h

K(l) (JZ + ‘ng'(xi) + (1 — 5)9(X,)) I((I) (.’l: + 6gnj(Xj) + (1 o 6)g(XJ)

<

4 n
Bt E E[gni(X:) - g(Xi)]ZI[OSX,-Sph]

2
n =1

8 S {Ega(X) - 9(X))

2ha
n?ht | (Gen

+

e w¥a
(95 (X5) — 9(Xi) o< xi<om o< x, gphl] ° }
{E [K(l) (2: + 6gni(Xi) + (1 — 5)9()(1))

h

KW (z o+ Bgn (%) + (1 = 6)g(x,->)] +}—

h

4 & 8 - 1
= g o Mo ¥ g 3 (M) (M),
=1 1<i<i<n
where « is any constant which is greater than zero.

For any ¢, j, consider

My; = E{{(dw - d)X? + AX}(d; — &)
[(dnj = d)X,? + AX,S (dij ~d )]I[OSXsSPhII[Osx:’SPh]}L?
= E{((dn ~ d)(dnj — DX X} + A(dy; — &)(dwj — D) XP X}
+A(dns — d)(d2; — &) X2 X3
FAPXOXHE,; — Y& — P ogxsomTosxsgon}
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4 @ i+a 1+a ita
< Ch*FE[[dui — dlldnj ~ d|' T + C:h™ SV E |dn; — dl|d2; — &[]

O (|0~ Plldas — d| ¥+ COE [ = L1ty - ]

where C;, C2, C3 and Cj are positive constants. It is easy to see that

E [ldut — dlid; ~ ] = = O (Elldus = dlldu; — ]| *¥)

E & —dlld; ] = = 0 (Elldu ~ dllde; — ]I 'E")

E(ldu — dildn; —d)'¥ = 0 (B%5).

Therefore

a)
Myi; = O (h"-‘-—-’I ) : (A.37)
Since for z = 1, ..., n, there exists a positive constant o; such that

n (T +68g.(Xi)+(1=6)g(Xi)\ _ .y [T +9(Xi)
e ; ) = &0 (ZH45)
. 5(gm-(Xi)h— 9(X) 2 (r + i(X:-) . afa(gm-(xz) — g(Xf))) ,

we obtain

My; = My;logxi<onliosx;<on
- E [Ku) (y%{f_)) + 50X = 9(X9)
K® (z +i(X.-) N afs(gn‘-(xz) - g(X;)))] Lo
[K(l) (z + i(Xj)) 4 5(0X0) = 9X,)
K® (z + %(Xf) + ajﬁ(gnj(X;-l) - g(X_,-)))] Lta

Tio< x: <o df0< X, <ph]
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<

N

=

l4a

C.E |[K™ (f.i-‘}ll(_X_'l) KW (z+g(Xf))

h
o [z +9(X0)\ ((9:5(X;) — 9(X;))
K® ( = ) § -

K® (-’0 +9(X)) | ;6(gni(Xi) — g(Xj)))
h h

KW (3 +g(X,—)) 6(9ni(Xi) — 9(X3))
h

+CE

14

Tio<x;<ph]

+C3E A

z +9(X:) | ib(gni(Xi) — 9(X:))
K(z’( ——+ )

1+a
To<x:<ph]

h

+C4E 52 (gni(Xi) - g(X;)ZL(zguj(X;) - g(XJ))

K® (1' + %(X,-) + ai5(9ni(X;l) - g(Xi)))
z +9(X;) | @ib(gni(X:) — 9(Xj))
K® ( -+ 7 )

1 T + g(X:) y [ =+ 9(X;)
K® ("T—) K% (—h——)

+Cah™0*IE |(9ni(X;) — 9(X5)) io<x, <o
+C3h~(+IE |(gm-(X;) - g(Xf))I[osxisphﬂHa
+Ch ™2 +E | (gni( X:) — 9(X:))(gni (X;) — 9(X;))

14+a

1+a

Tocx.<pnilfo<x;<at]

1+a

CLE

14+

Tos xi<om No X, <ot

Li+ L+ Ls+ Ly, (A38)

where L; (i = 1, ..., 4) denotes the ith_term on the right hand side of (A.38).

Consider

L

IN

a / |K(l) (z_i!.@) K@ (M)

erh? / K@ () KD (5)]

l+a
k f(yl)"'f(yn)dyl"'dyn

1+a f(g~ (ht: ~z)) f(g~'(ht; —z))
g (g1 (ht; — z)) gV (g~ (ht; — )

h

f) - fi1) fwir) - - fF@i=1) f(Wi41) - - fyn)dyn - - - dyn

N

3A

o) [ IEOE KO fm bt ~ <) fa™ (bt — =))dyidy;
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= O(h?).
By (A.28), it is easy to see that
L, = O(h*(+2)),
Similarly we can prove
L3 = O(h*1+)) and L, = O(h*(*+)).
Therefore by (A.38) and the above results,
M;;; = O(h?). (A.39)

(A.36) combining with (A.37) and (A.39) leads to

Ms = O(h** =) ~ O(h*) = O (;13) , (A.40)

since « can be arbitrarily small. Now combine the results on M;, M> and M3 to
complete the proof of (2.19).
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TABLE 1
With S00 repetitions, the global optimal bandwidth was used.

1. Por the model f(x)=exp(-x), £°(0)<0

Bias var MSE
New method -0.04454214 0.007457099 0.009426187
Boundary kernel method -0.07177556 0.01111894 0.01624844
C & H method -0.05825679 0.008871693 0.0122478
J & P method -0.006896141 0.03411436 0.03409369

2. Por the model f(x)=Sexp(-5x), £’(0}<0

Bias var MSE
New method -0.2227107 0.1864274 0.2356547
Boundary kernel method -0.3588778 0.2779735 0.4062109
C & H method -0.2912841 0.2217923 0.3061951
J & F method -0.03448071 0.8528591 0.8523423

3. For the model £(x)=1Sexp(-15x), £‘(0)<0

Bias Var MSE
New method ~0.6681323 1.677847 2.120892
Boundary kernel method -1.076634 2.501762 3.655898
C & H method -0.8737638 1.995983 2.755454
J & F method -0.1034421 7.675731 7.67108

4. Por the model £(x)=6{1l-x)}"~5, £(0)<0

Bias Var MSE
New method -0.1861442 0.1360133 0.1703909
Boundary kernel method -0.3479006 0.2468442 0.3673853
C & E method ~-0.6440013 0.1460156 0.5604613
J & F method 0.02200559 0.7895212 0.7884264

5. For the model f(x)=sqrt(2/pi)lexp(-x~2/2), £°(0)=0

Bias Var MSE
New method 0.09082599 0.01349354 0.02171592
Boundary kernel method 0.05161071 0.01002975 0.01267336
C & H method 0.01826397 0.01525244 0.01555551
J & F method 0.02728512 0.02267466 0.02337379

6. For the model f(x)=exp(-x)/2+xexp(-x}/2, £7(0)=0

Bias var MSE
New method 0.0477912 0.00516555 0.007439219
Boundary kernel method 0.02323203 0.004166113 0.004697508
C & H method 0.03753807 0.007836216 0.00922965
J & F method 0.02570031 0.01019376 0.01083388
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7. For the model £(x)=exp(-x)/4+3xexp(-x)/4, £’(0)>0

Bias Var MSE
New method 0.06465811 0.0045507 0.008722269
Boundary kernel method 0.0580326 0.004872798 0.008230835
C & H method 0.06956179 0.008274144 0.01309644
J & F method 0.04134119 0.00756584 0.009259803

8. For the model f£(x)=5*exp(-5x)/4+75/4*x"exp(-5x), £’(0)>0

Bias var MSE
New method 0.332224 0.1194492 0.2295831
Boundary kernel method 0.3012219 0.1230829 0.1230829
C & H method 0.3738701 0.2396643 0.3789639
J & F method 0.196568 0.2030669 0.2412998
9. Por the model f(x}=(5*exp(-5x)+36*x*exp(-6x))/2, £’(0)>0

Bias Var MSE
New method 0.2939535 0.2308418 0.3167888
Boundary kernel method 0.2209048 0.1775493 0.2259932
C & H method 0.4152819 0.4969886 0.6684536
J & F method 0.1599774 0.3615393 0.386409

10. For the model f(x)=x*exp(-x},

boundary kernel method are negative.

£(0)=0,

5% of the estimates from

Bias Var MSE
New method 0.1085876 0.001382451 0.01338913
Boundary kernel method 0.07477185 0.002321634 0.007907819%9
C & H method 0.1100184 0.001066763 0.01316868
J & P method 0.07747921 0.001576301 0.007576176
11. For the model f(x)=x"2*exp(-x)/2, £(0)=0, 85% of the estimates
from boundary kernel method are negative.

Bias var MSE
New method 0.021378 7.386959%e-05 0.0005307406
Boundary kernel method -0.01810241 0.000332969 0.0006600002
C & H method 0.02672185 8.986076e-05 0.0008037386
J & F method 0.0110821% 5.065929e-05 0.0001733728

12. For the model f{x)=x*{*exp(-x)/24, £(0)=0, 100% of the estimates
from boundary kernel method are negative.
Bias var MSE
0.002667142 3.297202e-06 1.040425e-~05
~0.02237713 3.486008e-05 0.0005355261
0.004770325 4.361464e-06 2.710874e-05
0.000905797 1.460361e-06 2.277909e-06

New method

Boundary kernel method
C & H method

J & P method

13. For the model £(x)=1/2/sqrt{x) with subjective bandwidth h = 0.18
Mean

Var
New method 3.250777 0.04907193
Boundary kernel method 4.001732 0.1853219
C & H method 2.874924 0.08416587
J & F method 6.832344 1.67953
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