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Abstract

Determinantal point processes (DPPs) arise as important tools in various

aspects of mathematics, such as stochastic processes, random matrices, and

combinatorics. Over the last decade, DPPs have also been widely used in ma-

chine learning community; they are especially popular in subset selection prob-

lems, for they favour subsets of high quality and diversity. These applications

motivate studies in parameter estimations, of which a common method is max-

imum likelihood estimation. In 2017, Brunel et al first studied this non-convex

optimization problem using an information geometric approach. Inspired by

their work, we introduce and extend some of their results: we exhibit the

strong consistency and the rates of convergence of the maximum likelihood es-

timator to the normality, i.e. the Berry-Essen type theorem. Moreover, in two

dimensional case, we obtain the explicit form of the estimator and establish

the strong consistency and central limit theorem. We also give some remarks

on higher dimensional DPPs.
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Chapter 1

Introduction

1.1 Literature Review

Determinantal point processes (DPPs) arise from random matrix theory and

are first introduced to give the probability distribution of fermions system in

thermal equilibrium in quantum physics [Mac75]. The Pauli exclusion principle

states that no two fermions can occupy the same quantum state, which leads

to the so-called “anti-bunching” effect of fermions system. Since then, DPPs

have been found in various aspects of probability, algebra and combinatorics,

which we will briefly mention in the second chapter.

Determinantal point processes are often defined on Rd or Zd through joint

density functions. However, in this thesis, we mainly focus on determinantal

point processes defined on a finite set, for which the joint density functions

simplify to the determinant of matrices.

In the seminal work of [KT12], Kulesza and Taskar show that DPPs are

unique among various probabilistic models in the sense that they capture the

global repulsive behavior between items, give efficient algorithms for statis-

tical inference, and have geometrical intuition. Since then, DPPs have been

widely applied to machine learning community where the repulsive charac-

ter of DPPs has been used to enforce the notion of diversity and quality in

subset selection problems, which includes documentary summarization, image

search, pose capture [KT12] and imagine processing[LDG21], etc. These real
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world applications necessitate the estimation of parameters of determinantal

point processes. In this context, maximum likelihood estimation is a natural

choice, which in general leads to a non-convex optimization problem. Along

this direction, some work focuses on partial parameters estimation. Kulesza

and Taskar split DPPs model into diversity part and quality part and only

learn the quality part while the first part is fixed. They conjectured that

the problem of learning the whole parameters of DPPs is NP-hard. After a

decade, this conjecture is proven by [GJWX22]. [DB18] proposes a low-rank

factorization of the determinant point processes and the parameter learning

algorithm runs in sublinear time. [PL21] considers stationary determinantal

point processes approximated by Fourier series. The other work addresses this

problem without any restrictions, including Expectation-Maximization algo-

rithm [GKFT14], Markov Chain Monte Carlo method [AFAT14] and fixed

point algorithms [MS15]. None of the above work gives the global guarantee

of estimation error, whereas [UBMR17] learns the parameters using moments

and cycles, and gives the theoretical error bound.

[BMRU17] studies the local geometry of expected maximum likelihood es-

timation of DPPs, that is, the curvature of likelihood function around its max-

imum. Then they prove the maximum likelihood estimator converges to true

values in probability and establish the corresponding central limit theorem.

1.2 Outline and notation

The remainder of the thesis is as follows. In the second chapter we give a

brief introduction to determinantal point processes. We discuss about DPPs’

definitions, important properties and examples in various aspects of mathe-

matics. In the third chapter we study the maximum likelihood estimation of

determinantal point processes. Our first work is to prove that the convergence

of the estimator to true values holds almost surely. The second result is the

Berry-Essen type theorem of the likelihood estimator, that is, the quantitative

error bound for the central limit theorem. Lastly, we present some special

cases where all the parameters can be estimated analytically. In the fourth

chapter, we conclude our main result.
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Notation. Fix a positive integer N and define [N ] = {1, 2, ..., N}. For a

matrix A ∈ RN×N and J ⊆ [N ], denote by AJ the restriction of A to J × J .

Sometimes we use a slight abuse of notation of AJ . We refer it to an N ×N

matrix whose restriction to J is AJ and has zeros everywhere else.

Let S[N ], S+
[N ], S

++
[N ] and S(0,1)

[N ] be the set of all symmetric matrices in RN×N ,

the set of all positive semi-definite matrices, the set of all positive definite

matrices, and the set of all symmetric matrices whose eigenvalues belong to

interval (0, 1) respectively.

Let A and B be matrices in S[N ]. We say that B ⪯ A if A− B is positive

semidefinite. Similarly, we say that B ≺ A if A − B is positive definite. We

say that B ≤ A if Ai,j −Bi,j ≥ 0 for all i and j.

For a matrix A ∈ RN×N , let ∥A∥F , det(A), and Tr(A) denote its Frobenius

norm, determinant and trace respectively. If A is vectorized as an N × N

column vector then the Frobenius norm of A is L2 norm ∥A∥2.
For A ∈ S[N ], k ≥ 1 and a smooth function f : S[N ] → R, we denote by

dkf(A) the k-th derivative of f evaluated at A ∈ S[N ]. This is a k-linear map

defined on S[N ]; for k = 1, df(A) is the gradient of f , d2f(A) the Hessian, etc.

A matrix A ∈ S[N ] is called block diagonal if there exists a partition

{J1, J2, ..., Jk}, k ≥ 1, such that Aij = 0 when i and j belong to different

Ja and Jb. The largest k such that the partition exists is called the number of

blocks of A and consequently J1, ..., Jk are called blocks of A.

For a subset A ⊆ Y , let Ā denote the complement of A, that is, set Y\A.
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Chapter 2

Determinantal point processes

In this section we give definitions and properties of discrete determinantal

point processes. Most of the content is from [KT12], [Kul12], and [BMRU17].

We give a proof of the sufficient and necessary condition of defining DPPs, as

it is not very clear in literature.

2.1 Definitions

A point process P on a ground set Y is a probability measure over the subsets

of the ground set Y . This kind of process is pretty common in real life. For

example, the seats taken in one classroom at each class can be described by

a point process, where the ground set is all seats in the classroom. Some

students like to sit together while others are used to leaving some space in

between. Some students like to sit at the front while others sit at the back.

Sometimes the classroom is filled to capacity and sometimes the classroom has

few students. Point processes capture these seats distributions.

For the remainder of this thesis, we will focus on discrete, finite point

processes, where we assume without loss of generality that the ground set

Y = {1, 2, · · · , N} endowed with some metrics. In this case, a point process

is simply a probability measure on 2Y , the set of all subsets of Y . A sample

from P might be the empty set, the entirety of Y , or anything in between.

Definition 1. P is called a determinantal point process if, when Y is a random
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subset drawn according to P, we have, for every fixed set A ⊆ Y,

P(A ⊆ Y) = det(KA) (2.1)

where KA is the restriction of an N × N symmetric matrix1 K to entries

indexed by the elements of the subset A, that is, KA := [Ki,j]i,j∈A.

If we think of each of item in the ground set Y as the Boolean variable, the

left side of (2.1) is the marginal probability and hence K is called marginal

kernel. The normalization is unnecessary since the marginal probability need

not sum to one. However, we have the following necessary conditions:

• Since the marginal probability of empty set is the total probability space,

P(Ω) = P(∅ ⊆ Y) = 1. We denote det(K∅) = 1.

• Since P is a probability measure, all principal minors of K, i.e. det(KA)

must be nonnegative, and thus K itself must be positive semidefinite,

that is, K ⪰ 0.

• P(∅ = Y)+P(
⋃︁N

i=1{i ∈ Y}) = 1. Using inclusion–exclusion principle we

get

P(
N⋃︂
i=1

{i ∈ Y}) =
∑︂
i∈[N ]

P(i ∈ Y)−
∑︂

{i,j}⊂[N ]

P({i, j} ⊆ Y) + . . .

. . . +(−1)N−1P([N ] ⊆ Y)

=
∑︂
|A|=1

det(KA)−
∑︂
|A|=2

det(KA) + . . .

. . . +(−1)N−1 det(K)

= 1− det(I −K) (2.2)

the last equality follows from the characteristic polynomial. This means

P(∅ = Y) = det(I −K) ≥ 0. (2.3)

1In general, K need not be symmetric. We assume this for simplicity.
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Similarly, we are able to show that P(∅ = Y ∩A) = det(I −KA) ≥ 0 for

any subset A ⊆ [N ]. Therefore K ⪯ I.

So the necessary condition is 0 ⪯ K ⪯ I. In particular, all the diagonal

elements of the marginal kernel Ki,i should be in the interval [0, 1]. We

can assume Ki,i is always greater than 0, otherwise the element i can

be excluded from the model. This condition turns out to be sufficient:

any 0 ⪯ K ⪯ I defines a DPP. To prove this, it’s sufficient to show

that for every A ⊆ [N ], the atomic probability is well-defined, that is,

0 ≤ P(A = Y) ≤ 1. The probability being less or equal to 1 holds since

K ⪯ I. For the other inequality, we assume KA is invertible.2 Then

using Schur complement and characteristic polynomial, we have

P(A = Y) = P(A ⊆ Y)− P(
⋃︂
i∈Ā

{A ∪ {i} ⊆ Y})

= det(KA)−
∑︂
i∈Ā

det(KA∪{i}) +
∑︂

{i,j}⊆Ā

det(KA∪{i,j}) +

. . . +(−1)|Ā| det(K)

= det(KA)−
∑︂
i∈Ā

det(KA) det(Kii −K{i},AK
−1
A KA,{i})

+
∑︂

{i,j}⊆Ā

det(KA) det(K{i,j} −K{i,j},AK
−1
A KA,{i,j}) +

. . . +(−1)|A|¯ det(KA) det(KĀ −KĀ,AK
−1
A KA,Ā)

= (−1)|Ā| det(KA) det((KĀ −KĀ,AK
−1
A KA,Ā)− IĀ)

= (−1)|Ā| det(K − IĀ), (2.4)

where KA,B denotes the matrix obtained by only keeping the entries

whose rows belong to A and columns belong to B (if A = B we sim-

ply denote it KA.), |A| denotes the cardinality of subset A, and Ā the

complement of set A. Here we use a slight abuse of notation of IĀ . We

refer it to an N × N matrix whose restriction to Ā is IĀ and has zeros

everywhere else. Since 0 ⪯ K ⪯ I, P(A = Y) = | det(K − IĀ)| ≥ 0

2if KA is not invertible, we immediately get P(A = Y) = 0.
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From Equation 2.1, if A = {i} ⊆ Y is a singleton, then we have

P(i ∈ Y) = Kii (2.5)

so the diagonal of marginal kernel gives the probability of inclusion for indi-

vidual elements. if A = {i, j} ⊆ Y , then the probability is given by the two

by two principal minor

(︃
Kii Kij

Kji Kjj

)︃

P({i, j} ⊆ Y) = KiiKjj −K2
ij

≤ KiiKjj

= P(i ∈ Y )P(j ∈ Y ). (2.6)

Inequality 2.6 implies that element i and j tend not to co-occur, especially

when K2
ij is close to KiiKjj. This phenomenon is called repulsive behavior of

determinantal point processes and the off-diagonal elements characterize the

degree of repulsion. Because of this major property, points tend to repel each

other and hence induce point configurations that usually spread out evenly

on the space. For example, let our ground set Y be a 2-dimensional grid: set

{(i, j) ∈ Z2 : 1 ≤ i, j ≤ 60}, and then the kernel should a 3600 by 3600 matrix.

Let the matrix be a Gaussian kernel3, where each entry is given by Lij,kl =

exp{− 1
0.12

((i− k)2 + (j − l)2)}. Using the sampling algorithm proposed by

Hough et al [HKPV06], we draw samples from the DPP. See Figures 2.1 and

2.2.

Machine learning community often regards the off-diagonal elements Ki,j

as a measurement of similarity between pairs of elements in Y . For exam-

ple, if Ki,j = 0 it means that element i and j has no similarity whereas if

|Kij| =
√︁
KiiKjj they are identical. This idea combined with DPPs’ geomet-

ric intuition gives DPPs great abilities of modeling subset selection problems.

3the Gaussian kernel defines an L-ensemble instead of marginal kernel.
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DPP

Figure 2.1: A sample from DPP with
Gaussian kernel.

Independent

Figure 2.2: A sample drawn indepen-
dently from the plane

2.2 L-ensembles

Sometimes it is quite inconvenient to work with marginal kernels since their

eigenvalues should be bounded by 0 and 1, and the marginal probability is

not very appropriate to describe real world data. Here we introduce a slightly

smaller class of DPPs called L-ensembles.

Definition 2. A point process is called an L-ensemble if it is defined through

a real, symmetric matrix L:

PL(A = Y) ∝ det(LA), (2.7)

where A ⊆ Y is a fixed subset .

By the normalization, the proportion coefficient is equal to

1∑︁
A⊆Y det(LA)

. (2.8)

Though this seems very cumbersome, the following theorem gives us the closed

form of 2.8
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Theorem 3. For any A ⊆ Y,∑︂
A⊆Y⊆Y

det(LY ) = det(L+ IĀ). (2.9)

In particular, when A = ∅, we have
∑︁

A⊆Y det(LA) = det (L+ I).

Proof. This can be proven by using the same argument as 2.4.

Thus we have

PL(A = Y) =
det(LA)

det(L+ I)
. (2.10)

Moreover, we show that L-ensembles are DPPs. The following theorem is

proven by [Mac75].

Theorem 4. An L-ensemble is a DPP, and its marginal kernel is

K = L(L+ I)−1 = I − (L+ I)−1. (2.11)

Proof. Using the last theorem, the marginal probability of a set A is

PL(A ⊆ Y) =

∑︁
A⊆Y⊆Y det(LY )∑︁
Y⊆Y det(LY )

=
det(L+ IĀ)

det(L+ I)

= det((L+ IĀ)(L+ I)−1) (2.12)

We use the identity L(L+ I)−1 = I − (L+ I)−1 to simplify

PL(A ⊆ Y) = det(IĀ(L+ I)−1 + I − (L+ I)−1)

= det(I − IA(L+ I)−1)

= det(IĀ + IAK), (2.13)

where we let K = I − (L + I)−1. (2.13) is equal to the block matrix:(︄
IĀ 0

KA,Ā KA

)︄
and hence PL(A ⊆ Y) = det(KA).

9



However, not all DPPs are L-ensembles. By inverting the 2.11, we have

L = K(I −K)−1. (2.14)

We see that the equality fails when the eigenvalues of K achieve the upper

bound 1. Also from (2.3) we observe that the existence of L-ensembles is

equivalent to the point processes giving non-zero probability to the empty set.

2.3 Properties

In this section we gather some basic properties of DPPs.

2.3.1 Restriction

If Y is distributed as a DPP with marginal kernel K, then Y ∩ A, where

A ⊆ Y , is also distributed as a DPP, with marginal kernel KA.

Proof. For a subset B ⊆ A, P(B ⊆ Y ∩ A) = P(B ⊆ Y) = det(KB) =

det((KA)B). And for any B not belonging to A, P(B ⊆ Y ∩ A) = 0.

2.3.2 Complement

If Y is distributed as a DPP with marginal kernel K, then Y − Y is also

a DPP with marginal kernel I − K, where I denotes the identity matrix of

appropriate size.

Proof. Since P(A ⊆ Y−Y) = P(A∩Y = ∅), we can apply inclusion-exclusion

principle in the same way as (2.2) to get the result.

2.3.3 Domination

If K ⪯ K
′
, then for all A ⊆ Y we have

det(KA) ≤ det(K
′

A). (2.15)
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Proof. It is obvious if K and K ′ are positive semi-definite. For symmetric,

positive definite matrices K, K
′
and K

′−K, using the Minkowski determinant

theorem we have

det(K ′) = det(K ′ −K +K) ≥
(︁
det(K ′ −K)

1
N + det(K)

1
N

)︁N
≥ det(K), (2.16)

and this also holds for all principal minors.

2.3.4 Scaling

If K = γK ′ for some 0 ≤ γ < 1, then for all A ⊆ Y we have

det(KA) = γ|A| det(K ′
A). (2.17)

(2.17) has an interesting interpretation: the distribution of K is obtained by

taking a random subset distributed according to the DPP with marginal K ′,

and then independently delete each of its element by probability 1− γ.

2.3.5 Cardinality

Let λ1, λ2, . . . , λN be the eigenvalues of L. Then |Y| is distributed as the

number of successes in N Bernoulli trials with n-th successful rate λn

1+λn
. This

fact follows from Theorem 2.3 in [KT12]. The expectation and variance of the

n-th Bernoulli variable is λn

1+λn
and λn

(1+λn)2
, so we have

E(|Y|) =
N∑︂
i=1

λn

1 + λn

(2.18)

and

Var(|Y|) =
N∑︂
i=1

λn

(1 + λn)2
. (2.19)
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2.3.6 Identifiability

The distribution of DPPs is not identifiable, that is, multiple kernels can give

rise to the same DPP. Let DPP(L∗) denote the L-ensemble determined by the

matrix L∗. The identifiability problem is precisely described by Theorem 4.1

in [Kul12].

Theorem 5. Denote D the collection of all diagonal matrices whose entry is

either 1 or -1. Then for L1 and L2 ∈ S++
[N ] , DPP(L1) = DPP(L2) if and only

if there exists a D ∈ D such that L2 = DL1D.

[BMRU17] defines the degree of identifiability of a kernel L and gives the

following proposition.

Definition 6. Let L ∈ S++
[N ] . The degree Deg(L) of identifiablity of L is the

cardinality of the family {DLD : D ∈ D}. We say that L is irreducible if the

cardinality is 2N−1 and reducible otherwise. If Z ∼ DPP(L), we also call Z is

irreducible if L is irreducible and reducible otherwise.

If the i-th element of D is -1, DLD flips the sign of i-th row and column

of L, and hence the diagonal element of D always remain the same. In fact,

it is easy to check that Deg(L) = 1 if and only if L is a diagonal matrix.

Moreover, Deg(L) is at most 2N−1, so for any L ∈ S++
[N ] , 1 ≤ Deg(L) ≤ 2N−1.

The next proposition shows that the degree of identifiability is completely

described by the block structure of the matrix. And the block structure is in

turn characterized by the connectivity of certain graphs called determinantal

graph.

Definition 7. Fix X ⊂ [N ]. The determinantal graph GL = (X , EL) of a

DPP with kernel L ∈ S++
X is the undirected graph with vertices X and edge set

EL =
{︁
{i, j} : Li,j ̸= 0

}︁
. If i, j ∈ X , write i ∼L j if there exists a path in GL

that connects i and j.

Proposition 8. Let L ∈ S++
[N ] , Z ∼ DPP(L), and K be the corresponding

marginal kernel. Let 1 ≤ k ≤ N and {J1, J2, ..., Jk} be a partition of [N ]. The

following statements are equivalent:

12



1. L is block diagonal with k blocks J1, J2, ..., Jk,

2. K is block diagonal with k blocks J1, J2, ..., Jk,

3. Z ∩ J1, ..., Z ∩ Jk are mutually independent irreducible DPPs,

4. GL has k connected components given by J1, ..., Jk,

5. L = DjLDj for all j ∈ [k], where Dj ∈ D whose diagonal element is 1 on

Jj and -1 otherwise.

From the above proposition we know that L has k blocks if and only if the

degree of identifiability of L is 2N−k. In particular, L is irreducible if and only

if it only has one block.

2.4 Examples

Because of these nice properties, determinantal point processes are also found

prevalent in many areas of mathematics, such as stochastic processes, random

matrix theory, and random graph theory. We introduce some examples that

have been thoroughly studied.

2.4.1 Descents in random sequences

If a sequence of random numbers is drawn uniformly and independently from

a given set, say, the set{0, 1, 2, . . . , 9}, then the locations in the sequence

where the current number is less than the previous numbers form a subset

of {2, 3, . . . , 9}, which we take as our ground set. This subset is distributed as

a determinantal point process. Intuitively speaking, if in the random sequence,

the k-th number is less than the previous one, it means the k-th number is

probably not too large, so the next k+1-th number independently drawn from

{0, 1, 2 . . . , 9} is less likely to be less than the k-th number. In consequence,

adjacent numbers repel each other and this repulsion is precisely described by

a determinantal point process. See more in [BDF10].
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2.4.2 Loop-free Markov chain

A discrete time Markov chain on a discrete space X with initial distribution

π and transitional matrix [Pxy]x,y∈X is called loop-free if its trajectory of the

Markov chain doesn’t pass through the same point twice almost surely. In

other words, we assume that:

P k
xx = 0 for any k > 0 and x ∈ X ,

where P k
xy is the probability that the chain starts from x and ends at y after k

steps. This condition guarantees the finiteness of the matrix elements of the

matrix :

Q =
∞∑︂
i=1

P i ≤ 1.

We consider the Markov chain as a probability measure on trajectories viewed

as subsets of X . Then this measure on 2X is a determinantal point process on

X with marginal kernel

Kxy = πx + (πQ)x −Qyx.

Markov chain is probably the most fundamental thing in stochastic processes.

This theorem actually shows that DPPs are actually quite common. In fact, we

can construct a Loop-free Markov chain easily. For any discrete time Markov

chain M(tn) on discrete space, its graph (tn,M(tn)) then is a loop-free Markov

chain since time can never go back. Full details are given in [Bor08].

2.4.3 Eigenvalues of random matrices

A complex Ginibre ensemble is a random matrix whose entries are i.i.d stan-

dard complex normal random variables. The eigenvalues on the complex plane

of Ginibre ensemble then are distributed as a determinantal point process. The

details are in [Gin65].
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2.4.4 Edges in random spanning trees

Let G be an arbitrary finite graph with N edges, which we take as our ground

set. We draw spanning trees uniformly from the set of all the spanning trees

in G. Then the edges of random spanning trees form a random subset of the

ground set and is distributed as a DPP. Since the cardinality of the edges

of every spanning tree is always equal to k = numbers of vertices −1 , this

special DPP only assigns probability to subsets whose cardinality is fixed k.

Full details are in [BP93].

2.5 Geometric interpretation

Using matrix decomposition, [KT12] gives the geometric interpretation of

DPPs. For every symmetric positive semi-definite kernel L, there exists a

D×N matrix such that L = BTB. (D should be greater than or equal to the

rank of L) Denote the columns of B by Bi, for i = 1, 2, . . . , N . Then using

the geometry interpretation of determinant we have for any arbitrary subset

Y ⊆ Y :

P(Y = Y) ∝ det(LY ) = Vol2({Bi}i∈Y ). (2.20)

The above equation implies that the probability that Y occurs is proportional

to the volume of the parallelepiped spanned by the column vectors Bi for which

i ∈ Y . The volume of the parallelepiped depends on the magnitude of vectors

and angle between vectors. In fact, we can normalize the column vector

Bi = ||Bi|| ·
Bi

||Bi||
:= qi · ϕi,

where qi is the magnitude and ϕi is the unit direction vector; moreover, we

divide the probability model into two parts:

det(LY ) = det(BTB) =

(︃∏︂
i∈Y

qi
2

)︃
det(SY ), (2.21)

where det(SY ) = det([⟨ϕi, ϕj⟩]ij). The first part is called the quality part

and the second similarity kernel. This geometric interpretation leads to many
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B2
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B2

Figure 2.3: If Y has cardinality 2, the probability of Y is proportional to the area
spanned by its corresponding column vectors B1 and B2 as shown in (a). (b) shows
that when B2 increases its magnitude, the area increases and hence the probability
increases. (c) shows that when B1 and B2 get closer, the area and hence probability
decreases.

real world applications. Usually we regard each of items in the ground set as

its column vector of B: the magnitude of the vector represents the intrinsic

goodness of the item and the angle between a pair of vectors stands for the

similarity of the pairs of items. Take the document summarization in [KT12]

as an example. To put it simply, the goal of the task is to obtain a summary

from an article. We let the ground set consist of all the sentences from the

article and a summary be a subset of the ground set. We expect a good sum-

mary should cover the most important but also diverse information from the

article; It makes no sense if all the sentences convey the same information.

The information of a sentence may be relevant to its position in the article

(normally the first a few sentences cover the main idea of the article, so they

convey more information), its length (the longer the sentence is, the more

information it has.), etc; these features can be used as the quality of the sen-

tence. As for the diversity of sentence, we can measure the similarity between

a pair of sentences by counting words they both have. If two sentences have

many words in common, they are very likely to be similar. Using the quality

16



of sentences and similarity between sentences we are able to construct a DPP

from which we sample a good summary.
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Chapter 3

Maximum likelihood estimation

of determinantal point processes

One of the most important questions is that how do we estimate the parameters

of the kernel of a DPP based on a set of samples from it? A natural choice is

maximum likelihood estimation.

Given a set of observed data, maximum likelihood estimation is a method

of estimating the unknown parameters of a known probabilistic distribution.

The estimation is obtained by choosing the parameters for which the likeli-

hood function achieves its maximum. This method is a dominant means in

statistical inference because it is very flexible and intuitive. The maximum

likelihood estimation of determinantal point processes has been well studied

by [BMRU17]. In this chapter, we introduce and extend some of their results.

3.1 Definitions

Let Z1, ..., Zn be n independent copies of Z ∼ DPP(L⋆) for some unknown

L⋆ ∈ S++
[N ] . The (scaled) log-likelihood associated to this model is given for

any L ∈ S++
[N ]

Φ̂(L) =
1

n

n∑︂
i=1

logPL(Zi) =
∑︂
J⊆[N ]

p̂(J) log det(LJ)− log det(I + L), (3.1)
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where

p̂(J) =
1

n

n∑︂
i=1

I(Zi = J).

p̂(J) stands for the empirical probability that subset J occurs. It is also useful

to define the expected log-maximum likelihood function given the real kernel

L⋆

ΦL⋆(L) =
∑︂
J⊆[N ]

pL⋆(J) log det(LJ)− log det(I + L) (3.2)

where

pL⋆(J) = E(p̂(J)) =
det (L⋆

J)

det (I + L⋆)
.

Basically, we take the expectation of p̂(J) with respect to the true probability

measure DPP(L⋆) and then get the expected maximum likelihood function.

Let in the sequel L⋆ be fixed, p̂J denote p̂(J), pJ denote pL∗(J) and Φ denote

ΦL⋆ .

Let KL
(︁
DPP(L⋆),DPP(L)

)︁
be the Kullback-Leibler divergence, which mea-

sures the difference between distributions of DPP(L⋆) and of DPP(L). Since

Kullback-Leibler divergence is always non-negative, we have

KL
(︁
DPP(L⋆),DPP(L)

)︁
= Φ(L⋆)− Φ(L) ≥ 0, ∀L ∈ S++

[N ] .

As a consequnce L⋆ is the global maxima of the expected maximum function

Φ(L). Due to non-identifiability of DPPs introduced in Theorem 6, Φ(L)

achieves the maximum whenever L = DL⋆D for some D ∈ D and hence the

global maxima is the set {DL⋆D : D ∈ D}. We introduce a useful lemma.

Lemma 9. The gradient of log-likelihood function Φ̂(L) defined in (3.1) is

given by

dΦ̂(L) =
∑︂
J⊆[N ]

p̂JL
−1
J − (I + L)−1. (3.3)

Proof. For all square matrices L ∈ S++
[N ] , from Theorem 3,

det(L+ I) =
∑︂
J⊆[N ]

det(LJ). (3.4)
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Now thinking of determinant as a multivariate function, the directional deriva-

tive of det(L+ I) along direction H is given by

d det(L+ I)(H) = lim
t→0

det(L+ I + tH)− det(L+ I)

t

= lim
t→0

det(L+ I)
[︂det(I + t(L+ I)−1H)− 1

t

]︂
= lim

t→0
det(L+ I)

[︂1 + tTr((L+ I)−1H) + o(t2)− 1

t

]︂
=det(L+ I) Tr((L+ I)−1H), (3.5)

where the third equality follows from the power series representation of det(I+

A). Then differentiating (3.4) once over L ∈ S++
[N ] along any H ∈ S[N ] yields∑︂

J⊆[N ]

det(LJ) Tr(L
−1
J HJ) = det(I + L) Tr((I + L)−1H). (3.6)

By dividing both sides by det(I + L),∑︂
J⊆[N ]

pL(J) Tr(L
−1
J HJ) = Tr((I + L)−1H). (3.7)

In matrix form, the above equation becomes∑︂
J⊆[N ]

pL(J)L
−1
J = (I + L)−1. (3.8)

Using (3.5) we can obtain the gradient of log-likelihood function Φ̂(L)

dΦ̂(L) =
∑︂
J⊆[N ]

p̂JL
−1
J − (I + L)−1. (3.9)

Moreover, the following theorems by [BMRU17] characterize the curvature

of the expected maximum likelihood function at its maximum.

Theorem 10. Let L∗ ∈ S++
[N ] , Z ∼ DPP(L⋆) and Φ = ΦL⋆. Then, L⋆ is a
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critical point of Φ. Moreover, for any H ∈ S[N ],

d2Φ(L⋆)(H,H) = −Var[Tr((L∗
Z)

−1HZ)].

In particular, the Hessian d2Φ(L⋆) is negative semidefinite.

Theorem 11. Under the same assumptions of Theorem 10, the null space of

the quadratic Hessian map H ∈ S[N ] ↦→ d2Φ(L∗)(H,H) is given by

N (L∗) =
{︁
H ∈ S[N ] : Hi,j = 0 for all i, j ∈ [N ] such that i ∼L∗ j

}︁
. (3.10)

In particular, d2Φ(L∗) is negative definite if and only if L∗ is irreducible.

3.2 Consistency

One main property of maximum likelihood estimation is the consistency. Since

the distributions of determinantal point processes are not identifiable we mea-

sure the performance of maximum likelihood estimation by the distance be-

tween the likelihood maximizer L̂n and the set of true values :

ℓ(L̂n, L
⋆) = min

D∈D
∥L̂n −DL⋆D∥F .

[BMRU17] proves the distance converges to zero in probability. We prove

that the consistency also holds almost surely. The proof is based on theorem

14 in [BMRU17] and Wald’s consistency theorem [Wal49]. Even though the

latter theorem originally requires the distribution to be identifiable, this is not

a problem for this setting where we consider distance between L̂n and the set

of true values instead of one value.

We first show that ℓ(L̂n, L
⋆) converges to zero almost surely when param-

eters of matrices are restricted on a compact set. For 0 < α < β < 1, define a

set Eα,β

Eα,β =
{︁
L ∈ S++

[N ] : K = L(I + L)−1 ∈ S [α,β]
[N ]

}︁
.

Choose appropriate α, β such that L⋆ ∈ Eα,β. Eα,β is compact since it’s

bounded and closed in RN×N .
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Lemma 12. Let Z1, ..., Zn be n independent copies of Z ∼ DPP(L⋆) for some

unknown L⋆ ∈ S++
[N ] . Let L̂n be the maximum likelihood estimator of Φ̂(L)

defined on Eα,β, then ℓ(L̂n, L
⋆) converges to zero almost surely.

Proof. Let

∆Φ̂(L) = Φ̂(L)− Φ̂(L⋆) =
1

n

n∑︂
i=1

log
PL(Zi)

PL⋆(Zi)

and

∆Φ(L) = Φ(L)− Φ(L⋆) = EL⋆

(︁
log

PL(Z)

PL⋆(Z)

)︁
.

∆Φ(L) is the Kullback-Leibler Divergence between DPP(L⋆) and DPP(L).

By Jensen’s inequality, ∆Φ(L) ≤ 0 for all L and by the condition for equality

in Jensen’s inequality, Φ(L) = Φ(L⋆) if and only if PL(Z) = PL⋆(Z) for all

Z ∈ [N ], which means L = DL⋆D for some D ∈ D.

For each L ∈ Eα,β, the strong law of large numbers implies

∆Φ̂(L)
a.s.−−→ ∆Φ(L).

However, the above convergence doesn’t imply the convergence of Maximum

likelihood estimator to the true values. Thus we need some kinds of uniform

integrablity, which is the Wald’s integrability condition: for every L ∈ Eα,β,

there exists ϵ > 0 such that,

E sup
N∈Eα,β

ℓ(L,N)<ϵ

log
PN(Z)

PL⋆(Z)
< ∞. (3.11)

Since L ↦→ log PL(Z)
PL⋆ (Z)

is continuous (the determinant function is continuous),

for any arbitrary δL > 0 there exists ℓ(L,N) < ϵ,

(1− δL)
PL(Z)

PL⋆(Z)
<

PN(Z)

PL⋆(Z)
< (1 + δL)

PL(Z)

PL⋆(Z)
,

the Wald’s integrability condition is satisfied. Now for every sequence {Ln}
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converging to L, we show that ∆Φ(Ln) is upper semicontinuous:

lim sup
n→∞

∆Φ(Ln) = lim sup
n→∞

E log
PLn(Z)

PL⋆(Z)

≤ E lim sup
n→∞

log
PLn(Z)

PL⋆(Z)

= E
PL(Z)

PL⋆(Z)

= ∆Φ(L).

The second inequality follows from the Fatou’s lemma and the third identity

is the consequence of continuity of the function log
PLn (Z)

PL⋆ (Z)
. For every η > 0 we

define the set Kη:

Kη =
{︁
L ∈ Eα,β : ℓ(L,L⋆) ≥ η

}︁
=
⋂︂
D∈D

{︁
L ∈ Eα,β : ∥L−DL⋆D∥F ≥ η

}︁
. (3.12)

Set Kη is a closed set and hence a compact set.

Since ∆Φ(L) is an upper semicontinuous function, it achieves maximum

over the compact set Kη. We denote the maximum by m(η). And we cannot

have m(η) = 0 because that would imply there is a L ∈ Kη such that L =

DL⋆D for some D ∈ D. The strong law of large numbers implies

sup
N∈Eα,β

ℓ(L,N)<ϵ

∆Φ̂(N) ≤ 1

n

n∑︂
i=1

sup
N∈Eα,β

ℓ(L,N)<ϵ

log
PN(Zi))

PL⋆(Zi)

a.s.−−→ E sup
N∈Eα,β

ℓ(L,N)<ϵ

log
PN(Z)

PL⋆(Z)
. (3.13)

By continuity,

lim
ϵ→0

sup
N∈Eα,β

ℓ(L,N)<ϵ

log
PN(Z))

PL⋆(Z)
= log

PL(Z)

PL⋆(Z)

and supϵ log
PN

PL⋆
is a decreasing function with respect to ϵ because supremum
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over a smaller subset is smaller than over a bigger subset. And by (3.11) it is

integrable for all small enough ϵ . Hence by dominated convergence theorem,

lim
ϵ→0

E sup
N∈Eα,β

ℓ(L,N)<ϵ

log
PN(Z))

PL⋆(Z)
= E log

PL(Z)

PL⋆(Z)
= ∆Φ(L).

Thus for any L ∈ Kη and any γ > 0 there exists a ϵL such that

E sup
N∈Eα,β

ℓ(L,N)<ϵL

log
PN(Z)

PL⋆(Z)
< m(η) + γ. (3.14)

For each L ∈ Kη, we define the open set:

VL = {N ∈ Eα,β : ℓ(N,L) < ϵL}

and then the family {VL : L ∈ Kη} is an open cover of Kη and hence has

a finite subcover: VL1 , VL2 , ...., VLd
. On every VLi

we use strong law of large

numbers one more time:

lim sup
n→∞

sup
N∈VLi

∆Φ̂(N) ≤ lim sup
n→∞

1

n

n∑︂
i=1

sup
N∈VLi

log
PN(Zi)

PL⋆(Zi)

= E sup
N∈VLi

log
PN(Z)

PL⋆(Z)
. (3.15)

So we get

lim sup
n→∞

sup
N∈VLi

∆Φ̂(N) < m(η) + γ i = 1, 2, ..., d.

Since {VLi
: i = 1, 2..., d} cover Kη we have

lim sup
n→∞

sup
N∈Kη

∆Φ̂(N) < m(η) + γ

which, since γ is arbitrary, implies

lim sup
n→∞

sup
L∈Kη

∆Φ̂(L) < sup
L∈Kη

∆Φ(L) = m(η). (3.16)
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Notice that m(η) < 0. From (3.16) there exists a constant N1 such that

sup
L∈Kη

∆Φ̂(L) <
m(η)

2
, n > N1.

But

∆Φ̂(L̂n) = sup
L∈Eα,β

∆Φ̂(L) ≥ ∆Φ̂(L⋆)
a.s.−−→ ∆Φ(L⋆) = 0,

so there exists a constant N2 such that

∆Φ̂(L̂n) ≥
m(η)

2
, n > N2

which implies that L̂n /∈ Kη, that is, ℓ(L̂n, L) < ϵ.

The second step is to show that the event {L̂n ∈ Eα,β} holds almost sure.

We adopt the proof from [BMRU17]. Let δ = minJ⊂[N ] PL⋆(J). For simplicity,

we denote PL⋆(J) by p⋆J . Since L⋆ is positive definite, δ > 0. Define the event

A by

A =
⋂︂

J⊂[N ]

{︁
p⋆J ≤ 2p̂J ≤ 3p⋆J

}︁
.

Observe that Φ(L⋆) < 0, so we can define α < exp(3Φ(L⋆)/δ) and β > 1 −
exp(3Φ(L⋆)/δ) such that 0 < α < β < 1. Using the conclusion in Theorem 14

from [BMRU17] we know that on the event A, L̂ ∈ Eα,β, that is,

P (L̂ ∈ Eα,β) ≥ P (A).

Because

p̂J =
1

n

n∑︂
i=1

I(Zi = J)
a.s.−−→ PL⋆(Z = J) = p⋆J

, the eventA holds almost surely when n goes to infinity and hence {L̂n ∈ Eα,β}
holds almost surely.

Theorem 13. ℓ(L̂n, L
⋆) converges to zero almost surely.
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Proof. Let IEn denote the characteristic function of the event {L̂n ∈ Eα,β},
then

P
(︁
lim
n→∞

ℓ(L̂n, L
⋆) = 0

)︁
= P

(︁
lim
n→∞

ℓ(L̂n, L
⋆) = 0, lim

n→∞
IEn = 1

)︁
+P
(︁
lim
n→∞

ℓ(L̂n, L
⋆) = 0, lim

n→∞
IEn ̸= 1

)︁
= P

(︁
lim
n→∞

ℓ(L̂n, L
⋆) = 0, lim

n→∞
IEn = 1

)︁
= P

(︁
lim
n→∞

ℓ(L̂n, L
⋆) = 0

⃓⃓
lim
n→∞

IEn = 1
)︁
P
(︁
lim
n→∞

IEn = 1
)︁

= P
(︁
lim
n→∞

ℓ(L̂n, L
⋆) = 0

⃓⃓
lim
n→∞

IEn = 1
)︁

= 1.

The last equality follows from the fact that L̂n ∈ Eα,β almost surely and from

lemma 12.

3.3 Berry-Essen theorem

We observe that an N by N matrix [Aij]N×N can also be viewed as an N ×
N dimensional column vector: (A11, A12, ..., A1N , A21, ..., AN1, ...ANN)

T . And

then the Frobenius norm of the matrix is just the L2 norm for its corresponding

column vector. In the following section we abuse the notation: without causing

any confusion, sometimes we regard the matrix as the corresponding column

vector.

Assume that L⋆ is irreducible and let L̂ be the maximal likelihood estima-

tor. Let D̂ ∈ D be such that

∥D̂L̂D̂ − L⋆∥F = min
D∈D

∥DL̂D − L⋆∥F (3.17)

and set L̃ = D̂L̂D̂. Then the strong consistency of L̃ immediately follows from

the theorem 13.

According to theorem 11, d2Φ(L⋆) is negative definite and hence invertible.

Let V (L⋆) denote its inverse. Here if we vectorize L then d2Φ(L⋆) is an (N ×
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N)× (N ×N) Hessian matrix. By Theorem 5.41 in [VdV00],

√
n(L̃− L⋆) = −(E(d2 logPL⋆(Z)))−1 1√

n

n∑︂
i=1

d(logPL⋆(Zi)) + oP (1)

= −V (L⋆)
1√
n

n∑︂
i=1

((L⋆
Zi
)−1 − (I + L⋆)−1) + oP (1). (3.18)

In particular, Theorem 5.41 states that the sequence
√
n(L̃−L⋆) is asymptot-

ically normal with mean 0 and covariance matrix −V (L⋆). Hence we get the

following theorem from [BMRU17].

Theorem 14. Let L⋆ be irreducible. Then, L̃ is asymptotically normal:

√
n(L̃− L⋆) −−−−→

n−→∞
N (0,−V (L⋆)), (3.19)

where the above convergence holds in distribution.

Now let us take one step further. We want to find an upper error bound

on the rate of convergence of the distribution of (−V (L⋆))−
1
2
√
n(L̃ − L⋆) to

standard normal distribution Z ∼ N (0, I). We argue that when L̃ ∈ Eαβ,

the bound of the maximal error is of order n− 1
4 . The condition is not of too

much restriction. Indeed, Since α and β can be arbitrarily close to 0 and 1

respectively, Eα,β converges to S++
[N ] . What’more, since L̂ ∈ Eα,β almost surely,

D̂L̂D̂ = L̃ ∈ Eα,β almost surely.

Theorem 15. Let L̃ be as defined as above and also belong to Eα,β and Z be

an N ×N standard Gaussian matrix. Then for every x ∈ RN×N ,

|P((−V (L⋆))−
1
2
√
n(L̃− L⋆) < x)− P(Z < x)| ≤ C

1
4
√
n
,

where C is a sufficient large constant, which is irrelevant to x, subject to α, β

and proportional to N2.

According to (3.18), (−V (L⋆))−
1
2
√
n(L̃ − L⋆) can be decomposed into a
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sum

Xn =
n∑︂

i=1

ξi = (−V (L⋆))
1
2

1√
n

n∑︂
i=1

((L⋆
Zi
)−1 − (I + L⋆)−1) (3.20)

and a term ρn = (−V (L⋆))−
1
2 oP (1) whose Frobenius norm converges to zero

in probability.

|P(Xn + ρn < x)− P(Z < x)|

= |P(Xn + ρn < x, ∥ρn∥F ≥ kn) + P(Xn + ρn < x, ∥ρn∥F < kn)− P(Z < x)|

≤ P(∥ρn∥F ≥ kn) + |P(Xn + ρn < x, ∥ρn∥F < kn)− P(Z < x)|

≤ P(∥ρn∥F ≥ kn) (I1)

+ |P(Xn + kn1 < x, ∥ρn∥F < kn)− P(Z < x)| (I2)

+ |P(Xn − kn1 < x, ∥ρn∥F < kn)− P(Z < x)|, (I3)

where {kn} is an arbitrary sequence of positive real number and 1 is the N×N

matrix whose entries are all 1. The following lemma estimates I1.

Lemma 16. P(∥ρn∥ ≥ kn) ≤ C4
4√n

, where kn = n− 1
4 and C4 is a constant.

Proof. From the proof of Theorem 5.41 of [VdV00] ρn has the following ex-

pression

ρn =
√
n(−V (L⋆))

1
2

(︃
d2 Φ̂n(L

⋆)− E(d2 Φ̂n(L
⋆))

+
1

2
(L̃− L⋆)T d3 Φ̂n(Ln)

)︃
(L̃− L⋆), (3.21)

where Ln is a point on the line segment between L̃ and L⋆. To simplify

notation, let θ denote(︃
d2 Φ̂n(L

⋆)− E(d2 Φ̂n(L
⋆)) +

1

2
(L̃− L⋆)T d3 Φ̂n(Ln)

)︃
(L̃− L⋆).
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Then

E∥ρn∥F = E∥
√
n(−V (L⋆))

1
2 θ∥F

=
√
nE∥(−V (L⋆))

1
2 θ∥F

≤
√
nE∥(−V (L⋆))

1
2∥op∥θ∥2

=
√︁

n · Λmax(−V ) · E∥θ∥2. (3.22)

∥ · ∥op denotes the operator norm induced by L2 norm and Λmax denotes the

largest eigenvalue. For the first inequality, we regard θ as an N × N column

vector and (−V (L⋆))
1
2 is an (N ×N)× (N ×N) matrix.

E∥ϕ∥2 =E
⃦⃦(︁

d2 Φ̂n(L
⋆)− E(d2 Φ̂n(L

⋆)) +
1

2
(L̃− L⋆)T d3 Φ̂n(Ln)

)︁
(L̃− L⋆)

⃦⃦
2

≤E
⃦⃦(︁

d2 Φ̂n(L
⋆)− E(d2 Φ̂n(L

⋆))(L̃− L⋆)
⃦⃦
2

(I1-1)

+E∥1
2
(L̃− L⋆)T d3 Φ̂n(Ln)

)︁
(L̃− L⋆)

⃦⃦
2

(I1-2)

Using Cauchy-Schwartz inequality to estimate I1-1:

I1-1 ≤ E
1
2

⃦⃦(︁
d2 Φ̂n(L

⋆)− E(d2 Φ̂n(L
⋆))
⃦⃦2
op
E

1
2∥L̃− L⋆∥22

≤ N2

√
n
max
i,j

(L⋆−1)2ijE
1
2∥L̃− L⋆∥22. (3.23)

Let h(x) be a multivariate function:

h : RN×N −→ R

(x1, x2, ..., xNN) ↦−→ x2
1 + x2

2 + · · ·+ x2
NN

Then h is a continuous function. What’s more almost surely L̃ ∈ Eα,β, which

is a compact and convex set. Using Theorem 14 and portmanteau lemma we

have

E
(︁
h(
√
n(L̃− L⋆))

)︁
= nE∥L̃− L⋆∥2F −→ E∥Z̃∥2F , (3.24)

where Z̃ ∼ N (0,−V (L⋆)). E∥Z̃∥2F is equal to E(Z̃
2

11 + · · ·+ Z̃
2

1n + Z̃
2

21 + · · ·+

29



Z̃
2

nn) = Tr(−V (L⋆)). Then there exists a constant C1 subject to α, β such that

E
1
2∥L̃− L⋆∥22 ≤ C1

1√
n
. (3.25)

As a result,

I1-1 ≤ C2N
2 1

n
(3.26)

where C2 is a suitable constant.

Next, we estimate the second part, that is I1-2:

E∥1
2
(L̃− L⋆)T d3 Φ̂n(Ln)

)︁
(L̃− L⋆)

⃦⃦
2
.

Here d3 Φ̂n(Ln) is an N × N dimensional column vector whose entries are

N ×N matrices. Since Φ̂(L) is infinitely many differentiable, Ln is on the line

segement between L̃ and L⋆, and Eα,β is a convex and compact set, we conclude

that every entry of d3 Φ̂n(Ln) is bounded. Hence there exists a constant C3 ≥ 0

such that

E∥1
2
(L̃− L⋆)T d3 Φ̂n(Ln)

)︁
(L̃− L⋆)

⃦⃦
2
≤C3E∥L̃− L⋆∥22

≤C2
1C3

n
. (3.27)

Now let kn = n− 1
4 . Using Chebyshev’s inequality we get:

P(∥ρn∥ ≥ kn) ≤
E∥ρn∥
kn

=
C4

4
√
n

(3.28)

for a suitable constant C4.

Our next lemma estimates I2 as follows.

Lemma 17. Let kn be 1
4√n

. Then I2 ≤ C7
4√n

for some constant C7
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Proof. Because

P(Xn + kn1 < x)− P(Z < x)

≥ P(Xn + kn1 < x, ∥ρn∥F < kn)− P(Z < x)

=
(︁
P(Xn + kn1 < x)− P(Xn + kn1 < x, ∥ρn∥F ≥ kn)

)︁
− P(Z < x)

≥ P(Xn + kn1 < x)− P(∥ρn∥F > kn)− P(Z < x),

we have

I2 ≤ |P(Xn + kn1 < x)− P(Z < x)|

+ |P(Xn + kn1 < x)− P(|ρn∥F ≥ kn)− P(Z < x)|

≤ 2|P(Xn + kn1 < x)− P(Z < x)|+ P(∥ρn∥F ≥ kn)

= 2|P(Xn + kn1 < x)− P(Z + kn1 < x)

+ P(Z + kn1 < x)− P(Z < x)|+ P(∥ρn∥F ≥ kn)

≤ 2|P(Xn + kn1 < x)− P (Z + kn1 < x)| (I2-1)

+ 2|P(Z + kn1 < x)− P (Z < x)| (I2-2)

+ P(∥ρn∥F ≥ kn). (I2-3)

By multidimensional Berry-Essen theorem in [Ben05],

I2-1 ≤ C5 ·
√
N · n · E∥ξ1∥3 (3.29)

where C5 is a constant and ξ1 is defined in (3.20):

E∥ξ1∥3 = E∥ 1√
n
(−V (L⋆))−

1
2 (L⋆

Zi
)−1 − (I + L⋆)−1∥3

≤ (
1√
n
)3E∥(−V (L⋆))−

1
2

(︁
(L⋆

Zi
)−1 − (I + L⋆)−1

)︁
∥3. (3.30)

Since E∥(−V (L⋆))−
1
2

(︁
(L⋆

Zi
)−1 − (I + L⋆)−1

)︁
∥3 is a constant we get

I2-1 ≤ C6

√︃
N

n
(3.31)
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For (I2-2), since Z can be viewed as a standard Guassian random vector, we

have:

I2-2 = 2|P(x− knI < Zn < x)|

≤ 2
N∑︂

i,j=1

P(xij − kn ≤ (Zn)ij ≤ xij)

=
2N2

√
2π

kn (3.32)

Combining 3.31, 3.32 with lemma 16, where we take kn = n− 1
4 we conclude

that:

I2 ≤ C7

4
√
n
,

where C5 is a constant.

As for I3 we can use the same argument as above and get that I3 is less

than C8 · n− 1
4 for some constant C8.

Proof. [Theorem 15]

The result follows from the last two lemmas.

3.4 Two-by-two block kernel

In this section we show that if the kernels of determinantal point processes are

two-by-two symmetric positive semi-definite matrices, the maximum likelihood

estimators can be solved analytically. This result immediately extends to any

two by two block matrices. However, the first method used in two by two

kernel is difficult to apply to higher dimensional kernel.

Let Z ∼ DPP(L⋆), where L⋆ =

(︃
a∗ b∗

b∗ c∗

)︃
, and the ground set be Y = [2].

For our purpose, we assume

a∗, c∗ > 0

and

a∗c∗ − b∗2 ≥ 0.
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For ease of notation, let p̂0, p̂1, p̂2, p̂3 denote the empirical probability of the

subset {∅}, {1}, {2}, {1, 2} respectively and let p0, p1, p2, p3 denote the theo-

retical probability respectively . Then its likelihood function defined in 3.1

is

Φ̂(L) =
∑︂
J∈[2]

p̂J log(LJ)− log det(L+ I)

= p̂1 log a+ p̂2 log c+ p̂3 log(ac− b2)− log[(a+ 1)(c+ 1)− b2] (3.33)

To find the critical point we first let the partial derivative of Φ̂(L) with respect

to b equal zero and get

∂Φ̂(L)

∂b
=

2p̂3b

ac− b2
+

2b

(a+ 1)(c+ 1)− b2
= 0. (3.34)

Then we have b is either equal to 0 or

b2 =
ac− (a+ 1)(c+ 1)p̂3

1− p̂3
. (3.35)

We can always assume b is non-negative since by identifiability of DPPs,(︃
a b

b c

)︃
and

(︃
a −b

−b c

)︃
give the same distribution. If b = 0, then by set-

ting the partial derivative with respect to a and c to zero and notice that

p̂0 + p̂1 + p̂2 + p̂3 = 1 we get the first critical point:

(â, b̂, ĉ) =

(︄
p̂1 + p̂3
p̂0 + p̂2

, 0,
p̂2 + p̂3
p̂0 + p̂1

)︄
. (3.36)

This critical point exists only if p̂0+ p̂2 and p̂0+ p̂1 is nonzero. Since empirical

probability converges to its corresponding theoretical probability almost surely

and p0 > 0, the strong law of large numbers implies the critical point exists

almost surely.
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If it is the other case, plugging (3.35) into Φ̂(L) yields

Φ̂(L) = p̂1 log a+ p̂2 log c+(p̂3 − 1) log(a+ c+1)− (p̂3 − 1) log
p̂3

1− p̂3
+ log p̂3.

(3.37)

Let ∂Φ̂(L)
∂a

and ∂Φ̂(L)
∂c

equal zero we find

∂Φ̂(L)

∂a
=
p̂1
a

+
p̂3 − 1

a+ c+ 1
= 0 (3.38)

∂Φ̂(L)

∂c
=
p̂2
c
+

p̂3 − 1

a+ c+ 1
= 0. (3.39)

The above equations and (3.35) yield

(â, b̂, ĉ) =
(︂ p̂1
p̂0
,

√︁
p̂1p̂2 − p̂0p̂3

p̂0
,
p̂2
p̂0

)︂
, (3.40)

from which we have this critical point exists only if p̂0 > 0 and p̂1p̂2− p̂0p̂3 ≥ 0.

Again by strong laws of large numbers, the second critical point also exists and

converges to the true value almost surely. In fact almost surely,

p̂1
p̂0

→ p1
p0

= a∗,

√︁
p̂1p̂2 − p̂0p̂3

p̂0
→

√
p1p2 − p0p3

p0
= b∗,

p̂2
p̂0

→ c∗.

Furthermore, we establish the central limit theorem for the estimator 3.40,

which corresponds to the result in Theorem 14.

Theorem 18. Assume b > 0, then the estimator (â, b̂, ĉ) in 3.40 is asymptot-

ically normal,

√
n((â, b̂, ĉ)− (a∗, b∗, c∗)) −−−−→

n−→∞
N (0,−V (a∗, b∗, c∗)), (3.41)

where the convergence holds in distribution and V (a∗, b∗, c∗) is the inverse of

the Hessian matrix of the expected maximum likelihood function Φ(a, b, c) =

p1 log a+ p2 log c+ p3 log(ac− b2)− log[(a+ 1)(c+ 1)− b2].

Proof. Let Z1, ..., Zn be n independent copies of Z ∼ DPP(L∗), where L∗ =(︃
a∗ b∗

b∗ c∗

)︃
. LetXi be the random vector (I{Zi=∅}, I{Zi={1}}, I{Zi={2}}, I{Zi={1,2}})

T ,
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where I{·} stands for the indicator random variable. Then Xi has mean

µ = (p0, p1, p2, p3)
T and covariance matrix

Σ =

⎛⎜⎜⎜⎜⎝
p0 − p20 −p0p1 −p0p2 −p0p3

−p0p1 p1 − p21 −p1p2 −p1p3

−p0p2 −p1p2 p2 − p22 −p2p3

−p0p3 −p1p3 −p2p3 p3 − p23

⎞⎟⎟⎟⎟⎠
By central limit theorem,

√
n(Xn−µ) converges to a multivariate distribution

with mean 0 and covariance Σ. Let a function g : R4 → R3 be such that

g(x1, x2, x3, x4) = (
x2

x1

,

√
x2x3 − x1x4

x1

,
x3

x1

).

Its Jacobi matrix ġ(x) =
[︁
∂gi
∂xj

]︁
3×4

is given by

⎛⎜⎜⎝
−x2

x2
1

1
x1

0 0

− x4

2x1
√
x2x3−x1x4

−
√
x2x3−x1x4

x2
1

x3

2x1
√
x2x3−x1x4

x2

2x1
√
x2x3−x1x4

− 1
2
√
x2x3−x1x4

−x3

x2
1

0 1
x1

0

⎞⎟⎟⎠ .

Now we are in the position to apply Delta method [VH12]; we have

√
n
(︁
(â, b̂, ĉ)− (a∗, b∗, c∗)

)︁
=

√
n
(︁
g(Xn)− g(µ)

)︁ d−→ N (0, ġ(µ)Σġ(µ)′).

After tedious matrix computations, ġ(µ)Σġ(µ)′ is found to be

D

⎛⎜⎜⎝
(a∗ + a∗2) (a

∗c∗

2b∗
+ a∗b∗ + a∗

2b∗
(a∗c∗ − b∗2)) a∗c∗

(a
∗c∗

2b∗
+ a∗b∗ + a∗

2b∗
(a∗c∗ − b∗2))

a∗c∗
b∗2

−1

4
D + a∗+c∗+4a∗c∗

4
a∗c∗

2b∗
+ b∗c∗ + c∗

2b∗
(a∗c∗ − b∗2)

a∗c∗ a∗c∗

2b∗
+ b∗c∗ + c∗

2b∗
(a∗c∗ − b∗2) c∗ + c∗2

⎞⎟⎟⎠ ,

where D = (a∗ + 1)(c∗ + 1) − b∗2. It is straightforward to verify the above

matrix is the inverse of the Hessian matrix of the expected maximum likeli-

hood function Φ(L), that is, −V (a∗, b∗, c∗), which in turn verifies theorem 14.

However, in this two-by-two case, our maximum likelihood estimator is unique
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with no need of the definition 3.17.

Now if L⋆ is a matrix with k two-by-two blocks J1, ..., Jk⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1

b1 c1

a2 b2

b2 c2
. . .

ak bk

bk ck

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.42)

where for each 1 ≤ i ≤ k, ai, bi, ci > 0 and aici − b2i ≥ 0. Let ground set Y of

this DPP be {J1
1 , J

2
1 , J

1
2 , J

2
2 , ..., J

1
k , J

2
k} and for each 1 ≤ i ≤ k,

p̂0Ji =
1

n

n∑︂
m=1

I{J1
i /∈ Zm, J

2
i /∈ Zm} (3.43)

p̂1Ji =
1

n

n∑︂
m=1

I{J1
i ∈ Zm, J

2
i /∈ Zm} (3.44)

p̂2Ji =
1

n

n∑︂
m=1

I{J1
i /∈ Zm, J

2
i ∈ Zm} (3.45)

p̂3Ji =
1

n

n∑︂
m=1

I{J1
i ∈ Zm, J

2
i ∈ Zm}, (3.46)

where Z1, ..., Zn are n independent copies drawn from DPP(L⋆). By Proposi-

tion 8, Z ∩ J1, ..., Z ∩ Jk are mutually independent, then the result of critical

point for two by two matrix can be applied:

(âi, b̂i, ĉi) =

(︄
p̂1Ji
p̂0Ji

,

√︂
p̂1Ji p̂

2
Ji
− p̂0Ji p̂

3
Ji

p̂0Ji
,
p̂2Ji
p̂0Ji

)︄
, (3.47)

for every 1 ≤ i ≤ k.

However the first order method is fraught with difficulties when the kernel

36



has dimension higher than 2. For example, if the kernel is a 3× 3 matrix⎛⎜⎝a d e

d b f

e f c

⎞⎟⎠ ,

we let the gradient of likelihood estimation function Φ̂(L) equal zero:

dΦ̂(L) =
∑︂
J⊆[3]

p̂JL
−1
J − (L+ I)−1 = 0.

Computing L−1 and (L+ I)−1 can be troublesome. For example, L−1 is:

1

a(bc− f 2)− d(cd− ef) + e(df − be)

⎛⎜⎝ bc− f 2 −cd+ ef −be+ df

−cd+ ef ac− e2 de− af

−be+ df de− af ab− d2

⎞⎟⎠
which is difficult to use to solve for the true values.

Let the ground set be [N ]. Now we bypass the difficulty by only focusing on

all the two by two principal minors of the kernel. For all J such that |J | ≤ 1,

we let
det(LJ)

det(L+ I)
= p̂J , (3.48)

where the left side is the theoretical probability of J and the right side the

empirical probability of J . We solve for all the diagonal elements of L

Lii =
p̂i
p̂0
. (3.49)

Then using equations (3.48) for |J | = 2 again we are able to determine the

off-diagonal elements up to the sign

L2
ij =

p̂ip̂j − p̂∅p̂{i,j}

p̂2∅
, (3.50)

where i ̸= j. Notice that this is the maximum likelihood estimator when L is

two dimensional. The recovery of signs of the off-diagonal elements has been
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solved by [UBMR17] using graph theory.

It is worth noting all the diagonal elements of the corresponding marginal

kernel K can be obtained from maximum likelihood estimation. Let the gra-

dient of Φ̂(L) equal zero:

dΦ̂(L) =
∑︂
J⊆[N ]

p̂JL
−1
J − (L+ I)−1 = 0.

Then moving (L+I)−1 to the right side and multiplying both sides by L yield:∑︂
J⊆[N ]

p̂JLL
−1
J = L(L+ I)−1 = K, (3.51)

from which we get

K̂ii =
∑︂

{i}⊆J⊆[N ]

p̂J ,

for all i = 1, 2, ..., N . The above identity means that the maximum likelihood

estimation of Kii, the probability of inclusion of the item i , is equal to the

empirical marginal probability of the inclusion of item i.
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Chapter 4

Conclusion

In this thesis, we first give a brief introduction to determinantal point pro-

cesses (DPPs): definitions of marginal kernels and L ensembles, properties,

examples in mathematics, and the rationale behind their applications in ma-

chine learning. Next we study their maximum likelihood estimation. Brunel et

al show that the expected likelihood function Φ(L) is locally strongly concave

around true value L⋆ if and only if L⋆ is irreducible, since the Hessian matrix

of Φ(L) at L⋆ is negative definite. Then they prove the maximum likelihood

estimator (MLE) is consistent in probability and when L⋆ is irreducible the

MLE converges in distribution to a Gaussian random matrix. Based on their

theorems, we show the MLE is also consistent almost surely; moreover, we

find the n− 1
4 order bound on the rate of convergence of the MLE to normality.

Last, we obtain the explicit form of the MLE where L⋆ is a two by two block

matrix. The strong consistency and central limit theorem follows from the

explicit form, which demonstrates the general strong consistency and central

limit theorem proved earlier. It would be interesting to find the explicit form

of higher dimensional DPPs. However, as the maximum likelihood learning of

DPPs is proven to be NP-hard, the explicit form, even if was found, would be

very difficult to compute.
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