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ABSTRACT 
 

The construction sector is one of the largest in the world economy. Billions of dollars are spent 

every year to execute and deliver projects serving the public. However, internal and external 

factors – such as unexpected weather, financial difficulties, manpower shortages, and excessive 

change orders – can impact the performance of these projects and cause deviations from planned 

performance. Consequently, researchers are constantly developing methods to improve project 

performance during execution. Although the models are developed using advanced techniques, the 

validation techniques applied to assess their accuracy are flawed. One example of this can be found 

in schedule- and cost-forecasting models. These models are crucial in ensuring that project 

progress is regularly tracked and reviewed, areas requiring changes are identified, and the 

subsequent changes are initiated accordingly. However, most researchers use validation techniques 

that rely on comparing the developed method to other well-known methods using actual completed 

project data. This has several drawbacks that render the validation experiments inconclusive.  

 

Accordingly, this thesis focuses on designing a Monte Carlo simulation-based empirical 

experiment to improve the process of assessing and comparing the effectiveness of different 

methods, with a focus on forecasting methods. The experiment involves generating a large sample 

set of random activity-on-node networks that resemble actual construction projects. The actual 

cost and schedule performance of these projects is simulated using a Markov chain approach that 

mimics the uncertainty affecting the execution of these projects. To test the experiment, four 

forecasting methods are applied to predict the final project cost and duration given the randomly-

generated planned and actual performance data: earned value analysis (EVA), earned schedule 

(ES), non-linear regression Gompertz growth model (NLR-GGM), and the Kalman filter 

forecasting model (KFFM). These methods are evaluated in terms of forecasting accuracy, 
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timeliness, and stability under varying project complexities and lengths. By providing an in-depth 

analysis, researchers and practitioners can develop an enhanced understanding and insight into 

these methods. This research contributes to the current state-of-the-art by developing a means for 

validating and assessing cost- and schedule-forecasting models in a controlled, unbiased, and 

simulated environment. 
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CHAPTER 1: INTRODUCTION 

1.1 Background and Problem Statement  

The construction sector is one of the largest in the world economy. Billions of dollars are spent 

every year to execute and deliver projects serving the public. However, internal and external 

factors – such as unexpected weather, safety factors, financial difficulties, manpower shortages, 

and excessive change orders – can impact every aspect of a construction project (Sweis et al. 2014). 

Consequently, productivity and actual performance in terms of schedule, cost, quality, safety, etc. 

push researchers to develop methods that improve performance during the execution phase. 

Identifying deviations from planned performance in a timely manner can control and mitigate their 

effects, allowing project objectives to be achieved. Although these methods are developed using 

advanced techniques, the validation processes applied to assess their efficacy are often unreliable. 

One example can be found in project control models. These models are crucial in ensuring that 

project progress is regularly tracked and reviewed, areas requiring changes are identified, and the 

subsequent changes are initiated accordingly. The Project Management Body of Knowledge 

(PMBOK) Guide describes several monitoring and control activities that can be used to achieve 

the above. These include: (1) comparing actual outcomes with planned outcomes and reporting 

performance; (2) forecasting project outcomes, assessing overall performance, and determining 

whether and what action needs to be taken; (3) ensuring deliverables agree with previously 

approved requirements and acquiring sign offs on these deliverables; (4) managing risks; (5) 

managing vendors and contracts. This thesis is concerned with the second activity: forecasting 

models and the validation processes involved in the development of these models.  

 

Through forecasting, project managers translate actual execution data from the construction site 

into knowledge that can be used in making correct management decisions. Several forecasting 

methods have been developed over the years to improve the accuracy of predictions and provide 

more timely forecasts. Earned Value Analysis (EVA), a well-established forecasting method, is 

the most commonly known and used in practice for cost- and schedule-forecasting. However, the 

deterministic nature of this technique and its assumption that all activities, critical and non-critical, 

will equally affect performance can often provide misleading outcomes (Lipke, Earned Schedule, 
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2006). Thus, researchers have proposed extensions to traditional EVA or have used other 

techniques including Bayesian inference, Markov chains, regression, and artificial intelligence to 

overcome these limitations. Although researchers often conclude that the developed methods 

theoretically provide more accurate, stable, or timely forecasts when compared to other methods, 

these conclusions are based on inductive reasoning. In other words, broad generalizations on the 

performance of these methods are made from specific observations using a small sample of actual 

projects. Although the outcomes are true for the tested sample, the main drawback of this approach 

is that when expanded to larger dataset, the conclusions do not necessarily hold true. In addition, 

the use of real project data for validation and comparison purposes has been criticized as having 

several shortcomings. The number of real projects available are limited, and more importantly, 

project outcomes are affected by managerial decisions during execution (B. Kim 2007), rendering 

unreliable validation experiments.  

 

Accordingly, this research proposes an empirical Monte Carlo (MC) simulation-based experiment 

to validate forecasting methods in construction management. MC simulation is a type of simulation 

that computes the results of an experiment using statistical analysis with repeated random 

sampling. It is particularly useful in analyzing scenarios with uncertainty and providing a 

probabilistic investigation of different situations. Hence, it is closely associated with random 

experiments in which the exact outcomes are unknown. MC simulation has been used in several 

domains including mathematics, engineering, finance, etc. In construction, it has proven 

particularly useful in risk management applications. The methodology involved in this research 

applies MC simulation by generating a set of random construction project baselines using several 

input variables represented by statistical distributions. As discussed above, actual performance 

during project execution often deviates from planned performance; this randomness and 

uncertainty in performance is modeled using a Markov process to create actual progress variations 

of each baseline plan. As a result, a large sample dataset has been created that is representative of 

the entire solution space and can be used in validating forecasting methods empirically. 
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1.2 Objectives  

The main objectives of this research are:  

1. Providing a method for creating random project networks and actual progress variations 

using MC simulation and Markov chains.  

2. Developing an empirical experiment to validate different applications in construction 

management in a reliable and efficient way. 

3. Understanding the limitations of current practices in evaluating the performance of 

schedule- and cost-forecasting models in the construction domain and applying the 

developed experiment to overcome these limitations 

1.3 Expected Contributions  

The expected academic contributions of the proposed research can be summarized as follows:  

• Developing a methodology for creating project baseline schedules that resemble actual 

construction projects using MC simulation, and generating realistic sample progress 

variations using Markov chains to mimic the randomness and uncertainty affecting the 

execution of these projects.  

• Developing a means for researchers to validate and asses the accuracy of developed cost 

and schedule forecasting models in a controlled, unbiased, and simulated environment that 

can be expanded by adding resources, risks, interruptions etc. for use in other applications.  

The expected industrial contributions of the proposed research can be summarized as follows:  

• Providing project managers with enhanced understanding and better insight into 

forecasting models used to predict final schedule and cost deviations. 

• Improving the overall execution and performance of construction projects by advancing 

the use of forecasting models in practice. 
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1.4 Research Methodology  

The research methodology was conducted in the following manner:  

• Conduct a literature review to identify the various forecasting methods and techniques 

developed by researchers, the methods used to evaluate the performance of these 

forecasting techniques and their limitations, and the application of MC simulation in 

different fields.  

• Design a MC simulation experiment to evaluate the performance of different forecasting 

theories in terms of accuracy, timeliness, and stability. This includes an outline of the 

hypothesis to be tested.  

• Validate the methodology for creating random project networks by relying on construction 

experts’ opinions, and refine it accordingly. 

• Automate the experiment on four forecasting methods: EVA, Earned Schedule (ES), 

Kalman filter forecasting model (KFFM), and non-linear regression model.  

• Analyze the sample data and results statistically, and assess the plausibility of the stated 

hypotheses.  

• Provide a method for researchers to evaluate developed prediction models and provide 

recommendations to enhance the use of forecasting in the construction industry.  

1.5 Thesis Organization  

The thesis is organized as follows: Chapter 2 provides a summary of the literature. Chapter 3 

provides a detailed design of the MC experiment, including the procedure for generating network 

topology randomly, simulating different variations of actual progress, the dependent and 

independent variables involved, and the overall automation of the experiment. Chapter 4 provides 

a case study where the designed experiment is tested with several forecasting methods, and the 

results are statistically analyzed. Chapter 5 provides conclusions and  recommendations for future 

researchers and practitioners.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction  

Project monitoring in construction involves comparing plans to actual progress on the construction 

site, forecasting future progress, identifying deviations, and analyzing these deviations to pinpoint 

their causes. Accurate forecasting of project performance is critical to the success of construction 

projects. The earlier deviations from planned performance are detected, the easier and less costly 

it is to reduce their impact on project goals. Accordingly, several researchers have focused on 

developing models to improve project performance in terms of time, cost, quality, safety, etc. Over 

the years, traditional EVA indices (e.g. cost performance index (CPI), schedule performance index 

(SPI), or schedule performance index time (SPIt)) have been commonly used for performance 

evaluation and forecasting and are known to improve schedule, cost, and technical performance of 

projects (F. Anbari 2012). However, EVA has been criticized as having a number of shortcomings. 

Accordingly, other techniques and frameworks have been proposed to overcome the existing 

limitations of EVA for more accurate forecasting of project duration and estimate at completion 

(EAC).  

 

With the emergence of several forecasting methods, developing a method to accurately and 

effectively evaluate the performance of these methods becomes important. For practitioners to be 

able to rely on a certain method during the execution of their project, its advantages and 

disadvantages must be clearly and objectively known beforehand. This chapter reviews a number 

of existing forecasting techniques used to predict schedule and cost performance in construction 

projects. Next, the practices previously relied on to evaluate the performance of these prediction 

frameworks are examined and the existing limitations are highlighted. Finally, by summarizing 

the current literature and identifying the gaps in the existing knowledge, the basis for this research 

is laid out.  

2.2 Project Performance Forecasting  

Forecasting is the process of using information about the current status of the project and 

extrapolating to visualize performance at the end of the project. Forecasts are generally used in 

construction project management for predicting overall project cost or duration, quality of project 
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deliverables, risk occurrence, resources required, or any combination of these factors. Forecasting 

provides the project management team with valuable knowledge that allows them to proactively 

manage their project and resources, allowing for better overall performance. Understanding 

schedule performance and risks related to activities that lie on the critical path of the project is 

essential to forecasting project duration and cost. However, resource-constrained projects are often 

difficult to predict since lack of resources can causes changes in the critical path (Shaikh 2017). 

Accordingly, expert judgement is an important factor for the accuracy of these forecasts.  

 

Several frameworks have been developed to predict performance in terms of some or all of the 

factors mentioned above, and these are based on one or more techniques, including earned-value 

based methods, Markov chains, Bayesian inference, fuzzy logic, artificial intelligence, curve 

fitting and regression analysis, and miscellaneous techniques, as discussed in detail below. 

2.2.1 Earned Value Analysis-Based Methods 

The EVA technique was developed as a method for monitoring project progress during execution. 

The three main elements of project management – scope, cost, and schedule management – are 

integrated through this method (F. T. Anbari 2003). EVA calculates cost and schedule indices and 

variances and uses these values to forecast the performance of the project at the estimated 

completion date. By highlighting the possible need for corrective actions, project managers can 

enhance productivity and adjust strategies based on the calculated trends. Despite EVA’s 

popularity, one of its biggest limitations is that the schedule variance (SV) and SPI are equal to 0 

and 1, respectively, when evaluated at the completion of a project that is behind schedule (Lipke, 

Earned Schedule, 2006). Furthermore, EVA’s assumption that performance is “static” results in 

inaccurate forecasts (Du, Kim, and Zhao 2016). 

 

Over the years, there have been several extensions to the calculation of the cost EAC using EVA 

(Vignesh and Sowmya 2013). Each method is based on a number of assumptions. These methods 

are summarized below, and EVA will be discussed further in Chapter 4. 

 

1. The first method assumes that the rate of spending until this point will continue into the 

future, and there will be no variance in the budget at completion (BAC). The EAC is 
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calculated using the cumulative value of the CPI (measures the cost performance by 

comparing the budget for the amount of work completed to the actual cost. A value  greater 

than one indicates underrun and a value less than one indicates overrun).  

 𝐸𝐴𝐶 =
𝐵𝐴𝐶

𝐶𝑃𝐼𝑐𝑢𝑚
 (1) 

 

2. The next method assumes that the average rate of spending in the previous three months 

will continue into the future. EAC is calculated using the average CPI from the previous 

three months, the actual cost (AC), and the earned value (EV). In some cases, the six-month 

average cost performance is used.  

 𝐸𝐴𝐶 = 𝐴𝐶 +
𝐵𝐴𝐶 − 𝐸𝑉

𝐶𝑃𝐼3 𝑚𝑜𝑛𝑡ℎ𝑠
 (2) 

 

3. Similar to the previous calculation, this equation assumes that the cumulative average rate 

of spending will continue for the remaining duration.  

 𝐸𝐴𝐶 = 𝐴𝐶 +
𝐵𝐴𝐶 − 𝐸𝑉

𝐶𝑃𝐼𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
 (3) 

 

4. Another method assumes that work from the current point in the project will progress as 

previously planned. The cost variance (CV) that was previously recorded will not 

materialize in the future. 

 𝐸𝐴𝐶 = 𝐵𝐴𝐶 + 𝐶𝑉 (4) 

 

5. As cost and schedule performance are both assumed to have an effect on the cost at 

completion, this method uses the CPI and SPI (measures the schedule performance by 

comparing the budget for the amount of work completed to the budget for the work planned 

to be completed. A value  greater than one indicates underrun and a value less than one 

indicates overrun).  The user selects the weight (𝛼, 𝛽) to be placed on each, where the sum 

of the weights is equal to 1.  
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 𝐸𝐴𝐶 = 𝐴𝐶 +
𝐵𝐴𝐶 − 𝐸𝑉

𝛼 × 𝐶𝑃𝐼 + 𝛽 × 𝑆𝑃𝐼
 (5) 

 

6. In this method, cost EAC is also impacted by a combination of the cost and schedule 

performance indices. Similar to method 3, rather than using the cumulative values of the 

CPI and SPI, the average six-month cost and schedule performance indices are used.  

 𝐸𝐴𝐶 = 𝐴𝐶 +
𝐵𝐴𝐶 − 𝐸𝑉

𝐶𝑃𝐼𝑐𝑢𝑚 + 𝑆𝑃𝐼𝑐𝑢𝑚
 (6) 

 

2.2.2 Markov Chains 

A stochastic process is a mathematical model that evolves probabilistically over time. Markov 

chains, named after the Russian mathematician A. A. Markov (1856–1922), are a special type of 

stochastic process in which the outcome of an experiment depends only on the current state of the 

system and not on any of the past states (Markov 2003). Applications of Markov chains are 

especially common in infrastructure management. For example, Robelin and Madanat (2007) used 

Markov chains for bridge deck maintenance and replacement optimization. Furthermore, Markov 

chains have been used for deterioration predictions of wastewater systems (Baik, Jeong, and 

Abraham 2006), timber bridge elements (Ranjith et al. 2013), pavement networks (Li, Xie, and 

Haas 1996; Ortiz-García, Costello, and Snaith 2006), concrete bridges, and sewers 

(Wirahadikusumah, Abraham, and Castello 1999). Markov chains have also been widely used in 

other disciplines such as medicine and chemistry (Markov 2003).  

 

Several researchers have also applied Markov chains in project performance prediction. Nasser 

(2005) developed a probablistic forecasting model using dynamic Markov chains to address the 

stochastic nature of project performance and incorporate past performance, future corrective 

actions, and expert judgement into the forecasts. In his model, he assumed that project performance 

can occupy five possible states based on the performance index: outstanding, exceeds target, within 

target, below target, and poor performance. He relied on the “memoryless” property of the Markov 

process to develop the transition matrix from one state to another. The project was divided into 

equal time increments that reperesent the times when the performance is evaluated. The initial 
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state matrix was calculated based on historical project data, and the transition matrix was 

calculated with the assumption that the performance index is proportional to the project S-curves, 

by revenue, man-hours, or cost. The results indicated that the model is able to accurately predict 

the stochastic performance of a project due to its capability of capturing uncertainity and time-

dependence. However, it required a large amount of data regarding actual project performance to 

produce reliable results. 

 

Du et al. (2016) combined Markov chain and MC simulation for cost projection. The probability 

distribution of the CPI for each project period was simulated using the model, and the final cost 

was calculated by aggregating all simulated period costs. A case study about a coal fire power 

plant in the U.S. was presented. Historical cost performance data from 60 engineering, 

procurement construction (EPC) projects was used to fit a distribution of period performance 

factors (PF). Based on the generated distribution, 20 percentile values were chosen to calculate the 

transition matrix, i.e. the probability of transitioning from one period PF to another, and 

consequently the cumulative density functions (CDF) were obtained. Random numbers were 

generated using inverse transform methods following the CDFs, and the MC simulation was 

repeated 1000 times to improve statistical results. Finally, the results were compared with the 

results of EVA and indicated that Markov chains provided a more stable EAC prediction for the 

tested case study.  The prediction converged to the actual value at completion more quickly than 

EVA, which wavered erratically from month to month. 

2.2.3 Bayesian Statistics 

Bayesian inference is based on Bayes’ theorem and can be used to deduce the parameters of a 

probability distribution, as well as update these parameters when new data becomes available  

(Bartlett, 2018). Bayes’ theorem is represented by equation (7), with theta (θ) representing the 

distribution parameters to be calculated, and y = {y1, y2, y3,…yn) representing the data or set of 

observations available  (Bartlett, 2018). 

 𝑃(𝜃|𝑌) =
 𝑃(𝑌|𝜃)𝑃(𝜃)

𝑃(𝑌)
 (7) 
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Where, 

𝑃(𝜃|𝑌) = the conditional probability that event A occurs given that event B has occurred, also 

called the posterior distribution.  

 𝑃(𝑌|𝜃) = the likelihood distribution, represents the “conditional density of the data given the 

parameters”. (Bartlett, 2018)  

𝑃(𝜃) = represents the prior distribution, i.e. the belief about the true values of the parameters, 

which may be based on expert judgement or historical data.   

 

The Bayesian concept can be used in updating the posterior distribution in real-time as new data 

becomes available, as well as in integrating actual and historical performance data for more 

accurate forecasting. The iterative process uses the posterior distribution as the new prior 

distribution, which is updated at each iteration with the likelihood distribution derived from the 

new data. This process can be useful in updating forecasts of cost and duration at completion to 

ensure successful delivery of construction projects.  

 

Kim and Reinschmidt (2009) developed a probabilistic forecasting method based on Bayesian 

inference with the beta distribution that provides confidence bounds on project duration and EAC. 

The methodology involved generating the beta S-curve parameters (α, m and T) as prior 

distributions based on the prior information available and the level of confidence of that 

information (determined by the decision maker). Then those parameters were updated using 

Bayesian inference. A numerical example was presented to validate the framework. The Bayesian 

betaS-curve method can be used to integrate planned estimates of duration with actual 

performance, resulting in more accurate forecasts compared to the EVA and earned schedule 

methods. This method does not require detailed activity level performance, unlike the critical path 

method (CPM). 

 

Later, Kim and Reinschmidt (2011) proposed a probabilistic cost forecasting model that uses 

Bayesian inference and Bayesian model averaging techniques for adaptively combining historical 

project data (outside view) with detailed information about the specific project (inside view). The 

framework consisted of two phases, and the first was cost Bayesian adaptive forecasting (cost-
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BAF). In this phase, the forecasted EAC was continuously updated during execution, by feeding 

actual performance data into the model. In the second phase, Bayesian mode averaging technique 

was used to combine the cost-BAF model predictions with pre-project estimates. 

  

In other research, Caron et al. (2013) used Bayesian statistics to improve the calculation of the 

EAC in EVM. The model was based on two main assumptions: independence of the indices CPIm 

and SPI(t)m (the subscript m represents the monthly value) and a log-normal distribution. Their 

proposed framework was comprised of three phases, the first being “data analysis and logarithmic 

transformation of the indices’ values” (Caron, Ruggeri, and Merli 2013). The second phase 

encompassed using expert opinion to construct the prior distribution, focusing on minimizing 

biases to avoid using incorrect parameters as inputs to the model. Finally, the posterior 

distributions of the indices, CPIf and SPI(t)f (the subscript f represents the future value), were 

calculated. The model was tested on a project from the oil and gas industry to demonstrate its 

effectiveness and applicability. By combining expert judgement in a formal way with previous 

project data, more accurate forecasting of the EAC is achieved, and consequently, project controls 

can make better informed decisions.  

2.2.4 Fuzzy Logic  

Another technique used to improve the accuracy of performance evaluation and prediction models 

is fuzzy logic. Fuzzy logic and fuzzy expert systems have become more popular in the construction 

industry and are being used to model problems where available deterministic data are limited and 

measurement of factors affecting the model is subjective (Knight and Robinson Fayek 2002).  

  

Robinson Fayek and Sun (2001) developed a fuzzy expert system to evaluate and predict 

performance on design projects. Factors that impact design project performance (e.g. overall size 

of design firm and level of competition in the market) and factors that measure design performance 

(e.g. level of accuracy of design documents and level of performance against cost of design) were 

established as input and output factors for the model, respectively. Membership functions were 

generated using a new approach based on objective data, and input factors were related using 

expert rules. Model validation took place with a survey, and the results showed that the model 

provided accurate design performance in the form of linguistic predictions – i.e. factors are 
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subjective in nature and are thus described using linguistic terms (e.g., small, average, large). 

Limitations of the fuzzy expert system included a low success rate for numerical predictions, lack 

of sufficient data resulting in the failure of some membership functions, and difficulty in 

application due to complexity.  

 

Knight and Robinson Fayek (2002) developed a fuzzy logic model, to be used during the bidding 

stage, that assesses risk on engineering design projects and forecasts potential cost overruns to 

determine the likelihood of making profit. The authors relied on fuzzy binary relations to model 

the relationships between 13 project characteristics and eight risk events to determine the cost 

overrun caused by each combination of factors. Model validation was performed using case studies 

and a sample project is presented in the paper. The output of the model is useful in for design firms 

to use in determining the appropriate fee based on likely project performance or modifying 

controllable and existing conditions to enhance the performance.  

2.2.5 Artificial Intelligence  

Research into artificial intelligence and its application in the construction industry has emerged in 

the past decade. Neural networks (NN), a research area that falls under artificial intelligence, 

attempt to mimic the human brain’s capabilities of thinking, storing, processing, and retrieving 

information (Moselhi, Hegazy, and Fazio 1991). Some construction management applications that 

used NN include financial forecasting, optimum markup estimation, task sequencing optimization, 

prediction of cost change indices, project performance predictions (Boussabaine 1996).  

 

Ling and Liu (2004) used artificial neural networks (ANN) to construct a design build (DB) project 

performance prediction model and tested it using data from five projects. The authors specified 

DB project success using 11 performance indices (e.g. construction and delivery speeds, turnover, 

and project intensity) and determined 65 factors that may affect the success of these projects. 

Models to predict specific project performance were developed using correlation analysis and 

ANN on data from 33 DB projects, and they were subsequently tested using data from five new 

projects. The results indicated that six performance factors could be predicted with a reasonable 

degree of accuracy using the developed framework. The study concluded that in order to ensure 

DB project success, contractor selection and project variables should be given more attention. The 
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limitations of this research is that it has been applied to DB projects only and the dataset from 

which the model was built included 33 projects, which may be insufficient.  

 

Ko and Cheng (2007) attempted to combine genetic algorithms (GA), fuzzy logic (FL), NN to 

develop an evolutionary project success prediction model (EPSPM) for continuous monitoring of 

a project. Their model used GA for optimization, FL for dealing with uncertainty in predictions, 

and NN for capturing complex relationships between success factors as input and project outcomes 

as output. The combination of NN and FL allows for an integrated system that accurately captures 

qualities of the human brain. The model consisted of four main components: a project database 

storing information about previous projects, factors that are useful in predicting project success, 

an adaptive engine, and a predictive solution component. The validated results showed that project 

managers can use the model in real-time to make proper decisions and accomplish projects 

successfully.  

2.2.6 Curve Fitting and Regression Analysis  

The financial performance of a project can be planned and controlled using curve fitting techniques. 

The advantage of these methods over traditional EVA is that they provide an estimate at 

completion and can predict the cash inflows and outflows throughout the entire project duration 

(Willems and Vanhoucke 2015). Regression-based techniques are popular due to their ability to 

describe linear and nonlinear statistical relationships between input and output variables. Narbaev 

and Marco (2014) attempted to overcome the limitations of traditional EVM in calculating the 

Cost Estimate at Completion (CEAC) using a modified index-based formula to predict the estimate 

to completion. The framework also indicates the expected duration at completion by integrating 

earned schedule concepts. The methodology is divided into three steps. The first step is calculation 

of the Gompertz growth model (GGM) parameters, that describe phenomena inherent to data with 

a growth pattern, using non-linear regression curve fitting. Secondly, a new formula for CEAC is 

introduced integrating the evaluated GGM parameters. Finally, the equation is further modified to 

account for the effect of schedule progress on cost performance. The framework is tested using a 

eight sample projects and provides more accurate and precise estimates when compared with 

traditional index-based formulas in early, middle and late stages of the project.  
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2.2.7 Stochastic Methods  

S-curves are used in construction projects as plots to represent the cumulative budget and planned 

duration against project progress. The name is derived from the S-like shape of the curve that most 

projects follow, i.e. flatter performance at the beginning and end of the project and steeper 

performance otherwise. Barraza et. al (2004) relied on the concept of stochastic S-curves (SSC) 

for evaluating project performance status at completion. The method was based on the variable 

nature of duration and cost of individual activities in the project. Using a simulation approach, 

forecasted SSC were generated at intermediate points throughout the execution of the project. 

These were compared with planned SSC to determine the variation at completion in terms of cost 

and duration. The approach overcame the inherent limitations of deterministic methods and curve 

fitting techniques that fail to provide a confidence interval around the estimates (Willems and 

Vanhoucke 2015). To demonstrate its flexibility, the method was applied on an example project.  

 

Lee (2005) introduced Stochastic Project Scheduling Simulations (SPSS) to be used mainly during 

the bidding phase of a project. The software predicted the probability of completing a project at a 

certain date using MC simulation by accounting for the variability in the activities’ durations and 

the longest path in the network. The study claimed to overcome the limitations of program 

evaluation and review technique (PERT) while retaining the CPM modeling environment with 

stochastic activity durations. The limitations of the model included its inability to transfer data 

from commercially available software.  

 

Acebes et. al (2015) proposed an integrated methodology using MC simulation and statistical 

learning methods for monitoring projects under uncertainty. First, information about the expected 

behavior of the project was explored, and simulations in combination with Anamoly Detection 

algorithms were used to detect whether performance deviations were due to expected variability. 

If this was the case, classification and regression techniques were used to estimate probabilities of 

success in terms of time, cost, expected total duration, and cost of the project. The study was a 

refinement of previous methodologies based on EVA and risk analysis.  
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2.2.8 Miscellaneous Methods  

There is limited literature on combinations of EVA with methodologies such as Kalman filter, 

critical chains, GA, dynamic programming, and other optimization models (Willems and 

Vanhoucke 2015). The probabilistic forecasting model developed Kim and Reinschmidt (2010) 

for predicting project duration at completion Kalman filter and EVA will be reviewed in detail in 

Chapter 4.  

2.3 Evaluating the Performance of Forecasting Methods 

Despite extensive literature on forecasting models for the successful delivery of construction 

projects, research on methods to evaluate the performance of these models is limited. Teicholz 

(1994) proposed a computational approach, the sliding moving average, to forecast the final cost 

and budget variance of construction projects. The forecast of the final cost of the project reflects 

overruns and underruns recorded earlier in the project. The study relied on 121 real construction 

projects completed over 15 years to compare the proposed methodology to two other methods. The 

methods were compared based on a number of criteria including accuracy, timeliness, and 

consistency. Analysis of the results indicated that the proposed methodology was superior in the 

criteria studied. However, limitations include the use of projects all from the same construction 

company. Other researchers have also used actual data from completed construction projects to 

evaluate the performance of their developed models. Robinson Fayek and Sun (2001) proposed a 

fuzzy expert system for design project performance prediction and evaluation. They validated the 

model using seven case studies of design projects ranging from 5 to 18 months. Although the study 

concluded with reasonable results, the main limitation included the inadequacy of the dataset from 

which these conclusions were drawn. Furthermore, Abdel Azeem et. al (2014) attempted to 

validate the performance of two deterministic forecasting methods, EVA and ES, against a 

probabilistic method, the Kalman Filter Forecasting Model (KFFM). A case study of an actual 

project is used for the validation, and the lowest average percentage error is the criterion that the 

methods were ranked on. According to the results, the KFFM outperformed the other two models 

by providing probabilistic prediction bounds of the project duration at completion with lower 

errors than EVA and ES.  
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To overcome the limitations of a limited dataset for validation, Vanhoucke and Vandervoode 

(2007) relied on artificial projects and used simulation to evaluate different earned value (EV) 

metrics in forecasting project duration. The proposed methodology generated 3100 diverse project 

networks by varying the topological structure of each network. The projects were the subject to 

nine uncertainty scenarios to generate actual performance by simulating them using MC principals. 

The purpose of the study was to draw objective and extensive conclusions about these methods 

that could be generalized to a large set of real-life scenarios. Kim (2007) also used the idea of 

generating artificial datasets to test the performance of forecasting models against a wide range of 

possible solutions. The projects were generated using a simulation approach based on the schedule 

of activities. Four forecasting methods were tested – EVA, CPM, KFFM, and the Bayesian 

Adaptive Forecasting Model (BAFM) – after random executions of the project produced a large 

dataset of diverse projects. The methods were compared on accuracy, timeliness, and reliability, 

and a number of hypotheses were tested on the dataset of 6000 projects with planned total durations 

ranging from 64 to 91 weeks. The study concluded that comparisons among the different methods 

cannot be deterministic, i.e. no one method exclusively outperformed the others in all aspects. In 

another study, Khafri (2018) developed a Bayesian-Markov forecasting model that used historical 

performance data to improve the EAC. The model was validated using a randomly-generated set 

of 100 projects and tested for accuracy against EVA. For each month, the planned value (PV), EV, 

and actual cost (AC) were randomly produced, and a diversified set of projects were created by 

generating projects of different planned value types, namely linear, S-curve, front-loaded, and 

back-loaded. Different accuracy measures were used for comparison including the mean absolute 

percentage error (MAPE), mean absolute deviation (MAD), and root mean squared deviation 

(RMSD). The research claimed that through substantial testing, the proposed method generated 

more accurate forecasts than EVA, especially at earlier stages of the project.  

2.3.1 Limitations of Proposed Methods 

In the discussed frameworks, the developed models demonstrated more accurate and timely 

forecasts through testing on actual project data and comparing the results with other methods, most 

commonly EVA. However, using a number of case studies where one model outperforms others 

fails to prove the superiority of that model because in another situation that may not be the case 

(B. Kim 2007). Accordingly, the use of actual project data for validation purposes has been 
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criticized as having several shortcomings. For the results from process validation experiments to 

be reliable and meaningful, the sample size has to be large enough to reflect the process accurately. 

The larger the sample size, the more precise the results obtained from the experiment are in terms 

of determining the mean and identifying outliers. However, actual project data is often limited in 

amount, and to be able to use historical data for comparison purposes, a complete record of all 

planned and actual performance data must be available. This is very difficult to achieve in the real 

world (M. Vanhoucke and Vandevoorde 2007). Furthermore, with forecasting being an integral 

part of any construction project, actual data is often affected by the forecasting method applied 

during the execution of the project. For the comparison to be reliable, the project data used should 

be independent of any forecasting methods being tested (B. Kim 2007). 

 

Thus, artificial project data are more suited for comparison purposes as it allows for the generation 

of larger datasets from which conclusions can be more reliably drawn. However, these data can 

also provide misleading results if experiments are not carefully designed to ensure that the dataset 

is free from bias and diverse enough to accurately reflect reality. This highlights one of the main 

limitations of the previous research – planned and actual progress are generated from the same 

probability distributions. Consequently, the results of the experiment are biased, especially when 

the same distributions are used as inputs to the forecasting model, i.e. the generated projects and 

forecasts are not independent.  

2.4 Discussion and Summary 

The above review of forecasting methods is not exhaustive, but it shows the importance of 

forecasting for successful project management. Monitoring the progress of a project throughout 

execution by estimating future progress is crucial for keeping projects under control. A variety of 

methodologies have been used by researchers to achieve a range of objectives, from improving 

forecasting accuracy to calculating the performance necessary during the remainder of a project to 

be able to complete it successfully (Willems and Vanhoucke 2015). Although most studies address 

time and cost improvements and control systems, the validation methods applied using actual 

performance data indicate a substantial need for providing an empirical method for validation.  
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The recent growth in the number of techniques and models for forecasting has produced a need for 

a clearly defined, objective, and flexible method to evaluate the performance of these models. 

Accordingly, research in this thesis focuses on developing an empirical experiment for testing the 

performance of forecasting techniques. By using a MC simulation, thousands of fictitious planned 

projects can be created with randomly generated tasks, relationships, durations, and costs. To 

create a diverse dataset, the complexity and lengths of the projects are varied. Actual progress 

variations are randomly generated using a Markov chain method that will be discussed in the 

following chapter. Relying on Markov chains ensures that the executions are indeed random, 

unbiased, and a true reflection of reality. Several criteria are defined to compare the predictions by 

different forecasting methods and are used to test a number of hypothesis. An example is provided 

to show the implementation of the experiment.  
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CHAPTER 3: MC SIMULATION-BASED EXPERIMENT 

DESIGN  

3.1 MC Simulation 

MC simulation is a technique used to solve a variety of mathematical problems. The fundamental 

idea of MC is modeling and understanding a system using random sampling (Amelin 2013). The 

technique is used in a variety of disciplines including engineering, physical sciences, computing 

(i.e. machine learning), finance, statistics, among others. Random experiments, in which the 

outcome of the experiments are unknown, are at the core of MC simulation (Rubinstein and Kroese 

2016). A typical mathematical model involves inputs, model formulation, and outputs as shown in 

Figure 1.  

 

 

Figure 1 Mathematical models 

 

The inputs are processed through the mathematical model to produce outputs. In most cases, the 

inputs to the model are affected by a number of external factors (Amelin 2013). In deterministic 

models, the most likely value of the inputs parameters are used, representing the base case scenario. 

However, using a single value for the input parameters ignores the effect of risks associated with 

the input parameters, resulting in an ineffective model. In other cases, the best case and worst case 

scenarios for the input parameter values are also used. Although this provides more realistic 

outputs, it still has several disadvantages. First, it may not be possible to determine the values of 

the input parameters corresponding to the best and worst case scenarios. Second, the same scenario 

may not occur for all the input parameters at the same time (Raychaudhuri 2008). This is where 

MC simulations are useful; they allow users to methodically investigate a variety of different 

scenarios involving risky input parameters. This is done by modeling the input parameters as 

statistical distributions. 
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A typical MC simulation process involves four main stages as discussed by Raychaudhuri (2008). 

First, a deterministic model resembling the real case scenario is developed. This model uses the 

most likely values of the input parameters and applies mathematical relationships to produce the 

desired outputs. Once the user is satisfied with the deterministic model, the risk component is 

added. This risk is associated with the stochastic nature of the input variables; thus, the underlying 

statistical distributions governing the inputs are identified. A common approach to determine the 

parameters of these distributions is using historical data combined with expert opinion. Using these 

statistical distributions, a set of random numbers, each corresponding to the value of one input 

parameter, is generated. The input values are fed into the mathematical model to provide a set of 

output variables. The process is repeated with a newly generated set of random numbers until the 

specified runs of the simulation are completed. This is the core of the MC simulation. Finally, the 

collected sample of output variables are statistically analyzed and used for decision-making 

purposes. The MC simulation process provides more confidence in the results.  

 

This chapter relies on the fundamental concepts of MC simulation to design an empirical 

experiment for evaluating cost- and schedule-forecasting models. The output of the experiment is 

a set of randomly generated activity-on-node (AON) networks representing fictitious construction 

projects. The parameters of these projects, including the network topology (activities and 

relationships), activity budgets, durations, actual time, and cost expended, are determined using 

statistical distributions representing the input variables. Accordingly, a strongly random set of 

networks is generated representing the whole solution space of possible projects from the given 

inputs. The output of the experiment is used to answer of number of questions regarding the 

performance of different forecasting methods: 

1. Which forecasting technique provides more accurate, stable, and timely forecasts? 

2. Does the complexity of the project network affect the accuracy, timeliness, and stability of 

a forecasting method?  

3. Does the length of the project affect the accuracy, timeliness, and stability of a forecasting 

method?  

4. When do forecasts begin to stabilize and converge towards the final actual performance for 

different forecasting methods?  
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The experiment is set up in a manner that answers these questions by creating project networks 

with varying complexities and lengths, and testing several forecasting techniques including EVA, 

ES, KFFM, and non-linear regression Gompertz growth model (NLR-GGM). The following 

sections will describe the approach used to create project networks, the independent and dependent 

variables of the experiment that affect complexity and length of the networks, and automating the 

process to facilitate the testing and comparison of the various methods (Barton 2004). 

3.1.1 Creating Random Project Networks 

Typical construction projects begin with a plan that outlines the sequence in which work will be 

performed and is often presented in the form of an AON network. The AON network illustrates 

the relationships between activities or work packages involved in the project. It also includes the 

expected duration and allocated budget for every activity that has been derived from estimated 

quantities, productivity rates, and resource (labor and equipment) and material requirements. The 

CPM is used to calculate different properties for each activity including the early start, early finish, 

late start, late finish, total float, and free float. As early as 1993, researchers began to develop 

random activity network generators for comparing and rating the performance of different solution 

procedures. Demeulemeester et al. (1993) developed the first random network generator for 

creating test problem networks of varying sizes and structures. The number of activities and 

relationships were specified as input parameters, and the generator, referred to as strongly random, 

used these values to generate networks drawn from the full solution space of all possible networks. 

However, the generator only provided the network topology without any parameters. Agrawal et 

al. (1996) extended this work to overcome this limitation and created a random network generator, 

DAGEN, which added different parameters such as duration, as well as renewable and non-

renewable resources, to the network. Kolisch et al. (1995) also developed a network generator, 

ProGen, that addressed the issue of resource-constrained scheduling problems. The methodology 

described the network construction procedure and defined two new resource measure parameters 

– the resource factor and resource strength. However, these procedures all fell short of developing 

strongly random networks by failing to assign equal probabilities to all feasible solutions 

(Browning and Yassine 2010). Accordingly, RanGen was developed by Demeulemeester et al. 

(1993) for generating AON networks that satisfy predetermined values of topological and 

resource-based parameters that control the hardness of the problem. These networks were intended 
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to be used with several classes of scheduling problems. Vanhoucke et al. (2004) enhanced RanGen 

to become RanGen2 by modifying several topological network indicators previously developed 

by other researchers. Despite the success of these network generators, they were not aimed at 

specifically solving the resource-constrained multi-project scheduling problem (RCMPSP) and, 

consequently, do not include the important characteristics of these problems. Browning and 

Yassine (2010) attempted to overcome this by developing a random generator of RCMPSPs.  

 

Most network generators discussed above focus on creating strongly random networks that form a 

largely variable sample set to objectively compare different solution procedures. However, 

specifying predetermined values for the inputs, such as the number of links and activities, limits 

the number of possible outcomes, thus affecting the degree of randomness of the network. In 

addition, including limitations to the topological structure of the network, for example, an activity 

in one tier (a subset of activities with no links between them) can only have successor activities in 

the immediately succeeding tier (Browning and Yassine 2010) to avoid creating redundant 

relationships, further affects the degree of randomness of the network. Accordingly, the method 

proposed in this chapter overcomes these limitations and creates strongly random networks that 

are more representative of actual construction project networks.  It allows an activity to have 

successor activities in any succeeding tier but puts a higher weight on immediately succeeding 

tiers. Redundant links are then eliminated to ensure that the network complexity value accurately 

represents the topology. Finally, to ensure the validity of the project network topology and 

cumulative progress over time, face validation is performed. In this technique, experts 

knowledgeable about construction projects are asked whether the produced networks are 

reasonable (Sargent 2007) and resemble actual construction project networks. The following 

sections describe the proposed method in detail.  

3.1.1.1 Activities 

Project networks are created using a code developed on Microsoft.Net Framework (Microsoft 

Visual Studio, version 15.9.7). The number of activities for each project is determined by sampling 

from a distribution to create varying project networks. Next, the activities are organized into 

columns as shown in Figure 2. 
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3.1.1.2 Relationships 

Relationships are then generated probabilistically for each activity using a weighted random 

selection technique (Kelly, 2016). The process involves assigning weights to each activity based 

on its position in the CPM network. Activities in the immediately succeeding column are given a 

higher weight than activities in later columns. For example, in Figure 3, relationships are generated 

for A1, which is located in the first column. Accordingly R1 has a higher weight since it connects 

to an activity in the second column, whereas R2 has a lower weight since it connects to an activity 

in the third column. This can be illustrated as follows:  

 𝑤2 > 𝑤3 > ⋯ > 𝑤𝑖 (8) 

 

The weighted random selection algorithm works as follows (Kelly, 2016): 

1. Assign a weight for each activity based on the column in which it is located.  

2. Add up all the weights for the activities in the list.  

3. Sample a random number between 1 and the sum of weights.  

4. For the first activity in the list, subtract its weight from the random number. 

5. Compare the result obtained to zero.  

6. If it is less than or equal to zero, select the activity and create a link. The maximum number 

of relationships for each activity is limited to three (i.e. activities can have 1, 2 or 3 

relationships). If it is greater than zero, repeat steps 4–6 for the next activities on the list.  

Figure 2 Activities and columns 
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Based on the above algorithm, the random number decreases in each iteration ensuring that an 

activity will be always be selected. However, activities with higher weights will be more likely to 

be selected.  

 

Moreover, using the random weighted selection technique and organizing activities into columns 

ensures that there are no relationships between activities in the same column (parallel activities) 

or with activities in preceding columns. The list of possible relationships only includes activities 

in succeeding columns  

3.1.1.3 Removing redundant relationships 

The number of tasks and their relationships in a network often indicate schedule complexity 

(Bashir 2010). Although redundant relationships do not affect schedule logic, they can indicate a 

higher level of complexity than actually exits. As such they need to be removed before schedule 

complexity can be evaluated. It is expected that some of relationships created above may be 

redundant. Thus, the method developed by Bashir (2010) has been used to convert the AON project 

networks created into a minimum-edge diagraph networks without redundancies.  

 

The method is based on the graph theory and one of its applications, interpretive structural 

modeling (ISM). AON networks can be described as acyclic diagraphs, where activities are 

represented by vertices, and the precedence relationships between two activities are described by 

Figure 3 Generation of relationships between activities 
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arcs or links. Based on the number of activities, the maximum number of redundant relationships 

(MR) can be calculated using equation (9). 

 𝑀𝑅 =
𝑛(𝑛 − 1)

2
− (𝑛 − 1) (9) 

where 𝑛 = number of activities in the project network. 

 

Figure 4 shows a hypothetical project network to illustrate the method to remove redundancies. 

According to equation (9), the maximum number of redundant relationships in this network is 10. 

The first step in the process is to construct the matrix of immediate predecessors (MIP). This is a 

𝑛 × 𝑛 matrix of binary entries (0 or 1), where 1 is used to represent the existence of a precedence 

relationship between activity 𝑖 and activity 𝑗, while 0 is used otherwise, as shown in Table 1.  

 

 

Figure 4 Hypothetical project network with redundant relationships 

 

Table 1 MIP for the hypothetical project network 

Activity 

i 

Activity j 

1 2 3 4 5 6 

1 1 0 1 1 0 0 

2 0 1 1 0 1 0 

3 0 0 1 1 1 1 

4 0 0 0 1 0 1 

5 0 0 0 0 1 1 

6 0 0 0 0 0 1 

 



 

26 

The next step involves transforming the MIP to a lower triangular format (LTF). This is 

accomplished by searching in the matrix sequentially for any row containing a single 1. These 

rows are entered sequentially into the lower-triangular matrix. In this next iteration, the process is 

repeated without including these rows or their corresponding columns. The process continues until 

the entire MIP is transformed to a LTF as shown in Table 2.  

 

Table 2 Lower-triangular matrix for the hypothetical project network 

Activity 

i 

Activity j 

6 5 4 3 1 2 

6 1 0 0 0 0 0 

5 1 1 0 0 0 0 

4 1 0 1 0 0 0 

3 1 1 1 1 0 0 

1 0 0 1 1 1 0 

2 0 1 0 1 0 1 

 

Finally, the minimum adjacency matrix is constructed. The first step involves replacing all the 

diagonal entry values of 1 with 0. Next, the rows are iterated over sequentially from Row 1 to Row 

n. For each eij of 1, column 𝑖 is searched for a value of 1 in the rows greater than 𝑖. These values 

are replaced by 0 in the corresponding 𝑗 column. The process is repeated for other entries until the 

minimum adjacency matrix is reached as shown in Table 3. Figure 5 shows the minimum edge 

diagraph of the hypothetical project with all the redundant relationships removed. The above 

process is automated for the created project networks to give a more realistic value of schedule 

complexity. 
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Table 3 Minimum adjacency matrix for the hypothetical project network 

Activity 

i 

Activity j 

6 5 4 3 1 2 

6 0 0 0 0 0 0 

5 1 0 0 0 0 0 

4 1 0 0 0 0 0 

3 0 1 1 0 0 0 

1 0 0 0 1 0 0 

2 0 0 0 1 0 0 

 

 

Figure 5 Minimum-edge diagraph for the hypothetical project 

 

3.1.2 Actual Progress 

During the execution of the project, actual performance on the construction site varies from 

planned performance due to several factors, including weather conditions, financial difficulties, 

and change orders. Accordingly, forecasting models are crucial for project managers to predict 

future performance based on actual progress, detect deviations, and make informed decisions to 

recover performance.  

 

The variations in actual performance usually occur in expenditures and progress. Actual progress 

and expenditures are either greater or less than planned progress and expenditures. There can be 

several outcomes to each project depending on the conditions of the project, and these outcomes 

are somewhat random. To accurately reflect this randomness in the experimental design, a number 
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of variations of actual progress will be created for each project as shown in Figure 6. In these 

variations, the project may end up finishing in one of the following states:  

1. A cost and schedule overrun. 

2. A cost and schedule underrun. 

3. A cost overrun and schedule underrun.  

4. A cost underrun and schedule overrun. 

 

 

Figure 6 Actual progress variations from planned performance 

 

To create these variations in performance, a Markov chain method was implemented. A Markov 

process is a special type of stochastic process in which the future state of a system only depends 

on the current state and not on preceding states. Accordingly, they are often referred to as 

memoryless. Directed graphs are used to represent Markov chains where the vertices of the graph 

correspond to the states and the edges correspond to the probability of transitioning from the 

current state i to the future state j (i.e. the transition probabilities). In this research, it was assumed 

that a project can occupy one of four states: outstanding performance (A), within target 

performance (B), below target performance (C), and poor performance (D). Each month, the 

project transitions from one state to another based on the transition probabilities. The illustration 

in Figure 7 shows the Markov chain used to transition from state i to state j (𝑃𝑖𝑗). 
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Figure 7 Markov chain directed graph for state transition 

 

Assuming that there are four states the project performance can occupy, the 4×4 transition matrix 

is as follows: 

 [𝑃] =  [

𝑃𝐴𝐴 𝑃𝐴𝐵 𝑃𝐴𝐶 𝑃𝐴𝐷
𝑃𝐵𝐴 𝑃𝐵𝐵 𝑃𝐵𝐶 𝑃𝐵𝐷
𝑃𝐶𝐴 𝑃𝐶𝐵 𝑃𝐶𝐶 𝑃𝐶𝐷
𝑃𝐷𝐴 𝑃𝐷𝐵 𝑃𝐷𝐶 𝑃𝐷𝐷

] (10) 

 

where 𝑃𝑖𝑗 represents the probability of transitioning from the current state i at time t to the future 

state j at time t+1 for i, j = A, B, C, D. 

 

Accordingly, there are several features of a transition matrix:  

1. The matrix is square since all states can be possible current or future states.  

2. The probabilities must be values between 0 and 1. 

3. The sum of all the probabilities for one row must be equal to 1 since this represents all possible 

future states the system can occupy given a current state. Based on this, it can be concluded 

that:  

 ∑𝑃𝑖𝑗 = 1 for 𝑖 = 𝐴, 𝐵, 𝐶, 𝐷

𝐷

𝑗=𝐴

 
(11) 
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The initial state (𝜋(0)) of a Markov process shows the probability (𝑃𝑛) of being in each state at the 

start of the process. It is represented by a vector with one row and N number of columns 

corresponding to the number of states (in this case 4 columns).  

 

 𝜋(0) = (𝑃𝐴, 𝑃𝐵 , 𝑃𝐶 , 𝑃𝐷) (12) 

 

In order to calculate subsequent probabilities, the initial state vector is multiplied by the transition 

matrix.  

 

𝜋(1) = 𝜋(0) × [𝑃] 

𝜋(2) = 𝜋(1) × [𝑃] 

. 

. 

. 

𝜋(𝑛) = 𝜋(𝑛−1) × [𝑃] 

(13) 

 

where 𝜋(𝑛) = the probability vector at the last period and [P] = the transition matrix.  

 

Based on the above, a system can be modeled as a Markov process if it has the following features:  

1. The outcome of the system is one of a set of finite states.  

2. The outcome of each experiment with the system depends solely on the current state of the 

system and not on any past states. 

3. The initial state probabilities can be determined.  

4. The probability of transitioning from one state to another is constant, i.e. the transition 

probability matrix does not change.  

 

The fourth feature, however, is not applicable for Dynamic Markov chains in which the transition 

probabilities vary from one period to another. This is the case with project performance in 

construction, where the probability of transitioning from one state to another does not remain 

constant over the project duration and is often a function of the progress (N. K. Nassar 2005). In 

other words, a project has a higher probability of changing from within target performance (state 
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B) to poor performance (state D) at the beginning of the project rather than towards the end of it. 

Nassar proposed using the cumulative planned progress S-curve so calculate the transition matrix 

probabilities at each period. However, this method assumes that the project duration is constant 

irrespective of the performance, which is rarely the case. To overcome this limitation, actual 

progress (AP) based on the EV will be used to calculate the transition probabilities from one period 

to the next. Given that the initial and final state vectors are known, if performance is poor and the 

project duration is extended, the cumulative actual progress in each period will be less than the 

cumulative planned progress; 100% progress (i.e. completion of the project) will be attained at a 

later period; and vice versa if performance is satisfactory.  

 𝐴𝑃 = ∑𝐸𝑉𝑛

𝑁

𝑛=1

𝐵𝐴𝐶⁄  (14) 

 

where n = the number of activities/work packages in the project, and BAC = the project budget at 

completion. 

 

Accordingly, the transition probabilities at period k are calculated as follows. 

 

 𝑃(𝑖𝑗)𝑘 = 𝑃(𝑖𝑗)0 + (𝑃(𝑖𝑗)𝑓𝑖𝑛𝑎𝑙 − 𝑃(𝑖𝑗)0) × 𝐴𝑃𝑘 (15) 

 

Where 𝑃(𝑖𝑗)0  = the initial probability of going from state 𝑖  to state 𝑗  and 𝑃(𝑖𝑗)𝑓𝑖𝑛𝑎𝑙  = the final 

probability of going from state 𝑖 to state 𝑗. 

 

By determining the transition probability for the current period, built-in rules are used to determine 

how the project performs given a particular state. Each month the Markov chain transitions to a 

new state; based on this state, the planned progress and cost for activities ongoing during that 

month are increased or decreased by a randomly sampled value. The remaining progress or the 

sampled progress, whichever less, is chosen as the actual progress for the activity on that month. 

The adjustment is determined as shown in Table 4. 

 



 

32 

Table 4 Adjustment to progress and cost based on Markov state 

State Interpretation Effect on Progress and Cost 

A 
Outstanding 

Performance 

Increase the progress by a random number sampled between a% and b% 

Decrease the cost by a random number sampled between a% and b% 

B 
Within Target 

Performance 

Increase the progress by a random number sampled between c% and d% 

Decrease the cost by a random number sampled between c% and d% 

C 
Below Target 

Performance 

Decrease the progress by a random number sampled between a1% and b1% 

Increase the cost by a random number sampled between a1% and b1% 

D 
Poor 

Performance 

Decrease the progress by a random number sampled between c1% and d1% 

Increase the cost by a random number sampled between c1% and d1% 

 

3.1.3 Variables 

To answer the questions stated above, the values of several variables need to be altered. These 

include the duration and number of activities, the number of relationships, and number of MC 

simulation runs, i.e. the number of projects and actual progress variations of each project. Altering 

these variables will affect different aspects such as the length and complexity of the created 

projects. The duration and number of activities can be randomly set when each project is created 

and will ultimately affect the length of the project. However, the number of relationships and MC 

simulation runs chosen must be justified as they can directly affect the outcomes of the experiment. 

The following sections discuss these two variables in detail. 

 

3.1.3.1 Number of MC Simulation Runs 

The number of MC simulation runs is directly linked to the number of project networks created, 

as well as the number of variations of actual progress for each project. Although MC simulations 

have been used in several applications, one of their major disadvantages is the computational time 

they take (Lerche and Mudford 2005). The customary procedure used to determine the optimum 

number of MC runs is to run a fixed number of realizations and compute the mean and the standard 

deviation of the output of interest. Then the number of runs is increased, and the mean and standard 

deviation are calculated again. The process is repeated until a point is reached where increasing 
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the number of runs affect mean value less than the level of accuracy required. Although this 

method can be time-consuming, it provides reliable results (Lerche and Mudford 2005). For the 

designed experiment, the standard error is used as a for determining the suitable number of runs. 

The standard error measures how precise the sample mean is versus the true mean of the 

population, thus provides a measure of accuracy. It is considered a part of descriptive statistics as 

it represents the standard deviation of the mean. Standard deviation, on the other hand, is a measure 

for volatility and is most commonly used in risk assessment. As the sample size increases, both 

the standard error and standard deviation decrease. To determine the optimum number of runs, the 

experiment is repeated until the increase in the number of runs has no significant effect on the 

standard error of the forecasts.  

3.1.3.2 Number of Activities and Relationships 

The number of activities in each project and the precedence relationships between these activities 

are directly linked to the complexity of the project. A project with many activities will generally 

have more dependencies/relationships and will be more complex than one with fewer activities. A 

dependency represents a relationship between two activities in which the initiation of one activity 

hinges on the completion or initiation of the other. Dependencies can be classified into logical, 

resource-based, or preferential. Logical dependencies are essential to the nature of the project and 

the activities involved. Resource-based dependencies are constrained to the limited number of 

resources that are available in a project. If an activity requires two skilled workers but they are 

currently unavailable, the activity cannot start until the both workers become available. Activities 

that have resource-based dependencies generally do not have logical dependencies; if more 

resources become available, the activities can be performed simultaneously rather than 

sequentially. Preferential dependencies are enforced based on convenience or best practice and 

often focus on improving the quality of deliverables. Roof foundations are often soaked for five to 

seven days before the tiles are laid. Although the tiles can be laid immediately, the preferential 

dependency is imposed to improve the structure’s integrity (Moitra, 2016).  
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Dependencies can also be characterized based on conditions such as the start and finish of tasks. 

In this case, there are four types of dependencies: 

• Finish-to-Start (FS): where the start of the successor activity depends on the completion of 

the predecessor activity as shown in Figure 8. FS relationships are the most common in 

construction projects. Pouring concrete cannot begin until rebar has been placed and tied 

is a typical example of a FS relationships.  

 

 

  Figure 8 Finish-to-Start (FS) relationship 

 

• Finish-to-Finish (FF): where the completion of the successor activity depends on the 

completion of the predecessor activity as shown in Figure 9. The start of the predecessor 

and successor activity are independent. FF relationships are also quite common in 

construction. An example can be placing forms (successor) and tying rebar (predecessor) 

where both activities do not necessarily start at the same time but generally placing forms 

should be completed after the rebar has all been tied.  

 

 

  Figure 9 Finish-to-Finish (FF) relationship 

 

• Start-to-Start (SS): where the successor activity cannot start until the predecessor activity 

has started as shown in Figure 10. SS dependencies also exist in several construction 

applications such as laying a pipe in a trench. Excavation of the trench begins until enough 

space has been cleared to begin laying the first section of the pipe.  
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  Figure 10 Start-to-Start (SS) relationship 

 

• Start-to-Finish (SF): where the completion of the successor depends on the start of the 

predecessor as shown in Figure 11 . This type of dependency is uncommon in construction 

and is rarely relied upon in scheduling.  

 

 

   Figure 11 Start-to-Finish (SF) relationship 

 

As mentioned above, FS, FF, and SS dependencies are more likely to exist in construction projects 

as compared to SF dependencies. However, project networks with several types of relationships 

are not considered more complex than those with only FS relationships, and accordingly do not 

affect the accuracy of forecasting techniques. The reason being that non-FS relationships with 

positive lags can be easily transformed into equivalent FS using generic transform schemes as 

shown in Figure 12 (Lu and Lam 2009). 

 

 

Figure 12 Transforming non-FS relationships to FS relationships (Lu and Lam 2009) 



 

36 

 

Consequently, only the number of tasks and FS relationships will be altered to create a dataset of 

varying complexity and test the effectiveness of forecasting models on this dataset.  

 

3.1.4 Project Schedule Complexity 

Complexity is a term that is difficult to define, and researchers have yet to reach a consensus on 

what project complexity actually is (Vidal, Marle, and Bocquet 2011a). Previously, the 

“characteristics of complexity have been used to define it, however not a single definition has been 

able to encompass all the situations where complexity exists” (Sinha, Kumar, and Thomson 2006). 

Complexity can have different contexts within the same field, as well as in different fields. For the 

purpose of this research, the definition proposed by Vidal et. al (2011b) will be used to describe 

the concept of project complexity: “Project complexity is the property of a project which makes it 

difficult to understand, foresee and keep under control its overall behaviour, even when given 

reasonably complete information about the project system.” 

 

Project performance can be directly associated with its complexity. Thus, measuring project 

complexity is crucial for efficient project management. Project complexity measures can be 

categorized into three groups (Vidal, Marle, and Bocquet 2011a):  

1. Measures based on the computational complexity of different project management aspects. 

• Akileswaran et. al (1983) developed a computational complexity measure for a 

project sequencing problem to minimize cost by optimizing the expansion sequence 

of multi-purpose projects. 

• Reyck and Herroelen (1996) proposed a complexity index to differentiate between 

“easy and difficult occurrences of multiple resource-constrained problems and 

discrete time/cost trade-off problems” in terms of the computing effort required. 
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2. Measures based on schedule complexity. 

• The simplest network complexity measure was developed by Pascoe (1966). It 

calculates complexity by evaluating the interconnectivity between activities.  

 𝐶𝑁𝐶𝑃𝐸𝑅𝑇 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
 (16) 

 

• The coefficient of network complexity (CNC) calculates the degree of 

interrelationship in critical path networks such as PERT and precedence networks. 

It can be useful in determining the network computer processing time and the 

amount of effort that should be allocated for planning the project (Kaimann 1974).  

 𝐶𝑁𝐶𝑃𝐸𝑅𝑇 =
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠)2

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠
 (17) 

 

 
𝐶𝑁𝐶𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑠 =

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝑤𝑜𝑟𝑘 𝑖𝑡𝑒𝑚𝑠)2

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑘 𝑖𝑡𝑒𝑚𝑠
 (18) 

 

 

• Davies (1973) defined a network complexity measure coefficient for a multi-

activity project resource allocation problem.  

 𝐶𝐶 =
2(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 + 1)

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 − 1)(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 − 2)
 

(19) 

 

• Arguing that other network complexity measures are less efficient as they fail to 

account for redundancies and do not provide intuitive results for project 

management to base their decisions upon, Nassar and Hegab (2006) came up with 

a network complexity measure (Cn) expressed as a percentage.  
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 𝐶𝑛 =

{
 
 

 
 100 × {

𝐿𝑜𝑔[𝑎 (𝑛 − 1)⁄ ]

𝐿𝑜𝑔 [(𝑛2 − 1) 4(𝑛 − 1)]⁄
}%     𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

100 × {
𝐿𝑜𝑔[𝑎 (𝑛 − 1)⁄ ]

𝐿𝑜𝑔 [𝑛2 4(𝑛 − 1)]⁄
}%          𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

 (20) 

 where 𝑎 = number of arcs (arrows) in AON networks and 𝑛 = number of nodes 

AON networks 

3. Measures based on a universal view of the project. 

• Sinha et. al (2006) developed complexity index (CI) for measuring complexity at 

several stages of the project The index can be used by project managers as a 

planning tool to minimize the impact of any complexities that may materialize 

during the project lifecycle.  

• Research studies have identified multiple aspects of project complexity using the 

Delphi process and ranked them using the analytical hierarchy process (AHP) to 

develop a complexity measure based on a multi-criteria approach. (Vidal, Marle, & 

Bocquet, 2010; Vidal, Marle , & Boucquet, 2011; Xia & Chan, 2012).  

 

Based on the discussion above, project complexity in the context of this research refers to the 

project schedule complexity. Other complexity measures that account for computational efficiency 

or are developed based on a holistic view can be used if the projects are further complicated, for 

example, by adding resource constraints. As equation (20) accounts for redundancies and provides 

complexity measures as a percentage, it was used in this research for comparison purposes between 

the efficiency of forecasting techniques with varying project complexity.  

3.1.5 Forecasting Measures 

Research works that propose new forecasting methods often attempt to enhance three aspects of 

the forecasts: the accuracy, stability, and timeliness. This section discusses the meaning of each of 

these measures in the context of this research and how they will be evaluated.  
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3.1.5.1 Accuracy 

Accuracy is one of the most important factors to be considered in selecting a forecasting method, 

especially in construction projects where inaccurate forecasts have a large impact on the 

performance of a project. However, one of the difficulties with accuracy measures is the absence 

of a single universally accepted measure (Mahmoud, 1984). Despite this, there are number of 

commonly used accuracy measures, including the mean absolute error (MAE), the mean absolute 

percentage error (MAPE), the mean percentage error (MPE), the mean squared error (MSE), and 

the root mean square error (RMSE). Table 5 shows the equations for each measure.  

 

Table 5 Accuracy measure equations 

Error Equation1 

Mean Absolute Error (MAE) 𝑀𝐴𝐸 =
100%

𝑛
∑|𝑎𝑖 − 𝑓𝑖|

𝑛

𝑖=1

 

Mean Absolute Percentage Error (MAPE) 𝑀𝐴𝑃𝐸 =
100%

𝑛
∑|

(𝑎𝑖 − 𝑓𝑖)

𝑎𝑖
|

𝑛

𝑖=1

 

Mean Percentage Error (MPE) 𝑀𝑃𝐸 =
100%

𝑛
∑

(𝑎𝑖 − 𝑓𝑖)

𝑎𝑖

𝑛

𝑖=1

 

Mean Square Error (MSE) 𝑀𝑆𝐸 =
1

𝑛
∑(𝑎𝑖 − 𝑓𝑖)

2

𝑛

𝑖=1

 

Root Mean Square Error (MSE) 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑎𝑖 − 𝑓𝑖)2
𝑛

𝑖=1

 

1 where n = number of projects, a = actual cost/duration of project i, and f = forecasted cost/duration 

of project i for the each forecasting period. 

 

MAE measures the average of the absolute differences between the actual value and the forecasted 

values. Due to the nature of the calculation, the individual differences all have equal weights and 

taking the absolute value ensures that the positive and negative errors do not cancel out. MAPE is 
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considered the weighted version of MAE as the differences are scaled against the actual value 

(Drakos, 2018) . Since MAPE is expressed as a percentage, it is often easier to interpret than MAE. 

However, there are several weaknesses to MAPE which stem from the division operation and make 

it less likely to be used. MAPE is undefined for actual values of zero and is biased towards 

negatively skewed predictions (prediction is less than actual) as compared to positively skewed 

predictions (prediction is higher than the actual) by the same amount (Pascual, 2018). MPE is 

similar to MAPE, but it incorporates both positive and negative values by not taking the absolute 

value. Accordingly, MPE is better suited for measuring model bias rather than accuracy since the 

positive and negative errors cancel out (MAE and RMSE — Which Metric is Better?, 2016). 

Alternatively, MSE measures the average of the squared differences between the actual value and 

the forecasts. By squaring the differences, larger errors have higher weights than smaller errors, 

and similar to MAE and MAPE, the negative and positive values do not cancel out (Drakos, 2018).  

RMSE is simply the square root of MSE. By introducing the square root in the RMSE, the error is 

scaled to be the same as the actual value. Both these measures have the benefit of penalizing larger 

errors. However, the effect of the square term becomes apparent when outliers are present in the 

dataset, as the error grows quadratically in MSE. This means that outliers will have a higher weight 

and ultimately their effect on the total error will be greater (Pascual, 2018).  

 

Subsequently, in the case of forecasting total project duration and cost, the mean absolute error 

(MAE) and mean absolute percentage error (MAPE) are the most appropriate measures to use in 

comparing the accuracy of forecasting models. The former being unbiased and the latter being 

easy to interpret. MSE and RMSE are more useful when larger residual values are particularly 

undesirable, which is not the case here (MAE and RMSE — Which Metric is Better?, 2016). The 

reason behind this is, for example, having a difference of 10 days between the actual and the 

forecast is exactly twice as bad as having a difference of 5 days which is reflected by MAE. 

Whereas, RMSE and MSE measures assume that having a difference of 10 days is four times as 

bad as a difference of 5 days.  

 

The accuracy of the cost and duration forecasts was calculated at forecasting period for each 

forecasting technique for comparison purposes. This was repeated for the number of projects 

created.  
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3.1.5.2 Timeliness  

As the project progresses, forecasting accuracy is expected to converge towards the actual value 

at completion. Forecasting models that converge more quickly than others are more reliable 

because managers can detect deviations earlier, when they can be controlled and their impacts 

reduced. Figure 13 shows the impact of different variables based on the project time. As the project 

time increases, the ability to make changes that will influence the final outcomes of the project 

decreases, and the cost of such changes increases.  

 

Figure 13 Impact of variables based on project time (Schoonwinkel, Fourie, & Conradie, 

2019) 

 

Accordingly, when comparing the accuracy of the models, one important feature to identify is 

when this accuracy was achieved. In other words, a model which has a MAE of 15% when the 

project is 30% complete is more favorable than a model that achieves the same MAE when the 

project is 70% complete. The timeliness (T) of a forecasting method is calculated as: 

 

Stakeholder influence, risk, and uncertainty 

Cost of changes 

High 

Low 

Project Time 

Degree 



 

42 

 
𝑇𝑥 =

𝑡𝑖𝑚𝑒 𝑜𝑓 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
 

(21) 

where 𝑥 = desired level of accuracy (MAE) 

 

3.1.5.3 Stability 

The stability of a forecasting technique is dictated by how much predictions vary between one 

forecasting period and the next. If forecasting is performed on a monthly basis, a more stable 

technique would generally provide similar forecasts from month to month unless extreme changes 

happen to the project. If forecasts fluctuate greatly from month to month, projects managers would 

find it difficult to draw conclusions or make decisions based on these forecasts. Accordingly, the 

more stable a forecasting method is, the more reliable it is considered to be. The stability of a 

forecasting technique can be measured using the coefficient of variation (CV), also known as the 

relative standard deviation. It is a standardized measure of the dispersion of a dataset around the 

its mean. The lower the CV, the greater the forecasting stability.  

 

 

𝐶𝑉 =

√∑
(𝑓𝑖 − 𝑓)̅

2

𝑛
𝑛
𝑖=1

𝑓̅
 

(22) 

where 𝑓𝑖 = forecast at each forecasting period, 𝑓̅ = average of the forecasts, and 𝑛 = the number 

of forecasting periods for each project.  

 

It is important to differentiate between forecasting stability and forecasting accuracy. Forecasting 

stability is about comparing forecasts to forecasts, whereas forecasting accuracy is about 

comparing forecasts to the actual value. A forecasting method may have a low coefficient of 

variability indicating that the forecasting stability is high, but still have a low forecasting accuracy 

if 𝑓 ̅is far from the actual value. On the other hand, it is expected that a method which is less stable 

will likely have low accuracy since the mean of the forecasts will be further away from the actual 

value.  



 

43 

3.1.6 Process Automation 

The entire experiment detailed above is automated using a code developed on Microsoft .Net 

Framework (Microsoft Visual Studio, version 15.9.7). Figure 14 shows a summary of the process. 

The process begins by creating a project network, including developing the activities for the 

network and organizing them in columns, linking them randomly with relationships, removing 

redundancies, assigning cost and duration distributions to each activity, and carrying out CPM 

calculations to get the total project duration (TPD) and total project cost (TPC) and calculate the 

complexity using equation (20).  

 

The activity durations and cost are then translated into a monthly Gantt chart to determine the 

monthly cumulative progress and budget. As construction projects are executed, actual 

performance on the site differs from planned performance. Accordingly, several variations of 

actual progress are developed in this experiment from the planned project. These variations 

represent what actually happened on site in terms of monthly progress and expenditure for each 

activity, as well as actual project completion time and cost.  

 

Actual progress from each month is periodically input into each forecasting method, and the 

methods are used to predict the final project duration and cost. Since the actual TPD and TPC are 

already known, they can be compared with the forecasts to calculate forecasting accuracy, 

timeliness, and stability. This is repeated for each actual progress variation and then the entire 

process is repeated until the specified number of projects are created. The results from all the 

forecasting techniques are compared based on varying project complexities and lengths to be able 

to draw reliable conclusions. 
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CHAPTER 4: EXPERIMENT TESTING 

4.1 Introduction 

As discussed in the previous chapter, an MC simulation experiment was designed to test the 

performance of different forecasting theories. Because most projects in construction are unique, 

the use of actual completed project data for such comparisons is insufficient because these data are 

limited, incomplete, and biased towards the forecasting method used during the project execution. 

As such, an empirical experiment was developed to overcome these limitations. The experiment 

relies on MC simulation to create random projects, thus it methodically investigates a variety of 

different scenarios. The experiment entails creating these random projects based on statistical 

distributions for a number of activities, the relationships between these activities, the durations, 

and the costs. Predefined rules ensure that the projects are random yet mimic real life construction 

projects. Next, a Markov Chain method is applied to create random actual progress variation (i.e. 

schedule/cost overrun/underrun scenarios). The actual data is fed periodically into the forecasting 

technique, resembling what occurs in typical construction projects. The periodic forecasts from 

different methods are compared using specific measures of accuracy, timeliness, and stability 

(outlined in section 3.1.5) to provide a more reliable idea of their performance.  

 

This chapter focuses on the implementation of the experiment using four forecasting techniques, 

EVA, NLR-GGM, ES, and KFFM. EVA is well-known method for estimating the cost at 

completion for a project given the planned and actual progress. The GGM has a shape resembling 

the S-curve of a project and uses non-linear regression to fit actual expenditure and project future 

expenditure. ES uses concepts similar to EVA to estimate the duration at completion of a project 

in time units. Similarly, the KFFM also predicts the estimated duration at completion by applying 

the Kalman filter algorithmic approach. These methods will be described in further detail below. 

The remainder of the chapter shows the results of running the MC experiment with these four 

methods. First, a sample of the random projects is shown to provide an illustration of the project’s 

cumulative progress, expenditure, and AON network. Next, a number of hypotheses are tested 

regarding the performance of the tested methods under different conditions by varying the 
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complexity and the length of the projects. The accuracy, timeliness, and stability results are 

displayed as graphs.  

4.2 Forecasting Methods 

Several forecasting methods have been developed over the years to predict duration, cost, quality, 

etc. (discussed in Chapter 2). This section details the four methods – EVA, NLR-GGM, ES, and 

KFFM – chosen to test the MC experiment. 

4.2.1 Earned Value Analysis (EVA)  

EVA is a method used in project management for estimating, budgeting, and control. It 

approximates the amount of work required to complete project activities and measures project 

performance against the scope, schedule, and baseline to ultimately forecast TPC and TPD. The 

method relies on three key measurements, expressed in cost units: the planned value (PV), EV, 

and AC. Figure 15 shows the different EVA measures that are explained below.  

 

 

Figure 15 EVA calculations 

 

PV, also referred to as the budgeted cost of work scheduled (BCWS), is the initial forecast of how 

much of the budget would be spent to finish the work as originally planned. It comprises the 

baseline schedule and approved budget to complete the work scheduled. During the execution of 
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the project, the actual productivity is compared against the PV. As illustrated in Figure 15, the 

BAC represents the planned value at the conclusion of the project.  

PV at any time (𝑡) during the execution of the project can be calculated as:  

 

 𝑃𝑉𝑡 =∑(𝑃𝑙𝑎𝑛𝑛𝑒𝑑 % 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒)𝑖  × 𝐵𝑢𝑑𝑔𝑒𝑡𝑖

𝑛

𝑖=1

 (23) 

where n = the number of activities in the project. 

 

EV, also referred to as the budgeted cost of work performed (BCWP), calculates the budget that 

was originally planned for the amount of work actually finished. It expresses, in cost units, the 

amount of work completed up to a certain point in time (F. Anbari 2012). To calculate EV at a 

specific time (𝑡) in the project, the following equation can be used. 

 

 𝐸𝑉𝑡 =∑(𝐴𝑐𝑡𝑢𝑎𝑙 % 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒)𝑖  × 𝐵𝑢𝑑𝑔𝑒𝑡𝑖

𝑛

𝑖=1

 (24) 

where n = the number of activities in the project. 

 

AC, on the other hand, expresses the cumulative amount of money actually spent for the amount 

of work completed up to a certain point in the project. It is not a measure of the amount of work 

done as per the plan. In other words, in case of lower productivity or higher unit costs, there may 

be unfinished work on certain activities even though the budget for those activities has already 

been spent. AC, in cost units, is calculated as follows. 

 

 𝐴𝐶𝑡 =∑𝐴𝑐𝑡𝑢𝑎𝑙 𝐶𝑜𝑠𝑡𝑖

𝑛

𝑖=1

 (25) 

where n = the number of activities in the project. 

  

Using these measures, the CPI and SPI can be calculated. The former measures how well the 

project is doing in terms of cost, i.e. whether there has been over-spending or under-spending. A 

value greater than 1 indicates that the project is under budget. The amount by which the project is 
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over or under budget is expressed by the cost variance (CV). SPI measures the performance of the 

project in terms of duration, i.e. whether the project is ahead or behind schedule. Similar to CPI, a 

value greater than 1 indicates that the project is performing well and is currently ahead of schedule. 

The schedule variance (SV) calculates amount by which the project is behind or ahead of schedule, 

in terms of cost units. 

 

 
𝐶𝑃𝐼 = 𝐸𝑉 𝐴𝐶⁄  > 1 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑖𝑠 𝑢𝑛𝑑𝑒𝑟 𝑏𝑢𝑑𝑔𝑒𝑡 

(26) 

 
𝐶𝑉 = 𝐸𝑉 − 𝐴𝐶 > 0 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑐𝑜𝑠𝑡 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 

(27) 

 
𝑆𝑃𝐼 = 𝐸𝑉 𝑃𝑉⁄  > 1 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑖𝑠 𝑎ℎ𝑒𝑎𝑑 𝑜𝑓 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 

(28) 

 
𝑆𝑉 = 𝐸𝑉 − 𝑃𝑉 > 0 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑡𝑖𝑚𝑒 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 

(29) 

 

Decisions affecting the future are a primary concern to project management making forecasting an 

extremely important aspect of it. EVA is a useful technique that has been adopted in construction 

practices for cost and time forecasting. Using the measures of the current project performance, the 

cost estimate at completion can be predicted based on two major assumptions (Anbari, The Earned 

Schedule, 2012): 

 

1. The remaining work will be performed based on the original plan, and deviations will not 

materialize into the future.  

 𝐸𝐴𝐶 = 𝐵𝐴𝐶 − 𝐶𝑉 
(30) 

 

2. The remaining work will be performed while continuing to over-spend or under-spend at 

the same rate. 

 𝐸𝐴𝐶 = 𝐵𝐴𝐶/𝐶𝑃𝐼 (31) 
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4.2.2 Earned Schedule (ES) 

ES is another method that has emerged from EVA as a means to forecast the time to completion 

or the project end date. EVA measures schedule performance in units of cost rather than units of 

time, which makes it difficult to interpret. Another disadvantage of EVA in terms of schedule 

forecasting is that a project that is completed behind schedule has a schedule variance of 0 and a 

schedule performance index of 1 at project completion (Lipke 2012). This further complicates the 

interpretation and understanding of the forecasts, limiting the use of EVA to cost performance 

analysis. 

 

The concept of ES is analogous to that of EVA; the only difference is that schedule performance 

is measured in units of time. The fundamental theory behind ES is to determine the point on the 

planned value curve that corresponds to the time at which PV equals EV (Lipke 2012). This 

concept is illustrated in Figure 16. By locating this point, time-based indicators are formulated to 

provide the time variance and schedule performance efficiency (Lipke and Henderson 2006).  

 

 

Figure 16 Earned schedule  
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Referring to Figure 16, the schedule at completions (SAC) is the time at which the project is 

planned to be finished. Actual time (AT) denotes the time at which EV accrued is recorded or, in 

other words, the duration between the start of the project and the current date. On the other hand, 

ES is the time at which EV accrued is earned (Lipke and Henderson 2006). Figure 17 shows how 

to evaluate ES at a given time during the project. 

 

 

Figure 17 Earned schedule calculation 

 

Given the planned value for the current period (PVp+1), the EV and the PV of the previous period 

(PVp), x, can be estimated using equation (32). The elapsed time, p, is added to the value of x to 

calculate the earned schedule at the current time as shown in equation (33). 

 

 

 
𝑥 =

𝐸𝑉 − 𝑃𝑉𝑝

𝑃𝑉𝑝+1 − 𝑃𝑉𝑝
 (32) 

 𝐸𝑆 =  𝑝 + 𝑥 (33) 

 

Using the two measures of AT and ES, the time-based indicators, time variance (TV) and schedule 

performance index time (SPIt), can be evaluated as follows: 
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 𝑆𝑃𝐼𝑡 = 𝐸𝑆/𝐴𝑇 > 1 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑖𝑠 𝑎ℎ𝑒𝑎𝑑 𝑜𝑓 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 (34) 

 𝑆𝑉𝑡 = 𝐸𝑆 − 𝐴𝑇 > 0 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑡𝑖𝑚𝑒 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 (35) 

 

Furthermore, the time estimate at completion (TEAC) can be forecast based on two assumptions 

similar to EVA (F. Anbari 2012).  

1. The remaining work will be performed based on the original plan, and deviations will not 

materialize into the future.  

 𝑇𝐸𝐴𝐶 = 𝑆𝐴𝐶 − 𝑆𝑉𝑡 (36) 

 

2. The remaining work will be performed while continuing to carry out work at the same rate. 

 𝑇𝐸𝐴𝐶 = 𝑆𝐴𝐶/𝑆𝑃𝐼𝑡 (37) 

4.2.3 Non-linear Regression Gompertz Growth Model (NLR-GGM) 

A regression-based approach using S-curve fitting was proposed by Narbaev and De Marco (2014) 

to overcome limitations of traditional EVA index-based techniques, such as their unreliability at 

early stages or that past data is the best representation of future information. Construction progress 

is often presented as an S-shape sigmoidal curve representing slower work progress (lower rate) 

in the beginning and end of the project, and faster work progress (higher rate) in the middle. The 

Gompertz Growth Model (GGM) has been used in several applications in many fields as it 

describes “phenomena inherent to data with a growth pattern” (Narbaev and De Marco 2014). The 

equation for GGM is as follows. 

 

 
𝐺𝐺𝑀(𝑥) = 𝛼𝑒−𝑒

(𝛽−𝛾𝑥)
 (38) 

 

 The growth rate pattern of the GGM is similar to the work progress rate in construction projects, 

where the rate monotonously increases until it reaches a point where it begins to steadily decrease 

to zero.  
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Figure 18 Gompertz Growth Model 

 

Accordingly, Narbaev and De Marco (2014) proposed a modified index-based methodology for 

estimating the cost estimate at completion (CEAC). This methodology forecasts the cost for 

remaining work with a GGM via non-linear regression curve fitting. The advantage of the model 

is that it integrates schedule progress by accounting for the expected duration at completion using 

an Earned Schedule-based factor. A more detailed explanation on the parameters of the GGM can 

be found in (Narbaev and De Marco 2014). The methodology follows the following three steps: 

1. Apply non-linear regression curve fitting to find the three parameters (𝛼, 𝛽, 𝛾) of the GGM.  

• The time points (predictor variable) are normalized by assuming that the project is 

100% complete at the planned duration (i.e. PD = 1.00).  

• The cumulative cost points (response variable) are normalized; actual cost (AC) 

from time zero to actual time (AT) and PV from AT to project completion are 

normalized to unity by assuming that the BAC = 1.00.  

2. Calculate the CEAC using a modified equation that includes the GGM.  

𝐺𝐸𝐴𝐶(𝑥) = 𝐴𝐶(𝑥) + 𝐵𝐴𝐶[𝐺𝐺𝑀(1.00) − 𝐺𝐺𝑀(𝑥)] 

where 𝑥 is the actual time. 
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3. The CEAC estimate is further modified by adding a factor that accounts for the schedule 

progress.  

𝐺𝐸𝐴𝐶(𝑥) = 𝐴𝐶(𝑥) + 𝐵𝐴𝐶[𝐺𝐺𝑀(𝐶𝐹(𝑥)) − 𝐺𝐺𝑀(𝑥)] 

where 𝑥 is the actual time and 𝐶𝐹 is the Completion Factor calculated as the inverse of the 

schedule variance time (𝑆𝑃𝐼𝑡
−1).  

4.2.4 Kalman Filter Forecasting Method (KFFM) 

Kalman filter is a recursive algorithm that attempts to predict the state of a dynamic system in the 

presence of noisy observations. Within this framework, the state of a dynamic system can be 

described using two variables, the state variable and error covariance variable, where the latter 

represents the error in the estimate of the state variable. In each iteration, the state variable and 

error covariance variable are predicted based on the system model and the previous state. The 

theoretical prediction is then updated using observed information to determine the current state. 

This process is outlined in Figure 19.  
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Figure 19 Kalman filter process 

 

The initial state and error covariance become the previous state in the first iteration. Using the 

previous states, the prior estimates for the state (𝑥𝑘
−) and error covariance (𝑃𝑘

−) are predicted. The 

prediction relies on the transition matrix (𝐴𝑘) and the process noise covariance matrix (𝑄𝑘), which 

represents the uncertainty in the model. Next, the Kalman gain is evaluated to determine how much 

the posterior estimates for the state (𝑥𝑘
+) and error covariance (𝑃𝑘

+) matrices are impacted by the 

actual observations compared to the theoretical prediction.  
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Kim (2007) relied on the concept of the Kalman filter to come up with a Kalman Filter Forecasting 

Model (KFFM) to predict project duration at completion. The method uses previous performance 

data available in the form of planned progress curves, actual performance data from the 

construction site, and the uncertainties and errors in measurements and execution to obtain an 

optimal estimate for the state of the project at completion that minimizes the error covariance. In 

the KFFM, the progress on a project is modeled as a dynamic system with two variables, the time 

variance (TV) and its rate of change over time. The former is defined as the deviation between the 

actual time and the planned time at which the work actually completed should have been reported. 

This is consistent with the earned schedule technique explained above. Accordingly the state 

matrix becomes 

 

 
𝑥𝑘 = [

𝑇𝑉
∆𝑇𝑉

]    𝑓𝑜𝑟 𝑘 = 0, 1, 2, 3…. (39) 

 

Where ∆𝑇𝑉 is the difference between the time variation at k and k–1.  

 

The KFFM algorithm description is too extensive to be covered in detail here so only a summary 

is provided in the following section. More detailed information can be found in (B. Kim 2007; B. 

C. Kim and Reinschmidt 2010). The KFFM is applied in the following way: 

 

a) Initialization of the Kalman filter parameters: 

1. Set the initial state (𝑥0) and error covariance matrices (𝑃𝑜) to 0 at the beginning of the 

project.  

 𝑥𝑜 = [
0
0
]     𝑃𝑜 = [

0 0
0 0

] (40)  

2. Calculate the mean (𝜇𝑇) and the variance (𝜎𝑇
2) of the planned duration (𝑃𝐷) using 

PERT range estimates (assuming optimistic, pessimistic, and most likely rates as 𝑂 =

0.8 × 𝑃𝐷, 𝑃 = 1.4 × 𝑃𝐷, and 𝑀𝐿 = 𝑃𝐷, respectively). 

 𝜇𝑇 = 1.03 × 𝑃𝐷  (41)  
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 𝜎𝑇
2 = 0.1 × 𝑃𝐷 (42)  

3. Based on the assumption that uncertainty in the system model is consistent with 

uncertainty in the estimate of project duration, the process noise covariance matrix (𝑄𝑘) is 

calculated. Given the mean and variance of a project duration, the error covariance matrix 

at 𝑘 = 𝜇𝑇 is  

 𝑃𝑘=𝜇𝑇
+ = [

𝜎𝑇
2 0

0 𝜎𝑇
2] (43) 

Using the assumption stated above, the Kalman filter prediction and updating processes are 

determined as  

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 → 𝑃𝑘
− = 𝐴𝑃𝑘−1

+ 𝐴𝑇 + 𝑄𝑘−1 (44) 

 𝑈𝑝𝑑𝑎𝑡𝑖𝑛𝑔 → 𝑃𝑘
+ = 𝑃𝑘

− (45) 

 

By substituting the initial covariance matrix and the covariance matrix at 𝑘 = 𝜇𝑇, the only 

unknown variable becomes 𝑄𝑘 

 [
𝜎𝑇
2 0

0 𝜎𝑇
2] =  [

1 𝜇𝑇
0 1

] . [
0 0
0 0

] . [
1 0
𝜇𝑇 1

] + [
𝑞 0
0 𝑞

] (46) 

 

4. The measurement error matrix (𝑅𝑘) is determined based on expert opinion. It represents 

the sensitivity of the updating process to actual observations of progress collected from the 

construction site. As this measurement approaches zero, the Kalman gain increases causing 

the state and error covariance to be more influenced by the actual observations rather than 

the theoretical predictions.  

b) Recursive Kalman filter algorithm at each reporting period (𝑘). 

1. Based on the actual data observed on the site, calculate the value of 𝑧𝑘.  

 𝑧𝑘 = 𝐻𝑥𝑘 = [1 0]. [
𝑇𝑉𝑘
∆𝑇𝑉

] (47) 
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2. Prediction: calculate the predicted state 𝑥𝑘
− and predicted covariance matrix 𝑃𝑘

−. 

 𝑥𝑘
− = 𝐴𝑘𝑥𝑘−1

+ = [
1 ∆𝑇
0 1

] . 𝑥𝑘−1
+  (48) 

 𝑃𝑘
− = 𝐴𝑘𝑃𝑘−1

+ 𝐴𝑘
𝑇 + 𝑄𝑘−1 (49) 

3. Update: calculate the Kalman gain for the current reporting period. 

 𝐾 = 𝑃𝑘−1
+ 𝐻𝑇(𝐻𝑃𝑘−1

+ 𝐻𝑇 + 𝑅)−1 = 𝑃𝑘−1
+ 𝐻𝑇 ([1 0]𝑃𝑘−1

+ [
1
0
] + [𝑟])

−1

 (50) 

 𝑥𝑘
+ = 𝑥𝑘

− + 𝐾(𝑧𝑡 − 𝐻𝑥𝑘
−) = 𝑥𝑘

− + 𝐾(𝑧𝑘 − [1 0]𝑥𝑘
−) (51) 

 𝑃𝑘
+ = (𝐼 − 𝐾𝐻)𝑃𝑘

− (52) 

4. To predict the state estimates at time 𝑡 > 𝑘, the Kalman gain is set to zero and the state 

and covariance matrices become 

 𝐾 = 0  

 𝑥𝑘
+ = 𝑥𝑘

− = 𝐴𝑘𝑥𝑘−1
+  (53) 

 𝑃𝑘
+ = 𝑃𝑘

− = 𝐴𝑘𝑃𝑘−1
+ 𝐴𝑘

𝑇 + 𝑄𝑘−1 (54) 

5. Calculate the 𝐸𝑉𝑘 

 𝐸𝑉𝑘 = 𝑃𝑉(𝐸𝑆𝑘) (55) 

 𝐸𝑆𝑘 = 𝑡 + 𝑇𝑉𝑘 (56) 

If the 𝐸𝑉𝑘 > 𝐵𝐴𝐶 then 𝑇𝐸𝐴𝐶 = 𝑡, else repeat steps b.4 and b.5.  

6. Repeat steps b.1-b.5 for the next reporting period. 

4.3 Randomly Generated Projects  

As discussed in Chapter 3, the first step in the MC simulation-based experiment is generating 

planned project baseline schedules. The total number work packages involved in each project are 
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sampled. These work packages are organized into columns/tiers, and using a weighted average 

method, the links between these activities are generated. The weighted average technique ensures 

that a realistic schedule is developed by preventing work packages at the beginning of the project 

from being linked to work packages at the very end of the project. This ensures that the project 

AON network is both realistic (by closely resembling actual construction projects) and random. 

After adding the relationships to define the predecessors and successors of every work package, 

redundant relationships are identified and eliminated to avoid a false sense of complexity to the 

project network. This is crucial since the effect of project complexity on the forecasting method 

performance is evaluated. The final step is adding durations and budgets to the individual work 

packages. The duration of each work package is first sampled from a predefined distribution, then 

budget/period is sampled. This ensures that work packages with a relatively short duration have 

lower budgets compared to work packages with relatively long durations. CPM calculations are 

then applied to the finalized work packages to come up with total final cost and durations of each 

project, representing the planned completion budget and schedule. Table 6 shows a summary of 

the different projects’ network properties. A sample of the AON networks with the cumulative 

planned value S-curve can be found in Appendix A.  

 

Table 6 Projects' network properties 

Number of Work 

Packages 

Number of 

Links 

Project 

Complexity (%) 

Project Duration 

(periods) 

Project Cost 

($) 

6–30 6–48 2.86–83.65 16–60 
~ 40,000–

1,200,000 

 

After creating the baseline project schedules, actual progress variations were generated for each 

project to represent a number of possible outcome scenarios. This was done using a Markov 

process with four defined states that a project can occupy in each period (A – outstanding 

performance, B – within target performance, C – below target performance, and D – poor 

performance). Based on the current state, progress and expenditure adjustments are made to any 

activities ongoing during that period. Accordingly, the projects ends up finishing in one of the 

following states: 
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1. actual total project expenditure and duration are greater than the planned total budget and 

duration, resulting in a cost and schedule overrun.  

2. actual total project expenditure and duration are less than the planned total budget and duration, 

resulting in a cost and schedule underrun.  

3. actual total project expenditure is greater than the planned total budget and actual total project 

duration is less than the planned total duration, resulting in a cost overrun and schedule 

underrun.  

4. actual total project expenditure is less than the planned total budget and actual total project 

duration is greater than the planned total duration, resulting in a cost underrun and schedule 

overrun.  

Table 7 shows a sample of the summary output from different Markov runs for each project. Two 

runs are shown for each project with the different combinations of cost and schedule 

overruns/underruns. The values by which the actual duration, cost overrun/underrun, planned 

duration, and cost differ in each run. This indicates that the Markov process is successful in 

simulating the randomness and uncertainty that takes place during the execution of project and 

produces a largely random sample dataset that can be used for validating different methodologies 

in a reliable and effective way. 
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Table 7 Markov runs actual project summary data 

Project 

No 

Markov 

Run No 
Tasks Links 

Complexity 

Index (%) 

Planned 

Duration 

(periods) 

Planned 

Cost ($) 

Actual 

Duration 

(periods) 

Actual 

Cost ($) 

Project 

Duration 

Overrun/ 

Underrun 

Project Cost 

Overrun/ 

Underrun  

1 1 18 23 19.362 54 314969 65 378660.8 Overrun Overrun 

1 2 18 23 19.362 54 314969 53 279532.3 Underrun Underrun 

2 1 17 20 14.836 80 354610 88 388961.5 Overrun Overrun 

2 2 17 20 14.836 80 354610 84 353193.6 Overrun Underrun 

3 1 13 14 12.305 58 284719 54 220402.2 Underrun Underrun 

3 2 13 14 12.305 58 284719 58 246838.1 Underrun Underrun 

4 1 14 18 24.526 47 181863 51 205568.6 Overrun Overrun 

4 2 14 18 24.526 47 181863 52 191766.4 Overrun Overrun 

5 1 10 13 35.993 27 103039 26 92566.33 Underrun Underrun 

5 2 10 13 35.993 27 103039 26 109763.1 Underrun Overrun 

6 1 12 15 26.16 33 131442 41 171410.8 Overrun Overrun 

6 2 12 15 26.16 33 131442 34 128571.1 Overrun Underrun 

7 1 12 15 26.16 33 131442 33 127762.4 Underrun Underrun 

7 2 20 25 16.525 65 294664 69 288040.9 Overrun Underrun 

8 1 21 30 23.784 63 286497 65 270138.8 Overrun Underrun 

8 2 21 30 23.784 63 286497 67 281822.2 Overrun Underrun 

9 1 16 20 19.829 51 218123 56 256659.6 Overrun Overrun 

9 2 16 20 19.829 51 218123 51 198425.8 Underrun Underrun 

10 1 10 12 28.159 40 187244 39 161445.1 Underrun Underrun 

10 2 10 12 28.159 40 187244 38 196191.8 Underrun Overrun 

11 1 22 28 16.427 89 411036 98 468198.7 Underrun Overrun 

11 2 22 28 16.427 89 411036 94 423739.7 Underrun Overrun 
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4.4 Number of MC Runs 

One of the most important aspects of an MC simulation is the number of runs that are performed. 

There is often a trade-off between the number of runs, the standard error, and the computational 

time. As the number of runs increases, the standard error decreases whereas the computational 

time increases. However, the relationship is not linear and there is a point which the decrease in 

the standard error does not justify the increase in computation time. Accordingly, the number of 

MC runs is increased and the standard errors of the MAE and MAPE are calculated for each 

scenario. Error! Reference source not found. to Figure 22 shows the relationship between the s

tandard error and the number of runs.  

 

 
 

 

Figure 20 MAE in cost and duration forecasting methods for 3 projects/4 Markov runs 
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Figure 21 MAE in cost and duration forecasting methods for 10 projects/10 Markov runs 
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The MAE graphs are shown for the cost and duration forecasting methods. The shaded region 

around each line represents the standard error; the bigger the error, the thicker this region. The 

topmost graphs in Figure 20 portray the results of creating 3 projects and running each project 4 

times, giving a total of 12 runs. The shaded region around the bar is quite large which indicates 

that the mean of the sample set (shown by the line in the center) is far from the true mean of the 

population thus illustrating low accuracy and reliability of the experiment. The experiment is then 

repeated with 10 projects and 10 Markov runs for each project, a total of 100 runs. The shaded 

region around each line narrows significantly as shown by the middle graphs in Figure 22, 

indicating a reduction in the standard error. Finally, the experiment is repeated with 50 projects 

Figure 22 MAE in cost and duration forecasting methods for 10 projects/50 Markov runs 
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and 10 Markov runs, a total of 500 runs. Although the shaded bands narrow slightly as compared 

to the scenario with 100 runs, the decrease in the standard error is not as significant and does not 

justify further increasing the runs. Thus the optimum number of runs is determined as being 500 

runs, and the remaining results are presented for this scenario. 

4.5 Performance Measures 

After applying the different forecasting methods, their performance is compared in terms of 

accuracy, timeliness, and stability (discussed in Chapter 3). Accuracy is measured using the MAE 

and MAPE. Timeliness is measured in terms of accuracy achieved at certain percentage complete 

or actual progress points. Stability is compared using the coefficient of variation which is a 

standardized measure of dispersion of the forecasts around their mean. Methods which forecast 

cost at completion, EVA and NLR-GGM, are compared against each other. On the other hand, 

methods that predict the total project duration at completion, ES and KFFM, are compared against 

each other. The methods are compared using all created projects irrespective of their complexity 

or length to get a holistic view of their performance.  

4.5.1 Accuracy 

The accuracy of a method shows how close the forecasted value of cost or duration is to the actual 

values at completion. The lower the MAE and MAPE, the more accurate a method is. MAE for 

cost methods is expressed in units of cost making it difficult to interpret, for e.g. if a method 

forecasts the cost at completion to be $80,000 whereas the actual completion cost is $82,000, the 

MAE is $2,000. Similarly, if the cost at completion is forecasted as $8,000 whereas the actual 

completion cost is $10,000, the MAE is also $2,000. However, intuitively the first prediction is 

considered more accurate due to the scale of the values. Accordingly, the MAPE, the weighted 

version of MAE, is advantageous as it is expressed as a percentage. For the first case, the MAPE 

is 2.43% and for the second case is 20% indicating the importance of using the MAPE.  

 

Figure 23 and Figure 24 show the MAE and the MAPE for the cost methods, respectively. EAC1 

and EAC2 represent EVA with two assumptions as mentioned above. GEAC1 and GEAC2 

represent the NLR-GGM, where GEAC2 is a modification of GEAC1 that accounts for schedule 

performance. The figures indicate that throughout the entire duration of the project, EVA 
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outperforms the NLR-GGM. Both assumptions in the EVA method have fairly similar accuracies 

with the lines overlapping over the duration of the project. On the contrary, accounting for schedule 

progress in the Gompertz model reduces the error in forecasting after achieving 20% completion. 

 

 

 

Figure 23 MAE for cost forecasting methods (all projects) 

 

 

Figure 24 MAPE for cost forecasting methods (all projects) 
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Figure 25 and Figure 26 show the MAE and MAPE for the duration forecasting methods 

respectively. The red (TEAC1) and blue (TEAC2) lines represent the ES method with the two 

assumptions described above similar to EVA, whereas the green line (EDAC) represents the 

KFFM application. ES outperforms the KFFM throughout the duration of the project. The 

assumption that remaining work will be performed based on the original plan and deviations will 

not materialize into the future is shown by TEAC1 and results in a lower error at earlier stages of 

the project. After 30% progress, assuming that remaining work will be performed while continuing 

to carry out work at the same rate (TEAC2) results in more accurate forecasts. 

 

 

Figure 25 MAE for duration forecasting methods (all projects) 
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Figure 26 MAPE for duration forecasting methods (all projects) 

 

4.5.2 Timeliness 

The timeliness performance of the different cost and duration forecasting models can also be seen 

in Figure 23–Figure 26. The x-axis for the above figures represents the actual progress in 10% 

increments. As projects progress, changes become more costly and the number of changes 

decrease; thus, forecasts are expected to converge towards the actual values at completion, and 

forecasting accuracy is expected to increase. This relationship is depicted by all duration and cost 

forecasting methods except the NLR-GGM, which begins to diverge from the final cost at 

completion. This can be attributed to the exponential function of the Gompertz model. As the 

project progresses beyond 40% complete, the exponential function begins to tighten giving less 

flexibility to fit the performance data to it. Consequently, the error increases until a point where 

the actual performance follows the same trend as the exponential function (flattens out towards the 

end), resulting in the error decreasing again.  

4.5.3 Stability 

The smaller the CV, the less dispersed data are around the mean. For all the cost forecasting 

methods, the CV is quite small indicating that all the methods are stable as shown in Figure 27 and 
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Figure 28. Unlike the accuracy and timeliness performance, GEAC1 has a lower CV than EAC2, 

meaning that it is more stable. However, the difference is less than 0.01 and can be considered 

insignificant. For the duration forecasting methods, the CV is also quite small, indicating that all 

methods are stable. The KFFM has the highest CV out of all methods, which can be attributed to 

its sensitivity to changes in the ES from one period to the next.  

 

 

Figure 27 CV for cost forecasting methods (all projects) 

 

Figure 28 CV for cost forecasting methods (all projects) 
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4.6 Performance Measures (Complexity)  

The previous section discussed the performance of the different forecasting models for all types of 

projects. In this section, the effect of project schedule complexity on forecasting method 

performance is discussed. Different methods will be compared at the same complexity, and the 

same methods will be compared at varying complexities. Schedule complexity, expressed as a 

percentage, can be interpreted as shown in Table 8. 

 

Table 8 Interpretation of complexity index (K. M. Nassar and Hegab 2006) 

Complexity Index Interpretation 

0% - 30% Acceptable 

30% - 50% Satisfactory, but may be improved 

50% - 70% Consider review schedule 

70% - 100% Seriously consider review schedule 

 

4.6.1 Accuracy  

Table 9 shows the MAPE for the EVA and NLR-GGM models at varying project complexities. 

The results at each complexity level are consistent with the previous results; EVA outperforms the 

NLR-GGM for the entire duration of the project. For each method, as the project complexity 

increases, the MAPE also increases particularly exceeding 50% complexity.  
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Table 9 MAPE for cost forecasting methods at varying complexities 

Complexity Progress MAPE/EAC1 MAPE/EAC2 MAPE/GEAC1 MAPE/GEAC2 

0% - 30% 

0% - 20% 12% 12% 13% 14% 

20% - 40% 10% 10% 12% 11% 

40% - 60% 8% 9% 14% 12% 

60% - 80% 6% 5% 15% 13% 

80% - 100% 3% 2% 8% 6% 

30% - 50% 

0% - 20% 12% 12% 14% 15% 

20% - 40% 11% 11% 14% 13% 

40% - 60% 9% 9% 15% 14% 

60% - 80% 6% 6% 15% 14% 

80% - 100% 3% 3% 9% 7% 

50% - 70% 

0% - 20% 15% 15% 20% 19% 

20% - 40% 10% 9% 12% 12% 

40% - 60% 9% 8% 17% 16% 

60% - 80% 7% 6% 18% 17% 

80% - 100% 3% 3% 10% 9% 

70% - 100% 

0% - 20% 19% 19% 19% 20% 

20% - 40% 14% 15% 26% 23% 

40% - 60% 11% 12% 20% 17% 

60% - 80% 7% 7% 17% 15% 

80% - 100% 3% 3% 10% 8% 

Scale 
 

 

Table 10 shows the MAPE for the ES and KFFM models at varying project complexities. Similar 

to the cost methods, the duration methods also exhibit the same performance as above (all projects) 

at different complexities; ES outperforms the KFFM. However, unlike the cost methods, the 

forecasting error does not differ significantly with the increase in complexity for each of the 

schedule methods.  
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Table 10 MAPE for duration forecasting methods at varying complexities 

Complexity Progress MAPE/TEAC1 MAPE/TEAC2 MAPE/EDAC 

0% - 30% 

0% - 20% 9% 12% 14% 

20% - 40% 8% 8% 13% 

40% - 60% 7% 6% 10% 

60% - 80% 5% 4% 7% 

80% - 100% 3% 2% 3% 

30% - 50% 

0% - 20% 9% 13% 13% 

20% - 40% 8% 9% 13% 

40% - 60% 7% 6% 10% 

60% - 80% 5% 4% 7% 

80% - 100% 3% 2% 3% 

50% - 70% 

0% - 20% 11% 14% 15% 

20% - 40% 8% 8% 8% 

40% - 60% 7% 7% 10% 

60% - 80% 7% 5% 6% 

80% - 100% 4% 3% 3% 

70% - 100% 

0% - 20% 12% 13% 11% 

20% - 40% 8% 6% 16% 

40% - 60% 7% 6% 9% 

60% - 80% 7% 5% 7% 

80% - 100% 5% 4% 3% 

Scale 
 

 

4.6.2 Timeliness 

Table 9 and Table 10 also show the timeliness performance for the different cost and schedule 

forecasting models. For all the models at increasing complexities, the forecasting accuracy 

increases as the project progresses. Different models of the same method (i.e. EAC1 and EAC2 in 

EVA, GEAC1 and GEAC2 in NLR-GGM, and TEAC1 and TEAC2 in ES) exhibit similar behavior 

with the accuracies being within 1–2% at each reporting period in the different forecasting 

methods. However, the performance exhibited by the NLR GGM at around 40% progress for the 

different complexities is the same as that for all projects; i.e. the forecasting errors increase and 

then begin to decrease again due to the exponential function curve fitting, as explained above.  
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4.6.3 Stability 

As established above, the CV for all cost and schedule forecasting methods indicates that the 

methods are stable. As shown in Figure 29 and Figure 30, the methods also demonstrate high 

forecasting stability as complexities are varied. However, Figure 29 shows that, for all cost 

forecasting methods, as the complexity increases, the CV increases and the forecasting stability 

decreases. This is not the case for the schedule forecasting methods. Figure 30 shows that the 

forecasting stability remains relatively constant for different project complexities.  

 

 

Figure 29 CV for cost forecasting methods at varying complexities 
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Figure 30 CV for duration forecasting methods at varying complexities 

 

4.7 Verification and Validation  

Developers and users of simulation models as well individuals who make decisions based on the 

output of these models are often concerned with whether the output of the model is correct. 

Verification and validation techniques are useful in answering this question. Model verification is 

defined as ensuring that the computer programming and implementation of the conceptual model 

are correct. Validation ensures that the simulation model is an accurate reflection of the real world 

system it is representing. In the case of this experiment, model verification and validation are 

essential for reliable decision-making based on the results.  

 

For verification of the model, it was important to ensure that the code which automated the process 

of creating random projects, generating actual progress variations, and applying the different 

forecasting methods was correct. This process was simulated using a higher level programming 

language, C#. Sargent (2007) explains that when using a higher level programming language the 

chance of errors is higher than when a special-purpose simulation language is used. Accordingly, 

the development needs to be implemented using software engineering techniques, and verification 

is primarily concerned with “determining that the simulation functions and the computer model 

have been programmed and implemented correctly” (Sargent 2007). Testing simulation software 

can be done using two approaches, static and dynamic testing. For the given experiment, 
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verification was mainly done using dynamic testing. In this approach, the variables of the model 

are changed, and the values obtained are used to determine whether the development itself and its 

implementation are correct. Specific techniques applied include manual tracing of the output to 

ensure that all calculations are correct by comparing them to a basic Excel prototype model and 

investigating the relationships between inputs and outputs (e.g. when changing the adjustments to 

progress and expenditure for the different states of the Marko chain process, how does this affect 

the output (actual performance variations)?).  

 

Validation of the proposed experiment is mainly concerned with ensuring that the generated 

random project networks resemble actual construction projects’ networks. This is crucial for the 

results of the experiment to be valid and reliable. The validation technique used to guarantee this 

is face validation. Face validation is described by Sargent (2007) as asking individuals with 

knowledge about the system whether the model and its output are acceptable. Thus, this method 

was applied and sample of generated projects was sent to experts with knowledge of construction 

projects’ network topology to establish that the output sample of projects are reasonable.  

4.8 Discussion 

This chapter showed the application of the MC simulation-based experiment on validating project 

control models in a more efficient and reliable way. Four methods were discussed, EVA, NLR-

GGM, ES and KFFM. The first two are concerned with forecasting cost estimate at completion, 

while the second two predict duration estimate at completion. Different models are used within 

each method based on a number of assumptions. After creating a large number of random projects 

and generating 10 Markov-based actual variations for each project, the methods are applied and 

actual performance data is fed into the methods periodically to resemble what occurs on a typical 

construction site.  

 

First, the methods are tested with the entire set of generated projects. The results showed that in 

terms of accuracy and timeliness, EVA and ES outperform NLR-GGM and KFFM methods, 

respectively. The results contradict the results reported by the researchers who developed these 

models. Narbaev and De Marco (2014) compared the accuracy of NLR-GGM with EVA on eight 

completed projects in the early, middle, and late stages of the project. The results showed that the 
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proposed model outperformed EVA in all eight projects and in the different stages. These results 

contradict with the behavior exhibited when applying the MC simulation-based experiment and 

show the importance of reliable validation. Using eight actual projects with possible 

incorrect/missing data does not justify the results of the validation experiment. On the other hand, 

the MC simulation-based experiment creates random projects with varying number of activities, 

relationships, complexities, durations, and costs that are then validated to ensure these projects 

resemble actual construction projects. This creates the basis for a reliable validation experiment 

that can be used in a number of applications. Kim and Reinschmidt (2010) compared the output of 

the KFFM with ES using a single project and reported improvements over ES. Similarly, the 

validation results are unreliable, and after applying the MC simulation-based experiment, the 

results differed completely.  

 

In addition to validation, the experiment provides further insight into the developed methods by 

allowing the user to test different scenarios and understand their effects on performance. This was 

portrayed by studying the effect of project complexity on model performance in terms of accuracy, 

timeliness, and stability. With the limitations in actual project data and its availability, obtaining 

projects with varying complexities would be next to impossible. Accordingly, the experiment 

opens up the door for different validation scenarios that would not be feasible using actual project 

data.  
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CHAPTER 5: CONCLUSIONS 

5.1 Summary of the Work  

An MC simulation-based experiment was designed to create a basis for testing and validating 

different methodologies in construction management. The focus of this research was to apply the 

simulation in testing different project control methods and comparing the results of using actual 

project data for validation to using MC simulation. The design of the experiment involved creating 

random project networks that resemble actual baseline plans of construction projects, generating 

actual progress variations that mimic what happens on the site when these projects are executed, 

and developing different performance measures to compare the tested forecasting models.  

 

Generating project networks is comprised of five main steps. First, the number of work packages 

included in the project are determined. These are randomly assigned to tiers/columns, which 

determine their position in the project network. Second, the relationships among the work packages 

are generated. This step relies on a random weighted selection technique. Work packages in 

immediately succeeding tiers are given a higher weight increasing the likelihood of being linked 

to the current work package than work packages in subsequent tiers. This method of creating links 

among work packages to determine the different successors and predecessors results in the creation 

of redundancies. Thus, the next step is eliminating these redundancies, as they provide a false sense 

of complexity to a project. This is done systematically using a method developed by Bashir (2010). 

Next, the duration and cost of each work package are sampled from predefined distributions. 

Finally, CPM calculations are performed on the generated project networks to determine the total 

project duration and cost.  

 

A Markov process is used to simulate the randomness and uncertainty that occurs when planned 

projects are executed. A number of outcomes are possible, and projects usually end up with a cost 

and schedule overrun, a cost and schedule underrun, a cost overrun and schedule underrun, or a 

cost underrun and schedule overrun. In the proposed method, the projects can occupy one of four 

states in each period: A – outstanding performance, B – within target performance, C – below 

target performance, or D – poor performance. The probability of transitioning from the current 

state to a future state is determined by the transition probability matrix. In static Markov chains, 
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the transition matrix is constant and probabilities are the same regardless of whether the project is 

beginning or is near completion. However, this is unrealistic as probabilities of transitioning from 

one state to another are a function of progress. In other words, the probability of transitioning from 

state A to state C is higher at the beginning of the project than at the end. Accordingly, a dynamic 

Markov chain is used in which the transition probabilities vary from one period to the next based 

on the actual progress. After determining the state in each period, adjustments are made to the 

planned progress and cost of activities ongoing during that period. In every run of the Markov 

process, a different outcome is achieved, creating a large sample dataset with varying outcomes.  

 

Finally, the different performance measures are identified to compare forecasting models. The first 

is accuracy, which shows how close the forecasted value is in each period to the actual value at 

completion. Accuracy measures adopted in this research include the MAE and MAPE. MAE is 

unbiased but difficult to interpret, while MAPE is biased towards negatively skewed projections 

but is easy to interpret as it is a percentage. Thus, both measures are used to overcome the 

disadvantages of the other. Second, the timeliness of a method is evaluated, i.e. the speed at which 

the forecast converges to the actual value. This is measured by the progress at which a certain level 

of accuracy is achieved. Finally, forecasting stability indicates how much the forecasts vary from 

one period to the next. It is measured using the coefficient of variation, which calculates the 

dispersion of the data round the mean.  

 

After designing the experiment, it is tested with four forecasting methods, EVA, NLR-GGM, ES, 

and KFFM. The methods are first applied on the entire dataset of Markov runs for each project, 

and the performance is assessed using the aforementioned measures of accuracy, timeliness, and 

stability. Next, the projects are divided according to complexity (measured as a percentage), and 

the performance is assessed to determine the effect of project complexity on forecasting accuracy, 

timeliness, and stability. Table 11 shows a summary of the experiment testing with the cost 

methods ranked from 1-4 in terms of performance, 1 being the best and 4 being the worst. The 

schedule forecast methods are also ranked on a scale from 1-3.
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Table 11 Summary of experiment testing 

Scenario 

Cost Forecasting Models Rank in 

Accuracy and Timeliness (1-4) 

Duration Forecasting Models Rank 

in Accuracy and Timeliness (1-3) 

EVA NLR-GGM ES KFFM 

EAC1 EAC2 GEAC1 GEAC2 TEAC1 TEAC2 EDAC 

All Projects 2 1 4 3 2 1 3 

0% - 30% 

Complexity 
1 2 4 3 2 1 3 

30% - 50% 

Complexity 
1 1 3 2 2 1 3 

50% - 70% 

Complexity 
2 1 4 3 2 1 3 

70% - 100% 

Complexity 
1 2 4 3 2 1 3 

 

5.2 Overall Conclusion 

MC simulation is a useful technique for modeling a system using random sampling. In a typical 

deterministic system, inputs are represented as single values; and a number of scenarios, the best 

worst, and most likely scenarios, are tested. This approach has a number of drawbacks: 1) it ignores 

the effect of uncertainty on input values; 2) it may be difficult to determine the exact and correct 

value for each input parameter; and 3) the same scenario for each input parameter may not occur 

at the same time. MC simulation is useful, as it allows users to methodically investigate a number 

of scenarios involving stochastic input parameters.  

 

Accordingly, the concept of MC simulation was applied in designing the proposed experiment. 

The inputs represented by statistical distributions include the network topology (i.e. activities and 

relationships). Using these inputs and a number of predefined rules, an AON network is created. 

Finally, the output of the MC simulation experiment is a set of randomly generated AON networks. 

By further applying a Markov chain simulation process to model executional variations in 

performance, the entire solution set of possible projects is created. This provides a more reliable 

method of validation as compared to using actual project data, which are limited, can have 

incorrect/missing entries, and are affected by managerial decisions taken during the execution of 

the projects.  
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The importance of relying on MC simulation for validation rather than using actual project data is 

also magnified by testing the experiment on different forecasting methods. EVA and its extensions, 

e.g. ES, are the most well-known and applied methods for project control in construction. 

However, their limitations have encouraged researchers to come up with other methods using 

techniques in the literature such as Bayesian inference, Markov chains, artificial intelligence, and 

others. Over the years, numerous methods have been developed, and when compared to EVA or 

ES using actual project data, the results often indicate that these methods outperform EVA. NLR-

GGM and KFFM were compared using the same techniques, and the outcomes were similar. 

However, when applying the proposed experiment, the results did not confirm the outcome of 

previous research, suggesting that actual project validation is flawed, inadequate, and yields 

erroneous results. With further testing it can be shown that EVA and its extensions, despite their 

limitations, remain the most reliable and easily applied project control methods.  

5.3 Contributions 

This thesis focused on developing a methodology for creating project baseline schedules and actual 

progress variations using Monte Carlo simulation and Markov chains, respectively. By doing so, 

a larger more representative sample of construction projects with a range of possible outcomes. 

These projects were used as a basis for enhancing validation experiments in construction, which 

generally rely on actual data that has several shortcomings as discussed above. Using this 

technique, the results of the validations experiments are more robust and sound and can be more 

confidently generalized as opposed to case-based studies.  

 

The experiment was particularly designed for evaluating the performance of forecasting methods 

for project controls in an unbiased and simulated environment that allows several scenarios to be 

tested, as demonstrated previously. Not only is this technique useful for validation, but it also 

provides a better insight into forecasting method performance. By advancing the understanding 

and application of forecasting methods, project managers benefit greatly, and project execution is 

significantly enhanced.  
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5.4 Recommendations for Future Research 

The following is recommended for further research:  

• Currently, projects are generated with dummy work packages that do not resemble actual 

work packages. Creating different types of projects by understanding the work packages 

involved would allow further testing of developed methodologies.  

• Generated projects can be further complicated by adding resources, risks, and interruptions 

to more closely mimic actual projects and understand the impact for validation purposes.  

• The scope of this research focused on testing the developed experiment with different 

forecasting strategies. The experiment can be expanded for use in other applications, such 

as risk management or comparing project delivery methods.  
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APPENDIX A: SAMPLE PROJECTS  
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