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ABSTRACT

Slope Engineering is perhaps the geotechnical subject most dominated by 

uncertainty. The impact of uncertainty on the quality o f slope performance predictions is 

often substantial. Current slope design practice based on the factor o f safety cannot 

directly address uncertainty. Probabilistic slope stability analysis is a rational means to 

incorporate uncertainty in the design process. It is also the most suitable approach for 

estimating hazard frequency for site-specific quantitative risk analyses. Unfortunately, the 

geotechnical profession has been slow in adopting such techniques.

The objective of this work is to integrate probabilistic slope stability analysis into 

geotechnical practice as a practical design and decision-making tool. A spreadsheet 

approach for probabilistic slope analysis is developed. The methodology is based on 

Monte Carlo simulation using the commercial software @Risk and Excel. The analysis 

accounts for the spatial variability of the input variables as well as the various sources of 

systematic uncertainty. The output of the analysis is presented as the probability of 

unsatisfactory performance. It is a measure of the likelihood of the slope failing.

The methodology is tested through the analysis o f 10 case studies. It proved 

practical and flexible in handling a wide variety of real slope problems including effective 

and total stress analyses, complex stratigraphy, circular and non-circular slip surfaces and 

different slope analysis methods.
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The study indicates that the factor o f safety alone can give a misleading sense of 

safety and is not a sufficient safety indicator. The probability of unsatisfactory 

performance is a more consistent safety measure. Current slope design practice is 

calibrated probabilistically through the analysis o f case studies o f failed and safe slopes. 

A  comparison of the computed probabilities indicates that acceptable slope design 

practice is equivalent to a probability o f unsatisfactory performance not exceeding 2x1 O'2, 

which could be regarded as an upper design threshold. Stability assessments based on the 

results o f both deterministic and probabilistic analyses provide greater insight into design 

reliability and enhance the decision-making process. The study also shows that 

probabilistic slope analyses ignoring spatial variability of input parameters significantly 

overestimate the probability o f unsatisfactory performance. Other conclusions regarding 

the implementation and practical value of probabilistic slope analyses are also reached.
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CHAPTER 1 

INTRODUCTION

1. RESEARCH  PREM ISES

The impact o f uncertainty on the reliability of design and performance predictions 

of engineering systems is often significant. Uncertainty arises as a result o f inherent 

natural variability, lack o f representative data, deficiencies in our understanding of the 

causes and effects controlling the physical systems and errors and mistakes of humans 

operating the system. The concept o f uncertainty and its effects on engineering systems 

was formally introduced in the early seventies. Ang and Tang (1975), probably, made the 

first notable attempt to discuss uncertainty and its relation to the design and decision

making. They wrote;

“In the development o f engineering designs, decisions are often required 

irrespective of the state of completeness and quality o f information, and thus must be 

formulated under conditions o f uncertainty, in the sense that the consequence of a given 

decision cannot be determined with complete confidence. Aside from the fact that 

information must often be inferred from similar (or even different) circumstances or 

derived through modeling, and thus may be in various degrees o f  imperfection, many 

problems in engineering involve natural processes and phenomena that are inherently 

random; the states o f such phenomena are naturally indeterminate and thus cannot be 

described with definiteness. For these reasons, decisions required in the process of 

engineering, planning and design invariably must be made, and are made, under 

conditions o f uncertainty.”

Slope Engineering is perhaps the geotechnical subject most dominated by 

uncertainty. Geological anomalies, inherent spatial variability o f soil properties, scarcity

1
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o f representative data, changing environmental conditions, unexpected failure 

mechanisms, simplifications and approximations adopted in geotechnical models and 

human mistakes in design and construction are all factors contributing to uncertainty. The 

impact of uncertainty on the quality of performance predictions in geotechnical practice is 

substantial (Morgenstem, 2000). The deterministic factor o f safety cannot directly address 

uncertainty. The evaluation of the role of uncertainty, necessarily, requires the 

implementation o f probability concepts and methods. Chapter 3 presents a review of the 

various sources o f uncertainty and discusses the statistical and probabilistic techniques to 

quantify them.

Having quantified uncertainty, probabilistic analyses allow it to be rationally 

incorporated into the design process. In slope engineering, probabilistic slope stability 

analysis (PSSA) was first introduced in the 70’s. Over the last 3 decades, the concepts 

and principles of PSSA have developed and are now well established in the literature. 

Chapter 4 reviews the current state-of-practice of PSSA and expands on the advantages 

and limitations o f the available probabilistic methods.

Probability and risk-based techniques provide valuable insights into the inherent 

risk level. They are important decision-making tools and valuable supplements to 

conventional methods. The merits of probabilistic analyses have long been noted by many 

professionals (e.g. Chowdhury, 1984; Whitman, 1984; Wolff, 1996; Christian, 1996). In 

spite of the enormous uncertainties involved in slope problems and notwithstanding the 

benefits gained from a PSSA, the profession has been slow in adopting such techniques.

The reluctance of practicing engineers to apply probabilistic methods is attributed 

to a number of factors. First, engineers often lack formal training in statistics and 

probability theory. So, they are less comfortable dealing with probabilities than they are 

with the deterministic factors of safety. Second, there is a common misconception that 

probabilistic analyses require significant amounts of data, time and effort and are, thus, 

not practical. Third, few published studies illustrate the implementation and benefits of

2
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probabilistic analysis. Finally, the limits o f the acceptable probability o f unsatisfactory 

performance (or failure probability) are ill-defined and the link between a probabilistic 

assessment and a conventional deterministic assessment is absent. This creates difficulties 

in comprehending the results of a probabilistic analysis.

Given the appeal o f probabilistic slope stability analyses and the advanced state- 

of-practice o f probabilistic techniques, there is a need to facilitate the adoption o f PSSA 

in practice.

2. RESEARCH  OBJECTIVES

The global objective of this work is to integrate probabilistic slope stability 

analysis into geotechnical practice and to convince engineers of its legitimacy as a 

practical design and decision-making tool. A strategy of a number of specific steps is put 

forward and implemented to achieve the main goal, as summarized below.

• Most engineers lack a formal background in statistics and probability theory. So, a 

PSSA methodology, while being consistent with principles of logic and mechanics, 

should be robust, simple and formulated in a format familiar to engineers. Available 

techniques and tools that could facilitate the implementation of PSSA are evaluated. 

Chapter 5 describes a probabilistic slope stability analysis methodology based on 

Monte Carlo simulation using readily available commercial software (e.g. Excel, 

@Risk).

• Simplicity and practicality must not, however, alter the rationale of the analysis. The 

assessment should properly and realistically account for the uncertainty o f the input 

parameters. Issues like the spatial variability of soil properties, the reduction in 

uncertainty due to spatial averaging and the role of systematic uncertainty should be 

acknowledged. The probabilistic methodology of Chapter 5 addresses these issues,

3
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making use o f the principles of statistics and the available models for characterizing 

soil spatial variability.

• Success in promoting probabilistic analysis among practitioners depends largely on 

calibrating PSSA with the current design practice to attach meanings to the computed 

probabilities. This is achieved through the analysis o f 10 case studies. Chapters 6 

through 11 describe the deterministic and probabilistic analyses undertaken. The 

analyses also serve as examples illustrating the implementation of PSSA. Because of 

our limited capabilities in quantifying model and human uncertainties, case studies 

dominated by these two sources are not addressed.

• In order to use PSSA as a design tool, probabilistic design criteria (in addition to the 

conventional criteria) should be established. Case studies o f both failed and non-failed 

slopes are analyzed probabilistically. Given the conditions at failure, the failed slopes 

are re-designed to acceptable geometries based on current design practice. The 

modified geometry is also analyzed probabilistically. Chapters 6 through 11 detail the 

analyses undertaken. Comparing the failure probabilities o f the failed and the safe 

slopes provides valuable guidelines for probabilistic slope design, as described in 

Chapter 12.

• Additional insights provided by PSSA, that are o f interest to practicing engineers, are 

identified. For example, the relative impacts of the various sources o f uncertainty on 

design reliability can be quantified. Hence, resources, whether intellectual or physical, 

can be rationally allocated towards a better characterization o f the inputs whose 

uncertainties dominate the analysis. Such insights are very appealing to practitioners 

as they rationalize the decision-making process. Within the context of each case study 

in Chapters 6 to 11, relevant insights are highlighted. They are further discussed in 

Chapter 12.

4
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• The adoption o f risk management techniques in geotechnical practice is growing. 

Chapter 2 presents a brief review o f a risk management framework with particular 

emphasis on its application in slope engineering. Risk analysis requires the estimation 

o f hazard frequency. PSSA is the most suitable approach for estimating hazard 

frequency for site-specific studies, particularly in the absence o f representative 

empirical data. Chapter 13 describes the use of the output o f a PSSA, in terms of the 

probability o f unsatisfactory performance, in a quantitative risk analysis for a case 

study in Hong Kong.
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CHAPTER 2
RISK MANAGEMENT IN SLOPE 

ENGINEERING: 
AN OVERVIEW

Risk is an inherent element of all engineering systems. It is attributed to our 

inability to predict future system performance with certainty. As, the population could be 

exposed to hazards whose occurrence may result in adverse consequences such as 

injuries, fatalities, economic losses and environmental damage, risk cannot be totally 

eliminated. It, thus, has to be properly managed. Risk management is a structured 

systematic approach to assess and control risk (CSA, 1991). It is being formally applied 

in the chemical industry, the nuclear energy industry and the oil and gas industry, in 

public health, but only recently in geotechnical engineering. This chapter presents an 

overview of a risk management framework with particular emphasis on landslide risk 

assessment. Several case studies of quantitative risk assessment are discussed.

This review is not intended to be a detailed survey o f risk assessment and 

management techniques. Rather, it is a brief summary to introduce the risk analysis 

presented in Chapter 13. More detailed reviews and references, are provided by Einstein 

(1988), the Canadian Standards Association (CSA, 1991), Melchers and Stewart (1993), 

Morgenstem (1995, 1997) and Cruden and Fell (1997).

1. INTRO DUCTIO N

Slope engineering is one of the disciplines where risk management is most 

needed. Predictions of slope performance are dominated by uncertainty. This includes 

uncertainty in soil properties, geological setting, environmental conditions, loading and 

analytical models. Conventional slope practice, based on a deterministic analysis, cannot 

address uncertainty and relies largely on empiricism, judgment and experience. As a 

result, the risks associated with slopes cannot be quantitatively assessed. Slopes

6
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performing poorly are not rare. Morgenstem (1998) listed 11 major incidents involving 

mine tailings dams and waste dumps over a period of only 3 years (1995-1998). In his 

Lumb lecture (Morgenstem, 2000), he added that “Failures associated with landslides 

and earthquake-induced ground movements remain alarmingly high in many parts o f  the 

world indicating that, notwithstanding the success of the past, there is no place for 

complacency in the future”. Geotechnical engineers are making daily decisions under 

uncertainty using analytical methods not equipped to handle uncertainty. There is an 

urgent need for more advanced and powerful tools. Risk assessment is one promising 

option.

In addition to the major role of uncertainty, the implementation of risk 

management in geotechnical engineering is driven by other factors. For example, 

regulatory requirements are increasingly being cast in a probabilistic format and limited 

governmental resources argue for prioritizing expenditure. Comparing the risks of 

different alternatives is very efficient in this regard. Also, risk communications among 

professionals and to the public are greatly facilitated by the use o f risk-based techniques.

2. DEFINITIO NS

The risk management terminologies used in the literature are, unfortunately, 

inconsistent. The same terms are commonly used with different meanings. The IUGS 

Working Group on Landslides (1997) published a glossary o f the common terms. The 

committee that undertook that task acknowledged, however, that the published definitions 

do not represent a complete consensus view of all members. In order to avoid any 

confusion, the main definitions used in this study are summarized below. They are based 

on the definitions proposed by CSA (1991), the IUGS Working Group on Landslides

(1997) and Fell and Hartford (1997).

Hazard : A condition with the potential for causing an undesirable consequence.
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Elements at risk : The population, buildings and engineering works, economic activities, 

public service utilities and infrastructures, in the area potentially 

affected by landslides.

Individual Risk : The risk of fatality or injury to an identifiable (named) individual who 

lives within the zone exposed to the landslide, or who follows a 

particular pattern of life that might subject him or her to consequences 

o f the landslide.

Risk : A  measure o f the probability and severity o f an adverse effect to

health, property or the environment.

Risk Analysis : The use of available information to estimate the risk to individuals or

populations, property, or the environment from hazards.

Risk Assessment: The process o f risk analysis and risk evaluation.

Risk Evaluation : The process at which values and judgment enter the decision process, 

explicitly or implicitly, by including consideration o f the importance of 

the estimated risks and the associated social, environmental, and 

economic consequences, in order to identify a range of alternatives for 

managing the risks.

Societal Risk : The risk of multiple injuries or deaths to society as a whole: one where

society would have to carry the burden of a landslide accident causing 

a number of deaths, injuries, financial, environmental and other losses.

Specific Risk : failure probability times the vulnerability of a given element.

Total Risk : The expected number o f lives lost, persons injured, damage to property

and disruption of economic activity. It is the product o f specific risk 

and elements at risk over all landslides and potential landslides in the 

study area.

8
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Vulnerability : The degree of loss to a given element or set o f elements within the area

affected by the landslide(s). It is expressed on a scale of 0 (no loss) to 

1 (total loss).

3. RISK  M ANAGEM ENT FRAM EW ORK

One o f the most widely accepted frameworks for risk management is that 

produced by the Canadian Standards Association (CSA, 1991). The document sets 

general requirements and guidelines for the implementation of risk analysis. Figure 2—1 

provides an overview o f the structure o f risk management as proposed by the CSA. Risk 

management comprises risk assessment and risk control. Risk assessment is concerned 

with estimating the risk (risk analysis) and assessing whether it is acceptable or not (risk 

evaluation). Risk control includes the decision-making between risk reduction 

alternatives, should the estimated risk prove to be unacceptable, and monitoring to 

observe any deviations from the predicted conditions. This study addresses risk analysis 

only.

Risk M anagem ent

Risk Assessment Risk Control

Risk Analysis Risk Evaluation Decision Making Monitoring

Hazard Risk Risk Option
Identification Estimation Acceptance Analysis

Figure 2—1 Risk management framework (CSA, 1991)

Risk analysis is a structured process that attempts to assess the likelihood of a 

hazardous event and its consequences. It seeks answers to 3 main questions;

9
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•  What can go wrong?

• How likely is it?

(Hazard identification) 

(Hazard Analysis)

• What are the consequences? (Consequence analysis)

The results o f the hazard analysis (frequency o f occurrence o f the hazard) are 

combined with the results o f the consequence analysis (extent o f damage/fatalities) for all 

the identifiable hazards to give a measure o f risk.

3.1 Hazard Identification

The first step in risk analysis is to identify potential credible hazards that could 

result in undesirable consequences. Different procedures can be followed for hazard 

identification. They could be based solely on experience and/or reviews of historical data. 

Brainstorming of experts familiar with the problem at hand is another valid alternative. 

Structured brainstorming techniques such as HAZOP (Hazard and Operability Study) and 

FMEA (Failure Mode and Effect Analysis) could be used. The Canadian Standard 

Association guidelines on risk analysis (CSA, 1991) and Neowhouse (1993) provide a 

convenient overview of hazard identification techniques. In slope engineering, hazards 

may include the various failure modes (e.g., sliding, debris flow, rock falls) or the 

instability triggering events (e.g., rainfall, earthquake).

Hazard identification is one of the most crucial elements o f risk analysis. Failing 

to identify a credible hazard may render the results o f risk analysis meaningless. Melchers 

(1993) pointed to the identification o f extremely unlikely, but credible, hazardous 

scenarios as one o f the main difficulties affecting risk analysis.

3.2 Hazard Analysis

The probability of the hazard can be evaluated in a number o f ways. They include, 

historical data o f slope failures in similar conditions (geology, geomorphology, 

hydrology, ...etc.), direct subjective assessment, empirical correlations with triggering 

events (e.g., rainfall) and formal probabilistic methods. Historical records and

10
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correlations with triggering events assume that the pattern and frequency of past failures 

can be extrapolated to the future. This is not true if  the current circumstances have 

changed from those in the past. For example, remedial works and more stringent design 

criteria can reduce the frequency of failure, as is the case, for example, in Hong Kong. 

Care should, therefore, be exercised in predicting future performance based on historical 

records. Subjective assessment o f hazard frequencies is necessary where objective data 

are sparse and statistical techniques can not be applied (e.g., risk mapping of a large area). 

The task should, however, be undertaken by qualified personnel only and by a team, 

rather than an individual. Subjective assessment is more reliable in assigning relative 

failure probabilities to slopes within an area than it is in estimating absolute probability 

values. Probabilistic slope analysis methods require a lot o f details and data and are more 

useful for site-specific studies. They are the main focus o f this work and are covered in 

detail in Chapters 4 to 12.

3.3 Consequence Analysis

Consequence analysis aims at assessing the extent and nature o f damage that can 

be caused by the hazard. It comprises two main steps; estimating the elements at risk and 

assessing their vulnerability. The elements at risk are a function of the type of the 

facilities and the population density in the areas influenced by the landslide. Assessing the 

vulnerability is much more involved and requires the consideration of many interacting 

factors. First, the spatial variability of the elements at risk, the probability o f the landslide 

impacting a certain location, has to be addressed. This is a function of debris travel 

distance. Given a spatial impact, the temporal variability o f the exposed elements (i.e., the 

probability o f people being present at the time of the slide) has also to be addressed. This 

includes the type and degree of usage of the impacted facility (a playground differs from a 

residential building), the velocity o f displaced material, the mobility o f the elements at 

risk and the presence and efficiency of warning systems. Finally, the probability o f loss of 

life or damage, given an impact, has to be quantified. This involves the volume and 

velocity of the displaced material, the proximity to the landslide and the degree of

11
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protection offered by the facility. Fell and Hartford (1997) and Wong et al. (1997) 

discussed the various components of consequence analysis and provided examples.

Consequence assessment is sometimes based on historical data from similar 

events. Factors such as population growth, urban development and risk control measures 

(e.g., zoning requirements) may, however, render extrapolating future trends based on 

past data unreliable. Direct subjective assessment of the consequences based on 

judgement and experience is another valid approach. Event tree analysis is, probably, the 

most common technique for consequence assessment. Starting with the hazard and using 

inductive reasoning, the structure of the tree identifies all possible scenarios and estimates 

the probability o f the outcome of each scenario. The probabilities o f the tree branches are, 

often, estimated judgmentally. Historical data and analytical/empirical models (e.g., 

boulder trajectory models, debris runout models) are commonly used to guide the 

assessment. A consequence model can also be used to quantify landslide consequences. It 

is an empirical framework based on considerations of the main factors affecting failure 

consequences (debris velocity and travel distance, spatial and temporal variability of the 

elements at risk, ... etc.). Wong et al. (1997) developed a consequence model to quantify 

landslide fatalities in Hong Kong.

4. TYPES OF R ISK  ANALYSIS

Risk analysis can be classified according to two main criteria. First, distinction is 

made between qualitative risk analysis and quantitative risk analysis (QRA). In concept, 

the two approaches are the same and follow the general outlines summarized in Section 3. 

The difference, however, arises in the extent of usage o f probability figures in both 

analyses. Qualitative studies rely on arbitrary scales (e.g., 1-5) or descriptors (e.g., low to 

high) to represent the likelihood and the consequences o f the landslide. They are more 

suitable when the available objective data are limited and/or relative ranking of slopes is 

needed (e.g., zoning purposes). Brand (1988) summarized a qualitative procedure, using 

instability and consequences scores, to assess the relative risks associated with slopes and

12
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retaining walls in Hong Kong. That ranking system was later updated. Pierson (1992) 

provided another example for managing risks associated with rock slopes along 

highways. A hazard score was estimated for each slope (based on the conditions o f the 

rock) and combined with a consequence score (based on site conditions) to provide a 

qualitative measure o f risk. Comparison of the scores o f different slopes was used to 

guide and prioritize the mitigation activities.

Quantitative analysis relies largely on computed numeric values such as hazard 

frequency and estimated number o f fatalities in the event o f failure. As such, it requires 

larger amounts o f data than the qualitative assessment. It, however, overcomes many of 

the limitations o f the qualitative approach. Quantitative risk values are more easily 

communicated and are more effective in supporting management strategies. They also 

allow comparison with other risks affecting the population (e.g., traffic accidents, 

disease), which greatly facilitate risk communication to the public and help in setting 

acceptable risk criteria. QRA is a valuable tool for aiding decision-making and has the 

potential to enhance the balance between safety (or risk) and cost based on rational 

grounds. This is not to say that QRA is flawless, it has its own limitations. Melchers 

(1993) and the IUGS Working Group on Landslides (1997) expanded on the difficulties 

associated with the implementation of QRA. Many of the problems associated with QRA 

can, however, be avoided through the concept of relative risk. In comparing the risks of 

design alternatives or courses o f action, the unidentified elements o f uncertainty (e.g., 

human error, uncertainty o f consequences) are largely the same. As such, the conclusions 

of the assessment tend to be much more reliable.

One o f the main difficulties associated with the implementation o f QRA in 

practice is the high and, often, unrealistic expectations o f the outcome o f the analysis. 

Melchers (1993) pointed out the importance of understanding that QRA is not a technique 

to predict the unknowable. It is merely a structured analytical procedure through which all 

the relevant facts and foreseeable events are taken into account. Emphasis should not be

13
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placed on the precision of the computed numeric risk values, but rather on the insight 

gained through the analysis.

A second distinction could be made based on the scope and level o f detail of the 

study. This ranges from global risk analysis to site-specific risk analysis. The former 

focuses on evaluating the overall level o f risk affecting the community, mostly on a 

regional or territorial basis, and is more useful for policy making, resource allocation and 

Iand-use and development planning. It, thus, deals with societal risk only. The assessment 

requires, mainly, general and less quantitative data than the site-specific studies. Such 

data may include historical landslide frequencies, aerial photos, geological maps, 

topographic maps and geomorphological data. Depending on the scope of the assessment, 

the results can be presented in different forms. Hazard or risk maps is one alternative, and 

the F-N curve or the potential loss o f life (PLL) are another.

Hazard maps show the zonal distribution of failure mechanisms with their 

respective probabilities (either qualitatively or quantitatively) of occurrence. Viberg 

(1984) and Wu (1992) provide examples of hazard maps. If the consequences of 

landslides are estimated, they could be combined with hazard maps to produce risk maps. 

Leiba and Baynes (2000) described the development o f risk maps for the Cairns area in 

Australia. Einstein (1988) presented a convenient overview of landslide hazard and risk 

mapping techniques with numerous examples. Alternatively, the results can be expressed 

in the form of the F-N curve or the PLL; both are measures of societal risk. The F-N 

curve is a plot of the cumulative frequency o f N or more fatalities, F, versus the number 

of fatalities, N, on a log-log scale. The potential loss of life is the annual fatality rate and 

is equal to the sum of the frequency of the hazard times its consequences (in terms of loss 

of life) for all identified hazards. It is important, however, to note that the PLL is an 

average index and cannot distinguish between high-fatality and low-fatality incidents.

Site-specific risk analysis is concerned with evaluating the risk associated with a 

particular facility, or development, at a specific location. It is useful to owners, designers 

and regulatory authorities in judging the adequacy o f a particular project and whether
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there is a need for risk reduction measures. That type o f assessment, which is considered 

in this study, requires detailed and site-specific data. DNV (1996) provided examples o f 

site-specific studies applied to actual landslides in Hong Kong.

A  screening process prior to the risk analysis is essential to assess the level o f 

detail and the type o f analysis most suitable for the objectives of the study. For example, 

global qualitative analysis is probably more suitable for land-use and development 

planning studies whereas site-specific quantitative analysis is more suited for evaluating a 

particular facility.

5. EXAM PLES OF QRA

A literature review is undertaken to assess the state-of-practice o f QRA in slope 

engineering. The search focused entirely on studies involving actual projects, rather than 

generic examples. A summary of the reviews is presented below.

Over the period 1984-1987, large debris flows, involving several fatalities, took 

place in the mountainous areas of British Columbia, Canada. As a result of public 

concern, the local authorities initiated a study to assess the total risk to communities from 

such events and to guide the planning and design o f protective works.. Morgan et al. 

(1992) described the study. The creeks vulnerable to large debris flows were identified 

and risk maps, in terms of the annual probability o f loss o f life, were produced. The 

frequencies of the flows (hazard analysis) were based on an estimated magnitude- 

recurrence relationship obtained from limited historical data combined with judgment. 

The consequences were estimated subjectively based on an assessment of the magnitudes 

o f debris flows (in terms of velocity, depth and amount o f sediments).

The Montrose area, an outer suburb o f Melbourne, Australia, is subject to 

infrequent but potentially devastating debris flows resulting from landslides. The local 

government authority commissioned a study o f debris flow hazard zoning for 

development control purposes. Moon et al. (1992) summarized the study. A geological
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assessment indicated 58 potential landslides in the area. The frequencies o f debris flows 

originating from these potential slides were estimated judgmentally by a team o f 4 

experts. The estimates were based on assessments o f a number o f landslide related factors 

such as topography, relative amount of outcrop and height and proportion of the slope 

steeper than 26.6 degrees (50% slope). The results were presented in the form of a debris 

flow hazard map. Finlay (1996) extended the study into a full risk assessment and 

estimated the total risk to houses in the area and the annual expected loss of life. The 

consequence analysis was based on a survey conducted by Finlay (1996) in which data 

regarding the number of houses, their values, type o f building construction and occupancy 

were gathered.

Transportation routes through mountainous terrain are, often, vulnerable to 

rockfall hazards. In 1982 a rock fall killed a woman and disabled her father in the 

Argillite Cut o f Highway 99 in British Columbia, Canada. Bunce et al. (1995) described a 

study to quantify the individual and total annual probabilities o f loss of life for that 

highway segment. The frequency o f rock falls was based on historical records and an 

examination of the asphalt for the number of impact marks resulting from falling rocks. 

The estimates of consequences were entirely subjective. The study did not address the 

temporal distribution of the elements at risk (e.g., day and night traffic) nor that of the 

hazard (e.g., higher rockfall frequency during rainy seasons).

Rock falls are also a problem for railway tracks in mountainous terrain. Abbott et 

al. (1998) discussed the methodology adopted by the Canadian National Railway (CN) for 

the assessment o f rock fall hazards. It was applied for rock slope management along the 

main track in British Columbia, Canada. The methodology is entirely judgmental and 

based on field observations. The assessment takes into account the volume o f rock 

detachment, the probability of a rock detaching and reaching the track (based on the 

geological conditions and the efficiency o f the protective and warning measures) and the 

size o f rock present at the track (i.e., rock fragmentation). Train derailment (with no 

reference to the severity of derailment) is the only consequence considered and is

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



evaluated based on the judgment of CN personnel. The approach does not address the 

frequency of rock fall due to the lack of representative historical records. It, thus, provides 

only a relative measure o f the danger posed by rock falls to the safe movement o f traffic 

adjacent to a rock slope. The methodology, however, is still in its infancy and is 

undergoing continuous development and updating.

Landslides in Hong Kong are considered a major hazard to public safety. The 

Geotechnical Engineering Office of Hong Kong (GEO) adopted risk assessment 

techniques, particularly QRA, as a means of managing landslide risks. Hardingham et al.

(1998) described a study to quantify the landslide risks o f the slopes behind the Lei Yue 

Mun squatter villages. The objective of the study was to assist in the decision-making 

regarding the re-housing of residents exposed to unacceptable risk levels. Debris slides 

were identified as the main hazards and the frequencies o f their occurrence were 

estimated based on the landslide database of the area, air-photo interpretations and 

judgement. Because of insufficient records, the frequencies o f major slides, larger than 

1000 m3 in volume, were estimated based on empirical correlations with rainfall. The 

travel distance of debris was estimated empirically based on the concept of apparent 

friction angle proposed by Wong and Ho (1996). The failure consequences were 

evaluated based on a survey of a sample comprising 10% of the villages’ population. The 

survey aimed at defining the number of people in each dwelling, their temporal presence 

and the degree o f protection provided by the dwelling structure. The results were 

presented as a contour map of the probability of loss of life to any one person, i.e., 

individual risk. The study concluded that some of the squatters are located within areas of 

unacceptable individual risk and recommended that they should be re-located as a matter 

of priority.

Wong and Ho (1998) presented another QRA study to evaluate the global risk of 

old (prior to the establishment of GEO in 1977) man-made slopes and retaining walls in 

Hong Kong. For each slope feature (cut slopes, fill slopes and retaining walls), the 

potential failure mechanisms were identified (e.g., sliding, wash out). Given the failure
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mechanism, the landslide is classified by the volume o f the sliding mass. The global 

annual landslide frequency for each class was estimated based on historical data coupled 

with judgment. The database used in the assessment comprised more than 5000 slides 

that occurred over the period 1984-1996. The failure consequences, in terms of potential 

loss o f life, were evaluated using the consequence model proposed by Wong et al. (1997). 

The model defines, based on judgement, the expected number of fatalities for a reference 

landslide (10m wide and 50m3 in volume) for different types o f facilities (buildings, 

roads, ..etc.) located at the worst possible location. The number of fatalities is then scaled 

up or down by two factors. The first reflects the size o f the actual slide (in terms o f the 

width relative to that o f the reference slide) and the second accounts for the vulnerability 

o f the facility taking into the account its location and the mobility and travel distance of 

the debris. The results o f the analyses were presented in terms of the annual potential loss 

o f life for each facility type and slope feature (i.e., cut slope, fill slope, retaining wall) o f a 

given size.

DNV (1996) also described a procedure for site-specific QRA studies for old- 

man-made slopes in Hong Kong. The approach was applied to quantify the risk associated 

with a landslide that occurred at the crest of a 15m high cut slope adjacent to Cheung 

Shan Estate, New Territories. The slide debris hit a bus terminal killing a woman and 

injuring 5 people. Following a brainstorming session, 6 potential failure modes (e.g., 

shallow localized failure at the top o f the slope with a failure height < 5m) attributed to 

11 triggering mechanisms (e.g., saturation by water other than main groundwater table) 

were identified. The frequency of slope failure due to each triggering mechanism was 

estimated based on historical data combined with judgement. Each frequency was divided 

equally between all the relevant failure modes. Thus, the frequency of a particular failure 

mode due to a specific triggering mechanism was obtained. To reflect the site-specific 

conditions, these frequencies were adjusted using empirical factors to account for slope 

angle, soil type, rain intensity and signs of slope instability. The total failure frequency of 

each failure mode was computed using a fault tree with the failure mode as the top event 

and the triggering mechanisms as the lower order events. For each failure mode an event
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tree was constructed to estimate the frequencies o f a range o f discrete scenarios (e.g., 

landslide debris impacting a road below the slope). The analysis addressed the mobility of 

the debris and the scale o f failure. For each scenario, the extent o f the area affected by the 

slide debris wras estimated based on an empirical estimate o f the travel distance (Wong 

and Ho, 1996) and the slope geometry. The portion of that area occupied by people was 

multiplied by the population density to obtain the number o f individuals at risk. The 

number o f fatalities was evaluated by multiplying the number o f people at risk by an 

empirical factor (between 0 and 1) representing their vulnerability. The results were 

presented in the form o f an F-N curve as well as the potential loss of life. The analysis is 

comprehensive, but lengthy. It also involves numerous subjective factors, the reliability o f 

which is unclear.

ERM (1996) and Reeves et al. (1998) described a QRA study to evaluate the risk 

of boulder falls from natural terrain in Hong Kong. Four pilot study areas were 

considered; east Hong Kong, west Hong Kong, Lei Yue Mun and Tuen Mun highway. 

Each area was divided into a number of segments (100-500m in length) and a score, 

based on the percentage of ground covered by boulders and the slope gradient, was 

assigned for each segment. An empirical correlation was established between the 

historical rock fall frequency of each study area and the weighted average area score. The 

correlation was then used to estimate the boulder fall frequency for individual segments 

using the segment score. Based on an analysis of historic rock fall data, the estimated 

frequency was divided into a number of categories to address the variation in sizes and 

starting heights o f boulders (boulder travel distance is a function o f starting height). Thus, 

the frequency o f a rock of a given size falling from a certain height was obtained. The 

consequences o f each hazard were estimated from considerations o f rock fall 

characteristics (energy, velocity and potential of perforating the impacted facility) and an 

assessment of the population at risk. The former was computed using boulder trajectory 

models and target impact models and the latter was estimated from maps of population 

distribution and traffic data. Event tree analysis was used in the assessment and the results 

were presented in terms of the potential loss of life as well as the F-N curve for each
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study area. The authors stated, however, that the developed methodology and the input 

parameters were coarse and that refinements were needed.

The coastal cliffs o f Scarborough, UK, have had a history o f slope instability, 

despite the presence o f protective seawalls. The local authority o f the area commissioned 

a study to assess the risks associated with cliff instability and to rationalize a landslide 

management strategy. Lee et al. (1998) provided a brief overview of the investigation. A 

geomorphological study identified the unstable cliffs, the likely failure mechanisms, the 

scales of failure and first-time and pre-existing slides. The failure probabilities (including 

seawall failure) were estimated from historical records of landslides while the 

consequences were evaluated subjectively and qualitatively (e.g., minor, partial and total). 

The failure probability and the consequences were combined qualitatively and 3 risk 

classes were defined. The cliff sections were categorized accordingly and priority areas 

were identified. Lee et al. (2000) described a similar study to assess the annual probability 

of coastal landslides in Lyme Rgis, UK. The probabilities of triggering events (e.g., 

seawall failure, high groundwater levels) and subsequent responses were estimated 

subjectively by a  team of experts. Event tree analysis was used to estimate the probability 

of generic consequence scenarios (e.g., loss o f property and services in lower zone of the 

slope).

Leiba et al. (2000) described a study to quantify the landslide risks in the Cairns 

area, Australia. The study was requested by the Cairns City council for planning and 

emergency management purposes. Geological and geomorphological studies identified 

two landslide processes; failure of slopes in weathered bedrock with thin colluvial cover 

and large debris flows through major gully systems. Based on field observations and 

historical data, landslide magnitude-recurrence relationships were established for each 

10km o f escarpment. These relations were the basis for estimating landslide frequencies. 

The travel distance o f ihe debris was assessed empirically using the concept o f apparent 

friction angle (Wong et al., 1997) with inputs obtained from field observations. The 

extent of the areas affected by landslide debris was plotted on GIS maps which included
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comprehensive information on buildings, roads and demography. This allowed a reliable 

estimation o f the elements at risk. The vulnerability o f people and facilities was evaluated 

based on information obtained from the Australian Landslide Database and the Cairns 

City council coupled with judgment. The results o f the assessment were presented in the 

form of specific and total risk maps for people, buildings and roads.

6. CO NCLUSIO NS

The cited case studies in Section 5 lead to some important conclusions. First, the 

number o f published site-specific QRA studies is small compared to that o f the global 

QRA studies. Second, hazard frequencies in all o f the cited cases are based on historical 

data (most common), empirical volume or magnitude recurrence relationships, subjective 

judgement or combinations of two or more. Some o f the limitations of these approaches 

are summarized in Section 3.2. The most important is that reliable frequency estimates 

based on historic records or volume-recurrence relations require large, high quality 

databases o f failure incidents, seldom available in practice. In consequence, such 

estimates are general by nature and cannot reflect the specific conditions that may exist at 

a particular location. As an example, DNV (1996) had to use coarse subjective factors to 

adjust the historic landslide frequencies to reflect local conditions at the Cheung Shan 

slope, even though the landslide historic records in Hong Kong are among the most 

detailed in the world. The adjustment had to cater for inputs as basic as slope angle and 

soil type. Deducing a site-specific hazard frequency based on historic data or volume- 

recurrence relations is, thus, unreliable.

Subjective assessment of relative failure frequencies is a well established 

approach in practice and is based on comparing stability related factors and parameters 

amongst the investigated slopes. A subjective estimate o f absolute site-specific hazard 

frequency, on the other hand, is based on the undisclosed judgement o f the assessor. As 

such, it tends to be less reliable and is, often, not appealing to practitioners. The difficulty
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in reliably evaluating hazard frequency at a given site is one o f the main reasons behind 

the rarity o f site-specific QRA studies.

In order to encourage the implementation o f site-specific QRA in practice, 

estimates o f hazard frequency should be based on well founded, robust and simple 

techniques. This can be largely achieved through the use o f formal probabilistic methods.

Consequence assessment is largely subjective and based on judgement. This is, 

probably, due to the difficulties associated with the evaluation o f many of the input 

parameters (e.g., debris velocity and impact energy, probability o f loss of life given 

landslide impact). Much of this subjective judgement, however, is not well calibrated, 

putting some shadow on the reliability of consequence predictions. Recently, there have 

been some advances in understanding the processes that govern the scale of failure and 

the velocity and travel distance of the displaced material. This in turn contributed to the 

development o f more rational frameworks for evaluating consequences such as event tree 

analysis and consequence models. Nevertheless, there is still ample room for further 

research to improve and advance consequence assessment.
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CHAPTER 3

UNCERTAINTY AND STATISTICAL 
CHARACTERIZATION OF SOIL 

PROPERTIES

In geo technical engineering, uncertainty is embedded in all project phases starting 

from site characterization through analysis and design to decision-making and 

construction. It is an inherent part of the profession. The influence o f uncertainty on the 

reliability o f safety assessment can be significant and is frequently reflected in failures of 

structures designed to be safe. While such an impact has long been recognized by the 

pioneers o f our profession (Casagrande, 1965; Meyerhof, 1970), the industry always 

lacked the practical tools to quantify and account for uncertainty. Nearly two decades ago, 

Einstein and Baecher (1982) wrote “The question is not whether to deal with uncertainty, 

but how?”.

With the growing trend towards applying risk management and reliability-based 

design in geotechnical engineering, proper understanding and quantification of 

uncertainty is necessary. While there have been major advances in that direction, there are 

still many sources of uncertainty that cannot be easily quantified (Lacasse & Nadim 

1996). The following sections present an overview o f the various sources o f uncertainty 

followed by a discussion of the statistical techniques used for characterizing the 

uncertainty in soil properties, their merits and their limitations.

1. SOURCES OF UNCERTAINTY

For practical purposes, Morgenstem (1995) divided geotechnical uncertainty into 

three distinctive categories: parameter uncertainty, model uncertainty and human 

uncertainty. Parameter uncertainty is the uncertainty in the inputs o f the analysis, model 

uncertainty is due to the limitations of the theories and models used in performance 

predictions and human uncertainty is related to human errors and mistakes. Due to the
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inevitable presence o f uncertainty in all geotechnical applications, the output o f any 

analysis (e.g., factor of safety, settlement, pile load capacity) is also uncertain. As such, 

assessing and quantifying uncertainty is a necessity.

1.1 Parameter Uncertainty

Parameter uncertainty is the uncertainty in the input parameters that go into the 

analysis such as strength, compressibility and pore pressure. Baecher (1987) attributed 

parameter uncertainty to two sources: data scatter and systematic error. Data scatter is the 

dispersion o f measurements around the mean. It can be further divided into inherent 

spatial variability and random testing error. Systematic error is the deviation o f the 

observed mean trend from the true unknown one. It can be divided into statistical error 

and measurement bias. Figure 3—1 illustrates the distinction between the different 

components.

Parameter Uncertainty!

Data Scatter

| Real Spatial 
| Variability

! Random Testing 
| Error

Data Scatter

P

{ Systematic Error

Statistical
Error

Bias in 
Measurements

Systematic Error
Measured mean trend

True unknown 
mean trendx.

Figure 3—1 Sources of parameter uncertainty (modified from Baecher, 1987)
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1.1.1 Data Scatter

Spatial Variation o f  Soil Properties

Spatial variability is the true variation of soil properties from one point to another, 

even within a supposedly homogenous layer. It is attributed to factors such as variations 

in mineralogical composition, conditions during deposition, stress history and physical 

and mechanical decomposition processes (Lacasse & Nadim, 1996). However, in spite of 

this expected variability the value o f a soil property at one location tends to be close to 

those at adjacent locations. In other words, spatial variability is not a random process. It is 

controlled by some form of correlation relating the soil property to location in space. In 

statistical terms, this phenomenon is known as spatial structure. That correlation is 

expected to diminish as the distance between points increases. Spatial variability is 

inherent to the soil and cannot be reduced; it must be considered in any analysis of 

uncertainty. Section 2.3.2 discusses the statistical techniques for analyzing spatial 

variability.

Random Testing Error

Random testing errors arise from factors related to the measuring process such as 

operator error or a faulty device. They are independent from one location to another and 

fluctuate above and below the true unknown magnitude of the soil property. As they do 

not constitute a true variation in the soil property, random errors should be removed from 

measurements prior to design. They can be accurately estimated through repeated testing 

on the same specimen by different operators and/or devices. This is not, however, a viable 

option for geotechnical applications due to the destructive nature of most geotechnical 

field and laboratory tests. Section 2.3.2 illustrates the statistical procedures for an 

approximate estimation of random testing errors.
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1.1.2 Systematic Error

Statistical Error

Site investigation programs are almost always controlled by budget constraints 

which result in a limited number o f tests. The mean value of a soil property based on a 

limited data set is only an estimate o f the population mean. The mean o f a larger or 

smaller set of measurements or even another set o f the same size is likely to be different. 

Unless every point within the domain of interest is tested, the estimated mean remains 

uncertain. The larger the sample size the less uncertain the mean is. Statistical error is the 

uncertainty in the estimated mean due to limited sample size. Statistical tools for 

evaluating statistical error are reviewed in Section 2.3.4.2.

Measurement Bias

In soil testing, the measured property can be consistently overestimated or 

underestimated at all locations. This is known as measurement bias. Several factors may 

contribute to bias such as the testing device, boundary conditions, soil disturbance or the 

models and correlations used to interpret the measurements.

Through back-analysis of case studies o f slope failures, Bjerrum (1972) observed 

that the field vane tends to consistently overestimate the undrained shear strength of 

highly plastic clays. He introduced an empirical correction factor, the ratio o f back- 

calculated to measured undrained shear strength, to correct for bias. Anderson et al. 

(1984) pointed to the uncertainty associated with the empirical factors used for the 

conversion of cone penetration resistance into strength parameters. Kulhawy and Mayne 

(1990) stated that the use of empirical correlations for estimating soil properties 

introduces additional uncertainty. They emphasized the importance of assessing the effect 

of this added uncertainty on design reliability. Statistical treatment of measurement bias is 

discussed in more detail in Section 2.3.4.1.
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1.2 Model Uncertainty

Model uncertainty is related to the gap between the theory adopted in prediction 

models and reality. Analytical models, particularly engineering ones, are usually 

characterized by simplifying assumptions and approximations. They are imperfect 

representations capturing some, but not all, o f the aspects of the real conditions. Cases of 

model uncertainty are numerous and can be categorized into numerical and conceptual, 

with the latter being far more influential. Examples of conceptual uncertainty include 

progressive failure, time-dependent softening processes, seismic liquefaction triggering, 

progressive development o f internal erosion and undrained versus effective strength 

characterization (Morgenstem, 1995). Numerical uncertainty includes simplifying 

computational assumptions (e.g., 2-D versus 3-D models, elastic soil behavior), errors 

associated with models based on empirical calibrations (e.g., correlations between SPT 

blow counts and settlement) and mathematical approximations. Model uncertainty is 

probably the major source of uncertainty in geotechnical engineering (Wu et al., 1987; 

Morgenstem, 1995; Whitman, 1996). Unfortunately, our capabilities in reliably 

quantifying model uncertainty are, to date, primitive.

Many researchers pointed out practical problems where model uncertainty is 

important, yet is being overlooked. Lacasse and Nadim (1996) noted that current methods 

of predicting capacity of offshore pile foundations are derived from load tests on small 

piles. The diameter, length and capacity o f piles currently used are larger by far. 

Significant uncertainty may be introduced in design methods due to this different 

database. Morgenstem (1995) pointed out that the stability of mine waste rock dumps is 

commonly studied using models based on limit equilibrium. He added that this material is 

often loose and susceptible to collapse and rapid loss of strength. Analysis must involve 

assessment o f steady state and collapse failure behavior.

The numerical uncertainty in prediction models is commonly accounted for by a 

global factor that is applied to the equation describing failure (i.e., analytical model). This 

factor would have a mean and standard deviation and is usually considered to be normally
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or lognormally distributed (Lacasse and Nadim, 1996). It is commonly evaluated by one 

or more o f  the following approaches.

Comparing model predictions with observed performance or predictions o f  more 

rigorous and comprehensive models is, probably, the most direct and reliable approach to 

quantify model uncertainty. As examples, Baecher et al. (1983) compared observed 

settlement o f footings on sand with predictions using Peck and Bazaara’s model based on 

SPT. They concluded that the ratio of observed to predicted settlement has a mean of 1.46 

and a standard deviation o f 1.32, indicating extreme uncertainty. Yucemen and Tang 

(1975) compared safety factors computed using the ordinary method o f slices with those 

from rigorous methods in which inter-slice forces are considered and all equilibrium 

conditions are satisfied. They concluded that the resisting moment in the ordinary method 

of slices need to be multiplied by a model correction factor with a mean o f 1.16 and a 

standard deviation of 0.053. Azzouz et al. (1983) analyzed the stability of 18 slope case 

histories using two-dimensional (plain strain) and three-dimensional models. They found 

that the ratio of 3-D to 2-D factors of safety has a mean of 1.11 and a standard deviation 

of 0.06. Christian et al. (1994) adopted these values to account for model uncertainty in 

analyzing the reliability of James Bay hydroelectric dykes. Gilbert et al. (1998) observed 

significantly higher discrepancies between the 2-D and 3-D factors of safety when 

assessing the stability of Kettleman Hills landfill. They accounted for the 3-D effect by a 

correction factor with a uniform probability distribution ranging between a minimum of 

0.8 and a maximum of 1.2.

Polling of expert opinions is another way for assessing model uncertainty. Lacasse 

and Goulois (1989) reported the outcome o f polling 30 experts on one o f the most 

commonly used methods for predicting axial capacity of offshore piles, API RP2A 

method (API, 1993). They indicated the consensus that the method is conservative in 

medium dense to very dense sand. Engineering judgement could also be applied to assess 

model uncertainty. Christian et al. (1994) used their judgement to assess the possibility of 

failing to locate the critical slip surface for James Bay dykes. They assumed that the
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predicted safety factor is overestimated by a factor o f 1.05 with a standard deviation o f 

0.05. In estimating the axial pull-out capacity o f an open ended tubular pile driven into a 

lightly overconsolidated clay, Ronold (1990) assumed the shaft adhesion factor, a , to be 

lognormally distributed with a mean o f 0.7 and a standard deviation o f 0.1.

Another, though less common, approach to account for model uncertainty is to 

regard the limit state factor o f safety as a random variable with a mean, E[FSL], and a 

standard deviation, ct[FSl]. Based on back-analysis o f case studies with minimum  

parameter uncertainty, Meyerhof (1970) indicated that the factor o f safety at failure for 

earthworks at end o f construction in intact clays has a mean o f 1.0 and a standard 

deviation of 0.1. Asaoka and A-Grivas (1981) suggested representing FSl by a uniform 

probability distribution ranging between 0.9 and 1.1.

Based on the above discussion, the difficulties in reliably quantifying model 

uncertainty are evident. The data needed for direct comparison with observed 

performance are seldom available in practice. Furthermore, the conclusions of the 

comparison can be blurred by the presence o f other sources of uncertainty. Polling of 

expert opinions and engineering judgement are both subjective. Quantitative estimates are 

as good as the quality of judgement. What is more important, however, is key features of 

the problem being overlooked or ignored (conceptual uncertainty) as in the examples 

provided by Morgenstem in the preceding paragraphs. Commenting on the safety of

embankment dams, deMello (1977) in his Rankine lecture wrote: it is “  not upon the

accuracy of our calculations, but upon the adequacy of our hypotheses”.

1.3 Human Uncertainty

Human uncertainty is a result o f human mistakes. Human errors are often random 

and unpredictable. Examples include carelessness and ignorance, misleading information, 

poor construction, inappropriate contractual relationships and lack o f communication 

between parties involved in the project. On many occasions, human mistakes were the 

reasons for devastating failures. Peck (1973) and Sowers (1991) provided examples o f the
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role o f human uncertainty into geotechnical failures. Morgenstem (1995) pointed to the 

overwhelming contribution of human uncertainty to the failure o f the Kwun Lung Lau 

landslide in Hong Kong which killed 5 people. Basra and Kirwan (1998) complied a large 

database o f human errors in the offshore oil and gas industry.

The nuclear power industry has taken a leading role in quantifying human 

uncertainty. Samdal et al (1992) pointed to the increasing importance of the human factor 

in large systems and stated that quantification o f probabilities o f system failure should not 

ignore the human component. This has led to the development o f the Human Reliability 

Assessment approach; HRA (Swain and Guttman, 1983; Dhillon, 1986; Dougherty and 

Fragola, 1988). HRA is a quantitative approach that aims at identifying human errors, 

assessing their probabilities and seeking ways to reduce or avoid their likelihood of 

occurrence. In geotechnical engineering, the wide variability and uniqueness of the 

human contribution from one structure to another create difficulties in identifying 

potential human errors, not to mention assessing their probabilities.

2. STATISTICAL ANALYSIS OF SOIL DATA

Proper statistical analysis o f soil data requires, in addition to the data itself, 

knowledge about the quality of the data, knowledge about local geology and engineering 

judgement (Lacasse and Nadim, 1996). Pentz (1982) emphasized the role o f judgement, 

pointing, for example, to the inadequacy o f representing rock mass strength by a 

statistical distribution of laboratory compressive strength tests.

Statistical data analysis comprises a number of stages. Firstly, the available data 

should be critically reviewed to ensure consistency and detect any anomalies. Secondly, 

the adequacy o f the data to represent the entire population should be assessed. In other 

words, how reliable are the statistical inferences made about the population on the basis 

o f the available set o f observations. Finally, statistical methods are applied to infer the 

parameters o f interest. Issues like errors in observations, spatial correlation and size of the 

domain o f interest are addressed in this stage.
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2.1 Data Review

Before starting any formal statistical calculations, it is essential to critically review 

available data. The first step in data review is to ensure the consistency o f data sets (i.e., 

data belonging to the same population are grouped together) known as decision o f  

stationarity. Inconsistency can arise from pooling data belonging to different soil types, 

stress conditions, testing methods, stress history or patterns of sample disturbance 

(Lacasse and Nadim 1996).

Secondly, outlier data need to be identified and decisions should be made whether 

to reject them or accept them as extreme values (Baecher, 1987). Baecher warned that 

care should be exercised in this process to avoid rejecting a true, important piece of 

information. An example can be the very low shear strength of a clay-infilled rock joint. 

This process is often done judgmentally by reviewing testing procedures of odd 

measurements and the evaluation o f the number and range of values of data at nearby 

locations. Statisticians, however, prefer to use the difference, di, given by Equation 3-1.

d hzM d  (3-1)
v [x ]

where x, is the outlier value and E[x] and <y[x] are the mean and standard deviation of the 

entire data set including x,. If the variable, x, is normally distributed, the quantity, d, 

would have Student’s t-distribution with (n-1) degrees of freedom; n being the number of 

measurements. The probability of x, differing that much from E[x] can be estimated from 

the tables o f Student’s t-distribution. If the estimated probability is higher than a 

predetermined criterion (typically 1% or 5%), the outlier is accepted as part o f the data. 

This procedure is exact when the data are normally distributed and is an acceptable 

approximation as long as the data are not highly skewed.

The next step in data review is to identify the presence of any trends. Trend 

identification is usually conducted judgmentally by examining the scatter plot of the soil 

property with depth or distance. Chiasson et al. (1995) pointed to a formal statistical
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approach for trend identification. Finally, a  review o f test procedures is also 

recommended to detect any causes o f measurement bias.

2.2 Sample Representativity

Geotechnical engineers are always confronted with the problem of sample 

representativity. It is not unusual to make decisions based on very little data that may not 

adequately represent (in a statistical sense) the phenomena being studied. Sample 

representation has two important characteristics: sample size (number o f data) and data 

clustering. The former being much more common and influential in geotechnical 

applications

2.2.1 Sample Size

The influence of sample size is expressed in the confidence interval. It is defined 

as the interval within which the unknown statistical parameter of the population, say the 

mean, is contained with a certain level o f  confidence, say 95% probability. Statistics 

books (Mace, 1964; Hahn & Shapiro, 1967; Ang & Tang, 1975) have sections on the 

calculation of confidence intervals for independent, equally-distributed sets of 

observations. The width of this interval depends on sample size, the parameter being 

estimated and correlations among observations. For a specified confidence level, the 

width of the confidence interval decreases as the number o f observations increases. In 

other words, the uncertainty in the estimated statistical parameter (e.g., the mean) is 

higher for small samples. Statistical techniques for quantifying the uncertainty due to 

sample size, known as statistical error, are discussed in Section 2.3.4.2.

Given a set of observations, the statistical parameters of the population (mean, 

variance, skewness, ...) can be estimated using different methods, the most common of 

which is the method o f  moments. According to this method, the mean is referred to as the 

firs t moment o f the random variable, the variance as the second moment, and the 

coefficient o f skewness as the third moment. For a given level of reliability, the higher the 

order of the moment being estimated, the larger the number o f observations required. For
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example, a larger number o f measurements is needed to estimate the variance compared 

to that needed for the mean for the same level o f accuracy. Also, the stronger the 

correlation between measurements, the larger the sample size needed to estimate a certain 

parameter to a given level of confidence. A larger number of correlated measurements is 

required for a reliable inference o f the population covariance, for example, as compared 

to the variance of non-correlated data.

2.2.2 Data Clustering

The second point of concern is the clustering o f data in a limited zone within the 

spatial domain o f interest. In geostatistics, data clustering is of great importance 

particularly for problems with large areal extent (e.g., mining and reservoir 

characterization). Different techniques are used to correct histograms for data clustering. 

In concept, weights are assigned to each data point depending on its closeness to 

surrounding observations. Data points in densely sampled areas receive less weight than 

those in sparsely sampled areas. For more details about declustering techniques, the 

reader is referred to Goovaerts (1997) and Deutsch & Joumel (1998). Data clustering is of 

less importance in geotechnical applications due to the limited data available and the 

small spatial domain of interest. However, judgmental evaluation to ensure that 

measurements are evenly distributed within the site is recommended. In a study of the 

spatial variability o f undrained shear strength in James Bay project in Quebec, Soulie et 

al. (1990) observed higher concentration o f  vane soundings in a 20m by 50m area at the 

centre o f the site. To avoid any bias in the analysis, they divided the vane data into two 

subsets corresponding to the central zone and the rest of the site. Each data subset was 

analyzed separately.
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2.3 Statistical Inference

2.3.1 Elementary Statistical Analysis

Before any spatial statistical data treatment, it is advisable to carry out an 

elementary statistical analysis. The mean and standard deviation are informative simple 

parameters. The mean is a measure of the central location or best estimate of a soil 

property, while the standard deviation is a measure of scatter or uncertainty. Statistical 

expressions for mean and standard deviation are available in all statistics text books.

Besides being a graphical display o f data variability, histograms can provide other 

important pieces of information. A multimodal histogram is an indication of inconsistent 

data, i.e. non-stationary condition (Section 2.1). In a study o f iron deposits in west Africa, 

Joumel & Huijbregts (1978) reported a multimodal, widely-spread histogram of iron 

grades (Fe) in core samples, Figure 3—2. The histogram indicated a first mode at 67% Fe 

and several other modes around 50% Fe. A detailed investigation showed the presence of 

two different ore deposits; a rich shallow hematite and a deeper mixed poorer deposit.

It is important, however, to remember that the visual display of a histogram is 

affected by the number of cells or intervals used; particularly for a small data set. 

Manipulating the interval width can distort the shape of the histogram. Baecher (1987) 

recommended constructing more than one histogram using different numbers of intervals 

to get a sense of data variability. Because of this dependency on interval width, 

histograms are not used in statistical calculations. The probability distribution function 

(cumulative probability histogram), which is independent of interval width, is used 

instead.
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Figure 3—2 Histogram of iron grades; global ore (modified from Joumel & 

Huijbregts, 1978)

2.3.2 Statistical Analysis o f  Spatial Variability

Measurements of spatial quantities, such as earth data, are intrinsically related to 

their spatial locations. The magnitudes of a soil property at two adjacent locations are 

likely to be strongly correlated. As the distance between the two locations increases, the 

correlation weakens until it vanishes. Lumb (1975) and Vanmarcke (1977a) pointed out 

that such spatial correlation should not be ignored in modeling soil properties.

Basic statistical parameters described in Section 2.3.1 do not capture the features 

of soil’s spatial structure. Figure 3—3 compares the spatial variability of two artificial sets 

of data generated using the geostatistics software GSLEB (Deustch and Joumel, 1998); 

both having similar probability distribution functions. The top plot is characterized by 

highly erratic spatial structure, the data are almost uncorrelated, while the bottom one is 

characterized by a highly continuous structure. Additional tools are, therefore, needed to 

deal with spatial variability.
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Figure 3—3 A highly erratic spatial structure (upper right) and a highly continuous 
structure (lower right), both with similar histograms

For practical purposes, a simplified model is commonly used to analyze the spatial 

structure o f soil properties (Vanmarcke, 1977a; Baecher, 1987; DeGroot & Baecher, 

1993). The model divides the measured quantity, x„ at any location, /, into a deterministic 

trend component, f„ and a residual component, s„ as shown in Figure 3—4. The trend is 

evaluated deterministically using regression techniques while the residuals are assessed 

statistically. They are assumed to have a zero mean and a constant standard deviation 

independent o f location. Residuals are further divided into two components; random 

error, ee, and inherent variability, sv,. The model can, therefore, be written as follows;
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(3-2)

where; s, = sei + sv,
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Figure 3-4 Model o f spatial variability; Dilatometer lift-off pressure at 

the University of Massachusetts Amherst National Geotech

nical Experimental Test Site (modified from DeGroot, 1996)

2.3.2.1 Trend Estimation

The variability in a soil property frequently follows some trend either in the 

horizontal direction or with depth. Modeling such a phenomenon with a constant mean 

leads to an unrealistically high estimate o f variability. A trend model should, therefore, be 

used.

Trend is the mathematical function that best describes the relationship between 

two correlated variables. The parameters o f the function are obtained by regression 

analysis. The least squares method is the most commonly used technique. Having decided 

on the functional shape of the trend (e.g., linear, polynomial), the parameters are obtained
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such that the sum o f the squared residuals, e:2, is minimized. Baecher (1987)

recommended that trend equations be kept as simple as possible. Complex functions (e.g., 

high order polynomials) are defined by a large number of coefficients estimated from a 

limited set o f  observations. The higher the number o f the parameters, the higher the 

uncertainty in the estimates of these parameters.

Linear models are commonly used to describe soil properties. Equation 3-2 then 

becomes;

x t = a0 + a,Zi + e, (3-3)

where; aQ and a, are regression coefficients representing the intercept and slope o f line, 

respectively and zt is the independent variable (e.g., depth). Using method o f least 

squares, regression coefficients can be obtained as follows;

For both cases, the variance of observations around mean trend is given by the 

squared difference between measurements and model predictions as follows;

_ T.(zl -E [z])(x ,-E [x])  
z  (zt -E [z])2

(3-4)

a0 = E[x] -  a,E[z] (3-5)

For the special case of linear model through the origin, the intercept is equal to 

zero and the slope is given by;

(3-6)

(3-7)

where; t, = a„ + a,Zi is the trend value at location i.
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At this point, it is important to emphasize the assumptions embedded in the 

method o f  least squares. Firstly, the residuals, e„ are assumed to have a zero mean and a 

constant variance given by V[x], Secondly and most importantly, they are assumed to be 

independent from one location to another. It, thus, follows from the assumptions o f the 

independence of residuals and the deterministic trend component that the soil property, x„ 

is an independent random variable; which is seldom the case. Neter et al. (1990) provided 

a detailed comprehensive discussion o f linear regression models.

In summary, the soil property of interest is viewed as a random variable with a 

mean and a variance. The mean is a function o f location and is given deterministically by 

the trend equation. The variance is estimated from the scatter of observations around the 

trend and is assumed constant at all locations. Figure 3-5 is a conceptual visualization of 

the model, where PDF is the probability density function o f the residual component.

Trend
PDF of x around 
trend_________

Distance; z

Figure 3-5  Model of soil variability (modified from Neter et al., 1990)

A special case that is sometimes encountered in practice is the one in which the 

soil property does not indicate a clear trend. The trend is, therefore, a constant given by
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the mean o f observations and the variability around the mean is described by data 

variance. The trend model (Equation 3-2) then reduces to;

x, = E[x] + e, (3-8)

2.3.2.2 Statistical Measures o f  Spatial Variability

Spatial variability is described by the correlation between soil measurements in 

space. Since the trend is considered deterministic, spatial variability is concerned with the 

correlation between residuals. The spatial structure o f a spatial quantity can be described 

by several statistical measures (Deutsch & Joumel, 1998). The most common o f which 

are autocovariance, Cx(r), and semivariogram, yx(r).

A utocovariance

Autocovariance, Cx(r), is a measure of similarity between data of the same type 

separated by a lag distance r. At small separation distances, the autocovariance is high 

indicating strong correlation. As r increases, Cx(r) decays gradually till it is equal to zero 

indicating no correlation; i.e., independent variables. In statistical terms, the 

autocovariance is defined as the expected value of the residuals at locations r distance 

apart; as given by Equation 3-9.

Cx(r) = E[(xt - t,)(x,+r - tl+r )]  (3-9)

where x, and t, are the measured and mean values at location i and xi+r and tj+r are the

measured and mean values at location i+r. The relationship between Cx(r) and r is 

referred to as autocovariance function. It characterizes the degree o f spatial continuity of 

the variable being studied. Figure 3-6 is a schematic illustration o f the autocovariance

function. At zero separation distance, r=0, the autocovariance Cx(0) reduces to the

variance of the observations; V[x], Based on the proposed soil model (Equation 3-2), the 

autocovariance o f the measured soil parameter is equal to the sum o f the autocovariances 

o f random error, Ce(r), and inherent spatial variability, Cv(r), as given by Equation 3-10
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(trend is assumed deterministic). Since random errors are assumed independent from one 

location to another, Ce(r) is equal to zero for all r values except for r=0 (error at location 

i is perfectly correlated with itself). The values o f Ce(r) and Cv(r) at a zero separation 

distance, are referred to as random error variance, Ve[xJ, and variance o f  inherent 

variability, Vv[x], respectively. Figure 3-6 illustrates the various components of 

autocovariance function.

Cx(r) = Cv (r) + Ce (r) (3-10)

Cx(0) = V[x]
CJ0)=Vt[x\

\C /r )  = Ce(t) + Cv(r)\

w
Cv(0)=Vv[x\

( l/e ) .r v[x] — ^ C / r ) = 0 + C v(r)

r 1--------------------- -

Separation Distance; r  

Figure 3—6 Components of autocovariance function

Analytical decay expressions are usually used to describe the autocovariance 

function. The exponential and gaussian (squared exponential) are the functions most 

commonly used in practice (Vanmarcke, 1977a; Baecher, 1987; Wu et al., 1987; 

Christian et al., 1994; DeGroot, 1996; Lacasse and Nadim, 1996), Figure 3—7. Vanmarcke 

(1977a) pointed out that none of these analytical models can claim any fundamental basis, 

they only provide a good fit to the autocovariance computed based on observed data 

(experimental autocovariance).

In exponential and gaussian models, the distance at which Cx(r) decays to 1/e 

(s  37%) o f the variance of inherent variability Vv[x], is known as the autocorrelation
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distance, ra, Figure 3-6. It is the model parameter and is interpreted as a measure of the 

extent o f spatial correlation. Observations within a radius r0 are likely to be either all 

above or all below the mean. Observations more than ra apart are weakly or no longer 

correlated. Figure 3—8 illustrates the influence o f autocorrelation distance on the 

variability o f soil property (DeGroot & Baecher,1993).

-r/r„Cv(0)

Separation distance; r

Cv(0)

Separation distance; r

Figure 3—7 Autocovariance functions: a) Exponential; b) Gaussian 

(modified from DeGroot and Baecher, 1993)

L A /Il.Au

Measured parameter

/7 \ r*W v  rfcr* )Mean

Small r0 Large r„

Figure 3—8 Influence of autocorrelation distance on soil variability, 

both plots have the same horizontal scale

Semivariosram

Unlike the autocovariance, the semivariogram yx(r) is an average measure of

dissimilarity between data separated by distance r. It is defined as half the expected value
2

of the variable (r, - x,+r) , as indicated by Equation 3-11.
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f x ( r ) = ^ E [ ( x i ~ x l+r) 2 ] (3- 11)

The use o f the semivariogram in studying the spatial structure o f spatial quantities 

is cumbersome for non-stationary problems (observations indicating a clear trend). 

Therefore, it is often limited to cases where the mean can be assumed constant or the 

trend can be easily removed from the observations. The use o f semivariogram is more 

common in the context o f mining geostatistics (Joumel & Huijbregts, 1978). Some recent 

studies, however, explored its value in geotechnical applications (Kulatilake & Ghosh, 

1988; Soulie et al., 1990; Bjerg et al., 1992; Chiasson et al., 1995).

At r=0, Xi and xi+r are identical and the semivariogram is equal to zero (unless 

there is a random measurement error). As r increases the dissimilarity between the 

measurements increases and the semivariogram gradually increases untill it levels off at a 

large separation distance indicating total dissimilarity or randomness. Figure 3—9 shows 

the variation o f semivariogram with increasing separation distance. In geostatistical 

terms, the level off value is referred to as sill and is equal to measurements variance V[x], 

The separation distance at which yx(r) reaches the sill is known as range or sill distance, 

a. It is the separation distance at which the measured data are no longer correlated.

SillV[x]

E«k.
0X1o'u y/r)
E
£

a
Separation Distance; r

Figure 3—9 Elements o f semivariogram function for a stationary condition
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Similar to the autocovariance, the semivariogram o f a set observations is the sum 

o f two components; random errors plus short scale variability and large scale variability. 

Random errors and short scale variability appear as a discontinuity at the origin., known in 

geostatistical literature as the nugget effect, Ca, as shown in Figure 3—9. Several analytical 

functions are used to describe the semivariogram, the most common o f which are the 

spherical, exponential, gaussian (squared exponential) and power models (Goovaerts, 

1997). For stationary condition, the autocovariance and semivariogram are related as 

follows;

Yx(r) = V [xJ-C x(r) (3-12)

The range, a, of exponential models is analytically related to the autocorrelation 

distance r0 as indicated in Table 3-1. If the data exhibits a trend (non-stationary 

condition), the semivariogram function does not level off and continues to increase 

beyond the sill value. Estimating the range becomes highly subjective.

Table 3-1 Relationship between range, a, and 
________ autocorrelation distance, ra______

Semivariogram Function (oJr0)

Exponential 3.0

Gaussian V3.0

2.3.2.3 Methods o f  Analyzing Spatial Variability

Statistical analysis of spatial variability has two purposes: 1) to separate the 

random error component from inherent variability, and 2) to estimate the autocorrelation 

distance. Three methods are commonly used to estimate the autocovariance function 

based on a set observations. They widely differ in the statistical approach adopted, 

assumptions, limitations and statistical complexity.
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Method o f  Moments

The method o f moments is by far the simplest and most widely used approach 

(Baecher, 1987; DeGroot, 1996). Sample moments (e.g., mean, variance, autocovariance) 

are used as estimators o f the unknown population moments. The autocovariance, Cx(r), of 

a set o f observations (experimental autocovariance) is;

1 m
c *(r) = TTTT I f c  - t , +r)  (3-13)N(r) <=/

where N(r) is the number of data pairs separated by distance r, x, and f, are the 

measurement and the trend values at location r, and x,+r and ti+r are the measurement and 

the trend values at location i+r. Because of the limited number of observations, available 

data are often grouped into distance classes. That is to say that all data pairs separated by 

a distance r±Ar are used to compute Cx(r), where Ar is an arbitrary, constant distance 

tolerance. The experimental autocovariance is calculated for the different distance classes 

and a plot o f Cx(r) versus r is produced. An appropriate analytical function (Section 

2.3.2.2) is fitted to the experimental data as shown in Figure 3-10. Since the 

autocovariance at r=0 is equal to the true spatial variability variance, extrapolating the 

autocovariance function to the origin divides the total variance into true variability and 

random error. Baecher et al. (1983) reported that the random error variance of in-situ 

measurements of soil properties accounts for zero to as high as 70% of observed data 

scatter. Autocorrelation distance can be obtained as discussed in Section 2.3.2.2. Baecher 

(1987) and Christian et al. (1994) provided good examples on the application o f the 

method of moments in modeling soil properties.

In spite of its wide application, the method o f moments has some limitations. It 

requires prior knowledge of the trend. Li (1991 & 1994) pointed out that except for the 

cases of a constant mean, trend estimation is usually done by least squares procedure. As 

explained in Section 2.3.2.1, the least squares technique implicitly assumes that the 

residuals off the trend are random or uncorrelated. This is inconsistent with the concept
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that the portions of residuals representing true variability are autocorrelated. DeGroot and 

Baecher (1993) also pointed out that the moment estimator o f autocovariance is only 

asymptotically unbiased; meaning that the estimate o f autocovariance is only unbiased 

when the sample size is significantly large. They further added that fitting an analytical 

function to the experimental autocovariance is often done visually which adds an element 

o f subjectivity to the analysis. Jaksa et al. (1997) indicated that the estimate o f  the random 

error variance, Ce(0), based on the method o f moments is in fact a combination o f  short 

scale variability and random errors. They questioned the reliability o f the computed 

variance. The issue o f estimating random measurement errors is discussed in more detail 

in Chapter 5.

Random ’ 
error; Ce(0)

wsa•c
>©wo
s
<

. Total variance; V[x]

^ -----K[x] O Ejqjerimental 
autocovariance

ox
o \ Fitted autocovariance 

function

’
-------- -

-

Separation Distance; r

Figure 3—10 Method of Moments: estimating random error 

variance, Ce(0), and autocorrelation distance, ra

Method o f  Maximum Likelihood

Consider the probability density function of a random variable X  conditioned on 

some parameter of interest 0, f(X\Q). The parameter 0 could be data variance, for 

example. Given a set of observations; x  = {x,, x2, ... x„}, the rationale behind the method 

o f maximum likelihood is to estimate the most likely value of 0 that will produce the
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observed data. In other words, among all possible values o f 0 the maximum likelihood 

estimator is the one that maximizes the probability of obtaining that set of observations.

The probability of obtaining a particular data value x, conditioned to 0 is given by 

the magnitude of the probability density function evaluated at x,; /( r , |0 ) . Assuming a 

random sample, the joint likelihood function of obtaining x,, x2, ... x„, is given by;

/fe.-c ....... *„|6) = / 0 , |8 )  f ( x 216) ...../(j:„[9)

= f t / ( * , |e )  (3-14)
i

The maximum likelihood estimator of 0 is the value that maximizes the joint 

likelihood function. The same concept can be generalized for more than one conditioning 

parameters: 0 l5 02, ... 0n. Assuming the random variable X  to be isotropic Gaussian, 

Mardia and Marshall (1984) developed a maximum likelihood approach for estimating 

the trend and autocovariance functions simultaneously, thus, avoiding the problems 

associated with the method o f moments. This technique however, requires the analytical 

forms o f the trend and autocovariance functions (e.g., linear, exponential, ...etc) to be 

known or assumed. DeGroot and Baecher (1993) applied this approach for the analysis of 

the spatial variability of field vane data of the James Bay project to estimate trend 

regression coefficients and autocovariance function parameters.

The method of maximum likelihood is statistically superior to the method of 

moments (DeGroot, 1996), however it also has its own limitations. Li (1994) pointed out 

that the maximum likelihood function (Equation 3-14) can have a number o f local 

maxima Thus, the estimators obtained may not necessarily be those associated with the 

global m axim um . He also indicated that the procedure may lead to nonsensical results 

due to inappropriate assumptions regarding trend and autocovariance functions. For 

example, ignoring an obvious data trend (i.e., assuming a constant mean) may be 

reflected in the autocovariance function indicating large scale variability (i.e., large 

autocorrelation distance) while in reality it is more of a short scale nature. DeGroot and
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Baecher (1993) discussed the effect o f the assumed form o f autocovariance function on 

maximum likelihood estimators. Using exponential and Gaussian functions for the 

analysis o f field vane data o f James Bay project, they reported that trend parameters and 

variances o f spatial variability and random error were very close, however the 

autocorrelation distances were significantly different: 21.4 m and 37.3 m respectively. To 

overcome the problems of local maxima and nonsensical results, they suggested using the 

method o f moments to get a general sense o f the correlation structure o f the data prior to 

the application of the method of maximum likelihood.

Geostatistical Approach

The application of geostatistics for analyzing the spatial structure of earth data is 

more common in mining and reservoir characterization problems than it is in geotechnical 

engineering. However, a number o f recent studies investigated its application in studying 

spatial variability o f soil properties in geotechnical applications (e.g. Kulatilake & Ghosh, 

1988; Soulie et al., 1990; Bjerg et al., 1992; Chiasson et al., 1995). The semivariogram 

(Section 2.3.2.2) is the measure o f variability commonly used in geostatistics. For a set of 

observations, the experimental semivariogram is calculated as follows;

1 W r  \ 2
V jr )  = — — Y ( x l - x l„ )  (3-15)

2N(r) i=i

where N(r) is the number of data pairs separated by distance r. As in the autocovariance 

calculations, an arbitrary constant tolerance ±Ar is considered for each separation 

distance. An appropriate analytical function is fitted to the experimental points and the 

nugget effect, C0, and range, a, are obtained, as shown in Figure 3-9. For detailed 

discussion o f the geostatistical approach, the reader is referred to Joumel & Huijbregts 

(1978), Goovaerts (1997) and Deutsch & Joumel (1998).

For simplicity, the application o f the geostatistical approach is more common in 

problems where the assumption of stationarity is considered acceptable. Thus, the 

attribute would have a constant mean and semivariogram function at all locations. In
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practice, data commonly exhibit some trend. Pinnaduwa et al. (1988) applied a more 

general methodology to study the spatial variability o f cone penetration data showing a 

polynomial trend with depth. Chiasson et al. (1995) adopted another technique for 

analyzing the variability of field vane and piezocone data exhibiting linear trends with 

depth. The idea of both approaches is to filter the trend component from data such that 

residuals can be modeled as a stationary process. Alternatively, the domain o f interest can 

be divided into zones within which the mean and the semivariogram are assumed 

constant; a condition of quasi-stationarity. Thus the spatial variability would be 

characterized by different structures depending on location. Both approaches, however, 

require a large number of observations that are often lacking in practice.

23.2.4 Size Effect

So far our discussion of statistical inference has focused on point statistics; 

meaning that observed data and inferred statistical parameters (e.g., mean, variance) refer 

to discrete points within the domain of interest. Typically, the volumes o f soil specimens 

in geotechnical tests are negligible compared to the volume of the strata and can be 

regarded as points. However, the performance o f a structure is often controlled by the 

average soil properties within a zone of influence rather than soil properties at discrete 

locations. Slope failure is more likely to occur when the average shear strength along the 

failure surface is insufficient rather than due to some local weak pockets. Anderson et al. 

(1984), Li and Lumb (1987) and Baecher (1987) argued that the uncertainty of the 

average shear strength along slip surface, not the point strength, is a more appropriate 

measure o f uncertainty. Baecher (1987) warned, however, that depending on performance 

mode, average properties may not necessarily be the controlling factor. Internal erosion in 

dams, progressive failure and sliding along a discontinuity are examples of cases where 

extreme values control performance.

The variance of the strength spatially averaged over some volume/surface is less 

than the point variance. As the domain over which the soil property is being averaged 

increases, more local fluctuations tend to average out and the variance o f the average

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



property decreases. For quantities averaging linearly, the amount o f variance reduction 

depends on the size o f averaging domain and the spatial structure of the soil property. The 

mean, however, remains almost unchanged. To illustrate this fact, the numerical data in 

Figure 3—3 (top plot) was discretized based on grids of sizes lx l ,  5x5 and 10x10, 

respectively. For each scheme, the arithmetic averages within grid squares were 

calculated and the histogram o f the local averages plotted, as shown in Figure 3—11. As 

the averaging area increases, the coefficient o f variation of the local averages dropped 

from 1.55 to 0.28 and the minimum and maximum values became closer to the mean.
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Figure 3—11 Variance reduction due to spatial averaging over blocks o f sizes 

lx l ,  5x5 and 10x10
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Data characterized by erratic spatial structure (i.e., short autocorrelation distance) 

exhibit significant variance reduction, as it is the case in Figure 3—11. Variance reduction 

in more continuous spatial structures takes place more slowly. The variance o f the 

spatially averaged quantity is expressed as a ratio of the point variance using a variance 

reduction factor, f ; Equation 3-16 (Vanmarcke, 1977a).

/  = “  (3-16)

where VAv[x] is the variance o f the mean soil property averaged over a volume AV. In a 

two dimensional slope configuration, VAV[x] can be replaced by V ^x] ', variance of mean 

strength averaged over the length o f the slip surface, L. Vanmarcke (1977a) and Baecher 

(1987) indicated that the variance reduction factor can be approximated by the ratio o f the 

autocorrelation distance to the length of the slip surface as given by Equation 3-17.

f  = ^ j r  (3-17)

Vanmarcke (1977b), Li and Lumb (1987) and Christian et al. (1994) applied the 

variance reduction factor in probabilistic analysis o f slope case studies. Lacasse and 

Nadim (1996) reported that f  can be as much as 0.4 to 0.8. Gilbert et al. (1998) estimated 

f  to be around zero for the Kettleman Hills landfill. As a result, they neglected the 

inherent spatial variability component in assessing uncertainty of shear strength.

2.3.3 Limitations o f  Existing Spatial Variability Analyses

In spite o f the legitimacy o f the concept o f spatial variability, there are many 

ambiguities and limitations surrounding the analytical techniques used in evaluating the 

autocorrelation function and the associated parameters (e.g., autocorrelation distance). 

The following sections touch on some of these issues.
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2.3.3.1 Anisotropy

Soil properties often exhibit some form of anisotropy. Statistical measures used to 

describe spatial variability are direction-dependent. For example, depending on soil 

variability, the estimated autocovariance function in the NE direction may be different 

from that in the NW direction. That difference is reflected in different autocorrelation 

distances and/or in different spatial variability variances. Vv(x). Figure 3—12 shows 

semivariogram functions in two directions for a numerically generated anisotropic data 

(left plot). Spatial continuity in direction "A" is much stronger than "B" as reflected by 

the larger range, a, and smaller nugget effect and sill values.
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Figure 3—12 Spatial structures in different directions for anisotropic data generated 

using GSLIB software (Deutsch and Joumel, 1998)

Joumel & Huijbregts (1978) indicated that the horizontal character of sedimentary 

processes often leads to larger variability in the vertical direction than in the horizontal 

direction. Baecher (1987) suggested that the horizontal autocorrelation distance is roughly 

one order o f magnitude larger than the vertical one. Analyzing the spatial variability of 

vane data in the James Bay project, Soulie et al. (1990) estimated the vertical and 

horizontal ranges, a, of semivariogram functions to be 3.0m and 30.0m respectively. 

Honjo and Kuroda (1991) estimated the vertical and horizontal autocorrelation distances 

of unconfined compressive strength of soft clay to be 2.0m and 40.0m respectively. Table
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3-2 (Section 2.3.3.5) provides examples o f the range o f the autocorrelation distance in the 

vertical and horizontal directions for different soil properties. Baecher (1987) added that 

the horizontal autocorrelation distance can also vary with direction depending on geologic 

history.

As discussed earlier, variance reduction due to size effect is a function o f the 

autocorrelation distance ra. Equation 3-17. Vanmarcke (1977a) and Kulatilake and Miller

(1987) developed 3-dimentional autocovariance models to deal with anisotropy. Both 

models are complex and require large amounts o f data. Alternatively, Vanmarcke (1977b) 

proposed an approximate procedure to calculate an equivalent autocorrelation distance 

based on the geometry of the problem and the autocorrelation distances in the horizontal 

and vertical directions, assuming horizontal isotropy. This approach also requires large 

amounts o f data. Furthermore, site stratigraphy in real projects usually involves a number 

of soil layers with widely varying characteristics. Estimating autocovariance functions in 

different directions for each parameter is an extensive and long exercise (Chowdhury and 

Tang, 1987), requiring significant amounts o f data.

In practice, major simplifying assumptions are often adopted. Typically, the 

autocovariance function in the horizontal plane is assumed to be isotropic. Depending on 

the geometry of the project, farther assumptions can be made. For example, in projects 

with large extent (e.g., long embankment) soil properties can be averaged vertically in 

each borehole and the averaged values used to estimate the horizontal autocovariance 

fxmction. In cases where the vertical function is more important (e.g., compressibility), 

averages o f measurements at the same elevation in different boreholes are used to 

estimate the vertical autocovariance function. DeGroot (1996) provided examples of both 

cases. In analyzing the stability of the dykes of the James Bay project, Christian et al. 

(1994) adopted a single isotropic autocorrelation distance for all soil properties and 

layers. Simplifying assumptions are essential from a practical point of view. However, 

there are some concerns over the reliability of autocorrelation distance predictions and 

their influence on variance reduction factor, f .

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3.3.2 Scale o f  Observations

Depending on separation distance, r, Joumel & Huijbregts (1978) attributed 

variability between measurements to various causes. There is a variability due to 

measurement error (rsO), variability due to variations in mineralogical composition (r< l 

cm), variability due to alteration of properties at strata level (r<100 m), variability due to 

geologic settings (r<100 km) and possibly variability due to other unknown causes. They 

added that observing all these variabilities simultaneously requires observations at all 

ranges o f separation distances (r=l pm -l 00 km) which is never available in practice. The 

type(s) o f variability that we really observe in practice, thus depend on the scale o f 

observations. Variability due to a major geologic feature cannot be detected by closely 

spaced observations within a zone of limited extent. Similarly, widely spaced data over a 

large region may not capture a short scale variability, Figure 3—13.

Sill

B£

200 3000 100 400
Separation Distance; r (m)

Figure 3—13 Effect of scale o f observations on observed variability

Studying the spatial variability o f field vane data o f the James Bay project, Soulie 

et al. (1990) observed a high concentration o f vane soundings in a central area o f the site. 

The entire site is roughly 1100x450 m (spacing between vane borings > 70 m) while the 

central zone is about 20x50 m (spacing between vane borings <10 m). The depth of vane 

soundings varied between 13 and 19 m in both areas and the vertical spacing between
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tests was typically 0.5-1.0 m. Soulie and his colleagues divided the data into two subsets 

corresponding to the central area and the rest o f the site and studied their spatial structures 

separately. They obtained the same vertical semivariogram function for both sets with a 

range a=3.0 m (note the similarity o f vertical scales o f observations). The horizontal 

semivariogram functions, however, were different. The range for the central zone was

7.0 m while for the rest o f the site was 30.0 m.

2.3.3.3 Sampling Scheme

The sampling scheme is one o f the major difficulties encountered in analyzing 

spatial variability of soil properties. It refers to both the number of measurements and 

separation distances between them.

Methods o f analyzing spatial variability, discussed in Section 2.3.2.3, provide 

only estimates o f  the unknown autocovariance/semivariogram. These estimates are 

asymptotically unbiased; meaning that stronger inferences can always be obtained with 

increasing number o f observations. Using the method o f maximum likelihood, DeGroot 

& Baecher (1993) showed that uncertainty in the estimates of variance of inherent 

variability and autocorrelation distance was significantly reduced as the number of 

observations increased from 36 to 100. They added that the asymptotic property o f the 

method o f moments is even inferior to that o f maximum likelihood. Russo and Jury

(1988) pointed out that the number o f observations available in practice is often much 

less than what is needed for an accurate estimate o f the semivariogram. Lacasse and 

Nadim (1996) indicated that often there are not enough data to reliably assess the 

autocorrelation distance. Limited data due to budget constraints is a major obstacle facing 

the implementation of formal spatial variability analyses into geotechnical practice.

In addition to an adequate number o f observations, the assessment o f spatial 

variability o f soil properties requires the data be located at a wide range of separation 

distances. Reliable estimates of autocorrelation distance can only be made with data 

spacing less than the probable autocorrelation distance (DeGroot & Baecher, 1993). Data
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at very small separation distances are also essential for estimating random error variance 

(Russo & Jury, 1988). Lack of such data can largely undermine the reliability of spatial 

variability analyses.

Studying the spatial structures o f piezocone and field vane data o f a site near 

Saint-Hilaire in Quebec, Chiasson et al. (1995) concluded that the analysis o f horizontal 

variability for both tests is not possible due to an unfavorable sampling grid. DeGroot 

(1996) pointed to the Carters dam project where significant amount of SPT data was 

available, 45 borings, yet few meaningful conclusions could be made about the horizontal 

spatial structure. The reason was the lack o f borings at separation distances in the range 

of and less than the autocorrelation distance. Benson (1991) analyzed the spatial 

variability of a large set of measurements o f hydraulic conductivity of a clay liner pad 

performed by Rogowski (1990). He concluded that adequate description o f spatial 

structure was not possible due to lack of data at small separation distances.

Joumel & Huijbregts (1978) suggested that estimating experimental 

semivariogram/autocovariance should only be considered if the number of data pairs for 

each separation distance is more than 30. DeGroot (1996) drew attention to the limited 

budget o f most site exploration programs and consequently the limited number of tests. 

Furthermore, boring and testing locations are usually selected judgmentally without 

regard to the requirements of statistical analysis. As a result, a formal analysis o f the 

spatial variability o f soil properties could be, in many cases, fruitless.

2.3.3.4 Trend Selection

As discussed earlier, spatial variability is represented by the scatter of 

observations around a deterministic trend. Autocovariance and semivariogram estimation 

is based on the division of observations into a trend component and a random component 

(residuals). Changing the trend necessarily changes Cx(r) and yx(r). DeGroot (1996) 

indicated that the type o f trend model selected can have a strong influence on the 

inferences of the spatial structure of a soil property. Russo and Jury (1988) pointed to the
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undetected trend or inappropriate trend model as one o f the sources o f  errors in estimating 

autocovariance and semivariogram functions. In a discussion o f the method o f maximum 

likelihood, Li (1994) mentioned that a trend model not conforming to the nature o f the 

spatial structure being studied may lead to nonsensical results. Baecher (1987) explained 

that the division o f observations into a trend and residuals is an artifact o f the analysis and 

it is more o f the designer’s judgement on how much o f the scatter to model 

deterministically and how much to treat statistically.

DeGroot (1996) investigated the impact of the trend on the inference o f the spatial 

structure of soil properties. He analyzed the spatial variability o f dilatometer data (Figure 

3—4) assuming constant mean, single linear trend and bilinear trend. Using an exponential 

autocovariance function, the analysis indicated zero random error for all cases but 

significantly different estimates of the variance o f inherent variability and the 

autocorrelation distance. The former was estimated to be 6400 kPa2, 1870 kPa2 and 630 

kPa2 for the three models, respectively, while the corresponding autocorrelation distances 

were 3.7 m, 1.1 m and 1.0 m.

Kulatilake and Ghosh (1988) suggested modeling trends using polynomial 

functions of different orders and computing the semivariogram function o f the residuals 

for each one. The most appropriate model is the one whose corresponding semivariogram 

function levels off at the sill value of the residuals (refer to Section 2.3.2.2). Analyzing 

the tip resistance of a cone penetrometer profile, they concluded that a polynomial 

function of third order is the most appropriate model for that data. Baecher (1987), 

however, warned that the higher the order o f model function, the higher the number of 

regression coefficients that need to be estimated from the same set o f data and the higher 

the uncertainty in these parameters. Deutsch (2000) also warned o f the significant 

uncertainty associated with extrapolating high order polynomial trends to areas of less 

data control.
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2.33.5 Discussion

As discussed in Section 2.3.2, the legitimacy o f the concept o f spatial variability is 

not in question. However, the limitations o f formal analytical techniques, discussed in 

Sections 2.3.3.1 through 2.3.3.4, seem substantial. A literature review was conducted to 

collect results o f spatial variability analyses of different soil properties. The search aimed 

at investigating the influence o f different analysis methods, assumptions and 

simplifications on spatial variability parameters. As such, much focus was put on data 

whose variability was analyzed using different techniques. Table 3-2 summarizes the 

results gathered.

Examination of Table 3-2 indicates significant differences in the output o f the 

analyses. Field vane data from the James Bay project are a clear example. Horizontally, 

estimates o f random error variance varied between 0.0 and 10.2 kPa2, the variance o f 

inherent variability ranged between 12.7 kPa2 and 50.0 kPa2 and the horizontal 

autocorrelation distance ranged between 18.6m and 37.3m. The uncertainty introduced by 

such scatter challenges the reliability of formal spatial variability analysis techniques. 

This adds on to the physical limitations imposed by the limited amounts o f data, 

unfavorable sampling plans and complex stratigraphy.

Where data are sparse or absent, engineering judgement can be used to assess 

uncertainty o f soil properties (U.S. Army, 1992). This is a common situation in practice, 

particularly in embankment design where the in-situ properties of fill material, that is yet 

to be constructed, are not known. Typical values for the coefficient o f variation and the 

shape of probability density function o f various soil properties are available in the 

literature (Lumb, 1966; Singh, 1971; Chowdhury, 1984; Harr, 1977&1987; Kulhawy et 

al., 1991; Lacasse and Nadim, 1996). In studying the reliability of James Bay dykes, 

Christian et al. (1994) applied their judgement for assessing the potential variability o f 

embankment material properties. Friction angle and unit weight were assigned mean 

values o f 30 degrees and 20 kN/m3 and standard deviations of 2 degrees and 1.4 kN/m3, 

respectively. Li and Lumb (1987) judgmentally assumed a coefficient o f variation of 10%
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for pore pressure ratio when analyzing the stability o f Selset landslide. W olff (1991) 

adopted a mean o f 39 degrees and a coefficient of variation of 8% for the shear strength 

o f the rockfill berm used to stabilize Shelbyville dam. Alternatively, variability can be 

assumed to follow a triangular probability distribution with estimates of m inim um , 

maximum and most likely values based on expert opinions. For such cases, where there is 

no data, formal spatial variability analyses cannot be applied.

Li and White (1987) pointed out that ignoring spatial correlation (i.e., assuming 

soil properties to be perfectly correlated; r = oo) would lead to very conservative estimates 

o f the failure probability. However, they commented that analyzing spatial variability 

requires considerably more data than can be collected in even a “detailed site 

investigation”. W olff and Harr (1987) shared the same view. Chowdhury and Tang 

(1987) commented that probabilistic formulation gets very complex when accounting for 

the autocorrelation o f more than one variable. Wolff (1996) stated that spatial correlation 

theory presents a lot o f difficulties for routine analyses in practice.

Based on the discussion in the preceding paragraphs, it seems that empiricism and 

judgement have to be exercised in order to be able to practically account for spatial 

variability and spatial averaging processes.

2.3.4 Evaluation o f  Systematic Error

The concept o f systematic error was discussed briefly in Sections 1.1.2 and 2.2.1. 

As explained, systematic error is divided into measurement bias and statistical error. Its 

contribution to the uncertainty of the estimates of soil properties is quite different from 

that o f inherent spatial variability. Spatial averaging or size effect tends to reduce the 

uncertainty due to spatial variability (Section 2.3.2.4). In contrast, systematic error is 

consistent across the entire domain and propagates unchanged through the analysis. Its 

contribution to the overall uncertainty can, therefore, be significant.
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Table 3-2 Assumptions and results of spatial variability analyses for various soil properties

PROJECT DATA DIRECTION METHOD

OF

ANALYSIS

TREND C(r) or (y(r)} 

FUNCTION

Ve[x)

{% of v\x\}

Vv[x\

{% of Fix]}

r0

(m)

REFERENCE

James Bay Hydro

electric Dykes 

(sensitive clay)

Field vane Horizontal

Moments Constant Exponential 9.2 kPa2 13.8 kPa2 30.0 Ladd et al., 1983

Geostatistics Constant {Spherical} 0.0 kPa2 50.0 kPaJ 30.0 Soulieet al., 1990

Maximum

Likelihood

Constant Exponential 9.6 kPa1 13.4 kPaJ 21.4 DeGroot and 

Baecher, 1993Surface trend Exponential 9.1 kPa2 13.3 kPa2 23.0

Surface trend Gaussian 10.2 kPa* 12.7 kPa* 37.3

Moments Constant Exponential 6.3 kPa2 16.7 kPa2 18.6 DeGroot, 1996

Vertical Geostatistics Constant (Spherical) 0.0 kPa* 50.0 kPa2 3.0 Soulieet al., 1990

Carters Dam SPT Horizontal

Moments Constant Exponential 0.97 (bl/ft)2 5.03 (bl/ft)'' 120.0

DeGroot, 1996Maximum

Likelihood

Constant Exponential 0.43 (bl/ft)2 5.57 (bl/ft)2 60.0

Linear 

surface trend
Exponential 0.0 (bl/ft)2 3.0 (bl/ft)2 16.7

University of 

Massachusetts Test 

Site (varved clay)

Dilatometer Vertical Moments Constant Exponential 0.0 kPa2 6400 kPa^ 3.7 DeGroot, 1996

Liner Exponential 0.0 kPa2 1870 kPaJ 1.4

Bi-linear Exponential 0.0 kPa2 630 kPaJ 1.03

Saint- Hilaire Site 

(sensitive clay)

CPT tip 

Resistance

Vertical Geostatistics Linear {Spherical} 0.0 kPa2 5400 kPa2 2.0 Chiasson et al,, 

1995
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Table 3-2 Assumptions and results of spatial variability analyses for various soil properties (cont’d)

PROJECT DATA DIRECTION METHOD

OF

ANALYSIS

TREND C(r) or (y(r)} 

FUNCTION

Ve\x\

{% of Fix)}

VV[X\

{% of Fix]}

r0

(m)

REFERENCE

Saint- Hilaire Site 

(sensitive clay)

CPT sleeve 

friction
Vertical Geostatistics Linear {Spherical} 0.0 kPa2 4.6 kPa2 2.0

Chiasson et al., 

1995Field vane Vertical Geostatistics Linear {Spherical} 0.0 kPa* 24.0 kPa2 2.0

Oil Exploration 

Platform (North 

Sea clay)

CPT tip 

resistance
Horizontal Moments Constant Gaussian {0.0 %} {100%} 30.0 Tang, 1979

N/A (dense sand)
CPT tip 

resistance
Horizontal N/A N/A Gaussian {1.0%} {99.0 %} 37.5

Lacasse and 

Nadim, 1996

N/A (partly 

laminated clay)

CPT tip 

resistance
Horizontal N/A Constant Exponential {0.0 %} {100.0%} 9.6

Lacasse and 

Nadim, 1996

Eglin Air Force 

Base, Florida (sand)

CPT tip 

resistance

Vertical Geostatistics 3rd order 

polynomial

{Spherical} 0.0 kPa2 38.7x10s

kPa2

1.56 Kulatilake and 

Ghosh, 1988

Test Embankment, 

North of Tokyo 

(soft clay)

unconfined

compressive

strength

Horizontal Geostatistics Constant {Exponential} 0.0 kPa2 64.0 kPa2 40.0
Honjo and 

Kuroda, 1991

Vertical Geostatistics Constant {Exponential} 0.0 kPa2 64.0 kPa2 2.0

N/A SPT Horizontal Moments Constant Exponential 60.5 (bl/ft)2 60.5 (bl/ft)2 53.5 Baecher, 1986



2.3.4.1 Measurement Bias

Detecting and assessing the magnitude o f measurement bias is difficult. The most 

dependable way is to compare measurements with back-calculated values from observed 

performance (e.g., failure) or with measurements from a more reliable procedure or 

device. Bias is often expressed in the form o f a factor that is either multiplied or added to 

the measured value. The soil model discussed in Section 2.3.2, Equation 3-2, then 

becomes;

xi B = ti + evi + e ei (3-18a)

or xf + B = ti + e vf + z ei (3-18b)

where B  is a bias correction factor. Bjerrum (1972) based his correction factor for field 

vane data upon a comparison of back-calculated undrained shear strength from slope 

failures with those obtained from vane measurements. The correction factor is the ratio of 

the former to the latter and is used with Equation 3-18a.

Analyzing field vane data of the James Bay project, Soulie et al. (1990) observed 

a systematic shift o f about 8 kPa between undrained shear strength from 2 vane soundings

1.0 m apart conducted in 1979 and 1981, respectively. They observed the same shift 

between other pairs of holes, however they reported that no physical explanation was 

found. They applied a bias correction factor o f 8 kPa using Equation 3-18b. The 

correction factor can be, however, highly uncertain as is the case, for example, in 

Bjerrum’s factor (Azzouz et al, 1983; Ladd 1983). In addition to the mean value of bias 

factor, its uncertainty (in the form o f standard deviation) should also be considered. Wu 

(1974) performed a study similar to that o f Bjerrum for case histories of slope failures in 

which the undrained shear strength was based on unconfined compression tests. He 

concluded that the measured undrained shear strength need to be multiplied by a 

correction factor with a mean of 1.10 and a standard deviation o f 0.33.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3.4.2 Statistical Error in the Mean/Trend

So far, the models and analytical techniques adopted were all based on the 

assumption that the trend component in Equations 3 -2  and 3-18  is determ inistic (i.e., 

has zero variance). As a result, the variance of inherent variability is equal to that o f the 

residuals sv;. Since the trend is estimated based on a limited set of observations, this 

assumption is somewhat in error, which is referred to as statistical error. It is typically 

quantified by considering the trend component as a variable with a mean equal to t,- and a 

non-zero variance. The magnitude o f the variance depends on the number of observations 

n; the larger the number o f measurements, the less uncertain the mean trend is. Therefore, 

the effect o f statistical error can be reduced by increasing the number of measurements. 

The total uncertainty in measurements of a soil property is the sum of uncertainty in the 

mean trend and that due to the variability of the residuals ev around the trend.

Statistical theory allows assessing the magnitude of the statistical error variance.

For the case of constant mean and correlated observations, the variance of the mean is

given by Equation 3-19, where C,y(r) is the value of autocovariance function evaluated for 

a separation distance r between locations i and/  (Baecher, 1984).

F { £ [x ]} = - f  i£c„(r)  (3-19)
n i j  J

If measurements are deemed independent (e.g., widely spaced data), Equation 3- 

19 reduces to Equation 3-20. Baecher (1987) suggested that unless observations are very 

closely spaced, Equation 3-20 is an acceptable approximation for most practical 

applications.

^ {£M } = —  (3-20)n

Similarly, the same concept of statistical error applies for a varying trend. 

Regression coefficients o f a linear trend model, a„ and a,, are inferred from a specific set
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of measurements. Smaller or larger sets of observations are likely to yield different 

coefficients. To account for the uncertainty in a0 and a,, they could be modeled as 

normally distributed random variables with mean values given by Equations 3-4 and 3-5 

and variances given by Equations 3-21 and 3-22 (Neter et al. 1990).

V[a, ]  = ----- — -----7  (3-21)
Z ( ^ ~ E [ z ] ) 2

V[aQ]  = VfxJ U  + T r E[Zl* j)2\  0-22)
[ n - E [ z ] y \

The estimates a0 and a,, are usually correlated. The correlation coefficient between them 

is given by Equation 3-23.

0 -23)
<*[a0] o [ a , ]

For the special case o f a linear trend going through the origin, the variance o f the slope is 

given by;

V[a,] = y £ L  (3-24)
2> ,

2.3.5 Correlation Between Soil Parameters

Correlation between two (or more) parameters is an indication of the association 

between their values; in other words, how the change in the value of one parameter 

affects the others. Driven by the appeal of estimating expensive, difficult-to-measure soil 

parameters based on less expensive easy-to-measure parameters, numerous studies have 

been conducted to investigate correlations between soil properties. Based on an extensive 

literature review, Kulhawy and Mayne (1990) prepared a detailed report summarizing
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correlations between various properties. Most o f them were developed empirically and 

are often highly uncertain.

The correlation between two variables x  and y  can be easily detected from a 

scatter plot o f their values as shown in Figure 3-14. It is expressed in terms of the 

correlation coefficient, p^, given by Equation 3-25, where C(xj/) is the covariance of the 

two variables.

C(x,y)  1
CT,.C7. n - 1

' S(X, -E[x]).(y, -  E M ) ' (3-25)

It is, however, important to note that the correlation coefficient is a measure of only linear 

association between variables. Two parameters highly dependent in a non-linear form 

(e.g., sinusoidal function) may have a zero correlation coefficient. The correlation 

coefficient ranges between +1 and —1. A value of +1 indicates perfect positive linear 

correlation while —1 indicates perfect negative linear correlation. A zero correlation 

coefficient indicates no association between the variables (i.e., independence). Figure 3— 

14a shows strong negative correlation between moisture content and dry density (p„r= - 

0.96) while Figure 3—14b implies positive, but poor correlation between dry unit weight 

and unconfined compressive strength (pw= 0.25). Tang et al (1999) pointed, however, to 

the importance o f checking if any functional dependency exists between the soil 

parameters whose correlation is being investigated (e.g., bulk unit weight and moisture 

content). If it does, there is a high potential of obtaining a spurious strong correlation 

between the parameters.

In addition to the probability distributions of input variables, the application of 

probabilistic methods requires estimating (or assuming) correlation coefficients between 

variables. In the context of slope design, the parameters that might be cross-correlated are 

unit weight, friction angle and cohesion. For normal soils, strength parameters are 

positively correlated to unit weight. The variability in soil unit weight is usually small and 

the laboratory procedures for unit weight measurements are highly accurate. Furthermore,
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stability analyses are largely insensitive to variations in unit weight. As a result, unit 

weight is often taken as a deterministic value and its correlation with strength parameters 

is ignored. Alonso (1976) and Nguyen and Chowdhury (1984) showed that the 

contribution of uncertainty in unit weight to the overall uncertainty in slope analysis is 

insignificant.
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Figure 3—14 Scatter plot for detecting correlation between soil properties 

(data from Holtz and Krizek, 1972); a) Strong negative 

correlation, b) Weak positive correlation

Wolff and Harr (1987) and Mostyn and Li (1993) showed that failure probability 

in slope stability analyses is sensitive to the correlation coefficient between strength 

parameters Cr and <{>'. The form o f this correlation is, however, not very clear. Matsuo and 

Kuroda (1974) reported strong negative correlation for an unsaturated soil tested in direct 

shear when sample moisture content was fixed. Holtz and Krizek (1972) also reported 

negative, but poor, correlation for the impervious borrow material used in constructing 

Orville dam. W olff (1985) reported both negative and positive correlations for the borrow 

materials of Cannon dam. Alonso (1976) presented evidence suggesting the absence of 

such correlation for natural soils.
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3. SUMMARY

The discipline o f geotechnical engineering, in general, and the area o f slope 

stability, in particular, are largely dominated by uncertainty. Three categories of 

uncertainties can be distinguished: parameter uncertainty, model uncertainty and human 

uncertainty. Parameter uncertainty involves the uncertainty in the input parameters such 

as soil properties and pore water pressure. Over the past 3 decades major advancements in 

identifying, quantifying and accounting for parameter uncertainty have been achieved. 

Model uncertainty is related to the gap between the theories and models used in the 

analysis and the real conditions. It is one of the major sources o f uncertainty in 

geotechnical engineering, yet our capabilities to quantify it are, to date, primitive. Human 

uncertainty is due to human mistakes and is very difficult to predict and quantify due to 

the variability and uniqueness of the human contribution from one project to another

Quantifying parameter uncertainty involves two stages. Firstly, the adequacy of 

available data (in terms o f the amount and clustering of measurements) to represent the 

entire population is assessed. Secondly, statistical techniques are applied to infer the 

statistical characteristics o f the parameter being studied. This stage involves identifying 

and estimating the trend function, establishing the histogram and the probability 

distribution function, quantifying and separating the random error variance, estimating the 

correlation structure of the data including autocorrelation distance, assessing the impact 

of spatial averaging on one-point statistics and quantifying statistical uncertainty and bias.

In spite o f the significant development in the statistical techniques of quantifying 

parameter uncertainty, the implementation o f such formal analyses into professional 

practice is still faced with many difficulties. The main obstacles are the amounts o f data 

and the spacing between measurements. Typical geotechnical investigation programs 

have limited budgets which is reflected in a limited number o f tests located at a large 

spacing. The lack of data and the improper (in a statistical sense) separation distance 

between measurements can greatly undermine the reliability o f the analyses. The matter is 

further complicated by the directional dependency of the correlation structure of soil
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properties. Other factors related to the statistical techniques such the subjective selection 

o f the trend and autocorrelation functions add on to the uncertainty o f the analyses, 

however to a much lesser extent. Most engineers lack formal training in statistics and 

probability theory, which further hinders the implementation of uncertainty analyses in 

practice. As a result, it seems that an element of judgement and empiricism have to be 

exercised in order to be able to practically account for uncertainty.
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CHAPTER 4

PROBABILISTIC SLOPE ANALYSIS 
MERITS, CONCEPTS AND 

METHODS

The assessment o f the stability o f slopes, particularly natural slopes, is one class 

of problems that is dominated by uncertainties. Geological anomalies, material properties, 

environmental conditions and analytical models are all factors contributing to uncertainty. 

Conventional slope design practices do not account for uncertainty, thus compromising 

the adequacy of predictions. This limitation is well recognized by researchers as well as 

practitioners. Bjerrum (1966) and Peck (1967) expressed their concerns about the ability 

of the profession to make reliable forecasts o f slope failure events. In the context o f dam 

slope design, Wolff (1985) also emphasized on the inadequacy o f judging a design based 

on the numerical value of the factor o f safety alone.

Probabilistic slope stability analysis offers an efficient framework for logical 

systematic incorporation o f uncertainty, thus providing a more rational basis for design. It 

is also the first step towards the implementation of quantitative risk assessment in 

geotechnical engineering; a rapidly growing trend (Whitman, 1984; Morgenstem, 1995). 

Numerous studies have been undertaken to develop probabilistic slope design 

methodologies. In the following sections, the concepts o f deterministic and probabilistic 

approaches are explained and the shortcomings of conventional practice are discussed. 

Then, an overview o f existing probabilistic methods, their advantages and limitations is 

presented.

1. DETERM INISTIC VERSUS PROBABILISTIC M ODELS

The concepts o f deterministic and probabilistic modeling are significantly 

different. In the former, available data is assessed, often judgmentally, to come up with a
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single best estimate for each input parameter. These estimates are then used in analytical 

(or numerical) models to predict performance. The analysis yields a single output that is 

thought to be a reasonable representation of reality. The main assumption involved in the 

deterministic approach is that the estimation errors, the difference between the true 

unknown values o f input parameters and our estimates based on available data, are equal 

to zero. In earth related sciences where material properties tend to be highly variable and 

available data are often sparse, there is no real justification for this assumption. 

Furthermore, the models used for performance prediction and evaluation are assumed 

flawless and perfect representations of reality which is seldom, if ever, the case.

Probabilistic modeling, on the other hand, recognizes the uncertainty in the input 

parameters and prediction models. Input parameters are treated as random variables. Each 

parameter can claim any value, within the observed range, with a given probability of 

occurrence deduced from available data. Joumel (1986, 1994) and Isaaks and Srivastava

(1989) provided discussions of the philosophy and practice o f modeling earth data. Since 

the input parameters are variables, the predicted performance is also a variable. A range 

of possible outputs with respective probabilities o f occurrence are obtained. The 

uncertainty in performance prediction models can also be incorporated into the analysis. 

Probabilistic modeling is, thus, a reflection of our imperfect knowledge.

2. CO NVENTIONAL SLOPE STABILITY ANALYSIS

Analyzing the stability of slopes is usually done using limit equilibrium methods. 

Over the past four decades these models (e.g., Bishop, 1955; Spencer, 1967; 

Morgenstem-Price, 1965; Janbu, 1973) have gained wide acceptance and became part of 

everyday practice. The methodology adopted in conventional practice, however, is o f a 

deterministic nature. Typically, a site characterization program is carried out to collect 

data regarding geological and hydrological conditions, stratigraphy, material properties 

and pore water pressures. The data are then assessed to obtain best estimates of 

parameters of interest (e.g., strength parameters, pore pressure ratio, ...etc). Potential
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critical failure modes are investigated and appropriate methods of analysis decided upon. 

Stability analysis is performed to calculate the factor o f safety o f the slope. Based on 

experience, an allowable factor o f safety is selected. If  the calculated safety factor is equal 

to or greater than the allowable one, the slope is considered safe. If  not, design 

modifications are implemented to attain a higher safety factor. As such, conventional 

practice attaches significant importance to calculated factors o f safety.

The calculated factor of safety obviously depends on the selected input 

parameters, the postulated failure mode, the reliability of judgmental assumptions and the 

accuracy o f the chosen method of analysis. Therefore, there is no unique value for a given 

slope problem. Different parameters, assumptions and analysis methods are likely to be 

adopted by different engineers depending on their judgement and experience. Calculated 

safety factors are unlikely to be equal. The real meaning o f the calculated safety factor is, 

thus, not clear. The Muar trial embankment is an interesting case study in that regard 

(Kay, 1993).

Aiming at optimizing the design of a highway embankment on soft marine clay, 

the Malaysian Highway Authority decided to build a full scale trial embankment in the 

valley o f the Muar river. A detailed site investigation program was conducted, yielding an 

extensive amount o f data. Four reputable geotechnical consultants were invited to predict 

the performance o f the embankment including height at failure. The exercise was later 

extended to include 30 consultants. Brand and Premchitt (1989) and Polous et al. (1990) 

provided a discussion of the results and predictions. The embankment was built in 1989 

and failed at a height of 4.7m above ground. Figure 4—la  is a histogram o f predictions of 

embankment height above ground surface at failure made by all 30 participants. A 

significant scatter in predictions is evident, even though all participants had the same site 

characterization data. Figure 4 - lb  is the histogram of the predictions o f the originally 

selected four experts. The scatter is significantly less. Kay (1993) pointed out, however, 

that the detailed level of analysis conducted by those experts is seldom undertaken in 

normal design activities.
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Figure 4—1 Muar Embankment: histograms o f embankment height predictions;

a) all 30 participants, b) four experts (modified from Kay, 1993)

Based on a number of prediction competitions, Morgenstem (2000) undertook a 

study into the accuracy of performance predictions in geotechnical engineering. He 

classified predictions into excellent, good, fair, poor or bad depending on their closeness 

to the actual performance observed in the field. Predictions within ± 25-50% of the 

correct answer are classified as "poor" and predictions off by more than ± 50% are 

classified as "bad". He cited four prediction competitions: the MIT trial embankment; the 

Muar trial embankment; a spread footing on sand; and, a single driven steel pile. In each 

case, the participants were asked to predict performance parameters (e.g., embankment 

height at failure, settlement, pile load capacity, ... etc.) which were compared to the 

actual field performance. Morgenstem noted that poor to bad prediction amount to 70%, 

55%, 90% and 87%, o f the total number of predictions, for the 4 cases, respectively. He 

then commented that this is even an optimistic picture because of the comprehensive data 

and extensive care in the analysis and design associated with such competitions. While, 

the findings o f this study might be shocking to many practitioners, they truly reflect the 

significant impact of uncertainty on reliability of geotechnical predictions.

Conventional slope practice accounts for uncertainty very loosely through 

conservative parameters and designs. The process is often highly subjective and leads to 

an unknown degree o f conservatism in the overall design factor of safety. No explicit
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consideration o f quantified uncertainty is regarded. As a result, failures of slopes 

evaluated to be safe are not unusual (e.g., Irland, 1954; Insley, 1965; Kaufman & Weaver, 

1967; Bjerrum, 1972 & 1973; Lumb, 1975; Vaughan & Walbancke, 1975; Janbu et al., 

1977; Skempton, 1977 & 1985; D’Elia et al. 1988; Seed et al. 1990). Tang et al. (1976) 

stated that in spite of the presumed conservatism in conventional slope design practices, 

an element of risk is unavoidable. For the sake o f objectivity, it should be mentioned that 

conventional practice has the advantage of being backed up by a large body of experience 

over decades o f practice. Optimally, such experience should be benefited from in the 

search for a more rational approach.

3. PROBABILISTIC SLOPE STABILITY ANALYSIS

In general terms, probabilistic slope stability analysis methods are based on the 

same principles as deterministic methods (e.g., failure modes, limiting equilibrium). 

However, they have the advantage of being able to account quantitatively for the various 

sources o f uncertainty. The output of a probabilistic analysis provides more information 

about slope performance than does the safety factor. In addition to the most likely 

condition or performance, it also indicates the potential variability due to uncertainty.

Probabilistic techniques aid greatly in understanding the major sources of risk, 

enhance engineering judgement and allow for a rational comparison o f the reliability of 

alternative designs. Ultimately this will have the benefit of improving the decision 

making process. They are a valuable supplement to conventional practice.

3.1 Basic Concepts

Figure 4—2 illustrates the concept o f probabilistic analysis in slope design. 

Available data are first analyzed to obtain a representative probability distribution for 

each input variable (Chapter 3). Only those parameters whose variability is thought to 

have a significant effect on the analysis need to be modeled as variables. For example, 

Alonso (1976) and Matsuo and Kuroda (1974) demonstrated that uncertainty in unit
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weight has an insignificant effect compared to those o f pore pressure and strength 

parameters. Failure mode is then assessed and appropriate slope models and methods of 

analysis are selected. Input distributions are integrated into stability analysis to estimate 

the probability distribution of the factor of safety. Model uncertainty (refer to Chapter 3) 

can be accounted for by either applying statistical factors to the input distributions or. 

more commonly, by applying a global factor to the analytical model used as shown in 

Figure 4—2 (Lacasse & Nadim, 1996).

Input Parameters
Model uncertainty m

c l,'C

E [F S ] — 1 
a [F S ]

a[FS]f(FS)

Integration

Slope stability 
model

FSE[FS]

Figure 4-2 Concept of probabilistic analysis

Failure probability (PJ) is the probability of having a safety factor less than one. 

United States Corps of Engineers (U.S. Army, 1992) uses the term probability o f  

unsatisfactory performance (Pu) instead of failure probability. It is defined as the 

probability o f the value of performance function (i.e., factor o f safety) exceeding the limit 

state. In slope problems, the limit state is typically a factor o f safety o f one. In some 

cases, different limits could also be used such as, for example, the factor of safety 

associated with excessive deformations. Safety can also be expressed in terms of 

reliability index, /?. It is defined as the distance between the best estimate of the factor of 

safety (i.e., mean) and the failure threshold, FS =1.0, expressed in units o f standard 

deviation of factor of safety as shown in Figure 4—2.
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In conventional practice, it is believed that the higher the calculated safety factor 

the higher the level of safety. This is, however, not always the case depending on the level 

o f uncertainty involved. Lacasse and Nadim (1996) showed the results o f the re

examination of the safety of a pile foundation installed in 1976. The pile was originally 

designed based on limited information to a safety factor of 1.79. The re-examination, 

which was based on new detailed information about soil parameters and loading, yielded 

a safety factor of 1.40. The failure probability associated with the latter analysis was 

found to be significantly less than that associated with the original design as shown in 

Figure 4—3. The added new information reduced the safety factor, however it also reduced 

the uncertainty in soil and load parameters. The analysis concluded that the pile had a 

higher level of reliability or safety than it was originally thought. A major advantage of 

probabilistic analyses is that they provide a consistent measure o f safety. Designs with 

equal probabilities of failure or equal reliability indices would have a more consistent 

level of safety than designs with equal factors o f safety.

.o
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& 
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Figure 4-3 Probabilistic analysis of a pile foundation 

(modified from Lacasse & Nadim, 1996)
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3.2 Methods of Probabilistic Analysis

Dunng the past three decades there have been numerous attempts to devise 

probabilistic procedures for slope stability analysis (Matsuo, & Kuroda 1974; Alonso, 

1976; Tang et al., 1976; Vanmarcke, 1977b; Kim, et al. 1978; Priest & Brown, 1983; 

Nguyen & Chowdhury, 1984; Li & Lumb, 1987; Wolff & Harr, 1987; Li, 1992a, 1992b; 

Low & Tang, 1997). These methods vary in terms of assumptions, limitations, capability 

to handle complex problems and mathematical complexity. Most of them, however, fall 

into one o f three categories: analytical methods, approximate methods or Monte Carlo 

simulation.

3.2.1 Analytical Methods

In analytical methods, the probability density functions of input variables are 

expressed mathematically. They are then integrated analytically into the adopted slope 

model to derive a mathematical expression of the density function of the factor of safety. 

Failure probability is obtained by multiple integrals of that expression over the entire 

failure domain. The mathematical complexities involved in this approach are enormous 

rendering it impractical for most users and uses. Few attempts have been made to apply 

analytical methods (Tobutt & Richards, 1979; McMahon, 1975; Marek & Savely; 1978). 

Moreover, in all o f these studies the problems analyzed were too ideal and involved major 

simplifying assumptions.

3.2.2 Approximate Methods

The majority of approximate methods are modified versions o f either the First 

Order Second Moment method or the Point Estimate method. Thus, only these two 

techniques will be covered here. Both approaches require knowledge o f the mean and 

variance o f all input variables as well as the performance function g(xi,x2, ...x j that 

defines safety factor (e.g., Bishop equation), where x/,x2, ...x„ are input variables (e.g., soil 

properties).
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3.2.2.1 First Order Second Moment

First order second moment (FOSM) is based on Taylor’s series expansion of a 

g(xi,X2, ...xn) around its mean value. For simplicity, only the linear terms of the series are 

usually retained. The mean and variance of the safety factor are given by Equations 4-1 

and 4-2.

where E[FS] and V[FS] are the mean and variance of the safety factor, respectively, and 

C(xiyxJ) is the covariance between input variables x,- and xj. Detailed description of FOSM 

is available in many text books such as Ang and Tang (1984) and Harr (1977 and 1987).

According to Equation 4-1, the mean safety factor is equal to the safety factor 

calculated using mean values o f input variables. If the input variables are uncorrelated, 

C(xirxj) is equal to zero except when i=j where it is reduced to the data variance F[x,]. 

Equations 4-1 and 4-2 are exact only if g(xj,X2, ...x„) is a linear function, which is not the 

case in slope problems. However, they still provide an acceptable approximation provided 

that the performance function is not highly non-linear. For most geotechnical models, 

evaluating the derivatives (d  g/dx.)  can be cumbersome. A finite difference approach 

can be used to approximate the partial derivatives. Because of its simplicity, FOSM is 

commonly used in probabilistic slope stability analyses (Cornell, 1972; Yucemen and 

Tang, 1975; Alonso, 1976; Tang et al., 1976; Anderson, et al., 1984; Li and White, 1987; 

Christian et al., 1994).

3.2.2.2 Point Estimate Method

The point estimate method is an approximate numerical integration technique that 

was originally developed by Rosenblueth (1975, 1981). It is based on replacing the

E[FS] = g(E[x, ], E[x2 ] ,......E[xn ]) (4-1)

'=' J = l  f a j  ,
(4-2)
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continuous probability distribution o f each input variable x,- with a discrete distribution 

having only two values, xi+ and x,-_ with two associated probability concentrations, p+ and 

p.. The values and probability concentrations are selected such that the first and second 

moments (mean and variance) of the discrete distribution are the same as those for the 

original distribution.

The mean and variance of the safety factor are evaluated by adding 2n estimates of 

the performance function, where n is the number o f input variables. These estimates 

constitute the values of safety factor calculated for all possible combinations of x+ and x. 

for all input variables. Commonly, x+ and x_ are taken one standard deviation above and 

one standard deviation below the mean (U.S. Army, 1992). Before summing, the 

individual terms are multiplied by corresponding probability concentrations which are 

functions o f correlation coefficients between variables. As the number of input variables 

increases, the number of terms to be evaluated increase by a power law and the analysis 

gets more cumbersome. The mathematical details of the technique can be found in 

Rosenblueth (1975, 1981) and Harr (1987). While the method is shown to be reasonably 

accurate for a wide range of practical problems, it can be seriously in error in some cases. 

Christian and Baecher (1999) provided detailed discussions of the accuracy and the 

limitations o f the point estimate method. The technique was modified and implemented 

by many researchers for slope stability analyses (McGuffey et al., 1982; Nguyen and 

Chowdhury, 1984; Wolff, 1985; Wolff & Harr 1987; Li, 1992a).

3.2.3 M onte Carlo Simulation

Monte Carlo simulation is, often, an efficient way to deal with problems that are 

mathematically complex. In the context o f slope design, Monte Carlo simulation was 

adopted by many researchers (Kim, et al. 1978; Major et al., 1978; Tobutt, 1982; Priest & 

Brown, 1983; Nguyen & Chowdhury, 1984). Prior to the simulation process, an 

appropriate deterministic performance function should be selected and the probability 

distribution functions of input variables are to be defined. Monte Carlo simulation uses a
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pseudo random number generator to select a random value for each input variable based 

on the corresponding probability distribution. The selected values are then used to solve 

the performance function and calculate a safety factor. The process is repeated a large 

number to times to build up a statistical distribution o f the performance variable (i.e., 

safety factor). The mean safety factor and failure probability can be inferred from the 

resulting probability distribution.

Monte Carlo simulation has a number o f advantages over analytical and 

approximate methods. Firstly, it does not require the comprehensive statistical and 

mathematical background needed for other methods; something most practicing engineers 

unfortunately lack (Whitman, 1984). Secondly, it provides the shape of the probability 

distribution of the factor of safety and, consequently, the failure probability, thus 

eliminating the need to assume the shape of the distribution. Thirdly, unlike the other 

approaches, the complexity of the analysis is not amplified by the increase in number of 

input variables.

Depending on number of variables and their variances, conventional Monte Carlo 

techniques may require significant number of iterations (up to tens of thousands) for 

solution convergence, particularly when estimating events o f low probabilities of 

occurrence. Because o f the extensive computational effort involved in the iteration 

process, the implementation of Monte Carlo techniques in geotechnical engineering was 

limited (Anderson et al., 1984; Chowdhury, 1984; Mostyn & Li, 1993; Christian el. al., 

1994). In fact, not so long ago the economics of running a Monte Carlo simulation was 

considered marginal (Tobutt, 1982; Priest & Brown, 1983). However, with the recent 

advancements in random sampling techniques (e.g., stratified sampling, Latin Hypercube) 

and the rapid development in software engineering this picture is significantly changing. 

The increasing number o f commercial simulation software, the continuous improvement 

in their capabilities and the consequent reduction in cost is encouraging a wider 

implementation o f simulation techniques in practical problems.
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3.3 Limitations of Existing Probabilistic Methods

In spite o f the significant advancement in probabilistic slope design techniques 

over the past three decades there are still many shortcomings that limit their integration 

into routine practice. Analytical methods are mathematically demanding to the extent that 

they are seldom applied even at research level. Approximate methods are much less 

complex and are widely adopted by many researchers and practitioners. However they 

involve various simplifying assumptions that often limit their application to specific 

classes of problems. For example, some researchers used very simple slope models such 

as Janbu’s stability charts (Claes, 1996), ordinary method o f slices (Yucemen and Tang, 

1975; Tang et al., 1976; Harr, 1977; Vanmarcke, 1980; Honjo and Kuroda, 1991; 

Bergado et al., 1994) and force equilibrium methods (Priest & Brown, 1983; Wolff & 

Harr, 1987; Wolff, 1991). Others dealt with frictionless soils only (Cornell, 1972; Matsuo 

& Kuroda, 1974; Vanmarcke, 1977b; McGuffey et al., 1982; Bergado et al., 1994). A 

restriction to circular (or cylindrical) slip surface is common in many studies (Alonso, 

1976; Vanmarcke, 1977b; Anderson et al., 1984; Yucemen & Al-Homoud, 1990; 

Bergado et al., 1994). The spatial variability of soil properties and pore water pressure is 

often ignored, assuming perfect autocorrelation (Tobutt and Richards, 1979; Nguyen and 

Chowdhury, 1984; W olff and Harr, 1987; Tejchman et al., 1996; Duncan, 2000). 

Correlation between input variables such as that between cohesion and friction angle (if it 

exists) are commonly discarded (Tang et al., 1976; Alonso, 1976; Tobutt and Richards, 

1979; Vanmarcke, 1980; Anderson et al., 1984; Li, & Lumb, 1987; Christian et al. 1994).

While approximate methods do not require prior knowledge o f  the shape of 

probability distributions of input variables, most of them (e.g., methods based on FOSM) 

assume zero coefficients o f skewness which implies symmetric probability density 

functions. Various studies (Lumb, 1970; Chowdhury, 1984; Wolff, 1985; Lacasse and 

Nadim, 1996) showed that soil properties can have skewed distributions. Studying the 

stability of Clarence Cannon dam, Wolff and Harr (1987) reported that ignoring the 

skewness o f the density function of cohesion resulted in a 50% underestimation of failure 

probability. Furthermore, a symmetric distribution with a low mean and a high standard
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deviation (e.g., effective cohesion) could imply negative values associated with the low 

probability tail o f the distribution which is not admissible for most parameters.

In terms o f ease of application, approximate methods can be reasonably handled 

for a limited number o f input variables. As the number of variables increases (above say 4 

or 5), the computations become cumbersome. More importantly, approximate methods do 

not provide any information about the shape of the probability density function o f the 

factor of safety. They provide only estimates of mean and variance. An estimate o f the 

failure probability can only be obtained by assuming a parametric shape for the density 

function of the factor of safety. Estimates of low probabilities, the typical case of safe 

structures, become very sensitive to the assumed shape (Chowdhury, 1984; Chowdhury 

and Tang, 1987; Mostyn and Li, 1993; Wolff, 1996).

Monte Carlo simulation is seldom applied with correlated random variables (e.g., 

Kim et al., 1978; Tobutt, 1982; Priest & Brown, 1983; Nguyen and Chowdhury, 1984). 

This is attributed, at least in the past, to the difficulties associated with generating random 

values in a way that preserves the correlation between variables. Also, spatial variability 

of soil properties is rarely addressed in studies applying Monte Carlo technique (Major et 

al., 1978; Tobutt, 1982; Nguyen and Chowdhury, 1985). Because of the computational 

effort involved in the iterative process of simulation, the use of computers is unavoidable. 

In most of the cited cases in Section 3.2.3, researchers had to develop software 

specifically tailored towards solving slope stability problems. While this might be 

justifiable for a research project, it is certainly not suitable for professional practice.

4. SUM M ARY

Slope engineering is one o f the disciplines most dominated by uncertainty. The 

conventional deterministic slope analysis does not account for quantified uncertainty and 

relies on conservative parameters/designs to deal with uncertain conditions. The impact 

of such subjective conservatism cannot be evaluated and past experience shows that an 

apparently conservative design is not a safeguard against failure. Probabilistic slope
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analysis, on the other hand, explicitly accounts for uncertainty. The output o f the analysis, 

in terms o f failure probability or reliability index, is a measure of the reliability of the 

design. Probabilistic analysis provides greater insight into design reliability, thus, 

enhancing the engineering judgement and improving the decision making process. It is, 

inevitably, the next stage in the progress of slope engineering.

To date, the impact o f probabilistic techniques on professional practice is, 

however, trivial. The limitations, and sometimes the complexity, o f the current 

probabilistic methods and the poor education o f most engineers in statistics and 

probability theory are major obstacles in the face o f the integration o f such techniques 

into geotechnical practice. Clarity, simplicity and cost/time effectiveness are essential 

elements in order to effectively convey and communicate a probabilistic methodology to 

practicing engineers.
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CHAPTER 5

PROBABILISTIC ANALYSIS 
METHODOLOGY FOR EARTH 

SLOPES

The awareness o f the value o f probabilistic analyses in geotechnical engineering, 

particularly in slope problems, is progressively increasing among practitioners and 

professional organizations. For example, probabilistic assessment is currently a 

requirement o f the US Corps of Engineers in planning studies for the rehabilitation of 

hydraulic structures. Dam safety boards in most hydropower corporations (e.g., B.C. 

Hydro, USBR) adopted risk and probability concepts in their practice. Unfortunately, the 

development o f resources and techniques needed to undertake this task is not adequate. 

Available data from site characterization programs are often scarce, probabilistic methods 

and techniques are either too simplified to deal with real problems or too complex for 

practical use, and engineers still lack proper education in statistics and probability theory. 

Geotechnical engineers are faced with the challenge of performing probabilistic and risk 

analyses with little data, limited tools and little experience (Wolff, 1996).

One o f the objectives of this research is to develop a practical probabilistic slope 

analysis methodology that allows practicing engineers to combine statistical 

quantification of uncertainty together with conventional practice, experience and 

judgement to meet an acceptable criterion. This chapter describes the proposed 

methodology and the approach followed to establish a probabilistic slope design criteria.

1. A  PRACTICAL PROBABILISTIC SLOPE ANALYSIS

Probabilistic slope design comprises two main stages: 1) Statistical

characterization of uncertainty, and 2) Probabilistic slope stability analyses for estimating 

a probabilistic safety measure. A comprehensive review of the concepts and techniques
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commonly used in characterizing parameter uncertainty is presented in Chapter 3 and 

some points are further touched upon in the following sections. Model uncertainty can be 

a dominant factor in many classes of geotechnical problems. Several examples were cited 

in Chapter 3, including progressive failure, time dependent softening processes, seismic 

liquefaction triggering and undrained versus effective strength characterization 

(Morgenstem, 1995). Since our ability to reliably quantify model uncertainty is, to date, 

limited, this study is focused mainly on classes o f problems where model uncertainty is 

not a significant source o f uncertainty. This includes slopes o f unstructured coarse 

grained soils, unstructured saturated fine grained soils, sliding along preexisting shear 

planes at residual strength, and properly compacted fills.

The recent advances in random sampling techniques and software engineering 

have led to the development o f commercial simulation software. For example, a number 

of Monte Carlo simulation packages that work interactively with spreadsheet programs 

are commercially available; e.g., @Risk (Palisade, 1996), Crystal Ball (Decisioneering, 

1996). The proposed probabilistic slope analysis methodology makes use of such 

advanced, yet simple, tools. The following sections detail the concepts and procedures of 

the proposed approach.

1.1 Deterministic Analysis

In spite o f the limitations of conventional slope design practice, the body of 

experience attached to it is significant and should not be ignored. Exercising engineering 

judgement in deciding upon representative soil properties, pore pressures, failure modes 

and an appropriate method o f analysis helps greatly in understanding the problem. 

Performing a deterministic slope analysis prior to any probabilistic analyses is of great 

value in guiding the probabilistic analysis and in the interpretation of the results.

1.2 Outline of the Proposed Methodology

The proposed probabilistic methodology is based on Monte Carlo simulation 

using the familiar spreadsheet program “Excel” in conjunction with @Risk (Palisade,
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1996) software. Firstly, the slope problem (geometry, stratigraphy, soil properties and slip 

surface) and the selected method o f analysis are modeled in an Excel spreadsheet. 

Available data are examined and uncertainties in input parameters are identified and 

described statistically by representative probability distributions. Only those parameters 

whose uncertainty is deemed crucial to the analysis need to be treated as random 

variables.

The simulation procedure is shown schematically in Figure 5—1. @Risk draws, at 

random, a value for each input variable from within the defined probability distributions. 

These values form input set #1 that is placed by @Risk into the spreadsheet. The 

spreadsheet calculates the corresponding value o f the factor of safety which is stored by 

@Risk. The process is repeated a large number of times, m, to estimate the statistical 

distribution of the factor of safety. Statistical analysis o f the output distribution allows 

estimating the mean and variance of the factor o f safety. The failure probability, 

probability o f the factor o f safety being less than one, can also be easily estimated. The 

various elements o f the proposed approach are discussed in more detail in the following 

sections.

The main probabilistic safety measure used in this study is the failure probability. 

However, the term "Failure Probability" is likely to raise many concerns with clients,

particularly non-professional clients. Kulhawy (1996) correctly stated “  a FS of 2 or

2.5 sounds better to the average person than a probability o f failure o f 1 or 2 percent. The 

former suggests a healthy cushion in the design, while the latter states directly that it 

could fail”. Furthermore, the term "failure" implies that the catastrophic collapse o f the 

slope is the only event of concern to the designer, which is not necessarily the case. The 

serviceability o f the slope is as important as slope collapse and requires thorough 

evaluation and assessment. Serviceability issues may include slope movement and 

cracking (without the slope collapsing), high water seepage and surface erosion. In my 

view, different terminology needs to be adopted. The US Army (1992, 1995) used 

Probability o f  Unsatisfactory Performance, Pu, instead of failure probability. The same
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terminology, probability o f unsatisfactory performance, is adopted in this study to address 

failure mechanisms. Another terminology, Probability o f  Unsatisfactory Serviceability, is 

proposed to address the serviceability criteria. The evaluation of slope serviceability is, 

however, beyond the scope of this study.

Input Probability 
Distributions

CD -  ( D  ©

S t ____
Random Selection 

"@Risk"

Input: 1 I—

Input:2

Calculate Spreadsheet 
(Slope Model) 

"Excel"

Probability Distribution 
Of Output (FS)

Statistical Inference 
"@Risk"

f t

l ... Output: 1

Output: 2

Input: m Output: m

Figure 5—1 Monte Carlo simulation procedure using "Excel" and "@Risk" software

1.3 Statistical Characterization of Input Variables

The statistical techniques described in Section 2 o f Chapter 3 are considered, in 

general, adequate for the statistical characterization o f the input data. The main concepts 

discussed in Chapter 3 are adopted in analyzing the case histories in the following 

chapters. However, for practicality and for simulation purposes some guidelines and 

simplifications are introduced as discussed below.

1.3.1 Input Random Variables

Identifying which parameters to treat as random variables is the first important 

step in modeling input variables. The decision depends on the observed variability in the 

measured values o f each parameter and the sensitivity o f the output (e.g., factor o f safety) 

to variations in the magnitude of that parameter. Strength parameters and pore pressure
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are, typically, prime candidates. However, if  judged necessary any other parameters could 

be treated as variables (e.g., thickness o f a soft layer, Bjerrum’s vane correction factor).

1.3.2 Probability Distributions

Depending on the amount o f data available, different approaches can be adopted 

to infer the probability distribution o f each parameter. Where there are significant 

amounts o f data, greater than, say, 1000 (Deutsch, 1996), the observed distribution is 

considered adequate and can be used directly in the simulation. In cases where fewer data 

are available, a typical case in practice, the observed histogram may show spikes that 

would not appear were more data available. An appropriate parametric distribution can be 

fitted to the sample data, histogram smoothing, and the fitted distribution is then used 

instead of the original distribution. Deutsch (1996) showed that this is often a satisfactory 

approach provided that the data follow a parametric distribution and that the form of that 

distribution (e.g., normal or lognormal) is known. Unfortunately, this is seldom the case 

in practice. More advanced techniques for histogram smoothing (e.g., Gaussian kernel 

approach, simulated annealing) can be used. However, the effort involved in these 

techniques in relation to the gains acquired from histogram smoothing, particularly with 

limited data, is deemed excessive for slope stability analyses. In this study, the 

experimental probability distributions are used directly in the simulation process provided 

that a reasonable amount of data is available. The cumulative distribution function is 

obtained by resetting the probability associated with each data value to the average o f its 

cumulative probability and that associated with the next lowest data (Deutsch and 

Joumel, 1998). This eliminates, to some extent, unrealistic spikes in the probability 

distribution function and allows finite probabilities for data values less than data 

minimum and more than data maximum. The minimum and maximum limits of the 

distribution are assigned judgmentally.

Where data are scarce or absent, parametric distributions are assumed. Guidelines 

for selecting appropriate distributions for different soil parameters are available in the 

literature. The normal and lognormal are the most widely used distributions. In assigning
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a parametric distribution, care should be exercised to ensure that the m inim um  and 

maximum values of the selected distribution are consistent with the physical limits of the 

parameter being modeled. For example, shear strength parameters cannot take negative 

values. If  the selected distribution implies negative values, then either a truncation limit 

(e.g., a practical minimum threshold) is imposed on the distribution or another 

distribution that does not allow negative values (e.g., lognormal) is adopted. Where no 

data are available, a triangular distribution based on expert opinions (minimum, 

maximum and most likely values) is commonly used.

@Risk built-in functions allow a great flexibility in modeling input variables. 

Nearly 20 parametric probability distributions (including symmetric and skewed 

distributions) are available in the @Risk library. Non-parametric distributions (e.g., 

observed cumulative distribution function, CDF) can also be modeled using special 

functions. Desired truncation limits can be easily imposed on any distribution either 

through @Risk functions or using Excel functions.

1.4 Accounting for Random Errors and Spatial Variability

As discussed in Chapter 3, current spatial variability analysis techniques are 

difficult to implement in practice. Some approximations guided by judgement are needed 

in order to account for spatial variability and spatial averaging processes in a practical 

manner. A simplified empirical approach is discussed below.

1.4.1 Random Measurement Errors

The reliability o f the analytical quantification o f random testing errors (Chapter 3) 

is in question. Reducing the observed data variance by an unreliable quantity that is 

assumed to represent the random error variance may not be sensible. Hence, random 

errors are not considered in this study. Instead, a critical review of the exploration 

program should ensure that sound engineering is being practiced. This review would 

include the personnel, the equipment and testing procedures. Available standards and
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specifications (e.g., British Standards, ASTM) greatly facilitate this task. The rationale 

behind this decision is explained in the following paragraphs.

Firstly, separating random testing errors (noise) from soil measurements requires 

data at very small separation distances (r «0) which is never available in practice. As a 

result, the distinction between noise and real short scale variability (variability at 

distances less than data spacing) is not possible. Hence, the analytically calculated 

random errors (Chapter 3, Section 2.3.2.2) are, in fact, composed of random errors and 

short scale variability. Unfortunately, the geotechnical engineering literature often gloss 

over that concept and do not recognize short scale variability.

Secondly, the analytical estimates o f random measurement errors greatly depend 

on data spacing. The smaller the spacing, the better the data reflect short scale variability 

and the more reliable are the estimates of random errors. Jaksa et al. (1997) analyzed the 

spatial variability of CPT data from two case studies in relatively homogenous clays. In 

the first study, the vertical spatial variability of the data was analyzed, whereas the 

horizontal variability was the focus o f the second study. Using the method o f moments, 

they showed that the random error variance, as a percentage of data variance, varied 

between 3% and 62% for the vertical data and between 3% and 50% for the horizontal 

data as the spacing between measurements varied between 5mm and 200mm. Using 

geostatistics, the estimates varied between 7% and 100% for the vertical data and 

between 0% and 100% for the horizontal data. They, however, demonstrated that the 

variability was not significant for data spacing less than 20mm. In practice, this optimum 

spacing is not known prior to the completion of the site investigation and it is not, 

usually, economically feasible to take measurements at intervals less than 20mm.

Furthermore, in a typical site investigation the spacing in the horizontal direction, 

between borings, is in the order of tens o f metres while that in the vertical direction, 

between tests, is in the order o f decimetres. As a result, the computed random error 

variance when analyzing the variability in the vertical direction may differ from that 

estimated through analyzing the variability in the horizontal direction, even though the
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data are the same. Finally, the random error variance is estimated by extrapolating an 

analytical function fitted, often visually, to the experimental autocovariance (or 

semivariogram) to a zero separation distance; a process that involves an element of 

subjectivity.

In addition to that, random errors are characterized by a zero mean and fluctuate 

in magnitude above and below the zero. In a spatial averaging process over an area or a 

volume, random errors tend to cancel each other thus reducing, if  not e lim inating., the 

overall random error in the averaged quantity.

1.4.2 Spatial Variability

1.4.2.1 Theoretical Background

So far, the discussions of the various aspects of spatial variability (Chapters 3 and 

4) were oriented mainly towards the practical implementation of the concept. In contrast, 

the following sections present a more fundamental and theoretical background needed for 

the development o f the proposed spreadsheet approach to account for spatial variability. It 

is thought that presenting that background in this chapter, rather than in the literature 

review chapters, will better illustrate the logic behind the proposed methodology.

Studies concerned with analyzing the spatial variability of geotechnical data are 

based, in most cases, on the theory o f random fields which is also the basis o f the 

proposed methodology. The theory o f random fields is a mathematical approach that aims 

at modeling complex patterns of variation and interdependence of an attribute in space 

and/or time. The implementation of the theory in engineering practice was pioneered by 

the work o f Vanmarcke (1977a, 1977b, 1980, 1983) which became the main references 

for most studies accounting for the spatial variability of geotechnical properties (e.g., 

Lumb, 1983; Anderson et al., 1984; Chowdhury, 1984; Tang, 1984; Li and Lumb, 1987; 

Wu et al., 1987; Ronold, 1990; Yucemen and Al-Homoud, 1990; Mostyn and Li, 1993; 

Christian et al., 1994; Lacasse and Nadim, 1996; Phoon and Kulhawy, 1999). A brief
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review o f some o f the concepts related to the proposed methodology is presented in the 

following paragraphs.

Within an n-dimensional space A, Figure 5—2, a parameter X  is defined by a 

location vector u and the magnitude o f the parameter x(u). At a given location Ua, Figure 

5—2, the parameter X(Ua) is an uncertain quantity to be observed or a random variable. 

Each random variable is characterized by a probability distribution and is usually 

correlated with the random variables at adjacent locations. The set o f random variables at 

all locations within the space A is referred to as a random fie ld  and is characterized by the 

joint probability distribution of all random variables. Thus, a random variable ^f(u) is the 

value o f the random field at location u. Once the value of the parameter at a specific 

location is accurately measured, its magnitude is no longer uncertain and it becomes 

deterministic, e.g., (uj,xi) in Figure 5—2. Unfortunately, sampling all locations is usually 

impractical and unfeasible and predictions, analyses and decision-making are based on a 

limited number o f deterministic observations (i.e., incomplete information about the 

random field).

Figure 5—2 A representation o f a random field A with its 

random variables and deterministic values
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Several assumptions regarding the properties o f the random field are often made 

to facilitate the inference of its characteristics based on little data. Commonly, the random 

field is assumed homogenous, isotropic and ergodic. A random field is called 

homogenous (or stationary) if  the probabilistic laws, i.e. joint probability distributions, 

that govern the field are invariant when translated over the parameter space. This implies 

that all probabilities and statistical parameters depend on the relative, not the absolute, 

locations o f the points. As a consequence, the one-point CDF, the mean and the variance 

are constant for any location within the domain A and the covariance o f two random 

variables r  distant apart is also constant regardless of their absolute locations. When the 

data imply a trend (i.e., non-constant mean), the trend component is removed from the 

observations and the residuals are modeled as a stationary random field. Once the analysis 

o f the residuals is complete, the trend is added to the estimated parameters. The random 

field is isotropic if  its probabilistic laws are the same for any direction. The field is said to 

be ergodic if  the statistics o f its joint probability distribution can be obtained from a 

single realization of the random field.

A thesis central to Vanmarcke’s (1983) work on random fields is that the local 

point-to-point variation of the field is very difficult (if not impossible) to obtain in 

practice and is often of no real interest. Local averages over a spatial or temporal local 

domain are o f much greater value. For example, the hourly or the daily rainfall depth is of 

interest to hydrologists rather than the instantaneous depth. Similarly, the average shear 

strength of a soil over a local area is o f interest to geotechnical engineers rather than the 

point-to-point variation over the entire layer. With this view point, Vanmarcke focused on 

estimating the statistical characteristics of local averages including their inter-correlation 

as well as their correlation with point processes.

Figure 5—3 shows a one-dimensional stationary ergodic random field, e.g., a time 

series, with a mean E[x] and a variance cr2 (the same process could be the variation along 

a line in the parameter space of a homogenous ergodic n-dimensional random field). The 

family of the moving local averages XT(t) over a time interval T has a mean equal to E[x]
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and a variance crT2 which is less than a 2 (note; <tt2= a 2 for T=0). Vanmarcke (1983) 

defined the dimensionless variance function T(t) which measures the reduction in the 

point variance a 2 under local averaging, Equation 5-1. He showed that T(t) is related to 

the correlation function p(r) through Equation 5-2, where r is the separation distance (or 

time) between data points. Vanmarcke also noted that T(t) decays to zero as T—»co, which 

is the condition of ergodicity in the mean.

X  E[x]

V
S
2«CU

T'

-I  OF-

JL.

Time; t

Figure 5-3 A realization of a one-dimensional random field X(t) showing 

local averages over intervals T and T'

r ( t )  = ^ r  
cr;

(5-1)

r(t) = —j
r o
2 N I T y

p (r)d r (5-2)

For most correlation functions commonly used in practice (e.g., exponential, 

Gaussian and spherical), Vanmarcke (1983) showed that T(t) is inversely proportional to 

T at large values of T as shown in Figure 5—4. He thus introduced the scale o f  fluctuation, 

5, which equals the proportionality constant and is given by Equation 5-3. It is interpreted 

as the interval over which the attribute shows strong correlation from point to point. The 

scale of fluctuation is related to the autocorrelation distance as indicated in Table 5-1.
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5 = lim T r(T)
T —♦ «

(5-3)
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Figure 5—4 Variance function versus the averaging interval T 

normalized with respect to the scale o f fluctuation 5 

for various autocorrelation models

Table 5-1 Relationship between scale of fluctuation and 
autocorrelation distance for exponential models

Correlation Function; p(r) Scale of Fluctuation; 5

Exponential 2 r0

Gaussian Vtt r0

Based on Figure 5—4, Vanmarcke (1983) suggested that the variance function o f a 

stationary ergodic one-dimensional random process could be approximated by a unique 

function regardless o f the underlying autocorrelation function. He then proposed the
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approximate function given by Equation 5-4 and shown in Figure 5—4 (Vanmarcke, 

1977a). The model indicates no variance reduction, r(t)=l, due to local averaging up to a 

characteristic averaging interval equal to 8 . This implies that the attribute is perfectly 

correlated, i.e. p(r)=l, within intervals less than 8 . Vanmarcke (1983) argued that trying 

to model a random phenomenon at a level o f aggregation more detailed than the way the 

information about the phenomenon is acquired or processed is impractical and 

unnecessary. For a wide range of practical applications, the spacing or the time interval 

between observations is large. Characterizing the correlation structure at small intervals 

becomes highly unreliable, thus justifying the approximation by a perfect correlation.

Vanmarcke (1983) also derived an expression for the correlation coefficient 

between a pair o f local averages XT(t) and Xf(t) over time intervals T and T', Figure 5—3. 

The correlation coefficient, Equation 5-5, is a function o f the size o f the two intervals, the 

separation distance between them (refer to Figure 5-3) and the variance function of the 

parameter.

T0 = distance from the end of the first interval to the beginning of the second 
interval.

Ti = distance from the beginning of the first interval to the beginning of the 
second interval.

T2 = distance from the beginning o f the first interval to the end of the second 
interval.

T3 = distance from the end of the first interval to the end o f the second interval.

'1, T < 5
(5-4)

T02 r(Tc) -  T,2 T(T,) + T22 T(T2) -  T32 T(T3) 
2TT,{r(T)r(T')}05

(5-5)

where;
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1.4.2.2 Autocorrelation Distance

As discussed in Chapter 3, the amounts and spacing of data from a typical site 

investigation program in geotechnical engineering rarely allow reliable estimates o f the 

autocorrelation distance. In such cases, an empirical approach is proposed to account for 

spatial variability.

As indicated also in Chapter 3, the autocorrelation distance varies with direction. 

In this study, the common assumption of horizontal isotropy is adopted. The variation of 

the autocorrelation distance in a vertical plane is represented by an ellipse (Joumel and 

Huijbregts, 1978) as shown in Figure 5—5. The radius of the ellipse in the horizontal 

direction is the horizontal autocorrelation distance, r0h, and the radius in the vertical 

direction is the vertical autocorrelation distance, rov.

X- axis

oh

Depth

Figure 5-5 Estimation o f an approximate isotropic autocorrelation 

distance for an anisotropic random field

As shown in Table 5-1, the scale of fluctuation, 5, is related to the autocorrelation 

distance, r0, depending on the autocorrelation function. The exponential and gaussian are 

the functions most commonly used to describe the autocorrelation of soil properties 

(Vanmarcke, 1977a; Baecher, 1987; Wu et al., 1987; Christian et al., 1994; DeGroot, 

1996; Lacasse and Nadim, 1996). Thus, based on Table 5-1 it can be stated that the scale 

o f fluctuation is approximately equal to 2r0 in most cases.
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Fenton and Vanmarcke (1991), suggested that the scale o f fluctuation is largely 

dependent on “the geotechnical process o f layer deposition” rather than the specific soil 

property being studied. Thus, the various properties o f a soil layer could have comparable 

autocorrelation distances. A literature search undertaken to examine the range o f  the 

autocorrelation distance for different soils and properties forms Table 5-2. In order to 

reflect practice, the search focused on studies based on real projects, in which reasonable 

amounts o f data were available and formal analyses o f spatial variability were undertaken. 

Table 5-2 indicates that the variation in autocorrelation distances is small in spite o f the 

different soil types, properties and testing techniques. Most values o f the horizontal 

autocorrelation distance fall within a range o f 20-40m, while the vertical distance is 

within l-3m. Based on a similar review by Phoon et al. (1995), Table 5-3, Phoon and 

Kulhawy (1999) also noted that the vertical scale of fluctuation ranges between l-6m 

while the horizontal scale o f fluctuation is typically between 40-60m (note: 5»2ra).

Considering the large uncertainties surrounding the analytical estimation o f the 

autocorrelation distance using sparse or improperly-spaced (in a statistical sense) data, it 

is reasonable to empirically assign a value (or values) for the autocorrelation distance 

from within the ranges reported in the preceding paragraph. The selection o f the empirical 

value involves two steps. Firstly, the soil data are examined to assess the likely pattern of 

soil variability, i.e. continuous smooth variability or erratic variations. This assessment 

will indicate whether the autocorrelation distance is towards the upper or lower ends of 

the typical ranges reported above. Such assessment would allow a subjective estimate, or 

a range, o f the autocorrelation distance. Experience with the soil being dealt with could 

be o f great value in that regard. For example, marine sediments tend to be homogenous 

with a continuous pattern o f variability whereas tills and residual soils tend to be more 

erratic.
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Table 5-2 Autocorrelation distances, r0, (Figure 5—5) for various soil properties

Measured Soil 

Property

Soil Type Tov

(m)

f oh 

(m)

Reference

Field Vane Strength
Organic soft 1.21 - Asaoka and A-Grivas,

clay 3.11 - 1982.

Sensitive clay 3.0 30.0 Soulieetal., 1990

Very soft clay 1.05 22.10 Bergado et al., 1994

Sensitive clay 2.0 - Chiasson et al., 1995

Unconfined Chicago clay 0.4 - Wu, 1974
Compressive
Strength

Soft clay 2.0 40.0 Honjo and Kuroda, 1991

Normalized 
Undrained Shear

Offshore soil 
(Triaxial)

3.57 -

Keaveny et al., 1989

Strength Offshore soil 
(DSS)

1.39 -
Keaveny et al., 1989

North sea clay - 30.0 Tang, 1979

Cone Penetration 
Resistance

Clean sand 1.56 - Kulatilake and Ghosh, 
1988

North sea soil - 13.89 Keaveny et al., 1989

North sea soil - 37.51 Keaveny et al., 1989

Silty clay 1.0 - Lacasse and de 
Lamballerie, 1995

Sensitive clay 2.0 - Chiasson et al., 1995

Laminated clay - 9.6 Lacasse and Nadim,1996

Dense sand - 37.5 Lacasse and Nadim,1996

Lift-off pressure of 
Flat Dilatometer

Varved clay 1.03 - DeGroot, 1996

DSS Direct simple shear test
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Table 5-3 Scale o f Fluctuation, 6, for various soil properties (5 « 2rQ)

Data Direction Soil Type No. of 
Studies

Scale of Fluctuation
S(m) Reference

Range Mean

Cone Penetration 

Resistance

Vertical Sand, Clay 7 0.1-2.2 0.9 Source: Phoon 

et al., 1995, 

pp 4-20

Horizontal Sand, Clay 11 3.0-80.0 47.9

Field Vane Vertical Clay 6 2.0-6.2 3.8

Horizontal Clay 3 46.0-60.0 50.7

Undrained shear 

strength (lab. tests)
Vertical Clay 5 0.80-6.1 2.5

Compressibility

Index

Horizontal Sand 1 - 55.0 Vanmarcke,

1977a

The second step is to evaluate the problem being studied to decide whether the 

variability along a particular direction is likely to dominate the analysis. For example, the 

earth pressure in retaining structures is controlled by the variability of the coefficient of 

earth pressure with depth. Spatial variability in the vertical direction is likely to be more 

important to the analysis. In contrast, failure surfaces in flat cohesionless slopes tend to 

be superficial with a shallow dip. Since stability is controlled by the average shear 

strength along the failure surface, the horizontal spatial structure is likely to be more 

critical to the analysis. Where both the vertical and horizontal spatial structures are 

deemed equally important, soil variability can be roughly approximated by an isotropic 

spatial structure with an equivalent isotropic autocorrelation distance An estimate of 

ro-E can be obtained by approximating the ellipse defining the variation o f the 

autocorrelation distance with direction by a circle of equal area as shown in Figure 5—5. 

Thus, r^E can be calculated using Equation 5-6, where r0h and rov are the autocorrelation 

distances in the horizontal and vertical directions, respectively.

ro-E = yIroh rov O 6)
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The reliability of such empirical estimates o f the autocorrelation distance would 

improve greatly with larger soil specific and property specific databases. A parametric 

study using different selected values could also be very insightful. It should be noted that 

the impact of the autocorrelation distance on the stability analysis will vary from case to 

case depending on the relative contributions of systematic uncertainty and uncertainty due 

to soil variability. Problems dominated by systematic uncertainties are largely insensitive 

to the value of rQ compared to problems dominated by spatial variability. If  the output of 

the analysis is sensitive to variations in r0 to the extent that could impair the decision

making, a rigorous estimate o f the autocorrelation distance may be worth the effort. A 

special exploration program could be designed (in terms of the number and spacing of 

tests) and conducted to estimate the site and soil specific autocorrelation distances. It 

should be mentioned, however, that this could be an expensive solution for the typical site 

investigation budget of many projects.

In modeling pore water pressure, its pattern of spatial variability (e.g., 

autocorrelation distance) is assumed similar to that of the soil properties. The spatial 

structure o f pore pressure is not a characteristic soil property. Rather, it is a response to 

the spatial variability of the flow parameters of the soil mass (e.g., hydraulic conductivity, 

porosity, ...). It is, thus, likely that the pattern of variability of pore pressure is largely 

controlled by the pattern of soil variability. In other words, if  the soil is uniform the 

variability of the pore pressure from one point to another is likely to be smooth and 

continuous whereas if  the soil variability is erratic, the pore pressure would vary 

significantly over very short distances. Consequently, the smaller the autocorrelation 

distance, the more erratic the variability of the pore pressure and the less uncertain is the 

average pore pressure over an area or a surface (refer to Chapter 3). The results of 

Bergado and Anderson (1985) and Griffiths and Fenton (1993) confirm this hypothesis. 

Both conducted stochastic finite element analyses to study the variability o f pore pressure 

due to the spatial variability o f soil permeability assuming a steady-state flow through a 

porous medium. Bergado and Anderson (1985) reported less uncertainty in predicting the 

phreatic surface of water flow through an earth dam as the autocorrelation distance of
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permeability is decreased. Similarly, Griffiths and Fenton (1993) noted smaller standard 

deviation o f the uplift force beneath a water retaining structure as the autocorrelation 

distance of permeability is reduced.

1.4.3 Modeling Uncertainty o f  Input Variables

Based on the review presented in Chapter 3 and the discussions in the previous 

sections, the uncertainty surrounding an input parameter is modeled as follows. The 

measured parameter at any location, u, is divided into a trend component, r(u), and a 

residual value off the trend, ev(u). The spatial variability of the parameter is represented 

by the correlation structure of the residuals. The measured quantity, Jf(u)=f(u)+ ev(u), is 

corrected for bias (if any) by a bias factor, B. Equation 5-7 summarizes the model 

adopted.

Z(u) = 5 [ t(u )+ e v(u)] (5-7)

where Z(u) is the random variable (corrected for bias) representing the input parameter at 

location u. The trend, /(u), is estimated using the method of least squares. In cases of a 

linear trend, the slope and the intercept are given by Equations 3-4 and 3-5. The variances 

o f the slope and intercept due to the limited amounts of data (statistical error) and the 

correlation coefficient between them are estimated using Equations 3-21, 3-22 and 3-23, 

respectively. In cases o f a constant mean, the variance of the mean is estimated using 

Equation 3-20. In both cases, linear trend and constant mean, the variance estimates are 

based on the assumption that the residuals, sv(u), are independent. This approximation is 

acceptable for most practical applications unless the measurements are very closely 

spaced (Baecher, 1987). Having removed the trend, the residuals are regarded as a 

stationary ergodic random field. The variability of an input parameter along the slip 

surface is then approximated by a one-dimensional random field having the statistical 

characteristics of the residuals.
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Typically, site investigation programs in geotechnical engineering practice aim at 

minimizing redundant measurements by locating tests and boreholes at a large spacing. 

As a result, reliable assessment o f the point-to-point variability o f soil properties is often 

not possible. Numerous published studies failed in characterizing the spatial structure of 

soil properties in real projects due to the lack of enough data and/or the improper spacing 

o f the available data (Wu et al., 1987; Benson, 1991; Fenton and Vanmarcke, 1991; 

Chiasson et al., 1995; DeGroot, 1996). In addition, all the methods o f analyzing the 

stability of earth slopes do not require the point-to-point variability o f soil properties, but 

rather the average operational properties over the slip surface. Therefore, it is proposed to 

account for soil variability along the slip surface by the variability o f local averages over 

segments o f the surface. Vanmarcke's model (Equation 5-4) is adopted for the analysis of 

the random fields.

Based on Vanmarcke’s model, the process of local averaging a stationary ergodic 

one-dimensional random field over an interval not exceeding 8 has the same mean and 

variance as the point process; T(T) = 1. Therefore, if  the portion o f the slip surface within 

each layer is divided into a number of segments of length 1 = 8 plus a residual segment, 

the average parameter, X(J), over any o f these segments can be represented by the 

cumulative distribution function of the point measurements, F(x). The correlation 

coefficients between any o f these local averages can be estimated using Equation 5-5. For 

adjacent segments of equal length 8, the correlation coefficients are equal to zero which 

greatly simplifies the computations. The correlation coefficients between the average over 

the residual portion of the failure surface, of length less than 8, and those of the 

contiguous segments are greater than zero and can be calculated using Equation 5-5. 

Figure 5-6 is a schematic illustration o f the model.
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Figure 5-6 Modeling variability of an input parameter along the failure surface

In summary, the uncertainty due to the variability o f an input parameter along the 

slip surface is accounted for by a number o f correlated variables. Each o f these variables 

represents the local average o f the input parameter over a segment of the failure surface. 

Choosing the length of the segments equal to 8 eliminates the correlation between most of 

the variables and greatly simplifies the simulation. Statistical uncertainty and bias are 

represented by random variables independent of those characterizing spatial variability. 

The overall uncertainty of any input parameter is a function of the three sources of 

uncertainty combined in accordance with the adopted model, Equation 5-7.

1.5 Critical Slip Surface

It is well established that the location and radius of critical slip circles in stability 

analyses depend on strength parameters. Ideally, a probabilistic analysis using Monte 

Carlo simulation should involve a search for the critical slip circle for each set of the 

randomly generated inputs. In this way, the uncertainty in the location o f the critical slip 

surface is incorporated into the evaluation of the performance function and the estimated 

probability of unsatisfactory performance is associated with the slope as a whole and not 

with a specific surface. The computational effort and the computer time needed to search 

a few hundred circles for each input data set (a simulation run may involve from 10,000 

up to 100,000 data sets) are, however, significant.

In practice, the problem is usually simplified by analyzing fixed slip surface(s) 

regardless of the values of the input data. The question, is which surface(s) to consider?
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Most published studies (e.g., Vanmarcke, 1977b; Wolff, 1985; Honjo and Kuroda, 1991; 

Christian et al., 1994) dealt with the critical slip surface from a deterministic analysis 

(minimum factor of safety) using the mean values of input variables. Many researchers, 

however, (Tobutt and Richards, 1979; Chowdhury and Tang, 1987; Hassan and Wolff, 

1999) indicated that the deterministic critical slip surface is not always the most critical 

surface in a probabilistic analysis. In cases where the uncertainties in the input variables 

contribute equally to the overall uncertainty in safety factor, the two surfaces tend to 

coincide. On the other hand, if  one variable contributes much more than the others the 

two surfaces can be significantly different. For example, a slip surface with a higher 

deterministic factor of safety (compared to the minimum), but with a larger portion going 

through a layer of highly uncertain strength is likely to have a higher probability of 

unsatisfactory performance. This decrease in reliability is due to the increased 

contribution o f the uncertainty in the shear strength which is not reflected in a 

deterministic analysis.

In a recent study Hassan and W olff (1999) proposed a search algorithm for 

locating the slip circle with the minimum reliability index. The idea is to search for the 

slip surface dominated by the input variable whose uncertainty contributes the most to the 

overall uncertainty in the safety factor. They suggested performing a series of 

deterministic analyses with each variable, in turn, assigned a value of the mean either plus 

or minus one standard deviation while the other variables are kept to their mean values. 

Therefore, a number of deterministic analyses equal to the number of variables needs to 

be performed. The sign (plus or minus) is determined such that a destabilizing effect is 

imposed on the slope. For example, strength parameters are assigned values o f the mean 

minus one standard deviation while the pore pressure ratio is assigned the mean plus one 

standard deviation. Out o f these surfaces, the one with the lowest factor o f safety is 

shown to have the lowest reliability index.

The Hassan and Wolff (1999) algorithm, however, does not directly account for a 

trend in the data nor for the spatial variability o f soil properties and pore water pressure
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along the slip surface. Taking spatial variability into account could cause the increase in 

the variance o f the factor of safety, due to the longer portion within the highly uncertain 

layer, to be offset by the variance reduction due to spatial averaging. Thus, in slopes 

dominated by the uncertainty due to spatial variability, the deterministic critical slip 

surface is likely to have higher probability o f unsatisfactory performance than the Hassan 

and W olff surface. An essential part o f the analysis is to consider also any other slip 

surfaces that may seem hazardous. Examples may include surfaces through a weak 

bentonitic layer and joint controlled surfaces.

For any slope, there is an unlimited number o f potential slip surfaces. The slope 

fails, or performs unsatisfactorily, if  any o f these surfaces fails. Failure is more likely, but 

not necessarily, to occur along the surface with the maximum computed probability of 

unsatisfactory performance. The total probability o f unsatisfactory performance o f a slope 

is, thus, the joint probability o f the failure occurring along any o f the admissible slip 

surfaces. As such, the probability associated with the most critical surface is a lower 

bound to the total probability o f unsatisfactory performance of the slope. The 

mathematics for estimating the total probability o f unsatisfactory performance are not yet 

developed (Wolff, 1996). However, the probability estimate based on the most critical 

failure surface is considered an adequate representation of slope reliability (Vanmarcke, 

1977b; Alonso, 1976; Yucemen and Al-Homoud, 1990). This approximation is based on 

the fact that all surfaces are analyzed using the same input variables and the same 

analytical model. As a result, they tend to be highly correlated which significantly reduces 

the difference between total probability o f unsatisfactory performance and that of the 

most critical surface (Mostyn and Li, 1993). In addition, potential critical slip surfaces 

tend to be close to one another. This introduces additional element o f spatial correlation 

which further reduces the difference between total probability and that of the most critical 

surface.

In this study, the probability o f unsatisfactory performance is obtained by 

independently analyzing a number o f fixed slip surfaces. The highest estimated

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



probability o f unsatisfactory performance is considered representative o f the total 

probability o f unsatisfactory performance o f the slope. The failure surfaces are selected to 

reflect: the engineer’s judgement o f potentially critical failure modes (e.g., non-circular 

joint controlled surfaces); the deterministic critical slip surface; and, the m inim um  

reliability index surface according to Hassan and Wolff (1999).

1.6 Spreadsheet Modeling

Modeling a slope problem in a spreadsheet follows, more or less, the same 

sequence as hand calculations. It comprises three main steps as follows.

1.6.1 Geometry, Stratigraphy and Input Parameters

To facilitate experimenting with the input parameters and the different potential 

slip surfaces, the spreadsheet is designed to largely automate the computations. The 

geometry o f the slope, the slip surface and the stratigraphy are modeled using the 

principles o f analytical geometry. The equations describing the various boundaries (lines 

and circles) with reference to a coordinate system are established, Figure 5—7, and 

modeled in the spreadsheet. The coordinates o f the points of intersection between the 

boundaries (e.g., points 1-5 in Figure 5—7) can be easily obtained within the spreadsheet 

and used in calculating the slice information (e.g., width, coordinates o f mid base point, 

total height and thickness in each soil type).

The input parameters (e.g., soil properties, pore pressure ratio, vane correction 

factor) are then added to the spreadsheet, Figure 5-8. @Risk functions are used to assign 

appropriate probability distributions for the input variables (shaded cells). The total 

uncertainty o f any input parameter is modeled in accordance to Equation 5-7. It is 

regarded as the sum of two variables representing soil variability and statistical errors 

multiplied by a third variable representing bias. For example, the spatial variability of the 

effective cohesion of the silty sand layer in Figure 5—7 is described by a lognormal 

distribution with a 5.0 kPa mean and a 1.5 kPa standard deviation (@Risk function: 

RiskLognorm(5,1.5) in Figure 5-8}. The uncertainty in the mean (i.e., statistical

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



uncertainty) is represented by a normal distribution with a zero mean and a standard 

deviation o f 0.23 kPa and is added to the variable representing spatial variability.

(23.93,27.7)

S ilty clay

Line No. Slope In te rcep t

I 0.000 20.00
II -0.667 26.27
in 0.000 8.00
IV 0.000 16.00

Slip c irc le :
(y-27.7)2 + (x-23.93)2 = (20)2

10 15 20

Distance (m)
25 30 35

Figure 5-7 Modeling geometry, stratigraphy and slip surface

1.6.2 Modeling Spatial Variability

The proposed scheme to account for spatial variability, Section 1.4.3, can be 

easily modeled in a spreadsheet. The failure surface within each soil layer is divided into 

segments o f length 8 and a segment of length equal to the residual portion as shown in 

Figure 5—9. The variability of a soil property along the failure surface is represented by a 

number o f variables equal to the number o f segments. Each variable is assigned the point 

CDF o f the measurements and represents the local average o f the soil parameter over the 

length o f the corresponding segment. All variables are uncorrelated except for the 

residual segment and that contiguous to it (e.g., segments 3 and 4, Figure 5-9). The 

correlation coefficient is modeled using @Risk functions "IndepC" and "DepC". In any 

simulation iteration, a value is sampled for each variable such that the correlation 

coefficients between the variables are preserved. Thus, the soil parameter along the slip
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surface is represented by a number o f values corresponding to the different segments. For 

example, the friction angle along the failure surface within the silty clay layer (Figure 5— 

9) is represented by 4 values (corresponding to segments 1 to 4) sampled from four 

probability distributions with the same mean and standard deviation; N(25,2.5).

X  M icroso ft E x ce l - B ishopx2

|{ ?1  FJe Edit View Insert Format Tools £>ata Window Help
K31 H 1 -

E ! F I . e  "  K ; H .!
10
11

Soil StratiaraDhv

12
13

Soil Type 1 
Description: Silty sand

i f 3
Random variable : LogN(5,1.5)

14 Thickness, t, (m) 4.0
15 Effective Cohesion, c’t (kPa) 5.0
16 Effective Angle of Friction, (deg.) 35.0 Random variable: N(35,3)
17 Bulk Unit Weight, y, (kN/m3) 18.0
18
19 Soil Type 2
20 Description: Silty clay
21 Thickness, t2 (m) 12.0
22 Effective Cohesion, c2 (kPa) 15.0 Random variable : N(15,3.5)
23 Effective Angle of Friction, (p'2 (deg.) 25.0 Random variable: N(25,2.5)
24 Bulk Unit Weight, y2 (kN/m3) 18.0
25
26 Pore Water Pressure
27
28 Pore pressure ratio, ru 0.15 Random variable: N(0.15,.05) & r„>= 0

Figure 5-8 Modeling input variables in the spreadsheet

Alternatively, the probability distribution of the average soil parameter along the 

entire length o f the failure surface can be estimated and used directly in the stability 

analysis. The probability distribution o f the average property is the weighted sum, in 

terms of length, o f the correlated variables representing the local averages over the 

segments o f the failure surface. Monte Carlo simulation could be used in a separate 

spreadsheet to estimate the CDF of the average property prior to the stability analysis. 

The variance o f the average property using this simulation scheme is the same as that
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obtained by the common approach o f the variance reduction factor, f  Using the CDF o f 

the average property in the stability analysis simplifies spreadsheet modeling and Monte 

Carlo simulation. However, it introduces some approximation by smoothing the 

variability along the failure surface into a single average variable. A comparison o f  the 

two approaches is presented in the following chapters.

30

25

20

15

l0 I Silty Clay

3
0 L0 20 2515 30 35

Distance (m)

Figure 5-9 Accounting for spatial variability in the spreadsheet model

1.6.3 Slope Analysis Methods

Many o f the slope analysis methods commonly used in practice (e.g., Bishop, 

Janbu, Spencer) can be easily modeled in a spreadsheet. In this study the Bishop and 

Spencer methods are used for analyzing the case studies in the following chapters. The 

notations and symbols used are illustrated in Figure 5—10. The force Q is the resultant o f 

the inter-slice forces Zk and Z ^i and has an angle E, with the horizontal; x and y are the 

coordinates o f the points o f interest; W is the weight of the slice; P, x and u are the total 

normal stress, shear stress and pore water pressure at the base o f the slice, respectively.
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Figure 5—10 Notations and symbols used in stability analysis

1.6.3.1 Bishop’s Simplified Method o f  Slices

Bishop’s method of slices is based on moment equilibrium only assuming that the 

summation o f the vertical components o f Zk and Zk+i is equal to zero. The spreadsheet 

model is built by creating a calculation table similar to that proposed by Bishop (1955) 

for hand computations, Figure 5—11. The appropriate soil parameters for each slice are 

automatically chosen by a series of nested 'IF' statements (an Excel function) that 

compares the x-coordinate of the mid-base point (xs) with the coordinates o f the key 

points established in Section 1.6.1 (points 1-5 in Figure 5—7). Excel 'circular reference' 

feature is used for the iteration process untill the difference between the assumed and the 

calculated factors o f safety is within the user-specified range (<0.002 in the example 

problem). Initially, the values of the factor of safety "F" in column 'O' (Figure 5-11) are 

set to an arbitrary value, say F=l. The equation in cell: M66 is established (the division of
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the resisting and driving moments: P64/L64), then the arbitrary value in column 'O' is 

replaced by cell: M66.

>1

I i J K ' N_..M N - 0  / /  p
52 Slice Mid-base W  sin ct* A cb W(1 -ru) tan <p' sec Of ^ (“2,'+"3") .“4“

53 No. of slice " V \ W “3“ 1 +(tan^.tanoc/F)

54 (kN) \jwm) (kN) "4"

55 1 6.02 22.09 5.59 14.66 1.087 22.010
56 2 7.14 53.83 5.59 38.13 1.010 44.174
57 3 8.55 120.11 25.49 61.80 1.098 95.835
58 4 10.15 117.38 22.50 67.47 1.032 92.864
59
60 _ „
61 .. .. .. ••

62 14 25.149 -2.92 22.50 18.90 1.024 42.404
63 15 26.649 -2.27 22.50 6.61 1.061 30.890
64 £ = 774.53 2 = 1018.184
65
66 Factor of Safety "FS" = 1.315

Figure 5-11 Spreadsheet calculations for Bishop’s Method o f slices 

(example in Figure 5-7)

1.6.3.2 Spencer’s Method o f  Slices

Spencer’s method (Spencer, 1967) satisfies both moment and force equilibrium 

and is based on the assumption that the resultant inter-slice force, Q, has a constant angle 

with the horizontal, throughout the slope. As in Bishop’s model, the appropriate soil 

parameters for each slice are automatically chosen by a series of nested 'IF' statements. 

The spreadsheet is established by rearranging the force and moment equilibrium 

equations in a tabular form, as shown in Figure 5—12. The solution for the factor o f safety 

involves three simultaneous iterative processes using the Excel circular reference feature 

as shown in Figure 5—12. For an assumed value o f the angle the spreadsheet solves the 

moment equilibrium equation by iteration untill the difference between the assumed and
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calculated moment factors o f safety, Fm (cell: H92), is within the user-defined range (< 

0.005 in the example problem). Simultaneously, another iterative process is performed to 

calculate the force equilibrium factor o f safety, Ff (cell: K92). The absolute difference 

between the two factors o f safety (cell: 193) is calculated in percent and compared with 

the user specified acceptable limit. If  the difference exceeds the limit, another value of the 

angle § is assumed and the whole process is repeated. To minimize the iteration time the 

angle § is changed by fixed increments defined by the user (0.2 degrees in Figure 5-12) 

such that £, increases when Fm>Ff and decreases when Fm<Ff (Spencer, 1967).

1.7 Issues in Simulation

1.7.1 Random Sampling

Monte Carlo simulation requires the generation o f random numbers, between 0 

and 1, which are used in sampling the cumulative distribution functions (CDFs) of the 

input variables. @Risk allows two sampling techniques namely; Monte Carlo sampling 

(or random sampling) and Latin Hypercube sampling. A problem often encountered with 

Monte Carlo sampling is the clustering of the randomly selected values at the central part 

of the CDF, thus missing the low and high probability portions o f the curve which 

correspond to the extreme values at the upper and lower tails o f the distribution. Failure 

occurs mainly because of these extreme values (e.g., very low shear strength, very high 

pore pressure ratio). Unless an enormous number o f iterations is used, Monte Carlo 

sampling could miss these extremes resulting in a misleadingly low probabilities of 

unsatisfactory performance.
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Latin Hypercube sampling is adopted in this study. It was first proposed by 

McKay et al. (1979) and is shown to be efficient in dealing with events of low 

probabilities. The probability range of the CDF (0 to 1) is divided into a number o f 

intervals (or layers) equal to the number of iterations, m. All layers would have equal 

probabilities o f 1/m (i.e., equal weights). Sampling proceeds by randomly selecting an 

interval and then randomly sampling a value from within this interval, Figure 5—13. The 

process is performed without replacement (i.e., each interval is sampled only once) thus 

ensuring that the full range o f the CDF is represented. Sampling o f each input variable is 

conducted independently of other variables to ensure complete randomness, unless 

otherwise desired.

1.00
Iteration -#-1

m =  10
S  0.75
.o
2
« 0.50
.—' 
s
i  0.25

Iteration #2

3
u

0.00
0 3 4 51

Input Variable;

Figure 5—13 Latin Hypercube sampling with 10 iterations

An important feature of @Risk is the ability to handle correlated input variables. 

The correlations are expressed using the Spearman Rank Correlation Coefficient. It is 

calculated using the "rank" of data values, not the actual values themselves. The rank o f a 

data point is its position within the observed minimum to maximum range. The rank 

correlation coefficient has the advantage of being more reliable than the traditional 

correlation coefficient when the data exhibit a non-linear relationship and/or the input
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variables are not normally distributed. Walpole and Myers (1978) pointed, however, that 

the two coefficients are usually very close.

@Risk generates correlated sets o f random numbers (between 0 and 1) such that 

the input rank correlation coefficient matrix is preserved. These numbers are then used in 

sampling the input distributions o f the correlated variables. The recreated distributions, by 

sampling, reflect the input CDFs as well as the correlation between the variables.

1.7.2 Num ber o f  Iterations

The output o f a simulation process is sensitive to the number o f iterations, m. 

When m is large, the number of random samples drawn for each input variable is also 

large and the match between the distribution recreated by sampling and the original input 

distribution is more accurate. As a result, the output quantity becomes more stable at the 

expense of increasing computer time. By sampling every portion of the CDF, the Latin 

Hypercube technique helps reduce the number of iterations needed to attain a stable 

solution. The optimum number of iterations depends on the variability in the input 

parameters (i.e., standard deviation) and the output parameter being estimated (e.g., mean 

safety factor, probability of unsatisfactory performance). A simple practical way to 

optimize the simulation process is to run the simulation a few times using a constant seed 

value and an increasing number of iterations. The number o f iterations m is then plotted 

versus the output of interest (e.g., probability of unsatisfactory performance), Figure 5— 

14. When the number of iterations is small, the scatter of the estimated probability of 

unsatisfactory performance is significant. As m increases, the level of noise in the output 

diminishes and the sensitivity of the estimated probability to the number of iterations 

decreases. The minimum number of iterations at which the desired output quantity 

stabilizes, Figure 5—14, is the optimum number of iterations.
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Figure 5—14 Optimum number o f iterations for estimating 

probability of unsatisfactory performance

1.8 Interpretation of the Output

1.8.1 Probability o f  Unsatisfactory Performance

The main output o f the simulation is the probability density function o f the factor 

of safety from which the mean and standard deviation can be inferred. The probability of 

unsatisfactory performance is the probability o f the factor of safety being less than one, or 

simply the number o f iterations with FS < 1.0 relative to the total number of iterations, m. 

It is commonly interpreted as the percentage of m identical structures that could fail. The 

physical meaning o f this interpretation is, however, not appealing. In reality there would 

never be m identical structures and there is no assurance that failure will occur even with 

a non-zero probability o f unsatisfactory performance. It is probably more meaningful to 

interpret it as the probability of the demand on the slope, i.e. the destabilizing forces, 

exceeding its capacity, or the resisting forces.
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An important point to keep in mind is that the computed probability of 

unsatisfactory performance is an indication o f whether the slope is likely to perform 

satisfactorily or not without any consideration o f time effects. If, for example, soil 

strength degrades or improves throughout the service life of the structure, the impact of 

time on stability can only be assessed by other analyses using revised strength probability 

distributions. The same concept applies when accounting for temporal changes in pore 

water pressure.

Since the simulation process is based on random sampling of input variables, the 

calculated probability of unsatisfactory performance is also a variable. The value 

estimated from a single simulation could differ, for that particular simulation, from the 

true value. Law and McComas (1986) described relying on the results of a single 

simulation run as one of the most common and potentially dangerous simulation 

practices. It is, therefore, essential to repeat the simulation a few times using different 

seed values to ensure consistency in the estimates. In fact, it is even desirable to run the 

simulation many times to estimate the histogram o f the probability of unsatisfactory 

performance. Estimates of the mean probability and the 95% confidence interval around 

the mean are revealing. Using @Risk "Macro" functions, the process o f running a number 

o f simulations can be fully automated. A simple Macro file can be designed to run a 

number o f simulations and save the output o f each simulation in a separate file without 

any human involvement.

While there is a strong desire to estimate the actual probability of unsatisfactory 

performance, we are still unable to do so. In spite o f the effort by the designer to address 

all sources of uncertainty, there is always the possibility o f undetected uncertainties (e.g., 

human mistakes) affecting the slope performance. The contribution of these unknown 

uncertainties to the probability of unsatisfactory performance is not considered and the 

computed probability could be a lower bound to the actual probability. That is why the 

comparison between computed probabilities o f different designs is believed to be of 

greater value. This, however, should not be an excuse to delay or avoid the 

implementation of probabilistic and risk analysis techniques that require absolute values
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while awaiting a complete flawless approach that may never be achieved. It is our 

responsibility, as professionals, to continuously search for more advanced tools to better 

understand and control the influence o f the various sources of uncertainty on safety, at 

least those sources that we can control.

1.8.2 Sensitivity Analysis

Through @Risk, a sensitivity analysis can be performed to assess the relative 

significance o f the input variables to the determination o f the output variable. In other 

words, the relative contributions o f each input variable to the overall uncertainty in the 

factor o f safety. This contribution reflects the physical impact the parameter has on the 

slope performance as well as its uncertainty. For example, a highly uncertain unit weight 

may still contribute little to the uncertainty o f the safety factor. On the contrary, a large 

portion o f the slip surface going through one layer may cause the factor o f  safety to be 

highly sensitive to the uncertainty in the shear strength o f this layer even though it may 

not be the highest among input variables. The results o f the sensitivity analysis are 

extremely useful in practice as they identify the most critical variable(s) in the analysis. 

Resources can, therefore, be rationally allocated towards reducing the uncertainty of these 

variables.

Two different techniques are used by @Risk for sensitivity analysis: multivariate 

stepwise regression analysis and rank order correlation analysis. The former is less 

reliable when the inputs are non-linearly related to the output. The rank correlation 

analysis is used in this study. The value of the rank order correlation coefficient 

(Spearman Coefficient) varies between 1 and -1 . A value o f zero indicates no correlation 

between the input variable and the output. A value of 1 indicates a complete positive 

correlation and a value o f -1  indicates a complete negative correlation.

2. ADVANTAG ES OF THE PRO PO SED M ETHODOLOGY

The proposed methodology, as described in the preceding sections, overcomes 

many limitations o f the existing techniques (Chapter 4). Firstly, and probably most
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importantly, it is simple, intuitive and compatible with conventional slope design 

practice. The procedures and concepts are transparent and understandable requiring only 

fundamental knowledge o f statistics and probability theory. No computer program m ing  is 

needed, only familiarity with spreadsheet programs. This is likely to make it more 

appealing to practicing engineers. In addition, by having to actually model the slope 

problem in a spreadsheet and to experiment with the input variables the engineer gains 

significant insight into the analysis and gets to appreciate the critical parameters. This 

greatly enhances understanding o f the problem and improves the decision-making 

process.

The methodology is very flexible in handling a wide variety o f slope problems. 

These include various loading conditions, complex stratigraphy, c-<j) soils, a large number 

o f input variables, almost any input probability distribution function (including non- 

parametric distributions), slip surfaces of any shape and many o f the slope analysis 

methods. The rapidly developing features o f spreadsheet programs are promising further 

capabilities in handling even more complex problems. In addition, the analysis can be 

very easily updated upon obtaining any new information by simply changing few cells in 

the spreadsheet and running a new simulation. Spatial variability and correlation between 

input variables can be readily and transparently accounted for. Furthermore, the analysis 

yields the probability distribution function of the factor of safety thus eliminating the 

need to assume a parametric shape. Finally, the economics o f the analysis, in terms of 

computer system requirements and time, are reasonable.

3. LIMITATIONS OF THE PROPOSED METHODOLOGY

While the proposed probabilistic methodology overcomes most o f the 

shortcomings of the current methods, it is has some limitations. First, modeling spatial 

variability in the proposed approach is based on the approximate variance function 

proposed by Vanmarcke (1977a). The function implies a perfect correlation, p(r) =1.0, for 

separation distances, r, less than the scale o f fluctuation, 5, and no correlation, p(r) = 0,
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for r  values greater than 5. This sudden drop from a perfect correlation to a total lack of 

correlation is, clearly, an approximation. In reality, the correlation between soil properties 

at two locations decreases gradually as the separation distance increases. The impact of 

that approximation on the output o f a slope analysis is on the conservative side. More 

rigorous models accounting for the gradual decay o f the autocorrelation function (e.g., 

Vanmarcke, 1983) could be incorporated in the spreadsheet. This, however, would result 

in a drastic increase in the number of correlated variables requiring advanced computing 

capabilities beyond those of a commercial spreadsheet-based simulation software. Also, 

the application o f the proposed methodology is governed by the capabilities of 

spreadsheet programs. Some of the more advanced and complex slope stability methods 

(e.g., Morgenstem-Price method, 3-D methods) are, for now, cumbersome to model in a 

spreadsheet. The rapid development in software, however, will soon overcome these 

limitations.

Second, spatial averaging of the pore water pressure along the failure surface is 

based on the assumption that the spatial structure o f the pore pressure ratio is similar to 

that of the soil properties. Qualitatively, this assumption is thought to be true. However, 

the quantitative relationship between the spatial variability of soil properties and that of 

the pore pressure is not known. Unfortunately, there are very few studies addressing the 

spatial variability o f pore water pressure. In fact, the author is aware o f only 3 such 

studies (Hachich and Vanmarcke, 1983; Bergado and Anderson, 1985; Griffiths and 

Fenton, 1993). The three studies tried to quantify the variability o f the piezometric head 

(or phreatic surface) due to the spatial variability o f soil permeability assuming a steady- 

state laminar flow through a porous saturated incompressible medium. The problem is, 

however, much more complex. The spatial variability o f pore water pressure is a response 

to a number o f highly variable and interacting phenomena. These include rainfall 

intensity, rate o f  infiltration, regional and local flow patterns, spatial variability of 

hydraulic conductivity and state o f stress. The problem is further complicated with time 

being a pertinent dimension. Pore pressures tend to vary over relatively short periods of 

time; the variations can be significant and rapid in tropical areas, for example. The
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enormous complexity o f the problem and the often sparse data available are the main 

reasons behind the scarcity of studies. More research is certainly needed in that area.

4. ESTABLISHING PROBABILISTIC SLOPE D ESIG N CRITERIA

Having estimated the probability o f unsatisfactory performance, the next step is to 

assess whether it is acceptable or not. This is achieved through comparing the computed 

values with acceptable limits, or probabilistic slope design criteria. Establishing these 

criteria is, however, not easy. One option is to estimate them based on the actual failure 

rate from a comprehensive survey of case histories combined with judgement and 

experience. Typical values in the literature are in the range o f 10'3 to 1C4 (e.g., Meyerhof, 

1970; US Army, 1995). A major drawback to this approach is that the site/case specific 

features are not considered. In other words, the geometry, site conditions and sources and 

levels of uncertainty (e.g., soil variability, depth of investigation, adequacy of design 

models, quality o f construction) of the case histories constituting the database are not 

addressed. Applying such a global criterion to any slope is a very crude generalization.

Another common approach is to calibrate the computed probabilities with 

experience and observed performance of existing structures. In addition to building upon 

the available body o f experience in slope design, this approach helps maintain the 

compatibility between probabilistic and conventional design methods (Kulhawy, 1996). 

In this research, a major study is undertaken to calibrate current, acceptable slope design 

practice in probabilistic terms. Case histories o f slope failures are redesigned based on 

conventional practice (deterministic analysis combined with judgement) and accounting 

for the fact that the slope failed. The revised designs are then analyzed probabilistically 

using the proposed methodology. The probabilities of unsatisfactory performance of other 

slopes performing adequately (e.g., Syncrude tailings dyke) are also estimated. The 

computed values from both categories (failed and safe) are assessed and an upper limit of 

the acceptable probability of unsatisfactory performance is proposed.
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The calibration process is also repeated with the probabilistic stability analyses 

based directly on the probability distributions o f the measured data with m inim al 

statistical analysis. Statistical treatment of the data is limited to excluding outlier values 

and redundant measurements due to clustering, calculating means and standard deviations 

and constructing the probability distribution functions (CDFs). The issues of spatial 

variability, spatial averaging and statistical uncertainty are not addressed. It should be 

mentioned that some geostatisticians consider this a "naive" approach. In the light of the 

increasing complexity o f the more rigorous probabilistic analyses, it is thought that 

investigating whether such a simple and common approach could be o f any value, even as 

a preliminary assessment, is worth the effort.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6

APPLICATION OF THE PROPOSED 
PROBABILISTIC SLOPE ANALYSIS 

METHODOLOGY 
JAMES BAY CASE STUDY

To illustrate the implementation and capabilities o f the proposed probabilistic 

approach (Chapter 5) the well documented case study of the James Bay hydroelectric 

project is analyzed. The project was never built, however, the design was the subject of 

extensive studies including quantifying the various sources o f uncertainty (Ladd et al., 

1983; Soulie et al., 1990) and the probabilistic analysis of dykes’ stability (Christian et 

al., 1994). The probabilistic stability analysis of Christian and his colleagues was 

performed using the FOSM method. Although the FOSM method is an approximate 

technique, the results should not differ significantly from Monte Carlo simulation. This 

case study, thus, provides a useful test of the proposed methodology.

1. JAM ES BAY PROJECT

The proposed James Bay hydroelectric project required the construction o f nearly 

50 km o f earth dykes in the James Bay area of Quebec, Canada. Among various design 

options investigated were single stage construction o f the embankment to a height of 

either 12.0 m or 6.0 m, hereafter referred to as Design 1 and Design 2, respectively. The 

embankment had side slopes of 3h:lv and the 12.0 m high design included a 56 m wide 

berm at mid height. The subsurface investigation indicated the presence o f a surface layer 

o f peat overlying a clay crust. The crust thickness ranges between 1.0 and 6.0 m with an 

average o f 4.0 m. The clay is of low plasticity and has an undrained shear strength that 

decreases with depth from about 82 kPa at surface to 35 kPa at the bottom o f the crust. To 

account for the potential of fissures reducing the operational strength o f the crust, the 

average strength over the bottom half of the crust, 41 kPa, is adopted for the entire 

thickness.
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The crust is underlain by a sensitive marine clay overlying a lacustrine clay. The 

total thickness o f the two layers varies between 8 m and 23 m with a poorly defined 

boundary between them. On average, the marine clay is about 8m thick and the lacustrine 

clay is about 6.5 m. Both clays have low plasticity. The undrained shear strength of both 

clays was measured by field vane tests at 1.0 m depth intervals. The data indicated a large 

scatter in the shear strength of both layers. The mean undrained shear strength is about 

35 kPa for the marine clay and 31 kPa for the lacustrine clay. The lacustrine clay is 

underlain by a stiff layer of till. Figure 6—1 and Figure 6-2 show the stratigraphy and the 

geometry of both designs.

33

45 

2  35
s

■•= 25 

W

-5

Tx„y. )
- --------------------------

x  Embankment ........................ ^

^  _ Clav Crust S '
Marine Clay V  ^  ^

Lacustrine Clay
_ _  — —/ / / / / / / / / / / /

Till
-....................................i .... i. . i i

N'— Critical Slip 
Circlei i i

20 40 60 80 100
Distance (m)

120 140 160

Figure 6—1 Geometry and stratigraphy of James Bay dykes; Design 1 (H = 12m)
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2 . M O N TE CARLO  SIM ULATION VERSUS FOSM

In order to reliably reflect on the conclusions of the proposed probabilistic 

approach in relation to those from the FOSM method, the differences between the Monte 

Carlo technique and the FOSM method are first investigated. A Monte Carlo analysis is 

performed to assess the stability of the dykes using the exact input variables and 

probability distributions defined by Christian et al. (1994), hereafter referred to as 

M.C.-Christian analysis. Six variables were considered as summarized in Table 6-1. All 

variables are assumed normally distributed. The standard deviations shown in Table 6-1 

were the end result o f a detailed statistical analysis of the measured data by Christian and 

his colleagues. The analysis included the removal of random measurement errors, 

estimation o f statistical errors due to sample size, accounting for bias due to Bjerrum’s 

vane correction factor and variance reduction due to spatial averaging. The differences in 

the standard deviations o f the same variables from Design 1 to Design 2 is a result of the 

spatial averaging process and the difference in the lengths of the critical slip circles. 

Bishop’s method o f slices was used in the FOSM analysis (Christian et al., 1994) and 

Monte Carlo simulation. Deterministic slope stability analyses using Slope/W software 

and the mean values o f input variables resulted in minimum factors of safety of 1.455 and 

1.527 for Design 1 and Design 2, respectively. Figure 6-1 and Figure 6—2 show the 

critical slip circles for both cases.

The uncertainty in the depth of the till layer, Dtni, is entirely systematic uncertainty 

due to the limited number of borings. Because of the low strength o f the lacustrine clay, 

the depth of the till layer greatly controls the location of the critical slip circle. The 

uncertainty in Dtni, thus, introduces uncertainty in the location o f the slip circle. To 

examine the impact of this uncertainty, a  series of deterministic stability analyses were 

performed varying Dtjn incrementally between 15.5m and 21.5m (± 3 standard 

deviations). For Design 1, the minimum factor of safety varied between 1.69 and 1.3 and 

the critical slip circles were always tangent to the top of the till, daylight within a short 

distance at the top o f embankment (xi = 2.9 - 7.1 m, Figure 6—1) and have a narrow range
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of the x-coordinate for the centres (xQ = 85.6 - 86.5 m). For Design 2, the factor of safety 

varied between 1.56 and 1.51 and the critical slip circles were also tangent to the till with 

the coordinates o f the centres varying within a narrow range (x0 = 63.5 - 63.9m, y0 = 38.7 

- 43.7m). These results indicate that the uncertainty o f Dtin will have a greater impact on 

Design 1 than it would on Design 2. It also shows that the variations in the location of the 

centres o f the slip circles and the daylight points at the top o f the embankment are small 

in spite o f the variations in the depth o f the till layer.

Table 6-1 Input variables and statistical parameters for James Bay dykes
(based on Tables 6 and 7; Christian et al., 1994)

Input Variable Design 1®

(H = 12m)

Design 2®

(H = 6m)

Fill unit weight; yf,n (kN/m3) E[Yfni] 20.0 20.0

tftYfiii] 1.10 1.30

Fill friction angle; <j)fin (deg.) E[<t>fm] 30.0 30.0

Ct[<j)fill] 1.79 1.92

Thickness o f clay crust; tcr (m) E[tcr] 4.0 4.0

O'C tcr] 0.48 0.84

Strength of marine clay; Sum 
(kPa)

E[Sum] 34.5 34.5

c [  Sum] 3.95 5.97

Strength of Lacustrine clay; Sul 
(kPa)

E[SuL] 31.2 31.2

ct[SuL] 6.31 8.79

Depth of till layer; Dtni (m) E[Dtni] 18.5 18.5

cr[ Dun] 1.00 1.00

© Based on a variance reduction factor,yj of 0.20
© Based on a variance reduction factor,yj of 0.70

Spreadsheet models were prepared for both designs. Since the depth of the till is 

considered a variable, a different value is sampled for each simulation iteration and
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consequently the critical slip circle varies from one iteration to another. To minimize 

computer time, some restrictions were imposed on the geometry o f the slip circles based 

on the results of the parametric study in the preceding paragraph. For Design 1, the slip 

circles are assumed tangent to the till layer, daylight at a fixed point at the top o f the 

embankment (xi=4.9, yi=36.0) and have a common x-coordinate for the centers 

(x0=85.9). For Design 2, the circles were assumed tangent to the till and have a common 

center (Xo=63.7, yo=42.0). The search for the critical slip circle is thus limited to one 

circle per iteration. The geometry of the circle is controlled by the sampled value of Dtju.

A number o f @Risk simulations were performed using a seed value of 31069 (an 

arbitrary value) and an increasing number of iterations to assess the optimum number of 

iterations needed for a stable estimate of the probability o f unsatisfactory performance, 

Figure 6-3 and Figure 6-4. Based on these plots 14,000 iterations are needed for 

Design 1 and 35,000 iterations for Design 2. The increase in the number of iterations for 

Design 2 is attributed to the larger uncertainty of the input variables. In subsequent 

simulations 20,000 and 38,000 iterations were used for Design 1 and Design 2, 

respectively. Using a PC machine (Pentium H, 233 MHz), the computer time for the 

simulation was approximately 11 minutes for Design 1 and 22 minutes for Design 2.

Using a seed value of 31069, Monte Carlo simulation for Design 1 resulted in a 

mean factor o f safety of 1.46, a standard deviation of 0.17 and a probability of 

unsatisfactory performance of 0.27%. For Design 2, the mean factor o f safety is 1.53, the 

standard deviation is 0.26 and the probability o f  unsatisfactory performance is 1.76%. 

Figure 6—5 and Figure 6—6 show the histograms and the CDFs o f the factor of safety. 

Twenty four additional simulations were run for both designs using different seed values 

to build up the histogram of the probability of unsatisfactory performance, Figure 6—7. 

The mean value o f Pu for Design 1 is estimated to be 0.24% with a 95% confidence 

interval (assuming t-distribution) of 0.23-0.25 %. For Design 2, the mean Pu is 1.76% and 

the 95% confidence interval is 1.73-1.78%. Table 6-2 summarizes the results o f Monte 

Carlo simulation and the FOSM method.
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Table 6-2 Summary of the results of Monte Carlo simulation

and FOSM

Design 1 (H = 12m) Design 2 (H = 6m)

Monte Carlo FOSM® Monte Carlo FOSM®

E[FS] 1.46 1.45 1.53 1.50

cr[FSJ 0.17 0.17 0.26 0.27

Pu (% ) 0.24 0.40® 1.76 3.25®

(3® 2.75 2.66 2.06 1.84

© Analysis by Christian et al. (1994)
© Assuming the factor o f  safety is normally distributed 
© p = E[FS]-1  

a[FS]

As discussed in Chapter 4, the FOSM is an approximate technique because it is 

based on the linear terms only of Taylor’s series expansion. Solutions based on Taylor’s
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series are exact only if  the performance function is linear which is not the case with the 

factor of safety. Also, the partial derivatives o f the performance function are 

approximated by numerical techniques. The results in Table 6-2 show, however, that the 

FOSM method is accurate in estimating the first two moments (mean and the variance) of 

the performance function. Nonetheless, the lack o f any information about the shape o f the 

probability density function o f the factor of safety, particularly at the tails, combined with 

the minor deviations in the mean and variance can introduce some errors in estim ating  the 

probability o f unsatisfactory performance as shown in Table 6-2. The magnitude of the 

error is likely to be higher in estimating very low probabilities.

A sensitivity analysis was performed to identify the main variables affecting the 

uncertainty of the factor of safety. Figure 6-8  and Figure 6—9 show Spearman rank 

correlation coefficients for both designs. The uncertainty in the undrained shear strength 

o f the lacustrine clay is by far the most influential source of uncertainty in both cases. 

Therefore, any extra spending to improve the reliability o f the design should be directed 

towards a better characterization of the shear strength of the lacustrine clay. The 

uncertainty in the unit weight of the fill comes second. As expected, the uncertainty in the 

depth of till has a large influence on Design 1 while it has practically no effect on 

Design 2. Both o f the uncertainties in the thickness of the clay crust and the friction angle 

of the fill have a minimal impact on either design. Based on the FOSM analysis 

(Christian et al., 1994), the relative contributions o f the various sources of uncertainty to 

the overall uncertainty o f the factor of safety are in good agreement with the results of the 

sensitivity analysis.
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3. IM PLEM ENTATION OF TH E PRO PO SED M ETHO DO LO GY

3.1 Jam es Bay Design 1 (H=12m)

The stability o f James Bay dykes Design 1, is analyzed probabilistically using the 

proposed methodology (Chapter 5). The input variables defined by Christian et al. (1994) 

are adopted. However, the statistical parameters describing the uncertainty of these 

variables are approached and combined differently. Three sources of parameter 

uncertainty are considered: soil variability, statistical errors and measurement bias. Soil 

variability is described by the mean and variance o f the measured data. Statistical errors 

due to the limited number of measurements are estimated using Equation 3-20 

(Chapter 3). The bias in the measurements of the undrained shear strength o f the marine 

and lacustrine clays is accounted for through Bjerrum’s vane correction factor using the 

same mean and variance proposed by Christian and his colleagues. Table 6-3 summarizes 

the statistical parameters o f the various sources o f uncertainty. In principle, these 

uncertainties are combined using the following model;

y = B{x + SE) (6-1)

where y is the corrected input variable, B  is the bias correction factor, x  is the measured 

variable and SE is the statistical error. All variables are assumed normally distributed. 

Due to the large standard deviation o f the measured shear strength of the marine and the 

lacustrine clays and the potential o f sampling negative values, a zero truncation limit is 

imposed on both distributions (i.e., x > 0). Alternatively, a practical minimum strength 

threshold may be used instead. The use o f a zero truncation limit may result in the shear 

strength at discrete locations along the slip surface being equal to zero. The average shear 

strength over the length of the slip surface, however, will be higher than zero. In addition, 

a zero truncation limit is imposed on the sum of the measured strength and the statistical 

error (i.e., x  + SE > 0).

To simplify the spreadsheet model, the uncertainty in soil stratigraphy is dealt 

with as a systematic uncertainty. In other words, the thickness o f a soil layer can vary
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from one iteration to another, however within one iteration the thickness is not allowed to 

vary along the slope profile. Thus, to account for the effect of spatial averaging on the 

uncertainty o f the mean thickness o f the clay crust, a variance reduction factor of 0.20 is 

applied to the point variance, Table 6-3.

Table 6-3 Input variables and statistical parameters for James Bay dykes (based on

Christian et al., 1994)

Input Variable
Soil Variability® Statistical Error® Measurement Bias

E [-] <*[-] E[~] a [~ ] E [-] G[~]

Fill Friction Angle; <{>nu 
(deg.)

30.0 1.00 0.0 1.73 — —

Fill Unit Weight; you 
(kN/m3)

20.0 1.00 0.0 1.00 — --

Thickness of Clay Crust;

tcr(m)
4.0 0.48®

0.84®

— -- — —

Shear Strength of Marine 
Clay; Sum (kPa)

34.5 8.14 0.0 0.95 — —

Bjerrum Vane Correction 
Factor for Sum ; Pm

— — — -- 1.0 0.075

Shear Strength of 
Lacustrine Clay; Sul (kPa)

31.2 8.65 0.0 1.73 — —

Bjerrum Vane Correction 
Factor for SuL; P l

— — — — 1.0 0.150

Depth of Till; D,jn (m) — — 18.5 1.00 — —

© Mean and standard deviation o f  the measured data without any alteration
© Based on Equation 3-20
® Uncertainty due to spatial variability ( f =  0.2) plus statistical error, Design 1
© Uncertainty due to spatial variability ( f =  0.7) plus statistical error, Design 2

A spreadsheet model is prepared and a print out is attached in Appendix I. The 

critical slip circles are assumed tangent to the till layer, daylight at a fixed point (4.9, 

36.0) and have the same x-coordinate for the centres (x0=85.9), as outlined in Section 2. 

For each iteration, different value o f Dtni is sampled and a different slip circle is analyzed.
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In accounting for spatial averaging, Christian et al. (1994) used a variance 

reduction factor o f 0.20 which implied an autocorrelation distance in the order of 15m. 

The same distance is adopted in this study. The procedure outlined in Chapter 5 is 

followed to model the spatial variability o f soil properties in the spreadsheet. The portion 

o f the slip surface within each layer is divided into a number of segments depending on 

the geometry o f the slip surface and the autocorrelation distance. The average soil 

property over the length o f each segment (i.e., local average) is modeled as a random 

variable having the probability distribution o f the point measurements, Table 6-3. The 

correlation coefficients between local averages are calculated using Equation 5-5. Thus, 

each iteration in the simulation process involves sampling a number o f correlated 

variables (for each soil parameter); each represents the local average over the length of 

the corresponding slip surface segment.

The length of the slip surface cutting through the embankment is less than 30m 

(i.e., <2r0). The friction angle of the fill material is, thus, modeled by one variable. The 

undrained shear strength o f the marine clay is modeled by two variables representing the 

average strength over the two segments of the slip surface within the clay layer, Figure 6-  

10. The correlation coefficient between the two local averages is equal to zero.

Depending on the geometry of the slip surface, the portion within the lacustrine 

clay is divided into 2-4 segments. In most cases, however, 3 segments are used as shown 

in Figure 6-10. The undrained shear strength is represented by a number of variables 

equal to the number o f segments. The correlation coefficients between the local averages 

are estimated based on the geometry of the slip surface associated with the mean values 

of the crust thickness and the depth to the till layer. The embankment cross-section is 

divided into 5 zones, Figure 6—10. The average unit weight within each zone is regarded 

as a variable with the point probability distribution. The correlation coefficients between 

all variables are equal to zero except for those representing zones 4 and 5 where the 

correlation coefficient is calculated to be 0.37.
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Statistical errors and bias are both sources o f systematic uncertainty. As such, they 

have a constant impact all across the slope. Each source o f these uncertainties (Table 6-3) 

is modeled by a single variable. In total, 19 variables are defined and used to account for 

the various sources o f uncertainty.

Embankment(4.9.36.0)
K ~7vrrw *79

Yfiu-i
E
eo YfiIl-2 Yfin-

Clav Crusta>
s

.  Marine Clay

Lacustrine Clay
 777/7/777777
Till I  = 5  = 3 0 m

~~~TslX-3
60 140 1600 20 40 80 100 120

Distance (m)

Figure 6—10 Proposed approach to account for spatial averaging, Design 1

The optimum number o f iterations is estimated to be 30,000 as shown in Figure 

6-11. In the subsequent analyses 32,000 iterations were used which corresponded to 

about 25 minutes o f computer time using a Pentium II, 233 MHz. Figure 6—12 shows the 

frequency histogram and the CDF of the factor o f safety using a seed value of 31069. The 

mean factor of safety is estimated to be 1.46 with a standard deviation o f 0.20. The 

probability of unsatisfactory performance is calculated to be 0.47%. Close examination of 

the histogram indicates that it is slightly right skewed, coefficient o f skewness = 0.29. 

This is expected, as a corollary of the central limit theorem, since the performance 

function involves the multiplication of a number of independent normally distributed 

variables. Based on 25 simulations the mean probability of unsatisfactory performance is 

0.47% and the 95% confidence interval is 0.45-0.49%. Figure 6-13 shows the histogram 

of the probability o f unsatisfactory performance.
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Proposed Methodology; Design 1

Figure 6—14 shows the histograms of the spatially averaged soil parameters 

corrected for bias and statistical errors. For simplicity, Christian et al. (1994), accounted 

for spatial averaging through a single variance reduction factor regardless o f the spatial 

contribution o f each input variable. One of the advantages o f the proposed methodology 

is that it accounts for spatial averaging in a more realistic and transparent way. The 

variance of the average soil parameter is reduced based on its spatial contribution to the 

analysis rather than by a constant collective factor. For example, the unit weight o f the fill 

contributes to the analysis across the entire spatial domain o f the slope as shown in Figure 

6—10. As a result, the reduction in the uncertainty of the average unit weight is 

significant. The standard deviation of the average unit weight is 1.12 kN/m3 (Figure 6-14, 

top right) which is similar to the value estimated by Christian et al. (1994) through 

applying the variance reduction factor (Table 6-1). In contrast, the friction angle o f the fill 

material contributes to the analysis only along the small section o f the slip surface within 

the embankment which is smaller than the scale of fluctuation, 8 . Consequently, the
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uncertainty o f the average friction angle has not undergone any reduction and is equal to 

the point variance. The undrained shear strength of the marine and lacustrine clays are 

averaged over a number o f slip surface segments and have, therefore, undergone variance 

reduction proportional to their spatial contributions.
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Figure 6-14 Histograms of the average soil parameters — Proposed Methodology; 

Design 1

A sensitivity analysis is performed and Figure 6—15 shows Spearman rank 

correlation coefficients for all 19 input variables. It is interesting to note that many of the 

factors with major contributions to the uncertainty of the safety factor are not related to
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the measured data. For example, Bjerrum’s correction factor for the undrained shear 

strength o f the lacustrine clay, the statistical error in the unit weight o f the fill and the 

statistical error in the depth o f the till layer are among the main factors affecting the 

reliability o f the design.
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Figure 6-15 Sensitivity analysis results — Proposed Methodology; Design 1

0.7

3.2 Jam es Bay Design 2 (H=6m)

The proposed methodology is also applied to study the stability of Design 2 

following the same approach as for Design 1. The input variables and the statistical 

parameters are summarized in Table 6-3. A variance reduction factor o f 0.7 (Christian et 

al., 1994) is applied to estimate the standard deviation of the mean thickness of the clay 

crust. Similar to the analysis described in Section 2, the slip circles are assumed tangent 

to the till layer and have a common center (63.7, 42.0). The geometry o f the slope and the
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nearly equal strength o f the marine and lacustrine clays indicated, however, the potential 

o f a shallow failure should the sampled strength o f the latter be higher than that of the 

former. Another analysis is performed assuming a shallow slip surface tangent to the 

bottom o f the marine clay as shown in Figure 6-16. An autocorrelation distance of 30m is 

assumed which is equivalent to the 0.7 variance reduction factor adopted by Christian and 

his team. The spatial variability o f soil properties is modeled following the same 

approach used for Design 1 (Figure 6—16). Because the domain o f the slope is relatively 

small compared to the autocorrelation distance, the number o f slip surface segments and 

embankment zones is much less than Design 1. In total, 13 and 8 variables are used to 

model the various sources o f uncertainty for the deep and shallow slip circles, 

respectively.

40
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Shallow failure30
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10 Lacustrine Clay
 777777777777
Till

0
10060 9030 40 50 70 80 11020

Distance (m)

Figure 6—16 Critical slip circles and spatial averaging — Design 2

Spreadsheet models prepared for both cases (deep failure and shallow failure) are 

analyzed using Monte Carlo simulation with 38,000 iterations. Figure 6—17 shows the 

histograms of the factors o f safety for the deep and shallow slip surfaces. Both histograms 

are slightly right skewed with coefficients o f skewness o f 0.34 and 0.23, respectively. The 

mean factor of safety and probability of unsatisfactory performance are estimated to be 

1.54 and 2.38% for the deep failure and 1.67 and 1.61% for the shallow failure.
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Figure 6-17 Histograms o f the factor of safety, Design 2 -  Proposed Methodology: 

a) Deep failure; b) Shallow failure

Based on the results o f 25 simulations, the mean probability o f unsatisfactory 

performance is estimated to be 2.33% for deep failure and 1.58% for shallow failure as 

shown in Figure 6-18. The 95% confidence intervals are 2.30-2.35% and 1.56-1.60%, 

respectively. Deep failure is, thus, more critical and the probability o f unsatisfactory 

performance o f the slope is approximately 2.30%. A sensitivity analysis is performed and 

Spearman rank correlation coefficients for both failure modes are shown in Figure 6—19 

and Figure 6—20. Similar to Design 1, the uncertainty of the factor of safety is strongly 

influenced by sources not related to the measured data (e.g., Bjerrum’s factor and 

statistical errors), however to a lesser extent. This is mainly due to the larger contribution 

of the uncertainty of soil variability as a result of the smaller impact o f spatial averaging.
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Suĵ  - Zone 1 

Sul:- Statistical 
Bjerrum Factor; )iM

SuM - Statistical

Dtiu

tftfin - Statistical
'3* Ell

3uL

-0.4 -0.2 0.0 0.2 0.4

Spearman Rank Correlation Coefficient

0.6 0.8

Figure 6-19 Sensitivity analysis results, Design 2 (deep failure) — Proposed 

Methodology

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ee•e

isa.

Ysn - Statistical

y sit

Bjerrum; Factor; p.M

SyM

4>fin - Statistical

t e r

Statistical

---------------------1------------------------- F------------------------ 1-------------------------1--------------------------1—

-0.4 -0.2 0.0 0.2 0.4 0.6

Spearman Rank Correlation Coefficient

3 u M

 1--
0.8 1.0
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4 . N A IV E P R O B A B IL IS T IC  ANALYSIS

As discussed in Chapter 5, the value of a primitive and quick probabilistic 

analysis (hereafter referred to as "Naive Analysis") is investigated. The approach follows 

closely the footprints of a conventional analysis. Uncertainty is based on the observed 

variability o f the measured data (with minimal statistical treatment) and the well 

established sources o f systematic uncertainty such as the uncertainty in Bjerrum’s vane 

correction factor. Table 6-4 summarizes the input variables and the statistical parameters 

used in the analysis (Christian et al., 1994). All variables are assumed normally 

distributed. The mean and standard deviation of the thickness of the clay crust, the 

strength o f the marine clay and the strength of the lacustrine clay are obtained directly 

from the site investigation results. Zero truncation limits are imposed on the three 

distributions to prevent sampling negative values. The uncertainties in the properties of 

the fill (unit weight and friction angle) are assigned judgmentally to account for the
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potential variability in the properties o f the borrow material and the construction 

techniques. The uncertainty in Bjerrum’s correction factors is also assigned judgmentally to 

account for the scatter of the database from which these factors were obtained.

Table 6-4 Input variables and statistical parameters for the Naive analysis

Inpu t Variable
Soil Variability M easurem ent Bias

E [-] cr[-] E[~] a[~]
Fill Friction Angle; foa (deg.) 30.0 2.00 — —

Fill Unit Weight; yfia (kN/m3) 20.0 1.41 — —

Thickness of Clay Crust; tcr (m) 4.0 0.99 — —

Shear Strength of Marine Clay; 
S um (kPa)

34.5 8.14 — --

Bjerrum Vane Correction Factor 
for Sum ; M-m

— — 1.0 0.075

Shear Strength of Lacustrine 
Clay; Sul (kPa)

31.2 8.65 — —

Bjerrum Vane Correction Factor 
for SUL; Ml

— — 1.0 0.150

The Hassan and W olff (1999) algorithm for minimum reliability index is applied 

to locate the probabilistic critical slip surface for each design. The case with the lacustrine 

shear strength equal to " E [S ul] - ct[ S ul]" yielded the most critical slip circles for both 

designs. They were subsequently used in Monte Carlo analysis. These surfaces, however, 

almost coincided with the deterministic critical slip circles shown in Figure 6—1 and 

Figure 6—2. Monte Carlo simulation is performed using 32,000 iterations for Design 1 

and 38,000 iterations for Design 2. Figure 6—21 shows the histograms of the factor of 

safety based on a seed value o f 31069. Figure 6-22 shows the histograms o f the 

probability o f unsatisfactory performance based on 25 simulations. The mean probability 

for Design 1 is estimated to be 2.37% with a 95% confidence interval o f 2.34-2.41%. For 

Design 2, the mean probability o f unsatisfactory performance is 2.70% with a 95%
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variability and spatial averaging) overestimates the probability o f unsatisfactory 

performance.
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5. SUM M ARY AND DISCUSSIO N

The results of all the analyses are summarized in Table 6-5. Since the mean factor 

o f safety is dependent on the mean values of the input variables, all analyses yielded 

almost the same mean factor o f safety in spite of the differences between the various 

approaches. The standard deviation, which greatly controls the probability of 

unsatisfactory performance, varied however depending on the assumptions and the 

analytical technique adopted.

The techniques of Monte Carlo simulation and FOSM method are compared using 

exactly the same input variables. The results (M.C.-Christian and FOSM, Table 6-5) 

indicate good agreement in the estimates of the mean and standard deviation o f the factor 

o f safety. However, the estimates of probability of unsatisfactory performance using 

FOSM method and based on an assumed parametric shape for the density function of the 

factor of safety could be in error particularly when estimating low probabilities.

The results of the proposed methodology indicate a slightly higher uncertainty in 

the factor of safety, and consequently higher probability of unsatisfactory performance, 

than the M.C.-Christian analysis for both designs. The differences arise mainly from the 

way spatial averaging is accounted for in the analyses. In the M.C.-Christian analysis, 

spatial averaging is taken into account through a collective variance reduction factor for 

all variables regardless of the size o f the domain over which each parameter is averaged. 

This limitation is overcome in the proposed methodology by allowing the variance 

reduction to be proportional to the size of the domain over which each soil parameter is 

averaged. Another factor that contributed to the difference but to a lesser extent, is the 

reduction in the variance of the strength of the marine clay in the M.C.-Christian analysis 

to account for random measurement errors. The reliability of the amount of reduction is, 

however, in question as discussed in Chapter 5.
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Table 6-5 Summary of the results of all analyses (based on the results of 25 simulations for each case)

Type of Analysis

Design 1 (H=12m) Design 2 (H=6m)

Deep Failure Shallow Failure

E[FS] o[FS] Pu(%) P® E[FS] ct[FS1 Pu(%) p® E[FS] a[FSJ P«(%) p®

Deterministic Analysis 1.46 -- -- - 1.53 ~ -- 1.66 - -- . .

FOSM® 1.45 0.17 0.40 2.66 1.50 0.27 3.25 1.84 -- -- . . -

M.C.-Christian analysis 1.46 0.17 0.23 2.76 1.53 0.26 1.76 2.06 - -- - -

Proposed Methodology 1.46 0.20 0.47 2.32 1.54 0.29 2.33 1.82 1.67 0.33 1.58 2.03

Naive Analysis 1.46 0.25 2.37 1.84 1.54 0.30 2.70 1.78 „ -- -- -

<D B =
o[FS]

© Christian etal. (1994)



The results o f the naive analysis are in good agreement with the results o f the other 

probabilistic techniques for Design 2. However, the probability o f unsatisfactory performance for 

Design 1 is approximately one order of magnitude higher. This is a direct result o f the significant 

reduction in the uncertainty of soil variability due to spatial averaging which is taken into 

account in all analyses but the naive analysis. Thus, the naive analysis could largely overestimate 

the probability o f unsatisfactory performance for slope problems dominated by the uncertainty 

due to soil spatial variability.

The reliability index is calculated for all cases using the simple definition in Chapter 3 

and is summarized in Table 6-5. Figure 6—23 shows the relation between the reliability index and 

the probability o f unsatisfactory performance for all Monte Carlo analyses. The relation appears 

linear, however there is no reason to believe that it should be linear. What is important to note, is 

that the slope o f the line is steep, implying that the probability o f unsatisfactory performance is 

more sensitive to any changes in the analysis than the reliability index.
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Figure 6-23 Reliability index versus probability of unsatisfactory 

performance — James Bay dykes
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The results of sensitivity analyses illustrated that the systematic sources o f uncertainty 

could influence the reliability o f the design more than the uncertainty due to soil variability. Most 

o f these systematic uncertainties are estimated either judgmentally or using approximate 

statistical relations. Seldom are they based on measured data. It is, therefore, important to 

exercise care and avoid conservatism in assigning quantitative values for systematic 

uncertainties.
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CHAPTER 7

SYNCRUDE TAILINGS DYKE 
CELL 23

The probabilistic methodology proposed in Chapter 5 is applied to examine the 

stability of one section of the Syncrude tailings dyke. The site o f the dykes is 40 km north 

o f  Fort McMurray, Canada, and is part of the oil sands mining operations run by 

Syncrude Canada Limited. The following sections provide a brief description o f the 

project and detail the analyses undertaken to characterize the uncertainty in soil 

parameters and assess the stability o f the dykes.

1. INTRO DUCTIO N

The Syncrude project is one o f the main operations for mining oil sands in 

Canada. The bitumen is recovered from the McMurray Formation (oil sands) by surface 

mining and processing through an extraction plant. The process required the construction 

o f  a tailings pond (Mildred Lake Settling Basin) to store the mining tailings. The pond 

has a storage capacity of 350 hm3 and is formed by constructing a sand dyke with 

circumference of about 18 km, an average height o f about 40 m and a maximum height of 

88 m. The dyke is constructed using the tailings sand from the bitumen extraction 

process. For ease of reference, the dyke is divided into 30 cells, each of roughly 700 m 

length. Figure 7—1 shows a plan of the tailings pond and dyke cells. The stability o f the 

dykes o f Cell 23 is the focus of this chapter.

2 . SITE GEOLOGY

The pond area is covered at surface with Holocene deposits composed primarily 

o f  aeolian sands (Hae), lacustrine clayey deposits (HI), alluvial sediments (Hf) and highly 

organic deposits (Ho). The total thickness o f the Holocene deposits varies from 0-4 m.
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Figure 7—1 Plan of the tailings pond dyke (modified from Nicol, 1994)

The Holocene unit is underlain by Pleistocene glacial deposits that vary in 

thickness between 5 and 15 m. These deposits comprise glacio-lacustrine sands and clays 

(PI) overlying glacio-fluvial sands (Pf) which, in turn, overly unconsolidated lodgement 

and ablation tills (Pg). Two till deposits can be distinguished based on the composition of 

the till materials; sandy till (Pgs) and clayey till (Pgc).
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The marine Clearwater Formation underlies the Pleistocene deposits and belongs 

to the Upper Cretaceous age. It consists o f a succession o f bedded clays, silts, and sands 

with occasional thin indurated siltstones and has been divided into a sequence o f units 

denoted by; Keg, Kef, Kce, Kcd, Kcc, Kca and Kcw. Most of these units have been 

eroded on the east side o f the pond except for Kca and Kcw. Geological evidence 

suggests that the formation was prone to thrusting and transportation by glacial ice. The 

Cretaceous McMurray Formation is composed of dense oil bearing sands and silty sands 

(ore zone) and underlies the Clearwater Formation. Glacial disturbance and erosion 

processes have altered the described stratigraphic column at some locations within the 

pond area. Fair and Handford (1986) provides a more detailed description o f the geology 

at the pond site.

3. CELL 23

3.1 Background

The dyke height at Cell 23 is 44 m with the down stream slope originally designed 

to a slope o f 4h:lv. Slope inclinometers were installed to monitor slope movements. 

Since 1981, localized movements along the Kca/Kcw contact were observed. By the time 

the fill height was 23 m (1984), up to 19 cm of displacement had been measured. It was, 

therefore, decided that a complete design review was needed. A detailed investigation 

program was conducted which included boring and sampling, laboratory testing and 

installation of slope indicators and pneumatic and standpipe piezometers.

The investigation indicated the presence of a raft of glacially-disturbed clay-shale 

(Kca) with distinctive shear planes under much of the downstream slope. The movements 

were noted to be mainly along discrete shear planes in the Kca immediately above the 

overconsolidated clay-shale (Kcw), with very little movements in the overlying till. A 

substantial increase in pore water pressure was also observed close to the Kca/Kcw 

interface. Based on the observed foundation performance and the geological data, Section 

53+00 E (refer to Figure 7—1) was considered the most critical dyke section in Cell 23.
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A design review indicated that the original geometry (slope 4:1) was 

unacceptable, FS = 1.09 at ultimate dyke height, and design modifications were needed. 

Targeting a safety factor o f 1.30, the downstream slope above elevation 331 m was 

flattened to 8.5 :1 thus reducing the overall slope to 6.8:1. Cell 23 was completed to the 

final design elevation o f 352 m in 1993. During construction, the dyke was heavily 

instrumented and monitored till completion. The maximum movement recorded was 43.7 

cm under elevation 319 m in section 53+000 E. The movement has almost ceased since 

1996 and the performance o f the dyke is deemed adequate. Figure 7—2 shows a cross- 

section o f the completed dyke at section 53+000 E. The probabilistic analyses presented 

in this chapter are focused entirely on the stability of section 53+000 E.

3.2 Subsurface Conditions

3.2.1 Stratigraphy

The stratigraphy at section 53+000E comprises an upper layer of glacio-fluvial 

sand (Pf4) with an average thickness of 3.0 m overlying a sandy till (Pgs) layer of a 

thickness varying from 3.0 m at the centre of the dyke to about 10.0 m at the toe. A 

composite foundation horizon consisting of clayey till (Pgc) and pre-sheared laminated 

clay-shale (Kca) underlies the sandy till. The clayey till is found under the crest of the 

dyke and extends upstream whereas the clay-shale is encountered under the downstream 

slope. Both layers had an average thickness of about 6.0 m. A layer o f heavily over

consolidated clay-shale (Kcw) underlies this composite horizon. The Kcw unit is about 

2.0m thick and overlies a very dense interlocked bitumen rich sand (Km). Figure 7-2 

shows the soil stratigraphy at section 53+000 E.

3.2.2 Shear Strength

The main focus of the laboratory programs, as of 1984, was to reassess the peak 

and residual shear strength o f the clay-shale unit Kca. Unconsolidated undrained triaxial
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tests with pore pressure measurements and drained direct shear tests were conducted on 

intact samples as well as samples with pre-existing shear planes. Tests were also 

conducted on samples from the clayey and sandy till layers, the tailings sand and the clay- 

shale unit Kcw. No testing results were available for the strength o f glacio-fluvial sand 

(Pf4).

Pre-sheared Clav-shale (kca)

Because previous studies (Thurber, 1989; Nicol, 1994; Alencar et al., 1994) 

concluded that the stability of the dyke is controlled by the residual strength of the 

disturbed clay-shale, only tests with residual shear strength measurements (drained direct 

shear tests) were considered. Testing results of 82 shear box specimens were collected 

from within Cell 23 and surrounding locations within the Syncrude mining site. Table 7-1 

provides a summary o f the physical and mechanical properties of the Kca material.

Table 7-1 Summary o f the physical and mechanical properties o f the Kca material

Soil Param eter Range Mean

Minimum Maximum

Moisture content (%) 17 40 26.4
Liquid limit (%) 59 162 110.0

Plastic limit (%) 16 30 23.8

Bulk unit weight (kN/m3) 18.1 20.7 19.5

Residual friction angle (deg.) 3.8 13.8® 7.5

Peak friction angle (deg.) 6.8 36.7® 18.6

© The results of 2 tests were unjustifiably high (18.7 and 19.8 degrees) 
and were excluded.

d> The results of 2 tests were unjustifiably high (40.3 and 44.0 degrees) 
and were excluded.

Figure 7—3 is a plot o f the normal stress versus the residual shear strength of all 82 

specimens. The failure envelope corresponding to the mean residual friction angle, 7.5
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degrees, and a zero effective cohesion is also plotted. The scatter of data points around 

the mean trend is obvious indicating high uncertainty in the value of the residual friction 

angle. The standard deviation of <j>Kca is calculated to be 2.1 degrees. The shape o f the 

probability histogram of Figure 7-4, implies a lognormal probability density

function. The density function o f a parametric lognormal distribution with a mean o f 7.5 

degrees and a standard deviation of 2.1 degrees is also plotted on the same graph. The 

figure (right plot) also compares the cumulative distribution functions of the experimental 

data and that of the parametric distribution.
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Figure 7—3 Shear box results for the residual strength of the Kca material

The Q-Q plot, Figure 7—5, is used to examine the goodness of fit between the 

experimental histogram and the postulated parametric distribution. It is a plot o f the 

quantiles of the first distribution versus the quantiles of the second distributions for the 

same probability values. Identical distributions (in terms of shape, mean and variance) 

plot as 45-degree line. When the points fall on any straight line, the shapes o f the 

distributions are similar, but the means and/or the variances are different. A  non-linear 

plot indicates two different distributions. Figure 7—5 indicates a good match between the
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Sandy Till (Pss)

An important factor contributing to the stability o f the dyke is the shear strength of 

the sandy till (Pgs) at the toe. Unfortunately, only 5 shear strength tests were available; 4 

triaxial tests and 1 direct shear test. Furthermore, the triaxial tests were performed 

following different techniques; 1 isotropically consolidated undrained test, 2 

anisotropically consolidated undrained tests and 1 isotropically consolidated drained test. 

The measured peak friction angles (assuming zero cohesion), thus, belong to different 

statistical populations. Grouping them together will increase the uncertainty in the shear 

strength o f the Pgs. However, it is judged that the uncertainty from assuming a single 

deterministic value of <j>'pgs or assuming a parametric density function based on one 

subgroup o f the data could be even higher. All measurements were, thus, lumped together 

for an approximate statistical analysis. The measured values (16 specimens) ranged 

between 33.3 and 39.2 degrees with a single extreme value o f 44.4 degrees that was 

excluded from the analysis. Table 7-2 summarizes the physical and mechanical properties 

of the tested samples. The mean and standard deviation o f the peak friction angle are 

calculated to be 35.7 and 2.0 degrees, respectively. Figure 7-6 shows the histogram and 

the cumulative distribution function of the data.

Table 7-2 Summary o f the of the physical and mechanical properties 
of the sandy till (Pgs)

Soil Param eter Range M ean

Minimum Maximum

Fines content (%) 34 76 46.1
Atterberg limits Non-plastic to low plasticity

Bulk unit weight (kN/m3) 21.3 22.6 22.1

Peak friction angle (deg.) 33.3 39.2 35.7
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Figure 7—6 Histogram and CDF o f the peak friction angle of the sandy till (Pgs) layer

Tailing Sand (TS)

Compared to the other formations, very limited amounts o f data were available to 

characterize the shear strength o f the tailings sand. Table 7-3 summarizes the results of 

few direct shear tests conducted in 1984 by different organizations. A parametric study to 

examine the effect of the variability of the shear strength of the tailings sand on the 

stability o f the dykes indicated that the strength of the sand has very little impact on 

stability. The strength of the tailing sand is, thus, considered a deterministic quantity. 

Since the dyke has experienced large movements, the operating shear strength along the 

slip surface is likely to be less than the peak strength. A zero effective cohesion and a 

friction angle o f 34 degrees were selected to represent the strength of the sand. These 

values are also consistent with previous stability studies (Thurber, 1989; Syncrude, 1992).

No laboratory results were available to assess the strength of the glacio-fluvial 

sand (Pf4) underlying the tailings sand. The impact of the strength of the Pf4 unit on the 

stability of the dykes is, however, minimal. It was, thus, assigned the same strength 

parameters as the tailings sand (C' = 0, <{>' = 34 deg.) which is the same assumption 

reported in Thurber (1989) and Syncrude (1992) studies.
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Table 7-3 Summary of the results o f  direct shear tests on the tailings 
sand (TS)

Shear Strength Range Mean

Minimum Maximum

Peak Cohesion (kPa) 16 51 33.8
Friction angle (deg.) 34.8 45.2 38.7

Residual Cohesion (kPa) 0 32 19.5
Friction angle (deg.) 27 32.5 30.4

Clayey Till (P<zc) and Clay-shale (Kcw)

As discussed in the following sections, the critical slip surface does not cut 

through either the clayey till or the clay-shale (Kcw). Thus, the shear strength o f these 

two units is not of any importance to the stability analyses. However, for the sake of 

completeness a summary o f the physical and mechanical properties of both layers is 

presented in Table 7-4 and Table 7-5. The shear strength of both layers was obtained 

mainly through direct shear tests and very few triaxial tests. The triaxial tests for the 

clayey till layer resulted in much higher strength than the direct shear tests. The results 

from the Kcw unit indicate that its shear strength is somewhat higher than the overlying 

Kca unit.

Table 7-4 Summary of the physical and mechanical properties of the 
clayey till unit (Pgc)

Soil Parameter Range Mean

Minimum Maximum

Moisture content (%) 10 18 14.9
Liquid limit (%) 19 39 30.5

Plastic limit (%) 16 23 19.3

Bulk unit weight (kN/m3) 20.7 23.0 21.6

Peak friction angle (deg.) Direct Shear 22.5

Peak friction angle (deg.) Triaxial 35.8
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Table 7-5 Summary of the physical and mechanical properties o f the 
clay-shale unit (Kcw)

Soil Param eter Range Mean

Minimum Maximum

Moisture content (%) 12 32 19.8
Liquid limit (%) 30 121 65.7
Plastic limit (%) 16 35 22.8

Bulk unit weight (kN/m3) 19.2 22.7 21.0

Residual friction angle (deg.) 5.9 35.7 15.5
Peak friction angle (deg.) 10.6 47.6 26.3

3.2.3 Pore Water Pressure

Following the redesign of the dyke slopes in 1984, Syncrude adopted an 

observational approach to closely follow the dyke performance. Tens o f pneumatic and 

standpipe piezometers were installed during construction within the different geologic 

units with particular emphasis on the Kca unit. The piezometers are being monitored 

regularly leading to a wealth of measurements. Figure 7—7 shows the locations of 

piezometer tips at section 53+000 E.

The construction o f Cell 23, both dyke and beaches, was completed to the design 

elevation in 1993. This study is concerned with the final dyke geometry, thus only those 

records after dyke completion were considered. Since the pore water pressure varies with 

time, the records were divided into time intervals o f 1-2 months long. All data falling 

within one interval are considered as belonging to the same statistical population. The 

time interval corresponding to the highest pore pressure recorded after the completion of 

the dykes (March, 1994) is the only interval considered in this study.
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Pre-sheared Clay-shale (kca)

Measurements from 18 piezometeric tips along section 53+000E were considered 

for assessing the pore pressure conditions. Figure 7—8 shows a plot o f the pore pressure 

ratio along Section 53+000E in March of 1994. The measurements are scattered. They 

range between 0.20 and 0.72 with an average o f  0.45. A value o f 0.17 was recorded 

below the dyke crest, where the pore pressure is presumably the highest. It was judged 

unreasonable and was excluded from the analysis. Examining Figure 7—8 indicates that 

the pore pressure ratio tends to decrease towards the dyke toe. Using the method o f least 

squares, a linear trend is fitted to the data as shown in the plot. The slope and the intercept 

of the fitted trend are estimated to be -0.001 and 0.859, respectively. The standard 

deviation around the mean trend is calculated to be 0 .12.

0.8
ru = -0.001 (Distance) + 0.859 
R2 = 0.25

0.6

0.4

Dyke Crest 
at 88.6m

Dyke Toe

0.0
500400 450300 350250

Distance Along Dyke Profile (m)

Figure 7-8 Profile of pore pressure ratio in the Kca layer along dyke cross- 

section, March 1994

Since the pore pressure ratio is exhibiting a linear trend and the mean varies with 

location, the process is non-stationary. The random field is transformed to a stationary 

field by removing the trend component at each location from the observed pore pressure 

value. The residuals, em, are modeled as a stationary random process with a zero mean
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and a standard deviation of 0.12. Figure 7-9 shows the histogram and the CDF o f the 

residual pore pressure ratio.
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Figure 7—9 Histogram and CDF of the residual pore pressure ratio o f the Kca unit

Sandy Till (Pzs)

The pore pressure in the sandy till layer is assessed based on data from 14 

piezometers at different depths and locations along Section 53+OOOE. The pore pressure 

ratio varied between 0.10 and 0.46 with a mean o f 0.30. Figure 7—10 shows the histogram 

o f the pore pressure ratio in March, 1994. The histogram exhibits two peaks, at pore 

pressure ratios of 0.24 and 0.39, implying that the data might belong to different 

statistical populations. Figure 7—11 is a plot o f the pore pressure ratio along the dyke 

cross-section. The plot indicates a sudden and large increase in pore pressure ratio 

towards the dyke toe. The same phenomenon is also observed in the pore pressure records 

at later dates. It was, therefore, decided to divide the data into two subgroups and the pore 

pressure ratio is modeled by two random variables. The first variable, corresponding to 

the middle portion of the slope, varies between 0.10 and 0.26 with a mean o f 0.21 and a 

standard deviation of 0.06. The second variable, corresponding to the toe area, varies
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between 0.35 and 0.46 with a mean o f 0.40 and a standard deviation of 0.03. Figure 7—12 

shows the CDFs of the two variables.
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Figure 7—10 Histogram o f pore pressure ratio in the 

sandy till, Pgs, in March 1994
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Figure 7—11 Profile o f pore pressure ratio in the Pgs layer along dyke cross-section, 

March 1994
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Tailing Sand (TS) and Glacio-Flicvial Sand (Pf4)

Measurements from few piezometers were available for assessing the pore water 

pressure conditions in the tailings sand and the underlying glacio-fluvial sand. Based on 

total head data from 3 piezometers, the phreatic surface within the tailing sand is inferred 

as indicated in Figure 7-13. Similarly, the phreatic surface in the glacio-fluvial sand is 

obtained based on data from 4 piezometers, Figure 7—13. As would be expected, the two 

surfaces are very similar. Due to the limited extent o f the failure surface within either 

layer and the little scatter of the measurements, the pore water pressure in both layers is 

considered deterministic and represented by the corresponding phreatic surface as shown 

in Figure 7—13.
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Clayey Till (Pec) and Clav-shale (Kcw)

As the critical slip surface does not extend through either the clayey till or the 

clay-shale Kcw, the pore water pressure within the two layers is not of particular interest. 

Only preliminary assessment of the available data is undertaken

The pore pressure data in the clayey till layer were significantly scattered. Based 

on measurements from 8 piezometers, the pore pressure ratio in March o f 1994 ranged 

between 0.20 and 0.77. The mean is estimated to be 0.47 with a standard deviation o f 

0.22. The clustering of the measurements at 2 locations (Figure 7—7) casts some doubt on 

the representativity of these estimates. Data from 7 piezometers were examined to assess 

the pore pressure conditions in the Kcw unit. Measurements taken in March o f 1994 

indicated the pore pressure ratio ranging between 0.24 and 0.49 with a mean o f  0.36 and a 

standard deviation o f 0 .10.

3.3 Deterministic Slope Stability Analyses

A deterministic slope stability analysis is performed using Slope/W software to 

assess the factor o f safety for Section 53+000E and to locate the critical slip surface. The 

mean values of the shear strength parameters and pore water pressures (Sections 3.2.2 and 

3.2.3) are used in the analysis. Based on the observed movements during construction 

(Section 3.1), the critical slip surface is taken horizontal at the interface between the Kca 

and the Kcw units. Beyond the interface the slip surface is assumed circular. Bishop’s 

method o f slices is used in the analysis. The minimum factor of safety is calculated to be 

1.30. Figure 7—2 shows the critical slip surface.

The slip surface with the minimum reliability index, according to the Hassan and 

W olff (1999) algorithm, is also located. Two deterministic analyses are performed. 

Firstly, the residual friction angle of the Kca material is reduced by one standard 

deviation, then the pore pressure ratio in the Kca unit is increased by one standard 

deviation. The two analyses yielded factors o f  safety o f 1.17 and 1.19, respectively. The 

surface corresponding to the reduced friction angle is considered the critical slip surface
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based on the Hassan and W olff criterion. The deterministic and the Hassan and W olff 

critical slip surfaces, Figure 7-2, are regarded as candidate surfaces for the probabilistic 

stability analysis. They are examined in Section 3.4.3 to identify the surface with the 

maximum probability of unsatisfactory performance. As is the case with the James Bay 

dykes, the two surfaces are very similar. It should be noted that neither o f the surfaces 

cuts through the clayey till layer Pgc. The outcome o f the probabilistic analysis is, thus, 

not affected by the uncertainties in the properties and pore pressures o f the Pgc unit.

3.4 Probabilistic Slope Stability Analysis — Proposed Methodology

3.4.1 Input Variables

Based on the discussions in Sections 3.2.2 and 3.2.3, five input parameters were 

treated as variables: the peak friction angle and the pore pressure ratios at the middle and 

at the toe o f the dyke for the sandy till and the residual friction angle and pore pressure 

ratio of the pre-sheared clay-shale, Kca. The observed (i.e., experimental) CDFs o f all 

parameters are used in Monte Carlo simulation except for the residual friction angle of 

the Kca unit whose CDF is approximated by a lognormal distribution. This 

approximation is intended to reduce the simulation time since the observed CDF closely 

approximates a lognormal shape, Figure 7—4 and Figure 7-5, (simulation time is largely 

reduced when input variables are parametric distributions). Table 7-6 summarizes the 

statistical parameters and the CDFs of all variables.

The statistical uncertainty due to the limited amounts of data available is assessed 

using the procedures described in Chapter 3. These uncertainties are then added to those 

of soil variability. The uncertainty in the linear trend o f the pore pressure ratio o f the Kca 

material is accounted for by regarding the intercept and the slope of the trend as variables. 

Both are assumed normally distributed with means equal to the best estimates obtained 

from the regression analysis, Section3.2.3. Using Equations 3-21 and 3-22 o f Chapter 3, 

the standard deviations of the slope and the intercept are estimated to be 5x1 O'4 and 

0.187, respectively. A zero truncation limit is imposed on the probability distribution of 

the slope to prevent sampling positive values, i.e., increasing pore pressure ratio towards
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the toe o f the dyke. The correlation coefficient between the two variables is calculated to 

be -0.998 (Equation 3-23). The uncertainties in the mean values of all other variables are 

also assumed normally distributed with zero means and variances estimated using 

Equation 3-20. Table 7-6 summarizes the mean, standard deviation and CDF of statistical 

errors. A total o f six input variable are used to account for the statistical uncertainty.

Table 7-6 Statistical parameters of input variables — Proposed Methodology

Soil Unit Input Variable Soil Variability Statistical Error

E[—] G[~] CDF E[—] < T [ - ] CDF

Pre-sheared

clay-shale;

Kca

Friction angle; <t>'Kca (deg.) 7.50 2.09 LogN. 0 . 0 0 0 0.233 N.

Pore

Pressure

ratio

Trend
Slope — — — -0.001 5x1 O'4 TN.

Intercept — — — 0.859 0.187 N.

Residuals; em 0.00 0.12 Exper. — — —

Sandy Till; 

Pgs

Friction angle; (jj’pgs (deg.) 35.74 1.97 Exper. 0 . 0 0 0 0.509 N.

Pore
pressure

ratio

Middle o f slope;
Ci-M

0.21 0.06 Exper. 0 . 0 0 0 0.023 N.

Toe area; ru.T 0.40 0.03 Exper. 0 . 0 0 0 0.012 N.

LogN. - LogNorma! distribution; N. - Normal distribution; TN. - Truncated normal 
distribution; Exper. - Experimental (or observed) distribution

3.4.2 Spatial Variability

The first step to account for spatial variability is to decide on an estimate of the 

autocorrelation distance. As discussed in the preceding section, the uncertain parameters 

are the properties and pore pressures of the sandy till, Pgs, and the clay-shale, Kca. 

Examination o f the critical slip surfaces, Figure 7—2, indicates that more than 70% of the 

portion cutting through the Pgs and the Kca layers is horizontal. Thus, the stability 

analysis is largely controlled by the spatial variability o f soil properties in the horizontal, 

rather than the vertical, direction. Based on the survey presented in Chapter 5, the 

horizontal autocorrelation distance ranges between 20 and 40m. The spatial variability of 

the properties o f the clay-shale unit Kca, the main unit affecting dyke stability, is known
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to be continuous rather than erratic. As such, it is likely that the spatial structure o f this 

formation is characterized by a large autocorrelation distance. A range o f 28-3 8m is 

postulated as a possible range for the autocorrelation distance. The probabilistic analysis 

is based on an intermediate value o f 33 m. The sensitivity o f the probability o f 

unsatisfactory performance to other values within the aforementioned range is 

investigated in Section 3.4.4.

The spatial variability of the sandy till and the clay-shale are dealt with separately. 

For the sandy till, the slip surface intersects the layer at two locations as shown in Figure

7—14. The lengths o f the two segments within the sandy till are much smaller than the 

scale o f fluctuation; 8=2r0. The probability distribution of the local average o f the friction 

angle over either segments is, therefore, the same as the point CDF. Since the spacing 

between the two segments is large, the correlation coefficient between the two averages 

(Equation 5-5, Chapter 5) is equal to zero. In summary, the variability o f the friction 

angle o f the sandy till is modeled by two uncorrelated variables representing the average 

friction angles at the middle of the slope and at the toe area. Both variables are assigned 

the point CDF o f the observations.
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Slip Surface350

a
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a  300
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Figure 7—14 Accounting for spatial variability along the slip surface by the 

variability of local averages over segments of the surface
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The portion o f  the slip surface within the clay-shale is divided into two segments 

of length 5 and a third segment equal to the residual length, Figure 7-14. Thus, the 

variances o f the average friction angle and the average residual pore pressure ratio over 

any o f the segments are equal to the corresponding point variances. The correlation 

coefficients between the averages o f segments 1 and 2 and segments 1 and 3 are equal to 

zero and that between segments 2 and 3 is equal to 0.35. The variability of the residual 

friction angle o f the Kca material is, thus, modeled by three variables representing the 

average friction angle over three segments o f the slip surface. All variables are 

longnormally distributed with statistical parameters as indicated in Table 7-6. The 

variables are uncorrelated, p = 0, except for segments 2 and 3 where the correlation 

coefficient is estimated to be 0.35. Similarly, the residual pore pressure ratio is 

represented by three variables all having the experimental CDF, Figure 7—9. Only 

variables 2 and 3 are correlated with a correlation coefficient of 0.35. In total, ten input 

variables are used to account for the spatial variability o f input parameters along the slip 

surface.

3.4.3 Probabilistic Analysis

A spreadsheet model mimicking the geometry, stratigraphy, soil properties and 

pore pressures is prepared to assess the stability o f the dyke at Section 53+000E. Bishop’s 

method o f slices is used in the model. The equilibrium equations were re-arranged to 

account for the non-circular portion o f the slip surface. A total of 16 input variables, some 

of them are correlated, are used to account for soil spatial variability and statistical 

uncertainty. Recognizing a small probability o f sampling negative values of the pore 

pressure ratios during simulation, the model is designed to replace negative values with a 

zero.

Based on a few trial simulations, the optimum number of iterations is estimated to 

be 34,000. Using a seed number o f 31069, the probability o f unsatisfactory performance 

associated with the deterministic critical slip surface is 0.13% and that of the Hassan and 

Wolff surface is 0.16%. The latter is, thus, considered the probabilistic critical slip
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surface and is used in the subsequent analyses. The mean factor o f safety is computed to 

be 1.31 with a standard deviation of 0.14. Figure 7—15 shows the histogram and the CDF 

o f the factor o f safety. Since the correlation coefficients used in the analysis are the 

conventional coefficients, rather than Spearman coefficients required by @Risk software, 

the generated input data are examined to ensure that the proper correlations are 

reproduced. Using Equation 3-25 (Chapter 3), the conventional correlation coefficients 

between the slope and the intercept of the linear trend of Kca: ru, between <t>'Kca of 

segments 2 and 3, and Kca: em o f segments 2 and 3 are calculated to be -0.99, 0.34 and 

0.33, respectively. These values compare very well with the input values o f -0.99, 0.35 

and 0.35.
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Figure 7—15 Histogram and CDF o f  the factor of safety, Cell 23 — Proposed 

methodology

A sensitivity analysis was performed and Figure 7—16 shows Spearman rank 

correlation coefficients for all 16 variables. As expected, the uncertainties in the residual 

friction angle and the pore pressure ratio o f  the Kca material are, by far, the largest 

contributors to the uncertainty in the factor o f  safety. Unlike the James Bay case study, 

systematic uncertainty contributes little compared to the uncertainty due to spatial 

variability. This is mainly due to the large amounts of data available particularly for the
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strength of the Kca material. Such a large role o f soil variability could increase the 

sensitivity o f the output (i.e., probability o f unsatisfactory performance) to the assumption 

o f the autocorrelation distance. The uncertainty in the strength of the sandy till at the toe 

area ranks third followed by the pore pressure ratio of the Pgs at the middle o f the slope.
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Figure 7—16 Sensitivity analysis results, Cell 23 — Proposed Methodology

0.8

From the results of 25 simulations, the mean probability of unsatisfactory 

performance is estimated to be 0.16% with the 95% confidence interval ranging between

0.15-0.17% . Figure 7-17 shows the histogram of the probability of unsatisfactory 

performance.

As discussed in Chapter 5, the analysis can be, alternatively, performed using the 

spatially averaged parameters along the entire failure surface within each layer. Only the 

variables representing soil variability are included in this averaging process, i.e., no
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systematic uncertainty. For example, the average friction angle E[<j)’KCaj along the failure 

surface is the weighted sum of the variables representing the local averages along 

segments 1 to 3 as illustrated in Figure 7—18. The averaging process can be easily 

conducted by simulation in a separate spreadsheet prior to the stability analysis.

0.6
E [P J  =  0.16 % 
a [ P J  =  0.02 %  
n =  250.5

0.4

0.3

0.2

0.1

0.0
0.11 0.14 0.16 0.18 0.20

Probability of Unsatisfactory 
Performance; Pu (%)

Figure 7—17 Histogram of the probability o f unsatisfactory 

performance — Cell 23
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Figure 7—18 Estimating the spatial average o f  <j>'Kca along the slip surface
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Using @Risk software, Monte Carlo simulation is performed to estimate the 

CDFs and the variances o f the average friction angle <{>’Kca and the average residual pore 

pressure ratio Kca: sm over the length of the failure surface. The simulation time using 

50,000 iterations was nearly 1 minute. The estimated variances are almost identical to 

those obtained using the variance reduction factor f  (Equation 3-17) as shown in Figure

7—19 for different values o f the autocorrelation distance.

ZJ
Sa*C
€3> o

eeb
e

S

OS

1.6

1.5 r  = 38m

1.4

1.61.3 1.4 1.51.2

•es
SLC
V)
i

c

b

0.09

0.08

so
30w

3
4) 0.07

0.06

0.06 0.07 0.08 0.09
cr {E[(j> ’ice,]} -  b y  S im ula tion c rlE tE n ,]}  -  by S im u la tio n

Figure 7—19 Comparing the estimates of the variances of the average friction angle 

and the average residual pore pressure ratio using Monte Carlo 

simulation and the variance reduction factor

A probabilistic stability analysis is undertaken using the probability distributions 

of the spatially averaged parameters E[<|>'Kca] and EfKcarSnJ. The output o f the analysis, 

using 34,000 iterations, is almost identical to the analysis accounting for the variability 

along the failure surface in Figure 7—15. Figure 7—20 compares the probability 

distributions of the factor o f safety from both analyses, whereas Table 7-7 compares the 

statistical parameters o f the two distributions.
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Table 7-7 Comparison of the results o f the analysis modeling the 
spatial variability along slip surface and that based on 
spatially averaged parameters — Cell 23.

Parameter
Analysis Characteristics

Models Variability 
Along Slip Surface

Based on Spatially 
Averaged Parameters

E[FS] 1.31 1.31

c[FS] 0.14 0.13

Skewness 0.58 0.55

Pu (%) 0.16 0.17

Simulation is performed using a seed number o f  31069 and 
34,000 iterations
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3.4.4 Sensitivity o f  the Analysis to the Autocorrelation Distance

The judgmental assessment of the autocorrelation distance is probably the most 

critical assumption made in the previous analyses, particularly since the stability o f the 

dykes is largely controlled by the uncertainty due to spatial variability, Figure 7-16. It is, 

therefore, essential to examine the sensitivity of the output to the value of the 

autocorrelation distance.

As discussed in Section 3.4.2, the range 28-38m is perceived as a reasonable 

range for the autocorrelation distance. The probabilistic stability analysis is repeated 

using different values o f the autocorrelation distance within the previous range. For each 

analysis, the failure surface is divided into segments and the correlation coefficients 

between the local averages over these segments are calculated in a way similar to the 

analysis outlined in the previous section. Figure 7—21 shows the estimated probability of 

unsatisfactory performance for different assumptions of the autocorrelation distance. The 

estimates vary between 0.08% for r0=28m and 0.27% for ra =3 8m.

In absolute terms, the range of Pu might seem substantial. However, in a practical 

sense, stating that the probability of unsatisfactory performance is somewhere in between 

0.10% and 0.25% is not unreasonable. This is particularly true given the large uncertainty 

surrounding the analytical estimation of a single value of the autocorrelation distance.

3.5 Naive Analysis

The stability o f Section 53+000E is also assessed using the naive approach. The 

uncertainties in the input variables are based solely on the observed variability as 

reflected by the testing and monitoring results. Statistical treatment of the data is limited 

to excluding few outlier values, that are judged unrepresentative, and calculating the 

means, variances and CDFs (Sections 3.2.2 and 3.2.3). Table 7-8 summarizes the 

statistical parameters and probability distributions used in the analysis.
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Table 7-8 Statistical parameters of the input variables — Naive Analysis

Input Variable Mean Standard
Deviation

Probability
Distribution

Residual friction angle of 
Kca unit; f^ca (deg.) 7.50 2.09 LogNormal

Residual pore pressure 
ratio of the Kca unit;

0.00 0.12 Observed CDF

Friction angle of Pgs unit; 
<j)'pgs (deg.)

35.74 1.97 Observed CDF

Pore pressure ratio o f Pgs 
unit at middle of slope; ru-M 0.21 0.06 Observed CDF

Pore pressure ratio o f Pgs 
unit at toe of slope; ru-T 0.40 0.03 Observed CDF
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Bishop’s method o f slices and the failure surface from the Hassan and Wolff 

(1999) algorithm, Figure 7—2, were used in preparing the spreadsheet model. A Monte 

Carlo simulation using 34,000 iterations and a seed value of 31069 was performed. The 

analysis yielded a mean factor o f safety o f 1.31, a standard deviation of 0.18 and a 

probability of unsatisfactory performance of 1.66%. Figure 7-22 shows the histogram and 

the probability distribution of the factor of safety. Based on the results of 25 simulations, 

the mean probability o f unsatisfactory performance is estimated to be 1.6% with a 95% 

confidence interval of 1.57-1.63%. Figure 7—23 shows the histogram o f the probability of 

unsatisfactory performance.

A sensitivity analysis is performed and Figure 7—24 shows Spearman rank 

correlation coefficients for all input variables. The results match those of the previous 

analyses, emphasizing the significance of the uncertainties in the friction angle and pore 

pressure ratio o f the Kca material. The shear strength of the sandy till ranks third whereas 

the pore pressure in the Pgs unit does not seem to have a large impact on the stability.
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Figure 7—22 Histogram and CDF of the factor o f safety, Cell 23 — Naive analysis
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4. SUM M ARY

The new methodology is applied to study the stability o f Section 53+000E at Cell 

23 of Syncrude tailings dyke. The various analyses undertaken illustrate the great 

flexibility the spreadsheet approach can offer in terms of handling input variables, 

accounting for spatial variability, or spatial averaging, and conducting stability analyses.

Unlike the James Bay dykes, systematic uncertainty contributed little to the 

overall design reliability. This is attributed mainly to the significant amounts of data 

available, particularly for the strength of the clay-shale Kca, and the absence of any 

indications o f bias. This, however, is not the norm in geotechnical practice. Systematic 

uncertainties could have a large impact on the design o f many projects.

Because of the modest contribution of systematic uncertainty, the uncertainty due 

to soil variability has a large impact on the reliability o f the design. As a result, the output 

of the analysis is sensitive to the value of the autocorrelation distance. The probability of 

unsatisfactory performance varied between 0.082% and 0.265% as the autocorrelation 

distance varied between 28m and 38m. From a practical point of view, such variability 

does not seem substantial. However, a large number of case studies need to be analyzed 

before concluding that the autocorrelation distance has, practically, insignificant impact 

on the probability of unsatisfactory performance. As with the James Bay dykes, the 

estimate of the probability of unsatisfactory performance from the naive analysis is 

approximately one order of magnitude higher than the analysis accounting for spatial 

variability.
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CHAPTER 8 

LODALEN SLIDE NORWAY, 1954

The probabilistic methodology is applied to the Lodalen slide that occurred in 

Norway in 1954. The geometry immediately before failure is first analyzed. The slope 

angle is then reduced to various values and the modified geometries are analyzed to 

establish the relationships between the slope angle, the factor o f safety and the probability 

o f unsatisfactory performance. These relations allow estimating the probability associated 

with an acceptable design based on conventional deterministic practice. Such estimates 

are of great value in setting guidelines for the allowable probability o f unsatisfactory 

performance. The following sections present a brief description of the slide and detail the 

deterministic and probabilistic analyses undertaken.

I . INTRO DUCTIO N

The slide occurred in 1954 in the area of the Lodalen marshalling yard near Oslo 

railway station, Norway. Failure occurred in a clay slope excavated 30 years earlier to 

expand the marshalling yard. Over this period, the slope was back excavated and 

steepened a few times. At the time of failure the slope was about 17m high with a 2h:lv 

inclination. Figure 8—1 shows a cross-section of the slope before failure. Field evidence 

indicated that the slide was mainly rotational. As a result o f  the rotation, a 5m main scarp 

was formed and the toe of the slope moved forward about 10m. The width of the 

displaced mass was about 50m and its volume was estimated to be 10,000 m3.

The slide was thoroughly investigated by, among others, the Norwegian 

Geotechnical Institute in a study that aimed at verifying the methods of analyzing the 

stability o f slopes then available. Sevaldson (1956) provided a detailed description of the 

slide and the investigation into its causes.
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Figure 8—1 Cross-section and stratigraphy of Lodalen slide

2. SU BSU RFA CE C O N D IT IO N S

Shortly after the slide, the Norwegian Geotechnical Institute carried out a field 

investigation program. The program included 7 boreholes, 2 test pits and 4 piezometers 

with moving measuring points to allow pore pressure measurements at various depths. 

Three boreholes and one piezometer were located within the slide area. The subsurface 

conditions at the site of the slide are assessed based on the data gathered through this 

investigation.

2.1 Stratigraphy and Soil Properties

The stratigraphy at the slide location is simple, comprising a clay crust about 1 m 

thick, overlying a firm homogenous marine clay extending to the end of borings. Some 

thin silt layers intercalate the marine clay. The clay has a moisture content o f about 30%, 

liquid limit o f about 35%, plastic limit of about 20% and a sensitivity ranging from 3 to 

15. Figure 8—1 shows the soil stratigraphy at the slide area.
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The strength of both the clay crust and the marine clay is measured by a  number of 

unconsolidated undrained triaxial tests with pore pressure measurements. Based on the 

results o f 2 tests, the effective cohesion and the friction angle of the crust are estimated to 

be 11.8 kPa, and 32 degrees, respectively. The effective shear strength parameters of the 

marine clay are assessed based on the results of 10 tests, each comprising 3 or 4 

specimens. Table 8-1 summarizes the results of the 10 tests. The mean effective cohesion 

is estimated to be 10.0 kPa with a standard deviation of 2.2 kPa. The mean friction angle 

is 27.1 degrees with a standard deviation o f 1.7 degrees. Figure 8—2 and Figure 8—3 show 

the histograms and the CDFs of the effective cohesion and the friction angle, respectively. 

The data are also examined to assess the correlation between the cohesion, C', and the 

tangent o f the friction angle <{>' (the intercept and slope of the strength envelope), if  any. 

Figure 8—4 is a scatter plot of C' versus tan <j)'. The two parameters are apparently 

uncorrelated with a near zero correlation coefficient, p = -0.06.

Table 8-1 Summary of results of unconsolidated 
undrained triaxial tests on the marine 
clay (Sevaldson, 1956)

Test No. Cohesion;
e

(kPa)

Friction 
Angle; <j>'

(deg.)

1 9.8 27.5
2 7.8 24.9

3 9.8 28.1

4 9.8 27.7

5 7.8 26.6

6 12.8 24.0

7 9.8 26.3

8 6.9 29.4

9 11.8 27.2

10 13.7 29.2

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.6

0.5

0.4

2
2i 0.3
£

Es,
0.2

0.1

0.0

E[C'] =  10.0 kPa 
c[C '] = 23.1 kPa 
n = 10

1.0

0.8

0.6

S  0.4

0.2

0.0
0 10 15 2056.9 8.6 10.3 12.0 14.3

Effective Cohesion; C* (kPa) Effective Cohesion; C' (kPa)

Figure 8—2 Histogram and CDF o f the effective cohesion o f the marine clay

0.5

0.4

us4*
3a*
£ 0.2

0.1

0.0

E[(j>’] = 27.1 deg.
ctH>']= 1.72 deg. 
n = 10

1.0

£> 0.8

0.6

0.4

0.2

0.0
30 3520 2524.0 25.4 26.7 28.1 29.4

Friction Angle; ij) ’ (deg.) Friction Angle; <(> ’ (deg.)
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2.2 Pore W ater Pressure

Following the slide, the Norwegian Geotechnical Institute installed 4 piezometers 

(A, B, C and D) in and around the slide area to assess the pore water pressure. 

Measurements were taken at various depths in each piezometer. Piezometer D was
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located within the slide area and the reported pore pressure measurements are most likely 

affected by the remolding o f the sliding mass. The data from piezometer D were excluded 

from the analysis. Figure 8—5 shows the locations o f the piezometers and the pore 

pressure measurements along the profile o f the slope.
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Effective Cohesion; C ' (kPa)

Figure 8—4 Scatter plot o f C  and tan <(>'

Based on the reported pore pressure data, the phreatic surface is inferred as shown 

in Figure 8—5. The pore pressure measurements are plotted versus the depth below the 

phreatic surface in Figure 8- 6 . All measurements plot above the hydrostatic pressure line 

indicating artesian conditions. Using the method of least squares, a linear trend is fitted to 

the data. Surprisingly, the measurements show minimal scatter around the trend. Since the 

data exhibit a clear trend with depth, the process is non-stationary. The pore pressure is 

transformed into a stationary process by removing the trend component from all 

measurements. The residual pore pressure (in terms of pressure head) is then modeled as 

a stationary random field with zero mean and a standard deviation equal to 0.34m. Figure

8—7 shows the histogram and the CDF of the residual pore pressure.

p= -0.06
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3. SLOPE STABILITY ANALYSES

3.1 Deterministic Analysis

The stability o f the slope is assessed deterministically using Slope/W software and 

the Bishop method of slices, assuming a circular slip surface. The mean values of the 

shear strength parameters and the deduced phreatic surface (taking into account the 

artesian conditions, Figure 8- 6) are used in the analysis. The minimum factor o f safety is 

calculated to be 0.96. Figure 8—1 shows the critical slip surface.

3.2 Probabilistic Analysis — Proposed Methodology

3.2.1 Inpu t Variables

Based on the discussions in Section 2, three parameters are considered as random 

variables; the effective cohesion, the friction angle and the pore water pressure o f the 

marine clay. The uncertainties due to soil variability are represented by the observed 

CDFs, Figure 8—2, Figure 8—3 and Figure 8—7. Since there are no indications of any 

correlation between the three parameters, they are treated independently. Statistical 

uncertainties in the mean values o f the cohesion and friction angle are represented by
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normal distributions with zero means and standard deviations estimated using Equation 

3-20. The uncertainty in the slope o f the linear trend o f the pore pressure is also 

represented by a normal distribution. The mean of the distribution is the best estimate 

obtained from the regression analysis using the method o f least squares and is equal to 

1.34. Using Equation 3-24, the standard deviation of the slope is estimated to be 0.017. 

Table 8-2 summarizes the statistical parameters and the probability distributions of all 

variables.

Table 8-2 Statistical parameters and CDFs of the input variables — Lodalen
slide

Input Variable Soil Variability Statistical Error

El—1 o[-l CDF E[—1 <y[-] CDF

Effective Cohesion; C' (kPa) 10.0 2.21 Exper. 0.0 0.70 N.

Friction angle; <j)' (deg.) 27.1 1.72 Exper. 0.0 0.54 N.

Pore
Pressure

Slope of the trend — — — 1.339 0.017 N.

Residuals; eu (m) 0.0 0.34 Exper. — — —

N. - Normal distribution; Exper. - Experimental (or observed) distribution

3.2.2 Critical Slip Surface

In locating the probabilistic critical slip surface, two candidate surfaces are 

considered; the deterministic critical slip surface and the slip surface based on the Hassan 

and W olff (1999) algorithm. The latter is determined by performing three deterministic 

analyses with the effective cohesion reduced by one standard deviation, then the friction 

angle reduced by one standard deviation and, finally, with the pore pressure increased by 

one standard deviation. The failure surface corresponding to the reduced cohesion yielded 

the least factor o f safety and is considered the critical surface based on the Hassan and 

Wolff criterion. The deterministic surface and the Hassan and W olff surface are, 

however, very similar as shown in Figure 8-1.

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Preliminary probabilistic stability analyses (using the proposed methodology) of 

the slope geometry before failure indicated that the probability of unsatisfactory 

performance associated with the deterministic surface is 77.49%, whereas that associated 

with the Hassan and W olff surface is 76.21%. The former is considered the probabilistic 

critical slip surface and is used in the subsequent analyses. It should be mentioned that as 

the slope geometry is modified (Section 3.2.5), the deterministic critical surface was not 

always the most critical in probabilistic terms. For each slope geometry, the two surfaces 

are examined to determine the surface that yields a higher probability of unsatisfactory 

performance.

3.2.3 Spatial Variability

The first step to account for the spatial variability o f the input variables is to 

estimate the autocorrelation distance. In his assessment of the subsurface conditions at the 

slide area, Sevaldson (1956) described the marine clay as “comparatively homogeneous”. 

This conclusion is backed by the relatively small coefficients o f variation of the cohesion 

and friction angle; 0.22 and 0.06, respectively. In addition, the depositional process in an 

offshore marine environment tends to produce materials of similar characteristics over 

large areas as well as with depth. As a result, marine deposits are, in general, 

characterized by continuous, rather than erratic, pattern of spatial variability. Also, the 

scatter o f the pore pressure measurements around the mean trend, Figure 8- 6 , is 

unusually small. Such observations imply that the variability o f the marine clay and the 

pore pressure is small and of a continuous nature. The autocorrelation distance is likely to 

be at the upper end of the typical ranges reported in Chapter 5. A range of 30-40m is 

postulated as a possible range for the horizontal autocorrelation distance and l-3m as a 

possible range for the vertical autocorrelation distance.

Since the critical slip surface, Figure 8-1, is almost a quarter of a circle the 

analysis is not dominated by the spatial structure in a specific direction. The variability is, 

thus, approximated by an equivalent isotropic spatial structure with an equivalent 

autocorrelation distance. Based on the presumed ranges o f the horizontal and vertical
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autocorrelation distances and using Equation 5-6, the equivalent autocorrelation distance 

is in the range o f 5-15m. The probabilistic analyses in the following sections are based on 

an intermediate value o f 10m. The sensitivity o f the output o f the analysis to other values 

within the postulated range is investigated in Section 3.2.5.

In analyzing the slope geometry before failure (2h:lv), the spatial variability of 

the strength parameters and the residual pore pressure are accounted for by dividing the 

probabilistic critical slip surface, Figure 8—1, into two segments of length /i=/2=8=20m 

and a residual segment o f length /3<8. The local average of each parameter over any of 

the three segments is modeled by the observed point CDF (Figure 8—2, Figure 8—3 and 

Figure 8—7). Thus, the variability of each o f the uncertain parameters is represented by 

three variables corresponding to the local averages over the three segments o f  the slip 

surface. A total of 9 variables are used to account for spatial variability. The correlation 

coefficients between the variables are calculated using Equation 5-5. In analyzing other 

slope geometries (Section 3.2.5), the same approach is applied with the difference that the 

number of segments, and consequently the number of variables, varies depending on the 

length of the slip surface.

3.2.4 Stability Analysis -  Geometry Before Failure (2h:lv)

A spreadsheet model mimicking the slope geometry before failure and the 

probabilistic critical slip surface is prepared. Bishop’s method of slices is used in the 

model. The model includes 3 uncertain parameters (cohesion, friction angle and residual 

pore pressure of the marine clay) represented by a total of 12 variables. Three variables 

account for statistical uncertainty and 9 variables account for spatial variability.

Based on a few trial simulations, the optimum number o f iterations is estimated to 

be 15,000. Using a seed number of 31069, the mean factor of safety is 0.95 with a 

standard deviation of 0.06. The probability o f unsatisfactory performance is estimated to 

be 77.49%. Figure 8-8  shows the histogram and the CDF of the factor of safety. Based on 

the results of 25 simulations, the mean probability o f unsatisfactory performance is
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estimated to be 77.38% with the 95% confidence interval ranging between 77.28-77.48%. 

Figure 8-9 shows the histogram of the probability o f unsatisfactory performance.
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A sensitivity analysis is also performed and Figure 8-10 shows Spearman rank 

correlation coefficients for all 12 variables. The plot implies that the reliability o f the 

slope is not dominated by the uncertainty of one parameter in particular. However, if  the 

three input parameters are ranked based on their contributions to the uncertainty o f the 

factor o f safety, the cohesion ranks first followed by the friction angle and the pore water 

pressure. Even though, the amount o f data available is not significant, statistical 

uncertainty contributes little to the overall uncertainty. This is attributed to the 

homogeneous nature of the marine clay and the exceptionally small scatter in the pore 

water pressure measurements (Section 2).

.a«s•E

s

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
Spearman Rank Correlation Coefficient

Figure 8-10 Sensitivity analysis results, Lodalen slide (2h:l v) — Proposed 

Methodology

The stability analysis is repeated using the alternative approach based on the 

probability distributions of the spatially averaged parameters over the length o f the slip 

surface. In a separate spreadsheet, the probability distribution of the average cohesion is 

estimated by simulation following the same approach outlined in Chapter 7. Using 50,000
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iterations, the simulation time was less than 1 minute. The probability distributions of the 

average friction angle and the average residual pore pressure are estimated similarly. The 

stability analysis yielded almost the same results as the analysis modeling variability 

along the failure surface. Figure 8-11 compares the CDFs of the factors o f safety from 

both analyses while Table 8-3 compares the statistical parameters o f both distributions.
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Figure 8—11 Comparison of the factor o f safety from the analysis modeling variability 
along the slip surface that based on the spatially averaged parameters, 
Lodalen slide; a) Probability distribution functions, b) Q-Q plot

Table 8-3 Comparison of the results of the analysis modeling 
variability along slip surface and that based on the spatially 
averaged parameters — Lodalen slide

Parameter

Analysis Characteristics

Modeling Variability 
Along slip Surface

Based on Spatially 
Averaged Parameters

E[FS] 0.95 0.95

a[FS] 0.06 0.06

Skewness 0.01 0.05

Pu (%) 77.49 78.59
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3.2.5 Stability Analyses -  Slope Geometry Modified

The probabilities of unsatisfactory performance associated with acceptable slope 

designs based on the current state o f practice are o f great value in setting guidelines for a 

probabilistic acceptance criterion for earth slopes. The slope geometry of the Lodalen 

case is modified to various inclinations (2.5:1, 3.0:1, 3.5:1 and 4.0:1) and each geometry 

is analyzed to estimate the probability o f unsatisfactory performance. The analysis o f  each 

case involved locating the probabilistic critical slip surface, accounting for spatial 

variability and statistical uncertainty and determining the optimum number of iterations. 

For each geometry, 10 simulation runs are performed and the outputs are averaged. Figure

8—12 shows the change of the probability of unsatisfactory performance and the factor of 

safety with the slope angle. The plot indicates minimal increase in the probability of 

unsatisfactory performance as the slope angle increases from 14 degrees (4h:lv) to 17 

degrees (3.3h:lv). A slope angle of 18 degrees marks the beginning of a significant 

increase in the probability of unsatisfactory performance. The factor o f safety associated 

with that angle is about 1.12.

80 1.6

Acceptable 
Design (4:1)

Slope Failed 
(2 :1)

10 15 20 25 30

Slope Angle (deg.)

Figure 8-12 Variation of the probability o f unsatisfactory performance 
and the factor o f safety with the slope angle, Lodalen slope 
— Proposed Methodology
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3.2.6 Stability Analysis —Acceptable Slope Design (4h:lv)

Conventional slope design practice is based on an allowable factor of safety, 

typically, in the range of 1.3-1.5. The decision on a specific value is left to the judgement 

o f the designer. Based on experience and judgement, the current practice is to adopt 

design factors o f safety at the upper end o f that range (e.g., FS=1.4-1.5) for slope 

problems involving long-term stability, such as the Lodalen case. A slope of 4h:lv has a 

factor o f safety o f 1.33 (Figure 8—12) and would, therefore, be regarded by many 

practitioners as somewhat non-conservative. Figure 8—13 summarizes the output o f the 

probabilistic assessment o f the stability o f the 4h :lv  slope. The slope has a mean factor o f 

safety o f 1.33 with a standard deviation o f 0.07 and a near zero probability of 

unsatisfactory performance. Such a low probability is attributed to the small uncertainty 

in the input parameters. Because of the high reliability o f the inputs, the probabilistic 

approach gives higher credibility to the calculated factor o f safety (a coefficient o f 

variation of only 5%) compared to the deterministic approach whose account of 

uncertainty is subjective. Combining the conclusion of the probabilistic analysis with 

conventional practice may well lead to the acceptance o f the 4.0:1 slope as an adequate 

design.
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The sensitivity of the near zero probability o f unsatisfactory performance of the 

4:1 slope to the autocorrelation distance is assessed. As discussed in Section 3.2.2, the 

range 5-15m is perceived as a reasonable range for an equivalent isotropic autocorrelation 

distance. The probabilistic stability analysis is repeated assuming different autocorrelation 

distances. Table 8-4 summarizes the outputs of the analyses. As the autocorrelation 

distance increases (i.e., spatial variability becomes less erratic), the variances of the 

spatially averaged input parameters increase leading to a higher uncertainty in the factor 

o f safety (i.e., higher standard deviation). The impact o f  such increases on the probability 

o f unsatisfactory performance (rounded to 4 decimal places) is, however, not visible as 

shown in Table 8-4.

Table 8-4 Sensitivity o f the output of probabilistic stability analysis to the
presumed value o f the autocorrelation distance

Autocorrelation Distance; r0 (m)

5.2 8.0 10.0 12.0 15.0 20.0

E[FSJ 1.33 1.33 1.33 1.33 1.33 1.33

ct[FS] 0.057 0.063 0.068 0.074 0.079 0.088

Skewness 0.02 0.02 0.02 0.04 0.01 0.02

P„ (%) 0.00 0.00 0.00 0.00 0.00 0.00

3.3 Naive Analysis

The stability of the 4h:lv  slope is assessed following the naive approach. A 

spreadsheet model mimicking the slope geometry and the probabilistic critical slip 

surface is prepared. The Bishop method of slices is used in the spreadsheet. Each of the 

uncertain input parameters (cohesion, friction angle and pore pressure) is modeled as a 

random variable having the experimental distribution function, Figure 8—2, Figure 8—3 

and Figure 8—7.
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Using a seed value o f 31069 and 25,000 iterations, Monte Carlo simulation 

yielded a mean factor of safety of 1.33 with a standard deviation of 0.11. The probability 

o f satisfactory performance is estimated to be 0.03%. Figure 8—14 shows the histogram 

and the CDF o f the factor o f safety. Based on the results o f 25 simulations, the mean 

probability o f unsatisfactory performance is estimated to be 0.04% with the 95% 

confidence interval ranging between 0.04-0.05%. Figure 8—15 shows the histogram of the 

probability of unsatisfactory performance. As with the James Bay and Cell 23 cases, the 

probability o f unsatisfactory performance is nearly one order of magnitude larger than 

that o f the analyses accounting for spatial variability. A sensitivity analysis is also 

performed and Figure 8—16 shows Spearman rank correlation coefficients for the three 

input variables. The results confirm the conclusion in Section 3.2.4 that none o f the 

uncertain input variables has a dominant impact on the reliability o f the design.
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Figure 8—14 Histogram and CDF of the factor of safety; Lodalen slope (4h: 1 v) — 
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4. SU M M ARY

The proposed methodology is applied to analyze the stability o f the Lodalen slide. 

The probability of unsatisfactory performance is estimated to be 76% indicating that 

failure was imminent. As the inclination o f the slope is reduced to 4.0h:lv the factor of 

safety, based on the conventional deterministic practice, is estimated to be 1.33 and the 

probability o f unsatisfactory performance is almost zero. Such low probability is 

attributed to the small uncertainty in the input parameters. It should not be interpreted as a 

no failure condition, but rather as a high level o f reliability. A deterministic factor of 

safety o f 1.33 might be regarded as not being conservative enough to address the long

term stability of an excavated clay slope. However, the results of the probabilistic 

analyses grant high credibility to the calculated factor o f safety which, if  taken into 

consideration, may well lead to the acceptance o f the 4.0:1 slope as an adequate design.

This case study clearly illustrates the large impact probabilistic analyses could 

have on conventional slope design practice. If  the outcome of the probabilistic analysis 

indicates high reliability of the computed factor o f safety we may be able to adopt a lower 

design factor of safety than normal provided that the serviceability (or performance) of 

the slope is not compromised.
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CHAPTER 9 

MUAR TRIAL EMBANKMENT

The proposed probabilistic methodology is applied to the Muar trial embankment 

in Malaysia. Sections 1 and 2 present a brief background about the embankment and the 

subsurface conditions. Then, in Section 3 the stability of embankment geometry before 

failure is analyzed deterministically and probabilistically. The analysis is repeated to 

assess the stability o f the embankment at various stages during construction (i.e., different 

embankment heights). Emphasis is put on estimating the probability o f unsatisfactory 

performance associated with the embankment height whose safety is deemed acceptable 

from the conventional practice point o f view.

I . INTRO DUCTIO N

Aiming at optimizing the design o f an express highway on a very soft marine clay, 

the Malaysian Highway Authority decided to construct a large-scale field trial 

embankment at a  section o f the highway in the valley of the Muar River, Malaysia. A 

subsurface investigation was conducted between 1985 and 1987 to characterize the soil 

conditions at the location of the trial embankment. The Malaysian Highway Authority 

invited 30 geo technical practitioners to predict the behavior o f the embankment at 

different stages o f construction up to failure. Each participant was provided with a 

detailed soil profile, the in-situ and laboratory testing results and the embankment 

geometry.

The embankment had a base area of about 55x90m and side slopes of 2h:lv. It 

was constructed using a compacted clayey sand to sandy clay material o f a granitic origin. 

The soft clay layers beneath and around the embankment were heavily instrumented to 

monitor the deformations and excess pore water pressures during construction. The 

embankment failed when the thickness o f the fill material reached 5.4m. At the time of
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failure the average settlement of the embankment was about 0.70m, thus the height o f the 

embankment above ground surface was 4.70m. Figure 9-1 shows a cross-section o f the 

embankment before failure. The construction time up to failure was 100 days. Failure 

occurred rapidly, one day after the development of a longitudinal crack along the 

centreline o f the embankment. The predictions o f all participants as well as the actual 

field data were discussed in a special symposium on Trial Embankments on Malaysian 

Marine Clays held in Kuala Lumpur in November o f 1989. Brand and Premchitt (1989) 

provided a summary of the predictions and the conclusions drawn from the comparison 

with field performance.

 Deterministic Critical
Slip Surface 

— Hassan and Wolff 
(1999) Surface

Embankment

Weathered Clay Crust Z 2

Very Soft 
Silty Clay

Soft Silty Clay

-10 X X XX X X XX

0 10 20 3 0  40 50 60

Horizontal Distance (m)

Figure 9—1 Geometry before failure and soil stratigraphy of Muar trial embankment

2. SO IL CONDITIONS

The Malaysian Highway Authority conducted a comprehensive investigation 

program to characterize the subsurface conditions at the site of the test embankment. The 

investigation included 2 deep boreholes with SPT tests, piston sampling, 9 field vane 

soundings and numerous laboratory tests including classification, compressibility, 

permeability and shear strength measurements. The following assessment o f the 

subsurface conditions is based on the data gathered throughout that investigation. A more
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detailed description o f the geology and the soil conditions is given in the report prepared 

by the Asian Institute o f Technology (AIT, 1989) and the summary paper by Brand and 

Premchitt (1989).

2.1 Stratigraphy

The stratigraphy at the site o f the embankment comprises a surface crust of 

weathered clay, about 2.0m thick, overlying a very soft silty clay. The silty clay is about 

6m in thickness and is highly compressible. The strength o f the clay increases almost 

linearly with depth. Below this, a layer o f soft silty clay, 9.5m thick, is encountered. Its 

shear strength is slightly higher than the overlying very soft clay and also increases with 

depth. A highly compressible layer of peat, 0.7m thick, underlies the soft clay. The peat is 

underlain by a medium dense to dense clayey silty sand. The sand extends to the end of 

borings at 40m below ground surface. Figure 9—1 and Figure 9-2 show the soil 

stratigraphy at the embankment location.

2.2 Soil Properties

A summary o f the physical and mechanical properties o f the three clay layers is 

presented in Table 9-1. As indicated by Atterberg limits, all layers are o f highly plastic 

clays. The very soft and the soft silty clay layers are slightly overconsolidated with 

liquidity indices above one and low bulk unit weights. Both layers, particularly the upper 

very soft layer, are highly compressible with high void ratios and compressibility indices.

Table 9-1 Summary of the physical and mechanical properties o f the clay layers

Layer Liquid
Limit
(%)

Plastic
Limit
(%)

Liquidity
Index

Void
Ratio

Compression
Index

Bulk Unit 
Weight
(kN/m3)

Weathered clay crust 90 30 0.6 1.85 — 15.5

Very Soft silty clay 80 27 1.5 2.60 1.75 14.0

Soft silty clay 55 23 1.4 1.65 1.05 16.0
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Because the construction o f the embankment took only 100 days, undrained 

conditions prevail. As so, emphasis is put on assessing the undrained shear strength o f  the 

clay layers. Figure 9—2 is a plot o f the field vane measurements versus elevation. The plot 

shows that the undrained shear strength o f the surface crust is much higher than that o f 

the underlying very soft clay. Close to ground surface the undrained strength is about 

50kPa and decreases to as low as 8 kPa at the top o f the very soft layer. A linear trend is 

fitted to the data as shown in Figure 9—2. The measurements show some scatter around 

the trend. The strength o f the crust may, thus, be regarded as a random variable. By 

removing the trend component from all measurements, the residuals can be modeled as a 

stationary random field with a zero mean and a standard deviation equal to 4.55 kPa. 

Figure 9-3 shows the histogram and the CDF o f the residuals, Ssu-cr-

2.5
Clay Crust

0.0 = 15.73*EIev. + 2.79

-2.5 Very Soft 
Silty Clay

-5.0
S 
c

•2 -7.5
es>
3  - io.o

S„ = -1.77*Elev. + 7.2lo6\  o

Soft Silty 
Clay

-12.5 «>

-15.0
Peat
Dense Clayey Sand

-17.5
0 20 40 60

Undrained Shear Strength; Su (kPa)

Figure 9—2 Profile o f field vane shear strength
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Figure 9—3 Histogram and CDF of the residuals of the undrained shear strength 

of the weathered clay crust

Figure 9—2 indicates that the undrained shear strength of the very soft and the soft 

clay deposits is not sensitive to stratigraphic layering. In other words, there is hardly any 

distinction between the two layers in terms o f the trend and scatter of shear strength 

measurements. The data of the two deposits are thus combined and the shear strength is 

treated as a single random process. One exceptionally high measurement (at elevation 

-14.0, Figure 9—2) is judged unreasonable and is discarded. A linear trend is fitted to the 

measurements as shown in Figure 9—2. The data show some scatter around the trend. 

Since the strength of the silty clay layers is likely to have a major impact on the stability 

of the embankment, addressing its uncertainty in the probabilistic analysis is important. In 

the stability analyses in the following sections, it is regarded as a variable. The trend 

component is removed from all measurements and the residuals are modeled as a 

stationary random field with a zero mean and a standard deviation equal to 2.45 kPa. 

Figure 9—4 shows the histogram and the CDF o f the residuals of the undrained shear 

strength; 6su-c- The histogram has a single peak, thus implying that the two data groups 

(the very soft and the soft silty clay layers) are consistent in a statistical sense. It should 

be stated, however, that this model does not reflect the geology on site as indicated by the
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different physical properties of the two layers, Table 9-1. Rather, it is intended to simplify 

the statistical treatment of the data.
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Figure 9-4  Histogram and CDF of the residuals of the undrained shear strength 

of the silty clay layers
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2.3 Em bankm ent Material

The embankment was constructed using a compacted decomposed granite that is 

described as clayey sand to sandy clay. The shear strength of the embankment material 

was assessed based on the results of 3 unconsolidated undrained triaxial tests and 2 

drained triaxial tests. From the drained tests, the effective friction angle and the effective 

cohesion were estimated to be 31 degrees and 14 kPa, respectively. The undrained tests 

showed the strength to vary from Cu= 64 kPa, <j>u=12 degrees to Cu =19 kPa, <j)u =26 

degrees. Based on the results of the undrained tests, the shear strength o f the embankment 

material is roughly approximated by the average strength of the 2 envelopes at mid height 

of the embankment. It is estimated to be 60 kPa. Uncertainty in this estimate arises firstly 

from the rough approximation scheme, particularly as the initial stresses within the 

embankment are not geostatic and largely depend on the compaction energy. Then, from 

the incompatibility of the strains needed to mobilize the peak strength o f the compacted
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stiff fill material and the underlying soft ductile clays which makes the operational shear 

strength o f the fill very difficult to assess. As such, accounting for the uncertainty o f fill 

strength in the probabilistic stability analyses is essential.

If  the fill material exhibits a strain-softening behaviour, cracks may develop 

within the embankment. This further complicates the assessment o f the operational 

strength o f the embankment material. This issue o f the fill cracked is, however, better 

handled as a matter o f model uncertainty.

3 . SLOPE STABILITY ANALYSES

3.1 Deterministic Analysis

The stability o f the embankment before failure is analyzed deterministically using 

Slope/W software and the Bishop method of slices assuming a circular slip surface. The 

average strength of the embankment material and the linear trends o f the undrained shear 

strength o f the weathered crust and the underlying clays (corrected for bias using 

Bjerrum’s vane correction factor, Section 3.2.1.2) are used in the analysis. The minimum 

factor o f safety is estimated to be 1.11. Figure 9-1 shows the critical slip surface.

It should be noted that the field vane may overestimate the operational strength of 

the overconsolidated clay crust due to the presence o f preexisting fissures (Tavenas et al., 

1980; Lefebvre et al., 1987). Some researchers (e.g., Ferkh and Fell, 1994) recommended 

the use o f a reduced strength for the crust. When an upper strength threshold o f 13.9 kPa 

at the lower quarter of crust thickness is imposed on the vane profile (corrected using 

Bjerrum’s factor) within the crust and another stability analysis is performed, the factor of 

safety is computed to be 1.07. So, the scenario o f reduced crust strength has only a small 

impact on this design and is not considered in the subsequent probabilistic analyses.
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3.2 Probabilistic Analysis — Proposed Methodology

3.2.1 In p u t Variables

3.2.1.1 Soil Parameters

Based on the discussions in Section 2, three soil parameters are considered as 

variables; the strength of the embankment, the strength o f the surface crust and the 

strength o f the underlying silty clays.

The undrained shear strength of the embankment is estimated to be 60 kPa as 

outlined in Section 2.3. Because of the high uncertainty surrounding the operational fill 

strength, the average strength along the slip surface is judgmentally assigned a standard 

deviation o f 12 kPa which is equivalent to a coefficient of variation of 20%. It is assumed 

to have a normal probability density function.

The uncertainty of the undrained shear strength of the surface crust is divided into 

uncertainty in the linear trend and uncertainty in the residuals around the trend. The 

intercept and the slope of the trend are considered variables with normal probability 

distributions. Using the method of least squares, the mean values of the slope and the 

intercept are computed to be 15.73 kPa/m and 2.79 kPa, respectively. The standard 

deviations are estimated to be 2.49 kPa/m and 3.62 kPa (Equations 3-21 and 3-22). The 

correlation coefficient between the slope and the intercept is found to be -0.92 (Equation 

3-23). The uncertainty of the residuals is represented by the experimental probability 

distribution function in Figure 9—3.

The uncertainty o f the undrained shear strength o f the underlying silty clays is 

modeled in the same way. The mean values o f the slope and intercept of the trend are 

estimated to be -1.77 kPa/m and 7.21 kPa, respectively. The standard deviations are 

computed to be 0.07 kPa/m and 0.63 kPa. The correlation coefficient between the two 

variables is 0.86. The uncertainty of the residuals is represented by the experimental CDF 

in Figure 9—4. Table 9-2 summarizes the statistical parameters and probability 

distributions o f all input variables.
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3.2.1.2 Bjerrum’s Vane Correction Factor

The field vane test is probably the most widely used test for assessing the 

undrained shear strength of soft clays. Based on back analyses o f a number of 

embankment and excavation slope failures, Bjerrum (1972) reported discrepancies 

between the measured and the back-calculated undrained shear strength. He attributed 

them to strain rate effects and anisotropy. Bjerrum (1972, 1973) then proposed an 

empirical factor (as a function of the plasticity index) to correct the measured vane 

strength, Figure 9—5. Aas et al. (1986) compiled data from other investigators, in addition 

to Bjerrum’s data, as shown in Figure 9—5. The scatter o f the data around Bjerrum’s 

recommended curve is substantial indicating high uncertainty. It is, therefore, important 

to address the uncertainty surrounding Bjerrum’s vane correction factor in any 

probabilistic analysis.

Table 9-2 Statistical parameters and CDFs o f the input variables -  Muar Trial
Embankment

Input Variable Soil Variability Systematic Uncertainty

E H cr[-l CDF E[—] G[-J CDF

Embankment Strength; Su.fhi (kPa) 60.0 12.0 N. — — —

Strength of 

Weathered clay 

crust; Su-cr 

(kPa)

Trend
Slope — — — 15.73 2.49 N.

Intercept — — — 2.79 3.62 N.

Residuals; Esu-cr 0.00 4.55 Exper. — — —

Bjerrum factor; gcr — — — 0.75 0.15 N.

Strength of 

silty clay 

layers; Su.c 

(kPa)

Trend
Slope — — — -1.77 0.07 N.

Intercept — — — 7.21 0.63 N.

Residuals; eSu-c 0.00 2.45 Exper. — — —

Bjerrum factor; pc — — — 0.80 0.15 N.

N. - Normal distribution; Exper. - Experimental (or observed) distribution
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Figure 9—5 Bjerrum’s vane correction factor

The scatter o f the data around Bjerrum’s curve is nearly constant irrespective o f 

the value o f the plasticity index, Figure 9—5. Thus, the uncertainty around Bjerrum’s 

curve can be represented by a constant standard deviation. In the stability analyses in the 

following sections, Bjerrum’s vane correction factor is modeled as a normally distributed 

random variable with a mean given by Bjerrum’s recommended curve and a constant 

standard deviation estimated from the scatter o f the data around the curve. The standard 

deviation o f Bjerrum’s factor is calculated to be 0.15. Because of the high plasticity o f the 

clay crust and the underling soft clays (Table 9-1), Bjerrum’s vane correction factors are 

applied to the vane strength of both layers. The two factors are regarded as variables. 

Based on Atterberg limits, the mean values o f Bjerrum’s factors are estimated to be 0.75, 

0.80, respectively. Table 9-2 summarizes the statistical parameters o f the two variables 

representing the vane correction factor.

3.2.2 Critical S lip  Surface

In locating the probabilistic critical slip surface, two candidate surfaces were 

considered; the deterministic critical slip surface obtained in Section 3.1 and the surface

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



based on the Hassan and Wolff (1999) algorithm. Hassan and Wolff’s surface is obtained 

by performing a deterministic analysis with the undrained shear strength of the silty clay 

layers reduced to the mean minus one standard deviation. The reduction includes the 

trend, the residuals and Bjerrum vane correction factor. Figure 9-1 shows the two 

candidate surfaces. Using 30,000 iterations, the two surfaces are analyzed 

probabilistically taking into account the spatial variability o f soil properties as outlined in 

the following sections. The probabilities of unsatisfactory performance are estimated to 

be 20.42% and 23.79% for Hassan and Wolff surface and the deterministic critical slip 

surface, respectively. The latter surface is, thus, considered the probabilistic critical 

surface and is used in the subsequent stability analyses.

3.2.3 Spatial Variability

Marine deposits (such the Malaysian soft clays) tend to be largely homogenous 

with a continuous, rather than erratic, pattern of variability. The little scatter o f the field 

vane data o f the silty clay layers around the trend, Figure 9—2, is in support of this 

argument. It is, thus, more likely that the horizontal and vertical autocorrelation distances 

o f the marine deposits at the valley o f the Muar river are at the upper ends of the typical 

ranges reported in Chapter 5. A range of 30-40m is postulated as a possible range for the 

horizontal autocorrelation distance and l-3m as a possible range for the vertical 

autocorrelation distance. The geometry of the critical slip surface, Section 3.2.2, suggests 

that the analysis is not dominated by the spatial structure along a specific direction. 

Hence, the variability of soil strength is roughly approximated by an isotropic spatial 

structure with an equivalent autocorrelation distance that is function of both the vertical 

and the horizontal autocorrelation distances. Based on Equation 5-6, the equivalent 

autocorrelation distance is in the range of 5-15m. The probabilistic stability analyses in 

the following sections are based on an intermediate value o f 10m. The sensitivity of the 

probability o f unsatisfactory performance to other values of the autocorrelation distance is 

investigated in Section 3.2.7.
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The spatial variability o f soil parameters along the failure surface is accounted for 

by dividing the slip surface into segments and modeling the average parameters over the 

length o f  these segments as correlated variables (Chapter 5). The failure surface cuts 

through the weathered crust at two locations separated by a distance longer than the scale 

of fluctuation 5s20m, Figure 9—1. The length o f the two segments o f the failure surface 

within the crust are also less than 8. Thus, the spatial variability o f the undrained shear 

strength o f the crust is modeled by two uncorrelated variables, each representing the 

average strength over a segment of the failure surface. Each variable is represented by the 

observed probability distribution of the residuals, Figure 9-3. Following the same 

approach, the failure surface within the silty clay layers is divided into two segments 

(based on 8=20m). Two variables, having the observed CDF of the residuals, Figure 9—4, 

are used to model the variability of the undrained shear strength o f the silty clays. For the 

embankment geometry before failure, the correlation coefficient between the two 

variables is estimated to be 0.08 (Equation 5-5).

3.2.4 Stability Analysis -  Geometry Before Failure (H=4.7m)

A spreadsheet model mimicking the embankment geometry, soil stratigraphy and 

critical slip surface is prepared. The settlement of the embankment is accounted for by 

assuming that the underlying very soft clay is displaced laterally. Thus, the thickness of 

that layer under the embankment is reduced by the observed settlement (S=0.7m). The 

Bishop method o f slices is used in the spreadsheet model. The model includes 5 uncertain 

parameters; the undrained shear strength of the fill material, the weathered crust and the 

silty clay layers and Bjerrum vane correction factors for the crust and the silty clays. The 

uncertainties in these parameters (bias, statistical uncertainty and spatial variability) are 

taken into account through 11 input variables, some o f which are correlated, as outlined 

in Sections 3.2.1 and 3.2.3.

Based on a few trial simulations, the optimum number of iterations is assessed to 

be 10,000. Using a seed number of 31069, the mean factor of safety is calculated to be 

1.11 with a standard deviation of 0.15. The probability o f unsatisfactory performance is

214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



estimated to be 23.79%. Figure 9-6 shows the histogram and CDF o f the factor o f safety. 

The simulation process is repeated 25 times using different seed values to assess the 

reliability o f the estimated probability o f unsatisfactory performance. The results are 

summarized in a  histogram form in Figure 9-7. The mean probability o f unsatisfactory 

performance is 24.05% with the 95% confidence interval ranging between 23.95-24.15%.
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Figure 9—6 Histogram and CDF of the factor o f safety, Muar Embankment 
(H=4.7m) — Proposed Methodology
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Figure 9—7 Histogram of the probability of unsatisfactory performance, 
Muar Embankment (H=4.7m) -  Proposed Methodology
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3.2.5 Stability Analyses — Embankment Geometry Modified

Aiming at assessing the probability o f unsatisfactory performance associated with an 

acceptable design based on conventional practice, the stability o f the embankment is 

analyzed at different stages during construction, i.e., different embankment heights. Four 

cases are considered including heights o f  2.5, 3.3, 3.5 and 4.0m above ground surface. 

The analyses are conducted following the same approach described in Section 3.2.4. Each 

case involved locating the probabilistic critical slip surface, assessing the optimum 

number o f iterations and accounting for spatial variability and systematic uncertainty. 

Figure 9—8 shows the variation of the probability of unsatisfactory performance and the 

factor o f safety with the embankment height. The estimate o f the probability o f 

unsatisfactory performance for each case is the average o f the results of 10 simulations. 

The plot indicates little increase in the probability o f unsatisfactory up to a height o f 

about 3.3m followed by a sharp increase in the probability value as the embankment 

height exceeds 3.5m.

3.2.6 Stability Analysis —Acceptable Embankment Design (H=3.3m)

Based on experience and judgement, conventional slope practice targets a design 

factor of safety in the order of 1.3-1.4 for the short-term stability of slopes in soft soils. 

For the Muar embankment, the computed factor of safety at failure (H=4.7m) is 1.11. 

Taking this into account, it is judged that an embankment height of 3.3m (FS=1.42, 

Figure 9-8) is an acceptable design from the conventional practice point o f view. The 

stability o f that embankment is studied in more detail. Figure 9—9 shows the histogram 

and the CDF o f the factor o f safety obtained by Monte Carlo simulation using 30,000 

iterations. The mean factor of safety is 1.42 with a standard deviation of 0.20. The 

probability o f unsatisfactory performance is estimated to be 1.29%. Figure 9-10 shows 

the histogram o f the probability o f unsatisfactory performance based on the results o f 25 

simulations. The mean probability o f unsatisfactory performance is 1.38% with the 95% 

confidence interval ranging between 1.36-1.40%
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A sensitivity analysis is performed to assess the relative contributions of the input 

variables to the uncertainty of the factor of safety. Figure 9—11 shows Spearman rank 

correlation coefficients for all 11 input variables. Interestingly enough, the plot indicates 

that the impact o f the uncertainty in Bjerrum’s vane correction factor on the reliability of 

the analysis is comparable (if not larger) to that of the spatial variability of the undrained 

shear strength. The plot also reflects the significance o f the longstanding issue still facing 

practitioners in designing embankments on soft soils, and that is the contribution of fill 

strength to the stability of the embankment. These two variables, Bjerrum’s factor and fill 

strength, are among the main contributors to the uncertainty of the stability analysis, 

Figure 9—11. The decisions on the value o f the vane correction factor and on how much of 

the measured fill strength to take into account in the design are subjective and largely 

depend on the designer’s experience and judgement. This explains the significant scatter 

o f the predictions o f the fill thickness of the Muar embankment at failure (2.75 -  9.75m) 

made by the 30 professionals who participated in the study organized by the Malaysian 

Highway Authority (refer to Chapter 4, Figure 4-1). As expected, the uncertainty of the
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strength o f the weathered clay crust has a small impact on the reliability of the analysis. 

The uncertainties o f the mean trends o f the strength o f the crust and the soft clay layers 

also have minimal impacts on the analysis.
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Figure 9—11 Sensitivity analysis results, Muar Embankment (H=3.3m) -  Proposed 

Methodology

The stability analysis o f the 3.3m embankment is repeated using the alternative 

approach based on the probability distributions of the spatially averaged soil parameters. 

The probability distribution o f the average undrained shear strength o f the silty clay layers 

over the length of the failure surface is estimated by simulation in a separate spreadsheet 

following the approach outlined in Chapter 7. Using a seed number o f 31069 and 30,000 

iteration, the probabilistic stability analysis yielded almost the same results as the analysis 

modeling the variability o f soil strength along the failure surface. The mean factor of 

safety and the probability o f unsatisfactory performance are estimated to be 1.42 and 

1.34%, respectively, compared to 1.42 and 1.29% for the analysis modeling variability
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along failure surface. Figure 9—12 compares the CDFs o f the factor of safety from both 

analyses.

Analysis models 
variability along slip 
surface
Analysis based on the 
spatially averaged 
parameters

0.5 1.0 1-5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5

Factor o f Safety Factor of Safety - Analysis Models
Variability Along Slip Surface

Figure 9-12 Comparison of the factor of safety from the analysis modeling soil variability 

along slip surface and that based on the spatially averaged parameters, Muar 

Embankment; a) Probability distribution functions, b) Q-Q plot

3.2.7 Sensitivity o f  the Analysis to the Autocorrelation Distance

As indicated in Section 3.2.3, the range 5-15m is presumed as the likely range of 

the autocorrelation distance o f the marine clays at the site of the Muar embankment. 

Since all probabilistic analyses in the previous sections are based on an autocorrelation 

distance of 10m, it is essential to examine the sensitivity of the analysis to other values. 

The probability of unsatisfactory performance is computed for different assumptions o f 

the autocorrelation distance as shown in Figure 9—13. The more continuous the soil 

variability is (i.e., the larger autocorrelation distance), the smaller the impact o f spatial 

averaging on the analysis and the higher the uncertainty of the factor o f safety. As the 

autocorrelation distance increased from 5m to 15m, the probability of unsatisfactory 

performance increased from 1.06% to 1.67%. While acknowledging that the probability 

o f unsatisfactory performance does vary with the assumption o f the autocorrelation
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distance, the difference is not significant from a practical point o f view. Stating that the 

probability of unsatisfactory performance o f the embankment is somewhere in between 

1.1- 1.7% is not unreasonable.
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Figure 9—13 Variation of the probability of unsatisfactory performance with 

the autocorrelation distance, Muar Embankment (H=3.3m)

3.3 Naive Analysis

The stability o f the acceptable embankment design (3.3m high) is also analyzed 

following the naive approach. The uncertainties in the undrained shear strength of the 

crust and the silty clay layers are assessed according to the observed variability reflected 

by the vane measurements. The estimated trends, Figure 9—2, are treated deterministically 

and the variability around the trends are modeled by the CDF o f the residuals, Figure 9—3 

and Figure 9-4. The uncertainty surrounding Bjerrum’s vane correction factor and the 

shear strength of the fill are accounted for as outlined in Sections 2.3 and 3.2.1.2. Table 

9-3 summarizes the statistical parameters and probability distributions of the input 

variables.
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Table 9-3 Statistical parameters o f the input variables -  Naive Analysis

Input Variable Mean
Standard
Deviation

Probability
Distribution

Undrained shear strength of fill material; 
Su-Fiii (kPa) 60.0 12.0 Normal

Weathered 
clay crust

Residuals of undrained 
shear strength; sSu-cr (kPa) 0.00 4.55 Experimental

CDF

Bjerrum vane correction 
factor; pcr 0.75 0.15 Normal

Very soft 
and soft 
silty clay 
layers

Residuals of undrained 
shear strength; Ssu-c (kPa) 0.00 2.45 Experimental

CDF

Bjerrum vane correction 
factor; pc 0.80 0.15 Normal

A spreadsheet model using Bishop’s method of slices and the deterministic 

critical slip surface is prepared. A Monte Carlo simulation using 30,000 iterations and a 

seed number o f 31069 is performed. The mean factor of safety is found to be 1.42 with a 

standard deviation o f 0.22. The probability of unsatisfactory performance is estimated to 

be 1.75%. The simulation is repeated 25 times and the estimated probabilities are 

summarized in histogram form in Figure 9-14. The mean probability of unsatisfactory 

performance is 1.80% with the 95% confidence interval ranging between 1.77-1.83%. 

Unlike most o f the case studies analyzed in the previous chapters, the probability of 

unsatisfactory performance based on the naive analysis is very close to that of the analysis 

accounting for spatial variability. This is attributed to the smaller size of the failure 

surface compared to the autocorrelation distance. As a result, the difference between the 

variance o f point measurements of shear strength and the variance o f the average shear 

strength along the slip surface is small bringing the two analyses closer.
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Figure 9—14 Histogram of the probability of unsatisfactory performance,

Muar Embankment (H=3.3m) -  Naive Analysis

A sensitivity analysis is also performed to assess the relative contributions of the 

various sources of uncertainty to the uncertainty o f the factor o f safety. Figure 9—15 

shows Spearman rank correlation coefficients for all input variables. Similar conclusions 

to those o f the analysis accounting for spatial variability can be drawn. Firstly, the 

uncertainty surrounding Bjerrum’s factor has a larger impact on the reliability o f the 

design than does the observed variability of the undrained shear strength. Secondly, the 

reliability o f Bjerrum’s factor and the contribution of fill strength are still major sources 

o f uncertainty in designing embankments on soft soils.
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4. SU M M A RY

The proposed probabilistic methodology is applied to the Muar trial embankment 

in Malaysia. The probability o f unsatisfactory performance associated with the 

embankment geometry before failure is estimated to 24.05% indicating that failure was 

expected. An embankment 3.3m high above ground surface is assessed to be an 

acceptable design from conventional practice point of view. The probability of 

unsatisfactory performance associated with that height is estimated to be 1.38%. This 

estimate is in the same range as the probability of unsatisfactory performance of the 6m 

high dyke of the James Bay case (1-3% range) while both are much larger than the 

probabilities associated with the acceptable designs o f the other cases analyzed so far 

(Pu<0.5%). The two cases, however, have many features in common. Both are small 

embankments constructed on soft clays whose strength is measured using field vane. The 

uncertainty surrounding the operational shear strength o f embankment material is deemed 

significant in the two cases. More importantly, the problem domain (in terms of slope 

geometry and the extent of the slip surface) in either case is small and comparable in size
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to the autocorrelation, distance. Hence, the variance reduction due to spatial averaging is 

insignificant and the uncertainties of the average properties are not much less than the 

point variances leading to the high probabilities of unsatisfactory performance.

The latter observation suggests that the frequency of small-scale failures is higher 

than large-scale failures, which is consistent with what is observed in real life. The issue 

o f the scale o f failure and its relation to the failure frequency cannot be addressed in a 

conventional deterministic slope analysis. It is discussed in more detail in Chapter 11.

The results o f the sensitivity analysis reveal some very interesting observations. 

First, the uncertainty of Bjerrum’s vane correction factor is substantial and could have a 

larger impact on the reliability of the analysis than does the uncertainty o f the undrained 

shear strength itself. Second, the vane correction factor and the contribution of fill 

strength to stability are still major sources of uncertainty in designing embankments on 

soft soils.
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CHAPTER 10 

CONGRESS STREET OPEN CUT

The proposed probabilistic methodology is applied to the Congress Street Open 

Cut in Chicago that failed in 1952. The geometry before failure is first analyzed, then the 

slope angle of the cut is reduced to various values and the analysis is repeated. The slope 

geometry that is deemed acceptable from a conventional practice point of view is 

analyzed in more detail. The following sections present a brief description of the failure, 

the local geology and the soil conditions and detail the deterministic and probabilistic 

analyses undertaken.

1. INTRODUCTION

A portion of the subway system of the downtown area o f Chicago City was 

constructed by open excavation. In the summer of 1952, a section of the open cut at 

Congress Street just east o f Halsted Street failed. The excavation had side slopes of 

1.35h:lv and failure occurred when the depth of excavation reached 14.25m. Figure 10—1 

shows the geometry of the slope before failure. The length o f the failed section was 

approximately 61 metres. As a result of the failure, a near vertical escarpment was formed 

at ground surface and a crack was developed near the centreline at the bottom of the 

excavation. Ireland (1954) described the failure and the stability analysis undertaken to 

assess the factor of safety at failure.

2. GEOLOGY OF THE CH ICAG O  AREA

Almost all o f the subsoil in the Chicago area was deposited during the 

Pleistocene. The most recent glaciation, the Wisconsin, is the only glaciation that has a 

major impact on the local geology. The glacier advanced towards the area through the 

Lake Michigan basin. During movement, significant quantities o f Devonian shale were
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excavated from the basin and mixed with the materials brought by the glacier from 

formations at localities farther north. Most o f the soil formations in the Chicago area are 

deposited by the Wisconsin glacier. As a result, they are primarily clays and silts derived 

from the Devonian shale. There is also evidence to suggest that these deposits were laid 

down in six till sheets, some o f which were totally eroded. Each o f these sheets has its 

own terminal moraine and represents an advance and retreat of the ice sheet. The clayey 

deposits are overlain in many localities by sand deposited in the glacial lakes formed by 

the impounded meltwater from the glacier. The clayey deposits are underlain by the 

Niagaran Limestone which belongs to the Paleozoic era. The surface o f the limestone is 

highly irregular. Peck and Reed (1954) provided a summary of the geology of the 

Chicago area.

 Deterministic Critical
Slip Surface 

—°— Hassan & Wolff 
(1999) Surface5

Sand & Fill

Stiff Gritty Blue 
Clay Crust

Medium Blue 
Clay I

-10 Medium Blue Clay II

Stiff to Very Stiff Blue Clay
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0 5 10 15 20 25 30 35 40

Horizontal Distance (m)

Figure 10-1 Geometry and soil stratigraphy of the Congress Street open cut
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3. SOIL CONDITIONS

The subsurface conditions at the Chicago area were extensively investigated by 

hundreds of boreholes during the construction of the subway system. Peck and Reed 

(1954) prepared a summary report detailing the soil conditions o f the area. Ireland (1954) 

provided information on the local soil conditions at the failure site based on 8 nearby 

borings. The assessment in the following sections is based on both sources.

3.1 Stratigraphy

The stratigraphy at the site o f the failure comprises a top layer of sand and 

miscellaneous fill o f about 3.4 m thick. Based on SPT data, Peck and Reed (1954) 

reported that the relative density o f  the sand in this area is erratic and is generally low. 

The sand is underlain by a gritty blue clay that extends to bedrock. The clay, however, 

varies in consistency and can be divided into a number o f sub-layers that belong to 

different till sheets as outlined in Section 2. Immediately below the sand, a crust of stiff 

gritty blue clay, 4.3 m thick, is encountered. It is believed to have gained its strength by 

desiccation as a result of extreme low water levels of Lake Chicago. Ireland (1954) 

reported that the crust has a structure of joints and fissures. The crust is underlain by a 

layer of medium stiff, gritty blue clay o f about 6 .1m thickness which in turn is underlain 

by another layer, 3 . 1m  thick, o f medium stiff blue clay. The two layers have the same 

composition but they differ in strength. Hereafter, they are referred to as Blue Clay I and 

Blue Clay H, respectively. Peck and Reed (1954) reported that these layers contain 

numerous limestone and shale pebbles, sand and silt pockets, large boulders and 

occasionally thin stratified deposits. Blue Clay II is underlain by a stiff to very stiff gritty 

blue clay layer that extends to the end o f borings. The stiff clay is also of the same 

composition as the overlying medium clays, however, it is sandier with much more 

pebbles, silt pockets and sand lenses. Figure 10-1 shows the soil stratigraphy at the site of 

the failure.
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3.2 Soil Properties

The relative density of the top sand layer is assessed on the basis o f SPT results. 

Unfortunately, no data were available at the exact location of the failure. Peck and Reed 

(1954), however, reported that the relative density o f the sand at the area surrounding the 

failure site is generally low ranging between very loose to medium dense. Based on this 

information, the sand is judgmentally assigned a friction angle of 30 degrees. Ireland 

(1954) used the same value when assessing the stability o f the cut.

As indicated in Section 2, the various clay layers are of the same origin. As such, 

the differences in Atterberg limits are very small. On average, the plastic limit for all clay 

layers is about 17% and the liquid limit is about 32%. The moisture contents o f the layers, 

however, vary reflecting the variation o f strength. The desiccated crust has a moisture 

content o f about 21% while those o f the Blue Clay I and the Blue Clay II are 24% and 

26%, respectively.

The strength of the different clay layers is assessed based on an extensive number 

of unconfined compressive strength tests. The tests were conducted on specimens 

prepared from 2" diameter shelby tube samples. Peck and Reed (1954) and Ireland (1954) 

reported that the variability of the compressive strength of the glacial blue clays is 

significant and erratic. Unfortunately, the actual data o f the borings surrounding the 

failure site were not available. Ireland (1954), however, provided the mean, standard 

deviation and the number of tests for each layer, Table 10-1. The coefficients o f variation 

of the stiff gritty clay crust, the Blue Clay I and the Blue Clay II are 0.50, 0.26 and 0.32, 

respectively. The three values indicate high uncertainty in the strength of the clay layers. 

The exceptionally high uncertainty in the strength o f the stiff clay crust reflects the 

presence o f a structure of joints and fissures (Section 3.1) which often leads to a 

significant variability in strength from one specimen to another.
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Table 10-1 Statistical parameters of the unconfined compressive strength 
of the clay layers

Soil Layer

Unconfined Compressive Strength (kPa)

No. of 
Tests Mean

Standard
Deviation

Stiff gritty blue clay crust 38 112.6 55.8

Blue Clay I 55 65.8 17.4

Blue Clay II 33 84.2 26.9

In connection with the soil testing program of the Chicago subway, Peck (1940) 

compared the unconfined compressive strength of specimens carefully prepared from 

block samples with the compressive strength of specimens obtained from the immediate 

vicinity using the standard 2" diameter shelby tube sampler. Based on the results of 13 

tests, he reported that the strength of the block, and presumably less disturbed, samples is 

about 35% higher than that o f  the shelby tube samples. Peck (1940) attributed that loss of 

strength to mechanical disturbance during sampling. In analyzing the failure of the 

Congress street cut, Ireland (1954) applied a correction factor o f 1.35 to the measured 

unconfined compressive strength o f all clay layers. Based on Peck’s (1940) data, Tang et 

al. (1976) estimated the coefficient o f variation of the correction factor to be 0.025.

4. SLOPE STABILITY ANALYSES

4.1 Deterministic Analysis

The stability o f the Congress street open cut before failure is analyzed 

deterministically using Slope/W software and the Bishop method o f slices assuming a 

circular failure surface. The mean values of the measured shear strength o f the various 

layers, Section 3.2, are used in the analysis. The correction factor proposed by Peck 

(1940) to account for the effect of sampling disturbance is applied to the undrained shear
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strength o f the Blue Clay I and the Blue Clay II. The samples based on which Peck (1940) 

estimated the correction factor were all at the level o f  the subway tunnel below the stiff 

fissured clay crust. In addition, the operational strength o f the stiff desiccated crust largely 

depends on the extent and structure of fissures rather than on the measured unconfined 

compressive strength. As such, it was decided not to apply the correction factor to the 

undrained shear strength of the stiff crust.

The stability analysis yielded a factor of safety of 1.13. Figure 10-1 shows the 

critical slip surface. The fact that the factor o f safety at failure is above one suggests that 

some of the strength parameters are overestimated. This is likely to be the undrained 

shear strength of the stiff clay crust. The mean strength used in the analysis may not be a 

proper representation of the operational undrained shear strength particularly since the 

measurements exhibit significant scatter.

4.2 Probabilistic Analysis — Proposed Methodology

4.2.1 Input Variables

Based on the discussions in Section 3, the undrained shear strength o f the stiff 

blue clay crust, the Blue Clay I and the Blue Clay II are considered random variables. The 

mean and variance of each variable are obtained based on the results o f unconfined 

compressive strength tests as reported by Ireland (1954). The testing data were not 

available to assess the actual probability distributions of the variables. As such, the three 

variables are assigned parametric probability distributions. Wu and Krafit (1967) reported 

that the unconfined compressive strength o f three clay till deposits from different sites fit 

the lognormal distribution “reasonably well”. Fredlund and Dahlman (1972) also reported 

that the probability distribution of the unconfined compressive strength o f Lake 

Edmonton sediments approaches a lognormal distribution. Based on that, the probability 

distributions of the undrained shear strength o f the three layers are assumed lognormal. 

Since the reported standard deviations o f the strength of the layers are very high, the 

lognormal distribution also has the advantage of eliminating the potential of sampling 

negative values during simulation.
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The uncertainty surrounding the correction factor proposed by Peck (1940) to 

account for the effect of sampling disturbance is also taken into account. The correction 

factor is regarded as a bias factor (refer to Equation 5-7) with a mean equal to 1.35 and a 

standard deviation equal to 0.034. The mean is the value o f the correction factor proposed 

by Peck and the standard deviation is based on Tang et al (1976) assessment o f the scatter 

in Peck’s data. The probability density function of the bias factor is assumed normal.

The statistical uncertainty of the mean values o f the undrained shear strength of 

the three clay layers are represented by 3 random variables with zero means and standard 

deviations estimated using Equation 3-20. The variables are assumed normally distributed 

and are combined with the variables representing soil variability in an additive form as 

indicated in Chapter 5. Table 10-2 summarizes the statistical parameters and probability 

distributions of all input variables.

Table 10-2 Statistical parameters and CDFs of the input variables — Congress
Street Open Cut

Soil Unit Input Variable
Soil Variability Systematic Uncertainty

E[—1 a[~] CDF E[—1 a [ ~  ] CDF

Stiff clay crust Undrained shear 
strength; Su-cr (kPa)

56.3 27.9 LogN. 0.0 4.53 N.

Blue Clay I Undrained shear 
strength; Su. Bci (kPa)

32.9 8.7 LogN. 0.0 1.17 N.

Blue Clay II Undrained shear 
strength; Su. Bcu (kPa)

42.1 13.5 LogN. 0.0 2.34 N.

Blue Clay I & H Bias factor; B — — -- 1.35 0.034 N.

N. - Normal distribution; LogN. - LogNormal distribution

4.2.2 Critical Slip Surface

In locating the probabilistic critical slip surface, two candidate surfaces are 

examined; the deterministic critical surface and the surface based on the Hassan and
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Wolff (1999) algorithm. The latter is obtained by performing a series o f deterministic 

stability analyses with the strength o f each clay layer reduced in turn by one standard 

deviation. The surface corresponding to the reduced strength o f the Blue Clay II yielded 

the lowest factor o f safety and is thus considered the most critical based on the Hassan 

and W olff criterion.

Probabilistic stability analyses (as outlined in the following sections) o f the slope 

geometry before failure indicated that the probability o f unsatisfactory performance 

associated with the deterministic critical slip surface is 29.11% and that o f the Hassan and 

Wolff surface is 28.31%. The former is, thus, considered the probabilistic critical slip 

surface and is used in the subsequent analyses. As the slope geometry is modified 

(Section 4.2.5), the deterministic critical slip surface is not always the most critical in 

probabilistic terms. For each case, the deterministic surface and the Hassan and Wolff 

surface are examined to determine the surface that yields higher probability of 

unsatisfactory performance.

4.2.3 Spatial Variability

As indicated in Sections 2 and 3.1, the subsoil in the Chicago area comprises a 

random mixture of clays, silts and other materials. As such, its variability is expected to 

be high and erratic, both laterally and with depth. This is confirmed by the observations 

of Peck and Reed (1954) and Ireland (1954). The autocorrelation distance(s) of such 

formations is likely to be small, towards the lower ends o f the typical ranges reported in 

Chapter 5. A range of 20-30 m is postulated as a possible range o f the autocorrelation 

distance in the horizontal direction and 1-3 m as a possible range for the vertical 

autocorrelation distance. The geometry of the slip surface, Figure 10-1, implies that the 

analysis is not dominated by the spatial structure along a specific direction. Hence, the 

variability of the undrained shear strength of the clay layers is approximated by an 

isotropic spatial structure with an equivalent autocorrelation distance. Using Equation 

5-6, the range of the equivalent autocorrelation distance is estimated to be 4-10 m. The 

analyses in the following sections are based on an intermediate value o f 7 m. The
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sensitivity o f the probability o f unsatisfactory performance to other values o f the 

autocorrelation distance is investigated in Section 4.2.6.

The spatial variability of the undrained shear strength o f the clay layers is 

accounted for as outlined in Chapter 5. The portion o f the slip surface within each layer is 

divided into segments o f length 8 . The average strength over the length o f each segment 

is considered a  variable and is represented by the point CDF of the corresponding soil 

layer (Table 10-2). The correlation coefficients between the averages are estimated using 

Equation 5-5. For an autocorrelation distance equal to 7m, the lengths o f the segments of 

the slip surface within the stiff crust and the Blue Clay I are less than 5=14 m. Thus, the 

strength o f either layer is represented by one variable only.

4.2.4 Stability Analysis — Geometry Before Failure (1.35h:lv)

A spreadsheet model mimicking the slope geometry, the soil stratigraphy and the 

deterministic critical slip surface (refer to Section 4.2.2) is prepared. The Bishop method 

o f slices is used in the model. The spreadsheet includes 4 uncertain parameters (the 

undrained shear strength of the stiff clay crust, the Blue Clay I and the Blue Clay II and 

the bias factor) represented by five random variable, two of which are correlated.

Based on a few trial simulations, the optimum number o f iterations is estimated to 

be 15,000. Using a seed number of 31069, the mean factor of safety is calculated to be 

1.13 with a standard deviation of 0.22. The probability o f unsatisfactory performance is 

estimated to be 29.11%. Figure 10—2 shows the histogram and the CDF of the factor of 

safety. The simulation is repeated 25 times using different seed numbers to assess the 

reliability o f the estimated probability. The results are summarized in a histogram form in 

Figure 10—3. The mean probability of unsatisfactory performance is 29.11% with the 95% 

confidence interval ranging between 29.02-29.20 %.
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4.2.5 Stability Analyses -  Slope Geometry Modified

In order to assess the probability o f unsatisfactory performance associated with an 

acceptable design based on conventional practice, the inclination of the cut slope is 

reduced to various values and the stability of the modified slopes is analyzed 

probabilistically. Five different slopes (h:v) are considered; 1.75:1, 2.0:1, 2.5:1 and 3.0:1. 

The same approach adopted for the analysis of the geometry before failure (Section 4.2.4) 

is applied in analyzing the stability of the modified slopes. That included locating the 

probabilistic critical slip surface, preparing a spreadsheet model and accounting for 

spatial variability and systematic uncertainty. For each case, Monte Carlo simulation is 

repeated 10 times using different seed numbers. The outcome o f the analysis is taken as 

the average of the outputs o f the 10 simulations. Figure 10—4 shows the variation of the 

probability of unsatisfactory performance and the factor of safety with the slope angle. 

The plot indicates limited increase in the probability of unsatisfactory performance as the 

slope angle increased from 18.4 degrees to 21.8 degrees followed by a sharp increase in 

the probability up to failure. The rate o f decay of the probability of unsatisfactory 

performance as the slope angle is reduced (i.e., higher factor of safety) is much slower 

than the Lodalen and the Muar cases. This is attributed to the high and erratic variability 

of the undrained shear strength of the clay layers.

4.2.6 Stability Analysis —Acceptable Cut Design (2.5lt:lv)

As indicated in Chapter 9, it is a common practice to design the short-term 

stability of earth slopes to factors of safety in the range of 1.3-1.4. For the Congress Street 

Cut, the factor of safety at failure is estimated to be 1.13. In addition, the uncertainty in 

the undrained shear strength o f the clay layers is significant. Taking that into account, it is 

judged that a slope of 2.5h:lv (FS=1.44) is an acceptable design from the conventional 

practice point of view. The stability o f that slope is assessed in some detail in the 

following paragraphs.
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Using a seed number o f 31069 and 30,000 iterations, the mean factor o f safety is 

estimated to 1.44 with a standard deviation of 0.24. The probability o f unsatisfactory 

performance is estimated to be 1.97%. Figure 10—5 shows the histogram and the 

probability distribution function o f the factor of safety. The simulation is repeated 25 

times using different seed numbers and the computed probabilities o f unsatisfactory 

performance are summarized in a histogram form in Figure 10-6. The mean probability 

of unsatisfactory performance is estimated to be 2.02% with the 95% confidence interval 

ranging between 1.99-2.05%.
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A sensitivity analysis is performed to assess the relative contributions of the 

different sources of uncertainty to the reliability of the design. Figure 10—7 shows 

Spearman rank correlation coefficients for all input variables. The plot indicates that the 

uncertainty surrounding the strength o f the Blue Clay II is by far the most influential 

source of uncertainty. Even though the physical contribution o f the stiff clay crust to the 

stability of the cut is small (because o f its small thickness), it is ranked as the second 

major source of uncertainty. This reflects the high uncertainty surrounding the operational 

strength o f the crust due to the presence o f fissures and joints. The graph also shows that 

the impact o f the uncertainty due to soil variability on the analysis is much larger than 

that o f the systematic uncertainty (i.e., bias factor and statistical errors). This observation 

is important because it implies that the analysis could be sensitive to the value of the 

autocorrelation distance.
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Figure 10-7 Sensitivity analysis results, Congress Street Cut (2.5:1) -  Proposed 

Methodology
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The preceding analyses are based on an autocorrelation distance o f 7 m. The 

sensitivity of the estimated probability o f unsatisfactory performance to the value of the 

autocorrelation distance is investigated. The stability o f the 2.5:1 slope is reassessed using 

different values of the autocorrelation distance. Figure 10-8 shows the variation of the 

probability of unsatisfactory performance as the autocorrelation distance is varied within 

the range estimated in Section 4.2.3. The plot indicates that the probability of 

unsatisfactory performance is somewhat sensitive to the value o f the autocorrelation 

distance. As the autocorrelation distance is increased from 4 to 10 m, the probability of 

unsatisfactory performance increased from 0.69% to 3.59%. This sensitivity stems from 

two factors. First, the analysis is dominated by the uncertainty due to the spatial 

variability of the strength (rather than systematic uncertainty) which magnifies the impact 

o f variance reduction due to spatial averaging. Second, the erratic nature o f the clay till 

formations causes the reduction in the variance of the average strength along the slip 

surface to be sensitive to the value o f the autocorrelation distance.
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Figure 10-8 Variation o f the probability of unsatisfactory performance

with the autocorrelation distance, Congress Street Cut (2.5:1)
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4.3 Naive Analysis

The acceptable slope geometry (2.5h:lv) is also analyzed following the naive 

approach. The analysis accounts for the uncertainty o f the of the undrained shear strength 

o f the clay layers as reflected by the scatter of the results of the unconfined compressive 

strength tests only. The mean strength parameters are regarded as deterministic values. 

The uncertainty of the bias factor proposed by Peck (1940) is taken into account. Table

10-3 summarizes the statistical parameters and probability distributions o f the input 

variables.

Table 10-3 Statistical parameters and CDFs o f the input variables — Naive
Analysis

Soil Unit Input Variable Mean
Standard
Deviation

Probability
Distribution

Stiff clay crust Undrained shear 
strength; (kPa) 56.3 27.9 LogN.

Blue Clay I Undrained shear 
strength; Su. Bci (kPa) 32.9 8.7 LogN.

Blue Clay II Undrained shear 
strength; Su. Bcii (kPa) 42.1 13.5 LogN.

Blue Clay I & II Bias factor; B 1.35 0.034 N.

N. - Normal distribution; LogN. - LogNormal distribution

A spreadsheet model is prepared using Bishop’s method o f slices and the Hassan 

and W olff surface which is found more critical than the deterministic critical slip surface. 

Using a seed number of 31069 and 30,000 iterations, the simulation yielded a mean factor 

o f safety of 1.44 with a standard deviation of 0.33. The probability o f unsatisfactory 

performance is estimated to be 5.98%. Based on 25 simulations, the mean probability of 

unsatisfactory performance is estimated to be 6.05% with the 95% confidence interval 

ranging between 6.02-6.09%. Figure 10-9 shows the histogram o f the probability of 

unsatisfactory performance. Similar to the Muar case, the naive probability is not 

significantly higher than the probability estimated using the more rigorous approach in
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Section 4.2.6. This is attributed to the fact that the length o f  the failure surface within 

each layer is comparable to the scale of fluctuation (5=14 m). As a result, the uncertainty 

o f the strength estimated directly from the point measurements (naive approach) is not 

significantly higher than the uncertainty of the average strength along the failure surface 

(proposed methodology).
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Figure 10-9 Histogram of the probability o f unsatisfactory performance, 

Congress Street Cut (2.5:1) — Naive Analysis

A sensitivity analysis is also performed to assess the relative contributions of the 

different sources o f uncertainty. Figure 10—10 shows Spearman rank correlation 

coefficients for all input variables. The plot indicates that the uncertainty o f the strength 

of the Blue Clay II is by far the most significant source of uncertainty. It also shows that 

the uncertainty of the bias factor has a negligible impact on the analysis.
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5 . SU M M A R Y

The proposed probabilistic methodology is applied to the Congress Street Open 

Cut in Chicago. The probability o f unsatisfactory performance associated with the 

geometry before failure (slope 1.35h:lv) is estimated to be 29.11% indicating that failure 

was expected. Based on conventional slope design practice, a cut slope of 2.5h:lv is 

considered an acceptable design. The probability of unsatisfactory performance associated 

with that slope is estimated to be 2.02%. This estimate is shown, however, to be 

somewhat sensitive to the value of the autocorrelation distance. The sensitivity is 

attributed to the very high spatial variability o f the strength and the erratic nature o f the 

clay till formations. This suggests that for soil deposits exhibiting high and erratic 

variability, the results of a probabilistic analysis could be sensitive to the assumption of 

the autocorrelation distance. If such sensitivity is large enough to impede the decision

making process, obtaining a site-specific estimate o f the autocorrelation distance may be 

worth the effort.
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CHAPTER 11

STABILITY OF GRANITIC SOIL 
SLOPES IN HONG KONG

The significant variability o f the shear strength of Hong Kong granitic soil is 

assessed based on a large database o f triaxial test results. Generalized (or regional) 

probability distributions characterizing the variability of strength parameters are 

estimated. Four case studies o f slope failures in Hong Kong are back analyzed 

probabilistically to quantify the uncertainty of pore water pressure at failure. The four 

cases are then re-designed to an acceptable geometry according to the current slope 

design practice. The probabilities o f unsatisfactory performance associated with the four 

slopes are estimated. The following sections describe the deterministic and probabilistic 

analyses undertaken

1. INTRO DUCTIO N

With a population exceeding six million and land area o f about 1000 sq. km, 

Hong Kong is considered one of the most densely populated urban areas in the world. 

Much of the territory comprises natural and man-made slopes resulting in an intense 

urbanization at and around steep slopes. Hong Kong also experiences heavy seasonal 

rainfall (nearly 2000mm of rain during the wet season from May to October) which, in 

many cases, triggers landslides. Slope failures in Hong Kong are often sudden with no 

prior warning and involve rapid debris movement. Many of these slides result in fatalities 

and injuries. The recorded history of landslide fatalities in Hong Kong dates back to as 

early as 1917 when 73 people died due to the collapse of a building in Po Hing Fong 

caused by a landslide. In 1978, the government of Hong Kong established the 

Geotechnical Control Office (currently known as the Geotechnical Engineering Office) to 

oversee the safety of earth slopes. Since then, significant efforts have been made to 

identify and mitigate the slopes that pose a danger to the public. The slope problem in
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Hong Kong has been the subject o f many studies; the most important o f which are Lumb 

(1975) and Brand (1985).

Assessing the safety of an earth slope in Hong Kong is, however, a challenging 

task. This is attributed to the extreme uncertainties in the shape and depth o f the potential 

slip surface, the soil or rock strength parameters and the pore water pressure at failure. 

The slip surface is often non-circular and frequently governed by the structure o f joints 

within the soil or rock. The shear strength parameters vary significantly because o f the 

high variability o f Hong Kong residual soils and the presence of relict and clay in-filled 

joints. Out o f the three parameters, pore water pressure is the one most difficult to 

evaluate. The magnitude of the pore pressure depends on the intensity and frequency of 

rainfall and the structure of joints and fissures within the slope. Both are extremely 

difficult to predict. In the light of these substantial uncertainties, Kay (1998) questioned 

the applicability of the conventional slope design practice to slopes in Hong Kong. 

Probabilistic and risk analyses are better alternatives for such cases o f extreme 

uncertainty.

2 . G RAN ITIC SOILS OF H O NG  KONG

2.1 Origin and Formation

A substantial part of Hong Kong is underlain by Mesozoic igneous rocks; mainly 

granites and volcanics. Hong Kong soils are mainly "Residual Soils" formed by in-situ 

decomposition o f these rocks. As a result of differences in mineralogical composition and 

texture (volcanics having much finer grains), soils produced from both rocks have 

different characteristics. While both soils exhibit significant variability, the volcanics are 

extremely heterogeneous and closely jointed (joint spacing « 0.25m). The density and 

stochastic nature of the joints associated with the volcanic soils are major sources of 

model uncertainty. Quantifying mass strength and pore pressures at failure are extremely 

difficult. As a result, the rate of slope failures in volcanic soils is higher than in granitic 

soils. Because o f our limited capabilities in dealing with these sources of uncertainties,
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volcanic soils are not considered in this work. This study is focused mainly on slopes in 

granitic soils, particularly cut slopes. Cut slope failures are by far the most common form 

o f landslides in Hong Kong (Brand, 1985)

Granitic rocks underlie large areas in Hong Kong; including the main urban areas 

o f Victoria Harbor, north coast of Hong Kong Island, Kowloon Peninsula and Kun Tong 

and Tsun Wan districts. Fresh granite is typically composed o f feldspar (up to 70%), 

quartz (30-40%) and small proportions o f biotite and other minerals. Chemical action of 

water combined with physical and thermal processes alters the feldspar and biotite 

fractions into kaolinite clay mineral leading to the decomposition o f the granite. The rate 

o f decomposition is controlled by granite grain size and joint spacing. Depending on the 

degree o f weathering, the decomposed granite may range from coarse sand to silty clayey 

sand. Boulders may also be present.

The Geotechnical Engineering Office of Hong Kong (GCO 1988) adopted a six- 

grade system to classify the weathered rock material. Grade I is fresh rock and Grade VI 

is residual soil that bears no features of the parent rock. Grade IV (highly decomposed 

granite) and grade V (completely decomposed granite) are considered soils that still retain 

some features of the original rock (texture, fabric, jointing). They are referred to as 

Saprolite.

2.2 Engineering Properties

For engineering purposes, materials grades IV to VI are treated as soils while 

grades I to lH are treated as rocks. The majority of cut slope failures in Hong Kong are in 

soils o f weathering grades IV to VI (Brand, 1985). Grade VI soil is often encountered at 

surface, thus contributing very little to the stability of slopes. This assessment of 

properties is concerned only with decomposed granites grades IV and V (highly and 

completely decomposed granites). Due to variations in the mineralogical composition and 

grain size o f the parent rock and in the weathering processes (e.g., alteration, leaching 

etc.), these soils are largely heterogeneous, even for the same material grade. Such
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heterogeneity is a major problem in characterizing soil properties for engineering 

applications. Estimating representative shear strength parameters for slope stability 

analyses is a pronounced example.

The general characteristics of the fresh rock and the physics o f  the decomposition 

processes are, however, not significantly different across the territory. As a result, the 

nature and degree of heterogeneity are not site dependent. Lumb (1962, 1965) reported 

that no trends were found between samples o f the same soil type from different locations. 

He also noted that the variability (in terms o f  standard deviation) within one site is not 

much less than the variability over the entire study area which covered a large part of 

Hong Kong. Lumb’s observations imply that the properties of the decomposed granite 

could be statistically homogeneous across the territory. Based on that, it was decided to 

assess the physical and mechanical properties on a regional, rather than site specific, 

basis. The testing results used in the assessment were collected from Lumb (1962, 1965), 

Hencher (1983a, 1983b), Siu and Premchitt (1988), Shelton and Cooper (1984) and Pun 

and Ho (1996).

2.2.1 Physical Properties

The gradation and void ratio of these types of soils can vary considerably over 

relatively short distances. Based on the available data (refer to above references), the fines 

content varies between 12-26% for the highly decomposed granite (HDG) and between 

4-51% for the completely decomposed granite (CDG). The clay fraction is mainly 

kaolinite and varies (as a percentage) considerably depending on the composition of the 

parent rock, the intensity o f hydrothermal alteration and the amount of leaching. The 

percent o f fines is one o f the main factors controlling the strength o f the decomposed 

granite (Siu and Premchitt, 1988; Pun and Ho, 1996). The void ratio ranges between 0.56-

1.05 for the CDG and 0.58-0.84 for the HDG (very few data were available for the HDG). 

Lumb (1962) noted that the void ratio, while highly variable, tends to increase as the 

distance from the fresh rock face increases. The dry unit weight ranges between 14.2-16.5 

kN/m3 and 13.4-16.2 kN/m3 for the HDG and the CDG, respectively. The permeability of
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residual soils in general is high. Hong Kong granitic soils are no exception. Brand (1985) 

noted that the permeability o f Hong Kong soils ranges between lO'MO'6 m/sec. Such 

relatively high permeability allows rainwater to infiltrate easily into most soils in Hong 

Kong influencing the degree o f saturation and perched water levels.

Due to the seasonal variations in rainfall and the high infiltration rates, the degree 

of saturation of Hong Kong soils varies throughout the year. Often the variations extend 

for considerable depths. Lumb (1962) observed that the degree o f saturation of 

decomposed granite could be as low as 50% and as high as 90%. The strength of residual 

soils is largely influenced by the degree of saturation. When fully saturated, the cohesion 

drops to very low values, or even zero, and the soil behaves like a frictional material. As a 

result, the variation of the degree o f saturation has a serious impact on the stability of 

natural and cut slopes.

2.2.2 Shear Strength

The shear strength parameters of the HDG and CDG are assessed based on the 

results o f consolidated undrained triaxial tests with pore pressure measurements as well 

as consolidated drained tests. The results of a large number of tests were gathered from 

the references cited previously.

Slope failures in Hong Kong are generally shallow leading to relatively low 

effective stresses acting on the slip surface; typically 30-200 kPa (Brand, 1985). For 

testing convenience triaxial tests are usually conducted at much higher confining stresses. 

Brand (1985) noted that the strength envelopes of Hong Kong residual soils are curved at 

low confining stresses. He commented that strength inferences based on a linear 

projection of the results o f triaxial tests performed at high stress levels underestimate the 

available shear strength for Hong Kong slopes. Based on Brand’s argument, a mean 

effective stress threshold of p ,= 400 kPa is set (judgmentally) and all tests conducted 

under higher stresses are discarded. Some of the consolidated undrained tests are multi

stage tests, where the same specimen is consolidated and sheared a number o f times under
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increasing confining stresses. Fearing that this may lead to a reduction in strength due to 

the destruction o f the inherent soil structure, only the results o f the first stages o f these 

tests are considered (assuming zero effective cohesion). As this assessment is concerned 

mainly with the strength o f the soil matrix, the results o f specimens failing on clearly 

defined joints are also discarded.

Following this screening process, 62 consolidated undrained tests and 39 

consolidated drained tests remain; each test comprises 2-4 specimens. Comparative 

studies on granitic soils (Lumb, 1965; Massey, 1983; Shen 1985) showed no significant 

difference between the effective shear strength parameters obtained from consolidated 

drained tests and consolidated undrained tests with pore pressure measurements. Hence, 

in assessing the statistical characteristics of shear strength parameters, the results o f the 

two test types are combined.

Out o f the 101 test results, the principal stresses at failure (oV and 03 ') o f only 59 

specimens from three localities were available; 37 of which are CDG and 22 are HDG. 

Figure 11—1 shows the p'-q plots o f the specimens grouped by location and weathering 

grade. The plot indicates some useful observations. Firstly, the strength does not seem to 

vary much from one location to another (Figure 11—la). This is in harmony with the 

observations of Lumb (1965) and Pun and Ho (1996). Secondly, the strength of the HDG 

is only slightly higher than the strength o f the CDG (Figure 11—lb). Furthermore, within 

any single site there are samples classified as HDG and others as CDG. This is expected 

since the degree o f weathering could vary over short distances. It is attributed to 

variations in feldspar content, grain size of the rock, joint spacing and weathering 

microenvironments. In addition, weathering is a continuous process and a distinct 

boundary between the two grades is only hypothetical. Despite that the degree o f rock 

decomposition, usually, decreases with depth, available data did not indicate higher 

strength at deeper elevations.

The above observations provide a reasonable ground for assessing the variability 

o f shear strength on a regional basis and dealing with the HDG and CDG as one class of
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material. The variability of the weathering degree (highly decomposed to completely 

decomposed) could be regarded as one o f  the random processes contributing to the 

variability of the strength. As such, the triaxial test results of the HDG and the CDG from 

all locations are combined together to estimate the statistical characteristics o f the shear 

strength parameters (C', <f>').
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Figure 11—1 p'-q plots of triaxial tests on granitic soils; a) Based on location, b) Based 

on weathering grade

Based on the available data, the effective friction angle of the granitic soils varies 

between a minimum of 28 degrees and a maximum of 49 degrees. The mean and standard 

deviation are estimated to be 37.8 and 4.5 degrees, respectively. Figure 11—2 shows the 

probability histogram and the cumulative distribution function of the friction angle. The 

shape o f the histogram approaches a lognormal density function. A lognormal parametric 

distribution with the experimental mean and standard deviation is plotted on the same 

graph. The match between the CDFs of the experimental and parametric distributions is 

very close as shown in Figure 11-2 (right plot). This is also confirmed by the Q-Q plot in 

Figure 11—3, which is almost a 45-degree line.
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As would be expected for such a type o f soil, the effective cohesion varies 

significantly. It ranges between zero and 25 kPa. The mean is estimated to be 5.6 kPa 

with a standard deviation o f 5.6 kPa; that is a coefficient o f variation o f 1. Figure 11—4 

shows the histogram and the CDF of the data. The presence o f a correlation between the 

tangent o f  the friction angle and the cohesion is also investigated. Figure 11—5 is a scatter 

plot o f the two parameters. The graph indicates almost no correlation (possibly a 

negative, but very poor correlation).
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Figure 11-4 Histogram and CDF of the effective cohesion o f the granitic soils of 

Hong Kong (HDG and CDG)

In the following sections, the estimated probability distributions of the friction 

angle and effective cohesion (Figure 11-2 and Figure 11^4) are referred to as regional 

distributions. These generalized distributions are based on a reasonable database from 

different locations and are believed to be a reliable representation o f the variability of the 

strength parameters of the matrix o f granitic soils in Hong Kong. However, they may not 

necessarily be valid at all locations. Site-specific shear strength measurements are 

essential to confirm or update these generalized distributions. The Bayesian approach 

(Ang and Tang, 1975) could be very useful in updating the distributions based on 

additional site-specific data.
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3. SLO PE STABILITY ANALYSES

Slope failures in Hong Kong are attributed mainly to the variability of shear 

strength and pore water pressure. The uncertainties associated with predicting the 

operational shear strength parameters and pore pressures at failure are o f paramount 

significance. Probabilistic slope stability analyses are o f great value in such cases.

Unless failure occurs along weak undetected joint planes, quantifying the 

uncertainty o f soil matrix shear strength is possible with a reasonable level o f reliability 

(Section 2.2.2). Unfortunately, almost all failures are triggered by the increase in pore 

water pressure during rainfalls of high intensity. Pore water pressure at failure is the most 

critical factor in slope stability analyses in Hong Kong and is by far the most difficult to 

predict. For example, Brand (1985) reported that the piezometric head in a Hong Kong 

slope increased by 5m in only 18 hours during a rainstorm in June of 1982. The water 

table dropped quickly when the rain stopped. Also, Sweeney and Robertson (1979)
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reported a 12m increase in groundwater level in one piezometer during an intense 

rainstorm while another piezometer at a nearby location showed only 3m increase. Pore 

pressures are controlled by factors such as rainfall intensity, duration and frequency, 

infiltration rate, soil macro-permeability and joint structure and infilling. Quantifying the 

uncertainty o f the water pressure requires stochastic analyses of the uncertainties 

associated with these factors and a competent model to integrate them; a formidable task.

A probabilistic slope stability analysis invariably requires an estimate o f the 

probability distribution of pore water pressure. An effort to quantify the probability 

distribution of the pore water pressure associated with slope failures in Hong Kong is 

undertaken. Recognizing the difficulties associated with an analytical solution (as 

outlined above), a phenomenological approach is adopted. The pore pressure ratio, ru, is 

used to model the pore pressure along the slip surface. Slope failures provide valuable 

information that can be used effectively in quantifying pore pressure uncertainty. Firstly, 

the factor of safety at failure is equal to one. Secondly, the uncertainty of the location and 

shape o f the slip surface is, often, largely reduced by post-failure field observations (e.g., 

scarp o f the slide, toe bulging, zones of disturbance in retrieved soil samples, ...). Case 

histories of slope failures in Hong Kong were collected and analyzed probabilistically 

with the factor of safety as a deterministic input (FS=1) and the pore pressure ratio as the 

output. Thus, the output of the analysis is the probability distribution of the pore pressure 

ratio. The estimated pore pressures are the resultant pressures that triggered the failure of 

the investigated slopes, regardless of the preceding events or processes (e.g., rainfall, rate 

of infiltration, ...). It should be noted that the pore pressure ratio, as used here, is not 

intended to characterize the distribution of the pore pressure along the slip surface; this 

would be a severe simplification for a complex problem. Rather, it is an index that 

induces an impact equivalent to that of the complex and unknown pore water pressure.

The investigated case studies are then re-designed to an acceptable geometry 

based on the back-calculated pore pressure ratio. The proposed probabilistic methodology 

is applied to assess the stability of the modified slopes using the inferred probability
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distributions o f pore pressure ratio and the regional distributions o f the friction angle and 

cohesion.

In searching for case studies, cases where failure was controlled by the strength 

and structure of a joint system (a form o f model uncertainty) were avoided. Four case 

studies were obtained; Cho Yiu Estate (Siu and Premchitt, 1988), Tsing Yi: 1 (Hencher, 

1983a), Ching Cheung Road (Hencher, 1983b) and Shek Kip Mei landslide (FMSW, 

2000). The 4 case studies involved sliding failure modes and are classified, in terms of 

the volume of the failure mass, as massive (volume > 500m3; GEO, 1999). Failures of 

that size are not very common in Hong Kong. However, they are, usually, the most 

devastating failures. The conclusions inferred in this chapter are relevant, mainly, to 

massive deep-seated sliding failures. Other failure modes (e.g., debris flows, rock falls) 

are not considered in this study. The following sections describe the slides and the 

deterministic and probabilistic analyses undertaken.

3.1 Cho Yiu Estate Landslide

3.1.1 Background

On July 30 1987, during an intense rainstorm, a major slope failure occurred at 

Lim Cho street just below block 4 o f Cho Yiu Estate, Tsuen Wan. That section o f the 

slope is about 225 m long and 17.0 m high. It is mainly a rock cut slope except for the 

part that failed, 30 m long, that is a soil slope. The height o f the soil part of the slope is 

about 13m with 40 degrees inclination (1.2h:lv). Field inspection shortly after failure 

indicated that failure was largely translational with a rupture surface comprising a set of 

planes. Displaced material was granitic soil and rock fragments (0.1-1.0m in size) and 

had a volume of about 1200 m3. It completely blocked Lim Cho Street. The slope was 

investigated in 1979 and inspected shortly before failure and was found satisfactory. 

Figure 11-6 shows a cross-section of the slope before failure. Immediately after failure 

the Geotechnical Engineering Office o f Hong Kong undertook a detailed investigation to 

study the cause of failure (Siu and Premchitt, 1988). The investigation comprised field 

inspection, aerial photo analysis, topographic survey, geological mapping and field and
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laboratory testing. The main findings o f the investigation are highlighted within Sections

3.1.2 to 3.1.5.
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Street1- Decomposed granite (HDG to 

CDG) with clay infilled joints
2- Decomposed granite (HDG to 

CDG)
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Figure 11-6 Geometry, stratigraphy and slip surface of the Cho Yiu landslide

3.1.2 Local Geology

The geology of the area is granite weathered to different degrees (HDG to CDG) 

overlying fresh granite bedrock as shown in Figure 11-6. The bedrock surface has a U- 

shaped valley with much deeper elevations at the central part of the slope compared to the 

northern and southern sections. Two main sets of discontinuities were observed in the 

bedrock. The first set strikes parallel to the slope with dip angles ranging between 20-50 

degrees and daylights in the rock portion of the slope face. The other set also strikes 

parallel to the slope face with near vertical dip angle. It is likely that the pattern o f joints 

in the bedrock is also present in the overlying granitic soil. The granite in the area is 

mainly coarse grained with irregular intrusions of fine grained granite in the upper parts
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o f the slope. Varying weathering degrees and abundant clay infilled joints were noted on 

the upper failure scar at the contacts between the coarse and fine granites.

3.1.3 Rainfall and Groundwater

Failure occurred during an intense rainstorm when 42rmn, 210mm and 557mm of 

rain were recorded during periods o f one hour, 11 hours and 9 days before failure, 

respectively. Field inspection immediately after failure did not indicate any seepage from 

the exposed surfaces, however large quantities o f water were flowing onto the slope from 

a broken drainage pipe. No piezometers were available at the time o f failure and those 

installed after failure did not record any groundwater table. During remedial works, 

seepage from the rock face in the lower part o f the slope was noticed.

GEO (Siu and Premchitt, 1988) concluded that the permanent groundwater is at 

great depth below bedrock surface and reported that seepage is due to surface water 

flowing through joints and preferential flow paths within the soil mass. The seeping water 

may have come from infiltration o f rain water, overflow from blocked slope drainage 

channels, leakage from the broken drainage pipe of the residential block at the top of the 

slope or a combination of all these. The clay infills reported in the joints in the upper part 

o f the slope may have blocked water flow in some locations leading to high water 

pressures. For stability analysis purposes, the GEO postulated a linear piezometric surface 

with atmospheric pressure at the toe (where some seepage was observed) and the water 

table at ground surface at the top o f the slope as shown in Figure 11-6. No field data of 

the water pressure at failure were available to verify this hypothetical surface.

3.1.4 Rupture Surface

The rupture surface was apparently planar with a dip angle to the horizontal of 

30 - 40 degrees in the middle and lower parts, increasing to 50 - 60 degrees in the upper 

part. At the crest, the scarp was nearly vertical. In most parts, the rupture surface was 

located just above and parallel to the bedrock surface. Clay infilled relict joints were 

noticed in the upper parts o f the rupture surface while a joint plane (no reports of clay
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infill) dipping at an angle of 40 — 50 degrees was reported to correspond with the middle 

and lower parts. Siu and Premchitt (1988) suggested that failure was largely along pre

existing discontinuities within the soil mass. Figure 11—6 shows the inferred geometry of 

the slip surface. Notice that failure exposed part o f the foundations of the residential 

building located at the slope crest (Block 4, Figure 11-6).

3.1.5 Shear Strength

The investigation into the cause of the failure included 4 consolidated undrained 

triaxial tests and 1 consolidated drained test performed on specimens prepared from 

undisturbed block samples. The results of these tests are included in the database used in 

strength assessment in Section 2.2.2. Figure 11—7 shows the p’-q plot o f the consolidated 

undrained (single stage) and consolidated drained triaxial tests. The samples were 

described as containing extremely narrow to tight, closely-spaced microfractures. One 

specimen, however, contained a clay infilled joint. When tested in a multi-stage 

consolidated undrained test, the specimen yielded a lower strength as shown in Figure

11-7.

In their assessment of the strength, Siu and Premchitt (1988) divided the data into 

two categories (in addition to the specimen with clay infilled joint); samples failing by 

bulging and samples failing along rupture planes and joints. Each material has different 

shear strength parameters as shown in Figure 11-7. Because of the relict joints observed 

in the field, Siu and Premchitt (1988) rejected the upper failure envelope (samples failing 

by bulging). They considered the envelope corresponding to specimens failing on rupture 

planes to be an adequate representation of the shear strength along the slip surface (except 

for the upper portion). The strength parameters defining that envelope are very close to 

the mean values o f the regional distributions (C'= 5.6 kPa, <f>'= 37.8 deg.). For the upper 

part o f the slip surface, where abundant clay infilled joints were observed, they adopted 

the lower envelope with C'= 0 kPa and <j>’=31.5 degrees.
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The probabilistic analyses in the following section are based on the regional 

probability distributions of strength parameters (Figure 11—2, Figure 11—4). Referring to 

the field observation by Siu and Premchitt, the application o f  these distributions were 

limited to the middle and lower parts o f the slip surface. Along the upper portion, where 

abundant clay infilled joints were noted, the strength parameters proposed by the GEO 

(C'= 0 kPa and <j>'=31.5 deg.) are used. These values were estimated based on the results 

of one triaxial test and one large drained shear box test only. Figure 11-6 shows the zones 

(proposed by GEO) over which the two strength categories are applied.
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Figure 11-7 p'-q plot of the consolidated undrained (single stage) and 

consolidated drained triaxial tests, Cho Yiu slide

3.1.6 Deterministic Stability Analyses

The stability of the slope before failure is evaluated deterministically using 

Slope/W software and the Spencer method of slices. The slip surface and the phreatic 

surface postulated by GEO, Figure 11-6, are adopted in the analysis. Using the regional 

strength parameters (C -5.6, <j>'= 37.8 deg.) for the middle and lower parts o f the slip
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surface and the joint parameters (C'=0, <}/= 31.5 deg.) for the upper portion, the factor o f 

safety is estimated to be 0.75. Using GEO estimates (C'=7.3 kPa, <{>'= 37.2 deg.), the 

factor o f safety is calculated to be 0.78. To achieve a factor of safety o f one, either the in- 

situ shear strength is higher than the values used in the analysis or the pore water pressure 

is lower or a combination of both. Since there were no observations at all to support the 

postulated phreatic surface, it is seems more likely that the pore water pressure is 

overestimated. A back analysis using the regional parameters indicated that the pore 

pressure ratio at failure is about 0.25.

Using the back calculated pore pressure, the slope is re-designed to what would be 

an acceptable geometry according to current slope design practice. Because o f  the 

existing residential complex at slope crest and the highway at the foot o f the slope (Figure 

11-6), a design factor o f safety o f 1.5 is targeted. This is a relatively conservative value 

with respect to the normal practice in Hong Kong. However, it is judged that the 

consequences of failure are substantial and warrant a more cautious design. The modified 

design has a slope angle of about 30 degrees (1.78h:lv) compared to 40 degrees for the 

failed configuration. The probability of unsatisfactory performance of the revised design 

is estimated in Section 3.1.9.

3.1.7 Quantifying Pore Pressure Uncertainty

The probability distribution o f the pore pressure ratio at failure is estimated using 

a probabilistic back analysis. A spreadsheet model mimicking the slope geometry before 

failure, the soil stratigraphy and the slip surface is prepared. The factor o f safety is taken 

as a deterministic input value of one and the pore pressure ratio is modeled as the output. 

The Spencer method o f slices is used in the model. The effective shear strength 

parameters o f the decomposed granite at the middle and lower parts o f the slip surface 

(Figure 11-6) are regarded as random input variables. The regional probability 

distributions (Figure 11—2 and Figure 11—4) are adopted in the model. The shear strength 

along the upper portion of the slip surface is modeled deterministically using the 

parameters recommended by the GEO (Section 3.1.5). The point CDFs o f the shear
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strength parameters are used directly in the analysis, without variance reduction, to obtain 

the point CDF of the pore pressure ratio.

Using a seed value o f 31069 and 10,000 iterations, the mean pore pressure ratio is 

estimated to be 0.25 with a standard deviation of 0.11 (i.e., a coefficient o f variation of 

0.44) indicating substantial uncertainty. The pore pressure ratio ranges between a 

minimum of -0.12 (i.e., suction) and a maximum of 0.67. Figure 11—8 shows the 

histogram and the probability distribution o f the pore pressure ratio. In slope design, it is 

a common practice to ignore suction. A threshold o f zero pore pressure ratio is added to 

the spreadsheet and used in all subsequent simulations. Based on the results o f 25 

simulations, an average probability distribution of the pore pressure ratio at failure is 

estimated, as shown in Figure 11-9.
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Figure 11-8 Histogram and CDF of the pore pressure ratio at failure — Cho Yiu 
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3.1.8 Spatial Variability o f  Residual Soil Properties

The spatial variability of residual soils differs from normal soils in a number of 

ways. The variability o f residual soils is not attributed to their depositional environment, 

but rather to the weathering processes which are random, highly variable and independent 

o f orientation. So, the properties of residual soils and their pattern of variability are likely 

to be random and independent of direction; that is soil variability is isotropic although 

erratic. Quantifying the spatial structure o f such material is a difficult task requiring 

significant amounts o f data. The author is aware of no studies addressing the pattern of 

spatial variability o f residual soils.

Some assumptions have to be made to account for the spatial variability o f Hong 

Kong granitic soils in the probabilistic stability analyses. First, the spatial structure is 

assumed isotropic (i.e., isotropic autocorrelation distance). Second, a small value of the 

autocorrelation distance is selected to reflect the erratic nature of this material. A value in
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the order o f  the vertical autocorrelation distances reported in the literature (Chapter 5), ra 

= 5m, is assumed. While there is no hard data to backup these assumptions, they are (to 

the author’s judgement) deemed reasonable. Lumb (1983) suggested (no data were 

available) that the horizontal and vertical scales o f fluctuation, 8 «  2ra, are on the same 

order and “perhaps” in the range o f l-5m.

3.1.9 Probabilistic Stability Analyses

The stability o f the modified slope geometry (slope angle *  30 degrees) is 

assessed probabilistically using the methodology proposed in Chapter 5. Based on the 

discussions in the previous sections, three input parameters are treated as variables; the 

friction angle and cohesion of the decomposed granite at the middle and lower parts o f 

the slip surface and the pore pressure ratio. Figure 11—5 shows no correlation between the 

effective cohesion and the friction angle; thus they are modeled as independent variables. 

The observed failure mode of the failed geometry is judged to also govern the modified 

design. A planar slip surface comprising 3 planes coinciding with the those observed in 

the field is postulated as the potential failure mode.

The spatial variability of the strength parameters and pore pressure ratio are 

accounted for as outlined in Chapter 5. The slip surface is divided into segments o f length 

equal to 5=10m and a residual portion. The uncertainty of the average parameters over the 

length o f each segments is represented by the point probability distributions (Figure 11—2, 

Figure 11-4 and Figure 11-8). The correlation coefficients between these local averages 

are estimated using Equation 5-5 and taken into account in Monte Carlo simulation. The 

strength parameters and pore pressure ratio are modeled separately as the former are 

applied along the middle and lower portions o f the slip surface while the latter is acting 

along the entire length of the slip surface. In total, the variability o f the three parameters 

are represented by 9 variables, some o f them are correlated.

The optimum number of iterations is estimated to be 25,000. Using a seed number 

o f 31069, the mean factor of safety is calculated to be 1.54 with a standard deviation of
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0.26. The probability o f unsatisfactory performance is estimated to be 1.15%. Figure 11— 

10 shows the histogram and CDF o f the factor o f safety. A sensitivity analysis is also 

performed to assess the relative contributions of the input variables to the uncertainty in 

the factor o f  safety. Figure 11—11 shows Spearman rank correlation coefficients for all 

input variables. The uncertainty o f the pore pressure ratio has the largest impact on the 

reliability o f  the slope performance. The uncertainties in cohesion and friction angle 

contribute almost equally to the overall uncertainty o f the factor of safety.
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Figure 11—10 Histogram and CDF o f the factor o f safety, Cho Yiu slope (acceptable 

design) — Proposed Methodology

The analyses described in the above sections are based on an autocorrelation 

distance of 5m. The sensitivity of the estimated probability o f unsatisfactory performance 

to variations in the autocorrelation distance is investigated by repeating the simulation 

using different rQ values, while maintaining the same seed value and number o f iterations. 

Figure 11—12 shows the variation o f the probability o f unsatisfactory performance with 

the autocorrelation distance. Similar to the Congress Street Cut (Chapter 10), the 

probability o f unsatisfactory performance is relatively sensitive to the assumption o f the 

autocorrelation distance. The computed probabilities varied between 0.19% and 4.95% as 

the autocorrelation distance increased from 3 m to 10m.
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Using an autocorrelation distance of 5m, 25 simulations (25,000 iterations each) 

are performed using different seed numbers. The mean probability o f unsatisfactory 

performance is estimated to be 1.10% with the 95% confidence interval ranging between 

1.07-1.13%. Figure 11—13 shows the histogram o f the probability o f unsatisfactory 

performance.
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Figure 11—13 Histogram of the probability o f unsatisfactory performance,
Cho Yiu slope (acceptable design) — Proposed Methodology

The re-designed (i.e., acceptable) slope is also analyzed using the naive approach. 

The spreadsheet model included three input variables; the friction angle and cohesion 

along the middle and lower sections of the slip surface and the pore pressure ratio. The 

probability distributions obtained in Sections 2.2.2 and 3.1.7 are used to model the three 

variables. Based on 25 simulations, using 25,000 iterations, the mean probability of 

unsatisfactory performance is estimated to be 6.54% with the 95% confidence interval 

ranging between 6.49-6.58%. Figure 11-14 shows the histogram of the probability of 

unsatisfactory performance.
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3.2 Tsing Y i (1) Landslide

3.2.1 Background

On June 30 1982, a major cut slope above Tsing Yi: 1 trunk road at the south west 

comer of Tsing Yi island was reported to show signs o f incipient failure. A downward 

movement of nearly lm  was observed. The displaced material was about 70m wide with 

an estimated mass o f 20,000 tonnes. As a result o f the movement, surface drainage 

channels were distorted and tension cracks were formed behind the scarp o f the slide. 

Further movements were observed in response to heavy rainfall during the month of 

August and a minor slide occurred at the southern end o f the failure on August 16. Prior 

to failure, the height o f the slope was about 45m with an overall slope angle o f 35 degrees 

(1.4h:lv). Figure 11—15 shows a cross-section of the slope before failure. The failure of 

such a gentle slope and the slow rate of movement are uncommon features to slope 

failures in Hong Kong.
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Figure 11—15 Cross-section and stratigraphy of Tsing Yi: 1 slide

The slope was cut to its final geometry in 1979. The original design was based on 

a comprehensive site investigation program and was thought, at the time, to be 

conservative. The investigation indicated very high pore pressures within the slope. As a 

result, two rows o f horizontal drains were installed to control the water table. Following 

the failure, the GCO launched a detailed investigation to identify the cause o f the failure 

and to assess the appropriate remedy measures. The program included field inspection, 

aerial photo analysis, soil investigation and pore water pressure and slope movement 

monitoring. Hencher (1983a) provided a detailed description of the slide and the 

investigation into its cause.

3.2.2 Local Geology

Based on the limited geological information available, the slope profile comprises 

a coarse grained granite intruded by dykes of feldspar porphyry and fine grained granite. 

The granite is decomposed to various degrees throughout the slope with large boulders 

(up to 10m in size) occurring at the cut face in some locations. The site investigation at
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the design stage indicated that the fresh bedrock was located at a shallow depth. The 

investigation after failure indicated that the depth o f the bedrock is highly variable across 

the site. It is shallow only at the top o f the slope and increases to nearly 20m at the toe. 

Figure 11—15 shows the inferred stratigraphy at the site o f the slope. Hencher (1983a) 

pointed that the erroneous interpretation of the bedrock elevation in the initial 

investigation eliminated the possibility o f a deep-seated failure leading to the 

overestimation o f the stability o f the slope.

3.2.3 Rainfall and Groundwater

The daily rainfall records in the area over the period from May to August 

indicated 2 major rainstorms (end o f May and mid August) with peak rainfall o f about 

300mm in either case. Because o f the remote location o f the slope, the exact time and 

date o f the failure are not known. Hencher (1983a), however, suspected that failure was 

triggered by the heavy rainfall at the end of May.

During the mid August storm, a piezometer installed close to the crest o f the slope 

indicated a 1.5-2.0 m rise in groundwater table above its stable elevation. Seepage near 

the toe o f the slope was also reported. No flow from the drainage pipes was observed 

even during heavy rainstorms implying that they were not effective. Based on these 

observations, Hencher (1983a) suggested that the slope was largely saturated due to a 

temporary rise in the perched groundwater table. He then postulated that the groundwater 

table at the time of failure was almost at ground surface as shown in Figure 11-15. The 

post-failure investigation also indicated the presence o f lower permanent groundwater 

table within the bedrock.

3.2.4 Rupture Surface

The surface features at the site revealed little about the depth and geometry of the 

rupture surface. It is known, however, that the slip surface goes through the backscarp of 

the slide and daylights at the toe of the slope. Hencher (1983a) suggested that failure was 

rotational through the soil matrix of the slope. He based his conclusion on the observed
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vertical bulging at the toe and the lack of any damage to the road at the foot of the slope. 

Examination o f the samples retrieved during the post-failure investigation did not provide 

any indication o f the depth o f failure.

3.2.5 Shear Strength

The site investigation prior to the construction o f the slope included 28 saturated 

triaxial compression tests. Unfortunately, the testing results were not available to the 

author. Hencher (1983a), however, reported that the measured shear strength parameters 

varied considerably. The initial design was based on an effective cohesion o f 10 kPa and 

an effective friction angle o f 35 degrees. These parameters are close to the regional values 

(C'=5.6 kPa, <{>’=37.8 deg.). The post failure investigation included triaxial and direct 

shear box tests. The results were consistent with those o f the initial investigation.

3.2.6 Deterministic Stability Analyses

The stability o f the slope before failure (Figure 11—15) is analyzed 

deterministicaliy using Slope/W software and the Spencer method of slices. The phreatic 

surface proposed by the Hencher (1983a) is adopted in the analysis. The slip surface is 

assumed circular through the observed scarp at the top of the slope. The stability o f the 

slope is analyzed using the regional strength parameters, then using the initial design 

parameters reported by Hencher (Section 3.2.5). The calculated factors o f safety are 0.58 

and 0.62, respectively. Such low factors of safety imply that either the shear strength is 

underestimated or the assumed phreatic surface largely overestimates the pore pressure 

conditions. Assuming the phreatic surface is true, a factor of safety of unity could be 

achieved using various combinations o f strength parameters. One such combinations is 

C -2 0  kPa and <(>'=46 degrees. That strength range is high for Hong Kong granitic soils. It, 

thus, more likely that the assumption of full saturation o f the slope is a conservative one. 

Using a factor o f safety o f unity and the regional shear strength parameters, the pore 

pressure ratio at failure is estimated to be 0.21 .
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Using the back-calculated pore pressure ratio, the slope is re-designed to an 

acceptable geometry. The relatively remote location of the slope and the slow movement 

rate o f the slide mass may warrant a  less conservative design. Targeting a factor o f safety 

o f 1.3, the modified design has a slope angle of 27 degrees (2h:lv), compared to 35 

degrees for the failed geometry. The stability of the revised design is assessed 

probabilistically in Sections 3.2.8.

3.2.7 Quantifying Pore Pressure Uncertainty

A probabilistic back analysis is performed to estimate the probability distribution 

o f the pore pressure ratio at failure. A spreadsheet model m im icking the slope geometry 

before failure, the soil stratigraphy and the critical slip surface is prepared. The factor o f 

safety is considered a deterministic input equal to one and the Spencer method of slices is 

used in the model. The shear strength parameters of the decomposed granite are modeled 

as input variables having the regional probability distributions (Figure 11—2 and Figure 

11—4). Using a seed value o f 31069 and 10,000 iterations, the histogram and probability 

distribution of the pore pressure ratio are estimated as shown in Figure 11—16. The 

distribution has a mean value of 0.21 with a standard deviation of 0 .11; a coefficient of 

variation of 0.52. Similar to the Cho Yiu case, the pore pressure ratio is highly uncertain. 

It ranges between -0.23 (i.e., suction) and 0.59. In subsequent simulations, a zero 

threshold is added to the spreadsheet model to eliminate the negative pore pressure ratio 

for slope design purposes. Based on the results of 25 simulations, an average probability 

distribution o f the pore pressure ratio is estimated and shown in Figure 11—17.
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3.2.8 Probabilistic Stability Analyses

The stability of the modified design, 27 degrees slope, is analyzed 

probabilistically using the proposed methodology (Chapter 5). The effective strength 

parameters and the pore pressure ratio are considered input variables with the probability 

distributions shown in Figure 11-2, Figure 11-4 and Figure 11-17. The cohesion and 

friction angle are considered independent. The critical slip surface is assumed circular. 

The probabilistic critical slip surface is obtained through a set of deterministic analyses 

that examined the deterministic critical surface as well as the surfaces based on the 

Hassan and Wolff (1999) algorithm.

A spreadsheet model mimicking the geometry, stratigraphy and the probabilistic 

critical slip surface is prepared. The spatial variability of the strength parameters and the 

pore pressure ratio is accounted for by dividing the slip surface into segments o f length 

5=1 Om as outlined in Chapter 5. In total, 36 input variables, some o f which are correlated, 

are defined to account for the variability of strength and pore pressure along the slip 

surface. Using a seed number of 31069 and 30,000 iterations, the mean factor o f safety is 

estimated to be 1.34 with a standard deviation o f 0.10. Figure 11—18 shows the histogram 

and the CDF o f the factor of safety. The probability of unsatisfactory performance is 

estimated to be 0.02%. A sensitivity analysis is also performed and Figure 11—19 shows 

Spearman rank correlation coefficients for all input variables. The plot indicates that the 

uncertainties of the pore pressure ratio and friction angle have comparable contributions 

to the uncertainty of the factor of safety. The uncertainty of the cohesion has the least 

impact on the design. The simulation is repeated using different values o f the 

autocorrelation distance to assess its impact on the estimated probability o f unsatisfactory 

performance. The results are summarized in Figure 11—20. The probability of 

unsatisfactory performance increased from a near zero value for an autocorrelation 

distance of 4m to 0.39% for a distance o f 10m.
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Twenty five simulations are performed using different seed numbers and an 

autocorrelation distance of 5m. The computed probabilities of unsatisfactory performance 

are summarized in histogram form in Figure 11—21. The mean probability of 

unsatisfactory performance is estimated to be 0.01%. This very low value is attributed to 

the large size of the slip surface, 116m long, compared to the autocorrelation distance. 

The variances (or uncertainty) of the mean strength and pore pressure ratio along the slip 

surface are largely reduced by spatial averaging . This, in turn, reduced the variance o f the 

factor o f safety leading to the small probability of unsatisfactory performance.
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The modified slope geometry is also analyzed using the naive approach. The 

spreadsheet model includes 3 input variables representing the shear strength parameters 

of the decomposed granite and the pore pressure ratio. The regional probability 

distributions o f the cohesion and friction angle (Section 2.2.2) and the back-calculated 

distribution o f pore pressure ratio (Section 3.2.7) are used in the model. Twenty five 

Monte Carlo simulations were run using different seed numbers and 30,000 iterations for 

each simulation. The histogram of the computed probabilities of unsatisfactory 

performance is shown in Figure 11—22. The mean probability of unsatisfactory 

performance is estimated to be 13.22% with the 95% confidence interval ranging between 

13.15-13.30%.

E[PJ =0.012 % 
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3.3 Ching Cheung Road Landslide

3.3.1 Background

In the early morning of August 24, 1982; a section of the cut slope of Ching 

Cheung Road, Hong Kong, failed. The road was totally blocked by the failure debris and 

was closed for traffic for about 2 months. The cut was 30 m high and had an inclination 

of about 50 degrees (0.84h:lv). Failure occurred on a dry day and the debris moved, 

apparently, in a dry manner which is unusual to slope failures in Hong Kong. Two 

previous slides occurred in the same manner at nearby locations on the same road in 

1972. Figure 11—23 shows a cross-section of the slope before failure. A study of the 

causes o f  the failure was undertaken by the Geotechnical Control Office of Hong Kong 

(Hencher, 1983b). The main findings of the study are highlighted in the following 

sections.
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3.3.2 Local Geology

The site geology is mainly coarse grained, highly decomposed granite (Grade IV). 

Few cobbles and boulders were observed particularly at the lower portion of the failure 

scar. Schmidt hammer measurements implied increasing strength and density with depth. 

Extensive random microffactures and joints caused the granite to be very friable. A 

number of decomposed dolerite dykes cut through the granite at various locations. Some 

of these dykes were continuous for distances of several metres.

3.3.3 Rainfall and Groundwater

As mentioned above, failure occurred on a dry day. Rainfall records, however, 

showed that the month of August o f 1982 was the wettest August ever since the
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beginning o f rainfall records. Two major rainstorms occurred prior to failure. The storm 

preceding failure, August 15-19, involved an intense rainfall amounting to 522.8mm. No 

seepage was reported immediately after failure, however one day latter water ponds were 

observed at slope toe. Seepage from a point high up within the failure scar above a thick 

dolerite dyke was also noted few days latter. For stability analyses, Hencher (1983b) 

postulated a high phreatic surface that intersects with slope face at the observed seepage 

point, Figure 11—23. He assumed that the portion of the slope below the dolerite dyke was 

dry due to the impedance of water flow by the relatively impermeable dykes. There was 

no field evidence to support that hypothesis.

3.3.4 Shear Strength

The shear strength of the subsurface material was assessed based on the results of 

a few direct shear tests and consolidated undrained triaxial tests with pore pressure 

measurements. The tests were conducted on specimens prepared from block samples 

obtained at 2 different locations in the failure scar. Three multistage triaxial tests were 

conducted on decomposed granite specimens and another 3 tests on dolerite specimens. 

Based on the results of the first stages of these tests, the strength parameters are estimated 

as follows;

Yh (kN/m3) C' (kPa) d>' (deg.)

Decomposed granite 14.5 12 37.5

Decomposed dolerite — 26 24.0

The measured friction angle of the decomposed granite is very similar to the mean 

value o f the regional distribution whereas the measured cohesion is higher than the 

regional value. The shear strength of the dolerite is lower than the granite strength. 

Apparently, the extent of these dykes was limited such that GCO (Hencher, 1983b) 

described its contribution to the overall strength as “not important”. They indicated, 

however, that the measured permeability o f the dolerite (1.7x1 O'7 m/s) is one order of 

magnitude less than that of the granite, which may affect groundwater flow.
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3.3.5 Failure Mechanism

Hencher (1983b) postulated that failure occurred because o f the damming effect 

o f the dolerite dykes, owing to their lower permeability. Water accumulated behind the 

dykes during heavy rain. Because o f delayed water migration, water levels continued to 

rise behind the dykes even after the rain stopped. High water pressure built up along the 

rupture surface till the factor o f safety was reduced to unity and the slope failed. Hencher, 

however, pointed that it is highly coincidental that 3 slides (1972 and 1982) within the 

same slope occur in the same manner. He provided no details about the geometry o f the 

rupture surface, but he did not indicate that failure was joint controlled. In the subsequent 

stability analyses, a circular slip surface is assumed.

3.3.6 Deterministic Stability Analyses

The stability of the cut before failure is analyzed deterministically using Slope/W 

software and the Spencer method o f slices assuming a circular slip surface. The pore 

water pressure conditions postulated by Hencher (1983b) is adopted. Using the measured 

strength parameters (C'= 12 kPa, <j>'= 37.5 deg.), the factor of safety is calculated to be 

0.90. Using the mean values of the regional distributions (C — 5.6 kPa, <j> — 37.8 deg.), a 

factor of safety of 0.75 is obtained. In either case, the pore pressure hypothesis of Hencher 

clearly overestimates the true conditions. A back-analysis is performed using the regional 

strength parameters and a factor o f safety of unity. The pore pressure ratio at failure is 

estimated to be -0.04. Figure 11—23 shows the critical slip surface. The small negative 

value of the pore pressure ratio implies that suction was existent within the slope and that 

failure occurred when it was almost eliminated by the infiltration o f rainwater.

The slope is re-designed to an acceptable geometry based on the conventional 

slope design practice. The negative pore pressure is discarded in the design and the slope 

is assumed dry (i.e., ru=0). Targeting a design factor of safety o f 1.3, the modified 

geometry has an overall inclination of about 35 degrees (1.4h:lv), compared to 

50 degrees (0.85h:lv) for the original geometry. The reliability of the modified geometry 

is assessed probabilistically in Section 3.3.8.
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3.3.7 Quantifying Pore Pressure Uncertainty

The geometry o f the slope before failure is back-analyzed probabilistically to 

quantify the uncertainty associated with the pore pressure ratio. A spreadsheet model 

mimicking the slope geometry, stratigraphy and critical slip surface is prepared. The 

factor o f safety is modeled as a deterministic input equal to one and the regional 

probability distributions o f  strength parameters are used to represent the strength of the 

decomposed granite. Using a seed value o f 31069 and 12,000 iterations, the mean pore 

pressure ratio at failure is estimated to be -0.05 with a standard deviation of 0.12 and a 

minimum-maximum range o f -0.53 to 0.38. These figures reflect a substantial uncertainty 

in the pore pressure conditions. Figure 11-24 shows the histogram and the CDF of the 

pore pressure ratio at failure. The probability o f having a negative pore pressure at failure 

is high, almost 66%, suggesting that suction had an important role in maintaining the 

stability o f the cut in the past. As mentioned earlier, slope design practice do not rely on 

suction to provide stability. In order to estimate the probability distribution of the pore 

pressure for re-designing the cut, a zero threshold is imposed on the pore pressure ratio. 

The simulation is repeated 25 times and the results are averaged to obtain a representative 

probability distribution o f the pore pressure ratio at failure, Figure 11-25. The 

distribution has a near zero mean, E[ru]=0.03, and a standard deviation of 0.06. The 

minimum-maximum range o f the distribution is 0.0 - 0.38.
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3.3.8 Probabilistic Stability Analyses

The stability of the modified (i.e., acceptable) slope geometry, 35 degrees slope, is 

analyzed probabilistically using the proposed methodology. A spreadsheet model 

mimicking the slope geometry and stratigraphy is prepared. The regional probability 

distributions o f strength parameters, Figure 11—2 and Figure 11—4, and the back- 

calculated distribution of the pore pressure ratio, Figure 11-25, are used in the model. 

The deterministic critical slip surface is found more critical, in terms of the probability of 

unsatisfactory performance, than the Hassan and Wolff surface and is adopted in the 

spreadsheet. To account for the spatial variability of the input parameters, the slip surface 

is divided into segments, as outlined in Chapter 5, based on an autocorrelation distance of 

5m. The local averages of strength parameters and pore pressure ratio over the length of 

each segment are considered random variables having the point CDFs. In total, 18 

variables are defined to model the spatial variability of the strength and the pore pressure. 

The correlation coefficients between these variables are estimated using Equation 5-5.

The optimum number o f  iterations is estimated to be 32,000. Using a seed number 

of 31069, the mean factor of safety is computed to be 1.31 with a standard deviation of 

0.12. The probability of unsatisfactory performance is 0.13%. Figure 11—26 shows the 

histogram and the CDF of the factor of safety. A sensitivity analysis is performed and 

Spearman rank correlation coefficients for all input variables are shown in Figure 11—27. 

The uncertainty of the friction angle has the largest impact on the analysis followed by 

that of the cohesion. The uncertainty of the pore pressure ratio has the smallest impact on 

the reliability o f the design. This is attributed mainly to the zero truncation limit imposed 

on the probability distribution o f the back-calculated pore pressure ratio to discard suction 

at the design stage. As a result, the variance o f the pore pressure ratio and consequently 

its impact on the uncertainty o f the factor of safety is largely reduced.
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Figure 11—28 shows the results of a parametric study to assess the effect of the 

autocorrelation distance on the computed probability o f unsatisfactory performance. Four 

simulations are performed using different autocorrelation distances; 3, 5, 7 and 10m. The 

probability o f unsatisfactory performance increased from 0 .01% for an autocorrelation 

distance of 3m to 1.62% for an autocorrelation distance o f  10m. The results suggest that 

the autocorrelation distance could have an important effect on the estimated probabilities 

o f unsatisfactory performance. Adopting an autocorrelation distance of 5m, 25 

simulations are performed using different seed numbers. Figure 11—29 shows the 

histogram of the computed probabilities of unsatisfactory performance. The mean value is 

estimated to be 0.13% with the 95% confidence interval ranging between 0.13-0.14%.
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Figure 11—28 Variation of the probability of unsatisfactory performance with 

the autocorrelation distance, Ching Cheung Road (acceptable 

design)

285

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.6
E[PJ =0.13 % 
a[PJ = 0.02 % 
n = 250.5

0.4

0.3

0.2

0.1

0.0
0.10 0.12 0.14 0.16 0.18

Probability of Unsatisfactory 
Performance; Pu (%)

Figure 11—29 Histogram of the probability of unsatisfactory 
performance, Ching Cheung Road (acceptable 
slope) -  Proposed Methodology

The re-designed slope is also analyzed based on the naive approach. Three 

variables, shear strength parameters and pore pressure ratio, are considered in the 

spreadsheet model. Twenty five Monte Carlo simulation, 32,000 iterations each, are 

performed. The histogram of the computed probabilities of unsatisfactory performance is 

shown in Figure 11—30. The mean probability of unsatisfactory performance is 10.27% 

with the 95% confidence interval ranging between 10.23-10.31%.
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Ching Cheung Road (acceptable slope) — Naive Analysis

3.4 Shek Kip Mei Landslide

3.4.1 Background

On August 25, 1999 the cut slope behind housing Blocks Nos. 36 and 38 of Shek 

Kip Mei Estate was noted to suffer from signs of distress. Heaving of a concrete 

pavement at the foot o f the slope, outward movement (up to lm) at the toe, cracking of 

the chunam cover protecting the slope surface, detachment o f debris from localized areas, 

failure o f a high steel fence along the toe and the development of tension cracks were 

reported. Over the following days, additional slope movements and cracking were noted 

and seepage along the toe was observed.

A comprehensive investigation into the failure was sponsored by the Geotechnical 

Engineering Office o f Hong Kong. It included geological mapping, drilling and sampling, 

pumping tests, double-ring infiltration tests, percolation tests, installation and monitoring
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of tensiometers, geophysical survey and laboratory testing. A final report summarizing 

the findings of the investigation was produced by Fugro Maunsell Scott Wilson joint 

venture (FMSW, 2000) and forms the basis of the account given here.

The displaced portion of the slope had an average height o f about 21m. The slope 

consists o f two sections o f different geometry; a northern part and a southern part. The 

geometry o f the northern part comprises 5 batters each dipping at an angle o f 55 degrees 

to the horizontal (0.7h:lv) with l-2m wide berms in between (Figure 11—31). The profile 

at the southern part is relatively irregular with average slope angles o f 30 and 50 degrees 

at the upper and lower portions, respectively. The modes of instability were also different. 

In the northern part, failure was largely translational and characterized by a well- 

developed main scarp and significant outward movement. In the southern part, it was 

structurally controlled, immobile, and characterized by extensive surface cracking and 

bulging. The complex subsurface conditions and mode of failure at the southern part are 

major sources of model uncertainty. Our ability to reliably quantify such sources of 

uncertainty is, to date, very limited. Hence, this study is focused entirely on the stability 

of the northern part of the slope.

The displaced mass o f the northern slope was approximately 37m wide and 31m 

long. It moved downwards at the main scar by about 1.2m and outwards, horizontally, at 

the toe by up to lm. A  tension crack up to 0.3m wide, 1.5m deep and 18.0m long 

developed between the main scarp and the displaced mass. The displaced material 

remained largely intact and had an estimated volume of about 2500 m3.
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Figure 11-31 Geometry and stratigraphy of Shek Kip Mei Estate landslide, 
Northern Slope

3.4.2 Local Geology

The site of the slide is underlain by medium-grained granite of Jurassic to 

Cretaceous age. The slope profile comprises highly to completely decomposed granite 

with corestones of moderately to slightly decomposed granite. A set of closely to 

extremely closely spaced discontinuities dip at 55-85 degrees to the west and northwest 

into the slope. Infilling of the joints with kaolinite and manganese deposits was reported. 

Other joint sets dipping to the east and southeast at angles o f 52-88 degrees were also 

reported. These joints formed release planes along the flanks of the failure scar. Some 

sub-horizontal discontinuities were also noted. The depth of the interface between the 

weathered material and the fresh bedrock varied across the site ranging between 15m 

below the crest of the slope to about 5m at the toe area. Figure 11—31 shows the 

stratigraphy at the site.
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3.4.3 Rainfall and Groundwater

Failure occurred on the last day o f a 4-day intense rainstorm. The data from an 

automatic raingauge located 1 km from the site o f the slide indicated 115.5mm and 

133.5mm of rainfall over periods o f 12 and 24 hours before failure, respectively. The total 

rainfall during the storm was about 690mm. It was considered one o f the most intense 

rainfall events experienced in that area. Shortly after failure and up to 2 months thereafter, 

seepage was observed along the toe o f the slope. Field observations and assessment of 

slope hydrology indicated a permanent base groundwater table within or close to the 

surface o f the bedrock. The presence of an upper preferential groundwater regime within 

the decomposed granite was also a possibility. Data from tensiometers installed in the 

decomposed granite indicated suction ranging between 25-80 kPa within the top 5.5m. 

FMSW (2000) suggested that failure occurred due to a combination of suction reduction 

by the infiltration of rainwater and a rise in the base groundwater table. In spite of the 

detailed investigation undertaken, the prevailing groundwater conditions at the time of 

failure are uncertain.

3.4.4 Rupture Surface

Detailed logging of borehole full-length core samples and the walls o f test pits and 

trial trenches allowed important inferences about the geometry and nature o f the rupture 

surface. At some locations along the toe, the slip surface was planar within a soft clay 

layer dipping at a shallow angle, 6-20 degrees, to the horizontal. At the crest, the rupture 

surface was partially along a shallow soil-infilled tension crack. The majority of the 

surface, between the crest and toe, was located within a remolded, completely 

decomposed granite. The maximum depth o f the slip surface below ground was around 

8m. Based on the previous observations, the FMSW (2000) report postulated the semi

circular slip surface shown in Figure 11—31.

3.4.5 Shear Strength

Samples retrieved during the post-failure investigation were tested in the 

laboratory to assess the physical and mechanical properties o f the decomposed granite.
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Classification tests indicated that the soil is silty gravelly sand with fines content ranging 

between 10-20%. The shear strength parameters were obtained from unconsolidated 

undrained triaxial tests with pore pressure measurements. The testing results indicated 

that the effective cohesion is about 8 kPa and the friction angle is 38 degrees. These 

parameters are very close to the mean values o f the regional probability distributions 

(C —5.6 kPa and <f>'=37.8 deg.).

3.4.6 Deterministic Stability Analyses

The stability o f the slope geometry before failure is analyzed using Slope/W 

software and the Spencer method o f slices. In their diagnosis o f the failure, FMSW 

(2000) pointed to the combination o f suction reduction due to infiltration and rise in the 

base groundwater table as the likely cause of failure. Assuming zero suction, they 

estimated that a 1.8m rise in the base groundwater table (refer to Figure 11—31) was 

adequate to trigger failure. Because of the intense rainfall before failure, the extensive 

tension cracks and the damage to the chunam protective cover, the assumption of a zero 

suction is reasonable. The slip surface used in this assessment is the same surface inferred 

by FMSW based on field observations, Figure 11—31. Using the strength parameters of 

the FMSW report (Section 3.4.5) and adopting their scenario o f pore pressure 

development, the factor o f safety is computed to be 1.10. Using the regional strength 

parameters, the factor o f safety is estimated to be 1.04. Based on a back analysis (FS=1), 

the pore pressure ratio analogous to the prevailing pore pressure conditions at failure is 

estimated to be 0.11. The value is used for re-designing the slope to an acceptable 

geometry based on conventional slope practice. Because of the residential buildings at the 

toe o f the slope, a design factor o f safety of 1.4 is adopted. The same configuration of the 

failed slope, 5 batters separated by berms, is maintained. The modified design has an 

overall slope angle o f 31.2 degrees (1.65h:lv), compared to 44 degrees of the failed 

geometry. The stability of the revised design is analyzed probabilistically in Section 3.4.8.
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3.4.7 Quantifying Pore Pressure Uncertainty

The slope geometry before failure is back-analyzed to estimate the probability 

distribution of the pore pressure ratio at failure. A spreadsheet model mimicking the 

geometry and stratigraphy is prepared. Spencer’s method o f slices and the slip surface 

inferred by FMSW, Figure 11—31, are used in the model. The factor of safety is taken as a 

deterministic input of one and the regional probability distributions o f the friction angle 

and cohesion are adopted. A Monte Carlo simulation using a seed number of 31069 and

15,000 iterations is performed. The mean pore pressure ratio is estimated to be 0.09 with 

a standard deviation o f 0.12. It ranges between a minimum of -0.39 to a maximum of 

0.55. Figure 11-32 shows the histogram and the CDF o f the pore pressure ratio. A zero 

pore pressure ratio threshold is added to the spreadsheet model and the simulation is 

repeated 25 times using different seed numbers. Figure 11-33 shows the probability 

distribution of the pore pressure ratio based on averaging the results of all 25 simulations. 

The mean pore pressure ratio is 0.10 with a standard deviation o f 0.10. The plot suggests 

that there is a 23% probability that failure occurred under a condition o f negative or zero 

pore pressure ratio.
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Figure 11—32 Histogram and CDF of the pore pressure ratio at failure — Shek Kip Mei 
landslide
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Figure 11—33 Probability distribution of pore pressure ratio at 

failure -  Shek Kip Mei landslide

3.4.8 Probabilistic Stability Analyses
The stability of the revised slope geometry (31.2 degrees inclination) is analyzed 

probabilistically using the methodology of Chapter 5. A spreadsheet model mimicking the 

geometry and stratigraphy is prepared. The Spencer method o f  slices is used in the model. 

The friction angle and cohesion of the decomposed granite and the pore pressure ratio are 

considered variables with the probability distributions shown in Figure 11-2, Figure 11—

4, and Figure 11-33. The slip surface is assumed circular. The surface corresponding to

the Hassan and Wolff (1999) criterion is adopted in the spreadsheet. The trace o f the slip 

surface is divided into segments 10m long, assuming an autocorrelation distance o f 5m. 

The local average properties and parameters over the length of each segment are 

represented by the relevant point CDFs. In total, 15 variables are needed to model the 

spatial variability o f the strength parameters and the pore pressure ratio. The correlations 

between adjacent local averages are evaluated and taken into account in Monte Carlo 

simulation, as outlined in Chapter 5.
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The optimum number o f iterations is assessed to be 32,000. Using a seed number 

o f 31069, the mean factor o f safety is calculated to be 1.45 with a standard deviation o f 

0.17. The probability of unsatisfactory performance is 0.23%. Figure 11—34 shows the 

histogram and the CDF of the factor of safety. A sensitivity analysis is also performed 

and Figure 11—35 shows Spearman rank correlation coefficients for all input variables. 

The plot does not indicate the dominance o f any variable; the uncertainties o f the friction 

angle, the cohesion and the pore pressure ratio have comparable contributions to the 

uncertainty of the factor of safety.
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Figure 11-34 Histogram and CDF of the factor o f safety, Shek Kip Mei slope 
(acceptable design) — Proposed Methodology

Four Monte Carlo simulations are performed using different autocorrelation 

distances. Figure 11—36 is a plot of the computed probabilities of unsatisfactory 

performance versus the autocorrelation distances. As the autocorrelation distance 

increased from 3 m to 10m, the probability of unsatisfactory performance increased from 

0.01% to 2.05%. Adopting an autocorrelation distance of 5m, 25 simulations are 

performed using different seed numbers. Figure 11—37 shows the histogram of the 

probability of unsatisfactory performance based on the results o f all simulations. The 

mean probability of unsatisfactory performance is 0.21% with the 95% confidence 

interval ranging between 0.20-0 .22%.
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Kip Mei slope (acceptable design) — Proposed Methodology

The modified design is also analyzed using the naive approach. The spreadsheet 

model includes 3 variables representing the strength parameters and the pore pressure 

ratio. Twenty five simulations are performed using 32,000 iteration for each simulation. 

The computed probabilities of unsatisfactory performance are presented in histogram 

form in Figure 11—38. The mean probability of the unsatisfactory performance is 8.03% 

with the 95% confidence interval 7.99-8.07%.
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Figure 11-38 Histogram of the probability of unsatisfactory performance,

Shek Kip Mei slope (acceptable design) — Naive Analysis

4. SCALE OF FAILURE

So far, the stability analyses presented in this chapter are focused on deep-seated 

failures, in excess of hundreds of cubic metres in volume, involving the entire or most of 

the height o f the slope. This type of failure is, often, the most devastating with the 

potential of inducing severe damage and many fatalities or injuries. Small scale failures 

(less than 100 cubic metres in volume) are, however, common in Hong Kong and cannot 

be ignored. This section examines the probability of unsatisfactory performance 

associated with small failures.

The stability of the acceptable (i.e., re-designed) slopes of the case studies in 

Section 3 is analyzed deterministically assuming smaller slip surfaces. For each case, 

failure is restricted to a portion of the slope, e.g. upper 1/3 of slope height, and the critical 

slip surface is located using the regional strength parameters and the back-calculated pore
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pressure ratio. Two critical slip surfaces are determined for each slope to represent a 

small-scale failure and a medium-scale failure. The small geometry o f the Cho Yiu Estate 

slope did not allow such division and only the three other cases (Tsing Yi: 1, Ching 

Cheung Road and Shek Kip Mei) are considered in this assessment.

For each case study, the probability of unsatisfactory performance associated with 

the small and the medium slip surfaces are estimated by simulation and following the 

same procedures described in Sections 3.2.8, 3.3.8 and 3.4.8 above. For each case study 

and slip surface, the simulation is repeated 10 times using different seed numbers and the 

results are averaged. Figure 11—39, Figure 11—40 and Figure 11—41 summarize the results 

o f the analyses o f the Tsing Yi: 1 slope, the Ching Cheung Road and the Shek Kip Mei 

slope, respectively. Each figure shows the slip surfaces and the associated probabilities of 

unsatisfactory performance and factors of safety. Surface number 1 in each figure 

represents the failure of the entire slope and refers to the slip surface analyzed in Section 

3.2.8, 3.3.8 or 3.4.8. Surface number 2 refers to the failure of the upper 2/3 of the slope 

whereas surface number 3 represents the failure of the top 1/4 to 1/3 o f the slope height.

120
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2 1.39 0.03
3 1.62 0.32100
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Figure 11-39 Effect of scale o f failure on probability of unsatisfactory performance and 
factor o f safety - Tsing Yi: 1 slope (acceptable design)
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Figure 11-40 Effect of scale of failure on probability o f unsatisfactory performance and 

factor of safety — Ching Cheung Road (acceptable design)

For the Tsing Yi slope, the factors of safety for slip surfaces 1, 2 and 3 are 1.34, 

1.39 and 1.62, respectively, whereas the probabilities o f unsatisfactory performance are 

0.01%, 0.03 and 0.32%. For the Ching Cheung Road, the factors o f safety are 1.31, 1.37 

and 1.41, and the probabilities o f unsatisfactory performance are 0.13%, 0.34% and 2.9%. 

For the Shek Kip Mei slope, the factors of safety are 1.45, 1.56 and 1.83 and the 

associated probabilities of unsatisfactory performance are 0.21%, 0.84% and 6.06%.

The results o f the three case studies are consistent and illustrate a very interesting 

observation. Smaller slip surfaces have higher probabilities o f unsatisfactory performance 

than larger surfaces despite their higher factors o f  safety. This might seem unusual, 

however it is logical within the context of spatial variability. The concept of spatial 

variability emphasizes that soil properties and pore pressures vary from one location to
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another. As such, a weak zone of completely decomposed granite might be followed by a 

stronger less weathered zone which in turn is followed by another weak zone, and so 

forth. The extent or dimensions of the weak/strong zones are proportional to the 

autocorrelation distance. As indicated in Section 3.1.8, Hong Kong residual soils are 

erratic and characterized by small autocorrelation distances. A slip surface which is very 

long compared to the autocorrelation distance passes through many weak and strong 

zones. The low and high strength at different locations along the slip surface tend to 

balance each other, reducing the uncertainty o f the average strength. The same concept 

applies for the pore pressure. As a result, the uncertainty o f the factor of safety, and 

consequently, the probability o f unsatisfactory performance are reduced. On the other 

hand, a very small slip surface may fall entirely within a weak zone or within a strong 

zone. Thus, the uncertainty of the mean strength along the slip surface is higher which is 

reflected in a higher probability o f unsatisfactory performance. The conventional 

deterministic approach based on the factor of safety clearly fails to address this issue of 

scale of failure.
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Figure 11—41 Effect of scale of failure on probability of unsatisfactory performance and 
factor o f safety -  Shek Kip Mei slope (acceptable design)
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It is not surprising, therefore, to observe that the frequency of small failures is 

much higher than large failures. The Geotechnical Engineering Office of Hong Kong 

(GEO, 1999) classifies slope failures based on the scale o f failure into minor (failure 

volume<50m3), major (failure volume of 50m3 to 500m3) and massive (failure 

volume>500m3). In 1999, GEO published a review (GEO, 1999) o f all landslide incidents 

in the years 1997 and 1998. The report included the number of incidents o f minor, major 

and massive failures, Table 11-1. Similarly, ERM (1997) reported the number of 

landslide incidents along the BRIL roads over the period 1982 to 1996 grouped by the 

volume of the failed mass, Table 11-1. The number of minor failures is clearly much 

higher than the number o f massive failures.

Table 11-1 Observed and theoretical ratios of the frequencies of 
occurrence o f the different scales o f failure

Case Study

Ratio of the Frequencies of 
Occurrence

Minor
Failure
(<50m3)

Major
Failure

(50-500m3)

Massive
Failure

(>500m3)

Landslide incidents in 1997 
and 1998 (GEO, 1999)

27.0
(703)

2.2
(58)

I
(26)

Landslide incidents along 
BRIL roads for the period 
1982-1996 (ERM, 1997)

31.8
(286)

3
(27)

1
(9)

Tsing Yi 1 slope 32.0 3.0 1

Ching Cheung Road 22.3 2.6 1

Shek Kip Mei slope 29.9 4.0 1

(703) Number of minor failure incidents in 1997 and 1998

The probability of unsatisfactory performance may be interpreted as the 

probability (or frequency) o f failure of a volume of soil equal to that encompassed by the 

critical slip surface. A crude analogy between massive failure and slip surface 1, major 

failure and slip surface 2, and minor failure and slip surface 3 could be made. Thus, the
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ratios of the probabilities o f unsatisfactory performance o f slip surfaces 1 to 3 can be 

compared with the ratios of the observed frequencies of the 3 scales o f failure as shown 

in Table 11-1. The close numerical agreement between the observed and computed ratios 

is, probably, fortuitous. However, the conceptual agreement, minor failures are much 

more frequent than massive failures, is evident.

Despite the higher probabilities of unsatisfactory performance of minor failures, 

they do not control the overall design of large slopes for feasibility considerations. For 

example, flattening the entire Shek Kip Mei slope (20.8m high) to deal with the high 

probability of unsatisfactory performance of a minor failure at slope crest is not practical 

because of space limitations and economics. Instead, minor failures are dealt with more 

efficiently by local stabilization techniques. In Hong Kong, soil nailing has proved to be 

very successful and is widely used to deal with local unstable sections.

5. SUM M ARY AND DISCUSSIO N

The variability of the shear strength parameters of Hong Kong granitic soils is 

quantified statistically based on a relatively large database of triaxial test results. There is 

reasonable evidence to support the adequacy of a regional assessment of the shear 

strength parameters. Generalized probability distributions of the effective cohesion and 

friction angle are established. The uncertainty in the friction angle is relatively low, 

whereas the uncertainty in the effective cohesion is significant. These distributions can be 

used in the probabilistic assessment of the stability o f granitic soil slopes in Hong Kong. 

Site-specific shear strength measurements are, however, essential to confirm or update 

these distributions. The Bayesian approach could be useful in updating the regional 

distributions based on additional site-specific data.

Four cases o f slope failures in Hong Kong granitic soil are studied; Cho Yiu slide, 

Tsing Yi: 1 slide, Ching Cheung Road slide and Shek Kip Mei slide. Given the 

uncertainty of the shear strength parameters, the slopes are back-analyzed to quantify the 

uncertainty of the pore water pressure. The probability distribution o f the pore pressure
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ratio at failure is established for each slope. In all cases, the uncertainty  o f the pore 

pressure ratio is shown to be substantial.

Because o f the small cohesion o f Hong Kong granitic soils, the back-calculated 

pore pressure ratio is not very sensitive to slope height. Instead, it is largely controlled by 

the slope angle. Figure 11—42 shows the probability distributions o f the pore pressure 

ratio o f the four investigated cases. As the slope angle decreases, the mean pore pressure 

ratio at failure increases and the distribution shifts to the right. These CDFs define the 

magnitudes and probabilities o f pore pressures at which failure o f a slope of a specific 

inclination is likely to occur given the variability of soil strength. In a probabilistic slope 

assessment, these distributions may be used as design criteria. A sensible slope design 

should have an adequate safety, in terms of the probability o f unsatisfactory performance, 

when subjected to such pore pressures. Clearly, estimating the probability distribution of 

the pore pressure ratio for the design of any slope based on its angle only, without 

consideration of slope hydrology, is a very crude approximation. However, it still may be 

o f value as an initial estimate.

The four case studies are re-designed to acceptable geometry based on 

conventional slope design practice. The probability of unsatisfactory performance is 

estimated for all cases. The estimated probabilities are relatively sensitive to the 

autocorrelation distance. A similar observation is noted with the Congress Street cut in 

Chapter 10. Two features are common between the Congress Street cut and Hong Kong 

cases. First, both analyses are dominated by the uncertainty due to the spatial variability 

o f the input parameters, rather than systematic sources of uncertainty. Second, Hong 

Kong granitic soil and the glacial clay till o f the Congress Street cut are both erratic and 

characterized by short autocorrelation distances. This affirms the conclusion of Chapter 

10 that soil deposits exhibiting erratic variability require careful attention, and probably 

site-specific studies, in assessing the autocorrelation distance.
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Figure 11—42 Comparison between probability distributions o f the pore 

pressure ratios at failure for all the analyzed case studies

The probabilities o f unsatisfactory performance associated with different failure 

scales were estimated for the Tsing Yi: 1 slope, the Ching Cheung slope and the Shek Kip 

Mei slope. Minor failures are shown to have much higher probabilities of unsatisfactory 

performance than massive failures, even though they have higher factors o f safety. This 

results from the consideration o f the spatial variability of the input parameters, which the 

conventional deterministic approach fails to address. The ratios between the probabilities 

o f unsatisfactory performance of minor, major and massive failures compare very well 

with the ratios o f their occurrence in reality.
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CHAPTER 12

PROBABILISTIC SLOPE STABILITY 
ANALYSIS 

SUMMARY AND DISCUSSION

The objectives o f  this work are stated in Chapter 1. The results o f  the conducted 

deterministic and probabilistic analyses are presented in Chapters 5 through 11. The 

following sections summarize the outcome of the study in the light o f  the objectives set 

and the obtained results. The discussion follows, more or less, the same order in which 

the objectives are listed.

1. PROBABILISTIC SLOPE ANALYSIS -  W HY?

Slope engineering is among the geotechnical issues most dominated by 

uncertainty. The inherent spatial variability o f input parameters (e.g., soil properties, pore 

water pressure), the scarcity of data, the common use of highly uncertain empirical factors 

and the limitations of analytical models are all important factors contributing to the 

overall uncertainty of a slope design. Conventional slope analysis and design methods, 

based on the factor of safety, do not consider uncertainty in any direct way and rely 

entirely on experience and judgement for the subjective account of its impact on design. 

Engineering judgement is an essential ingredient in any geotechnical design. 

Unfortunately, it is difficult to transfer this judgement from the experienced to the 

inexperienced (Lumb, 1980).

Probabilistic slope stability analysis is a rational means to quantify and account 

for the impact o f uncertainty on slope performance. In addition to the mean value of the 

factor of safety, which is similar to the output from a conventional slope design, a 

probabilistic analysis provides additional valuable information. The variance of the factor 

o f safety, the probability o f unsatisfactory performance and the reliability index are all

305

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



measures of the reliability o f the analysis. By estimating the likelihood or probability o f a 

certain state (e.g., failure) occurring, probabilistic analysis, in a way, quantifies aspects of 

judgement and experience. It, thus, provides greater insight into design reliability and 

enhances the decision-making process. A probabilistic analysis is also the first step 

towards the more comprehensive approach of risk management applied to slope 

instability hazards.

2. PRO BABILISTIC SLOPE ANALYSIS M ETH O DO LO G Y

The successful integration of probabilistic slope stability analysis into professional 

practice relies largely on the practicality o f the analytical techniques. The analyses in 

Chapters 6-11 demonstrate the flexibility and practicality o f the proposed probabilistic 

slope analysis methodology (Chapter 5) in dealing with a wide variety of real life slope 

problems. The methodology utilizes readily available software such as @Risk, for Monte 

Carlo simulation, and the familiar spreadsheet program Excel. The underlying procedures 

and concepts are simple and transparent, requiring only fundamental knowledge of 

statistics and probability theory.

The methodology accounts for the spatial variability o f soil parameters along the 

slip surface using Vanmarcke’s approximate model for a one-dimensional random field 

(Vanmarcke; 1977a, 1983). It also accounts for bias in the empirical factors/correlations 

used in the analysis and the statistical uncertainty due to limited amounts o f data. 

Observed non-parametric probability distributions o f soil parameters and distributions 

based on expert judgment can be readily incorporated into the analysis. Upon obtaining 

new information, the analysis is updated by simply changing a few cells in the 

spreadsheet and running a new Monte Carlo simulation. The output of the analysis is 

presented in the form o f the probability distribution o f  the factor o f safety, based on 

which the probability of unsatisfactory performance and the reliability index are 

evaluated.
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3. SPATIAL VA RIABILITY AND NAIVE ANALYSIS

Soil compositions and properties vary from one location to another, even within 

homogenous layers. That variability, or scatter, is one of the main sources o f parameter 

uncertainty. It is, therefore, intuitive to take spatial variability into account in any 

probabilistic analysis. The proposed probabilistic methodology accounts for spatial 

variability by modeling the spatial structures o f the input parameters in a semi-empirical 

form. The spatial structure is characterized by an autocorrelation distance which describes 

the pattern of soil variability. A large autocorrelation distance reflects smooth continuous 

variability whereas a short distance reflects erratic variability. The naive analysis, on the 

other hand, ignores spatial variability. It assumes the autocorrelation distance to be 

infinitely large which implies that the values o f an input variable are the same at all 

locations.

Table 12-1 and Table 12-2 summarize the results of the probabilistic analyses 

based on the proposed probabilistic methodology for the safe and failed slopes, 

respectively, whereas Table 12-3 summarizes the results based on the naive approach (all 

tables are included at the end of the chapter). The computed probabilities of 

unsatisfactory performance o f the naive approach (safe slopes) are much higher than 

those based on the proposed methodology. The reliability indices o f the latter are, 

consequently, much lower. Figure 12—1 compares the results of the two analyses in terms 

of the ratio of the probability o f unsatisfactory performance from the naive analysis to 

that from the proposed methodology; hereafter referred to as the probability ratio. The 

plot shows that the naive analysis overestimates the probability o f unsatisfactory 

performance, by up to 3 orders o f magnitude in one case (Tsing Yi: 1 slope).

The difference between the two analyses arises from the reduction in the variances 

of the input variables in the proposed methodology due to spatial averaging. Slope 

performance, in normal conditions, is controlled by the average soil properties and pore 

pressure ratio along the slip surface and not by the high or low values at some locations. 

The variance o f the average o f a spatially varying quantity is less than the point variance.
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The amount of reduction is a  function of the ratio o f the autocorrelation distance, r0, to 

the length of the slip surface; known as the variance reduction factor, f  (refer to Chapter 

3). A factor of 1 (i.e., r0 «  lA  the length of the slip surface within the layer whose 

uncertainty dominates the analysis) indicates no variance reduction, which is the case of a 

naive analysis. Figure 12—2 is a plot of the variance reduction factor versus the probability 

ratio. As the variance reduction factor decreases, the gap between the outputs of the naive 

analysis and the proposed methodology widens.
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Figure 12—1 Probability ratio versus factor of safety for safe slopes

A literature review indicated that the range within which the autocorrelation 

distances of geotechnical properties vary is not large. For practical purposes, the 

autocorrelation distance can, thus, be evaluated judgmentally based on the typical ranges 

in the literature, as described in Chapter 5. Consideration of the geological processes 

controlling the formation/deposition of soil layers is of great value in guiding the 

selection of an empirical estimate. It is, however, important to assess the impact of 

different assumptions o f the autocorrelation distance on the probability o f unsatisfactory
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performance. Each of the case studies considered in this work (except for the James Bay 

dykes) is re-analyzed using different autocorrelation distances. Figure 12—3 shows the 

variation o f the probability of unsatisfactory performance with the autocorrelation 

distance for the cases whose soil formations were characterized by continuous spatial 

variability (i.e., large ra). These include the marine clay-shale of the Syncrude Cell 23, the 

homogenous marine clay of the Lodalen slope and the soft marine clay o f the Muar 

embankment. The solid symbols represent the analyses based on the most likely 

autocorrelation distance for each case. The points denoted by the letter N represent the 

results o f the naive analyses (i.e., rQ is large enough to have no impact on the analysis). 

Beyond each of these points the probability of unsatisfactory remains constant 

irrespective o f the autocorrelation distance. A threshold o f 2x1 O'2 probability (upper limit 

of the probability of unsatisfactory performance associated with acceptable slopes; 

Section 5.1 below) is also plotted on the figure. Figure 12—4 shows the results of the cases 

characterized by erratic spatial variability (i.e., small r0). These include the clay till o f the 

Congress Street cut and the residual granitic soil of Hong Kong.
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Figure 12-2 Probability ratio versus variance reduction factor
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Figure 12-3 indicates that, within practical limits, the probability of unsatisfactory 

performance is not sensitive to the autocorrelation distance for soil formations exhibiting 

continuous spatial variability. For soils characterized by erratic variability, Figure 12-4, 

the probability o f unsatisfactory performance increases with the increase in the 

autocorrelation distance. The rate of increase, however, diminishes rapidly as the 

autocorrelation distance increases beyond 10m which is consistent with the trend of 

Figure 12—3. This suggests that for soil deposits exhibiting erratic variability, the results 

of a probabilistic analysis could be sensitive to the assumption o f the autocorrelation 

distance. Accounting for the spatial variability of such formations may, thus, require 

some extra effort in assessing a site/formation specific autocorrelation distance. A special 

exploration program could be designed (in terms of the number and spacing of tests) and 

conducted to estimate the site and soil specific autocorrelation distances. This, however, 

could be an expensive solution for the typical site investigation budget of many projects.

10

Syncrude Cell 23Syncrude Cell 23 
Muar Embankment 
Lodalen Slope

0.001
0 20 40 60 - 80

Autocorrelation Distance; ra (m)

Figure 12—3 Effect o f autocorrelation distance on probability o f unsatisfactory
performance, Safe Slopes - Soil formations exhibiting continuous 
spatial variability (solid symbols refer to the analyses based on the 
most likely ra values, letter N refers to naive analysis)
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4. CA LIBR ATIO N OF PROBABILISTIC SLOPE ANALYSIS

Providing a link between current slope design practice and probabilistic slope 

stability analysis (i.e., a calibration process) is an important step for the integration of 

probabilistic techniques into geotechnical engineering practice. That link will help 

practitioners understand and reflect on the meanings of the computed probabilities of 

unsatisfactory performance. Ten case studies are analyzed probabilistically and 

deterministically for the calibration process. The studies (Chapters 6-11) compare the 

factor o f safety and the probability of the unsatisfactory performance and highlights the 

role o f uncertainty and its impact on the reliability o f the analysis. They also serve as 

illustrations to the implementation o f probabilistic techniques in practice.
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The following notes are important for a proper interpretation o f the computed 

probability o f unsatisfactory performance. The probabilistic methodology o f Chapter 5 

accounts for the spatial variability of soil properties along the slip surface through 

Vanmarcke’s empirical models for a one-dimensional random field. The models lead to a 

smaller variance reduction (due to spatial averaging) compared to more rigorous models. 

As a result, the computed probability of unsatisfactory performance could be higher than 

the absolute unknown probability.

Despite, the effort by the designer to address all sources of uncertainty, there is 

always the possibility of undetected uncertainties that are not taken into account (e.g., 

human mistakes). Hence, the estimated probability o f unsatisfactory performance should 

be regarded as a lower bound to the actual probability. A computed zero probability of 

unsatisfactory performance (e.g., Lodalen slope) is viewed as an insignificant probability 

rather than a no failure condition. For such reasons, comparing the probabilities of 

unsatisfactory performance of alternative designs for the same problem is thought to be of 

greater value than the absolute probabilities of the designs.

The computed probability also does not reflect the effect of time. In other words, 

it assumes that the uncertainties considered in the analysis are invariant with time. If, for 

example, pore water pressure varies with time, the probabilistic analysis should be 

repeated using revised input probability distributions. It is also important to note that the 

probability o f unsatisfactory performance as used in this study, reflects the probability or 

potential of the slope collapsing. It does not address serviceability issues such as slope 

movement and cracking, surface erosion and excessive seepage.

Finally, an estimate of the annual hazard probability is required in quantitative 

risk analyses (Chapter 13). The computed probabilities o f unsatisfactory performance in 

Chapters 6-11 represent the probability of occurrence o f a hazardous event over the 

lifetime o f the conditions considered in the analysis (e.g., type of loading, environmental 

conditions), which vary from one case to another. Assessing the annual hazard probability 

is, thus, a case-specific exercise. For example, the pore water pressures in the Hong Kong

312

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cases are a result o f the intense rainstorms experienced in that area. The annual hazard 

probability should, therefore, be referenced to the return period of rainstorm. In contrast, 

the pore water pressure in the Lodalen case was in a steady state condition and there are 

no reasons to believe that soil properties would vary with time. The annual hazard 

probability should, legitimately, be referenced to the lifetime o f the slope, say a 100 years 

or so. In the Muar embankment case, the probability o f unsatisfactory performance is 

evaluated for an undrained loading condition. The short duration of that type o f loading 

(say, 6 months to 1 year) is a justified basis for evaluating the annual hazard probability.

5. PROBABILISTIC SLOPE DESIGN CRITERIA

5.1 Probability of Unsatisfactory Performance

The probability o f unsatisfactory performance is the main safety index used in this 

study to describe the state of a slope. It is, thus, essential to understand the meaning o f the 

computed probabilities and to estimate probabilistic design criteria to judge the adequacy 

of a design or compare alternative designs. Also, a high risk situation may arise from 

either a high probability of unsatisfactory performance or high failure consequences or 

both. Understanding the meaning and acceptability o f the computed probability greatly 

assist in the decision-making. For example, a small-probability, high-consequences 

situation is dealt with more efficiently by reducing the consequences rather than lowering 

an already small probability of unsatisfactory performance.

In order to provide guidelines on the probability limit associated with satisfactory 

slope performance, conventional design practice is calibrated in probabilistic terms. Two 

classes o f slopes are considered: failed slopes and safe slopes. Table 12-1 summarizes the 

output o f the probabilistic analyses of the slopes that are deemed safe, whereas Table 

12-2 summarizes the probabilistic outputs of the failed slopes. Figure 12—5 is a plot o f the 

factor of safety versus the probability o f unsatisfactory performance for all the analyzed 

cases (Figure 12—9 in page 319 shows the data for a factor of safety greater than 1.3 

plotted on a larger scale). The distinction between failed and safe slopes is very clear. The
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probability o f unsatisfactory performance o f most o f the safe slopes is less than 2x1 O'2, or 

2%. As the factor o f safety drops below a value o f about 1.3, the probability of 

unsatisfactory performance increases sharply.

Based on Figure 12—5, it seems that a probability o f unsatisfactory performance of 

2x1 O'2 marks the limit o f what is deemed acceptable slope design practice. A probability 

o f unsatisfactory performance o f 2% could, thus, be regarded as an upper design 

threshold. It should be noted, however, that this is only one o f several criteria involved in 

the design process. For example, high failure consequences and/or inadequate 

serviceability (e.g., excessive deformations and cracking) may necessitate adopting more 

stringent design criteria. It is also emphasized that the use o f the probability of 

unsatisfactory performance is not intended to replace the factor o f safety. Instead, the two 

indices, used together, will provide a greater insight into the acceptability o f the design. 

For example, a very small probability of unsatisfactory performance (i.e., high reliability) 

justifies adopting lower design factors o f safety than normal provided that the 

serviceability o f the slope is not compromised. If the computed probability of 

unsatisfactory performance is deemed high, it could be reduced through targeting a higher 

design factor o f safety or through improving design reliability by reducing the uncertainty 

of the input parameters.

A noteworthy observation is that the estimated threshold o f 2x1 O'2 probability is 

more relaxed than the typical values in the literature. For example, Lumb (1983) regarded 

a failure probability o f lxlO '2 as high and requiring design changes. Similarly, the US 

Corps of Engineers (1995) recommended a target probability o f unsatisfactory 

performance of 3x1 O'5 for a “Good” performance level. This suggests that what is deemed 

as an acceptable design practice is, in fact, less reliable than commonly thought.
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Figure 12—5 Probability of Unsatisfactory performance versus factor of
safety for the safe and failed slopes — Proposed Methodology

5.2 Reliability Index

The reliability index is another common probabilistic safety measure. It is defined 

as the distance between the mean factor of safety and the limiting state, FS=1, expressed 

in units o f the standard deviation of the factor o f safety (refer to Chapter 4). Figure 12-6 

shows a plot o f the factor of safety versus the reliability index for all the analyzed cases. 

Failed slopes have reliability indices less than 0.8 whereas the safe slopes have a 

m i n i m u m  reliability index o f 1.8 with most of the cases having indices higher than 2.0. A  

m i n i m u m  reliability index o f 2.0 could, thus, serve as another probabilistic slope design 

criterion. It corresponds to a probability of unsatisfactory performance on the order of 

2x 10'2.
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Figure 12-6 Reliability Index versus factor o f safety — Proposed 

Methodology

Figure 12—7 is a plot of the probability of unsatisfactory performance versus 

reliability index; the higher the reliability index, the lower the probability of 

unsatisfactory performance. The plot, however, shows that the reliability index is less 

sensitive to changes in design than the probability o f unsatisfactory performance. An 

increase in the reliability index from 1.8 to 3.3, corresponds to more than two orders of 

magnitude difference in the probabilities of unsatisfactory performance. The reliability 

index is, however, more stable than the probability o f unsatisfactory performance, 

particularly when estimating very small probabilities (less than, say, lx l 0'3). In such 

cases, the level of noise in the computations may affect the precision of the calculated 

probability. For example, a probability of unsatisfactory performance o f 1x10^, implies 

that a simulation with 30,000 iterations will have only 3 iterations with factors of safety 

less than one. Because of the randomness of the simulation process, other simulations 

may yield, for example, zero, 6 or even larger number o f iterations with factors of safety 

less than one. The level of noise (0 to 2x1 O'4) is comparable or higher than the probability
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being estimated (lxlCT4) which, inevitably, reduces the precision o f the analysis. The 

precision o f the computed probability could be improved by substantially increasing the 

number o f iterations (probably to a minimum of 250,000 iterations). This, however, 

translates into a  need for higher computing capabilities beyond those o f spreadsheet- 

based simulation software, and a much longer computer time. It is, thus, recommended to 

use the two indices (probability o f unsatisfactory performance and reliability index) 

together in judging the adequacy o f a slope design.

Reliability Index; P

Figure 12-7 Probability o f unsatisfactory performance versus

reliability index; Safe Slope — Proposed Methodology

If the probability distribution of the factor of safety is normally distributed, the 

probability o f unsatisfactory performance is analytically related to the reliability index as 

follows;

Pu =<D(-P) ( 12- 1)
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where 0 ( ) is the cumulative probability distribution o f a standard normal density 

function. Figure 12-8 is a plot o f reliability index versus probability of unsatisfactory 

performance for all the undertaken analyses. The theoretical relation given by Equation

12-1 above is plotted on the same graph. The figure indicates that the probability of 

unsatisfactory performance is uniquely related to the reliability index regardless of the 

assumptions involved in the analysis. The relation is close to Equation 12-1 only when 

the probability o f unsatisfactory performance is high. As the probability decreases (i.e., 

reliability index increases), the gap between the two relations widens. In the absence of 

any information about the shape of the probability density function of the factor o f safety 

(e.g., FOSM analysis), the probability o f unsatisfactory performance is estimated based 

on an assumed shape; commonly a normal distribution. Figure 12-8 suggests that the 

normality assumption overestimates the probability o f unsatisfactory performance, 

particularly if it is small, i.e., safe slopes.
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performance and reliability index
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6. INSIGHTS OF PRACTICAL VALUE

6.1 Probabilistic Versus Deterministic Slope Analyses

Figure 12-9a is a plot o f the probability o f unsatisfactory performance versus the 

factor o f safety for the safe slopes only. The plot clearly illustrates the limitation of 

conventional slope practice. For example, the Lodalen slope designed for a factor of 

safety o f 1.33 has a near zero probability o f unsatisfactory performance whereas the 

Congress Street Cut designed for a factor of safety o f 1.44 has a probability of 

unsatisfactory performance of 2x1 O'2. In other words, the slope designed for a lower 

factor of safety is safer than that designed for a higher factor of safety. Such inconsistency 

is a direct result of ignoring uncertainty; the input parameters of the Lodalen slope are 

highly reliable whereas those o f the Congress Street Cut are highly unreliable. The 

traditional assumption of higher safety levels with the increase in the factor of safety 

(ignoring uncertainty) is, thus, not always valid.
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Figure 12-9 Probability of unsatisfactory performance versus factor o f safety; Safe 
Slopes — Proposed Methodology (data are grouped by the coefficient of 
variation of the factor of safety in the right plot)

Lacasse and Nadim (1996) reached a similar conclusion analyzing a pile 

foundation. The heavily loaded pile, installed in 1976, was re-analyzed in 1989 after a

319

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



new site investigation and an assessment o f the environmental and gravity loads were 

completed. The original design had a factor o f safety o f 1.79 and a failure probability of 

5xl0 '3, whereas those of the 1989 analysis (based on the new data) were 1.4, and 1x1 O'4, 

respectively. Although the pile had a factor o f safety less than what was perceived at the 

time o f design, it is, in fact, safer. The added information led to a lower factor o f safety, 

but also reduced the uncertainty in the load and resistance and improved the reliability of 

the analysis.

Figure 12—9b sheds some light on the handling o f uncertainty in the current 

deterministic design practice. The plot is the same as Figure 12-9a, except that the data 

are grouped by the coefficient of variation o f the factor o f safety. The coefficient of 

variation is the ratio of the standard deviation to the mean value and is a measure of the 

uncertainty o f the mean; the higher the coefficient of variation the less reliable the mean 

is. It is, thus, an expression of the level of overall uncertainty involved in the analysis. As 

the confidence in the input parameters and site conditions decreases (i.e., higher 

uncertainty), conventional slope practice resorts, judgmentally, to a higher factor of safety 

and a presumably more conservative design. A critical question, however, arises. How 

conservative is conservative enough? Without formally accounting for uncertainty, that 

question cannot be answered and the impact o f a subjective conservatism can never be 

known. Figure 12—9b shows that all the slopes involving high uncertainty (e.g., Congress 

Street cut, Muar trial embankment) are in fact less reliable than those involving small 

uncertainty (e.g., Lodalen slope, Syncrude tailings dyke) even though they are designed 

for higher factors of safety. The factor of safety alone can give a misleading sense of 

safety and is not a sufficient safety indicator.

6.2 Sensitivity Analysis

The results of sensitivity analyses, in terms o f Spearman rank correlation 

coefficients, are o f significant practical value. The analysis quantifies the contributions of 

the uncertainty o f the input variables to the overall design uncertainty. As a result, 

resources, whether intellectual or physical, can be rationally allocated towards reducing
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the uncertainty of the variables with the largest impact on design. The relative impacts o f 

systematic uncertainty and uncertainty due to inherent spatial variability can also be 

inferred from the sensitivity analysis results. This information is o f interest. Systematic 

uncertainty has a consistent effect at all locations within the domain o f  the problem (i.e., 

no spatial averaging). It, thus, could have a major impact on design. Unlike the 

uncertainty due to inherent spatial variability, systematic uncertainty can be reduced (e.g., 

by increasing the number o f data, avoiding highly uncertain empirical correlations and 

factors, etc.). If the analysis is dominated by systematic uncertainty, that implies a high 

potential for improving design reliability with relative ease. Furthermore, a dominant role 

of systematic uncertainty indicates a smaller effect of spatial variability and, 

consequently, a lesser impact o f the assumption of the autocorrelation distance on the 

probability of unsatisfactory performance.

The sensitivity analyses undertaken throughout this study indicate that the 

uncertainty of the Bjerrum vane correction factor is substantial and may even exceed the 

uncertainty due to the spatial variability of the undrained shear strength. The results of 

these analyses, actually, quantify the concerns raised by researchers (Milligan, 1972; 

Schmertmann and Morgenstem, 1977) about the reliability o f Bjerrum’s vane correction 

factor. They also warn about the use of various empirical factors and correlations (e.g., 

empirical correlations between strength parameters and SPT blow counts or CPT tip 

resistance) without proper understanding of their limitations and, more importantly, their 

reliability.

7. PROBABILISTIC SLO PE DESIGN GUIDELINES

Assessing and quantifying uncertainty is the first and most crucial step in any 

probabilistic analysis. The designer should seek all possible means to reduce uncertainty 

to as low as reasonably achievable. This includes gearing the site investigation towards a 

better characterization o f highly variable parameters with large impact on design, 

exam in ing  the validity and limitations of any empirical factors/correlations used in the
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analysis and seeking expert opinions in assigning subjective uncertainty values. It also 

includes minimizing human uncertainty by applying adequate quality control measures to 

ensure that sound engineering is being practiced.

The discussions in the preceding sections reveal some valuable design guidance. 

First, the safety condition of a slope as portrayed by the factor o f safety alone is 

incomplete and an apparently conservative design is not always safer. Second, by 

quantifying design reliability, a probabilistic stability analysis provides an enhanced 

picture o f the state of the slope and allows a more consistent design criterion. Slopes 

designed to the same probability of unsatisfactory performance have comparable safety 

levels; which is not necessarily the case with slopes designed to the same factor of safety. 

Third, a probability o f unsatisfactory performance of 2x1 O'2 marks the upper limit o f what 

is deemed acceptable practice. It is analogous to a minimum reliability index of about 2.0. 

The use o f the two indices together to judge the adequacy o f a design in a probabilistic 

assessment is recommended.

Slope design is based on two criteria; failure prevention and serviceability. The 

probabilistic analyses in this study are based on limit equilibrium models and are, 

therefore, concerned with failure only. Adopting a probabilistic design criterion of 2x10*2, 

the Lodalen slope can be designed to a factor o f safety as low as 1.15 (3.25h:lv). That 

geometry is unlikely to collapse, however, experience suggests that the serviceability of 

the slope could be largely compromised as a result o f excessive deformations. There is, 

therefore, a need to empirically set a minimum design factor o f safety as a means of 

controlling deformations. A more rational approach, however, is to develop alternative 

analyses, deterministic and probabilistic, to better understand and control slope 

movements. Future research may, for example, investigate the value and practicality of a 

probabilistic assessment of the pattern and magnitude o f deformations. Stochastic finite 

element analysis is a powerful promising tool that has been widely applied to estimate the 

probability of settlement of shallow foundations (Baecher and Ingra, 1981; Zeitoun and 

Baker, 1992; Paice et al., 1994). In slope engineering, Kraft and Mukhopadhyay (1977)
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made an isolated attempt to account for deformations by formulating the performance 

function o f the slope in terms o f crest movement. They defined the probability o f failure 

as the probability of crest movement exceeding a prescribed allowable percentage of 

slope height. The details o f their work, however, are not clear.

Other serviceability considerations (e.g., surface erosion, extensive seepage) 

should also be considered. Judging the adequacy o f a slope design is, thus, governed by a 

failure criterion, a serviceability criterion and failure consequences.
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T ab le  12-1 Summary o f  the results o f probabilistic slope stability analyses; Safe Slopes -  Proposed Methodology

Case Study

Slope Geometry Factor of Safety
Probability of 
U nsatisfactory 

Perform ance (1 O'2) Reliability 
Index; P

Variance 
Reduction 
Factor; f ®

Type of 
Analysis

Angle®
(deg.)

Height
(m)

E[FS] <j(FS] ©c.o.v. Skewness® ElPul <*IP«]

James Bay; 
Design 1 7.4 12.0 1.46 0.20 0.14 0.30 0.47 0.04 2.32 0.37 Total Stress

James Bay; 
Design 2 18.4 6.0 1.54 0.29 0.19 0.36 2.33 0.06 1.82 1.0 Total Stress

Syncrude Dyke; 
Cell 23 8.4 44.3 1.31 0.14 0.10 0.59 0.16 0.02 2.31 0.43 Effective Stress

Lodalen Slope 14.0 17.0 1.33 0.07 0.05 0.01 0.00 0.00 4.85 0.24 Effective Stress

Muar Trial 
Embankment 26.6 3.3 1.42 0.20 0.14 0.23 1.38 0.05 2.07 0.61 Total Stress

Congress Street 
Open Cut 20.8 14.3 1.44 0.24 0.17 0.52 2.02 0.07 1.78 0.44 Total Stress

Cho Yiu Estate 29.4 12.8 1.54 0.26 0.17 0.35 1.10 0.07 2.08 0.33 Effective Stress

© Overall slope angle (including berms, change in slope,....)

© Coefficient of variation 
® Coefficient of Skewness

© Computed for the variable with the largest contribution to the uncertainty of the factor of safety
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T able 12-1 Summary o f the results o f probabilistic slope stability analyses; Safe Slopes -  Proposed Methodology (cont’d)

Case Study

Slope Geometry Factor of Safety
Probability of 
Unsatisfactory 

Perform ance (10'2) Reliability 
Index; (3

Variance
Reduction
F ac to r;/®

Type of 
Analysis

Angle®
(deg.)

Height
(m)

E(FS] o[FS] ©c.o.v. Skewness® EIP„] CTl Pul

Ching Cheung 
Road 35.6 30.4 1.31 0.12 0.09 0.25 0.13 0.02 2.73 0.17 Effective Stress

Tsing Yi (1) 
Slope 26.6 51.7 1.34 0.10 0.08 0.21 0.01 0.01 3.32 0.09 Effective Stress

Shek Kip Mei 
Slope 31.2 20.8 1.45 0.17 0.12 0.24 0.21 0.02 2.61 0.23 Effective Stress

® Overall slope angle (including berms, change in slope )

^  © Coefficient of variation 

® Coefficient of Skewness

® Computed for the variable with the largest contribution to the uncertainty of the factor of safety
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T able 12-2 Summary o f  the results o f probabilistic slope stability analyses; Failed Slopes -  Proposed Methodology

Case Study

Slope Geometry Factor of Safety
Probability of 
U nsatisfactory 

Perform ance (10'2) Reliability 
Index; p

Variance 
Reduction 
Factor; /®

Type of 
Analysis

Angle®
(deg.)

Height
(m)

E[FS] a(FS] ©c.o.v. Skewness® E[PU] <y[ Pul

Lodalen Slide 26.6 17.0 0.95 0.06 0.07 0.02 77.38 0.24 -0.72 0.39 Effective Stress

Muar Trial 
Embankment 26.6 4.7 1.11 0.15 0.14 0.16 24.05 0.24 0.72 0.54 Total Stress

Congress Street 
Open Cut 34.0 14.3 1.13 0.22 0.19 0.63 29.11 0.22 0.60 0.67 Total Stress

© Overall slope angle (including berms, change in slope, ....) 
u> © Coefficient of variationN)
O' ® Coefficient of Skewness

© Computed for the variable with the largest contribution to the uncertainty of the factor of safety
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Table 12-3 Summary o f  the results o f  probabilistic slope stability analyses; Safe Slopes -  Naive Analysis

Case Study

Slope Geometry F actor o f Safety
Probability of 
Unsatisfactory 

Perform ance (1 O’2) Reliability 
Index; P

Type of 
Analysis

Angle®
(deg.)

H eight
(m)

E[FSJ aJFSl ©c.o.v. Skewness® E[P„1 <*[Pu]

James Bay; 
Design 1 7.4 12.0 1.46 0.25 0.17 0.32 2.37 0.09 1.84 Total Stress

James Bay; 
Design 2 18.4 6.0 1.54 0.30 0.20 0.34 2.70 0.06 1.78 Total Stress

Syncrude Dyke; 
Cell 23 8.4 44.3 1.31 0.19 0.14 0.86 1.60 0.07 1.66 Effective Stress

Lodalen Slope 14.0 17.0 1.33 0.11 0.09 -0.01 0.04 0.01 2.93 Effective Stress

Muar Trial 
Embankment 26.6 3.3 1.42 0.22 0.16 0.33 1.80 0.07 1.92 Total Stress

Congress Street 
Open Cut 20.8 14.3 1.44 0.33 0.23 0.84 6.05 0.09 1.33 Total Stress

Cho Yiu Estate 29.4 12.8 1.53 0.38 0.25 0.42 6.53 0.09 1.42 Effective Stress

® Overall slope angle (including berms, change in slope,....) 

© Coefficient of variation 

© Coefficient of Skewness
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T able 12-3 Summary o f  the results o f  probabilistic slope stability analyses; Safe Slopes -  Naive Analysis (cont’d)

Case Study

Slope Geom etry Factor of Safety
Probability of 
U nsatisfactory 

Perform ance (10‘2) Reliability 
Index; p

Type of 
Analysis

Angle®
(deg.)

H eight
(m)

E[FS] ctIFS] ©c.o.v. Skewness® EIPul °[P «]

Ching Cheung 
Road 35.6 30.4 1.31 0.27 0.20 0.55 10.27 0.10 1.18 Effective Stress

TsingY i (1) 
Slope 26.6 51.7 1.34 0.32 0.24 0.57 13.22 0.17 1.07 Effective Stress

Shek Kip Mei 
Slope 31.2 20.8 1.46 0.35 0.24 0.47 8.04 0.10 1.31 Effective Stress

® Overall slope angle (including berms, change in slope,...,) 
® Coefficient of variation 

© Coefficient of Skewness



CHAPTER 13

TOWARDS A QUANTITATIVE RISK  
ANALYSIS FOR SHEK KIP MEI 

SLOPE

Estimating the probability of unsatisfactory performance o f a given slope is by 

itself a major step ahead o f the traditional deterministic factor o f safety. However, it still 

falls short of addressing the totality of the landslide problem. Without addressing failure 

consequences, the risk assessment would remain incomplete. The failure consequences of 

a large slope in a  densely populated area are clearly different from those o f a small slope 

in a remote location, although they could have similar probabilities o f unsatisfactory 

performance. By combining hazard frequency and failure consequence, quantitative risk 

analysis (QRA) provides a rational basis for judging the acceptability o f a slope. In this 

chapter, a site-specific QRA is undertaken to assess the landslide risk of the re-designed 

(i.e., acceptable) Shek Kip Mei slope (Section 3.4.8 and Figure 11-41, Chapter 11). In 

line with the objectives listed in Chapter 1, the analyses presented here illustrates the use 

and value of the probability of unsatisfactory performance as an input to site-specific 

QRA studies. The assessment is focused entirely on estimating the risk o f loss of life for 

the residents o f Block 36 at the foot of the slope. The risks o f injury, property loss or 

environmental damage are not considered. The following sections describe the analyses 

undertaken and the logic behind the judgements made.

1. O BSERVATIONS RELEVANT TO TH E ANALYSIS

The failure o f  the Shek Kip Mei slope is described in detail in the report prepared 

by Fugro Maunsell Scott Wilson Joint Venture (FMSW, 2000). A summary focusing on 

the technical factors contributing to the failure is presented in Chapter 11. The 

observations and surroundings relevant to the risk analysis are extracted from FMSW
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(2000) report and summarized below. They are deemed applicable to the assessment of

the risk associated with the modified (i.e., acceptable) slope geometry.

• The slope is located to the rear of a residential building (Block 36). The building is 

about 54m x 10m, with the longitudinal direction parallel to the slope. The building is 

6 floors high and is situated only 5m from the toe o f the slope. No information was 

available on the number of residents in the building.

• The width of the landslide was about 37m; nearly 1.75 times the height o f the slide 

(i.e., height difference between the highest point on the scarp and the slide toe point).

•  The timing of the slide (morning of August 25, 1999) and the absence of any water- 

carrying services suggested that it was triggered by the rainstorm o f August 21-25. The 

return period o f the storm was estimated to be 31 years. It should be noted that 

estimating the return period o f a storm in relation to a landslide incident is a difficult 

task because o f the possible role of antecedent rainfall in triggering the slide.

• The mobility o f the displaced mass was limited and most o f the material remained on 

the slope. Nonetheless, the detachment and collapse o f localized areas on the slope 

resulted in relatively mobile material.

• Numerous signs o f slope distress were observed which prompted the Geotechnical 

Engineering Office o f Hong Kong to order the evacuation of Block 36.

• The interaction between the northern and southern parts o f the slope is, apparently, 

small. The failure modes of the two parts were markedly different and no evidence of a 

subsequent failure triggered by initial instability was observed. The different local 

geological and hydrological conditions in the two sections are probably the main 

factors behind that lack of interaction.

2. RISK ANALYSIS

A brief overview of QRA methods and types is presented in Chapter 2. Because of

its ability to account for a high level o f detail, event tree analysis is considered the most
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suitable technique for site-specific QRA studies. Care should be taken, however, that the 

level o f  detail corresponds to the amount of data available. The precision o f a highly 

detailed analysis based on limited data could be misleading. Exercising engineering 

judgment and subjective assessment of some of the inputs to the risk analysis (particularly 

consequence assessment) is almost inevitable. By breaking down the risk analysis into a 

number of simpler scenarios, event trees greatly facilitate the exercising of transparent 

and consistent judgment. Wong et al. (1997) pointed out that subjective estimates are 

naturally open to debate. The division of the problem into a number of elementary 

components also reduces the scope of debate, as all the assumptions made may not be in 

dispute, and facilitates more effective communication and discussion o f the assessors’ 

judgments.

An event tree analysis is undertaken to demonstrate the implementation of a site- 

specific QRA study for the Shek Kip Mei slope. Only the risk of loss o f life is considered 

in the assessment. Three different hazards are identified as described in Section 2.1. For 

each hazard, an event tree comprising a number o f possible scenarios relevant to the 

failure o f the Shek Kip Mei slope is prepared and the frequency o f each scenario is 

estimated. The analysis addresses the temporal variability of the elements at risk, the 

development of signs of slope distress, the efficiency o f warning and emergency response 

measures, the travel distance o f the debris and the amount of protection offered by the 

building. The structure of the event tree is described in Section 2.2 and illustrated in 

Figure 13—4, Figure 13—5 and Figure 13—6 at the end of the chapter. The likely 

consequence of each event tree scenario is obtained based on estimates o f the number and 

vulnerability of the people at risk, as described in Section 2.3.

It should be noted that not all the information needed for the analysis was 

available and some assumptions had to be made (e.g., number o f residents in Block 36, 

type o f structure of the building). An effort is made to ensure that these assumptions are 

reasonable and not entirely arbitrary.
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2.1 Hazard Assessment

Hazard assessment includes hazard identification and frequency estimation. As 

outlined in Chapter 11, only slides are considered in this study. Other failure modes (e.g., 

liquefaction, washout) are not taken into account. As such, the estimated risk (Section 

2.4) should be regarded as a lower bound to the total risk o f slope failure.

Three hazards are addressed in this assessment. All are sliding shear failures but 

o f different scales. Each hazard refers to one o f the slip surfaces shown in Figure 11-41 o f 

Chapter 11. Table 13-1 summarizes the hazards considered in the analysis. The volume o f 

the slide is estimated on the assumption that the width is 1-2 times the height. In 

estimating the probabilities of unsatisfactory performance o f these hazards (Chapter 11), 

time was not a factor. In other words, the pore pressure conditions considered in the 

analysis are assumed to prevail at all times. In reality, those pore pressures are a result of 

the rainstorm o f August 21-25, 1999, which has an estimated return period of 31 years. 

The annual probability o f each hazard (Table 13-1) is, thus, the product of the probability 

of unsatisfactory performance and the annual frequency of the triggering rainstorm 

(3.2x1 O'3).

Table 13-1 Hazards addressed in risk analysis - Shek Kip Mei slope

Hazard
No. Description

Failure
H eight

(m)

Estimated 
Slide Volume 

(m3)

Slip®
Surface

No.

Hazard  
Probability  
(per year)

1 Deep-seated failure involving 
total height o f slope 20.8 2500-5000 1 0.67X10*4

2
Shallow failure involving 
70% of slope height 14.6 300-600 2 2.72x10"*

3
Shallow localized failure at 
the top o f the slope 4.5 25-50 3 1.96x1 O'3

® Refer to Figure 11-41, Chapter 11
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2.2 Event Tree Development

2.2.1 Time Of The Day
The time o f the landslide as used in the analysis refers to the day or n ight, rather 

than the absolute time. The probabilities of the slide occurring during the day or night are 

intuitively similar and equal to 0.5. The consequences o f failure could, however, be 

markedly different. Given that signs of slope distress occur, the effectiveness o f warning 

measures and the efficiency o f emergency response (e.g., evacuation of the building) are 

largely reduced during the night compared to the daytime. More importantly, the number 

of building occupants (i.e., elements at risk) varies significantly between the day and 

night.

2.2.2 Signs of Slope Distress/Warning and Response Measures
The failure o f the original geometry of Shek Kip Mei slope did not occur suddenly 

and numerous signs o f slope distress were noted (Section 1). Block 36 was evacuated in 

response to these signs. It is judged that the same scenario is likely to happen, should the 

modified geometry also fail. The development of signs of slope distress is judgmentally 

assigned a probability o f occurrence of 0.85. The probability o f effective warning and 

evacuation measures is 0.80 during the daytime. The darkness of the night is, however, 

likely to hinder these efforts. The probability of an efficient warning and emergency 

response is reduced to 0.50 during the night. In the absence of signs of slope distress prior 

to failure, i.e. sudden collapse of the slope, the probability of an effective warning and 

emergency response is considered zero.

2.2.3 Travel of Displaced Material
The travel distance of landslide debris defines the extent of the area affected by 

the slide and is, thus, one of the most important factors in assessing the failure 

consequences. The travel o f the debris is governed by factors such as slope height and 

gradient, type of soil forming the slope, failure mode, scale of failure, degree of 

disintegration of the failed mass during movement, amount of water in the debris and the
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gradient o f the downslope area. Given the complexities in quantifying these factors, 

predicting the debris travel distance is an extremely difficult task.

Based on the large and detailed database of slope failure incidents in Hong Kong, 

Wong and Ho (1996) and Wong et al. (1997) established empirical correlations between 

the landslide volume and the apparent angle o f friction for different failure modes. The 

apparent angle of friction is the inclination of the line joining the tip of the displaced 

material and the crown o f the slide. For practicality, Wong et al. (1997) used the 

inclination o f the line joining the slope crest and the tip of the debris (travel angle) to 

describe the travel distance. They commented that most slope failures in Hong Kong are 

shallow and the travel angle tends to be very close to the apparent angle of friction. The 

database o f rain-induced sliding failures gathered by Wong et al.(l997) is used in this 

study to assess the likely ranges of the debris travel angle for the hazards identified in 

Section 2.1.

Based on the estimated failure scale, three travel angles are assigned for each 

hazard to account for the uncertainty of travel distance predictions. The probability o f 

each travel angle is evaluated judgmentally based on the database of Wong et al. (1997) 

and the field observations o f debris mobility at Shek Kip Mei slide (Section 1). For 

Hazard No. 1, a travel angle in the range o f 25-30 degrees is considered reasonable. The 

corresponding outward movements at the toe o f the slope are in the range of 10m to 2m, 

respectively, which are consistent with the observed low mobility o f the failed mass 

(Section 1). Because of the large volume of failure, there is a small chance that the 

mobility o f the debris may increase by the break up of the failed material during 

movement. A travel angle of 20 degrees is also considered. Three travel angles, 20, 25 

and 30 degrees, are taken into account in the event tree with respective probabilities of

0.05, 0.55 and 0.40. Figure 13-1 shows the limit of debris run-out for each scenario.

For Hazard No. 2 (landslide volume of 300-600m3), the database o f Wong et al. 

(1997) suggests a travel angle in the range o f 30-40 degrees. Since the overall slope angle 

is only 33 degrees, the upper values in that range are not applicable (travel angle cannot
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be steeper than the slope angle). Three travel angles are considered in the analysis; 25, 30 

and 32.5 degrees. The latter 2 values represent the most likely angles and are assigned 

probabilities o f 0.60 and 0.35, respectively. The 25 degrees angle is considered unlikely 

and assigned a low probability o f 0.05.

The travel angles adopted for Hazard No. 3 (localized failure) are 30, 32.5 and 35 

degrees. The 35 degrees angle implies that the debris is immobile. Based on the field 

observations o f Section 1 (debris from localized failures was relatively mobile), it is 

considered unlikely and assigned a low probability of 0.10. The 30 and 32.5 degrees 

angles are thought to be the most probable values and assigned probabilities o f 0.35 and

0.55, respectively. The selected travel angles and the corresponding probabilities are 

shown on the event tree branches in Figure 13—4, Figure 13—5 and Figure 13-6 for 

Hazards 1, 2 and 3, respectively.

E,
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Travel Angle = TA 
Shadow Angle = SA40

35 SA = 28.5

Block 
No. 36

Decomposed
Granite
(HDG to CDG)
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60504030200 10

Distance (m)

Figure 13—1 Limits o f landslide debris run-outs for Hazard No. 1 relative to the 

location of Block 36
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2.2.4 Effect o f  Failure on Block 36

Should failure occur, the probability o f death and the number o f people at risk 

depend largely on the effect o f the slide on the nearby residential building, Block 36. In 

other words, the interaction between the debris and the structure at risk. Three scenarios 

are considered; the building collapses under the impact of the debris, the building does 

not collapse but the debris enters into the ground floor and the building withstands the 

impact and suffers no damage. The likelihood of each scenario is a function of the scale 

o f failure, debris travel angle, impact energy and building structure. The proximity o f a 

facility to the slide could be expressed in terms o f the "shadow angle" (Wong et al., 

1997). It is defined as the inclination o f the line joining the crest o f the slope and the toe 

of the facility. For Block 36, the shadow angle is about 28.5 degrees. Comparing the 

shadow angle with the debris travel angles, Figure 13-1, suggests that damage to Block 

36 can only be attained as a results of an impact by debris with a travel angle less than 30 

degrees. No information is available about the structure of Block 36. However, it is 

judged that the building is likely to collapse under the impact o f a large volume (massive 

failure) o f highly mobile debris (travel angle of 20 degrees). Slides with debris travel 

angles higher than 30 degrees are assumed to have no effect on the building. The 

probabilities o f the three postulated scenarios are evaluated judgmentally based on the 

debris travel angle, the shadow angle and the size of the slide. The proposed values are 

indicated on the branches o f the event trees in Figure 13-4, Figure 13—5 and Figure 13-6.

2.3 Consequence Assessment

2.3.1 N um ber o f  People a t R isk

The first step in assessing failure consequences is to evaluate the number of 

people endangered by the slide (i.e., elements at risk), should it occur. That number 

largely depends on the time o f failure (i.e., day or night) as well as the portion o f the 

building affected by the debris. For example, if the building collapses, all the residents 

present at the time of failure are at risk. On the other hand, if the building did not collapse 

but the debris enters the building, only those residents in the ground floor are at risk. For
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Hazards No. 2 and 3 (major and minor failures), the amounts o f debris are limited and 

only portions o f the ground floor (e.g., equal to the width of the slide) would be affected 

by the slide.

In the absence of any information regarding the number o f residents in Block 36, 

the assessment is based on an assumed population density o f 0.05 person/m2 per floor. 

The same figure was used by ERM (1996) in assessing the risks from boulder falls in 4 

study areas in Hong Kong. As mentioned in Section 1, the building comprises 6 floors. 

Only 25% of the residents are assumed to be present during the daytime. The number of 

people at risk for each event tree scenario is estimated and shown next to the tree branch 

in Figure 13—4, Figure 13—5 and Figure 13-6.

2.3.2 Probability o f  Death

Having estimated the number of people at risk, the next step is to estimate their 

vulnerability, or the probability of death. It refers to the likelihood o f an occupant of 

Block 36 being killed as a result of the landslide debris striking the building. The 

probability value is governed primarily by the extent of damage to the building (e.g., 

building collapse, debris entering ground floor without the building collapsing) and the 

volume of landslide debris (i.e., failure scale). There are no technical means, yet, to 

estimate the probability o f death and it is solely based on judgment. ERM (1999), 

however, indicated that past incidents of total building collapse in Hong Kong involved a 

high mortality rate o f possibly 90% or higher of building occupants. DNV (1996) 

exercised their judgement in estimating the probability of death for a number o f event tree 

scenarios resembling the impact of landslide debris on a wide range o f facilities (road, 

footpath, squatter, building,...) situated at the toe o f the slope. Likewise, the probabilities 

o f death in this assessment are estimated judgmentally. Reference is made, however, to 

the DNV (1996) study. The adopted probabilities of death are summarized in Table 13-2.
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Table 13-2 Probability o f death o f occupants of Block 36 -  Shek 
Kip Mei slope

Hazard
No.

Failure 
Scale (m3) Effect on Building Probability 

of Death

• Building Collapses 1.0

1 2500-5000 • Debris enters building 0.6
• No impact on Building 0.0

• Building Collapses 0.7

2 300-600 • Debris enters building 0.4
• No impact on Building 0.0

3 25-50
• Debris enters building 0.1

• No impact on Building 0.0

2.4 Risk Estimation

The risk of loss of life from a sliding failure of the Shek Kip Mei slope is 

evaluated in terms of the societal risk to the residents of Block 36 (i.e., population at 

risk). Figure 13—4, Figure 13—5 and Figure 13-6 show the event tree analysis and the 

consequence assessment for hazards 1 to 3, respectively. The outcome of the analysis is 

an estimate of the frequency of occurrence of each event tree scenario, f, and the 

corresponding expected number of fatalities, N. For example, Scenario No. 15 in Figure

13-4 (collapse of Block 36 following an impact by a moderately mobile debris resulting 

from a sudden massive slope failure during the daytime) has a frequency o f occurrence of 

6.94x1 O'7 per year and an expected number o f fatalities of 40.5 persons. The number of 

fatalities is obtained by multiplying the number o f people at risk by the probability of 

death. The frequency o f occurrence o f each o f the estimated fatality figures is the product 

o f the probabilities of all the relevant tree branches. The analysis is performed using an 

Excel spreadsheet. The computations are, thus, fully automated. This greatly facilitates
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updating the analysis upon obtaining additional information or examining its sensitivity 

to any input parameter.

The computed societal risk is presented in two forms; the potential loss o f life 

(PLL) and the F-N curve. The potential loss of life is the average annual fatality rate 

associated with the failure o f Shek Kip Mei slope. It is equal to the summation of the 

products of the frequency o f occurrence and the number o f fatalities for all scenarios for 

all hazards. For the Shek Kip Mei slope, the PLL is estimated to be 8.08x10^ per year. A 

break down of this figure is illustrated in Table 13-3. The risk of loss of life as a result of 

a massive slope failure (Hazard No. 1) represents 95% o f the total risk whereas the risk 

associated with a minor failure (Hazard No. 3) is almost zero. Also, the risks associated 

with the scenarios involving the collapse o f Block 36 during the night is about 5.7lxlO '4 

per year; nearly 71% o f the total PLL.

Table 13-3 Annual potential loss of life (PLL) as a result of a sliding failure
of the Shek Kip Mei Slope

Hazard Potential Loss of Life for All 
Event Tree Scenarios

Potential Loss of 
Life Due to Building 

Collapse during 
night (per year)No. Description PLL (per year) % of Total

1 Massive Failure 
(2500-5000 m3) 7.67X10"4 94.9 5.49x1 O'4

2 Major Failure 
(300-600 m3) 4.08x10‘5 5.1 2 .21x l0'5

-» Minor Failure 
(25-50 m3) 0.00 0.0 0.00

Total = 8.08x1 O'4 5.71x10^

The F-N curve is a plot o f the frequency o f occurrence o f N or more fatalities (i.e., 

cumulative frequency), F, versus the number of fatalities, N. It is computed by summing 

all the frequencies corresponding to event tree scenarios (Figure 13—4 to Figure 13-6)
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with a  number o f fatalities equal to or more than N. Figure 13-2 shows the F-N curves of 

Hazards 1 and 2 (Hazard No. 3 has zero fatalities). There is more than an order magnitude 

difference between the two curves. Figure 13-3 shows the F-N curve o f the total risk due 

to Hazards 1, 2 and 3. The calculated risk figures and F-N plots are discussed in more 

detail in Section 3.
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Figure 13-2 Calculated F-N curves for Hazards Nos. 1 and 2 - 

Shek Kip Mei slope

3 . SUM M ARY AND DISCUSSION

The risk o f loss of life as a result o f the failure of the Shek Kip Mei slope is 

assessed. The analysis accounts for one failure mode only; sliding failure triggered by
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rainfall. As such, the estimated risk figures should be regarded as a lower bound to the 

total risk. Three hazards are considered in the analysis based on the failure scale; massive 

failure (2500-5000 m3), major failure (300-600 m3) and m inor failure(25-50 m3). The 

assessment takes into account the annual frequency of each hazard, the temporal and 

spatial distribution of the population at risk, the development of signs of slope distress 

prior to failure and the efficiency o f  emergency response system. It also addresses the 

travel distance of the debris, the degree o f protection offered by the building structure and 

the number of people at risk. The total potential loss of life is estimated to be 8.08x10"* 

per year and the total F-N curve for the 3 hazards addressed is shown in Figure 13—3.

l.E-02

^  l.E-03

U
8 .«  l.E-04

Vi

1  l.E-05
fa
£
jj l.E-06
c
Z<•_
C

>> l.E-07
cO
a*
£ I.E-08

l.E-09
1 10 100 1000 10000 

Number o f Fatalities; N

Figure 13—3 Calculated F-N curve for sliding failure o f Shek Kip

Mei slope and the ERM (1999) risk acceptance criteria
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The F-N curves for Hazard No. 1 (Figure 13—2) and the total risk (Figure 13—3) 

are very similar, in fact they could not be plotted on the same graph because they almost 

coincide with each other. This indicates that the majority of the total risk is attributed to 

Hazard No. 1. This is also evident from examining the estimated values o f the potential 

loss o f life. The PLL o f  Hazard No. 1 constitutes 95% o f the total value whereas the 

contributions o f Hazards 2 and 3 are 5% and 0%, respectively. This supports the 

argument made in Chapter 11 that the high probability o f unsatisfactory performance of 

the minor failure should not be the governing criterion for designing the slope as a whole. 

Instead, local stabilization techniques could be used if  the risks associated with a minor 

failure are deemed high. The consequence assessment is dominated by one scenario; the 

collapse o f Block 36 during the night, which contributes almost 71% o f the total PLL. 

Despite its small frequency o f occurrence (3.58X10'6 per year; a return period of 279,000 

years), the expected high level of fatalities has largely magnified the contribution o f such 

a rare scenario to the total risk.

A rigorous assessment o f the acceptability of the estimated risk is beyond the 

scope of the study. However, some general comments ought to be made. The interim risk 

criteria for landslides and boulder falls from natural terrain proposed by ERM (1999) and 

Reeves et al. (1999) is compared to the F-N curve of the total risk as shown in Figure 13— 

3. The F-N curve falls within the ALARP (as low as reasonably practicable) region. This 

means that the risk level is tolerable; however, practical risk mitigation measures need to 

be considered and evaluated in a cost-benefit analysis. If such measures are proved to be 

cost effective, they should be implemented.

As discussed above, 95% of the risk is attributed to a massive slope failure whose 

probability o f unsatisfactory performance is estimated in Chapter 11 to be 2. lx l O'3. This 

probability value is low compared to the acceptance threshold o f 2x 10'  established in 

Chapter 12; i.e., the slope is reasonably safe from a technical point o f view. On the other 

hand, the consequences o f such a massive failure are significant (refer to the event tree in 

Figure 13-4). As such, the risk mitigation alternatives will be more efficient if  they aim at
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reducing the failure consequences (particularly at the higher end of the number of 

fatalities) rather than lowering the already small probability of unsatisfactory 

performance. Unfortunately, with the size of failure and the proximity of Block 36 to the 

slope, there may not be many practical options available.

There are additional items to be noted. First, the risk criteria o f ERM (1999) and 

Reeves et al. (1999) are for total risk from all credible hazards whereas the calculated 

total F-N curve (Figure 13—3) refers to sliding failure only. Second, these criteria are 

untried, yet, and the authors emphasized that they should be regarded as guidelines only. 

Third, the criteria are developed for landslides from natural terrain and not for man-made 

slopes. An acceptance criterion for man-made slopes, such as the subject cut at Shek Kip 

Mei, would be more stringent. ERM (1999) noted, however, that because of the high 

incidence o f  landslides in Hong Kong, the public may not perceive much difference 

between a landslide from natural terrain and the failure o f a man-made slope.

Based on the above considerations, the risk evaluation undertaken in this section 

does not reflect a complete picture o f the risk level o f the Shek Kip Mei slope. Rather, it 

is intended to be an illustration o f the concepts and the insights gained through a QRA 

study.
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SHEK KIP MEI SLOPE - RISK ANALYSIS

Hazard No. 1 : Deep-Seated Failure Involving Total Height o f  Slope 
Failure Height = 20.8m, Estimated Volume = 2500-5000 m3

Hazard 
Probability 
(per year)

1 Time of 
I Day

Signs of Slope 
Distress Prior 

to Failure

[Warning Issued! Debris 
1 and People 1 Travel Angle 
I Evacuated |

Effect on 
Block No. 36

Scenario
No.

Scenario 
Frequency 
(per year)

Number ol 
people at 

Risk

[probability 
o f Death

Number ol 
Fatalities

(N)

[ Potential 
[ Loss o f Life 
I (per year)

Yes 229E-05 0.0 0.0 0.00 O.OOE+OO
0.80

Building Collapses 2 2.15E-07 40.5 1.0 40.50 8.69E-06
0.75

Yes 20 degrees Debris Enters Building 3 7.I5E-08 6.8 0.6 4.05 2.90 E-07
0.85 0.05 0.25

No impact on Buildini 4 O.OOE+OO 0.0 0.0 0.00 O.OOE+OO
0.00

Building Collapses 5 7.87E-07 40.5 1.0 40.50 3.19E-05
0.25

No 25 degrees Debris Enters Building 6 220E-06 6.8 0.6 4.05 8.92E-06
0.20 0.55 0.70

No impact on Building 7 I.57E-07 0.0 0.0 0.00 O.OOE+OO
0.05

Day Building Collapses 8 O.OOE+OO 40.5 1.0 40.50 O.OOE+OO
0.50 0.00

30 degrees Debris Enters Building 9 O.OOE+OO 6.8 0.6 4.05 O.OOE+OO
0.40 0.00

No impact on Building 10 2.29 E-06 0.0 0.0 0.00 O.OOE+OO
1.00

Yes I! O.OOE+OO 0.0 0.0 0.00 O.OOE+OO
0.00

Building Collapses 12 1.89E-07 40.5 1.0 40.50 7.67E-06
0.75

20 degrees Debris Enters Buildini 13 6J1E-08 6.8 0.6 4.05 2^6E-07
0.05 025

No No impact on Buildini 14 O.OOE+OO 0.0 0.0 0.00 O.OOE+OO
0.15 0.00

Building Cotlapses 15 6.94 E-07 40.5 1.0 40.50 Z81E-05
0.25

No 25 degrees Debris Enters Buildini 16 1.94 E-06 6.8 0.6 4.05 7.87E-06
1.00 0.55 0.70

Mo impact on Buildini 17 1.3 9 E-07 0.0 0.0 0.00 O.OOE+OO
0.05

Slope Fails Building Collapses 18 O.OOE+OO 40.5 1.0 40.50 O.OOE+OO
6.73 E-05 0.00

30 degrees Debris Enters Buildini 19 O.OOE+OO 6.8 0.6 4.05 O.OOE+OO
0.40 0.00

Mo impact on Buildini 20 2.02E-06 0.0 0.0 0.00 O.OOE+OO
1.00

Figure 13-4 Event tree analysis and consequence assessment for Hazard No. 1 -  Shek 

Kip Mei Slope
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SHEK KIP MEI SLOPE - RISK ANALYSIS

Hazard No. 1 : Deep-Seated Failure Involving Total Height o f Slone 
Failure Height - 20.8m, Estimated Volume -  2500-5000 m3

Hazard 
ProbabPity 
(per year)

Time of 
Day

I Signs o f Slope 
1 Distress Prior 
I to Failure

W arning Issued! Debris 
and People 1 Travel Angle 
Evacuated |

1 EfTect on 1 j
1 Block No. 36

Scenario
No.

I Scenario 
Frequency 

1 (per year)

Number ol 
people at 

Risk

[probability 
of Death

Number ol 
Fatalities

(N)

1 Potential 
Loss o f Life 

1 (per year)

Slope Fails Yes 21 1.43 E-OS 0.0 0.0 0.00 O.OOE+OO
6.73E-05 0.50

Suilding Collapses 22 526E-07 162.0 1.0 16200 8.69E-05
0.75

Yes 20 degrees Debris Enters Building 23 1.79E-G7 27.0 0.6 16.20 290E-06
0.85 0.05 0.25

No impact on Buildini 24 O.OOE+OO 0.0 0.0 0.00 O.OOE+OO
0.00

Building Collapses 25 I.97E-06 162.0 1.0 16200 3.I9E-04
0.25

No 25 degrees Debris Enters Buildini 26 5.51 E-06 27.0 0.6 16.20 8.92E-05
0 J 0 0.55 0.70

No impact on Buildini 27 3.93 E-07 0.0 0.0 0.00 O.OOE-OO
0.05

Night Building Collapses 28 O.OOE+OO 162.0 1.0 16200 O.OOE+OO
0.50 0.00

30 degrees Debris Enters Buildini 29 O.OOE+OO 27.0 0.6 16.20 O.OOE+OO
0.40 0.00

No impact on Buildini 30 5.72E-06 0.0 0.0 0.00 O.OOE+OO
1.00

Yes 31 O.OOE+OO 0.0 0.0 0.00 O.OOE+OO
0.00

Building Collapses 32 I.89E-07 162.0 1.0 16200 3.07E-05
0.75

20 degrees Debris Enters Buildini 33 6.31 E-OS 27.0 0.6 1620 1.02E-06
0.05 0.25

No No impact on Buildini 34 O.OOE+OO 0.0 0.0 0.00 O.OOE+OO
0.15 0.00

Building Collapses 35 6.94E-07 162.0 1.0 16200 I. I2E-04
0.25

No 25 degrees Debris Enters Buildini 36 1.94E-06 27.0 0.6 1620 3.I5E-05
1.00 0.55 0.70

No impact on Buildini 37 I29E-07 0.0 0.0 0.00 O.OOE+OO
0.05

Building Collapses 38 O.OOE+OO 162.0 1.0 16200 O.OOE+OO
0.00

30 degrees Debris Enters Buildini 39 O.OOE+OO 27.0 0.6 1620 O.OOE+OO
0.40 0.00

'Jo impact on Buildini 40 2.02E-06 0.0 0.0 0.00 O.OOE+OO
1.00

PLL = r 7.67E-04

Figure 13-4 Event tree analysis and consequence assessment for Hazard No. 1 — Shek 

Kip Mei Slope (cont’d)
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SHEK KIP MEI SLOPE - RISK ANALYSIS

Hazard No. 2 : Shallow Failure Involving 70% o f Slope Height 
Failure Height = 14.6m, Estimated Volume = 300-600 m3

Hazard 
Probability 
(per year)

|  Time o f 
I Day

Signs o f Slope! Warning Issued! Debris 
Distress Prior 1 and People 1 Travel Angle 

to Failure | Evacuated I

1 Effect on | 
I Block No. 36 I

Scenario
No.

Scenario 
Frequency 
(per year)

Number ol 
people at 

Risk

Probability 
o f Death

Number of 
Fatalities

(N)

Potential 
Loss of Life 
(per year)

Yes 9.23E-05 0.0 0.0 0.00 O.OOE+OO
0.80

Building Collapses 2 5.77E-0S 40.5 0.7 2835 I.64E-06
0.05

Yes 25 degrees Debris Enters Buildini 3 6.93 E-07 3.7 0.4 1.46 I.0IE-06
0.85 0.05 0.60

No impact on Buildini 4 4.04E-07 0.0 0.0 0.00 O.OOE+OO
0235

Building Collapses 5 O.OOE+OO 40.5 0.7 28235 O.OOE+OO
0.00

No 30 degrees Debris Enters Buildini 6 O.OOE+OO 3.7 0.4 1.46 O.OOE+OO
0.20 0.55 0.00

No impact on Buildini 7 I.27E-05 0.0 0.0 0.00 O.OOE+OO
1.00

Day Building Collapses 8 O.OOE+OO 40.5 0.7 28235 O.OOE-OO
0.50 0.00

32.5 degrees Debris Enters Buildini 9 O.OOE+OO 3.7 0.4 1.46 O.OOE-OO
0.40 0.00

No impact on Buildini 10 9.23 E-06 0.0 0.0 0.00 O.OOE+OO
1.00

Yes 11 O.OOE+OO 0.0 0.0 0.00 O.OOE-OO
0.00

Building Collapses 12 5.09E-08 40.5 0.7 28.35 1.44 E-06
0.05

25 degrees Debris Enters Buildini 13 6.1 IE-07 3.7 0.4 1.46 8.92E-07
0.05 0.60

No No impact on Buildini 14 3.56E-07 0.0 0.0 0.00 O.OOE+OO
0.15 0235

Building Collapses 15 O.OOE+OO 40.5 0.7 2835 O.OOE+OO
0.00

No 30 degrees Debris Enters Buildini 16 O.OOE+OO 3.7 0.4 1.46 O.OOE+OO
1.00 0.55 0.00

No impact on Buildini 17 I.I2E-05 0.0 0.0 0.00 O.OOE+OO
1.00

Slope Fails Building Collapses IS O.OOE+OO 40.5 0.7 2835 O.OOE+OO
2.72E-04 0.00

32.5 degrees Debris Enters Buildini 19 O.OOE+OO 3.7 0.4 1.46 O.OOE+OO
0.40 0.00

No impact on Buildini 20 8.I5E-06 0.0 0.0 0.00 O.OOE+OO
1.00

Figure 13—5 Event tree analysis and consequence assessment for Hazard No. 2 — Shek 

Kip Mei Slope

346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



SHEK KIP MEI SLOPE - RISK ANALYSIS

Hazard No. 2 : Shallow Failure Involving 70% o f Slope Height 
Failure Height = 14.6m, Estimated Volume = 300-600 m3

Hazard 
Probability 
(per year)

I T in e  of 
Day

I Signs o f Slope 
1 Distress Prior 
1 to Failure

(Warning Issnei 
I and People 
I Evacuated

Debris 
Travel Angle

EITect on 1 
Block No. 36

Scenaric
No-

M Scenario 
[ Frequency 
I (per year)

Number ol 
people at 

Risk

[probability 
o f Death

[Number ol 
Fatalities

1 (X)

| Potential 
Loss of Life 

1 (pervear)

Slope Fails Yes 21 5.77E-05 0.0 0.0 0.00 O.OOE+OO
X72E-04 0.50

Building Collapses 22 1.44E-07 162.0 0.7 113.40 I.64E-05
0.05

Yes 25 degrees Debris Enters Buildini 23 1.73 E-06 14.6 0.4 5.84 L01E-05
0.85 0.05 0.60

No impact on Buildini 24 t.OlE-06 0.0 0.0 0.00 O.OOE+OO
0.35

Building Collapses 25 O.OOE+OO 162.0 0.7 113.40 O.OOE+OO
0.00

No 30 degrees Debris Enters Buildini 26 O.OOE+OO 14.6 0.4 5.84 0.00E-KX)
0.50 0.55 0.00

No impact on Buildini 27 3.17E-05 0.0 0.0 0.00 O.OOE+OO
1.00

Night Building Collapses 28 O.OOE+OO 16X0 0.7 113.40 O.OOE+OO
0.50 0.00

32.5 degrees Debris Enters Buildini 29 O.OOE+OO 14.6 0.4 5.84 O.OOE+OO
0.40 0.00

No impact on Buildini 30 2J1E-05 0.0 0.0 0.00 O.OOE+OO
1.00

Yes 31 O.OOE+OO 0.0 0.0 0.00 O.OOE+OO
0.00

Building Collapses 32 5.09E-0S 16X0 0.7 113.40 5.77E-06
0.05

25 degrees Debris Enters Buildini 33 6.11 E-07 14.6 0.4 5.84 3.57E-06
0.05 0.60

No No impact on Buildini 34 3.56E-C7 0.0 0.0 0.00 O.OOE+OO
0.15 0.35

Building Collapses 35 O.OOE+OO 16X0 0.7 113.40 O.OOE+OO
0.00

No 30 degrees Debris Enters Buildini 36 O.OOE+OO 14.6 0.4 5.84 O.OOE+OO1.00 0.55 0.00

Sro impact on Buildini 37 1.12E-05 0.0 0.0 0.00 O.OOE+OO
1.00

3uilding Collapses 38 O.OOE+OO 16X0 0.7 113.40 O.OOE+OO
0.00

32.5 degrees Debris Enters Buildini 39 O.OOE+OO 14.6 0.4 5.84 O.OOE+OO
0.40 0.00

No impact on Buildini 40 8.15E-06 0.0 0.0 0.00 O.OOE+OO
1.00

PLL = z 4.08E-05

Figure 13-5 Event tree analysis and consequence assessment for Hazard No. 2 -  Shek 

Kip Mei Slope (cont’d)
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SHEK KIP MEI SLOPE - RISK ANALYSIS

(per year)

Day
0.50

Slope Fails
L96E-03

4.5m, Estimated Volume

‘I Signs of Slope (Warning Issvci 
1 Distress Prior I and People 
I to Failure | Evacuated

= 25-50 m3

Debris 
Travel Angle

I EfTect on 
I Block No. 36

Scenario
No.

m Scenario 
1 Frequency 
I (per year)

Number ol 
people at 

Risk

' Probability 
o f Death

Number ol 
Fatalities

1 (N)

1 Potential 
1 Loss of LiLe 
I (per year)

Yes 1 6.65E-04 0.0 0.0 0.00 O.OOE+OO
0.80

Building Collapses 2 O.OOE+OO 4 03 0.4 1620 O.OOE+OO
0.00

Yes 50 degrees Debris Enters Building 3 O.OOE+OO 13 0.1 0.13 O.OOE+OO
0.85 035 0.00

No impact on Building 4 5.82E-05 0.0 0.0 0.00 O.OOE+OO
LOO

Building Collapses 5 O.OOE+OO 403 0.4 1620 O.OOE+OO
0.00

No 323 degrees Debris Enters Buildini 6 O.OOE+OO 13 0.1 0.13 O.OOE+OO
020 0.55 0.00

No impact on Buildini 7 9.14E-05 0.0 0.0 0.00 O.OOE+OO
1.00

Building Collapses 8 O.OOE+OO 403 0.4 1620 O.OOE+OO
0.00

35 degrees Debris Enters Buildini 9 O.OOE+OO 13 0.1 0.13 O.OOE+OO
0.10 0.00

No impact on Buildini 10 L66E-05 0.0 0.0 0.00 O.OOE+OO
LOO

Yes 11 O.OOE+OO 0.0 0.0 0.00 O.OOE+OO
0.00

Building Collapses 12 O.OOE+OO 403 0.4 16.20 O.OOE+OO
0.00

30 degrees Debris Enters Buildini 13 O.OOE+OO 13 0.1 0.13 O.OOE+OO
035 0.00

No No impact on Buildini 14 5.13E-05 0.0 0.0 0.00 O.OOE+OO
0.15 LOO

Building Collapses 15 O.OOE+OO 403 0.4 1620 O.OOE+OO
0.00

No 323 degrees Debris Enters Buildini 16 O.OOE+OO 13 0.1 0.13 O.OOE+OO
LOO 035 0.00

No impact on Buildini 17 8.06E-05 0.0 0.0 0.00 O.OOE+OO
LOO

Building Collapses 18 O.OOE+OO 403 0.4 1620 O.OOE+OO
0.00

35 degrees Debris Enters Buildini 19 O.OOE+OO 13 0.1 0.13 O.OOE+OO
0.10 0.00

No impact on Buildini 20 L47E-05 0.0 0.0 0.00 O.OOE+OO

Figure 13-6 Event tree analysis and consequence assessment for Hazard No. 3 — Shek 

Kip Mei Slope
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SHEK KIP MEI SLOPE - RISK ANALYSIS

Hazard No. 3 : Shallow Localized Failure at T o p  o f Slope Involving 20% o f  Its Height 
Failure Height = 4.5m, Estimated Volume = 25-50 m3

Hazard Time of Signs o f Slope Warning Issued Debris | Effect on 1 Scenario Scenario Number of [Probability Number of Potential
Probability Day Distress Prior and People Travel Angle 1 Block No. 36 I No. Frequency people at ofDeatb Fatalities Loss of Life
(per year) to Failure Evacuated 1 1 (per year) Risk 1 (N) (per year)

Yes 21 4.I5E-04 0.0 0.0 0.00 O.OOE+OO
0.50

Building Collapses 22 O.OOE+OO 162.0 0.4 64.80 O.OOE-KX)

Yes 30 degrees

0.00

Debris Enters Buildini 23 O.OOE+OO 5.0 0.1 030 O.OOE+OO
0.85 035 0.00

No impact on Buildini 24 I.45E-04 0.0 0.0 0.00 O.OOE+OO
LOO

Building Collapses 25 O.OOE+OO 162.0 0.4 64.80 O.OOE+OO

No 323  degrees

0.00

Debris Enters Buildini 26 O.OOE+OO 5.0 0.1 0.50 O.OOE+OO
0.50 035 0.00

No impact on Buildini 27 2.28 E-04 0.0 0.0 0.00 O.OOE+OO

Night
1.00

Building Collapses 28 O.OOE+OO 162.0 0.4 64.80 O.OOE+OO
0.50

35 degrees

0.00

Debris Enters Buildini 29 O.OOE+OO 5.0 0.1 030 O.OOE+OO
0.10 0.00

No impact on Buildini 30 4.I5E-05 0.0 0.0 0.00 O.OOE+OO
1.00

Yes 31 O.OOE+OO 0.0 0.0 0.00 O.OOE+OO
0.00

Building Collapses 32 O.OOE+OO 162.0 0.4 64.80 O.OOE+OO

30 degrees

0.00

Debris Enters Buildini 33 O.OOE+OO 5.0 0.1 030 O.OOE+OO

No

035 0.00

No impact on Buildini 34 5.13E-05 0.0 0.0 0.00 O.OOE+OO
0.15 1.00

Building Collapses 35 O.OOE+OO 162.0 0.4 64.80 O.OOE+OO

No 323 degrees

0.00

Debris Enters Buildini 36 O.OOE+OO 5.0 0.1 030 O.OOE+OO
1.00 035 0.00

No impact on Buildini 37 8.06E-05 0.0 0.0 0.00 O.OOE+OO
1.00

Building Collapses 38 O.OOE+OO 16X0 0.4 64.80 O.OOE+OO

35 degrees

0.00

Debris Enters Buildini 39 O.OOE+OO 5.0 0.1 030 O.OOE+OO
0.10 0.00

impact on Buildini 40 L47E-05 0.0 0.0 0.00 O.OOE+OO
LOO

PLL® z O.OOE+OO

Figure 13-6 Event tree analysis and consequence assessment for Hazard No. 3 — Shek 

Kip Mei Slope (cont’d)
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CHAPTER 14 

CONCLUSIONS

Probabilistic slope stability analysis is a rational means to incorporate uncertainty 

into the design process. It is also the most suitable approach for estimating hazard 

frequency for site-specific QRA studies. One o f the main conclusions o f this study is that 

probabilistic analyses can be implemented in practice with relative ease. The stated 

obstacles impeding the adoption of such techniques into geotechnical practice are more 

apparent than real.

A spreadsheet approach for probabilistic slope stability analysis is developed in 

Chapter 5. The methodology is based on Monte Carlo simulation using the commercial 

software @Risk and Excel. The underlying procedures and concepts are simple and 

transparent, requiring only fundamental knowledge o f statistics and probability theory. At 

the same time, the analysis accounts for the spatial variability of the input variables, the 

statistical uncertainty due to limited data and the bias in the empirical factors and 

correlations used.

The outputs of the probabilistic analyses o f the James Bay dykes, based on this 

approach, are compared with those based on the FOSM method in Chapter 6. The results 

o f the two analyses are in good agreement. The methodology is further tested through the 

analysis o f 10 case studies (Chapters 6-11). The cases involved effective and total stress 

analyses, complex stratigraphy and geometry and circular and non-circular slip surfaces. 

Two different slope analysis methods are used; the Bishop method and the Spencer 

method. The proposed spreadsheet approach proved practical and flexible in handling 

such a  wide variety o f slope problems.

The results o f the probabilistic analyses highlight the limitation o f  the factor of 

safety. Some slopes designed for high factors o f safety are found to be less reliable than

350

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



slopes designed for lower factors o f safety. Such inconsistency is a direct result of 

ignoring uncertainty in conventional slope design practice. The factor of safety alone can 

give a misleading sense of safety and is not a sufficient safety indicator. The probability 

o f unsatisfactory performance and the reliability index are more consistent safety 

measures.

The study also calibrates acceptable slope design practice in probabilistic terms 

(Chapter 12). A probability of unsatisfactory performance of 2x1 O'2 is regarded as an 

upper design threshold in relation to slope failures. It is equivalent to a reliability index of 

2.0. It is emphasized, however, that other considerations, such as failure consequences 

and serviceability, may necessitate the adoption o f more stringent design criteria. The 

study affirms that combining, rather than replacing, conventional deterministic slope 

analysis and probabilistic analysis provides greater insight into design reliability and 

enhance the decision-making process.

Another important conclusion (Chapter 12) is that slopes deemed acceptable 

based on current slope design practice are in fact less reliable than commonly thought. An 

influential engineering organization such as the US Corps of Engineers (1995), for 

example, suggested that a "Good" performance level is equivalent to a probability of 

unsatisfactory performance in the range of 3xl0‘5 or a reliability index of 4.0. The 

analyses presented in this study show that acceptable, or safe, slopes have much higher 

probabilities of unsatisfactory performance and much lower reliability indices. The 

heavily instrumented and monitored Syncrude Cell 23 dyke, for example, is considered an 

adequate design while it has a probability o f unsatisfactory performance of 1.6x10*3 and a 

reliability index of 2.3.

The inherent spatial variability of soil properties and pore pressure is one o f the 

main sources of parameter uncertainty. Probabilistic analyses ignoring spatial variability 

and assuming perfect correlations (i.e. naive analyses) are inadequate. The study shows 

that the naive analysis significantly overestimates the probability o f unsatisfactory 

performance (Chapter 12). Furthermore, the results of the analysis in some cases seem
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unrealistic. For example, the inclination of the Tsing Yi: 1 slope (Chapter 11) is flattened 

from 35 degrees at failure to 26.6 degrees for what is deemed an acceptable design. Yet, 

the probability o f unsatisfactory performance based on the naive approach remains very 

high, 1.3x10’', and the reliability index is very low, 1.07.

The practical value o f quantifying the relative contributions of the various sources 

o f uncertainty to the overall uncertainty o f the factor o f safety through sensitivity 

analyses, using Spearman rank correlation coefficient, cannot be underestimated. Such 

information allows the available resources, whether intellectual or physical, to be 

rationally allocated towards reducing the uncertainty o f the variable(s) with the largest 

impact on design. Furthermore, quantifying the relative impacts of systematic uncertainty 

and uncertainty due to spatial variability is also of practical value. For example, problems 

dominated by systematic uncertainty are less influenced by the spatial variability of the 

input parameters and, consequently, less sensitive to the assumption of the 

autocorrelation distance. In addition, the potential for improving design reliability of such 

problems is high, as systematic uncertainty can be reduced which is not the case with the 

uncertainty due to inherent spatial variability.

In addition to the above main conclusions, several detailed conclusions are 

reached. The probability of unsatisfactory performance and the reliability index are noted 

to be uniquely related regardless of the assumptions involved in the analyses. The two 

indices are analytically related if  the probability distribution of the factor o f safety is 

assumed to be normal. That latter relationship is commonly used in estimating the 

probability of unsatisfactory performance when approximate probabilistic methods, e.g. 

FOSM, are used. The results of this study show, however, that the assumption of 

normality overestimates the probability of unsatisfactory performance for small 

probability ranges (Chapter 12).

The probability of unsatisfactory performance is found to be more sensitive and to 

better reflect design changes than the reliability index (Chapter 12). On the other hand, 

the lower sensitivity of the reliability index makes it more stable and less affected by
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noise in the analysis. It is, thus, recommended to consider both indices in assessing the 

adequacy o f a slope design. It is also important to note that the computed probability o f 

unsatisfactory performance is a lower bound to the actual unknown probability because o f 

the possibility o f undetected uncertainties that are not taken into account. Comparing the 

probabilities o f unsatisfactory performance of alternative designs is, thus, more reliable 

than the absolute probabilities o f the designs.

Given the limited amounts and the wide spacing of data in a typical site 

investigation program, the uncertainty surrounding the analytical estimation of the 

autocorrelation distance is significant, as discussed in Chapter 5. A literature review 

indicated that the range within which the autocorrelation distances o f geotechnical 

properties vary is not large. Thus, empirical estimates based on the typical ranges reported 

in the literature and making due consideration of the geological processes controlling the 

formation/deposition of the subject material could be made. The continued compilation of 

the results o f spatial variability assessments (particularly the autocorrelation distance) o f 

various soils and properties to expand the available database would improve the 

reliability o f the empirical estimates.

Within practical limits, the probability o f unsatisfactory performance is found 

insensitive to the autocorrelation distance for soil formations exhibiting continuous 

spatial variability with equivalent isotropic autocorrelation distances in excess of 10m. 

This is, however, not the case for soils characterized by erratic variability. If the 

sensitivity o f the probability of unsatisfactory performance to the assumption of the 

autocorrelation distance is large enough to impede the decision-making process, an 

exploration program designed to evaluate the site/formation specific autocorrelation 

distance(s) could be required.

The sensitivity analyses undertaken in this study showed that the uncertainty of 

Bjerrum’s vane correction factor is substantial and could have a larger impact on the 

reliability o f the design than does the uncertainty o f the undrained shear strength itself. 

This warns that the reliability of a design could be undermined by the use o f empirical
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factors and correlations without the designer even realizing this. Understanding the 

limitations and, more importantly, the reliability o f such factors/correlations prior to using 

them is essential.

The probabilistic stability analyses o f Hong Kong case studies (taking spatial 

variability into account) highlight the effect of the volume, or scale, o f failure on the 

probability o f unsatisfactory performance. Small failures have higher probabilities o f 

unsatisfactory performance than larger failures although they could have higher factors o f 

safety. This, in fact, is consistent with the observed frequencies of occurrence o f small 

and large failures. The conventional deterministic approach, based on the factor o f safety, 

does not address this issue of failure scale.

In many areas o f geotechnical engineering, particularly slope engineering, there is 

an ongoing shift towards quantitative risk analysis. Risk analysis comprises hazard 

assessment and consequence assessment. The case of probabilistic slope stability analysis 

or hazard frequency estimation is, to a large extent, concluded. The value o f such analyses 

is evident, the tools and techniques, including the proposed methodology, are well 

founded and guidelines for probabilistic slope design are proposed is this study. Some 

refinements are, however, still needed. These include developing practical means to 

evaluate and incorporate the spatial variability o f pore water pressure into the analysis and 

expanding the available database of autocorrelation distances to improve the reliability o f 

the empirical estimates. On the other hand, the case for consequence assessment is far 

from complete. As illustrated in Chapter 13, the assessment is largely subjective based on 

the assessor’s judgement. There is an ample room for further research to improve and 

advance consequence assessment.

Probabilistic slope stability analysis is based on limit equilibrium and is, thus, 

concerned mainly with slope failure. The issue of slope serviceability is usually addressed 

judgmentally. An assessment of slope movement taking into account the uncertainty of 

soil deformation characteristics is seldom performed. In fact, there are hardly any studies 

of probabilistic evaluation of slope deformation. This is another area where further
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research is needed to develop practical methods, deterministic as well as probabilistic, to 

estimate and assess slope movements and their effects on serviceability.
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APPENDIX I

EXAMPLE OF SPREADSHEET MODEL 
JAMES BAY CASE STUDY 

DESIGN 1
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JAMES BAY HYDROELECTRIC CASE STUDY - DESIGN 1 (H=12m)
PROPOSED PROBABILISTIC SLOPE ANALYSIS METHODOLOGY (BISHOP'S METHOD)

Slope Geometry

With a  56m berm  at mid heightHeight, H (m) 12.0
Slope " h : v"
Slope Angle, 0 (deg.) 18.4

Soil Stratigraphy

S o i l  T y p e  1

P e s c r ip tio n : C ohesion less E m b a n k m en t
T hickness, tm (m) 12.0

0,0 M a rin e  C lay

Friction Angle, 4m (deg.) 30.0
Bulk Unit W eight, rm(KN/mJ) 20.0

Till

S o i l  T y p e  2 160—100 120 140U>
00 D e sc rip tio n : Clay crust 

T h ickness, ta  (m)
Distance (m)

R andom  variable (TN (4,0.48,2.56,5.44)}4 .0
41 .0U ndrained S h e a r S tren g th ,S u.„ (k P a )

Friction Angle, (deg.) 0.0

Bulk Unit W eight, yp(kN /m 3) 19.0

S l ip  S u r f a c e  C o n t r o l  P o i n t sS o i l  T y p e  3

R adius, R 122,81D e sc rip tio n : S ensitive m arine clay
85,90T hickness, tM(m) 8.0 Centre of slip

circleU ndrained S h e a r S treng th ,S uM (kPa) 128.3134.5
1,00 R andom  variab le (N (1.0 ,0 .075)) 
0.0

Bjerrum V ane C orrection Factor, p M 4.90
Friction Angle, 4 ^  (deg.) 21.08
Bulk Unit W eight, yM (kN/m3) 28.0119.0
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u>
oo
Crt

X4 40 .0 0
S o i l  T y p e  4 X5 46 .4 8
D esc rip tio n : L acustrine clay X6 58.01
T hickness, tL (m) 6.5 X7 114.43
U ndralned S h e a r  S tre n g th ,S *  (kPa) 31.2 X8 125.32
Bjerrum V ane C orrection Factor, pL 1.00 R andom  variab le (N (1.0,0,15 ) X9 132.43
Friction Angle, ^  (deg .) 0 .0 X10 143,78
Bulk Unit W eight, tl (kN/m3) 20.5 X11 150.72

S o i l  T y p e  5

D esc rip tio n : Till (rigid boundary)
D epth below  G .S ., Dtia (m) 18.5 R andom  varia te  (T N (18.5 ,1.0 ,15.5 ,21.5))

3- Pore Water Pres•sure

P ore  p re ssu re  ratio, ru 0 .00 Total s tre s s  analysis
|

4- Failure Surfcae

Circular; ob ta ined  from a  se rie s  of determ inistic a n a ly se s

5- SDatial Averaaina

A utocorrelation d is tan ce ; r„ (m) 15

6- F acto r of Safety  (D eterm inistic Analysis!

F a c to r  o f  S a fe ty  (FS) * 1.456

7- Simulation OutDut

--------- -------~
M ean F acto r of Safety , E[FS] = 1.464
S tandard  Deviation, o[FS] = 0.20
PU = P(FS<=1.0) = 0.47%
|) =  ( E [ F S ] - 1 ) /o [ F S ] 2.32
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OJoo

4 40.00 4
5 46.48 5
6 58.01 6
7 114.43 7
9 132.43 8
8 125.32 9
10 143.79 10
11 150.72 11

Soatial Variabllk Statistical Error
4>r«i 30.00 Random variable {N(30,1.0)> 0.00

0.00
0.00
0.00

Random variable {N(0t1.732»
YfiM Random variable (N(0,1.0)}

SuMZon* 1 34.50
34.50

Random variable {TN(34,5,8.142,0,80)) SuM Random variable {N(0,0.951))
§uM  Zon« 2 Random variable {TN(34,5,8,142,0,80)) SuL Random variable {N(0,1,731))

Soatial Averaaina (S„i)

M'o (deg.) 71.28
v.nd (deg.) 108.72 Zone 1 Zone 2 Zone 3 Zone 4
Arc (m) 80.27 V, (deg.) 85.27 99.27 108.72 108.72
# of Zones 2.68 X limits 75.78 105.68 125.32 125.32
M'r (deg.) 14,00 S ul 31.20 31.20 31.20 Random variables {TN(31.2,8.649,0,80)}

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5
X limits 34,90 64,90 94.90 124.90 132.43

Y*m 20.00 20.00 20.00 20.00 20.00 Random variables {N(20,1.0)}
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Centre of Slice Right Edge of Slice Input Variables for Each Slice Taking Spatial Variability Into Account
"X" T  at slope ' T a t  Slip "X" ' T a t  slope "Y" at slip Ymi Sum SuL Truncated variables (>0)

surface surface SgM Sul.
6.248 36.00 34.83 7,60 36.00 33.70 30.00 20,00 0.00 0.00 0.00 0.00
8.945 36.00 32.60 10.29 36.00 31.53 30.00 20.00 0.00 0.00 0.00 0.00
11.642 36.00 30.49 12.99 36.00 29.49 30.00 20.00 0.00 0.00 0.00 0.00
14.338 36.00 28.50 15,69 36.00 27.55 30.00 20.00 0.00 0.00 0.00 0.00
17.035 36.00 26.63 18.38 36.00 25.72 30.00 20.00 0.00 0.00 0.00 0.00
19.732 36.00 24.85 21.08 36.00 24.00 30.00 20.00 0.00 0.00 0.00 0.00
22.235 36.00 23.29 23.39 36.00 22.60 0.00 20.00 0.00 0,00 0.00 0.00
24.545 36.00 21,92 25.70 36.00 21.27 0.00 20.00 0.00 0.00 0.00 0.00
26.856 36.00 20.63 28.01 36.00 20.00 0,00 20.00 0.00 0.00 0.00 0.00
29.210 36.00 19.37 30.41 36.00 18,75 0.00 20.00 34.50 0.00 34.50 0.00
31.609 36.00 18.15 32,81 36.00 17.57 0,00 20.00 34.50 0.00 34,50 0.00
34.007 36.00 17.00 35.21 36.00 16.45 0.00 20.00 34.50 0.00 34.50 0.00
36.406 36.00 15.92 37.61 36.00 15.39 0.00 20.00 34.50 0.00 34,50 0.00
38.805 36.00 14.89 40.00 36.00 14.40 0.00 20.00 34.50 0.00 34.5 0_

34.50
0.00

41.083 35.64 13,97 42.16 35.28 13,55 0.00 20.00 34.50 0.00 0.00
43.240 34.92 13.15 44,32 34,56 12.75 0.00 20.00 34.50 0.00 34.50 0.00
45.397 34.20 12.37 46.48 33.84 12.00 0.00 20.00 34.50 0.00 34.50 0.00
47,917 33.36 11.52 49,36 32.88 11.06 0.00 20.00 0.00 31.20 0.00 31,20
50.800 32.40 10.62 52.24 31.92 10.20 0.00 20.00 0.00 31.20 0.00 31.20
53.682 31.44 9.80 55.12 30.96 9.42 0.00 20.00 0.00 31.20 0.00 31.20
56.564 30.48 9.06 58.01 30.00 8.71 0.00 20.00 0.00 31.20 0.00 31.20
59.573 30,00 8.36 61.14 30.00 8.02 0.00 20.00 0,00 31.20 0.00 31.20
62.708 30.00 7.71 64.28 30.00 7.42 0.00 20.00 0.00 31,20 0.00 31.20
65.843 30.00 7.15 67.41 30.00 6.90 0.00 20.00 0.00 31.20 0.00 31.20
68.977 30,00 6.67 70.54 30.00 6.46 0.00 20.00 0.00 31.20 0.00 31.20
72.112 30.00 6.28 73.68 30.00 6.11 0.00 20.00 0.00 31,20 0.00 31.20
75.247 30.00 5.96 76.81 30.00 5.84 0.00 20.00 0.00 31.20 0.00 31.20
78.382 30.00 5.73 79.95 30.00 5.64 0.00 20.00 0.00 31.20 0,00 31.20
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