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ABSTRACT
Quantifying uncertainty is key to rational decision‑making in a geological context. Samples col‑

lected for Mineral Exploration are usually sparse and only represent a very small portion of the

volume that might be mined in the future.

To characterize and quantify geological uncertainty, it is commonplace to use Stochastic Simu‑

lation. Uncertainty is quantified and propagated in several steps whenmodeling geology. Samples

are separated into different domains, uncertainty is quantified in the domain boundaries, parame‑

ters for modeling are established, and domain models are created. Afterward, inside each domain,

continuous variables such as grades are modeled. This thesis proposes a novel method for contin‑

uous variable simulation.

A common workflow to quantify uncertainty is to transform the data to a Gaussian distribution

and use Sequential Gaussian Simulation (SGS) to generate realizations of the grades. However,

this approach assumes that all spatial distributions have a Gaussian form, under the multivariate

Gaussian assumption. Also, it is assumed that a single variogram model characterizes the spatial

variability of the grade independent of the magnitude. High grades, however, are usually less

continuous. Using SGS to model such variables, with a single variogram model will impose the

same continuity for lows and high values which may be unrealistic.

The main contribution of this thesis is to propose a novel simulation framework for grades that

have different continuity for low and high values. The Piecewise Linear Model of Regionalization

(PLMR) defines different bins to the data distribution and imposes different spatial model to each

bin. By doing so, themodel can capture different spatial continuity of highs and low values in a con‑

sistent mathematical manner. The proposed framework considers indicator variograms as well as

traditional variograms, which brings more spatial information to the simulated realizations. When

comparing the PLMR to modeling under the multivariate Gaussian assumption the former tends

to be, on average, more conservative regarding the influence of high values in nearby locations.
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CHAPTER 1

INTRODUCTION
1.1 Spatial modeling and geostatistics

Numerical models of spatially distributed properties in the subsurface are often used in different in‑

dustries such asmining or petroleum for resource assessment and engineering design. Geostatistics

is a branch of applied statistics that aims at buildingmodels that takes into account spatial/temporal

indexing of observations (Goovaerts et al., 1997). Even though relatively new, the field has gained at‑

tention and established itself as an important collection of methods used to build numerical models

of the subsurface. Besides providing a solid theoretical background for spatial modeling of geolog‑

ical variables (Chiles & Delfiner, 2009; A. G. Journel & Huijbregts, 1978; Wackernagel, 2003), geo‑

statistical methods became commonplace in day to day applications due to the importance given

to implementation and transforming theory into sound practical methods. (C. V. Deutsch, 2021;

C. V. Deutsch & Journel, 1998; A. G. Journel, 1989).

The variable under study is treated as a random variable that is indexed in space. In the min‑

ing industry, for example, sampling is widely spaced and inadequate to directly characterize the

variable over the entire area. Hence, measurements are used to characterize a random mechanism,

auto‑correlated in space, that reflects desired statistics of the variable. Once the random mecha‑

nism is parametrized, inference about unsampled locations may be conducted. In the past, it was

commonplace to use some form of spatial interpolation to have the best estimate that minimized

error or estimation variance. However, a single best estimate is inadequate to characterize, jointly,

uncertainty about several unsampled locations and the minimized error variance, being data value

independent, is insufficient to be used as a reliable measure for risk assessment.

Quantifying joint uncertainty has become a cornerstone of modern geostatistical workflows.

Stochastic simulation algorithms allow to jointly access the uncertainty of several locations being

above a grade cut‑off or belonging to a certain rock type. Instead of generating one single best

estimate given the sample data, stochastic simulation aims at generating equiprobable alternative

realizations instead of an interpolated map (A. G. Journel, 1989). These realizations will honor the

global distribution, measures of spatial continuity such as variograms, and local observations re‑

ferred to as the conditioning data (Rossi & Deutsch, 2013). With a set of realizations honoring input

statistics and conditioning data, a transfer function, e.g. a pit optimizer, can be used to process

the simulated maps and characterize uncertainty in the desired final application of the numerical

models. All realizations should be processed all the time (C. V. Deutsch, 2018). Figure 1.1 shows

schematically the concept of processing several realizations, instead of one, to access risk in the

1



1. Introduction

response variable for risk‑based decision making. Sequential Gaussian Simulation (SGS) is proba‑

bly the most used algorithm to build uncertainty models of continuous variable (Rossi & Deutsch,

2013).

Figure 1.1: Tranfer function for estimated and simulated models. (Rossi & Deutsch, 2013)

1.2 Problem motivation

Modeling geological variables with high‑valued samples is a challenge in the mining industry. De‑

posits, such as gold and diamonds, usually present samples that are considerably higher than cen‑

tral tendency measures such as the median or mean. Hence, the distribution of such variables will

present a heavy right tail, high coefficient of variation, and are called positively skewed variables.

This type of geological variable usually presents a significant challenge for spatial modeling. High

grades in mineral deposits tend to be less continuous and more scattered in space. As a conse‑

quence, a destructuration effect may be present in the spatial continuity of high values. This effect

is observed by looking at indicator variograms, where variograms at a high threshold value may be

less continuous. Figure 1.2 shows an example, from the Swiss Jura dataset (Goovaerts et al., 1997),

of a positively skewed distribution and indicator variograms of the same attribute. The variogram

at a 0.9 quantile threshold has a range ≈ 60% smaller than variograms at a 0.1 quantile threshold.

2



1. Introduction

Figure 1.2: Example of a positively skewed geological variable and its indicator variograms.

When constructing an interpolated map of a positively skewed variable, there is a concern that

a few high‑grade samples might lead to over‑estimation of areas near extreme high values. For

mineral resource estimation, the impact of high‑grades is mitigated by: 1) appropriate domaining

of the region, 2) grade capping, and 3) limiting the influence of outliers (Leuangthong & Nowak,

2015). In an uncertainty quantification context, simulation might mitigate the impact of extreme

values. Gaussian simulation algorithms (Rossi & Deutsch, 2013) mitigate the effect of outliers and

asymmetric distributions by transforming the variable to a normal distribution. However, the de‑

structuration effect shown in Figure 1.2 brings challenges when trying to apply SGS or other Gaus‑

sian algorithms to simulate realizations of positively skewed variables. To use SGS, it is necessary

to assume that the transformed variable is multiGaussian (MG), i.e. all spatial distributions will be

Gaussian and solely characterized by a single covariance model, whichmakes it analytically simple

but may inflate spatial disorder (A. G. Journel & Deutsch, 1993). Besides, under a MG model, the

same pattern of spatial auto‑correlation will be imposed to low and high values of the distribution.

As shown in Figure 1.2, the continuity of highs and lows can be quite different making the Gaussian

assumption inappropriate

The indicator formalismallows a non‑parametric estimation of spatial distributions. Themethod

maps the original variable into a binary one. This indicator function tells if a value is above or be‑

low a given threshold. Simulating under this framework reproduces better strings of low and high

values and might be useful when dealing with variables presenting a skewed distribution (Rossi &

Deutsch, 2013). However, Sequential Indicator Simulation (SIS) can be hard to use in practice. Vari‑

ance inflation and order relation problems may happen (Emery, 2004; Rossi & Deutsch, 2013). This

model requires fitting a variogram model at each threshold level where the binary transformation

is applied, which maymake the workflow tedious. Besides, fitting different variograms to different

3



1. Introduction

thresholds does not take into account information of other cut‑off levels, hence, the final model is

not fully consistent.

1.3 Thesis outline

Thepresentworkproposes a newNon‑Gaussian simulation framework, the Piecewise LinearModel

of Regionalization (PLMR). The model proposes to extend the Linear Model of Regionalization

(LMR) to allow non‑linear combination of spatial factors, making the resultingmodel non‑Gaussian.

Also, the proposed framework uses indicator variograms as well as traditional variogram in a con‑

sistent mathematical manner, bringing more spatial information to the model. Chapter 2 presents

the theoretical background of the novel PLMR. The chapter is mainly focused on the concept of the

RandomFunction (RF)model and key assumptions/methods to parametrize it. Chapter 3will intro‑

duce and define the PLMR showing the properties that make it relevant for modeling non‑Gaussian

geological variables. Chapter 4will present an optimization framework to infer themodel’s parame‑

ters. Chapter 5 introduces amethodology to generate conditional realizations under a PLMRmodel.

Conditioning is done by decomposing the model into its latent spatial (Gaussian) factor and simu‑

lating them. Chapter 6 will demonstrate the PLMR workflow and compare the results to a model

built using the multiGaussian assumption.

4



CHAPTER 2

THEORETICAL BACKGROUND
2.1 Regionalized variables and random functions

In a geostatistical context, a Regionalized Variable (RV) Z(u) can be defined as a set of functions

Z(u); ∀u ∈ V where u is a location coordinate vector and V is a volume in space relevant for the

study (Wackernagel, 2003). In practice, information about the regionalized variableswill come from

a set of measurements of the same attribute, usually composited to some constant volume. This set

of samples is then treated as a realization of the regionalized variable at the data locations u.

The regionalized variable at a location is sometimes referred to as a random variable. The set of

random variables is then treated as realization of a Random Function (RF). The term regionalized

emphasizes that there is a structured component in the apparent randomness, i.e., samples close in

space tend to be more similar than far away samples.

The RFmodel concept encompass the apparent randomness of a complex geological system and

the regionalized aspect of the geological variable. The Cumulative Distribution Function (CDF) of

a random variable, i.e. the cumulative proportion of values below a threshold, can be written as:

F (u; z) = Prob(Z(u) ≤ z) (2.1)

The CDF can be locally conditioned based on a set ofmeasurements present in the neighborhood

(n) centered at location u. This distribution will be called Conditional Cumulative Distribution

Function (ccdf) and can be defined as the following conditional distribution:

F (u; z|(n)) = Prob(Z(u) ≤ z|(n)) (2.2)

Under this framework, the spatial variability of the RF is fully characterized itsK‑variate CDFs

where K are the relevant locations in the spatial volume V under study (C. V. Deutsch & Journel,

1998):

F (u1, . . . ,uK ; z1, . . . , zK) = Prob(Z(u1) ≤ z1, . . . , Z(uK) ≤ zK) (2.3)

In order to be able to proceed with any inference regarding the multivariate distribution shown

in Equation 2.3 repetitive sampling is necessary. However, at each location u, only one sample

is available and replication of measurements is usually not possible. To overcome this issue, the

RF model shown in Equation 2.3 should assume some form of stationarity over the domain V , i.e.

5



2. Theoretical background

measurements at different locations ui, i = 1, . . . ,K can be pooled together in order to make statis‑

tical inference possible. Geostatistical models usually assume that the RF defined over the volume

V in space is second‑order stationary, i.e. the first two moments of the regionalized variable are

invariant under translation:

E{Z(u)} = m

E{[Z(u)−m(u))][Z(u+ h)−m(u+ h)]} = C(h)
(2.4)

Where h is a separation vector with specific direction and length, C(h) is the covariance of ran‑

dom variables spaced by h, and m a constant stationary mean. Under the assumption of second‑

order stationarity, the covariance function only depends on the separation vector h and it measures

the linear dependence between two locations separated by h. The assumption of a constant station‑

ary mean can be break by: filtering the mean at each location when estimating, i.e. ordinary kriging

; considering the mean as a deterministic component and using, e.g., universal kriging (Chiles &

Delfiner, 2009) or calculating a trend and modelling with decorrelated residuals (Leuangthong &

Deutsch, 2003; Qu & Deutsch, 2018).

Usually, simulation algorithms based on kriging will use a two‑point covariance description of

the variable to characterize the randommechanism and conduct inference regarding theK‑variate

distribution 2.3. Other methodologies such as Multi Point Statistics (Strebelle, 2002, 2012), or High‑

Order cumulants (Dimitrakopoulos, Mustapha, & Gloaguen, 2010; Mustapha & Dimitrakopoulos,

2011) have been proposed to use higher‑order moments when characterizing the RF model.

Another widely used second moment in geostatistics is the variogram. The variogram arises by

considering stationarity of increments [Z(u)−Z(u+ h]; ∀u,u+ h ∈ V , and it can be written as the

variance of these increments:

2γ(h) = Var{Z(u+ h)− Z(u)}

γ(h) = C(0)− C(h)

C(0) = Var{Z(u)}

, (2.5)

An empirical estimate of the variogram is calculated by:

γ̂(h) = 1
2N(h)

N(h)∑
i=1

[
z (ui)− z

(
ui + h

)]2
(2.6)

The term N(h) is the number of pairs in the volume V separated by h. In practice, tolerance

parameters will be added to h in order to have sufficient pairs to estimate the variogram. A valid

model should be fitted to the empirical variogram values. By defining a valid model, one will char‑

acterize the two‑point spatial dependency of the variable in space for any vector h, hence defining

the randommechanism of the RF. The parameters of the variogrammodel, e.g. range of spatial con‑

6



2. Theoretical background

tinuity, will control the weight that each sample will receive when any form of kriging is conducted

for estimation/simulation.

2.2 Indicator coding of a random function

Knowledge about the two‑point spatial distribution of a RF is obtained by calculations using the

bivariate distribution Prob(Z(u), Z(u+ h)). Traditional variograms shown in Equation 2.5, cap‑

ture the moment of inertia in the bivariate scattergram Z(u), Z(u+ h); ∀u ∈ V (A. G. Journel, 1983).

Instead of defining the variogram by calculating a simple linear dependency between locations sep‑

arated by a lag h, it is possible to use the indicator coding of the RF to retrieve more information of

the spatial bivariate distributions when modeling. The indicator function of the Random Function

Z(u) can be written as:

I(u; z) =


1, Z(u) ≤ z

0, otherwise

(2.7)

Where z stands a specific value, e.g. the 0.1 quantile, of the random function Z(u). The function

maps values of Z(u) that are above, or below, the threshold value z to binary indicator values. The

indicator function can be thought of as a Binomial distributed variable (A. G. Journel, 1983). For

example, if z is the median value of the variable Z(u), I(u; z) the indicator function will follow a

Binomial distribution with probability p = 0.5. The expected value and variance of the indicator

function are shown in Equation 2.7 (A. G. Journel, 1983):

E{I(u; z)} = 1 · P (Z(u) ≤ z) + 0 · P (Z(u) > z) = P (Z(u) ≤ z) = F (z) (2.8)

Var{I(u; z)} = F (z)(1− F (z)) = F (z)− F (z)2 (2.9)

The mean and variance are a function of the threshold z and the CDF truncation defined by it,

i.e F (z). The non‑centered covariance of the indicator function is:

CNC(h; z) = E{I(u; z), I(u+ h; z)} = P (Z(u) ≤ z, Z(u+ h) ≤ z) (2.10)

The centered covariance of I(u; z), variogram and sill are:

C(h; z) = P (Z(u) ≤ z, Z(u+ h) ≤ z)− F (z)2 (2.11)

γ(h; z) = C(0; z)− C(h; z) = F (z)− CNC(h; z)

Sill(z) = F (z)− F (z)2
(2.12)
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2. Theoretical background

From Equations 2.10 to 2.12, it can be seen that the indicator structural information of a regional‑

ized random variable can be solely deduced from its bivariate distribution. In fact, the non‑centered

covariance is just an integration of the bivariate distribution below a given threshold (A. G. Journel,

1983). Therefore, a complete indicator structural analysis is richer than a simple Z(u) variography.

Besides providingmore information, the rank order based analysis of the indicator approachmakes

its variograms robust regarding extreme values.

2.3 Multivariate Gaussian model

Inference about the K‑variate distribution 2.3 under some form of stationarity assumption is nec‑

essary to achieve a joint model of uncertainty. A simplifying assumption is to assume that the RF

model is multivariate Gaussian. This assumption makes all cumulative conditional distributions of

the RF to have multivariate Gaussian. Under this assumption, any ccdf of the form Prob(Z(u) ≤

z)|(n)) is fully characterized by the conditional mean and variance calculated based on a covariance

model and a set of conditioning data (n). In fact, under the MG assumption, Simple Kriging (SK)

equations are equal to the normal equations (Leuangthong, Khan, & Deutsch, 2011). Hence, the

two parameters that define the ccdf and quantify uncertainty in a given location u are the Simple

Kriging mean and variance:

E{Z(u)|(n)} =
∑

α∈(n))

λα · Z (uα) (2.13)

Var{Z(u)|(n)} = 1−
∑

α∈(n))

λαC
(
u,uα

)
(2.14)

∑
β∈(n)

λβC
(
uα,uβ

)
= C

(
u,uα

)
; ∀α ∈ (n) (2.15)

From now on, the multivariate Gaussian distribution, when used in a spatial/geostatistical con‑

text, will be called MG model. Under the MG model, bivariate distributions used to characterize

and calculate variogram values will have a Gaussian ellipse shape characterized by the first two

marginal moments of E{Z(u) ≤ z} and E{Z(u+ h) ≤ z}, and a correlation parameter ρ(h) defin‑

ing the degree of linear dependency between the two marginal distributions. Accepting the MG

model to use SGS, all spatial distributions will be solely characterized by a single covariance model,

which makes it analytically simple but will inflate spatial disorder (A. G. Journel & Deutsch, 1993).

This loss of connectivity occurs symmetrically when moving away from the median, i.e it happens

in low and high values. Figure 2.1 shows qualitatively the bivariate contours of the MG model

and the theoretical 0.1, 0.5 and 0.9 threshold indicator variograms of a Spherical Variogram with

range 10. The 0.1 and 0.9 indicator variograms are the same due to symmetry of the Gaussian bi‑
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2. Theoretical background

variate distribution. Beside inflating spatial disorder beyond the covariance model (A. G. Journel

& Deutsch, 1993), the MG model does not take into account the different continuity of extreme val‑

ues in the time of modeling. The symmetrical behavior of indicator variograms imposes the same

spatial continuity, derived from the model, to highs and low values. Since an attribute covariance

is the average of all indicators covariance (Journal & Alabert, 1989), poor characterization of the

low probability values may affect directly the model’s response after being processed by a transfer

function. In fact, the final image will not preserve strings of low and high values present in data,

i.e. patterns of low entropy. Since it is quite common to be interested in these patterns, assuming

an MG hypothesis may lead to inaccurate spatial continuity modeling and a bad characterization

of uncertainty in the results (A. G. Journel & Deutsch, 1993).

Figure 2.1: PLMR model and the LMRs embedded in it

2.4 Linear model of regionalization

Under the RF model concept, it is possible to think of the regionalized phenomena as a function

of several independent random process acting in different spatial scales (Wackernagel, 2003). The

simplest way to define this decomposition function is to assume it has a linear functional form.

Hence, the RF Z(u), assuming a stationary mean mZ(u) = 0; ∀u, can be written as a sum of s

independent spatial factor Yi (u), i = 1, . . . , s:

Z(u) =
s∑

i=1
Si · Yi (u) (2.16)

The terms Si controls the contribution of each spatial component to the final RF model. Under

the decomposition shown in Equation 2.16, the variogram of Z(u) may be written as a linear com‑

bination of the spatial components Yi (u) variograms, i.e. γi (Wackernagel, 2003), also know as a

nested variogram model:
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2. Theoretical background

γz(h) =
s∑

i=1
Si

2 · γi (u) (2.17)

The LMRmakes it possible to break down the RF model and fit different aspects of the regional‑

ized variable. When working under the MGmodel, each factor Yi (u) is a Gaussian RF with spatial

variation defined by γi. Since a linear combination of Gaussian random variables is still Gaussian,

Z(u) will still be multiGaussian and Equation 2.17 can be used to to model the RF variograms

and estimate the ccdfs parameters using Simple Kriging. Using RF multiGaussian model with a

nested variogram model is commonly used for uncertainty estimation with stochastic simulation.

However, the symmetric loss of spatial correlation around the median is still present even when

decomposing the RF model into spatial components with differing scaling of continuity.
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CHAPTER 3

THE PIECEWISE LINEAR MODEL OF
REGIONALIZATION
One possible away to depart from the multiGausian model and its consequences is to rethink the

decomposition of the Random Function model. The idea of fitting different sills is sound but the

linear functional form of the RF decomposition makes the resulting model locked into a MG one.

The piecewise linear model of regionalization aims at expanding the idea of decomposition of the

Random Function to allow non‑linear combination of spatial factors. In a general way, the decom‑

position of the RF model, assuming a stationary constant mean m(u) = 0, into s spatial Gaussian

factors Yi(u), i = 1, . . . , s, can be written as:

Z(u) = f(Yi(u)) (3.1)

As seen before the LMR assumes that f(Yi(u)) has a linear functional form, i.e f(Yi(u)) =∑s
i=1SiYi(u), when decomposing the RF, and as consequence, defining symmetric indicator var‑

iograms around the median variogram. The LMR, by definition, imposes a constant contribution

of each spatial factor to Z(u) defined by the slope Si. This multiplication of Yi(u) by a constant

value can be thought of as a scaling that specifies the proportion that it contributes to the RF model.

Hence, each factor scaling is a simple affine function y = ax.

A simple way to define a non‑linear function is to define it as piecewise map of the domain

xonto the co‑domain y. This is done by defining bins in the domain, and at each bin imposing a

different affine form to the map of x onto y. As more bins are added, the degree of non‑linearity

of the function will increase. This is shown qualitatively in Figure 3.3 where the Gaussian spatial

factors are shown on the horizontal axes and their transformed values in the vertical axes.

Figure 3.1: Process of transforming a linear function into an increasing non‑linear one.

The PLMR aims at breaking this strict linear assumption in the simplest way possible, i.e, defin‑
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3. The piecewise linear model of regionalization

ing two bins in the domain space of spatial factors Yi(u). The next sections will explain the model

in detail.

3.1 Model definition

Let’s define an arbitrary RFmodel Z(u) that has its spatial range of continuity characterized by two

factors Y1(u) and Y2(u). These two spatial factors are second‑order stationarywith variogram γ1(h)

and γ2(h) and stationary mean of 0. These structures can be simulated independently reproducing

variograms γ1(h), γ2(h) and having a global normal distribution. Hence, from now on, Y1(u) and

Y2(u) will be called Gaussian factors. As mentioned in the previous section, it is possible to define

bins in the domain of a function and define a different affine map for each bin. Calling the point

separating each bin a truncation point Tp, the piecewise linear transform of the Gaussian factors

can be written as:

Y PL
1 (u) =


S1Y1(u), Y1(u) ≤ Tp

S2Y1(u), Y1(u) > Tp

(3.2)

Y PL
2 (u) =


S2Y2(u), Y2(u) ≤ Tp

S1Y2(u), Y2(u) > Tp

(3.3)

The pair of slopes is the same for each bin, however, the Gaussian factor being multiplied by

each slope Si is changed. After applying this piecewise linear function to Y1(u) and Y2(u), the

transformed values should be summed location wise, recomposing the RF Z(u):

Z(u) =



S1Y1(u) + S2Y2(u), Y1(u) ≤ Tp, Y2(u) ≤ Tp

S1Y1(u) + S1Y2(u), Y1(u) ≤ Tp, Y2(u) > Tp

S2Y1(u) + S2Y2(u), Y1(u) > Tp, Y2(u) ≤ Tp

S2Y1(u) + S1Y2(u), Y1(u) > Tp, Y2(u) > Tp

(3.4)

Equation 3.4 defines the decomposition of the RF model into its Gaussian factors. The idea be‑

hind this simple modification of the LMR is to control the contribution each variogram structure

gives to highs and low values of the model. For example, setting S1 = 0.9 and S2 = 0.1 in Equa‑

tion 3.4 would define a model that has more contribution of Y1(u) to values below Tp and Y2(u)

contributing more to values above Tp. In this thesis, the PLMR will be restricted to two Gaussian

Factors and one truncation point, as shown in Equation 3.4. However, there are no theoretical re‑

strictions to expand the PLMR to an arbitrary number of Gaussian factors and truncation points.
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3. The piecewise linear model of regionalization

3.2 PLMR parameters

Setting up a two‑factor PLMR model requires, at least, inference of seven parameters:

θ = (rγ1 , rγ2 , c01, c02, S1, S2, Tp) (3.5)

Where rγ1 , rγ2 are the ranges of the two variogram structures of Y1(u) and Y2(u), c01, c02 are

the nugget effects of the factors, and S1, S2 the two constant values that defines the scaling of the

factors in the two bins defined by the truncation point Tp. In order to make the distribution of Z(u)

more well‑behaved, the following restriction is imposed on the contribution parameters:

S2
1 + S2

2 = 1 (3.6)

The truncation point is set to Tp = 0.0 to avoid a discontinuity point in the scaled Factors. This

discontinuity point brings challenges at the time of conditionally simulating PLMR realizations.

Hence, the final set of parameters becomes θ = (rγ1 , rγ2 , c01, c02, S1) and the general two factor

PLMR model equation can be written as:

Z(u) =



√
S1Y1(u) +

√
1− S1Y2(u), Y1(u) ≤ 0, Y2(u) ≤ 0

√
S1Y1(u) +

√
S1Y2(u), Y1(u) ≤ 0, Y2(u) > 0

√
1− S1Y1(u) +

√
1− S1Y2(u), Y1(u) > 0, Y2(u) ≤ 0

√
1− S1Y1(u) +

√
S1Y2(u), Y1(u) > 0, Y2(u) > 0

(3.7)

Figure 3.2 shows a schematic representation of the steps to compute an unconditional PLMR

realization. It can be seen how the piecewise linear transform accentuates specific features of each

Gaussian factor realization. For example, high valued areas of the second Gaussian factor are con‑

siderably diminished while low values of the first factor become bigger in magnitude. Hence, the

transformation is accentuate specific features of each variogram structure realization. With the gen‑

eral two‑factor PLMR model defined above, the next sections will explore the relevant properties

of the proposed framework to modeling non‑Gaussian geological variables.
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Gaussian factors realizations Piecewise linear transformed 
realizations

PLMR realization

Figure 3.2: Schematic representation of the PLMR.

3.3 PLMR properties

To understand the properties of the PLMR and how it differs from the LMR a scatter plot of the

scaled and unscaled Gaussian Factors using a linear and piecewise linear scaling is shown in Figure

3.3. The figure illustrates how a single PLMR model have elements of two LMRs embedded into it.

Figure 3.3: PLMR model and the LMRs embedded in it

When one of the scaling constant (S1 and S2) approaches 0, the other will approach 1 because

of restriction 3.6. In this case, the contribution of each Gaussian factor to each bin of the PLMR

will be very different. This set of parameters θ defines a PLMR that is able to produce more com‑

plex regionalization in comparison with the two LMRs. The piecewise scaling changes the shape

of the spatial bivariate distributions in comparison with a linear scaling. This gives flexibility to

model regionalized random variables that depart significantly from the multiGaussian assumption
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3. The piecewise linear model of regionalization

approach. Figure 3.4 shows the PLMR bivariate distribution in comparison with a LMR and how

its shape does not follow a bivariate Gaussian.

Figure 3.4: Bivariate distributions of a PLMR and a multiGaussian model.

Figure 3.5 shows twoGaussian factor realizations, with spatial continuities definedby aSpherical(50)

andExponential(300) variograms, two LMRs and a PLMR built from them, and the associated indi‑

cator variograms. The first LMR is defined by setting the scaling of the Gaussian factors
√
S1 = 0.9

and
√
S2 = 0.1, the second is defined by switching the contribution values. The PLMR is defined

with the same scaling values of the first LMR and Tp = 0.0. Figure 3.5 shows how the PLMR is able

to maintain aspects of the continuity of the two Gaussian factors, while the LMRs are more similar

to the factor that is multiplied by the biggest scaling parameter. The consequence of applying a

piecewise linear scaling to the factors, with very different contributions, is the possibility to define

a model with non‑Gaussian bivariate distributions, as shown in Figure 3.4. Consequentially, the

RF defined with a PLMR will have asymmetrical indicator variograms. It is conventioned that the

range of the first Gaussian factor variogram is the smaller between the two. Hence, by the model

definition shown in Equation 3.7, values above the truncation point will have more contribution

of the less continuous factor. As mentioned above, having less spatial continuity in high values is

typical of non‑Gaussian and positively skewed geological variables. The degree of non‑gaussianity

of the PLMR is controlled by the scaling constants S1 and S2. This behavior is illustrated in Figure

3.6 where four global distributions of different PLMR is shown. As the scaling constants diverges,

the distribution differs more from a normal one.

It might be tempting to derive the mean and variance of Z(u) assuming Y1(u) and Y2(u) are

Gaussian in each piece of Equation 3.7. It is known that multiplication of a normal variable by a

constant can only re‑scale itsmean andvariance; however, truncation of the factor’s distributionwill

drastically change its shape andmaymake it non‑Gaussian. This factmakes an analytical derivation
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3. The piecewise linear model of regionalization

Figure 3.5: Realization of the PLMR and embedded LMRs.

Figure 3.6: PLMR model global distribution as a function of the scaling parameters S1 and S2
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3. The piecewise linear model of regionalization

of the PDF’s shape difficult. Also, summing the factors after the truncation is a convolution of

their PDFs (Krenek, Cha, & Cho, 2016) which adds extra complexity in the resultant shape. Some

examples of the possible shapes can be found in (Krenek et al., 2016). Therefore, as demonstrated

by Figure 3.6, the variable Z(u) will not follow a normal distribution and some kind of variance

inflation or deflation might occur.

It is possible, however, to write the mean and variance of each piece of Equation 3.4 as a func‑

tion of the Gaussian CDF distribution. Doing that and treating the PDF of Z(u) as a mixing of each

piece of Equation 3.7, it is possible to derive the mean and variance of Equation 3.4. The tentative

derivation of this result is deferred to Appendix A. An interesting property of applying the piece‑

wise linear transform to Gaussian factors is that the mean and median of the resulting PLMR will

still be the same as a normal distribution. Using more truncation quantiles and Gaussian factors

may make the summing rule in Equation 3.7 excessively complex and more suitable to a numerical

approach.

3.4 Calculating PLMR variograms

A simulation routine is needed to generate the PLMR’s indicator and traditional variograms for

any lag h and threshold z. The goal is to simulate a set of realizations of Z(u) and Z(u+ h) and

numerically calculate the indicator variograms using Equation 2.12. This section will outline the

simulation routine to generate the bivariate spatial distribution of the simple PLMRmodel showed

in Equation 3.7. First, let’s write the realization of a set of N(0, 1) values as:

w = [w1,w2,w3,w4]T (3.8)

Where each element i of the vector w stands for a vector of normal deviates:

wi = [wi1 , wi2 , ..., win ] (3.9)

Where n is the number of realizations and wij the j realization of the standard Gaussian vector

wi. Each vector of deviates wi, i = 1, 2, 3, 4, is independent of the others. Since the Gaussian

factors are generated using pre‑defined variogram models, Cholesky decomposition method can

be applied to generate correlated variables [Y1(u), Y1(u+ h)] and [Y2(u), Y2(u+ h)] for a given lag

h. The covariance matrix of the two Gaussian Factors can be written as:

C(h) =


1 CY1(h) 0 0

CY1(h) 1 0 0

0 0 1 CY2(h)

0 0 CY2(h) 1


(3.10)
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3. The piecewise linear model of regionalization

The Cholesky decomposition of the above matrix can be defined as:

C(h) = LLT (3.11)

It is well known that multiplication of the lower matrix L and the matrix of normal samples w

generates a set of correlated variables that honors the covariance defined by Equation 3.10. There‑

fore, the correlated realizations of the Gaussian Factors in different locations can be calculated as:

Lw =


Y1(u)

Y1(u+ h)

Y2(u)

Y2(u+ h)


(3.12)

Now, samples have the correct spatial structure defined by the Gaussian factor’s variograms.

However, to retrieve the bivariate distribution of the PLMR variable Z(u) it is necessary to apply

the piecewise scaling rule, defined by the model’s parameters, on the correlated simulated samples.

Following the rule defined in Equation 3.7 values of Y2(u) and Y2(u+ h) below the truncation quan‑

tile Tp will be multiplied by
√
S1 and above it by

√
1− S1. The inverse should be done to Y1(u) and

Y1(u+ h). Finally, the realizations of Z(u) and Z(u+ h) are calculated by summing location‑wise

the piecewise transformed factors:

Z(u) = Y PL
1 (u) + Y PL

2 (u)

Z(u+ h) = Y PL
1 (u+ h) + Y PL

2 (u+ h)
(3.13)

After simulating the PLMR bivariate distribution, indicator variograms are easily derived by

integrating, numerically, the distribution P (Z(u) ≤ z, Z(u+ h) ≤ z). As seen before, knowing the

bivariate distribution and truncating it generates the non‑centered covariance that can be easily be

converted to indicator variogram by Equation 2.12. From the correct PLMR bivariate distribution,

traditional variograms can be estimated by calculating the covariance between [Z(u), Z(u+ h)] and

then calculating the variogram from the relationship shown in Equation 2.5.

Even though the simulation steps to generate the bivariate distribution of the PLMR model is

fairly straightforward, care must be taken defining the sampling strategies to ensure stability of the

indicator variograms. Threshold the RF at extreme values will make one of the classes defined by

indicator coding Equation 2.7 less likely to be sampled. For example, estimating the 0.1 indicator

variogram requires a good characterization of the low probability event of Z(u) ≤ q0.1(Z(u)) and

Z(u+ h) ≤ q0.1(Z(u)), where q0.1(.) represents the 0.1 quantile. A poor sampling of extreme values

might impact the stability of the indicator variograms when the threshold moves away from the

median value.
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The current implementation of this thesis uses Monte Carlo Simulation (MCS) to sample stan‑

dard univariate normal variables and process them using the Projection Pursuit Multivariate Trans‑

form (PPMT). The idea behind PPMT is to find the univariate projections of the data that are the

most non‑Gaussian and transform them into univariate Gaussian. If, for any direction in the multi‑

variate space, the projection follows a univariate standard Gaussian distribution, the variables will

follow amultivariate Gaussian distribution (Barnett,Manchuk, &Deutsch, 2014). Therefore, at least

in an informal manner, PPMT can be seen as a convergence boost of the MCS samples to the Multi‑

variate Gaussian distribution needed. For model 3.7, the bivariate distribution being estimated is a

function of the realization of four random functions:

F (Z(u), Z(u+ h)) = f(Y1(u), Y1(u+ h), Y2(u), Y2(u+ h)) (3.14)

Therefore, besides ensuring that each distribution on the right side of the above equation fol‑

lows, marginally, a standard Gaussian shape, it is necessary to make them standard multivariate

Gaussian. If the correct shape of the multidimensional distribution is preserved in the simulation,

integration of P (Z(u) ≤ z, Z(u+ h) ≤ z) will be more precise and the indicator variograms cal‑

culated from simulation will probably be more stable. This is even more necessary when a larger

number of Gaussian factors are being used. Processing the MCS samples using PPMT makes them

closer to the theoretical multivariate Gaussian distribution and improves precision of the correla‑

tion done by the Cholesky method. A comparison of the methods, alongside the Latin Hypercube

Sampling with Multidimensional Uniformity (LHSMDU) (J. L. Deutsch & Deutsch, 2012), can be

found in (Pereira & Deutsch, 2020).
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CHAPTER 4

INFERENCE OF PLMR PARAMETERS
This chapter presents a semi‑automatic optimization procedure to parametrize a PLMR given avail‑

able information. The procedure is done by a stochastic optimization algorithm based on Simulated

Annealing (SA) that randomly explores the parameter space keeping the best solution in terms of

an objective function. The fitting takes into account traditional and indicator variograms simulta‑

neously. The algorithm is not fully automated since it requires an initial parameter guess to be

specified by the user.

Due to the stochastic nature of the algorithm, the optimization may converge to a near‑optimal

solution. For the purpose of fitting PLMR parameters a near‑optimum solution is sufficient. It will

be shown that small fluctuations in parameters do not severely impact the final variograms shapes.

The next sections will go into more details about the fitting algorithm, show sensitivity results to

changes in parameters and present a demonstration using the Swiss Jura dataset (Goovaerts et al.,

1997).

4.1 Fitting procedure

The PLMR aims to take into account, in a consistent way, indicator variograms when defining a

random function model. To accomplish this, the workflow defines different contributions of each

variogram structure to different bins of the data. Setting up a second order PLMRmodel, imposing

Tp = 0 and S2
1 + S2

1 = 1, is done by estimating the parameter set θ:

θ = (rγ1 , rγ2 , c01, c02, S1) (4.1)

Where rγ1 and rγ2 are the ranges of the Gaussian factors variograms. The slopes S1 and S2

control the magnitude of each factor’s contribution to different ranges of the data and, as a conse‑

quence, the degree of asymmetry in indicator variograms. The fitting procedure of a PLMRmay be

considered as an inverse problem. Given the available information, i.e., empirical variograms, it is

necessary to estimate the parameters based on theminimization of an objective function. In practice,

it means choosing a set of parameters that minimizes the difference between available information

and the model state (simulated based on the parameter set θ). To capture the asymmetry in indi‑

cator variograms typical of non‑Gaussian variables, the model is fit using indicator variograms at

thresholds q = 0.1, 0.5, 0.9 . Using the three thresholds, slopes S1 and S2 have information to be

tuned. Fitting based on one indicator variogramwould not provide any information on asymmetry

and transition between thresholds. The traditional variogram is also used in the fitting procedure.
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4. Inference of PLMR parameters

Figure 4.1 shows the traditional and indicator variograms of a PLMR. It is possible to see how the

shapes are related and, in general, the range that is modeled by solely looking at the traditional

variogram is the same as the range of the most spatially continuous Gaussian Factor in the model.

Using it may seem redundant at first, but traditional variograms are used as input in the condition‑

ing process, described in Chapter 5, hence accounting for them in the fitting procedure is necessary.

If they are not used, there is no guarantee the traditional variogram based on parameters inferred

solely from indicator variograms would match the empirical estimates.

Figure 4.1: Traditional and indicator variograms of an arbitrary PLMR.

For a given set of parameters described θ traditional and/or indicator variograms can be easily

simulated and accessed by the simulation procedure showed in Section 3.4. Optimization is done

using a variation of SA (C. V. Deutsch, 1992; Glover & Kochenberger, 2006; Haykin, 2010). Defining

the model parameters, the information used to tune them, and how to access the state of the model

given a set of input parameters, the objective function for an estimate of θ′ may be written as:

O(θ′) =
ndir∑
d=1

4∑
l=1

nlags∑
h=1

(γ′
dl(h)− γdl(h))2 (4.2)

Where:

ndir = Number of directions of the problem, i.e 1D, 2D or 3D.

nlags = Number lags where each variogram is estimated.

l = Index of the four variogram used for fitting.

γ′
dl(u) = Estimated Variograms based on the trial set of parameters θ′.
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4. Inference of PLMR parameters

The fitting algorithm starts with an initial set of parameters provided by the user and iterates

over candidate solutions for the problem during a pre‑defined number of iterations. The candidate

solutions are defined by exploring the local neighborhood of the current set of parameters and keep‑

ing a candidate solution if it makes the objective function smaller. The size of this neighborhood is

controlled by the temperature parameter tk where k is the iteration count. In case the trial parame‑

ter set is not accepted based on a reduction of the objective function, it can still be accepted based

on a probability defined by an exponential distribution proportional to the size of local search and

the difference between current and trial objective function value. Hence, the trial parameter set at

iteration k + 1 is accepted if:

Paccep(θ′
(k+1)) =


1; if O(θ′(k)) ≥ O(θ′(k+1));

exp (O(θ′(k))−O(θ′(k+1)))
tk

; if O(θ′(k)) < O(θ′(k+1));
(4.3)

In the PLMR context, the temperature tk is a relative perturbation on the parameter defined

by sampling a uniform distribution centered at the desired perturbation level. It starts centered

at 7%, i.e p = U(−7%, 7%). At each iteration, the parameters will be multiplied by sampled p

values, the objective function updated and compared to the current best solution. The perturbation

is decreased following the linear multiplicative annealing schedule:

tk+1 = t0
1 + ak

(4.4)

Choosing a cooling schedule can be a sensitive choice depending on the size and complexity of

the optimization problem. The goal when choosing the schedule is to ensure convergence while

maintaining a reasonable computing time. The schedule shown in Equation 4.4 is used to make

sure the temperature converges to a single value after all the iterations. Constant a changes the rate

that the temperature decay over the iterations, larger values makes it decay faster and converge

to a smaller temperature at the end of the algorithm. The value of the constant is chosen so the

perturbations converge to p = U(−3%, 3%) over a predefined number of iterations, usually set

around 500 to 800. Perturbation values below this rate are too small for the scale of the problem.

The temperature is changed 2 times during the fitting process.

Once the algorithm runs for a pre‑defined number of iterations, the best solution found in the

run is returned. The randomacceptance chance showed in Equation 4.5 helps to avoid the algorithm

getting stuck in a far from optimal solution. This may happen when the Gaussian factor ranges are

similar.

The automatic fitting procedure is also useful to access if the data is prone to be modeled with

a PLMR. When the two Gaussian factors are defined with the same variogram type, the model has

the property to converge to a conventional LMR when one, or both, of the conditions happen:
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4. Inference of PLMR parameters

S1 ≈ S2 ≈ 0.5

rγ1 ≈ rγ2

(4.5)

When S1 and S2 are ≈ 0.5 it indicates equal contributions of each structure to the two subsets

of the data. In this case, even if ranges and structure type are different the model is equal to a LMR

with equal contribution from each variogram. When the ranges and structures are equal the model

will converge to a single variogram structure model. These two scenarios may be captured by the

semi‑automatic fitting procedure, indicating that the asymmetry in the indicator variograms is not

large enough to model with a PLMR. Finally, from the author’s experience with real datasets, the

algorithmmay converge to solutions that are good in terms of the cost function but are geologically

unreasonable, e.g extreme large ranges. This scenario seems to be commonwhen trend‑like features

can be seen in some indicator variograms.

4.2 Fitting the nugget effect

The nugget effect of a PLMRmodel is currently being treated as coming from the Gaussian Factor’s

realizations. In practice, this means that the nugget effect of each variogram will be a consequence

of the piecewise linear mixing defined by the model and the inferred nugget effect of each Gaus‑

sian Factor. Hence, after being inferred, each Gaussian Factor will be simulated using the fitted

nugget value. In this framework, it is not possible to control exactly the behavior of lag 0 for each

variogram used to tune the model, but the nugget values fitted are consistent with the model. The

semi‑automatic fitting of the nugget effect is done in a step before the optimization of the remaining

parameters. A nugget effect goal for each variogram used in fitting is specified by the user. The pro‑

gram proceeds, similarly to what was described in the previous section, to try different solutions

and keep the one that minimizes the objective function. In this step, the function to be minimized

can be written as:

O(nugg) =
ndim∑
d=1

4∑
l=1

(γ′
dl(0)− γdl(0))2 (4.6)

The equation is the same as Equation 4.2, but the squared error is computed only for h = 0.

4.3 Setting up a initial guess for semi‑automatic fitting

A general rule of thumb on how to set up an initial guess for PLMR parameters will be outlined in

this section. The procedurewill be described bymodeling Cadmium (Cd)measurements in the Jura

dataset. Figure 4.2 shows Traditional and Indicator Variograms of theNormal Score (NS) Cadmium

measurements.
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4. Inference of PLMR parameters

Figure 4.2: Empirical NS Cadmium variograms for the Swiss Jura dataset

Dots were connected in the Indicator Variograms to highlight the non‑Gaussian asymmetrical

behavior. The apparent range of the 0.1 and 0.5 variograms are close to 1 and they look fairly similar.

The 0.9 threshold Variogram has a range of around 0.4 units. Traditional Variogram of the normal‑

scored transformed variable shows a range around 1. These apparent ranges will be set up as an

initial guess. Initial slopes guesseswill be S1 = 0.1 and S2 = 0.9 due to high asymmetry between 0.1

and 0.9 indicator variograms. The model will be built with two variograms of Spherical Variogram

structures. Choosing variograms types is subjective but they should be able to reasonably fit all

variograms used for tuning. The semi‑automatic fitting was run and the range of the first Gaussian

factor was slightly modified to provide a better fitting of the 0.9 threshold. Both sets of parameters

are shown in table 4.1 and fitted variograms are shown in Figures 4.3 and 4.4.

Table 4.1: PLMR parameters for Cdmeasurements in the Jura data set

Parameters from Semi‑Automatic Fitting Final Chosen Parameters
rγ1 0.40 0.45
rγ2 1.10 1.10
S1 0.11 0.11
S2 0.89 0.89
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4. Inference of PLMR parameters

Figure 4.3: Fitted variograms ‑ using values outputted from the optimization procedure.
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4. Inference of PLMR parameters

Figure 4.4: Fitted variograms with minor alteration in the range of the second Gaussian factor
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4. Inference of PLMR parameters

The procedure used for the Jura data can be seen as a rule of thumb for setting up an initial

guess. The two Gaussian factor are set to match the apparent ranges of the 0.1 and 0.9 indicator

variograms. The first slope guess (S1) is set to 0.1 when considerable asymmetry around the 0.5

threshold is present. If no asymmetrical behavior is seen, this value can be set higher, but it is worth

noting that when the indicator variogram transition starts to become symmetric using a PLMR to

model the variable must be evaluated.

4.4 Synthetic example and robustness to fluctuations in parameters

When the semi‑automatic fitting procedure described above is runmultiple times for a similar prob‑

lem it is possible that results from each run will converge to slightly different parameters. This

behavior arises from the stochastic nature of the optimization procedure. The perturbations p sam‑

pled from a uniform distribution can be thought of as Markov Chain. The memory of the process

comes from the fact that each local search is a controlled perturbation centered on the current pa‑

rameter estimate. Fluctuations in the chain may lead to slightly different final results. Also, near

global optimum parameters, changes in the model become harder to accept due to the similarity of

the evaluated objective function.

Fluctuation ismore present in the final slopes S1 and S2 than in the ranges. This is demonstrated

in a small synthetic example. Semi‑automatic fitting is run 100 times and the solutions stored. Fig‑

ure 4.5 shows a swarm plot of the relative difference between reference parameters and fitted ones,

and Figure 4.6 the resulting PLMR variograms. The seemingly continuous grey line is the com‑

bination of the 100 resulting variograms plotted together, hence its width is proportional to the

maximum fluctuation in each resulting variogram. This example was set up purposefully so the

optimized parameters would not exactly match the reference ones. Even though there is a high

deviation in the PLMR slopes, variograms still show a good visual fit. This happens because pa‑

rameters interact in a non‑linear fashion meaning that different solutions may yield equally good

fits. Also, from the author’s experience modeling real datasets with themodel, small fluctuations in

the PLMR slopes should not cause large deviations in the results. Inversely weighting the objective

function by the variogram lag helps to stabilize results. Robustness to variations in the variogram

ranges is similar to simulationwith SGS. A subjective understanding of the data and geology define

the acceptability of the final results.
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4. Inference of PLMR parameters

Figure 4.5: Swarm plot of the optimized parameters

Figure 4.6: Resulting variograms
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CHAPTER 5

SIMULATING CONDITIONAL PLMR
REALIZATIONS
This chapter will discuss a methodology to simulate conditional realizations using a piecewise lin‑

ear model of regionalization.

Conditional simulation iswidely used to obtainmodels of uncertainty that reflect the true spatial

variability of the variable being studied. Based on a second‑order stationary Random Function

model Z(u), an unconditional realization is a realization from the set of all possible values of Z(u)

(Chiles & Delfiner, 2009).

For a correct assessment of uncertainty, the set of possible values of Z(u) should be consistent

with the conditioning data and previously simulated locations. This is achieved by the use of condi‑

tional simulation (spatially consistent Monte Carlo simulation), i.e. realizations that are randomly

drawn from the subset of realizations that match the sample points (Chiles & Delfiner, 2009). Geo‑

statistical conditional simulation algorithms are used to build models that reproduce global his‑

togram, measures of spatial continuity such as the variogram and the variable represented by the

conditioning data (Rossi & Deutsch, 2013).

Generating unconditional realizations of a PLMR model is easily achieved by simulating the

Gaussian factors unconditionally using anyGaussian simulation technique, e.g., SGS, turning bands

or spectral simulation, and applying themodel’s piecewise linear transform to the realizations. Con‑

ditional realizations using a PLMR are achieved by decomposing the model into its Gaussian fac‑

tor’s, simulating them and reapplying the piecewise linear transformation in the realizations.

5.1 Direct simulation

To directly generate conditional realizations, sequential simulation algorithms are commonly used

in geostatistical workflows (Rossi & Deutsch, 2013). Sequential simulation algorithms work by

factorizing the joint CDF of multiple random variables Z(u), i = 1, ...,K , where K is the total

number of random variables. Recalling the ccdf of a set of random variables:

F (Z(u1), . . . , Z(uK)|(n) = Prob(Z(ui) ≤ zi; i = 1, . . . ,K|(n)) (5.1)

The Sequential Simulation approach factorizes Equation 5.1 making the simulation a series of

sequential inference aboutK univariate ccdf (C. V. Deutsch & Journel, 1998):
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5. Simulating conditional PLMR realizations

Prob
{
Z(u1) ≤ z1 | (n)

}
Prob

{
Z(u2) ≤ z2 | (n+ 1)

}
...

Prob
{
Z(uK) ≤ zK | (n+K − 1)

}
(5.2)

Under this framework, realizations of the ccdf at each locationKwill be drawn sequentially. The

set of conditioning data (n) is composed of hard‑data and previously simulated locations inside a

neighborhood of the node being simulated. Calculation of the univariate is usually done in a non‑

parametric framework, i.e., using indicator techniques or using a parametric model such as the

multiGaussian model. In the latter, the distributions would be simply parameterized by a mean,

defined using Simple Kriging, and a variance defined by the kriging variance.

5.2 Conditioning by Kriging (CBK)

Instead of sampling from ccdfs in a sequential fashion, it is also possible to sample unconditional

realizations of the RF model and then condition them on sampled data. The classical two‑step con‑

ditioning approach would be to simulate unconditionally using Gaussian algorithms, e.g. Turning

Bands (Chiles & Delfiner, 2009; Mantoglou & Wilson, 1982), and condition using Simple Kriging

(Chiles & Delfiner, 2009; C. V. Deutsch & Journel, 1998; A. G. Journel & Huijbregts, 1978). When

an unconditional realization is generated based on an estimated variogram, the global statistics of

the random function being modeled are preserved up to fluctuations, however, the data sampled

will not be reproduced and local features of the data are not going to be correctly placed in the final

realization. Hence, since the unconditional map only reflects the global information provided by

the variable, the process of conditioning will update the map and ensure that simulation matches

and reflects the information from sample points (Chiles & Delfiner, 2009). Doing that, conditional

statistics of the map will be representative of the underlying phenomena. Consider the RF Z(u) as

the sum of the estimator and the corresponding error (C. V. Deutsch & Journel, 1998):

Z(u) = Zsk(u) + e(u) (5.3)

Where Zsk(u) is the Simple Kriging Estimator. The term e(u) is simply Z(u) − Zsk(u). Substi‑

tuting e(u) in equation 5.3:

Z(u) = Zsk(u) + [Z(u)− Zsk(u)] (5.4)

Therefore, to generate conditional realizations of a given random function (RF) that restore com‑

plete variance of the model, it is necessary to simulate the error term and add it to the values ob‑

tained from Kriging using the original data. If the spatial characteristics of the term e(u) were
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5. Simulating conditional PLMR realizations

known, a direct simulation would be possible (C. V. Deutsch & Journel, 1998). Since this is not the

case, error realizations will be constructed based on unconditional realizations of the RF. In the data

locations u: Zsk(u) = Z(u), due to the exactitude property of Kriging.

When conditioning a PLMR realization by Kriging, hard‑data will be reproduced and the map

will represent local features of the domain. However, there might be some level of multiGaussian

contamination in the results. Under the MG model, the Simple Kriging equations are equal to

the normal equations (Leuangthong et al., 2011), indicator variograms show symmetric behavior

around the 0.5 threshold and ccdfs are fully parametrized by its two first moments. Hence, simply

conditioning the PLMR realizations using Simple Kriging is similar to assuming that the bivariate

distribution between two locations is bivariate Gaussian. Under this assumption, the SK estimate

and variance are respectively the conditional mean (mZc
(u)) and variance (σ2

Zc
(u)) of the ccdf at

location u:

mZc(u) = Zsk(u) =
∑
α=1

λα(u)Z (uα) (5.5)

σ2
Zc
(u) = σ2

SK(u) = 1−
n∑

α=1
λα(u)C (u− uα) (5.6)

Conditioning an unconditional PLMR realization by Simple Krigingwill make the resulting ccdf

closer to the multiGaussian model. When the node being estimated is almost in a hard‑data loca‑

tion, results will be similar to the expected conditional distribution. However, when the distance

from a sample increases and is still smaller than the greatest Gaussian factor range, conditioning

results will be contaminated by multiGaussian behavior. Besides being a function of the relative

distance to data locations, Gaussian contamination is also a function of the value sampled at a loca‑

tion. Conditional covariance between two locations u, u′ in a stationary domain may be written as

(Hadavand & Deutsch, 2020):

C(Z(u), Z(u′) = C
(
u− u′

)
−

n∑
α=1

n∑
β=1

λα(u)λβ

(
u′
)
C
(
uα − uβ

)
∀u,u′ (5.7)

The PLMR, due to asymmetrical indicator variograms, has data‑dependent variograms, i.e the

spatial continuity is a function of the data value. As mentioned before, using the MG model will

entail the same pattern of spatial continuity around themedian. As shown in Equation 5.7, applying

CBK directly entails a conditional covariance that is data value independent. Hence, conditioning

to extreme values of the PLMR distribution will accentuate the degree of Gaussian contamination.

This chapter will go over a conditioning algorithm proposed for the PLMR model. The main

idea of the method is to decompose the model into its latent Gaussian factors in a way that hon‑

ors the model piecewise linear transform, spatial auto‑correlation and hard‑data. This is achieved

by imputing each factor in the data locations. The imputed values are then simulated using SGS,
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and the piecewise linear transformation defined by the model’s parameters is reapplied. Finally,

it will be shown how this method reproduces indicator and traditional variograms and honors the

asymmetry of non‑Gaussian random variables.

5.3 PLMR transformation

Geostatistical workflows require building a representative distribution of the variable being mod‑

eled. This step starts with data visualization, cleaning, exploratory data analysis and may end

with data processing steps like declustering and despiking (Rossi & Deutsch, 2013). Clustered sam‑

ples, usually in areas of interest like high‑grade zones, may lead to incorrect estimation of global

histogram, local proportions, and uncertainty estimation. Spikes in the variable histogram, i.e mul‑

tiple records with the same value, will lead to artifacts when data transformation like the Normal

Score Transform is needed.

After a representative histogram is obtained, the variable under study should be transformed

to the distribution defined by the PLMR parameters. Let’s define a set of samples in a stationary

domain V as {zemp(u);u ∈ V } and it’s representative CDF as Frep(zemp). A Quantile‑Quantile (Q‑

Q) transformation will be applied to Frep(zemp) to transform it to the correct PLMR distribution.

Even though the global distribution of a PLMR is fairly well behaved depending on how the model

is defined, it is not a normal one. Hence, proceeding with simulation using NS values will lead to

bias in the histogram once realizations of the Gaussian Factors are rebuilt into the final realizations

in original units. Calling the PLMR cumulative distribution as Fplmr(z), the transformation can be

written as:

z = F−1
plmr(Frep(zemp)) (5.8)

Since Frep(zemp) does not have an analytical representation, the samples are ordered and a cu‑

mulative probability assigned to it. For example, the value ranked at position q could have an

empirical cumulative frequency of q
n , where n is the total number of sampled locations. Linear

interpolation is used to extrapolate the CDF to unsampled values. Further details of Q‑Q transfor‑

mations and how to treat declustering weights, boundary probabilities, and back‑transforms can

be found in (C. V. Deutsch & Journel, 1998). The PLMR CDF, i.e. Fplmr(z), is obtained by simulat‑

ing independently two normal distributions and applying the transformation using the parameters

inferred from the semi‑automatic fitting procedure. Figure 5.1 shows a representative distribution

obtained from the Jura dataset and a graphical representation of its transformation to PLMR units.
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Figure 5.1: PLMR transformation example ‑ CDF plots follows same color coding as histograms

5.4 Imputation of Gaussian factors

As mentioned before, naive use of the two‑step Conditioning by Simple Kriging method adds un‑

desired multiGaussian behavior to the final realizations. A methodology where the Gaussian fac‑

tors are imputed at each data location and then simulated using SGS is proposed to mitigate this

problem. The imputation framework aims to reconstruct the Gaussian factors from the informa‑

tion provided by the PLMR and sampled values. The methodology can be divided into different

sub‑problems:

1. Capture the relationship between Gaussian factors and the PLMR model, i.e., honoring the

piecewise linear transform.

2. Reproduce each Gaussian factor’s spatial behavior by honoring its variogram structure.

3. Ensure data reproduction.

4. Simulate the imputed values at each data location and re‑apply the piecewise linear transform

at each imputed Gaussian factor realization.

The imputation is done at each location where the attribute value is sampled. To make the text

less cumbersome, when no distinction between the two Gaussian factor’s is necessary, both distri‑

butions will be referred to as Y (u). This means that the operations described should be conducted

independently for each factor. Unless otherwise noted, the PLMR random function will be called

Z(u).

Given a random sequence to visit all nodes in the grid being simulated the procedure locally

combines information from the distribution of Y (u)|Z(u), simulated based on the model’s param‑

eter, and the spatial distribution of the factors given the previously imputed values, i.e Y (u)|(n)).

The final goal of the imputation methodology is to sample from the following distribution:
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Prob
(
Y (u) | Z(u), (n)

)
(5.9)

The two pieces of information are combined using non‑parametric Bayesian updating, and as‑

suming conditional independence between Y (u)|Z(u) and Y (u)|(n):

Prob
(
Y (u) | Z(u), (n)

)
=

Prob
(
Y (u)

)
Prob

(
Z(u) | Y (u)

)
Prob

(
(n) | Y (u), Z(u)

)
Prob

(
Z(u), (n)

) (5.10)

Prob
(
Y (u) | Z(u)

)
=

Prob
(
Y (u) | Z(u)

)
Prob

(
Y (u) | (n)

)
Prob

(
Y (u)

) (5.11)

The updated distribution is then sampled, and a realization of one of the Gaussian factors is

generated. The other factor is computed afterward to ensure data reproduction. Each aspect of the

methodology will be further explained in the following sections.

5.5 Distribution of the factors conditioned on sampled data

The distribution of the factors given a PLMR value is accessed by simulating a large number of

samples from an independent normal distribution, computing the piecewise linear transformation

and the final PLMRvalue. The outcome is the joint distributionProb(Y1(u), Y2(u), Z(u)), i.e. a table

that stores the two independent normal realizations and the PLMR values that arise by applying

the piecewise linear transformation at each pair of y1(u), y2(u). The lower case notation means

a realization of the parent random function. The goal of this first Monte Carlo simulation is to

model the distribution of Prob(Y1(u)|Z(u)) and Prob(Y2(u)|Z(u)). It is important to note that, for

a realization of one of the factors, a given PLMR value z can be calculated by several values of the

second factor.

This step is mapping the normal deviates into the PLMR space by a numerical procedure. The

bivariate distributions Prob(Y1(u), Z(u)) and Prob(Y2(u), Z(u)) are sensitive to the quality of the

sampling in Gaussian space. Hence, similarly to the procedure described to simulate PLMR vari‑

ograms, PPMT (Barnett et al., 2014) is being used to pre‑process the Monte Carlo samples. Figure

5.2 shows the scatter plot of the simulated factors and calculated PLMR values.

In case the truncation point is set to be different than zero, the distribution of Y (u)|Z(u) will

have a discontinuity. This is illustrated in Figure 5.3where Tp is set to be the 0.1 quantile of a normal

distribution, i.e. Tp = −1.28.

The bivariate relationships between the PLMR and Gaussian factors values depend on the pa‑

rameters used to define the model. When both squared slopes equal 0.5, the scattered points will

follow a Gaussian ellipse. As mentioned before, this model is equivalent to a LMR with equal con‑

tribution from both factors. Hence, the conditional expectation and variance would be:
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Figure 5.2: Bivariate scatter‑grams of Prob(Y1(u), Z(u)) and Prob(Y2(u), Z(u))

Figure 5.3: Bivariate scatter‑grams of Prob(Y1(u), Z(u)) and Prob(Y2(u), Z(u)) with Tp = −1.28
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E{Y (u)|Z(u)} = mY (u) + ρ
σY (u)
σZ(u)

(Z(u)−mZ(u)) (5.12)

V ar{Y (u)|Z(u)} = σY (u)(1− ρ2Y (u),Z(u)) (5.13)

Where ρY (u),Z(u) is the correlation between the Gaussian factors and the PLMR values. How‑

ever, for modeling continuous geological variables with non‑Gaussian behavior, themost useful set

of parameters are the ones where on squared slopes are significantly different. This highlights the

spatial continuity of each factor in different ranges of the data, making it possible to define models

with asymmetric indicator variograms. Figure 5.2 shows that the complexity of the bivariate shape

increases as the slopes diverges and the conditional moments become progressively less linear.

Tomove onwith the imputation framework, it is necessary to sample the distribution ofY (u)|Z(u) =

z. This is straightforward to implement in the presence of equal contributions since the conditional

mean is linear, the conditional variance constant, and the conditional shape is Gaussian. However,

in the case of different slopes, the non‑linearity becomes pronounced, and the fitting assuming a

linear relationship is unsatisfactory. A simple solution for this issuewould be to calculate the condi‑

tional mean and variance non‑parametrically but still assuming that the shape of Y (u)|Z(u) = z is

Gaussian. Hence, this approach continues by calculating the conditional statistics using a Moving

Window Search and using the estimated values as input in the MCS simulation. Figure 5.4 shows

the non‑parametric estimation of the two conditional moments.

Figure 5.4: Moving average E{Y (u)|Z(u) = z} and variance V ar{Y (u)|Z(u) = z} fitted to the distribution.

The slopes on top of the images in Figure 5.4 are the contribution of that factor to low values

of the PLMR. For example, in the region where the factor’s samples are multiplied by the smallest

slope,
√
0.1, the cloud becomesmore dispersed, the variance increases and themean stays relatively
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constant. On the other hand, when multiplied by
√
0.9, the PLMR values become more correlated

with the Gaussian Factors, the mean increase or decrease almost linearly, and the variance is small.

The conditional statistics can be reasonably estimated using a Moving Window in the central

part of the distribution. However, to have reliable samples, it is necessary to determine how well

a Gaussian shape approximates the conditional distributions with the estimated conditional mean

and variance. Figure 5.5 compares the distribution computed usingMovingWindow+MCS and the

reference one from rejection sampling. Histograms and CDFs show how the results diverge from

the reference distribution depending on the region of the bivariate distribution the values are being

drawn from. When sampling from the more correlated part of the cloud, e.g, conditioning on a low

PLMRvalue the second factor, and to a high value the first one, there is a significant bias in themean,

variance, and the reference histogram is considerablymore skewed. However, when sampling from

the more dispersed zone of the distribution, the mismatch decreases, but the variance is high.

Figure 5.5: Conditional densities plotted on the bivariate space formed by the two distributions. Red is the
reference CDF and blue is the one estimated with the non‑parametric MCS procedure.

The mismatch between the estimated and reference conditional distributions, especially in the

first central moment, may lead to bias in the histogram reproduction when the whole PLMR work‑

flow is conducted. Hence, it is necessary to infer the conditional distributions Y (u)|Z(u) = z more

reliably. Using a moving window to infer the mean presented problems when estimating highly

correlated tail values and the conditional distributions are too skewed to be approximated by a

Gaussian shape.
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5.6 Fitting conditional distributions using Gaussian mixture models

Modeling the conditional distribution Y (u)|Z(u) = z by the non‑parametric approach described

above should be avoided. It is necessary to use a flexible method to capture the pronounced non‑

linear behavior that arises when one of the slopes approaches zero. In the imputation of geological

variables literature, methods like Kernel Density Estimation (KDE) and Gibbs Sampler have been

used before (Barnett & Deutsch, 2015). They were proposed as a tool to sample the secondary vari‑

able distribution, i.e., the distribution of the first variable being estimated given the outcomes of

collocated secondary data. This approach is different than a full parametric one, where the condi‑

tional mean and variance are calculated using the normal equations.

Instead of using KDE or a Gibbs sampler, two techniques that can become computationally

infeasible fairly quick, Silva and Deutsch (2018) proposed using a Gaussian Mixture Model (GMM)

to fit the collocated secondary variable distribution. In their framework, the secondary distribution

ismodeled using aGaussianMixtureModel andmerged using a non‑parametric Bayesian updating

(Neufeld & Deutsch, 2006). Let each element of an arbitrary sample set x = (x1
T , x2

T , . . . , xn
T )

represent a multi‑dimensional vector. The estimated density using g Gaussian components can be

expressed as:

f(x,Ψ) =
g∑

i=1
πiϕ(x;mi,Σ) (5.14)

Where:

0 ≤ πi ≤ 1 (i = 1, . . . , g)
g∑

i=1
πi = 1

Ψ = (π1, π2, . . . , πg,m1,m2, . . . ,m3,Σ1,Σ2, . . . ,Σg)

(5.15)

The mean, mi, and covariance matrix, Σi, defines the i = 1, . . . , g Gaussian components den‑

sities present in the final mixture model. The mixing weights πi controls the contribution of each

component density to the mixture model. Therefore Equation 5.14 defines a valid probability den‑

sity function (McLachlan, Lee, & Rathnayake, 2019). This PDF defined by the the GMM parameter

vector Ψ can have highly non‑Gaussian and non‑symmetrical behavior. Figure 5.6 shows the flex‑

ibility of the method. In this example, Ψ = (π1i, π2i = 1 − π1i,m1 = −1,m2 = 1,Σ1 = 1,Σ2 = 1)

where π1i = 0.1, 0.5, 0.9.

Even in the simple homoscedastic case, i.e., all components share the same variance, example

showed in Figure 5.6, it is possible to see that themethodology canmodel distributions that are non‑

symmetrical and non‑Gaussian. UsingmoreGaussian components and different sets of parameters,

it is possible to model PDFs that are multimodal, highly skewed, and disperse(McLachlan et al.,
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Figure 5.6: Different mixture distributions obtained using the same Gaussian components.

2019). In the context of the PLMR conditioning, the number of Gaussian Kernels is usually set

around 4. As shown in Appendix A, the model can be seen as a mixture model between the 4 finite

distributions that arise when applying the piecewise linear transformation. Hence, using a number

close to that has some theoretical reasoning behind it.

The fitting of the GMM is done by Expectation‑Maximization (EM). This method is well docu‑

mented and applied to fit the model in several different areas. The method will not be explained

in detail, interested readers are referred to (Friedman, Hastie, Tibshirani, et al., 2001; McLachlan et

al., 2019). Giving the model equation 5.14, the log‑likelihood logL(Ψ) can be calculated giving a set

of observations as (Silva & Deutsch, 2018):

logL(Ψ) =
n∑

j=1
log


g∑

i=1
πiϕ

(
x;mi; Σi

) (5.16)

The EM works by maximizing the log‑likelihood in two different steps. The central idea of the

method is that each data comes from by one of the Gaussian Kernels. Since this information is un‑

known, the problem is formulated treating the label of each sample as missing data (McLachlan

et al., 2019). In the first step in the algorithm, Expectation step (E‑step), the label assignments’ ex‑

pected value is inferred based on the current set of parameters Ψt and the observed samples. Each

data is assigned to aKernel of theGaussianMixtureModel at the end of this step. Giving the current

assignment, a new set of parameters Ψt+1 is calculated. This is the Maximization step. The algo‑

rithm ends when the difference between logL(Ψt) and logL(Ψt−1) is good enough for the proposed

application.
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5.7 Imputing Gaussian factors

To achieve the goals outlined in Equation 5.4, i.e., respecting the piecewise linear transformation

transformation and variogram of the Gaussian factors, the GMM should be used to infer the con‑

ditional distribution of Y (u)|Z(u) = z. This conditional distribution calculated from the mixture

model are then combined with the spatial information using non‑parametric Bayesian updating

(Neufeld & Deutsch, 2006). The method is outlined below:

1. Simulate two sets of independent Gaussian variables exhaustively.

2. Apply the piecewise linear transform to the outcome of item 1.

3. Fit a GMM to the Gaussian factors and the PLMR bivariate distribution. In this step, the

relation between the model and Gaussian Factors is modeled.

4. Calculate the ccdf at the location being simulated by solving the Simple Kriging equations

based on previously simulated values:

myc(u) =
∑

α∈(n)

λα · y (uα) (5.17)

σ2
yc
(u) = 1−

∑
β∈(n)

λαC
(
u,uα

)
(5.18)

∑
β∈(n)

λβC
(
uα,uβ

)
= C

(
u,uα

)
; ∀α ∈ (n) (5.19)

5. Use the fitted GMM in item 3 to infer the conditional distribution of the factor being imputed

given the transformed variable.

6. Combine results from 4 and 5 using non‑parametric Bayesian updating (Neufeld & Deutsch,

2006).

7. Sample a realization from the updated distribution calculated in step 6.

8. Repeat steps 4 to 5 location‑wise, adding each simulated value as conditioning data.

This methodology is the same algorithm Silva and Deutsch (2018) proposed. However, in the

PLMR context, the GMM is fitted to a bivariate distribution that is completely synthetic, and the

set of conditioning data when solving the Simple Kriging system is only composed of previously

simulated locations.

The Bayesian updating step, i.e., when the spatial andmodel information are combined, is done

by a non‑parametric version of the method (Neufeld & Deutsch, 2006). By using a distribution‑free
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update scheme, no Gaussian relation is assumed between the spatial and factor’s conditional dis‑

tribution. However, there is still an assumption of independence between the merged information.

This violates the value‑dependence of variograms of the PLMR. In the future, options that use other

probability merging schemes like conditional independence or Permanence of Ratios (A. Journel,

2002; Pyrcz & Deutsch, 2014) might be worth testing.

Themethodology is applied independently to eachGaussian factor composing the PLMRmodel.

Hence, the imputed values of each factor will reproduce the model’s underlying variogram struc‑

tures.

5.8 Data reproduction and simulation

Applying the methodology described in Section 5.7 is not sufficient to ensure data reproduction

after themodel is rebuilt. This is because imputation is conducted independently for each Gaussian

Factor, so each pair of imputed values y1(u) and y2(u)will not converge to the correct PLMR value

z(u) once the piecewise linear transformation is applied. Hence, a modification is necessary to

ensure data reproduction.

Honoring hard‑data is achieved by, at each location u, keeping one of the imputed factors back

and calculating the other to match the transformed sampled value. For simplicity, let’s suppose

it is chosen to keep all imputed samples from the first Gaussian factor, y1(u), and the values of

the second factor, y2(u), are back‑calculated in all locations in the domain. Hence, to ensure data

reproduction, it is necessary to invert the model as shown in Equation 5.21:

z(u) =



√
S1y1(u) +

√
1− S1y2(u), y1(u) ≤ 0, y2(u) ≤ 0

√
S1y1(u) +

√
S1y2(u), y1(u) ≤ 0, y2(u) > 0

√
1− S1y1(u) +

√
1− S1y2(u), y1(u) > 0, y2(u) ≤ 0

√
1− S1y1(u) +

√
S1y2(u), y1(u) > 0, y2(u) > 0

(5.20)

y2(u) =



z(u)−
√
S1y1(u)√

1−S1
, y1(u) ≤ 0, y2(u) ≤ 0

z(u)−
√
S1y1(u)√
S1

, y1(u) ≤ 0, y2(u) > 0
z(u)−

√
1−S1y1(u)√
1−S1

, y1(u) > 0, y2(u) ≤ 0
z(u)−

√
1−S1y1(u)√
S1

, y1(u) > 0, y2(u) > 0

(5.21)

Back‑calculating y2(u) given the PLMR value, i.e. (z(u)), ensures that the data will be repro‑

duced after the piecewise linear transformation is reapplied to the Gaussian Factors. Figure 5.7

shows the histograms of imputed and conditioned factors and how it exactly reproduces the data.

It is worth noting, however, that the updated distribution of factor being back‑calculated loses some
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spatial correlation and approximate to the distribution of Y (u)|Z(u) as highlighted in Figure 5.8.

The Figure shows 30 realizations of the two imputed factors in an arbitrary location, where the val‑

ues from factor 2 are being sampled from the correct updated distribution and values from factor 1

are solely being back‑calculated. It can be seen how the distribution back‑calculated is closer to the

unconditional PLMR distribution in that location.

Figure 5.7: Histogram of the two imputed factors for one realization and reference PLMR histogram with
validation plot.
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Figure 5.8: Merged distributions using a parametric Bayesian‑updating scheme.

The method described leads to the question: which factor should be sampled and which back‑

calculated in a location u? There is no clear answer to this question at this point. Sampling from

the longest range makes its variogram reproduction better, since the factor with biggest range will

be fully imputed. However, it also approximates the final model from a multiGaussian one. It is

also possible to choose the factor to sample at each location with the smallest or greatest merged

variance after the Bayesian Updated step. This seems appealing at first; however, doing that is

similar to sampling the factor with smallest V ar{Y (u)|Z(u)} without accounting for any spatial

information, which is similar to choosing the zone of the distribution that is more correlated in

Figure 5.5. Hence, this sampling scheme may collapse into choosing based on the PLMR value and

if it is above or below the truncation point. Figure 5.9 shows an example of this property and Figure

5.10 shows the loss of correlation in the longer‑range structure from the back‑calculation step.

Figure 5.9: Indicator if: 1 ‑ Z(u) < 0, 2 ‑ Var{Y1(u)|Z(u)} > Var{Y2(u)|Z(u), }, 3 ‑ Var{Y1(u)|Z(u), (n)} >
Var{Y2(u)|Z(u), (n)}
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Figure 5.10: Variogram reproduction of the imputed factors. The subset of variograms inside the rectangle
shows loss of correlation from back‑calculation.

After the imputation and data conditioning steps, realizations of each Gaussian factor will be

simulated using SGS. The algorithm performs Simple Kriging using the factor’s variogram, a basic

variogram model, hence no fitting is necessary. Simple Kriging ensures values spaced beyond the

variogram range from conditioning points will regress to the global mean (C. V. Deutsch & Journel,

1998; A. G. Journel & Huijbregts, 1978). The Gaussian factor’s realizations having a global normal

distribution is a key assumption when building the model, or else bias in the mean is introduced to

the final histogram. Simulating the imputed factors mitigates the loss of correlation in the imputed

values, and the realizations will have the correct variogram reproduction. After the factor’s real‑

izations are simulated, the piecewise linear transform is reapplied, and realizations of the model in

PLMR space are obtained.

5.9 Synthetic example

This subsection will present results for conditioning a synthetic PLMR dataset. The model used

in this section is built using a Spherical and Exponential variogram structures with ranges of, re‑

spectively, 10 and 30. Slopes will be set to
√
0.1 and

√
0.9. Equation 5.22 describes the model used.

Figure 5.11 shows the reference realization and sample locations. The reference mapwas generated

in a 256 x 256 grid. Figure 5.12 shows the four PLMR variograms defined by the model.

Z(u) =



√
0.1YSph(10)(u) +

√
0.9YExp(40)(u), YSph(10) ≤ 0, YExp(40) ≤ 0

√
0.1YSph(10)(u) +

√
0.1YExp(40)(u), YSph(10) ≤ 0, YExp(40) > 0

√
0.9YSph(10)(u) +

√
0.9YExp(40)(u), YSph(10) > 0, YExp(40) ≤ 0

√
0.9YSph(10)(u) +

√
0.1YExp(40)(u), YSph(10) > 0, YExp(40) > 0

(5.22)

This section will show results by sampling the factor with the greatest variance. The back‑

calculated factor distributionmay diverge from the expected normal distribution behavior. Fluctua‑
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Figure 5.11: Samples and reference realization

Figure 5.12: PLMR variograms.

tions in variograms and artifacts in histograms of the imputedvalues introduced byback‑calculating

one of the factors are mitigated simulated using SGS. Figures 5.13 and 5.14 shows variogram and

histogram reproduction of the Gaussian factors. Simulation of the imputed factors can reproduce

the correct distribution and spatial continuity of the Gaussian factors building the PLMR model.

Figures 5.15 shows the E‑type realization of the simulated imputed factors. Themap reproduces

the spatial behavior seen in the Factor’s reference map fairly well. However, this cannot be checked

when working with a real dataset. In this scenario, checking if the realizations are reasonable nor‑

mal and if the variograms of the factor’s used to construct the PLMR model is fairly reproduced is

sufficient.

Figure 5.16 shows histogram reproduction for the synthetic case example. Histogram repro‑
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Figure 5.13: CDFs of the simulated Gaussian factors.

Figure 5.14: Variograms of the simulated Gaussian factors

duction is more robust to changes in the sampling scheme in the imputation step than variograms.

After simulation of the imputed factors, the model is rebuilt, i.e the piecewise linear transformation

is applied to the factor’s realizations. When modeling with a real dataset, the final reconstructed

model would be back‑transformed to original units. Figures 5.16 and 5.17 show, respectively, his‑

togram reproduction, and the E‑type over 30 simulated results. The conditioning process ensures

histogram reproduction and data reproduction. Simulated realizations show a similar spatial struc‑

ture as the reference image and the E‑type also looks reasonably similar to the reference. Figures

5.19 and 5.18 shows realizations and the model’s reference variograms. As mentioned earlier, the

loss of correlation is greatly reduced by simulation and variograms can be reproduced as demon‑

strated by the synthetic data example.

46



5. Simulating conditional PLMR realizations

Figure 5.15: E‑Type of the simulated Gaussian factors

Figure 5.16: CDFs of the rebuilt PLMR model

47



5. Simulating conditional PLMR realizations

Figure 5.17: Reference image and E‑type of the PLMR model

Figure 5.18: Indicator variogram reproduction

Figure 5.19: Traditional variogram reproduction
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CHAPTER 6

DEMONSTRATION OF THE PLMR
This chapter presents an application of the PLMR to a real 3D dataset. The goal is to demonstrate the

use of the PLMR, compare it to amodel built using themultiGaussian assumption, and comment on

future room for improvement in the methodology. The model referred to as the MG model will be

generated using sequential Gaussian simulation with an LMR. For comparison purpose the PLMR

will be called Zplmr(u) and the LMR, assuming a MG model, one will be called Zlmr(u).

Both models may benefit from a trend model; however, composites were considered stationary

over the modeled area. Adding a trend might remove some of the non‑Gaussian behavior seen in

the Zinc (Zn)measurements, i.e. indicator variogramswould becomemore symmetric. The chapter

aims to explore the difference between the twomodels and how they handle the different continuity

of highs and lows,.

6.1 Data pre‑processing and variography

The dataset consists of Zinc measurements (%) composited to 2m intervals. The data comes from

a Turkish underground mine. Drill Holes are mostly oriented with 90 degree azimuth. Sections of

the composites are shown in Figures 6.1 and 6.2.

A representative Zinc distribution is calculated by despiking and declustering the attribute. De‑

spiking is a crucial step to break ties when ranking samples and building empirical CDFs for Q‑Q

transformations. In the presence of ties between samples, i.e., same value for multiple composites,

the Q‑Q transform is not unique (Pyrcz & Deutsch, 2014), and the resulting histogram may present

artifacts. Declustering is necessary to build a representative distribution that considers sampling

bias, i.e, more data is usually collected near areas of interest in the deposit (Rossi & Deutsch, 2013).

Two data transformations will be applied to the representative distribution of the composited

samples. First, a normal‑score (NS) transform (C. V. Deutsch& Journel, 1998; Rossi &Deutsch, 2013)

table was built considering the declustering weights and the variable transformed to a normal dis‑

tribution. The NSmeasurements will be used to estimate variograms. Using the normal‑scored val‑

ues as traditional variogram, 0.1,0.5 and 0.9 quantile indicator variograms are calculated respecting

directions of continuity of the deposit. Hence, four variograms at each principal direction of geolog‑

ical continuity will serve as input for a semi‑automatic fitting procedure. In this demonstration of

the PLMR, the deposit will be modeled OmniDirectionally. Modeling anisotropy with the PLMR is

likely to bemore explored in the future. Themain draw‑back of the model proposed in this thesis is

the fact that each direction of continuity shares the same contributions S1 and S2. Hence, geological

49



6. Demonstration of the PLMR

Figure 6.1: XY and XZ sections of the Zn composites

Figure 6.2: YZ section of the Zn composites
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variables with asymmetry in the indicator variograms that are not the same across directions may

bring challenges when applying with the PLMR. This is likely room for future improvement in the

methodology. Therefore, for simplicity and more interpretability, the models used in this section

were fitted OmniDirectionally.

Figure 6.3 shows the four variograms fitted for the NS Zinc variable. Table 6.1 shows the final

parameters of the model. The indicator variograms indicate that the continuity of high values is

considerably lower than that of low values. The model was fit using two Spherical variogram struc‑

tures with ranges of 22 and 91 meters. The slopes of 0.115 and 0.885, and the ratio of approx 4:1

between each Gaussian factor range, indicate strong asymmetry of the indicator variogram. Results

also show how the PLMR can simultaneously fit the four variograms while respecting the different

spatial continuity of low and high values. Figure 6.4 and Table 6.2 shows, respectively, the LMR

variogram that will be used for the MGmodel and it’s parameters. The fit using each methodology,

i.e, LMR and PLMR, resulted in variograms structures with similar ranges meaning the scale of spa‑

tial continuity is consistent between models; therefore, the difference between model is related to

how the PLMR defines different contributions depending on the data value. In contrast, the LMR

defines the contribution of each structure to be data‑independent.

Figure 6.3: Variograms fitted using a PLMR.

51



6. Demonstration of the PLMR

Table 6.1: PLMR parameters

Parameter Value
rγ1 22 (m)
rγ2 91 (m)
S1 0.115
S2 0.885

Figure 6.4: Variograms fitted using a LMR.

Table 6.2: LMR parameters

Variogram Ranges Contribution
γ1 22 (m) 0.563
γ2 91 (m) 0.437

After inference of the PLMR parameters, a second quantile‑quantile transformation table will be

applied to the Zn representative distribution using the reference PLMR distribution. This reference

distribution is obtained using the simulation approach described in Chapter 5.

Even though the PLMRdistribution iswell‑behaved and, depending on themodel parameters, it

might be similar to a normal distribution, caring on the PLMRworkflowwith NS samples will lead

to bias in the final histogram reproduction. Transforming the data to exactly match the PLMR dis‑

tribution will correct this issue. Figure 6.5 shows the distribution of the despiked clustered/declus‑

tered composites as well as the histograms after the two transformations are applied. The declus‑

tered mean is 15% lower than the naive average. The NS and PLMR distributions are relatively

similar. However, the piecewise linear transformmakes the resulting global histogram non‑normal

with a smaller variance.
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Figure 6.5: Top row: despiked histograms using/not using declustering weights. Bottom row: the two Q‑Q
transformations with weights applied

6.2 Conditioning by imputation of Gaussian factors

Once the parameters that define the model are inferred and the variable transformed to the cor‑

rect units, decomposition of the data into the Gaussian factor’s (Y1(u) and Y2(u)) using the GMM

imputation approach can be carried out. The GMM model fitted usually takes three to four Gaus‑

sian components. The GMM fitted to the conditional distribution of each Gaussian factor given the

PLMR value in a location is shown below:
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Figure 6.6: GMM fitting to P (Y1(u)|Zplmr(u)) Figure 6.7: GMM fitting to P (Y2(u)|Zplmr(u))

After the twoGaussianMixtureModels are fitted to theP (Y1(u)|Zplmr(u)) andP (Y2(u))|Zplmr(u))

distributions, imputation of the Gaussian factors can be carried out. Imputation of the factors

should be done using as much data as possible, ideally considering all data in the domain and in‑

dependently for each factor. The most important decision the modeler needs to make in this step is

which Gaussian factor to sample andwhich to reconstruct to ensure data reproduction. Histograms

are shown sampling solely from the longest (top row) or smallest range (bottom row) variogram

structure. Sampling only from one factor introduces artifact in the CDF of the factor being back‑

calculated. This behavior is more evident when back‑calculating the most spatially continuous

Gaussian factor.
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Figure 6.8: Distribution of the imputed values after reproduction of hard‑data is ensured. CDFs are shown
sampling solely from the longest (top row) or smallest range (bottom row) variogram structure.
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6.3 Simulation

Once the factors are imputed and data reproduction ensured, simulation of the imputed values can

be carried out. Simulation of the imputed factor’s is done using SGS. No transformation should be

applied since the factor’s being simulated are already in Gaussian units.

Ideally, conditional simulation of the imputed factors should be conducted globally, but in prac‑

tice, conditioning to a neighbor leads to reasonable results. It is necessary to check if the realizations

are reasonably normally distributed and if the variograms of the factor’s used to construct the PLMR

model are fairly reproduced. This simulation step is the building block of uncertainty estimation

with the PLMR, so a good reproduction of the factor’s histogram and variograms usually means

a fair reproduction when the model is rebuilt and back‑transformed. The empirical CDF of the

simulated factors are shown in Figure 6.9 with variogram reproduction in Figure 6.10. The data

conditioning step makes it possible that some locations will have values outside the usual interval

of normal deviates, i.e, [−4, 4]. This behavior can be seen in the CDFs of the first Gaussian factor.

However, simulation mitigates the artifacts in the CDF of the factors seen in Figure 6.8.

Figure 6.11 shows the E‑type over 200 realizations of the Gaussian factors. It is possible to see

how each factor E‑type shows structures in the maps related to the range that it gives more contri‑

bution to the PLMR model.

Figure 6.9: Distribution of the simulated imputedGaussian factors ‑ sampling from the longest rangeGaussian
factor.
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Figure 6.10: Variograms of the simulated imputedGaussian factors ‑ sampling from the longest rangeGaussian
factor.

Figure 6.11: Slice of the E‑type of the simulated imputed Gaussian factors

6.4 Results and comparison between models

This section presents results of simulating with a PLMR model and compare them to the results

obtained by simulating using an LMR, i.e., fitting a nested variogram model and simulating using

the SGS workflow. The same representative distribution is used with both models, and the PLMR

will be simulated using two different sampling strategies: one sampling from the more continuous

Gaussian factor and one sampling from the factor with smallest range.

After SGS is performed at the imputed Gaussian factors, the model is reconstructed by apply‑

ing the piecewise linear transformation. The table used in the Q‑Q PLMR transform is used to

back‑transform the final realizations to original units. Figure 6.12 shows histogram reproduction

in original units for both models. The multiGaussian model presents slightly better histogram re‑

production and more variability between the distributions.

Variograms should be checked in NS units. Therefore, applying an NS transformation to the
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reconstructed model is necessary. It does not matter if the NS transformation is applied to final re‑

alizations in original or PLMR units. The four variograms used in the fitting procedure should

be checked. Hence, it is possible to evaluate how the non‑Gaussian behavior of the PLMR, i.e.

asymmetrical indicators variograms, are affected by the conditioning process. Figure 6.13 shows

variogram reproduction for the traditional variograms and 6.14 for indicator variograms for the

twomethodologies. Traditional variogram reproduction is similar between the twomethodologies.

However, reproduction of the Indicator variograms changes considerably between workflows. As

expected, LMR realizations havemore symmetric indicators variograms due to theMGmodel. The

realizations’ indicator variograms using the PLMR could better reproduce the different continuities

of highs and lows.

Figure 6.12: Histogram reproduction in PLMR and original units (top row). Histogram reproduction in NS
original units (bottom row)

Slice plots of themodels are shown in Figures 6.15 and 6.16 aswell as relative difference between
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Figure 6.13: Traditional variogram reproduction

Figure 6.14: Indicator variogram reproduction
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each PLMR model and the MG model, i.e:

D(u) = E(zlmr(u))− E(zplmr(u))
E(zlmr(u))

(6.1)

Analyzing the slices shown in Figures 6.15 and 6.16 it is possible to see how the PLMR tends

to estimate locations near high‑grade zones lower than the MGmodel and low‑grade zones higher

than the conventional Gaussian simulation approach. The XZ sections of the models show how

the MG model has the mean at nearby locations more influenced by the high‑grade samples of the

uppermost drill hole. This result can be also seen in the cross‑plot between PLMR and MG model

E‑type estimates, shown in Figure 6.17. For values above the declustered mean, the MG model

predicts higher values, and low values tend to be, in general, relatively lower. These results are in‑

line with the indicator variogram reproduction in each methodology, where the PLMR reproduces

better the destructuration on higher thresholds variograms. The E‑type using an LMR has higher

continuity in the higher quantiles of the data, which is a consequence of the symmetric indicator

variograms of multiGaussian assumption, meaning more smearing of high grades than the PLMR.
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Figure 6.15: XZ section of the models and the relative difference to the MG model
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Figure 6.16: YZ section of the models and the relative difference to the MG model
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Figure 6.17: Scatter plot between difference (D(u) and the SGS E‑type.
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6.5 Cross validation

Cross‑Validation (CV) results were generated by leaving out 255 composites at random, 25% of the

dataset, giving insight into how the models differ in locations heavily influenced by conditioning

data. Figure 6.18 shows validation plots for the PLMR, sampling fromone of the two factors, and the

MGmodel. Results of the twomethods are similar, independent of the PLMR conditioning strategy

chosen. Sampling from the Factor with the smallest range has slightly better CV data reproduction.

Figure 6.18: Validation plot between the three models.

In this case study, the PLMR tends to generate more conservative realizations. This was seen in

the last section when comparing the E‑type of the two methodologies, where the MG model tends
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to smear more the high grades than the PLMR. Figure 6.19 shows the classification of the CV data

as ore or waste for three cut‑offs: 5,6 and 7 % Zinc. Accuracy of classification is also presented for

each method in each cut‑off value, being calculated as:

Acc. = TruePositive+ TrueNegative

nsamples
(6.2)

Figure 6.19: Confusion matrixes ‑ test data classification at cut‑offs 5,6 and 7 % Zinc

Classification of the test data as ore or waste was similar using the PLMR or MG model. How‑

ever, for a cut‑off of 5 % , the MG model classified the removed composites with slightly increased

accuracy. The higher accuracy of the LMRcomes fromahigher rate of TrueNegative that outweighs

the decrease in True Positive relative to the PLMR. In the remaining cut‑offs, 6 % and 7%, accuracy

was, respectively, marginally better and the samewhen using the PLMR.However, even‑though ac‑

curacy was the same for a threshold of 7 % Zn; the PLMR had slightly better performance regarding
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True Positive and worse when classifying actual waste as waste, i.e, True Negative proportion.

The local difference in the estimation of high grades introduced by decomposing the RF using a

piecewise linear function is likely to impact when the model is being processed by a transfer func‑

tion. As mentioned in the introduction of this thesis, mitigating the impact of high grade samples

is important when estimating mineral resources to avoid over‑estimation. The PLMR, as well as

Gaussian simulation, mitigates the effects of outliers by performing a Q‑Q quantile transformation

of the geological variable to a more symmetric distribution. As demonstrated in this chapter, by di‑

recting accounting for the loss of correlation in high values, the PLMR further mitigates, on average,

the impact of high samples.
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CHAPTER 7

CONCLUSION AND FUTURE WORK
7.1 Conclusion

The PLMR is presented in this thesis as a novel simulation framework to deal with variables with

non‑Gaussian behavior. The model moves away from the multiGaussian model by decomposing

the RF model using a piecewise linear function instead of a linear one. As a consequence, bivariate

distributions under this framework will not have a Gaussian elliptical shape and indicator vari‑

ograms will not be symmetric around the median. Besides proposing a new framework to deal

with positively skewed variables, a conditioning method based on the decomposition of the PLMR

into Gaussian factors and its imputation in every sampled location is also developed. A synthetic

example showed how, under this framework, it is possible to reproduce all four variograms used

in the PLMR fitting.

Comparing results frommodeling with a PLMR and an LMR using a real dataset establishes the

proposed methodology. Results show that, by capturing the spatial destructuration effect of a posi‑

tively skewed variable, the final model is different from one using themultiGaussian approach, and

smearing of high grade seems to be more contained. Cross‑validation results removing composites

at random show how, on average, classification into ore/waste is similar to one conducted with an

MGmodel. This validates the PLMR and shows that, even if final realizations are considerably dif‑

ferent, the proposedmethodology does not yield results that are inconsistent with simulation using

an LMR.

There are limitations to the methodology proposed in this thesis. The PLMR uses the same

contribution parameters, i.e., S1 and S2, in all major directions of continuity. Implicitly, this is

equivalent to assuming that all directions being modeled share the same asymmetry in indicator

variograms which may not be the case for all deposits. Besides, using only two Gaussian factors

restricts the flexibility of the PLMR to model different variogram shapes.

7.2 Future work

The PLMR is applicable for modeling real deposits, however, there is still room for future work

to make the methodology more robust and flexible. First, it is necessary to better understand the

conditioning step and how the sampling strategy affects final realizations. In the demonstration

chapter, the final results were not greatly influenced by the choice of which factor to sample, as

shown in the CV results. However, this is not necessarily true for every data configuration and

set of PLMR parameter. A more robust sampling strategy that can be applied to most datasets
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still needs to be devised. By doing that, it is possible to explore different implementations of the

model to gain more computational efficiency. For example, if the factor to be imputed or back‑

calculated at each location is defined before imputation is conducted, the implementation could

benefit from that and avoid imputing the two factors in all locations independently. Modeling of

highly anisotropic regionalizations could also be explored in the future to access how restrictive

using the same contribution parameters for all directions is.

The idea presented in this thesis opens room for several research paths that could make the

PLMR more flexible. Expanding the PLMR to more than two Gaussian factors and one truncation

quantile would give the workflow greater flexibility to tackle different types of deposits and vari‑

ograms. More indicator variograms could be used to bring additional information regarding the

transition between thresholds. The PLMR could also be truncated at point Tp 6= 0. Adding Tp as a

free parameter to be inferred would likely give more flexibility regarding the pattern of indicator

variograms asymmetry of the model. As mentioned in earlier sections, the proposed model aims

at breaking the linear decomposition of the RF model in the simplest way possible, however, other

types of functional forms may be explored and different types of non‑linearity introduced.

Finally, it might be interesting to evaluate how the PLMR method will perform when a trend

model is applied to the data before simulation. The PLMR assumes that composites are stationary

over the areawhere themodel is fitted. However, by definingdifferent spatial continuity to different

data quantiles, themodel might tackle some of the trend‑like features of the variable. Removing the

trend also seems to remove part of the non‑Gaussian behavior seen in positively skewed variables,

i.e. it makes indicator variograms more symmetrical.
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APPENDIX A

APPENDIX ‑ DERIVATION OF THE PLMR GLOBAL
MEAN AND VARIANCE
This section aims to show how to calculate the mean and variance of a two‑factor, one truncation

point PLMR. Taking the first piece of equation 3.4:

{
Z1(u) =

√
S1Y1(u) +

√
1− S1Y2(u); Y1(u) ≤ 0, Y2(u) ≤ 0 (A.1)

The notation Zi(u), i = 1, 2, ..., 4, is introduced to keep clear which piece of the PDF is being

analyzed. As mentioned before, it is well established that:

Y1(u) 7→ N(0, 1)√
S1Y1(u) 7→ N(0, S1)

(A.2)

Therefore, we need to determine themean and variance of
√
S1Y1(u) and

√
1− S1Y2(u) after it is

truncated at Tp. This problem is well studied in the literature. Following Johnson, Kotz, and Balakr‑

ishnan (1995), and defining two arbitrary truncation points T1std = Tp−mY1
σY1 (u)

and T2std = Tp−mY2 (u)
σY2 (u)

,

it is possible to write the mean and variance of a truncated Gaussian distribution as:

E[Y1(u)|T1std < y1(u) < T2std ] = mY1(u) + σY1(u)
ϕ(T1std)− ϕ(T2std)
Φ(T2std)− Φ(T1std)

(A.3)

V ar[Y1(u)|T1std < y1(u) < T2std ] = σY1(u)2(1+
T1stdϕ(T1std)− T2stdϕ(T2std)

Φ(T2std)− Φ(T1std)
−( ϕ(T1std)− ϕ(T2std)

Φ(T2std)− Φ(T1std)
)2)

(A.4)

Where ϕ = Gaussian PDF and Φ = Gaussian CDF. Putting together equations A.2 to A.4, it is

possible to derive the needed statistics of the piecewise linear transform of a Gaussian Factor. Since

they are independent by construction, we can calculate the mean and variance of the transformed

factors and sum them to generate the results for each piece of equation 3.7. The workflow to do the

calculations can be summarized as:

1. Use relationA.2 to calculate themean of variance of each transform (e.g.
√
S1Y1(u),

√
1− S1Y2(u),

etc.)

2. Use equations A.3 and A.4 to calculate the truncated mean and variance of each transformed

variable from item 1.

3. Sum the truncated mean and variance following the piecewise linear rule.
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Doing that, it is possible to treat its PDF as a mixture model of each piece of equation 3.7:

P (Z(u)) = w1P1(Z1(u)) + w2P2(Z2(u)) + w3P3(Z3(u)) + w4P4(Z4(u)) (A.5)

The mean is going to be just the weighted sum of the mean of each piece:

E{Z(u)} = w1E{Z1(u)}+ w2E{Z2(u)}+ w3E{Z3(u)}+ w4E{Z4(u)} (A.6)

In the PLMR context, the weights wi will have the same value, in this case 0.25. We can write

the second moment of A.5 as:

E{Z(u))2} = w1

∫
SU1

Z1(u)2P1(Z1(u))dZ1 + w2

∫
SU2

Z2(u)2P2(Z2(u))dZ2+

w3

∫
SU3

Z3(u)2P3(Z3(u))dZ3 + w4

∫
SU4

Z4(u)2P4(Z4(u))dZ4

(A.7)

Where SUi is the support of each piece. Therefore:

E{Z(u)2} = w1(V ar{Z1(u) +mZ1(u)}+ w2(V ar{Z2(u) +mZ2(u)}+

w3(V ar(Z3(u) +mZ3(u)) + w4(V ar{Z4(u) +mZ4(u)}
(A.8)

Therefore we can write the variance of equation 3.7 as:

V ar{Z(u)} =
4∑

i=1
wiV ar{Zi(u) +mZi(u)} −mZ(u) (A.9)

This approach seems to be extendable to any number of structures while using up to two trun‑

cation points.
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