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Abstract� For k � � power series a��z�� � � � � ak�z�� we present a new iterative� look�ahead
algorithm for numerically computing Pad�e�Hermite systems and simultaneous Pad�e systems along
a diagonal of the associated Pad�e tables� The algorithm computes the systems at all those points
along the diagonal at which the associated striped Sylvester and mosaic Sylvester matrices are well�
conditioned� It is shown that a good estimate for the condition numbers of these Sylvestermatrices at
a point is easily determined from the Pad�e�Hermite system and simultaneous Pad�e system computed
at that point� The operation and the stability of the algorithm is controlled by a single parameter
� which serves as a threshold in deciding if the Sylvester matrices at a point are su�ciently well�
conditioned� We show that the algorithm is weakly stable� and provide bounds for the error in the
computed solutions as a function of � � Experimental results are given which show that the bounds
re	ect the actual behavior of the error�

The algorithm requiresO�knk��s�knk� operations� to compute Pad�e�Hermite and simultaneous
Pad�e systems of type n 
 �n�� � � � � nk�� where knk 
 n�� � � ��nk and s is the largest step�size taken
along the diagonal� An additional application of the algorithm is the stable inversion of striped and
mosaic Sylvester matrices�
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verses� striped Sylvester inverses� mosiac Sylvester inverses� numerical algorithm� numerical stability
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�� Introduction� Let At�z� � �a��z�� � � � � ak�z��� k � �� be a vector of formal
power series over the real numbers� with a���� �� � and let n � �n�� � � � � nk� be
a vector of integers with n� � ��� � � � � k� and with at least one n� � �� A
Pad�e�Hermite approximant of type n for A�z� is a nontrivial vector �q��z�� � � � � qk�z��
of polynomials q��z� over the real numbers having degrees� at most n�� � � � � k�
such that

a��z�q��z� 	 � � �	 ak�z�qk�z� � cknk�kz
knk�k 	 cknk�k��z

knk�k�� 	 � � � ����

with knk � n� 	 � � �	 nk�
The Pad�e�Hermite approximation problem was introduced in �
�� by Hermite

and has been widely studied by several authors �for a bibliography� see� for example
�
� �� �� �� 
���� Note that for At�z� � ���� a�z��� equation ��� becomes

a�z�q��z�� q��z� � O�zn��n�����

Thus� as a special case we have the classical Pad�e approximation problem for the
power series a�z�� The Pad�e�Hermite approximation problem also includes other

� Department of Computing Science� University of Alberta� Edmonton� Alberta� Canada� T�G
�H�� The research of this author as partially supportedby Natural Sciences and EngineeringResearch
Council of Canada grant A�����

y Bell Northern Research� P�O� Box ����� Station C� Ottawa� Ontario� Canada� K�Y 
H�
z Department of Computer Science� University of Waterloo�Waterloo� Ontario� Canada� N�L�G��

The research of this author was partially supported by Natural Sciences and Engineering Research
Council of Canada grant FS����C�

� The restriction to real numbers is made in order to simplify 	oating point analysis� All of the
results given in this paper also hold with minor modi�cations for the �eld of complex numbers�

� By convention� a polynomial of degree �� is the zero polynomial�
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classical approximation problems such as the algebraic approximants where At�z� �
��� a�z�� a�z��� � � � � a�z�k� �see �
�� for the special case k � 
� and G�J approximants
where At�z� � ��� a�z�� a��z��� Additional examples can be found in ����

Closely related to Pad�e�Hermite approximants are simultaneous Pad�e approxi�
mants� A simultaneous Pad�e approximant of type n for A�z� is a nontrivial vector
�q���z�� � � � � q�k�z�� of polynomials q���z� over the real numbers having degrees of at most
knk � n�� � � � � k� such that

q���z� � a��z� 	 q���z� � a��z� � c
���
knk�kz

knk�k 	 c
���
knk�k��z

knk�k�� 	 � � � ��
�

for � � �� � � � � k� Simultaneous Pad�e approximants were also de�ned by Hermite and
were used in his famous proof of the transcendence of e� Again� for At�z� � ���� a�z���
the simultaneous Pad�e approximation problem becomes the classical Pad�e approxi�
mation problem for a�z��

By equating coe�cients in ���� the Pad�e�Hermite approximation problem can
be viewed as solving a system of linear equations of size knk � knk� Thus� one
can use Gaussian elimination to solve this problem with a complexity of O�knk��
operations� However� the coe�cient matrix of the corresponding linear system has
a type of �structured� form so it is not surprising that there are a number of fast
�
� �
� O�knk�� and superfast ��� ��� O�knk log� knk� algorithms for determining Pad�e�
Hermite approximants� All these algorithms have the property that they work for any
input vector of power series� In addition� these algorithms all make important use
of exact arithmetic� in particular� they all depend on knowing that certain quantities
are known to be � or not� A similar statement also applies for the fast and superfast
computation of simultaneous Pad�e approximants�

In the special case of Pad�e approximants� it has long been known that existing fast
and superfast Pad�e algorithms all had problems with numerical stability for certain
problems� In this case the �rst known numerically stable algorithm for fast Pad�e ap�
proximation was presented by Cabay and Meleshko ����� Alternate algorithms for fast
Pad�e computation that also consider the issue of numerical stability include ���� ��� ���
and ��
�� and for superfast computation �
��� An insightful look into the connection
between stable algorithms for computing Pad�e approximants and other algorithms in
numerical analysis is given by Gutknecht and Gragg ����� Algorithms dealing with
the closely associated problem of stably computing fast rational interpolation include
�
��

In this paper� we present a new algorithm for the computation of Pad�e�Hermite
and simultaneous Pad�e systems� These systems are matrix polynomials which contain
the desired multi�dimensional Pad�e approximant along with quantities that can be
used to recursively or iteratively compute the next approximant along a well de�ned
diagonal path� The algorithm works for all vectors of power series and is fast in
the sense that it computes a system in O�knk�� operations in the generic case� In
addition� we show that this algorithm is weakly stable in the sense that it provides
good answers to well�conditioned problems� The algorithm is a look�ahead procedure
that computes the systems of type n by computing all the Pad�e systems at the well�
conditioned locations along a diagonal path in the associated Pad�e tables passing
through the point n� In the case of Pad�e approximation �k � ��� the algorithm
reduces to the Cabay and Meleshko algorithm�

It is known �cf� ���� or �
��� that in exact arithmetic a Pad�e�Hermite system exists
uniquely if and only if the striped Sylvester coe�cient matrix of the corresponding as�
sociated linear system is nonsingular� This is also true for simultaneous Pad�e systems
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where the coe�cient matrix of the associated linear system is now a mosaic Sylvester
rather than a striped Sylvester matrix� However� in the case of �oating point arith�
metic determining that such coe�cient matrices are nonsingular is not good enough�
Instead one must know� at least in a reasonably computable way that the linear sys�
tems are also well�conditioned� Central to the stable operation of our algorithm is
the ability to estimate the condition numbers of the associated striped Sylvester and
mosaic Sylvester matrices� The estimates follow from some �near� inverse formulae
for these matrices that are derived in this paper and which are expressed in terms
of both Pad�e�Hermite and simultaneous Pad�e systems� This is the reason why our
algorithm computes Pad�e�Hermite and simultaneous Pad�e systems in tandem� the
inverse formulae� and consequently the estimates for the condition numbers� require
that both the Pad�e�Hermite and the simultaneous Pad�e systems be available� The
striped Sylvester and mosaic Sylvester matrices are deemed to be well�conditioned
if the computed estimates of the condition numbers are bounded by some speci�ed
�stability� tolerance � �

As a corollary to our results� there is a formula which gives the inverse of a striped
Sylvester matrix expressed in terms of the associated Pad�e�Hermite system only� One
attempt to use this formula to develop a stable algorithm for computing Pad�e�Hermite
systems �independent of simultaneous Pad�e systems� was only partly successful �

��
bounds for the inverse of the associated striped Sylvester matrix �and consequently
bounds for its condition number� using the formula were often too pessimistic and
impractical�

This paper is organized as follows� Preliminary de�nitions and basic facts about
Pad�e�Hermite and simultaneous Pad�e systems are given in the next two sections�
x� gives a near commutativity relationship between these two systems in �oating
point arithmetic while x� gives the algorithm for computing these systems� The
remainder of the paper is devoted to showing that the algorithm is weakly stable
for the computation of either system� To this end� x� discusses norms for matrix
polynomials and power series while x� and x
 discuss the errors that result from
the iterative steps of the algorithm� x� and x�� provide the necessary material for
determining our stability parameter by creating approximate inversion formulae for
striped and mosaic Sylvester matrices� x�� completes the proof of stability while x�

provides results of some numerical experiments that re�ect the theoretic results of the
previous sections� The �nal section gives some conclusions and a discussion of further
areas of research�

�� Pad�e�Hermite Systems� In this section� we introduce the notion of a Pad�e�
Hermite system for a vector of formal power series� Let

At�z� � �a��z�� � � � � ak�z�� ����

where

a��z� �
�X
���

a���� z�� � � �� � � � � k�

with a
���
� � F � the �eld of real numbers� Assume that a

���
� �� �� which means that

a��� �z� exists� Let n � �n�� � � � � nk� and knk � n�	 � � �	nk� Then the �k	��� �k	��
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matrix of polynomials

S�z� �

�
z�p�z� U t�z�
z�Q�z� V �z�

�
�

�����
z�p�z� u��z� � � � uk�z�
z�q��z� v����z� � � � v��k�z�

���
���

���
z�qk�z� vk���z� � � � vk�k�z�

��������

is a Pad�e�Hermite system �PHS� ��
� of type n for A�z� if the following conditions are
satis�ed�
I� �Degree conditions�� For � � �� � � k�

p�z� �
n���X
���

p���z�� u��z� �
n�X
���

u
���
� z�����

q��z� �
n���X
���

q���� z�� v����z� �
n�X
���

v
���
���z

��

II� �Order condition��

At�z�S�z� � zknk��T t�z�����

where T t�z� � �r�z��W t�z�� with W t�z� � �w��z�� � � � � wk�z�� is the residual�
III� �Nonsingularity condition�� The constant term of V �z� is a diagonal matrix�

V ��� � diag ���� � � � � �k� ����

and

� � �a���� ���
kY

���

�� �� ���
�

where �� � r����

Remark �� Only the �rst column of S�z� is a Pad�e�Hermite approximant as de�
�ned in x�� this being of type �n� � �� � � � � nk � ��� The remaining columns S�z� do
not quite satisfy the order condition ��� and are therefore not Pad�e�Hermite approxi�
mants� these columns serve primarily to facilitate the computation of the �rst column
using the algorithm given later in x�� But there are other uses for these columns
of S�z�� such as that of expressing the inverse of a striped Sylvester matrix �see the
inverse formula ������

Remark �� The nonsingularity condition III is equivalent to the condition that
r��� �� � and that V ��� be a nonsingular diagonal matrix�

Remark �� The PHS is said to be normalized ��
� if the nonsingularity condi�
tion III is replaced by r��� � � and V ��� � Ik� This can be achieved by multiplying
S�z� on the right by ���� where

� � diag ���� � � � � �k� ����

The PHS is said to be scaled �

� if each column of S�z� has norm equal to � for
some norm and if� in addition� �� � �� � � � � k� Here� also� scaling a PHS is






accomplished by multiplying it on the right by an appropriate diagonal matrix�

Remark 	� The nonsingularity condition III� namely � �� �� refers to the nonsin�
gularity of S�z�� that is� S�z� is nonsingular i� � �� �� Equivalently� the nonsingularity
condition refers to the nonsingularity of the associated striped Sylvester matrix Mn

de�ned in ���� below� in ��
� it is shown that a PHS �with � �� �� exists i� Mn is
nonsingular�

If the order condition ��� is not satis�ed exactly� but rather

At�z�S�z� � zknk��T t�z� 	 �T t�z������

where �T t�z� �
�
z� �r�z�� �W t�z�

	
with �W t�z� � ��w��z�� � � � � �wk�z�� is a relatively

�small� residual error� then S�z� is called a numerical Pad�e�Hermite system �NPHS��
In ����� for � � � � k�

�r�z� �

knk��X
���

�r��� z��

�w��z� �

knkX
���

�w
���
� z��

If �T t�z� � �� then S�z� is an exact �rather than a numerical� Pad�e�Hermite system�
To distinguish it from a NPHS S�z�� an exact system is denoted by SE�z��

The following lemma shows that Remark � applies to a NPHS as well� that is�
S�z� is nonsingular for su�ciently small �T t�z� if � �� ��

Lemma �� If S�z� is a NPHS of type n for A�z�� then

det�S�z�� � zknk��� 	 �I�z������

where

�I �z� � a��� �z��T t�z�

�
det�V �z��

�z� V adj�z�Q�z�

�
�mod zknk����

Proof� Let

	�z� � det�V �z��

and

��z� � �V adj�z�Q�z��

From ���� the �rst column of Sadj�z� is
�
	�z�� z��t�z�

	t
and satis�es

S�z�

�
	�z�

z� ��z�

�
�

�
z� p�z� U t�z�
z� Q�z� V �z�

� �
	�z�

z� ��z�

�
�

�
det�S�z��

�

�
���
�

Multiplying both sides of ���� on the right by
�
	�z�� z� �t�z�

	t
� it follows from ��
�

that

a��z� det�S�z�� � At�z�

�
det�S�z��

�

�
����

�



� At�z� S�z�

�
	�z�

z� ��z�

�
� zknk��T t�z�

�
	�z�

z� ��z�

�
	 �T t�z�

�
	�z�

z� ��z�

�
�

But� from the degree conditions ���� 
�det�S�z��� � knk	 �� and so ���� becomes

det�S�z�� � zknk��r��� 	����a
���
� ��� 	 a��� �z��T t�z�

�
	�z�

z� ��z�

�
�mod zknk���

� zknk��� 	 �I �z��

Associated with A�z�� let Mn be the striped Sylvester matrix of order knk�

Mn �

����������

a
���
� a

���
k

� � �
� � �

��� a
���
� � � �

��� a
���
k

���
���

a
�knk���
� � � � a

�knk�n��
� a

�knk���
k � � � a

�knk�nk�
k

����������
�����

Then S�z� can be obtained by solving two sets of linear equations with Mn as the
coe�cient matrix ��
�� From �����

a��z� p�z� 	
kX

���

a��z� q��z� � zknk��r�z� 	 �r�z������

which gives rise to

Mn � X � ��� � � � � �� ���
t�����

where

X �
h
p���� � � � � p�n����jq

���
� � � � � � q

�n����
� j � � � jq

���
k � � � � � q

�nk���
k

it
�

The solution X yields the �rst column S����z�� S����z�� � � � � Sk���z� of S�z�� In �����
we require that �� � r��� �� �� �� � � for a normalized NPHS� The existence of a
solution to ���� is assured if Mn is nonsingular� The term �r�z� in ���� represents
the residual error made in solving ����

Next� to compute U t�z� and V �z� �i�e�� the remaining columns of S�z��� again we
use ���� namely�

a��z� u��z� 	
kX

���

a��z� v����z� � zknk��w��z� 	 �w��z�� � � � � k�����

For �� � � �� � � � � k� set

u
���
� � �

a
���
�

a
���
�

�� ���
�

v
���
��� �



�� � � � ��
�� � �� ��

�



This yields the constant terms U t��� and V ��� of U t�z� and V �z�� respectively� The
remaining components

Y �

����
u
���
� � � � u

�n��
� v

���
��� � � � v

�n��
��� v

���
k�� � � � v

�nk�
k��

���
���

���
��� � � �

���
���

u
���
k � � � u

�n��
k v

���
��k � � � v

�n��
��k v

���
k�k � � � v

�nk�
k�k

����
t

����

can be obtained by solving

Mn � Y � �

����
a
���
� � � � a

���
k

���
���

a
�knk�
� � � � a

�knk�
k

����� U t���
V ���

�
��
��

In �
��� we require that �� �� �� � � � � k� �� � � for a normalized NPHS�
Again� the existence of a solution to �
�� is assured if Mn is nonsingular� The terms
�w��z�� � � � � k� in ���� represent the residual errors made in solving �
���

For the special case when n � �n�� �� � � � � �� the NPHS becomes

S�z� �

�
�a���� ���zn��� U t�z�

� Ik

�
� diag���� � � � � �k���
��

where U t�z� � ��a��z���� � �a��z�� � � � � ak�z�� �mod zn����� For initialization purposes
in the algorithm given later in x�� we adopt �
�� even in the cases n� � � and n� � ���
despite the fact that it no longer strictly meets all the requirements of an NPHS�

Example �� For the power series A�z� � �a��z�� a��z�� a��z��t� where

a��z� � �� z 	 
z� � 
z� 	 �z� � �z	 	 �z
 � �z� 	 �z� � �z
 � � � �

a��z� � 
z 	 �z� 	 �z	 	 �z� 	 �z
 � � � �

a��z� � �� 	 z 	 �z� 	 �z� 	 
z� � 
z	 � �z
 	 z� � 
z� 	 �z
 � � � �

the associated striped Sylvester matrix of type n��
����� is

Mn �

��������
� � � � � ��

�� � 
 � � �

 �� � 
 � �

�
 
 � � 
 �
� �
 � � � 


�� � � � � �


���������

�

To obtain the normalized Pad�e�Hermite system SE �z� of type n��
����� for A�z�� �rst
solve ���� which yields

X �
�

��
���� ����

� ���������t ��
��

Next� the system �
�� becomes

Mn � Y �

��������
�
 �

� ��
�� ��

� ��
�� �

� 


�������� �
�



which gives

Y �
�

��

��������
��� ���
��
 �
��� ����
�� ���
�� �
�

� ���

�������� ��
��

The solutions �
�� and �
�� then give

SE�z� 

�

��

�
z���
 � 

z� ���z � 
�z� ��� 

z � �z�

z����� � ��z � �z�� ��� ��z � �z� � �z� ����z � ���z� � ���z�

z���
� z ��� 

z

�
�����

Note that

At�z�SE �z� � z� T t�z��

where

T t�z� 

�

��

�
�� � ��z � 
�z� � � � � � �� � �z � 
z� � � � � � ���� ���z � ���z� � � � �

	
�����

�� Simultaneous Pad�e Systems� A Pad�e�Hermite system gives an approxi�
mation to a vector of formal power series using matrix multiplication on the right� In
this section we give the de�nition of a simultaneous Pad�e system which corresponds
to a similar approximation but with matrix multiplication on the left and with de�
gree constraints that can be thought of as being �dual� to the degree constraints of a
Pad�e�Hermite system� As in the previous section� a simultaneous Pad�e system exists
if and only if a particular matrix of Sylvester type is nonsingular� in this case it is a
mosaic Sylvester matrix�

Let

A��z� �

�����
a�����z� � � � a���k�z�

a�����z� � � � a���k�z�
���

���
a�k���z� � � � a�k�k�z�

����� �

�
B�t�z�
C��z�

�
�
��

be a �k 	 �� � k matrix of power series with det�C����� �� �� The �k 	 �� � �k 	 ��
matrix of polynomials

S��z� �

�
v��z� U�t�z�

z�Q��z� z�P ��z�

�
�

�����
v��z� u���z� � � � u�k�z�
z�q���z� z�p�����z� � � � z�p���k�z�

���
���

���
z�q�k�z� z�p�k���z� � � � z�p�k�k�z�

������

�

is a simultaneous Pad�e system �SPS� ���� �
� of type n for A��z� if the following
conditions are satis�ed�
I� �Degree conditions�� For � � �� � � k�

v��z� �

knk�n�X
���

v����z�� u���z� �

knk�n�X
���

u
����
� z���
��

q���z� �

knk�n���X
���

q����� z�� p�����z� �

knk�n���X
���

p
����
��� z

����

�



II� �Order condition��

S��z�A��z� � zknk��T ��z������

where T �t�z� � �W ��z�jR�t�z�� with R��z� a k � k matrix�
III� �Nonsingularity condition�� The constant term of R��z� is a diagonal matrix

R���� � diag ���� � � � � � �
�
k� �����

and

�� � �a���� ���
kY

���

��� �� ����
�

where ��� � v�����

Remark 
� The SPS is said to be normalized ���� if the nonsingularity condition
III is replaced by v���� � � and R���� � Ik� This can be achieved by multiplying
S��z� on the left by ����� where

�� � diag ���� � � � � � �
�
k � �����

The SPS is said to be scaled when each row of S��z� has norm equal to � for some
norm and if� in addition� ��� � �� � � � � k� Here� also� scaling a SPS is accomplished
by multiplying it on the left by an appropriate diagonal matrix�

Remark �� The nonsingularity condition III� namely �� �� �� refers to the non�
singularity of S��z�� that is� S��z� is nonsingular i� �� �� �� Equivalently� the non�
singularity condition refers to the nonsingularity of the associated mosaic Sylvester
matrix M�

n de�ned in ����� in ���� it is shown that a SPS exists i� M�
n is nonsingular�

As for the Pad�e�Hermite system� if the order condition ���� is not satis�ed exactly�
but rather

S��z�A��z� � zknk��T ��z� 	 �T ��z������

where �T �t�z� �
�
�W ��z�jz� �R�t�z�

	
�with �R��z� a k � k matrix� is a relatively

�small� residual error� then S��z� is called a numerical simultaneous Pad�e system
�NSPS�� In ����� for � � �� � � k�

�w�
��z� �

knkX
���

�w
����
� z��

�r�����z� �

knk��X
���

�r
����
��� z����

As with the NPHS S�z�� a NSPS for which �T ��z� � � is denoted by S�E �z��

Associated with A��z�� let M�
n be the mosaic Sylvester matrix of order kknk�

M�
n �

��� S���� � � � S���k
���

���
S�k�� � � � S�k�k

��� �����

�



where� for � � � � k and � � � � k�

S���� �

����
a
����
��� � � � a

��knk���
���

� � �
���

a
����
��� � � � a

��n��
���

���� �
Also de�ne the order k�knk	 �� matrix

N �
n �

����������

a
����
��� � � � a

��knk�
��� a

����
��k � � � a

��knk�
��k

C����
���

��� � � �
���

���

a
����
k�� � � � a

��knk�
k�� a

����
k�k � � � a

��knk�
k�k

� M�
n

����������
�����

Then� as for the NPHS� S��z� can be obtained by solving two sets of linear equations
with M�

n and N �
n as the coe�cient matrices �also see ��
���

To obtain S�����z�� � � � � S���k�z� of S��z�� we use

v��z� a�����z� 	
kX

���

u���z�a�����z� � zknk��w�
��z� 	 �w�

��z�� � � � � k�����

which is the �rst row of ����� Matching coe�cients of �� z� � � � � zknk in ���� gives

X �t � N �
n ���
�

�v����
h
B�t��� a

����
��� � � � � � a

��knk�
��� � � � a

����
��k � � � � � a

��knk�
��k

i
�

where

X �t � �u
����
� � � � � � u

����
k jv����� � � � � v��knk�n��ju

����
� � � � � � u

��knk�n��
� j � � �

� � � ju
����
k � � � � � u

��knk�nk�
k ��

With v���� � ��� �� � speci�ed ���� � � for a normalized NSPS�� a unique solution
to ��
� is assured if M�

n is nonsingular� since by assumption det �C����� �� �� The
terms �w�

��z� in ���� represent the residual errors made in solving ��
��

Next� to compute P ��z� and Q��z� �i�e�� the remaining rows of S��z��� again we
use ����� namely�

q
�
��z� a

�
��� �z� �

kX
���

p
�
����z� a

�
����z� � z

knk��
r
�
����z� � �r

�
��� �z�� � � ��� � k�����

Let

Y�t� �
h
q����� � � � � � q��knk�n����� jp������� � � � � � p

��knk�n����
��� j � � � jp������k � � � � � p

��knk�nk���
��k

i
�

Then� ���� and the requirement that R���� � diag���� � � � � � �
�
k � yields

Y�t� �M�
n � ���E

t
�knk� � � � � k�����

��



where Et
�knk is the unit row vector of length kknk with a single � in position �knk�

With diag���� � � � � � �
�
k� speci�ed ���� � � for a normalized NSPS�� a solution of ����

exists uniquely if M�
n is nonsingular� The solution Y�� provides the �th row of S��z��

namely� S�����z� � z� � q���z� and S�����z� � z� � p�����z�� � � � � k� The terms
�r�����z� in ���� represent the residual errors made in solving �����

In the remainder of the paper� without loss of generality� we make the simplifying
assumption that

A��z� �

�����
�a��z� � � � �ak�z�
a��z� �

� � �

� a��z�

����� �����

In this case� there is an important commutativity relationship between Pad�e�Hermite
systems and simultaneous Pad�e systems� given later in x�� But� in our presentation�
the residual T ��z� continues to take the more general form �
�� rather than �����
because� for the computation of the NSPS for T ��z�� which is required by the algorithm
given in x�� the conversion of T ��z� from the form �
�� to the form ���� by means of
multiplication on the right by R����z� introduces undesirable instabilities�

For the special case when n � �n�� �� � � � � ��� with A��z� de�ned by ����� the NSPS
becomes

S��z� � diag���� � � � � � �
�
k �

�
� U�t�z�

� �a
���
� ���zn���Ik

�
���
�

where U�t�z� � �a��z���� � �a��z�� � � � � ak�z�� �mod zn����� For initialization purposes
in the algorithm given in x�� we adopt ��
� even in the case when n� � � and n� � ���
despite the fact that it no longer strictly meet all the requirements of a NSPS�

With A��z� de�ned by ����� it is easy to see that Mn is nonsingular if and only
if M�

n is� Indeed� we will later provide a relationship between the condition numbers
of Mn and M�

n�
Example �� Continuing with Example 
� the associated mosaic Sylvester matrix

of type n � �
� �� �� is

M�
n 


���������������

� �� � �� � �
 � �� �� �� �� �
� �� � �� � � �� �� �� ��

� �� � �� � �� �� ��
� �� � � �� ��

� �� � �� � ��
� �� � �� �

� �� � ��
� �� � �� � ��

� �� � �� �
� �� � ��

� �� �
� ��

���������������
��
��

and so

N �
n 


����
� � �� � �� � �� 
 � � � � � �
� � � � � � � � �� � �� � �� 


� M�
n

���� �

The solution of ��
��

X �t � N �
n 


�
� � �� � �� � �
 � �� �� �� �� � �

	
�

��



is

X �t 

�

��

�
� �� ��� �� � � �
 �
� ��� �� �
� ���� �
�� ����

	
and the solution of �����

Y�t � M�
n 


h
� � � � � � � � � � � �
� � � � � � � � � � � �

i
�

is

Y�t 

�

��

h
�� �
� �� ��
 � 

 ��� ��� 
� ��� ���� ��
�

 �� � �� � � 
 �
 � �� �� ���

i
�

From X �t and Y�t� it follows that the normalized simultaneous Pad�e system of type
�
����� is

S��z� 

�

��

�
��� ��z � ��z� � �z� �
z � 
�z� � ��z�

z����� 
�z � ��z� � �
z�� z��

z� ��z��
z��
� �z � z�� z���z � 
z��

�

�

��� � ��z � �
�z� � ���z� � 
��z� � ���z�

z����� � 
�z � ���z� � ���z� � �
�z��
z���
 � �z � ��z� � ��z� � ��z��

�
�

Note that

S��z�A��z� � z�T ��z��

where

T ��z� 

�

��


�
� ����
�� �
� ��

�
�

�
� ���

��
 ���
�� �

�
z �

�
�� ����
�
 ����
� ��

�
z� � � � �

�
��
��

	� Duality� Theorem � below gives a relationship between Pad�e�Hermite and
simultaneous Pad�e systems which is crucial to the results of the subsequent sec�
tions� It generalizes earlier results of Mahler and their extensions to block matrices
����� 
�� 
�� 
���

Theorem �� If S�z� is a NPHS of type n for A�z� and S��z� is a NSPS of type
n for A��z�� then

S��z� � S�z� � zknk���a
���
� ������ 	 �II �z������

where

�II �z� � a��� �z�


�
v��z�

z�Q��z�

�
�T t�z� 	 �T ��z�

�
z�Q�z� V �z�

	�
�mod zD���

with

D �

�����
knk	 � knk � � � knk
knk	 
 knk	 � � � � knk	 �
���

���
���

knk	 
 knk	 � � � � knk	 �

�����
and with the modulo operation applied componentwise�

��



Proof� The theorem �in the case that �T �z� � � and �T ��z� � �� follows from
�
��� The arguments used in the following proof� however� are considerably simpler�
Let

Bt�z� � �a��z�� � � � � ak�z���

Then� using ���� and �����

a��z� S��z� � S�z�����

� a��z�


�
v��z�

z�Q��z�

� �
z�p�z� U t�z�

	
	

�
U�t�z�
z�P ��z�

� �
z�Q�z� V �z�

	�
�

�
v��z�

z�Q��z�

� �
a��z�

�
z�p�z� U t�z�

	
	 Bt�z�

�
z�Q�z� V �z�

	�
	



a��z�

�
U�t�z�
z�P ��z�

�
�

�
v��z�

z�Q��z�

�
Bt�z�

� �
z�Q�z� V �z�

	
�

�
v��z�

z�Q��z�

�
At�z�S�z� 	 S��z�A��z�

�
z�Q�z� V �z�

	
� zknk��


�
v��z�

z�Q��z�

� �
r�z� W t�z�

	
	

�
W �t�z�
R��z�

� �
z�Q�z� V �z�

	�
	

�
v��z�

z�Q��z�

�
�T t�z� 	 �T ��z�

�
z�Q�z� V �z�

	
�

But� from ��� and �
��� the degrees of S��z�S�z� are bounded componentwise by D�
It then follows from ���� that

S��z�S�z� � zknk���a
���
� ���

�
v����r��� �

� R����V ���

�
	 �II �z�

� zknk���a
���
� ������ 	 �II �z��

which is �����
Corollary �� If S�z� is a normalized NPHS of type n for A�z� and S��z� is

a normalized NSPS of type n for A��z�� then

S�z� � S��z� � zknk���a
���
� ���Ik�� 	 �III�z����
�

where

�III�z� � S�z� �����II �z���� S���z��

Proof� Multiplying both sides of ���� on the left by ���� and on the right by ����
we obtain

S��z� � S�z� � zknk���a���� ���Ik�� 	 �����II�z���������

The result now follows by multiplying both sides of ���� on the left by S�z� and on
the right by S���z��

Note that S�z� and S��z� in ��
� are now normalized� but �II�z� continues to be
associated with systems which are not�

��



Corollary �� The residuals T �z� for a normalized NPHS of type n for A�z�
and T ��z� for a normalized NSPS of type n for A��z� satisfy

T t�z� S��z� � �a���� ��� At�z� 	 �tIV �z������

where

�tIV �z� �
�
At�z��III �z�� �T t�z�S��z��

�
�zknk���

Proof� From ���� and ��
�� it follows thatn
zknk�� T t�z� 	 �T t�z�

o
S��z� � At�z� S�z� S��z�

� At�z�
n
zknk�� �a���� ��� 	 �III �z�

o
and so ���� is true�


� The Algorithm� To compute a NPHS of type n for A�z� and a NSPS of type
n for A��z�� the systems ����� �
��� ��
� and ���� can be solved using a method such
as Gaussian elimination� This method� while not restricting the input power series�
does not take advantage of the inherent structure of the coe�cient matrices Mn and
M�

n� Alternatively� a variety of recurrence relations which do take advantage of this
structure have been described in the literature ��
������ �������
��� These recurrence
relations usually lead to much more e�cient algorithms for algebraically computing
Pad�e�Hermite systems and simultaneous Pad�e systems� The recurrence relations given
in ���� and ��
� appear to be the most easily adaptable to numerical computation and
it is the detailed study of the numerical behavior of these recurrences that we devote
the remainder of this paper� We begin by brie�y describing these recurrences in the
algebraic case�

Let e� � ��� �� � � � � �� be a �� k 	 � vector� set

M � min



n�� max

����k
fn�g

�
	 ��

and de�ne integer vectors n�i� � �n�i�� � � � � � n
�i�
k � for � � i � M by n��� � �e� and�

for i � ��

n
�i�
� � maxf�� n� � M 	 ig� � � �� � � � � k�

Then the sequence fn�i�gi�������� lies on a piecewise linear path with n
�i���
� � n

�i�
� for

each i� � and� n�M� � n� The sequence fn�i�g contains a subsequence fm���g called
the sequence of nonsingular points for A�z� and A��z�� This sequence is de�ned
by m��� � n�i��� where

i� �



�� � � ��
minfi � i��� � det�Mn�i� � �� �g� � � ��

� We assume here with loss of generality that n� � ��� � � � k� because if n� 
 �� for some ��
we can simply remove n� from n and a��z� from At�z� and decrease k by ��

�




where det�Mn�i�� is the determinant� of Mn�i� � Corresponding to the sequence of non�

singular points fm���g is the sequence
n
S
���
E �z�

o
of Pad�e�Hermite systems with resid�

uals
n
T
���
E

t

�z�
o

and the sequence
n
S
����
E �z�

o
of Pad�e�Hermite systems with residualsn

T
����
E �z�

o
� We have that

At�z� � S
���
E �z� � zkm

���k�� T
���t
E �z�

and

S
����
E �z� �A��z� � zkm

���k�� T
����
E �z��

The following theorem provides a relation of the �� 	 ��th exact systems in terms of
the �th exact systems�

Theorem �� For � � � and i � i� � let 
 � n�i� � m��� � e�� Then� the
following statements are equivalent�

�� n�i� is a nonsingular point for A�z� and A��z��

�� 
 is a nonsingular point for T
���
E �z��

�� 
 is a nonsingular point for T ����E �z��
Furthermore� we have the recurrence relations

S
�����
E �z� � S

���
E �z� � bSE �z�� T

�����
E �z� � bTE�z������

and

S
������
E �z� � bS�E�z� � S

����
E �z�� T

������
E �z� � bT �E �z����
�

where bSE�z� is the Pad�e�Hermite system of type �m����� �m��� � e�� for T
���
E �z� with

residual bTE�z� and bS�E�z� is the simultaneous Pad�e system of type �m����� � m��� � e��

for T
����
E �z� with residual bT �E �z��

Proof� The proof for the NPHS is given in ��
� and for the NSPS in �����
Theorem � reduces the problem of determining a Pad�e�Hermite system and a

simultaneous Pad�e system of types m����� to two smaller problems� determine sys�
tems of type m��� for the original power series and then determine systems of type

 � m����� �m��� � e� for the residual power series� For the residual power series�
the system bSE�z� is obtained by solving the linear equations ���� and �
��� where in

the following the associated matrix is now denoted by cM� rather than by M�� and�
the system bS�E�z� is obtained by solving the linear equations ��
� and ����� where

in the following the associated matrix is now denoted by cM�
� rather than by M�

� �
The overhead cost of each step of this iterative scheme is the cost of determining the
residual power series and the cost of combining the solutions� i�e�� the cost of comput�

ing S
�����
E �z� and S

������
E �z� in ���� and ��
�� This overhead cost summed over all

the steps� in general� is an order of magnitude less than the cost of solving the linear
systems ����� �
��� ��
� and ���� directly�

Example �� Continuing with Example 
� we can compute the Pad�e�Hermite
system of type ��� �� 
� by utilizing �
�� and the recurrence relation ����� In order to
do this� we compute the Pad�e�Hermite system of type 
 � ��� �� 
�� �
������ ������� �

� By convention� the determinant of a null matrix is de�ned to be equal to ��

��



��� �� �� for the residual TE�z� in �
��� The striped Sylvester matrix associated with
TE�z� is cM� 


�

��

h
�� ���
� ����

i
�����

Using ����� equations ���� and �
�� are solved to obtain the Pad�e�Hermite system

bSE�z� 

�������

�
���
�
�

�

����

���

���

����

z
� � � �


��
z �

��
��
�����

z


���
�
��

z
�
�

���
���

z � �
����
�
��

z

������� ���
�

of type 
 for TE�z�� By multiplying SE�z� in �
�� on the right by bSE �z�� we obtain
the new Pad�e�Hermite system of type ��� �� 
��

SE�z� 

�

�


�
�z� � ���
z� � ���z� ����z � �
z� �
� ��z � ����z� � �
�z�

���z� � ���z� � ���z� � ��z� �
� �
z ����
z � �
��z� � ���z� � ���z�

�z� � �z� � �
� ��z � ��z�

�
�

Similarly� continuing with Example �� we can compute the simultaneous Pad�e
system of type ��� �� 
� by utilizing ���� and the recurrence relation ��
�� In order to
do this we compute the simultaneous Pad�e system of type 
 � ��� �� �� for the residual
T �E�z� in ����� The mosaic Sylvester matrix associated with T �E �z� is

cM�
� 


�

��

�� � � ���� ���
� � � ����
�� ��
 � ���
� �� �� �

�� �����

Using ����� equations ��
� and ���� are solved to obtain the simultaneous Pad�e system

bS�E�z� 
 �

�
��

��� �
��� ��z � ����z� �
� � ����z 
���
� �����z

z��������� �����z� ����z� �������z�

z������� ���z� ��z� �����z�

�������

of type 
 for T �E�z�� By multiplying S�E�z� in �
�� on the left by bS�E �z�� we obtain the
new simultaneous Pad�e system of type ��� �� 
��

S�E�z� 

�

�


�
�
� �
� z � �� z� � �� z� ��� z � ��� z� � �� z� � �� z� � �� z�

z������ � ��� z � �
� z� � ��� z� � �
 z�� z������� z � ��� z� � ��� z� � �
� z��
z����� � z � � z�� z����� z � �� z� � � z� � � z��

��
 � �
� z � ���z� � �
�z� � ��� z� � ��� z� � ��� z� � ��� z�

z������ ��� z � ����z� � ���
 z� � ���� z� � ����z� � ���� z��
z��� � � z � 
� z� � �� z� � �� z� � ���z� � �� z��

�
�

Numerically� the recurrences ���� and ��
� perform badly if Mm��� and M�
m���

are ill�conditioned at any point m���� Rather than moving from nonsingular point
to nonsingular point along the diagonal� what we would like to do is move from a
well�conditioned point to the next well�conditioned point� This is the motivation for
the algorithm VECTOR PADE given below� where the points m���� � � �� �� � � � � cor�
respond to stable points rather than to nonsingular points and we step over unstable
blocks�

A quantitative measure of the stability of a point m��� is provided by the stability
parameter

���� �
kX

���

��
���
� �

����
� ��������

��



We will show later in x� and x�� that ���� serves as a rough estimate for the condition
numbers kMm���k� � kM

��
m���k� of Mm��� �cf� ����� and kM�

m���k� � kM���
m���k� of

M�
m��� �cf� ������� For the estimate ����� it is assumed that S����z� and S�����z�

are both scaled and that ka��z�k � �� � � � � k� The norms used for the various
scaling are de�ned in x�� In ����� it is also assumed that the residual errors �T ����z�
and �T �����z� in the order equations

At�z� � S����z� � zkm
���k�� T ���t�z� 	 �T ���t�z���
�

and

S�����z� �A��z� � zkm
���k�� T �����z� 	 �T �����z������

at the point m��� are relatively insigni�cant� We say that m��� is a stable point
�or� a well�conditioned point� if for some preassigned tolerance � � ���� � � � In the
algorithm below� the user supplies the tolerance value � �

VECTOR PADE�A�z�� n� k� � �
� � �� m��� � �e�� S��� � Ik��� S���� � Ik���
M � minfn�� max����kfn�gg 	 �
i � �� stable � true
While ��i � M � and stable� do


 � n � m��� � e�
s � �� stable � false
While �s � M � i� and �not stable� do

s � s 	 �


�s�
� � maxf�� 
� 	 i � M 	 sg� � � �� � � � � k

Compute the residuals T ����z� and T �����z� in ��
� and ����
Construct the matrices M��s� for T ����z� and M�

��s�
for T �����z�

If M��s� is numerically nonsingular then
m����� � m��� 	 
�s� 	 e�
Obtain bS�z� by solving ���� and �
�� by Gaussian elimination

S������z� � S����z� bS�z�
Scale S������z� and compute ������

Obtain bS��z� by solving ��
� and ���� by Gaussian elimination

S�������z� � bS��z� S�����z�
Scale S�������z� and compute �������

Using ����� compute ������

stable � ������ � �
end If

end While
If stable then � � � 	 �� i � i 	 s

end While
If stable then return �S����z�� S�����z�� ����� else return �S������z�� S�������z�� �������

�� Norms and Floating Point Errors� In this section� some norms are de�
�ned for matrix power series and matrix polynomials� Proofs regarding some of the
properties of these norms are straightforward and can be found in �

�� Also given
are some results on �oating�point errors that are used in later sections�

��



Let

a�z� �
�X
���

a��� z� � F ��z�� �

where F ��z�� is the domain of power series with coe�cients from F � Then a norm for
F ��z�� is given by

ka�z�k � sup
�����

fj a��� jg����

for a�z� � F ��z�� � For some integer 
� let

s�z� �
�X

���

s��� z� � F �z� �

where F �z� is the domain of polynomials with coe�cients over F � Then a norm of
s�z� is

ks�z�k �
�X
���

j s��� j �����

It is easy to show that

ka�z� � s�z�k � ka�z�k � ks�z�k���
�

and so the norm ���� for F �z� is compatible with the norm ���� for F ��z��� In addition�
for �xed s�z�� the bound is reached for a�z� � �� Therefore�

ks�z�k � sup
a�z����

ka�z� s�z�k

ka�z�k
�

Thus� ���� is the operator norm for F �z� induced by the norm ���� for F ��z��� Finally�
for s�z�� t�z� � F �z�� it can be shown that

ks�z� 	 t�z�k � ks�z�k 	 kt�z�k����

and

ks�z� � t�z�k � ks�z�k � kt�z�k�����

Next� let At�z� � �a��z�� � � � � ak�z�� � Fk�� ��z�� be a � � k 	 � vector of power
series with

a��z� �
�X
���

a���� z�� � � �� � � � � k�

A norm for At�z� is given by

kAt�z�k � max
����k

fka��z�kg �����

��



Now� let	 S�z� � F�k�����k����z�� Then S�z� de�nes a mapping of At�z� � F�k�����z��
to At�z�S�z� � F�k�����z��� We use the norm

kS�z�k � max
����k



kX

���

kS����z�k

�
����

for F�k�����k����z�� Then�

kS�z�k � sup
At�z����



kAt�z� � S�z�k

kAt�z�k

�
�

so that ���� is the operator norm induced by the norm ����� Consequently� the
compatibility condition

kAt�z� � S�z�k � kAt�z�k � kS�z�k����

is satis�ed�
Finally� let A��z� � F�k����k��z�� with

A��z� �

��� a�����z� � � � a���k�z�
���

���
a�k���z� � � � a�k�k�z�

��� ���
�

where a�����z� � F ��z��� A norm for A��z� is given by

kA��z�k � max
����k



kX

���

ka�����z�k

�
�����

Then� for
 S��z� � F�k�����k����z�� we have that

kS��z� �A��z�k � kS��z�k � kA��z�k�����

In addition� for S�z�� S��z� � F�k�����k����z�� it can be shown that

kS�z� � S��z�k � kS�z�k � kS��z�k�����

We now give some standard results from the �eld of �oating point error analysis�
Let � denote the unit �oating point error and assume that the degrees of all poly�
nomials and the orders of all matrices are bounded by some N � where N� � ����
�this restriction comes from Forsythe and Moler ������ Indeed� as an assumption for
all the lemmas and theorems below� we require that �knk 	 k 	 ��� � ����� After
Wilkinson �

�� we denote a �oating point operation by fl���� In the following results�
it is assumed that the operands consist of �oating point numbers�

Lemma 	� If 
� � ����� then

fl�
�X

k��

ukvk� �
�X

k��

ukvk�� 	 �k��

� We are interested primarily in the case that S�z� is a Pad�e�Hermite system�
� We are interested primarily in the case that S��z� is a simultaneous Pad�e system�

��



where j�kj � ����
��
Lemma �
� If S�z� is a NPHS of type n for A�z�� then

fl�At�z� � S�z�� � At�z� � S�z� 	 �t�z��

where

k�t�z�k � ������knk	 k 	 ��kAt�z�k � kS�z�k�

Proof� Using Lemma �� for � � � � k�

fl�
kX

���

a��z�S����z�� �
�X
���

z�fl�
kX

���

n�X
j��

a���j�� S
�j�
��� �

�
�X
���

z�
kX

���

n�X
j��

a���j�� S
�j�
����� 	 �����j����

where j�����j��j � �����n� 	 k 	 ���� So�

���z� �
�X
���

z�
kX

���

n�X
j��

a���j�� S
�j�
��������j���

and

k�t�z�k � max
����k

fk���z�kg

� max
����k

��� sup
�����

�� kX
���

n�X
j��

ja���j�� j � jS
�j�
���
j � j�����j��j

�����
� ����� max

����k

���
kX

���

�n� 	 k 	 ��ka��z�k
n�X
j��

jS�j�
���
j

���
� ����� max

����k
fn� 	 k 	 �gkAt�z�k max

����k



kX

���

kS����z�k

�
� ������knk	 k 	 ��kAt�z�k � kS�z�k�

Lemma ��� If S��z� be a NSPS of type n for A��z�� then

fl�S��z� �A��z�� � S��z� �A��z� 	 ���z��

where

k���z�k � ������knk	 ��kS��z�k � kA��z�k�

��



Proof� Using Lemma �� for � � � � k and � � � � k�

fl��S�����z�a��z� 	 S�����z�a��z�� �
�X
���

z�fl��

knk�n�X
j��

S
��j�
��� a

���j�
� 	

knk�n�X
j��

S
��j�
��� a

���j�
� �

�
�X
���

z�

����
knk�n�X
j��

S
��j�
��� a

���j�
� �� 	 �����j���

	

knk�n�X
j��

S
��j�
���

a
���j�
� �� 	 �����j���

��� �

where� for all �� �� j and �� j�����j��j � �����knk� n� 	 ���� So�

��
����z� �

�X
���

z�f�

knk�n�X
j��

�S
��j�
��� a

���j�
� �����j�� 	

knk�n�X
j��

S
��j�
��� a

���j�
� �����j��g

and

k���z�k � max
����k

f
kX

���

k��
����z�kg

� max
����k

���
kX

���

sup
�����

��knk�n�X
j��

jS
��j�
��� j � ja

���j�
� j � j�����j��j

	

knk�n�X
j��

jS
��j�
��� j � ja

���j�
� j � j�����j��j

�����
� max

����k

���
kX

���

��������knk � n� 	 ��ka��z�k

knk�n�X
j��

jS
��j�
��� j

	 ������knk � n� 	 ��ka��z�k

knk�n�X
j��

jS��j���� j

�����
� ������knk	 �� max

����k



kX

���

ka��z�k � kS�����z�k	 ka��z�k � kS�����z�k

�
� ������knk	 ��kS��z�k max

����k
fka��z�k	 ka��z�kg

� ������knk	 ��kS��z�k � kA��z�k�


� Error Analysis for Pad�e�Hermite Systems� In this section� we obtain
bounds for the error in the order condition for the NPHS computed by the algorithm
VECTOR PADE� We begin by �rst analysing the �oating point errors introduced by
one iteration of the algorithm� At the �th iteration� the NPHS S����z� of type m���

for At�z� is available and satis�es

At�z� � S����z� � �T ���t�z� 	 O�zjjm
���jj����

��



The algorithm proceeds to compute S������z� of type m������
An iterative step consists of three parts� In the �rst part� the �rst jj
���jj 	 �

terms of T ����z� are computed� a bound for the �oating point errors introduced in

this part is given in Lemma �
 below� In the second part� the NPHS bS����z� of
type 
��� for T ����z� is computed� an error analysis is given Lemma ��� In the third
part� Lemma �� provides bounds for the �oating point errors introduced in computing
S������z� � S����z� � bS����z�� At this point in the algorithm� S������z� is scaled so
that the norm of each column is �� We assume for the sake of simplicity that this
scaling introduces no additional errors� This is reasonable assumption because errors
due to scaling are comparatively insigni�cant��

Lemma ��� The computed residual T ����z� satis�es

zjjm
���jj��T ���t�z� � At�z� � S����z�� �T ���t�z� 	 zjjm

���jj���
���t

V �z��

where

jj����
t

V �z�jj � �����jjm���jj	 k 	 �� � ��

Proof� The algorithm computes the �rst jj
���jj 	 � terms of the residual only�
That is�

zjjm
���jj��T ���t�z� � fl�At�z� � S����z�� �mod zjjm

�����jj���

�fl�At�z� � S����z�� �mod zjjm
���jj����

Thus�

At�z� � S����z� �mod zjjm
�����jj��� � �T ���t�z� 	 zjjm

���jj���T ���t�z� � �
���t

V �z���

where �
���t

V �z� is the error introduced into the computation of T ���t�z� by �oating
point operations� The result now follows from Lemma �� since At�z� and S����z� are
both scaled�

Lemma ��� If cM���� is nonsingular and bS����z� is obtained by solving ��	
 and
���
� then

T ���t�z� � bS����z� � �
���t

V I �z� 	 O�zjj�
���jj����

where

jj�
���t

V I �z�jj � ���jj
���jj� � �� � � 	 O����� � jjbS����z�jj�

Proof� First we obtain bounds for the �rst component of ����
t

V I �z�� The �rst column

of bS����z� corresponds to the solution bX of ���� obtained by Gaussian elimination� bX
is the exact solution of

�cM���� 	 E� � bX �

�BBB�
�
���
�
�

�CCCA
� Note also that bS	�
�z� can be determined apostiori with appropriate values of ��	�
 so that

S	���
�z� is already scaled� None of the subsequent error bounds would change� and so in reality
this assumption is made without loss of generality�

��



where�

jjEjj� � 
jj
���jj� � �� � jjcM����jj� � � 	 O����

and �� is the growth factor associated with the LU�decomposition of cMt
����

������page �����
But� from Lemma ���

jjT ���t�z�jj � � 	 ���� � �jjm���jj	 k 	 �� � ��

since A�z� and S����z� are both scaled� So�

jjcM����jj� � jj
���jj � jjT ���t�z�jj � jj
���jj �
n

� 	 �����jjm���jj	 k 	 �� � �
o
�

Thus�

cM���� � bX �

�BBB�
�
���
�
�

�CCCA � �E � bX �
where

jjE � bXjj� �
�

jj
���jj� �

�
� 	 �����jjm���jj	 k 	 �� � �

	
� �� � � 	 O����

�
� jj bXjj�

�
�
��jj
���jj� � �� � � 	 O����

�
� jj bXjj��

Here� we have used �����jjm���jj	 k 	 �� � � � �����jjnjj	 k 	 �� � � � �� A similar

analysis can be done for solving �
�� to obtain bY� But bX yields the �rst column ofbS����z� with residual error E � bX and bY yields the remaining columns of bS����z� with
a corresponding residual error� Thus�

T ���t�z� � bS����z� � �
���t

V I �z� 	 O�zjj�
���jj����

where

jj�
���t

V I �z�jj �
n

��jj
���jj� � �� � � 	 O����
o
� jjbS����z�jj�

Lemma ��� If S������z� � fl�S����z� � bS����z��� then

S������z� � S����z� � bS����z� 	 �
���
V II�z��

where

jj�
���
V II�z�jj � �����jj
���jj	 k 	 �� � jjS����z�jj � jjbS����z�jj��

� Gaussian elimination is applied to cMt

����
so that the error bounds given in ���� hold for jj � jj�

rather than jj � jj��

��



Proof� For � � �� � � k� the ��� ���component of S������z� is

fl

�
z�q��z� � bu��z� 	

kX
	��

v��	�z� � bv	���z�

�

� fl

��z� m���
� ������ ��X

���

z�
�
���
�X
j��

q���j�� bu�j�� 	
kX

	��

m���
� ������X
���

z�
�����X
j��

v���j���	 bv�j�	��

��
�

m���
� ��

���
� ��X

���

z���
�
���
�X
j��

q���j�� bu�j�� � �� 	 �����j������

	

m���
� ������X
���

z�
kX

	��

�����X
j��

v���j���	 bv�j�	�� � �� 	 �����j���	��

where j�����j���	j � ���� � �

���
	 	 k 	 �� � �� Here� we have used Lemma � with the

assumption that �k
���k	 k 	 ��� � ����� So�

�����V II�z����� � z�
m���
� ������ ��X

���

z�
�
���
�X
j��

q���j�� � bu�j�
� � �����j����

	
kX

	��

m���
� ������X
���

z�
�����X
j��

v���j���	 � bv�j�	�� � �����j���	�

Thus� from ����

jj
�
�
���
V II�z�

�
���

jj � ������jj
���jj	k	���fjjq��z�jj�jjbu��z�jj	
kX

	��

jjv��	�z�jj�jjbv	���z�jjg��

An equivalent result holds for � � � � �� The lemma now follows using �����
The use of the results of the three lemmas above enables us to express the residual

error �T �����t�z� in the order condition at the �� 	 ��th iteration in terms of the

residual error �T ���t�z� at the �th iteration plus the �oating point errors introduced
�locally� by the �th iteration�

Lemma ���

�T �����t�z� � �T ���t�z� � bS����z� 	 L���t�z����
�

where

L���t�z� �
n
At�z� � �

���
V II�z�

	 zjjm
���jj��

h
�
���t

V I �z� � �
���t

V
�z� � bS����z�

io
�mod zjjm

�����jj����

Proof� The result is an immediate consequence of Lemmas �
� �� and ���
Thus� the residual error �T �����t�z� is composed of the local error L���t�z� intro�

duced by the �th iteration plus the residual error �T ���t�z� from the previous iteration

propagated by bS����z�� Applying ��
� recursively� we obtain the following�

�




Theorem ��� The residual error satis�es

�T �����t�z� �
�X
j��

L�j�t�z� � G���j �z������

where

G
���
j �z� �


 bS�j����z� � bS�j����z� � � � bS����z�� � � j � ��
Ik��� j � ��

����

Proof� The result follows by induction from Lemma ���
From ����� we see that the residual error �T �����t�z� is composed of the local

errors L�j�t�z� propagated by G���j � Lemmas �
� �� and �� provide bounds for L�j�t�z��

To obtain a bound for �T �����t�z�� it remains to determine bounds for the propagation

matrices G
���
j � The concern is that the bS�j��z� making up G

���
j will cause G

���
j to grow

exponentially with �� The next Lemma and Theorem show that this is not case� a

bound is obtained for G���j which is independent of �� Hence� the local error L�j�t�z�

introduced at iteration j and propagated to iteration �	� by G���j does not grow with

�� Thus� in this sense� the error grows additively� that is� �T �����t�z� is bounded by
the sum of the bounds of the local errors at each iteration j�

Lemma ��� If � is so small and �T ���t�z� and �T �����z� are not too large so that

���� � ja���� j �
n
ka��� �z�k

h
�k 	 ��jj�T ���t�z�jj	 jj�T �����z�jj

i
	 �����k 	 ���jj
���jj	 k 	 �� � �

o
�

�



�

then

jjbS����z�jj � 
���� � �k 	 �� � ja���� j�

Proof� From �����

jj������ � ������� � S�����z� � S������z�jj � jj������ � �������jj � jjS�����z�jj � jjS������z�jj

� ���� � �k 	 ���

But� using Theorem � and Lemma ��

jj������ � ������� � S�����z� � S������z�jj

� jj������ � ������� � S�����z� �
n
S����z� � bS����z� 	 �

���
V II�z�

o
jj

� jj������ � ������� �
n

�zjjm
���jj�� � �a���� ��� � ����� � ���� 	 �

���
II �z�

o
� bS����z�

	 ������ � ������� � S�����z� � ����V II�z�jj

� ja���� j�� � jjbS����z�jj

� jj������ � �������jj � ka��� �z�k �
n

�k 	 ��jj�T ���t�z�jj 	 jj�T �����z�jj
o
� jjbS����z�jj

� jj������ � �������jj �
n

���� � �jj
���jj	 k 	 ��
o
� jjS����z�jj � jjbS����z�jj � jjS�����z�jj � �

��



� jjbS����z�jj �
n
ja���� j�� � ���� � ka��� �z�k �

h
�k 	 ��jj�T ���t�z�jj 	 jj�T �����z�jj

i
� ���� ���� � �jj
���jj	 k 	 �� � �k 	 �� � �

o
� ja

���
� j�� � jjbS����z�jj�
�

The result now follows�
Theorem ��� If � is so small and �T ���t�z� and �T �����z� are not too large so

that

��j� � ja���� j �
n
ka��� �z�k

h
�k 	 ��jj�T �j�t�z�jj	 jj�T ��j��z�jj

i
	 �����k 	 ���jj
�j�jj	 k 	 �� � �

o
�

�



� j � ��

then

jjG���j���z�jj � 
��j� � �k 	 �� � ja���� j	 O���� j � ��

Proof� From ���� and from Lemma ��

S������z� � S�j��z� � G���j���z� 	
�X
��j

�
���
V II�z� � G���

�
�z��

We proceed by induction� Assume the theorem is true for G������ �z�� G�������z�� � � �� G���j �z�

�the initial case� j � � � �� is proved in Lemma �� since G
���
����z� � bS����z��� From

�����

jj����j� � ��j����S��j��z� � S������z�jj � ��j��k 	 ���

But� using Lemma ��� Theorem � and the inductive hypothesis�

jj����j� � ��j���� � S��j��z� � S������z�jj

� jj����j� � ��j���� � S��j��z� � S�j��z� � G���j���z�

	
�X
��j

����j� � ��j���� � S��j��z� � �
���
V II�z� � G

���
� �z�jj

� jj����j� � ��j���� �
n
zjjm

�j�jj���a
���
� ������j� � ��j� 	 �

�j�
II �z�

o
� G

���
j���z�jj

���j�
�X
��j

fk 	 �g �
n


��
���� � �k 	 �� � �jj
���jj	 k 	 �� � ja
���
� j � �

o
�

n

������ � �k 	 �� � ja���� j	 O���

o
� jjG���j���z�jj

n
ja���� j�� � ��j�

h
jja��� �z�jj��k 	 ��jj�T �j�t�z�jj	 jj�T ��j��z�jj�

io
�O���

� ja���� j��jjG���j���z�jj�
� O����

In the above theorem� we have taken the liberty of replacing a summation involv�
ing terms linear in � with an O��� expression� We could have left the summation in

��



explicitly� but� as we shall see� this summation becomes quadratic in � when it is used
to obtain a bound on �T ���t�z��

To simplify the analysis� we now split the local error L���t�z� into three parts
and analyze the propagation of each part separately in each of the next three lemmas
below� Let

L
���t

� �z� �



�� � � ��

�zjjm
���jj�� �

���t

V �z� bS����z� � mod zjjm
����� jj���� � � ��

����

L
���t

� �z� � zjjm
���jj���

���t

V I �z� � mod zjjm
�����jj���� � � ������

L���t

� �z� �



�� � � ��

At�z��
���
V II�z� � mod zjjm

�����jj���� � � ��
����

and de�ne

E
�����
i �z� �

�X
j��

L
�j�t

i �z� � G
���
j �z�� i � �� 
� ����
�

Then� according to Lemma �� and Theorem ���

�T �����t�z� �
�X

i��

E �����
t

i �z� �

Lemma �	�

jjE
�����t

� �z�jj � ����� � �k 	 �� � �jjm���jj	 k 	 �� � ja
���
� j � �

	 
�k 	 ��� � ja���� j� � �
���X
j��

��j� � ��j��� � �jjm�j�jj	 k 	 ��

	 O�����

Proof� From ���� and ��
�� from Lemmas �
 and �� and from Theorem �
�

jjE �����
t

� �z�jj � jj
�X
j��

L�j�t

� �z� � G���j �z�jj

� jj����
t

V �z�jj � jjbS����z�jj	
���X
j��

jj��j�
t

V �z�jj � jjbS�j��z�jj � jjG���j �z�jj

�
n

�����jjm���jj	 k 	 �� � �
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�����k 	 ��ja
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o

	
���X
j��

n
�����jjm�j�jj	 k 	 ���

o
�
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��j��k 	 ��ja
���
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o

�
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��j����k 	 ��ja
���
� j	 O���

o
�

and so the result follows�

��



Lemma �
�

jjE �����
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� �z�jj � �
 � ���� � �k 	 ��jj
���jj� � �� � ja
���
� j � �

	���k 	 ��� � ja
���
� j� � �

���X
j��

��j� � ��j��� � �j � jj

�j�jj�

	O�����

Proof� From ���� and ��
�� from Lemmas �� and �� and from Theorem �
�

jjE
�����t

� �z�jj � jj
�X
j��

L
�j�t

� �z�G
���
j �z�jj

� jj�
���t

V I �z�jj	
���X
j��

jj�
�j�t

V I �z�jj � jjG
���
j �z�jj

�
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��jj
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o
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���X
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n
��jj
�j�jj� � �j � � 	 O����

o
� jjbS�j��z�jj � jjG���j �z�jj

�
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��jj
���jj� � �� � � 	 O����
o
�
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�����k 	 ��ja���� j	
o

	
���X
j��

n
��jj
�j�jj� � �j � � 	 O����

o
�
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��j��k 	 ��ja
���
� j	

o
�
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��j����k 	 ��ja
���
� j	 O���

o
�

The result now follows�
Lemma ���

jjE �����
t

� �z�jj � ����� � �k 	 �� � �jj
���jj	 k 	 �� � ja���� j � �

	
�k 	 ��� � ja
���
� j� � �

���X
j��

��j���j����jj
�j�jj	 k 	 ��

	O�����

Proof� From ���� and ��
�� from Lemmas �� and �� and from Theorem �
�

jjE
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� �z�jj � jj
�X
j��

L
�j�t

� �z� � G
���
j �z�jj

� jjAt�z� � �
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���X
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n
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o
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The result now follows�
In the above three lemmas� the bounds obtained involve the products ��j���j����

These result from inequalities involving the expression jjbS�j��z�jj�jjG
���
j �z�jj� However�

it is seen that bS�j��z� � G
���
j �z� � G

���
j���z�� so it is felt that the inequalities are crude

and the bounds should just involve a single ��j�� Experimental results ��� support this
conjecture�

Finally� we can give the bound on the residual error�
Theorem ��� If � is so small and �T �j�t�z� and �T ��j��z� are not too large so

that

�knk	 k 	 ��� � ����

and

��j� � ja
���
� j �

n
ka��� �z�k

h
�k 	 ��jj�T �j�t�z�jj	 jj�T ��j��z�jj

i
	 �����k 	 ���jj
�j�jj	 k 	 �� � �

o
�

�



� j � ��

then

k�T �����t�z�k � F� 	 
�k 	 �� � ja
���
� j

���X
j��

��j���Fj�����

where

Fj � ���j��k 	 �� � ja���� j � ��
��

�
n

�jjm�j�jj	 k 	 �� 	 ��jjj

�j�jj� 	 �jj
�j�jj	 k 	 ��

o
�

Proof� Sum the error bounds given in Lemmas ��� 
� and 
�
Theorem 

 assures us that if k�T ���t�z�k is small and ���� is not too large� then

k�T �����t�z�k will also be small� Thus� k�T ���t�z�k will remain small for all � as long
as� at every iteration j� a step 
�j� is chosen �stepping over unstable blocks� so that ��j�

is not too large� The same observation is made about �T �����z� in x
� Consequently�
the assumptions of Theorem 

 are satis�ed in practice

�� Error Analysis for Simultaneous Pad�e Systems� In this section� we ob�
tain bounds for the error in the order condition for the NSPS computed by the al�
gorithm VECTOR PADE� The approach used in obtaining these bounds follows step
by step the approach used in x�� As before� we begin by �rst analyzing the �oating
point errors introduced by one iteration of the algorithm� At the �th iteration� the
NSPS S�����z� of type m��� for A��z� is available and satis�es

S�����z�A��z� � �T �����z� 	O�zjjm
���jj����

��



The algorithm proceeds to compute S�������z� of type m������
An iterative step consists of three parts� In the �rst part� the �rst jj
���jj 	 �

of T �����z� are computed� a bound for the �oating point errors introduced by these

computations is given in Lemma 
� below� In the second part� the NSPS bS�����z� of
type 
��� for T �����z� is computed� an error analysis is given Lemma 
�� In the third
part� Lemma �� provides bounds for the �oating point errors introduced in computing
S�������z� � bS�����z� � S�����z�� At this point in the algorithm� S�������z� is scaled
so that the norm of each row is �� As before� we assume for the sake of simplicity
that this scaling introduces no additional errors�

Lemma ��� The computed residual T �����z� satis�es

zjjm
���jj��T �����z� � S�����z� �A��z� � �T �����z� 	 zjjm

���jj���
����
V �z��

where

jj�
����
V �z�jj � 
��
�k 	 ���jjm���jj	 �� � ��

Proof� The algorithm computes the �rst jj
���jj 	 � terms of the residual only�
That is�

zjjm
��� jj��T ���� � fl�S�����z�� �A��z�� mod zjjm

�����jj��

�fl�S�����z� �A��z�� mod zjjm
���jj���

Thus�

S�����z� �A��z� mod zjjm
�����jj�� � �T �����z� 	 zjjm

���jj���T �����z� � �
����
V �z���

where �
����
V �z� is the error introduced into the computation of T �����z� by �oating

point operations� The result now follows from Lemma �� since A��z� and S�����z�
are both scaled� and therefore kA��z�k � 
 and kS�����z�k � k 	 ��

Lemma ��� If cM�
����

is nonsingular and bS�����z� is obtained by solving ���
 and
�
�
� then

bS�����z� � T �����z� � �
����
V I �z� 	 O�zjj�

���jj����

where

jj�����V I �z�jj �
n

�
�k 	 ��	jj
���jj� � ��� � � 	 O����
o
� jjbS�����z�jj�

Proof� First we obtain bounds for rows �� � � � � k of �����V I �z�� Row � of bS�����z�

corresponds to the solution bY�� of ���� obtained by Gaussian elimination� bY�� is the
exact solution of bY�t� � �cM�

���� 	 E�� � Et
�k����k�

where

jjE�jj� � 
�k�jj
���jj�� � ��� � jjcM�
����jj� � � 	 O����

and ��� is the growth factor associated with the LU�decomposition of cM�
����

�

��



But� from Lemma ��

jjT �����z�jj � 
�k 	 ���� 	 ���� � �jjm���jj	 �� � ��

� ��k 	 �� � ��

since kA��z�k � 
 and kS�����z�k � k 	 � because of scaling� Here� we have used
�����km���k	 ��� � �����knk	 k 	 ��� � �� Thus�

bY�t� � cM�
���� � Et

�k����k � � bY�t� � E��

where

jjE�t � bY��jj� � jj bY�t� � E�jj�
� jj bY��jj� � jjE�jj�
� jj bY��jj� � �
k�jj
���jj� � ��� � jjT

�����z�jj � � 	 O����
�

� jj bY��jj� � ��
�k 	 ���jj
���jj� � ��� � � 	 O����
�
�

since jjcM�
����

jj� � �k 	 ��jj
���jj � jjT �����z�jj� A similar analysis can be done for

solving ��
� to obtain bX �� But� bY�� yields row �� � � � � k� of bS�����z� with residual

error E�t � bY�� �i�e�� E�t � bY�� gives row � of �����V I �z�� and bX � yields the �rst row ofbS�����z� with a corresponding residual error� The result now follows�

Lemma ��� If S�������z� � fl
nbS�����z� � S�����z�

o
� then

S�������z� � bS�����z� � S�����z� 	 �
����
V II �z��

where

jj�
����
V II �z�jj � �����jj
���jj	 k 	 �� � jjbS�����z�jj � jjS�����z�jj��

Proof� The ��� ���component of S�������z� is

S
������
��� �z� � fl


bv��z� � v��z� 	 z�
kX

	��

bu�	�z� � q�	�z�

�

�

km�����k�m
�����
�X

���

z�

���
k����k��

���
�X

j��

bv��j�v����j� � �� 	 ������j�����

	
kX

	��

k����k������X
j��

bu��j�	 q����j���	 � �� 	 ������j���	�

��� �

where j������j���	j � ���� � �k
���k � 

���
	 	 k� � �� Thus�

��
����
V II �z����� �

km�����k�m
�����
�X

���

z�
k����k��

���
�X

j��

bv��j�v����j� � ������j����
	z�

kX
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km�����k�m
�����
�X
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k����k������X
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Thus� from ����

jj
�
�
����
V II �z�

�
���
jj � ���� � �jj
���jj	k� �



kbv��z�k � kv��z�k	

kX
	��

kbu�	�z�k � kq�	�z�k

�
��

An equivalent result holds for S
������
��� �z� for � and � other than � � � � �� The

lemma now follows using �����
The use of the results of the three lemmas above enables us to express the residual

error �T �������z� in the order condition at the �� 	 ��th iteration in terms of the
residual error �T �����z� at the �th iteration plus the �oating point errors introduced
�locally� by the �th iteration�

Lemma ���

�T �������z� � bS�����z� � �T �����z� 	 L�����z��

where

L�����z� �
n
�
����
V II �z�A��z� �	zjjm

���jj��
h
�
����
V I �z� � bS�����z��

����
V �z��

io
mod zjjm

i��jj���

Proof� The result is an immediate consequence of Lemmas 
�� 
� and 
��
Theorem ��� The residual error satis�es

�T �������z� �
�X

j��

G
����
j �z� � L�����z��

where

G����j �z� �


 bS�����z� � bS�������z� � � � bS��j����z�� � � j � ��
Ik��� j � ��

�
��

Proof� The result follows by induction from Lemma 
��
We see from �
�� that the residual error �T �������z� is composed of the local

errors L��j�
t

�z� propagated by G
����
j � The next lemma and theorem give bounds

independent of � for the propagation matrices G������j � Consequently� as for the
NPHS� the residual error grows additively with ��

Lemma ��� If � is so small and �T ���t�z� and �T �����z� are not too large so that
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n
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h
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o
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then

jjbS�����z�jj � 
���� � �k 	 �� � ja���� j�

Proof� From �����

kS�������z� � S����z� � ������ � �������k � jjS�������z�jj � jjS����z�jj � jj������ � �������jj

� ���� � �k 	 ���
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But� using Theorem � and Lemma 
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o
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o
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The result now follows�
Theorem �	� If � is so small and �T ���t�z� and �T �����z� are not too large so

that
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n
ka��� �z�k

h
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� j � ��

then

jjG
����
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��j� � �k 	 �� � ja

���
� j	 O���� j � ��

Proof� From �
�� and Lemma 
�

S�������z� � G����j�� �z� � S��j��z� 	
�X
��j

G����
�

�z� � �����V II�z��

We proceed by induction� Assume the theorem is true for G
����
��� �z�� G

����
��� �z�� � � �� G

����
j �z�

�the initial case� j � � � �� is proved in Lemma 

 since G������� �z� � bS�����z��� From
�����

kS�������z� � S�j��z�����j� � ��j����k � ��j��k 	 ��

But� using Theorem �� Lemma 
�� and the inductive hypothesis�

kS�������z� � S�j��z�����j� � ��j����k

� kG
����
j�� �z� � S��j��z� � S�j��z� � ����j� � ��j����
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��j
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n
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To simplify the analysis� we split the local error L���t�z� into three parts and
analyze the propagation of each part separately� Let

L
����
� �z� �



�� � � ��

�zjjm
���jj�� bS�����z� � �
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Then� according to Lemma 
� and Theorem 
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The result now follows�
Using the above three lemmas� we can �nally give the bound on the residual error�
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�� The Inverse of a Striped Sylvester Matrix� In this section� a formula is
given for the inverse of Mn expressed in terms of both S�z� and S��z�� This enables
estimating the condition number of Mn without explicitly computing M��
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The main result of this section is Theorem �� below which gives the inverse of

Mn in terms of the NPHS S�z� and the NSPS S��x� of types n for A�z��

Theorem ��� In terms of the normalized NPHS S�z� and the normalized
NSPS S��x� of types n for A�z�� the inverse of Mn satis�es
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Next� the coe�cient of zi�j�� for i� j � �� � � � � knk� in the �rst row and �rst
column of ��
� for a normalized NPHS and a normalized NSPS� namely�

p�z� v��z� 	
kX

���

u��z�q���z� � zknk���a
���
� ��� 	 z����III �����z��

is

n���X
���

v��i�j����� p�l� 	
kX

���

n�X
���

q
��i�j�����
� u

���
� � ��III�

�i�j���
��� �

This is the �i� j�th component ofh
p��knk�i�j���

ih
v��knk�i�j���

i
	

kX
���

h
u
��knk�i�j���
�

i h
q
��knk�i�j�
�

i
����

�
h
��III�

�i�j���
���

i
�

The coe�cient of zi�j�� in the �rst column and the �� 	 ��st row� � � �� � � � � k� of
��
�� namely�

q��z� v��z� 	
kX

���

v����z�q���z� � z����III�����z�

��



is

n�X
���

v��i�j����� q�l�� 	
kX

���

n�X
���

q
��i�j�����
� v

���
��� � ��III ��i�j������ �

This is the �i� j�th component of

h
q��knk�i�j����

i h
v��knk�i�j���

i
	

kX
���

h
v
��knk�i�j���
���

i h
q
��knk�i�j�
�

i
����

�
h
��III �

�i�j���
���

i
�

Also� the coe�cient of zi�j � for i� j � �� � � � � knk in the �rst component of ����
for a normalized NPHS and NSPS� namely�

r�z�v��z� 	 z�
kX

���

w��z�q���z� � �a
���
� ��� a��z� 	 ��IV ���z��

is the �i� j�th component of

�a
���
� ���

h
a
�i�j�
�

i
	
h
��IV �

�i�j�
�

i
�

h
r��knk�i�j���

i h
v��knk�i�j���

i
	

kX
���

h
w
��knk�i�j���
�

i h
q
��knk�i�j�
�

i
�

We are �nally ready to prove the theorem� From ����� ��
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The result ���� now follows�
Corollary �� below drops the requirement in Theorem �� that S�z� and S��z� be

normalized� In particular� the results of the corollary apply when S�z� and S��z� are
scaled�

Corollary ��� In terms of the NPHS S�z� �unnormalized
 of type n for A�z�
and the NSPS S��z� �unnormalized
 of type n for A��z�� the inverse of Mn is given
by
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Proof� The normalized NPHS is obtained from an unnormalized one by mul�
tiplying it on the right by the diagonal matrix diag����� � � � � � ���k �� Similarly� the
normalized NSPS is obtained from an unnormalized one by multiplying it on the left
by the diagonal matrix diag������ � � � � � ����

k
�� The result now follows directly from

����� Note that in the de�nition of �IX � we continue to associate �III �x� and �IV �z�
with a normalized NSPS�

Example ��� Continuing with Examples 
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��� The Inverse of a Mosaic Sylvester Matrix� In this section� a formula is
given for the inverse of M�

n expressed in terms of both S�z� and S��z�� This enables
estimating the condition number of M�

n without explicitly computing M���
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The main result of this section is Theorem �� below which gives the inverse of

M�
n in terms of the NPHS S�z� and the NSPS S��x� of types n for A�z��

Theorem ��� In terms of the normalized NPHS S�z� and the normalized
NSPS S��x� of types n for A�z�� the inverse of M�

n satis�es

M���
n

n
�a���� ���Ikknk 	 ��V III

o
� Qt

h
a
�i�j�
�

i��
V� 	

kX
���

Vt�

h
a
�i�j�
�

i��
Q�
� �����


�



where

��V III � � � �Rt
h
a
�i�j�
�

i��
V� �

kX
���

�W t
�

h
a
�i�j�
�

i��
Q�
�����

Proof� Let

�Q �

������������

p�knk��� � � � p�n���� q
�knk���
� � � � q

�n����
� q

�knk���
k � � � q

�nk���
k

���
���

���
��� p���

��� q
���
� � � �

��� q
���
k

� �
�

� � �
�

� � �
�

�

p��� � �
�

q
���
� � �

�
q
���
k

� �
�

� � �

������������
�

Then� the order condition ���� for an NPHS implies that
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Then� the coe�cient of zknk�i�j��� � � i � knk � n�� � � j � knk in the order
condition ���� for an NPHS� namely�
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The remaining components of ���� are easy to verify�
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Next� observe that the duality theorem � and its corollary � imply that
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Combining ��
�� ���� and ������ we obtain the result �����
Corollary �
 below drops the requirement in Theorem �� that S�z� and S��z� be

normalized� In particular� the results of the corollary apply when S�z� and S��z� are
scaled�

Corollary ��� In terms of the NPHS S�z� �unnormalized
 of type n for A�z�
and the NSPS S��z� �unnormalized
 of type n for A��z�� the inverse of M�
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Proof� The normalized NPHS is obtained from an unnormalized one by mul�
tiplying it on the right by the diagonal matrix diag����� � � � � � ���k �� Similarly� the
normalized NSPS is obtained from an unnormalized one by multiplying it on the left
by the diagonal matrix diag������ � � � � � ����k �� The result now follows directly from
�����

Example �	� Continuing with Examples 
 and �� according to Theorem ��� the
NPHS �
�� and the NSPS ���� give the inverse of the mosaic Sylvester matrix� The
relevant matrices in the inverse formula ���� are

M�
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��� Stability� In this section� bounds for the errors �S�z� � S�z� � SE �z� and

�S��z� � S��z�� S�E�z� are obtained� Since S�z� and S��z� are scaled� these same
bounds serve also as bounds for the relative errors in S�z� and S��z�� To make the
comparisons meaningful in the above� we insist that SE �z� and S�E�z� are such that
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We begin by �rst �nding bounds for �S�z�� From ��� and ����

At�z� � �S�z� � �T t�z� 	 O�zknk����

So� the constant terms
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��� for � � �� � � k of S�z� are zero� It then

follows that the remaining components of �S�z� satisfy
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 In actual fact� the computations in ���� may yield errors resulting in nonzero values of �u
	�

�

for

� � � � k� But� these errors� each resulting from two 	oating point operations� are comparatively
small and are ignored in order to simplify the analysis�
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From ����� and ������ it follows that

k�S�z�k � maxfk�Xk�� k�Yk�g�����

� knk � kM��
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�
k�r�z�k� k�W t�z�k
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� knk � kM��

n k� � k�T
t�z�k�

Thus� to obtain a bound for �S�z�� we need only to obtain bounds for M��
n and

�T t�z�� This is done formally in Theorem �� below� In the theorem� �T t�z� is the
residual error corresponding to the NPHS computed by the algorithm of x� in � 	 �
steps� So� n � m����� and a bound for k�T t�z�k is given by Theorem 

 in which

�T �����t�z� � �T t�z�� At the point m������ we drop the superscript � 	 � so that
S�z� � S������z�� � � ������� and so on� A bound for M��

n is then obtained directly
from Corollary �� without changes to notation� The point m��� is the last stable point
�i�e�� ���� � � � prior to the point n along the diagonal passing through n� The point
n itself need not be stable�

Theorem �
� If � is so small and �T t�z� and �T ��z� are not too large so that
the conditions of Theorem �� are satis�ed and
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Proof� We begin by �nding a bound for �IX appearing in the inverse formula ����

for Mn� A bound for �IX depends on bounds for �I �z�� �II�z�� �III�z� and �IV �z��
Using ����� and Hadamard!s inequality� a bound for �I �z� in ���� for a scaled NSPS
is given by
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In addition� a bound for �IV �z� in ���� for a scaled NSPS �here� also� note the change
from a normalized NSPS� is given by
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We are almost ready to give a bound for �IX appearing in the inverse formula
����� But� �rst observe that
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Therefore� a bound for M��
n in ���� is given
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The result ���
� now follows from ����� using ���� and ���
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Next� we �nd bounds for �S��z�� From ���� and ����

S��z�A��z� � �T ��z� 	 O�zknk����

As for the NSPS� for the sake of simplicity� here again we ignore that the constant

term errors� �w����
� � for � � � � k� This is done with no great loss of generality� since
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From ����� and ������ we get

k�S��z�k � �k 	 �� maxfk�X �k�� k�Y
�k�g�����

� �k 	 ���kM���
n k� � k�T ��z�k�

Thus� to obtain a bound for �S��z�� we need only to obtain bounds for M���
n

and �T ��z�� This is done formally in Theorem �� below� In the theorem� �T ��z�
is the residual error corresponding to the NSPS computed by the algorithm of x� in
� 	 � steps� So� as for the NSPS� n � m����� and a bound for k�T ��z�k is given
by Theorem �� in which �T �������z� � �T ��z�� At the point m������ we drop the
superscript � 	 � so that S��z� � S�������z�� � � ������� and so on� A bound for
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M���
n is then obtained directly from Corollary �
 without changes to notation� The

point m��� is the last stable point �i�e�� ���� � � � prior to the point n along the
diagonal passing through n� The point n itself need not be stable�

Theorem ��� If � is so small and �T t�z� and �T ��z� are not too large so that
the conditions of Theorem �� are satis�ed and
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Note that the assumption ����� is used in ����� to derive the bound for �III�z�� Thus�
��IX appearing in the inverse formula ����� is bounded by
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The result ���
� now follows from ����� using �
�� and ������
Theorem ��� The algorithm VECTOR PADE for computing S�z� and S��z� is

weakly stable�
Proof� If the conditions of Theorem �� hold� then from ���
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Thus� if the problem is well�conditioned �i�e�� if the condition number � associated
with the matrices Mn and M�

n is not too large�� then the computed solution S�z� is
close to the exact solution SE�z� and S��z� is close to the exact solution S�E �z�� The
algorithm is therefore weakly stable ����

��� Experimental Results� Numerical experiments have been performed to
compare the analysis of the algorithm with its practice� A summary of the conclusions
is presented here� details appear in ����

The algorithm VECTOR PADE was implemented using Sun Fortran ������ All
calculations were performed in double precision� The linear systems ����� �
���
��
� and ���� arising at intermediate steps of the algorithm were solved using the
LINPACK routines SGEFA and SGESL� The results were then compared to the
exact answers� obtained via the Maple computer algebra system� Tables � and 

give the results of one small but typical experiment for which n � ��
� ��� ��� and
At�z� � �a��z�� a��z�� a��z�� with a��z� � � and with coe�cients of a��z�� a��z� ran�
domly and uniformly distributed between �� and �� The tables give results at all
intermediate points along the diagonal through n� In these tables� the errors �rep�
resented in scienti�c notation with two digits of accuracy and the exponent enclosed
in parenthesis� in the computed S�j��z� and S��j� and in the order conditions are
given for two values of the stability parameter � � The value � � ��� in Table � indi�
cates a willingness to accept only those striped Sylvester matrices Mm�j� and mosaic
Sylvester matrices M�

m�j� with condition numbers less than ���� approximately �i�e��

��
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those for which ��j� � ����� Striped and mosaic Sylvester matrices not satisfying
this criterion are assumed to lie in an unstable block and are skipped over� An un�
stable point is identi�ed by the value ��� in the column labeled �j�� In Table 
� the
value � � ��
 permits a much greater tolerance for ill�conditioning and results in an
expected deterioration in the accuracy�

It was observed that the large constants and powers of km�j�k and k
�j�k that
occur in the bounds derived above are not manifested in the experiments� Also�
k�T t�z�k and k�T ��z�k depends on ��j� and not ��j���j��� and the overall error is
proportional to the largest ��j� encountered� As for the case k�� reported in �����
operational bounds on the errors in the order conditions are

k�T t�z�k � C�k 	 ���

�� �X
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��j��jkm
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�A	 O����

and
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where C is a moderate constant� In addition� for the errors in the solutions� opera�
tional bounds are
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��� Conclusions� In this paper we have presented a new fast� weakly stable
algorithm for the computation of Pad�e�Hermite and simultaneous Pad�e systems� The
algorithm requires O�knk� 	 s�knk� operations to compute a Pad�e�Hermite system
and a simultaneous Pad�e system of type n � �n�� � � � � nk�� where knk � n� 	 � � �	 nk
and s is the largest distance from one well�conditioned subproblem to the next� The
algorithm can also be used for fast stable inversion of striped or mosaic Sylvester
matrices �see ��
�� for the case k � � and a��z� � ��� The algorithm relies on the
ability to specify when a given subproblem is well conditioned� The stability estimates
come as a result of �approximate� inversion formulae for striped and mosaic Sylvester
matrices derived in this paper� In addition to a complete stability analysis� we have
also provided some numerical experiments that verify that the algorithm performs as
theoretic results imply�

There is a number of open research problems that result from this work� The
algorithm that has been presented is fast rather than superfast as is possible in the
case of exact arithmetic ����� It is possible to modify the algorithm so that it takes
steps in a quadratic fashion as done in ����� However� while this approach will work in
the generic case� it is possible to �nd examples where not all the required subproblems
are stable� In these cases the algorithm might not be numerically stable� It would
be of interest to �nd a superfast algorithm that works in all cases and in addition is

��



numerically stable�
In cases where the largest step�size is small the algorithm has complexityO�knk���

However� there are cases where the algorithm may require a very large step�size and
and then have a higher cost than Gaussian elimination� This will happen if there is
a very large unstable block� or if the stability parameter � is chosen to be too low� It
would be of interest to �nd a fast� stable algorithm that has complexity O�knk�� in
all cases�

Our algorithm proceeds along a diagonal path in the corresponding Pad�e tables of
our approximants� It would be of interest to �nd fast� stable algorithms that proceed
along alternate paths in the Pad�e tables� An example of this in the Pad�e case is found
in ��
� where the computation proceeds along straight�line paths� In the context
of matrix solvers this is the di�erence between giving a Toeplitz solver instead of a
Hankel solver as is done in �����

The M�Pad�e approximation problem is a generalization of the Pad�e�Hermite ap�
proximation problem which requires that the residual in ��� vanishes at a given set of
knots z�� z�� � � � � zN��� counting multiplicities ���� �� �� 
���� The case where all the
zi are equal to � is just the Pad�e�Hermite problem� In this case the coe�cient matrix
for the associated linear system is the matrix of divided di�erences� It would be of
interest to determine stability parameters for such matrices� with a view to developing
fast� stable algorithms for computing this approximation problem� Along these lines�
some experiments for the case k�
 are reported in �
��
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