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Abstract. For k + 1 power series ag(z),...,a5(z), we present a new iterative, look-ahead
algorithm for numerically computing Padé-Hermite systems and simultaneous Padé systems along
a diagonal of the associated Padé tables. The algorithm computes the systems at all those points
along the diagonal at which the associated striped Sylvester and mosaic Sylvester matrices are well-
conditioned. It is shown that a good estimate for the condition numbers of these Sylvester matrices at
a point is easily determined from the Padé-Hermite system and simultaneous Padé system computed
at that point. The operation and the stability of the algorithm is controlled by a single parameter
7 which serves as a threshold in deciding if the Sylvester matrices at a point are sufficiently well-
conditioned. We show that the algorithm is weakly stable, and provide bounds for the error in the
computed solutions as a function of 7. Experimental results are given which show that the bounds
reflect the actual behavior of the error.

The algorithm requires O(||n||2 + s2||n||) operations, to compute Padé-Hermite and simultaneous
Padé systems of type n = [ng, ..., ng], where ||n|| = ng +- - -+ nj and s is the largest step-size taken
along the diagonal. An additional application of the algorithm is the stable inversion of striped and
mosaic Sylvester matrices.
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1. Introduction. Let A%(z) = [ao(2),...,ar(2)], k > 1, be a vector of formal

power series over the real numbers! with ag(0) # 0 and let n = [ng, ... ,ni] be
a vector of integers with ng > —1,0 < 8 < k, and with at least one ng > 0. A
Padé-Hermite approzimant of type n for A(z) is a nontrivial vector [qo(2), ..., qx(2)]

of polynomials gg(z) over the real numbers having degrees® at most ng,0 < 8 < k,
such that

(1) aO(Z)qO(Z) + -+ ak(z)qk(z) = C||n||+kz”n”+k + C||n||+k+12”n”+k+1 + -

with ||n|| = no + ... + ng.

The Padé-Hermite approzimation problem was introduced in 1873 by Hermite
and has been widely studied by several authors (for a bibliography, see, for example
[2, 3, 5, 6, 23]). Note that for A’(z) = [~1,a(z)], equation (1) becomes

a(2)q1(2) = qo(z) = O+,

Thus, as a special case we have the classical Padé approximation problem for the
power series a(z). The Padé-Hermite approximation problem also includes other
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classical approximation problems such as the algebraic approximants where A?(z) =
[1,a(2),a(2)?, ..., a(2)*¥] (see [26] for the special case k = 2) and G3J approximants
where A%(z) = [1, a(z),d'(z)]. Additional examples can be found in [1].

Closely related to Padé-Hermite approximants are sumultaneous Padé approxi-
mants. A simultaneous Padé approximant of type n for A(z) is a nontrivial vector
[95(2), ..., ¢5(2)] of polynomials qz;(z) over the real numbers having degrees of at most
[|[n|| — ng,0 < 3 <k, such that
(2)  q5(2) ap(2) + q5(2) - ao(z) = c|(|i>ll+kZ||n||+k n C|(|i)||+k+1zlln”+k+1 ..
for § =1, -+, k. Simultaneous Padé approximants were also defined by Hermite and
were used in his famous proof of the transcendence of e. Again, for A*(z) = [-1, a(2)],
the simultaneous Padé approximation problem becomes the classical Padé approxi-
mation problem for a(z).

By equating coefficients in (1), the Padé-Hermite approximation problem can
be viewed as solving a system of linear equations of size ||n|| x ||n||. Thus, one
can use Gaussian elimination to solve this problem with a complexity of O(||n||?)
operations. However, the coefficient matrix of the corresponding linear system has
a type of “structured” form so it is not surprising that there are a number of fast
[2,12] O(||n||?) and superfast [6, 10] O(||n|| log® ||n||) algorithms for determining Padé-
Hermite approximants. All these algorithms have the property that they work for any
input vector of power series. In addition, these algorithms all make important use
of exact arithmetic; in particular, they all depend on knowing that certain quantities
are known to be 0 or not. A similar statement also applies for the fast and superfast
computation of simultaneous Padé approximants.

In the special case of Padé approximants, it has long been known that existing fast
and superfast Padé algorithms all had problems with numerical stability for certain
problems. In this case the first known numerically stable algorithm for fast Padé ap-
proximation was presented by Cabay and Meleshko [13]. Alternate algorithms for fast
Padé computation that also consider the issue of numerical stability include [11, 14, 16]
and [18], and for superfast computation [20]. An insightful look into the connection
between stable algorithms for computing Padé approximants and other algorithms in
numerical analysis is given by Gutknecht and Gragg [19]. Algorithms dealing with
the closely associated problem of stably computing fast rational interpolation include
[8].

In this paper, we present a new algorithm for the computation of Padé-Hermite
and simultaneous Padé systems. These systems are matrix polynomials which contain
the desired multi-dimensional Padé approximant along with quantities that can be
used to recursively or iteratively compute the next approximant along a well defined
diagonal path. The algorithm works for all vectors of power series and is fast in
the sense that it computes a system in O(||n||?) operations in the generic case. In
addition, we show that this algorithm is weakly stable in the sense that it provides
good answers to well-conditioned problems. The algorithm is a look-ahead procedure
that computes the systems of type n by computing all the Padé systems at the well-
conditioned locations along a diagonal path in the associated Padé tables passing
through the point n. In the case of Padé approximation (k = 1), the algorithm
reduces to the Cabay and Meleshko algorithm.

It is known (cf. [10] or [23]) that in exact arithmetic a Padé-Hermite system exists
uniquely if and only if the striped Sylvester coefficient matrix of the corresponding as-
sociated linear system is nonsingular. This is also true for simultaneous Padé systems
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where the coefficient matrix of the associated linear system is now a mosaic Sylvester
rather than a striped Sylvester matrix. However, in the case of floating point arith-
metic determining that such coefficient matrices are nonsingular is not good enough.
Instead one must know, at least in a reasonably computable way that the linear sys-
tems are also well-conditioned. Central to the stable operation of our algorithm is
the ability to estimate the condition numbers of the associated striped Sylvester and
mosaic Sylvester matrices. The estimates follow from some “near” inverse formulae
for these matrices that are derived in this paper and which are expressed in terms
of both Padé-Hermite and simultaneous Padé systems. This is the reason why our
algorithm computes Padé-Hermite and simultaneous Padé systems in tandem; the
inverse formulae, and consequently the estimates for the condition numbers, require
that both the Padé-Hermite and the simultaneous Padé systems be available. The
striped Sylvester and mosaic Sylvester matrices are deemed to be well-conditioned
if the computed estimates of the condition numbers are bounded by some specified
“stability” tolerance 7.

As a corollary to our results, there is a formula which gives the inverse of a striped
Sylvester matrix expressed in terms of the associated Padé-Hermite system only. One
attempt to use this formula to develop a stable algorithm for computing Padé-Hermite
systems (independent of simultaneous Padé systems) was only partly successful [22];
bounds for the inverse of the associated striped Sylvester matrix (and consequently
bounds for its condition number) using the formula were often too pessimistic and
impractical.

This paper is organized as follows. Preliminary definitions and basic facts about
Padé-Hermite and simultaneous Padé systems are given in the next two sections.
§4 gives a near commutativity relationship between these two systems in floating
point arithmetic while §5 gives the algorithm for computing these systems. The
remainder of the paper is devoted to showing that the algorithm is weakly stable
for the computation of either system. To this end, §6 discusses norms for matrix
polynomials and power series while §7 and §8 discuss the errors that result from
the iterative steps of the algorithm. §9 and §10 provide the necessary material for
determining our stability parameter by creating approximate inversion formulae for
striped and mosaic Sylvester matrices. §11 completes the proof of stability while §12
provides results of some numerical experiments that reflect the theoretic results of the
previous sections. The final section gives some conclusions and a discussion of further
areas of research.

2. Padé-Hermite Systems. In this section, we introduce the notion of a Padé-
Hermite system for a vector of formal power series. Let

(3) At('z) = [ao(’z)""aak('z)]a

where

oQ

aa(z):Za(cf)zz, a=0,...k,

£=0

with a(cf) € F, the field of real numbers. Assume that aéo) # 0, which means that
aal(z) exists. Let n = [ng,...,nz] and ||n]| = ng+-- -+ ng. Then the (k+1) x (k+1)



matrix of polynomials

2aqe(z) | vea(z) oo vrr(2)

is a Padé-Hermite system (PHS) [12] of type n for A(z) if the following conditions are
satisfied.
I. (Degree conditions): For 1 < «, 8 <k,

ng—1 nao

(5) plz) = Z pt 2t ug(z) = ug)zz,
£=0 £=0
Na—1 Na

Ga(2)= Y 404, vayp(2) = 3 0lpet

=0 £=0

IT. (Order condition):

(6) Al(2)8(z) = T (),

where T%(z) = [r(2), W'(z)] with W¥(2) = [w1(2), ..., wg(z)] is the residual.

IT1. (Nonsingularity condition): The constant term of V(z) is a diagonal matrix,

(7) V(0) = diag [y1,- .., 7],

k
(8) 7= () [T #0.
a=0
where v5 = r(0).

Remark 1: Only the first column of S(z) is a Padé-Hermite approximant as de-
fined in §1; this being of type [ng — 1,...,n; — 1]. The remaining columns S(z) do
not quite satisfy the order condition (1) and are therefore not Padé-Hermite approxi-
mants; these columns serve primarily to facilitate the computation of the first column
using the algorithm given later in §5. But there are other uses for these columns
of S(z), such as that of expressing the inverse of a striped Sylvester matrix (see the
inverse formula (90)).

Remark 2: The nonsingularity condition III is equivalent to the condition that
7(0) # 0 and that V(0) be a nonsingular diagonal matrix.

Remark 3: The PHS is said to be normalized [12] if the nonsingularity condi-
tion IIT is replaced by r(0) = 1 and V(0) = Ij. This can be achieved by multiplying
S(z) on the right by =1, where

The PHS is said to be scaled [22] if each column of S(z) has norm equal to 1 for
some norm and if, in addition, v > 0,0 < 8 < k. Here, also, scaling a PHS is
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accomplished by multiplying it on the right by an appropriate diagonal matrix.

Remark 4: The nonsingularity condition III, namely v # 0, refers to the nonsin-
gularity of S(z); that is, S(z) is nonsingular iff ¥ # 0. Equivalently, the nonsingularity
condition refers to the nonsingularity of the associated striped Sylvester matrix M,
defined in (14) below; in [12] it is shown that a PHS (with y # 0) exists iff M, is

nonsingular.

If the order condition (6) is not satisfied exactly, but rather
(10) AY(2)S(z) = MPMIHT () 4 6T (2),
where §T"%(z) = [z2 §r(z), 6Wt(z)] with §W'(z) = [bwy(2), ..., dwg(2)] is a relatively

“small” residual error, then S(z) is called a numerical Padé-Hermite system (NPHS).

In (10), for 1 < g < k,

lln)l-2
sr(z) = Z §1(0) 2,
£=0
Il
Swg(z) = Zéwg) 2t
£=0

If §T*%(z) = 0, then S(z) is an exact (rather than a numerical) Padé-Hermite system.
To distinguish it from a NPHS S(z), an exact system is denoted by Sg(z).

The following lemma shows that Remark 4 applies to a NPHS as well; that is,
S(z) is nonsingular for sufficiently small §7"(z) if v # 0.
LEMMA 1. If S(z) is « NPHS of type n for A(z), then

(11) det[S(=)] = N1y 46 (2),

where

det[V(2)]

01(2) = a5 (T | _ 2 i (o))

(mod z||"”+2).

Proof. Let
¢(2) = det[V()]
and
Qz) = =V*4(2)Q(=).
From (4), the first column of 524 (z) is [¢(z), 22Q!(2)]" and satisfies

an se [ [=[260 VO [ =[]

Multiplying both sides of (10) on the right by [(/)(z), P Qt(z)]t, it follows from (12)
that

(13)  ao(2)det[S(z)] = At(z)[det[g(z)]]
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IR [ Zf&z) ] b OTY(2) [ Z;bggz) ] .

But, from the degree conditions (5), d(det[S(z)]) < [|n|| + 1, and so (13) becomes

det[S(=)] = AIH1r(0) 6(0)(al) ! + ag ()67 (2) [ Zz‘/’éZ()z) ] (mod AA"lI+2)
= i+ 4oz,
|
Associated with A(z), let M,, be the striped Sylvester matrix of order ||n||,
e oo '
(14) M, = aéo) e agco)
I agllnll—l) agllnll—”o) agﬂllnll—l) agﬂllnll—”k) ]

Then S(z) can be obtained by solving two sets of linear equations with M,, as the
coefficient matrix [12]. From (10),

(15) ag(2) p(2) + Y da(2) qa(z) = P11 (2) 4 60(2),

a=1
which gives rise to
(16) M, - X =10,...,0,7)],
where
t
x = [p, ... ,p("”_1)|q§0), . .,qY“ 1)| e |q;(€0), C q,(cnk 2

The solution X yields the first column Sy o(2), S1.0(2),...,Sk0(2) of S(z). In (16),
we require that v = r(0) # 0; yo = 1 for a normalized NPHS. The existence of a
solution to (16) is assured if M,, is nonsingular. The term ér(z) in (15) represents
the residual error made in solving (16)

Next, to compute U?(z) and V(z) (i.e., the remaining columns of S(z)), again we
use (6), namely,

(17) ao(z) ug(z) + Z aa(2) va,p(z) = z”"”"’lw@(z) + dwp(z), 1 << k.

a=1

For e, =1,...k, set

(0) ago)
(18) ug = =gy Y6
g
SO s a=h
ap 0, a#p.



This yields the constant terms U*(0) and V' (0) of U(z) and V(z), respectively. The
remaining components

No 7 Nk t
S u(1 )], (n1) (1) (nx)

Uy Y11 0 Vi V1 0 Yga
(19) ¥ = : : : : : :
1 no 1 n1 1 Nk
o [ g |
can be obtained by solving
(1) (1)
g ay,
. ) Ut (0
20) Mo Y=ol | [
aéllnll) agﬂllnll) ]

In (20), we require that y3 # 0,1 < 8 < k; v3 = 1 for a normalized NPHS.
Again, the existence of a solution to (20) is assured if M,, is nonsingular. The terms
dwg(z), 1 < B <k, in (17) represent the residual errors made in solving (20).

For the special case when n = [ng,0,...,0] the NPHS becomes
[ago)]—lznoﬂ ‘ Ut(z)

(21) 56) = | | diagtro, )

(R
where U'(z) = —[ao(2)]71 - [a1(2), - - -, ar(2)] (mod z"°F1). For initialization purposes
in the algorithm given later in §5, we adopt (21) even in the cases ng = 0 and ng = —1,

despite the fact that it no longer strictly meets all the requirements of an NPHS.
EXAMPLE 2. For the power series A(z) = [ao(2), a1(2), a2(2)]*, where

ap(z) = 1—24222 23434 - 354425 4.7 458 52
ar(z) = 2243234425 45274627,
as(z) = 1424522432422 -2 625427 -85 4527
the associated striped Sylvester matrix of type n=[2,3,1] is
1 00 0 Of-1
-1 112 0 0 1
2 =110 2 0 5
(22) Ma=1 9 9l3 0 2| 3
3 =210 3 0 2
-3 314 0 3| -2

To obtain the normalized Padé-Hermite system Sg(z) of type n=[2,3,1] for A(z), first
solve (16) which yields

1
(23) X= [—4,44, 22,36, -9, —4] .

Next, the system (20) becomes

-2 0
0 —7
-3 —1

Ma-Y =1y 5|
—4 5
0 2



which gives

73  —44
—48 3
1 —-13 —-131

(24) V=57 o 7
-7 123
1 —-44
The solutions (23) and (24) then give
G D) | —73z — 4822 37 — 44z 4 322
(25) Sp(z) = 22(—22 4362 —92%) | 37 — 132 — 922 — 72 —131z + 13722 + 1232°
37 22 (—4) 2 37 — 44z
Note that
Al(2) Sp(z) = 2" T'(2),
where
(26) T'(z) = 31—7 [37 +202 + 4222 + ..., —5+ 82— 422 + ..., 516 — 130z + 8052° + .. | .

3. Simultaneous Padé Systems. A Padé-Hermite system gives an approxi-
mation to a vector of formal power series using matrix multiplication on the right. In
this section we give the definition of a simultaneous Padé system which corresponds
to a similar approximation but with matrix multiplication on the left and with de-
gree constraints that can be thought of as being “dual” to the degree constraints of a
Padé-Hermite system. As in the previous section, a simultaneous Padé system exists
if and only if a particular matrix of Sylvester type i1s nonsingular, in this case it is a
mosaic Sylvester matrix.

Let
aoylgz; ab kEz;
(27) w=| T T
aZ (2) k(z)

be a (k+ 1) x k matrix of power series with det(C*(0)) # 0. The (k+ 1) x (k+ 1)

matrix of polynomials

e
(28) 5°(2) = Z;Qi?l)lgpfzﬁ) i) | s i
2ap(z) | Pppa(z) o 22 a(2)

is a simultaneous Padé system (SPS) [10, 12] of type n for A*(z) if the following
conditions are satisfied.
I. (Degree conditions): For 1 < «, 8 <k,

lInll—no llnll-ns
(29) v (z) = Z AP up(z) = Z u;(z)zz,
£=0 £=0
lInll—no—1 lInll-ns—1 ,
()= Y 9, v = Y Pl
£=0 £=0



IT. (Order condition):
(30) 5 (2)47 () = AT (),
where T*(z) = [W*(2)|R**(z)] with R*(z) a k x k matrix.
ITI. (Nonsingularity condition): The constant term of R*(z) is a diagonal matrix
(31) R(0) = diag [T, 7],
and
k
* 0)y— *
(32) 7= s #o.
a=0

where 7§ = v*(0).

Remark 5: The SPS is said to be normalized [10] if the nonsingularity condition
TIT is replaced by v*(0) = 1 and R*(0) = I;. This can be achieved by multiplying
S*(z) on the left by T*~1 where
(33) I =diag[vy,---,72]-

The SPS is said to be scaled when each row of S*(z) has norm equal to 1 for some
norm and if; in addition, v} > 0, 0 < a < k. Here, also, scaling a SPS is accomplished
by multiplying it on the left by an appropriate diagonal matrix.

Remark 6: The nonsingularity condition I, namely v* # 0, refers to the non-
singularity of S*(z); that is, S*(z) is nonsingular iff v* # 0. Equivalently, the non-
singularity condition refers to the nonsingularity of the associated mosaic Sylvester
matrix M} defined in (35); in [10] it is shown that a SPS exists iff M is nonsingular.

As for the Padé-Hermite system, if the order condition (30) is not satisfied exactly,
but rather

(34) S*(2)A* (2) = LT () 4 6T (2),
where 67%!(z) = [§W*(2)|2? 6R*!(2)] (with §R*(2) a k x k matrix) is a relatively

“small” residual error, then S*(z) is called a numerical simultaneous Padé system

(NSPS). In (34), for 1 < o, 5 < k,
Il

* *( L
dwg(z) = Zéwﬁ()zz,
£=0
lIn]l—2
oy 5(2) = Z 67{5? Pl
£=0

As with the NPHS S(z), a NSPS for which é7%(z) = 0 is denoted by S} (z).

Associated with A*(z), let M, be the mosaic Sylvester matrix of order k||n||,
Son 0 Sop
(35) M= N
Siao Sk
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where, for 0 < o <k and 1 < g <k,

*(0 *(||n]|—1
* p—
a,f —
PRiCI R *(na)
Ga,p Ga,p

Also define the order k(||n|| + 1) matrix

_ ai(ll) . a;(lllnll) a;(;) o a?(lgn”) _
C*(0) : : : :
(36) N = az(i) . az(gnll) az(i) o az(gn”)
0 M

Then, as for the NPHS, S*(z) can be obtained by solving two sets of linear equations
with M2 and N as the coefficient matrices (also see [12]).

To obtain 57 1(2), ..., 5§ x(2) of S*(z), we use
k
(37) v (2) ag p(2) + Y wi(=)ag p(2) = "M hwi(z) + owj(2), 1< B <k,
a=1

which is the first row of (34). Matching coefficients of 1,z ..., 21"l in (37) gives

(38) AN =
_ () [ By [ ax®, o, U e, e

where
X[, O enlleno) ) Ol
"|UZ(1) .

EARE

§inll=n).

Wlth v*(0) = vy # 0 specified (75 = 1 for a normalized NSPS), a unique solution
o (38) is assured if M, is nonsingular, since by assumption det [C*(0)] # 0. The
terms éwp(z) in (37) represent the residual errors made in solving (38).
Next, to compute P*(z) and Q*(z) (i.e., the remaining rows of S*(z)), again we
use (34), namely,

(39) ga(2) a5 s(2) + Zpa ol z”"”_lrzﬁ(z) +6rh5(2), 1<a,8<k.
Let

—ng— 0 -1 0 —nr—1
it = [qz(”,...,qz(””” mo= D)@ i

Then, (39) and the requirement that R*(0) = diag[y], ..., v;] yields

(40) y*t M oz||n||’ 1 S « S k’,
10



where Eg”n” is the unit row vector of length k||n|| with a single 1 in position «f|n||.
With diag[vi, ..., v}] specified (v} = 1 for a normalized NSPS), a solution of (40)
exists uniquely if M7 is nonsingular. The solution Y provides the ath row of S*(z);
namely, S}, o(2) = 22 g% () and St p(z) = P Pap(z), 1 <8 <k The terms
617, 5(2) in (39) represent the residual errors made in solving (40).

In the remainder of the paper, without loss of generality, we make the simplifying
assumption that

—ai(2) —ag(z)
(a1) o= "
0 ap(z)

In this case, there is an important commutativity relationship between Padé-Hermite
systems and simultaneous Padé systems, given later in §4. But, in our presentation,
the residual T*(z) continues to take the more general form (27) rather than (41);
because, for the computation of the NSPS for T (z), which is required by the algorithm
given in §5, the conversion of T*(z) from the form (27) to the form (41) by means of
multiplication on the right by R*~1(z) introduces undesirable instabilities.

For the special case when n = [ng, 0, ...,0], with A*(2) defined by (41), the NSPS

becomes
1 | U*t(2)
42 S* =di N Y
( ) (Z) Zag[PyOa a7k] |: 0 ‘ [aE)O)]_lan-I—lIk )
where U*'(z) = [ag(2)]7! - [a1(2), - - -, ax(2)] (mod z™°+1). For initialization purposes
in the algorithm given in §5, we adopt (42) even in the case when ng = 0 and ng = —1,

despite the fact that it no longer strictly meet all the requirements of a NSPS.
With A*(z) defined by (41), it is easy to see that M,, is nonsingular if and only
if M} 1s. Indeed, we will later provide a relationship between the condition numbers

of M,, and Mj,.
ExaMPLE 3. Continuing with Example 2, the associated mosaic Sylvester matrix
of type n =[2,3,1] is

0 -2 0 -3 0 —4]1 -1 -5 -3 -2 2
0 -2 0 -3 0 1 -1 -5 -3 -2
0 -2 0 -3 1 -1 -5 -3
0 -2 0 1 -1 -5
1T -1 2 —2 3 -3
1 -1 2 -2 3
(43) Mg = 1 -1 2 -2
1T -1 2 —2 3 -3
1 -1 2 -2 3
1 -1 2 -2
1 -1 2
L 1 -1 |
and so
0]-1 2 -2 3 -3 4] 0 0 0 0 0 O
1l oo 0o 0 0 0|-1 2 -2 3 -3 4
Nt =
0 ME
The solution of (38),
Xt Nr=[0 1]-2 0 -3 0 -4 0|-1 -5 -3 -2 2 6],
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1s

X*t:;—7[0 37| =57 10 0 5|74 —40 —57 |57 249 -103 —428 -159 ]

and the solution of (40),
vt +x_ [0 0 0 0 0 1]0 0 0 0 0 0
Y Mn_|:0 o 0o o 0o 0|0 0O o 0 0 1 ’
18

y*t _

i[zz —48 37 —24‘0 44 —52‘—22 48 117 —136 —147]
37

4 -2 0 -11]0 8 4 —4 2 28 19 —-20

From X*" and Y*!, it follows that the normalized simultaneous Padé system of type

(2,3,1) is

1 [37 =572+ 1022 + 52* | 742 — 4022 — 575°
(44) S*(z) = — | 22(22 — 482 + 3722 — 242°) | 2%(442 — 5227)
37 22(4— 22 — 2%) 22 (82 + 42°)
—37 + 57z + 2492 — 1032° — 4282% — 1592°
22(—22 4 482 + 11727 — 1362° — 1472%)
22 (=4 + 2z + 2822 4+ 1922 — 202%)
Note that
S*(2)A*(2) = 27T*(2),
where
1 5 —516 0 329 10 —772
(45) T*(z) = — 37 0|+ —24 131 |24 | 74 —373 |22 4... ;.
37 0o 37 -1 7 0 23

4. Duality. Theorem 4 below gives a relationship between Padé-Hermite and
simultaneous Padé systems which is crucial to the results of the subsequent sec-
tions. It generalizes earlier results of Mahler and their extensions to block matrices

([13, 23, 24, 25])

THEOREM 4. If S(z) is a NPHS of type n for A(z) and S*(z) is a NSPS of type
n for A*(z), then

(46) S*(2) - 8(z) = MG IT*T 4 0p4(2),

where

0r1(z) = ay'(2) {[ Zﬁg(*z()z) ]5Tf(z)+5T*(z)[ 2Q(2) | Vi(2) ]} (mod z+1)

with
[nf|+1 | [|n]] o ln]l
| el 2 i+ 1 ]+ 1
Inll+2 [ lln[l+1 - (In[[+1

and with the modulo operation applied componentwise.
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Proof. The theorem (in the case that §T(z) = 0 and §7*(z) = 0) follows from
[23]. The arguments used in the following proof, however, are considerably simpler.
Let

Bi(2) = (=), (2],
Then, using (10) and (34),
(47) ag(2) 5°(2) - S(2)
= apl 2 U*(Z) 22 z t z U*t(z) 22 z z
= o {[ gy | Lo 100 )+ [ 55 [ 1ee v

gy [ [ |06 T+ 56 [ #06) | ve) 1)
ot [ 50 ][ 202, [ro} 20 1ve) )
| a)56) 4579470 [ 2@ | v ]
= z”””"‘l{[ Z;g(*z()z) ] [ r(z) | Wt(z) ]_|_ [ MRi:t(iZ)) ] [ ZzQ(Z) | V(z) ]}

U*(Z) t * 2
gl e e e ve ).

But, from (5) and (29), the degrees of S*(2)S(z) are bounded componentwise by D.
It then follows from (47) that

S*(Z)S(Z) — Z||n||+1(a80))—1 [ v*(()g?“(o) I R*(O())V(O) :| —1—911(,2)

= MG 4 0p(2),
which is (46). |

COROLLARY 5. If S(z) is a normalized NPHS of type n for A(z) and S*(z) is
a normalized NSPS of type n for A*(z), then

(48) S(z) - 5% (2) = M) ey + 0001 (2),
where

9[][(2) = S(Z) F*_lﬁjj(z)F_l S_l(z).

Proof. Multiplying both sides of (46) on the left by I'*~! and on the right by I'~1,
we obtain

(49) S*(2) - S(z) = AN @)1y 4+ T 10, ()T

The result now follows by multiplying both sides of (49) on the left by S(z) and on
the right by S=1(z).
|
Note that S(z) and S*(z) in (48) are now normalized, but @77(z) continues to be
associated with systems which are not.
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COROLLARY 6. The residuals T(z) for a normalized NPHS of type n for A(z)
and T*(z) for a normalized NSPS of type n for A*(z) satisfy

(50) T'(z) S*(2) = ()L A'(2) + 04y (2),
where

Oy (2) = {A"(2)0111(2) — 6T"(2)S*(2))} /I

Proof. From (10) and (48), it follows that
{z”"”"’l THz) + 5Tf(z)} S*(z) = A'(z) S(z) S*(2)
Al(z) {len||+1 (af)™ +91H(Z)}

and so (50) is true. [ |

5. The Algorithm. To compute a NPHS of type n for A(z) and a NSPS of type
n for A*(z), the systems (16), (20), (38) and (40) can be solved using a method such
as Gaussian elimination. This method, while not restricting the input power series,
does not take advantage of the inherent structure of the coefficient matrices M,, and
M. Alternatively, a variety of recurrence relations which do take advantage of this
structure have been described in the literature ([2],[5], [10],[12]). These recurrence
relations usually lead to much more efficient algorithms for algebraically computing
Padé-Hermite systems and simultaneous Padé systems. The recurrence relations given
in [10] and [12] appear to be the most easily adaptable to numerical computation and
it 1s the detailed study of the numerical behavior of these recurrences that we devote
the remainder of this paper. We begin by briefly describing these recurrences in the
algebraic case.

Let e = [1,0,...,0] be a1l x k+ 1 vector, set

M = mm{no, 1rsnﬁa%(k{n@}} + 1,

and define integer vectors n(?) = (ngi), cen ngj)) for 0 < i< M by n(® = —e; and,

for ¢ > 0,

ng):max{o,n@—M—i—i}, G=0,... k.
Then the sequence {n(i)}izo,L... lies on a piecewise linear path with ng-l_l) > ng) for
each 7,3 and® n(™) = n. The sequence {n{9)} contains a subsequence {m(?)} called

the sequence of nonsingular points for A(z) and A*(z). This sequence is defined
by m(?) = nlis) where

P 0, c=0,
7 | min{i > i,y det(M,») #0}, o>1,

3 We assume here with loss of generality that ng > 0,0 < § <k, because if ng = —1 for some 3,
we can simply remove ng from n and a(z) from A'(z) and decrease k by 1.
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where det(M,, ;) is the determinant® of M, ;. Corresponding to the sequence of non-

singular points {m(?)} is the sequence {S(EU)(Z)} of Padé-Hermite systems with resid-
t

uals {ng) (z)} and the sequence {SE(U)(Z)} of Padé-Hermite systems with residuals

{TE(U)(Z)}. We have that

I m(7) I
Al(e) S () = AT T
and
SH () A% (2) = LTIy,

The following theorem provides a relation of the (¢ + 1)th exact systems in terms of
the oth exact systems.
THEOREM 7. Foro > 1 and i > iy, let v = nlD — m(9) — ey, Then, the

following statements are equivalent.

1. 09 is a nonsingular point for A(z) and A*(z).

2. v is a nonsingular point for ng)(z).

3. v is a nonsingular point for TE(U)(Z).
Furthermore, we have the recurrence relations

(51) Sy = SY(=) - Sp(z), Ty t(z) = Te(2),
and
(52) STt (2) = Spz) - SET(), TRV (2) = Ti(e),

where §E(z) is the Padé-Hermite system of type (m(7t1) — m(?) — eo) for ng)(z) with
residual Tg(z) and S%(2) is the simultaneous Padé system of type (m(7HD) — m(?) — eq)
for TE(U)(Z) with residual fg(z)

Proof. The proof for the NPHS is given in [12] and for the NSPS in [10]. |

Theorem 7 reduces the problem of determining a Padé-Hermite system and a
simultaneous Padé system of types m(°t1) to two smaller problems: determine sys-
tems of type m(?) for the original power series and then determine systems of type
v = m(U‘H)A— m(?) — e for the residual power series. For the residual power series,
the system Sg(z) is obtained by solving the linear equations (16) and (20), where in
the following the associated matrix is now denoted by M\V rather than by M, ; and,
the system S},(z) is obtained by solving the linear equations (38) and (40), where
in the following the associated matrix is now denoted by M\j rather than by M}.
The overhead cost of each step of this iterative scheme is the cost of determining the
residual power series and the cost of combining the solutions, i.e., the cost of comput-
ing SJ(EUH)(,Z) and SE(U-H)(,Z) in (51) and (52). This overhead cost summed over all
the steps, in general, is an order of magnitude less than the cost of solving the linear

systems (16), (20), (38) and (40) directly.
ExaMpPLE 8. Continuing with Example 2, we can compute the Padé-Hermite
system of type [3,4, 2] by utilizing (25) and the recurrence relation (51). In order to

do this, we compute the Padé-Hermite system of type v = [3,4,2]—[2,3,1]—[1,0,0] =

4 By convention, the determinant of a null matrix is defined to be equal to 1.
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[0,1,1] for the residual Tg(z) in (26). The striped Sylvester matrix associated with
Te(z) is
o 1 -5 516
(53) My = o7 [ 8 ‘ ~130 ]
Using (53), equations (16) and (20) are solved to obtain the Padé-Hermite system
0 105 3096
148 4255
Soon_ | 20642 1 24 10432
(54) Sp(z)= | 1307 37~ 60865
4025 2 805 2175
3478 T 296 I+ 557

of type v for Tg(z). By multiplying Sg(z) in (25) on the right by §E(z), we obtain
the new Padé-Hermite system of type [3,4,2],

1 522 —10242° — 669z* —188z + 942° 94 — 53z + 327822 4 5492°
Sp(z) = — | 51622 —1992% — 1072* — 812° 94 — 94z —19542 + 148922 — 3512% 4 8212*
94 522 4 823 0 94 — 53z + 2822

Similarly, continuing with Example 3, we can compute the simultaneous Padé
system of type [3,4, 2] by utilizing (44) and the recurrence relation (52). In order to

do this we compute the simultaneous Padé system of type v = [0, 1, 1] for the residual
TE(z) in (45). The mosaic Sylvester matrix associated with T (z) is

5 0 -516 329
— 1 0 5 0 -516
ol
(55) M=o 57 o4 0 131
0o -1 a7 7

Using (55), equations (38) and (40) are solved to obtain the simultaneous Padé system
3478 — 81z — 303222 —47 + 1017z 48504 — 39568z

(56) St(z) = —— | 22(—19092 — 151302) 258022 —26625622
22 (—185 — 396z) 2522 —2580z2

of type v for Tf(z). By multiplying Sg(z) in (25) on the left by §E(z), we obtain the
new simultaneous Padé system of type (3,4, 2),

1 94 — 147z + 81 2% — 282° 1882 — 10622 — 382° + 532% — 282°
Sp(z) = — | 22(—516+3862 — 24622 +1882° 4+ 942°) 22(-10322 — 26022 — 2362> — 246 2%)
94 22(—5 — 32+ 822) 22(—102z — 1622 + 52° 4 82%)

—94 + 1472 + 57722 — 2492% — 703 2* — 153 2% — 35126 + 82127
22(516 — 386 z — 336622 — 1614 2° + 1882 2% + 2996 25 + 5370 2¢)
22(54+ 32— 4322 —612° +372* +1072° +812%)

Numerically, the recurrences (51) and (52) perform badly if M,, ) and M
are ill-conditioned at any point m(?). Rather than moving from nonsingular point
to nonsingular point along the diagonal, what we would like to do is move from a
well-conditioned point to the next well-conditioned point. This is the motivation for
the algorithm VECTOR_PADE given below, where the points m(?), ¢ = 0,1, ..., cor-
respond to stable points rather than to nonsingular points and we step over unstable
blocks.

A quantitative measure of the stability of a point m(?) is provided by the stability
parameter

k
(57) K =3 ()L
£6=0
16



We will show later in §9 and §10 that x(“) serves as a rough estimate for the condition
numbers || M, @)1 - ||/\/lm([,)||1 of M,y (cf. (95)) and ||M* ) |oo - ||/\/l:1(i)||oo of
M oy (cf. (101)). For the estimate (57), it is assumed that S (2) and S*(7)(z)
are both scaled and that ||ag(z)]] <1, 0 < g < k. The norms used for the various
scaling are defined in §6. In (57), it is also assumed that the residual errors 6§77 (z)

and 6T*(U)(z) in the order equations

(58) Al(z) - SO(z) = MO Ty 4Tz
and
(59) S*(U)(z) A*(2) = m )41 T*(a)(z) n 6T*(U)(z),

at the point m(?) are relatively insignificant. We say that m(?) is a stable point
(or, a well-conditioned point) if for some preassigned tolerance 7, £(?) < 7. In the
algorithm below, the user supplies the tolerance value 7

VECTOR_PADE(A(z), n, k, 1)

o —0; m® — —¢p; SO — Ly SO g
M «— min{ng, max;<s<i{ns}} + 1
1 — 0; stable — true

While ((i < M) and stable) do

v—n—ml? — ¢

s «— 0 stable — false
While (s < M — i) and (not stable) do
s — s+ 1
I/és) — max{0,vg + i — M + s}, g = , k

Compute the residuals 7(?)(z) and T*(?)(z) in ( ) and (59)
Construct the matrices M, ) for T(U)( ) and M> ., for 1™ (U)( )
If M, () is numerically nonsingular then
me+) o) 4 ) 4 g
Obtain §(z) by solving (16) and (20) by Gaussian elimination
STHI(z) — 50)(2) 5(2)
Scale ST (%) and compute T2+
Obtain S* (2) by solving (38) and (40) by Gaussian elimination
S*(a+1)( ) - S*( )S*(U)(Z)
Scale S*(?+1)(2) and compute T*(7+1)
Using (57), compute k(71
stable — (et < 7
end If
end While
If stable then 0 — o +1;, ¢ «— i+s
end While
If stable then return (S(7)(2), S*(7)(2), k(7)) else return (S (2), S*(7+1)(2), kl7+1)

6. Norms and Floating Point Errors. In this section, some norms are de-
fined for matrix power series and matrix polynomials. Proofs regarding some of the
properties of these norms are straightforward and can be found in [22]. Also given
are some results on floating-point errors that are used in later sections.
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Let
a(z) =) a9t € FIL,
£=0
where F[[z]] is the domain of power series with coefficients from F. Then a norm for
F[[=]] is given by

(60) la(=)l| = sup {la® |}

0<t<o0

for a(z) € F|[z]] . For some integer 0, let

)
s(z) = Z s 28 e Fla,
£=0

where F[z] is the domain of polynomials with coefficients over F. Then a norm of
s(z) is

(61) Is(2)ll = 1s“].

It is easy to show that

(62) lla(z) - s(2)[| < lla(2)]] - [Is(2)I],

and so the norm (61) for F[z] is compatible with the norm (60) for F [[z]]. In addition,
for fixed s(z), the bound is reached for a(z) = 1. Therefore,

L) sG]
@I = = Peeon

Thus, (61) is the operator norm for F[z] induced by the norm (60) for F [[z]]. Finally,
for s(z),t(z) € F[z], it can be shown that

(63) lls(z) + ()| < [Is()I] + [[EC)]
and
(64) lIs(z) -t < [IsC)]| - [[E(=)]]-

Next, let A'(z) = [ao(z),...,a5(2)] € Frs1[[z]] be a 1 x k + 1 vector of power
series with

aq(z) = Za(cf)zz, a=0,... k.
£=0
A norm for A%(z) is given by
(65) A" ()l = max {[las(=)[}.

0<B<k
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Now, let® S(z) € Frp41)x(k+1)lz]. Then S(z) defines a mapping of A*(2) € Fpq)[[2]]
to A'(2)S(z) € Frrg1)l[2]]. We use the norm

(66) IS (:) |—Oglﬁa§k{2|l e }

for Fet1)xk4+1)l2]. Then,
1A (=) - S
s = sup 1SS
At(2)#0 || A (2)]]

so that (66) is the operator norm induced by the norm (65). Consequently, the
compatibility condition

(67) 14%(2) - S < AT A - IS

1s satisfied.

Finally, let A*(2) € F(rq1)xx[[#]] with
a3,1(z) T aak('z)
(68) A™(z) = : f :
az,1(2) az,k(Z)
where a}, 5(z) € F[[2]]. A norm for A*(z) is given by

(69) 4" ||—1glﬁa§k{2|l e }
Then, for® S*(z) € Fk+1)x(k+1)[2], we have that

(70) 157(2) - A" < IS - 1A

In addition, for S(2),.5%(2) € Fr41)x(k+1)[2], it can be shown that

(71) 15Cz) =S¥ < (1S 157 ()]

We now give some standard results from the field of floating point error analysis.
Let p denote the unit floating point error and assume that the degrees of all poly-
nomials and the orders of all matrices are bounded by some N, where Nu < 0.01
(this restriction comes from Forsythe and Moler [15]). Indeed, as an assumption for
all the lemmas and theorems below, we require that (||n|| + & + 1)p < 0.01. After
Wilkinson [28], we denote a floating point operation by f[-]. In the following results,
it 1s assumed that the operands consist of floating point numbers.

LEMMA 9. If Op < 0.01, then

Ie] Ie]
fl[z ukvk] = Z ukvk(l + (Sk),
k=1 k=1

5 We are interested primarily in the case that S(z) is a Padé-Hermite system.
6 We are interested primarily in the case that S* (2) is a simultaneous Padé system.
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where 6] < 1.010p.
LEMMA 10. If S(z) is a NPHS of type n for A(z), then

FILAY(2) - S(2)] = A'(2) - S(2) + ¥'(2),
where

1 ()l < LOLu(|nll + &+ DIA I - 1S

Proof. Using Lemma 9, for 0 < g < k,

k . ko |
fl[z aa(2)Sa,8(2)] = Z zzfl[z a(j—]’)g&{?j]
a=0 £=0 a=0j=0
= k na . .
= Z ZZ Z a(@f‘])S&{)ﬁ(l + 6@(7&7]'1)’
£=0 a=04j=0

where |64.5,5.¢] < 1.01(ns +k + 1)p. So,

00 k
\I/@(z) = Zzz Z aﬁf‘j)SEjygéaﬁM,

and
¥ ()] = Oglﬁafk{ﬂ%( 2}
k na
< g [
k N

< L0Lp max {;J(nﬁﬂ1)||aa(Z)IIjZ::0|S%|}
k

< 1.01u01;n3%(k{na+k+1}||14t |mﬁa§k{z

< L0Lp([Inf] + k + DA )] - [[S)II-

LEMMA 11. If S*(z) be a NSPS of type n for A*(z), then

FUS™(2) - A(2)] = 57(2) - A™(2) + U7 (2),

where

%7 ()] < LOLp(|Inl] + DIS™ () - [[A™ ()]
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Proof. Using Lemma 9, for 0 < a<kand 1 < g <k,

oo lln)l=no lInfl=ns
FUI=S5 o(2)as(2) + S5 p()ao(2)] = Y 2" fl[- S*W Gy Z S8 al =)
£=0
oo ||n||—no o
= Zzz{— Z Sz%)ag_])(l—i—éayomz)
£=0 j=0
llnll=n s
+ ) SZ(,??)aéz_j)(lJréaﬁ,j,Z)},
j=0

where, for all «, 3,7 and £, 64 5 5.6 < 1.01(||n|| — ng + 1)p. So,

00 lIn|[—ro ]l —rs

ne() =22 = Y =SiVa  sa0 0+ Z Sl a6 ™80 5.0}

=0 j=0

and

)l = mEM{ZII s}

1<p<k

k llnll=no
< 5*0) =D 15 o
= 1?@%{;)0;?5%[ ]Z::o [Sao | lag 1+ 16a,jiel
llnl—ns .
+ Z 291 1aly L 18
k llnll—no 0
_ *(J
< a2 | Lot = et Dllsstell 3 1)
llnll—ng
+ LOLu(nfl = ns + Dllao(=)| > 152%]
Jj=0
< LoLu(linli+1) g%{m% ||S;z,o<z>||+||ao<z>||~||Sz,@<z>||}
< 1oLl + DIIS™ (I mas {llas ()] + lao(=)]]}
< L0La(|lnl[+ DIS* )] - 4" )]

7. Error Analysis for Padé-Hermite Systems. In this section, we obtain
bounds for the error in the order condition for the NPHS computed by the algorithm
VECTOR_PADE. We begin by first analysing the floating point errors introduced by
one iteration of the algorithm. At the oth iteration, the NPHS S(U)(z) of type m(?)
for A%(z) is available and satisfies

Al(2) - 8 (z) = 6T (2) + O I+,
21



The algorithm proceeds to compute S(7H1)(2) of type m(7+1).

An iterative step consists of three parts. In the first part, the first |[(?)]| + 1
terms of T(U)(z) are computed; a bound for the floating point errors introduced in
this part is given in Lemma 12 below. In the second part, the NPHS §(U)(z) of
type v(?) for T(U)(z) is computed; an error analysis is given Lemma 13. In the third
part, Lemma 14 provides bounds for the floating point errors introduced in computing
S+ () = S(9)(2) - S(9)(2). At this point in the algorithm, SC"+D(2) is scaled so
that the norm of each column is 1. We assume for the sake of simplicity that this
scaling introduces no additional errors. This is reasonable assumption because errors
due to scaling are comparatively insignificant”.

LEMMA 12. The computed residual T(7)(z) satisfies

AU () = AT(2) - SO (2) — 6T (2) 4 MmN+l ()
where

1657 ()] < LOL(|[m ]| + & + 1) - .

Proof. The algorithm computes the first |[(?)|| + 1 terms of the residual only.
That is,

AmOIHTE () = fI[A'(z) - S (2)] (mod lmT* I+
—Fl[AY(2) - S©)(2)] (mod m 7N+,

Thus,
AN(z) - S (2) (mod Ty = 67 (1) 4 Am PN+ T () gl (],

where Hgf)t(z) Is the error introduced into the computation of T(U)t(z) by floating
point operations. The result now follows from Lemma 10 since A%(z) and S(?)(z) are
both scaled. . R

LEMMA 13. If M, o) is nonsingular and S'7)(2) is obtained by solving (16) and
(20), then

T (). 5@ () = 007) () + (N 741y,
where

1647 ()] < A6|[ DN - po - o+ O(?)) - |S(=2))).

Proof. First we obtain bounds for the first component of Hgfl)t (z). The first column

of §(U)(z) corresponds to the solution X of (16) obtained by Gaussian elimination. X
is the exact solution of

(Myo) +&)- X = ;
1

7 Note also that S(U)(z) can be determined apostiori with appropriate values of 'Ay(c) so that
S(U‘H)(z) is already scaled. None of the subsequent error bounds would change, and so in reality
this assumption is made without loss of generality.
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where®
HENL <8I DNP po - [IM, o]l - 1+ O(4?)

and p, is the growth factor associated with the LU-decomposition of /(/l\f/([,) ([17](page 67)).
But, from Lemma 10,

1T @I < 14 101 (lm ]|+ k+ 1) - 4

since A(z) and S7)(z) are both scaled. So,

M, ol < 1A NP I - {1+ 101 m ]+ k4 1) 4}

Thus,
0
./(/l\y(c')'-j?_ : = —S'A?,
0
1
where

NE- 2l < BI*- [1+ 1.01()|m ||+ k+1) - p] - po - + O} - |1

IN

{161/ po -+ O} - |1

Here, we have used 1.01()|m(?)||+k +1)-pu < 1. 01(||n|| +k+ 1)-p < 1. A similar
analysis can be done for solvmg (20) to obtain )/ But X yields the first column of

S(U)( ) with residual error & - X and Y yields the remaining columns of S(U)( ) with
a corresponding residual error. Thus,

T (2) - SO (2) = 00 (2) + O I+,
where

167 )l < {16111 po -t O - 15721

LEMMA 14, If SCHD(2) = f1(S(7)(2) - 57)(2)), then '
SN2 = S9(2) - 892 + 07), (=),
where
1052l < L1+ k + 1) - 1S 115 (2)] |
8 Gaussian elimination is applied to /‘72 (¢ 50 that the error bounds given in [17] hold for || - [|x
rather than || - [|oo-
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Proof. For 1 < o, 3 < k, the («, 3)-component of S(7+1)(2) is

FU|2%0a(2) - Ts(2) + D vap(2) - Up,s(2)

m&”)+yé”) 1 (U) k m(”)+y(”) ,,(U)
SRCED VD SRS Sl SR o L
£=0 p= o
m&”)+uég)—1 Vég)
{42 =)0
= ST ST DA (14 8ap 00
£=0 j=0

mg’)+yl()”) k 1/(‘7

LD SEED 9) STl NIET RPN}
£=0

p=1j=0

where |60 556, < 1.01-(vs () 4k + 1) - p. Here, we have used Lemma 9 with the
assumption that (||(7)|| 4+ k + 1)u < 0.01. So,

mg’)+uég)—1 Vég)

(o) = 22 ¢ -i) @) ,
(0vi(2))aps = = Z z qu )'U@ “0a,8,,6,0
£=0 j=0

T C JC)

k
YD zz (=) 59) 6 i

p=1 =0

Thus, from (64)

(A=) 1< L0 k)l s(2) ||+Z||vw SRS

An equivalent result holds for &« = 5 = 0. The lemma now follows using (71). |
The use of the results of the three lemmas above enables us to express the residual
error 6T(U+1)t(z) in the order condition at the (¢ + 1)th iteration in terms of the
residual error 6T(U)t(z) at the oth iteration plus the floating point errors introduced
“locally” by the oth iteration.
LEMMA 15.

(72) STV () = 6T (2) - S (2) + £ (2),

£z = {a'e) o))
m(o) o o)t Glo m(o+1)
1 Am@l+ [9<VI> (z) — 0" (2)- >(Z)]} (mod 2! l1+1),

Proof. The result is an immediate consequence of Lemmas 12, 13 and 14. |
Thus, the residual error 6T(U+1)t(z) is composed of the local error ﬁ(a)t(z) intro-
duced by the oth iteration plus the residual error s (z) from the previous iteration
propagated by §(U)(z). Applying (72) recursively, we obtain the following.
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THEOREM 16. The residual error satisfies

(73) ST (2) = 3 £0)'(2) - 67 2,
j=0
where
(T4) Gi7)(2) = { SUH() - 50H(z) - 59)(z), 0< <o,
Iyt iZo
Proof. The result follows by induction from Lemma 15. -

From (73), we see that the residual error 6T(U+1)t(z) is composed of the local
errors E(j)t(z) propagated by g]@. Lemmas 12, 13 and 14 provide bounds for E(j)t(z).
To obtain a bound for §7(+1)° (z), it remains to determine bounds for the propagation
matrices g](.‘”. The concern 1s that the §(j)(z) making up g](.") will cause g](.") to grow
exponentially with o. The next Lemma and Theorem show that this is not case; a
bound is obtained for g]@ which is independent of o. Hence, the local error E(j)t(z)
introduced at iteration j and propagated to iteration o+ 1 by g]@ does not grow with

o. Thus, in this sense, the error grows additively; that is, 6T(U+1)t(z) 1s bounded by
the sum of the bounds of the local errors at each iteration j.
LEMMA 17. If p is so small and T (2) and §T*(?)(2) are not too large so that

7 Jaf) - {llag ] [k + DT )]+ 6T ()|

l\DI»—k

+ LOL(k+ ([ + k1) <
then

1S (2)]] < 260 - (k + 1) - |al).

Proof. From (57),
|(0(2) . P(e))=1 . g#(9) () . Slo+1) ()|

IN

1 TN S ()] - [SCFD ()]

IN

K (k+1).
But, using Theorem 4 and Lemma 14
||(p*(0) .F(U))—l .5*(0)(Z) . 5(0+1)(Z)||
= ([ rO) 5O {S0(2) -5 + 7
= |)(r*(@) . p()=t. {(z“m(”)llﬂ (@)= @) o) gl Z)} 5 ()
+ (T TO) T S ) 67 (=)
a7 115 (=)
- II(F*<">~F<">)‘1II~IIa51(Z)II~{(k+1)II6T<">t(z)II + |I6T*<">(z)ll}~|I§<">(z)||
= II(F*<">T("))‘lll~{1~01~(|Iv<">ll+k+1)}~|IS<">(Z)II~|I§<">(z)||~IIS*<">(Z)II~u
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> (I8N {16617 = 8 Ylag () - [tk + DI @l + (6T 2]
- 1.015(0)~(||1/(U)||—|—k+1)~(/€—|—1)~ﬂ}
> a7 IS )12

The result now follows. ) |
THEOREM 18. If y is so small and §T') (2) and 6T*(?)(2) are not too large so
that

w9 a® - {llag ()] [k + DISTE @)l + 1|67 ()]
bk () k1) }<— ji<o,
then

IG5 < 2697 (k + 1) [ + O(), j <o

Proof. From (74) and from Lemma 14
S7H(E) = 50 617z Ze% G, (2).

We proceed by induction. Assume the theorem is true for Q(U) (2), Q(U) (z), - g]@(z)

(the initial case, j = ¢ — 1, is proved in Lemma 17 since gf,jl( ) = S(U)( )). From
(57),

||(p*(j) . r(]’))—lg*(i)(z) . 5(0+1)(Z)|| < ,{(j)(k + 1),
But, using Lemma 14, Theorem 4 and the inductive hypothesis,

||(I‘*(j).r(i))—1 .5*(]’)( ) - (o+1)( )|
> (@) TUY = g ) () - sU)(2) .g](i)l(z)

+ 3 (0 T g () 0\ (=) G\ (=)
t=j

> () )= {||m<ﬂ>||+1( (O)=1p+() . @) 4 o), )} G2\ (2)l|
—/f(j)za:{k—i—l}~{2.02/-:([)~(k—|—1)~(||1/(z)||—|—k+1 jag”| i}
t=j
{2640 (k1) ||+ O() }
> 162N {Ja8” 17 = 69 [[lag @k + DIST ()] + 67D ()] } - On)
> lay "G 2 @/2 - O(n).

|
In the above theorem, we have taken the liberty of replacing a summation involv-
ing terms linear in g with an O(u) expression. We could have left the summation in
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explicitly, but, as we shall see, this summation becomes quadratic in g when it is used
. t
to obtain a bound on §T(7)"(2).
To simplify the analysis, we now split the local error E(U)t(z) into three parts

and analyze the propagation of each part separately in each of the next three lemmas
below. Let

t 0, =0,
(1)L () = Ot g () 3 oy
—Zlm* 1+ 6y (2) S5 (2) ( mod zllm +5y o> 1,
(16) L7 (z) = A TIH9) (2) (mod AT >0,
' = [0 7=9
(L7 (=) = { A0, (2) (mod AT s
and define
(78) (a+1) Zﬁ(])t (U) )’ i=1,2,3.

Then, according to Lemma 15 and Theorem 16,
6T(a+1)’ Zg(aﬂ)
LEMMA 19.
167 @ < 46kt ) (Im ][4k 4 1) - fag”] - g
o—1
+ 8(k+1)%. |a80>|2 .ﬂ Z £ KGHD L (mI|| + k + 1)

j=0
+ O(1?).

Proof. From (75) and (78), from Lemmas 12 and 17 and from Theorem 18,

e @Il = ||Z£<” G, )l
t o~ 0_1 Nt o~ .
< 167 I IS+ ST 6 ()] - 1S9 )] 11687 ()l
j=0
< {1.01(||m(0)|| Fh41)- ﬂ} {240)(/@ + 1>|a50>|}
o—1
+ 3 {1o1(m N+ &+ 1p} - {260k + D]l }
j:O
A2k + 1)l + 0 |
and so the result follows. [ |
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LEMMA 20.
IETH (] < 326 (k4 DI [0l
o—1
+64(k + 1)2 - |a80>|2 "y Z,{m CRUAD s

j=0
+0(1).

Proof. From (76) and (78), from Lemmas 13 and 17 and from Theorem 18,

e () = ||Z£<” )G:7 ()]

<116V« ||+Z||9<” 111657 @)
< {16||v<0>||4~pa O } - IS )|

+Z {1611y - O |- 1ISV G- 1167 )
< {16||u<">||4 po 1+ OG) |- {26k + D]+ }

+Z{16||y<f>||4 pi -+ 00 - {260 (k + 1)}l 1+ }

. {2,@<J’+1>(/@ +1)]a”] + O(ﬂ)} .

The result now follows.
LEMmMA 21.

NET () < 4 (k1) - (] + k+1) - al]
o—1

+8(k+1)%- |a80)|2 "y Z DGO+ k + 1)
j=0

+0(1).

Proof. From (77) and (78), from Lemmas 14 and 17 and from Theorem 18,

&7 (NI = ||Z£<” GG
< 1407 ||+Z||Af LA GG
< Lo k) SO

o—1
+ 3 {4k + 1) - - 1SV 1617 ()]
j=0
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< {100 (Wl + k1) {26+ Dl
o—1
> {0t O+ k4 1) - {2690 + 1)1l
j=0

. {2,@<J’+1>(/@ +1)]a”] + O(ﬂ)} .

The result now follows. [ |
In the above three lemmas, the bounds obtained involve the products xU)xl+1),
These result from inequalities involving the expression ||§(])(Z)||||Q§U)(z)|| However,
1t is seen that §(j)(z) ~g](»0)(z) = g](»i)l(z), so it is felt that the inequalities are crude
and the bounds should just involve a single x). Experimental results [9] support this
conjecture.
Finally, we can give the bound on the residual error.

THEOREM 22. If u is so small and 6T(j)t(z) and §T*U)(z) are not too large so
that

([|In]] + & + 1)pe < 0.01

and
w0 |a80)| ) {||a51(z)|| [ k+ 1)||5T(J) ()| + ||6T*(])( Nl
+ LOLk+ D)+ k+ 1) }g i<o
then
(79) 16T ()| < Fy + 20k + 1) - <0>|Zﬁ<]+1>F
where
(80) F; o= 4eWDk+1)-|al?]-
AUmON +k+ 1)+ ap DN+ QDN+ k4 1)}
Proof. Sum the error bounds given in Lemmas 19, 20 and 21 [

Theorem 22 assures us that if ||6T(U)t( )| is small and &(?) is not too large, then
||6T(‘7+1) (z)|] will also be small. Thus, ||6T(‘7) (2)]] will remain small for all o as long
as, at every iteration j, a step vJ) is chosen (stepping over unstable blocks) so that w0
is not too large. The same observation is made about 6T*(‘7)( ) in §8. Consequently,
the assumptions of Theorem 22 are satisfied in practice

8. Error Analysis for Simultaneous Padé Systems. In this section, we ob-
tain bounds for the error in the order condition for the NSPS computed by the al-
gorithm VECTOR_PADE. The approach used in obtaining these bounds follows step
by step the approach used in §7. As before, we begin by first analyzing the floating
point errors introduced by one iteration of the algorithm. At the oth iteration, the

NSPS S*(?)(z) of type m(?) for A*(z) is available and satisfies

SO () A% (2) = 6T (2) + O(Im VI,
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The algorithm proceeds to compute S*(7+1(2) of type m(7+1).

An iterative step consists of three parts. In the first part, the first |[(?)]| + 1
of T*(U)(z) are computed; a bound for the floating point errors introduced by these
computations is given in Lemma 23 below. In the second part, the NSPS §*(U)(z) of
type (7 for T*(U)(z) is computed; an error analysis is given Lemma 24. In the third
part, Lemma 14 provides bounds for the floating point errors introduced in computing
St () = §*(9)(2) - §*(7)(2). At this point in the algorithm, S*(“+1D(2) is scaled
so that the norm of each row 1s 1. As before, we assume for the sake of simplicity
that this scaling introduces no additional errors.

LEMMA 23. The computed residual T*(U)(z) satisfies

AU () = G4 (1) A% (2) — 6T () 4 LM+ ()
where
1637 ()] < 2.02(k + D)(||m ||+ 1) -

Proof. The algorithm computes the first |[(?)|| + 1 terms of the residual only.
That is,

AmONH1pea) = f[§#(9) ()] - A*(2)] mod m I
—FU[S*(P)(2) - A*(2)] mod zlIm7lI+1,

Thus,
*(o * m(e+1) *(o [|m(®) *(o *(o
G )(z) - A*(z) mod A 1 — s )( )+ A ”‘H[Z ( )( ) — HV( )(z)],

where 9;(0)(,2) is the error introduced into the computation of T*(?)(z) by floating
point operations. The result now follows from Lemma 10 since A*(z) and S*(?)(z)

are both scaled, and therefore [|A*(2)|| < 2 and [|S*(D)(2)|| < k + 1. |
LEMMA 24. If/\/l*([,) is nonsingular and S*(U)( ) is obtained by solving (38) and
(40), then

S - 1) = 6 () + 0TI,
where

167 ()11 < {320k + DI ON - pi -t O(®) b 187 ()]

Proof. First we obtain bounds for rows 1,... &k of 9;(}7)(,2). Row « of S*(U)( )

corresponds to the solution y* of (40) obtained by Gaussian elimination. y* 1s the
exact solution of

ikt
Vit (M) + &) = Eyvo
where

1€ [oo < BN - o - (1M o l|os - 11+ O(1)

and p7. is the growth factor associated with the LU-decomposition of /\/ly([, .
30



But, from Lemma 11

17 (=) 2(k + D)L+ LO1- (||m ]| +1) - 4]

Ak +1) - p,

since ||A*(2)|] < 2 and [|S*(“)(2)]|] < k + 1 because of scaling. Here, we have used
LOL(||m(?)|| 4 g < 1.01(||n|] + & + 1)pe < 1. Thus,

INIA

{*t o 1 _ 3kt *
yOé .MV(U) _Eoz||1/(‘7)|| __yoz & ’
where

1t il < 11V2 - €l
< 19211 - 1187 1o
< |WValh - (8K [N g T+ O(?)}
< Vil - {320k + DN ph - g+ O}

since || M* oo < (k + D[] - [|T*9)(2)]|. A similar analysis can be done for

v(o —
solving (38) to obtain X'*. But, V¥ yields row a, 1 < a < k, of S*(?)(2) with residual
error £*! )7; (ie., . )7; gives row « of 9;(}7)(,2)) and X'* yields the first row of
§*(U)(z) with a corresponding residual error. The result now follows. |

LEMMA 25. If S*0+1)(2) = fl{§*(")(z) : S*(U)(z)}, then

Sz = 592 5 (2) 4 a7 (),
where

1657 < L0+ &+ 1) - |5 ()] - 157 (2) o
Proof. The (0,0)-component of S*(?+1)(2) is

Ssot = = Al {mz) W (2) 422 a(2) ~q;;<z>}

I D —m T () —vg”
ZZ

Z Z p*F)yr=i) (146850500

£=0 j=0

A BN

+ Z Z a;(j)q;(ﬁ—j—Z) (14 53707],7&[))} ’
p=1 j=0

where |65, ,,,[ < 1.01- (||| - 1/[(,0) + k) - . Thus,

(o) Im (D) =m T+ ) =p )
*(o _ £ ~x(7), *(L—7 *
(HVII(Z))QO = Z z Z pr)pre=i) 50,0,j,z,0
£=0 j=0
] SO ]
2 a ~x(j) *(L—7) Lg%
+z Z Z % Z Up™p 80,0,4,0,p°
p=1 £=0 j=0
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Thus, from (64)
||(9*V<f}<z>)00||s1.01~<||u<0>||+k>~{||a*< [l (= ||+Z|| RIHE )||}u

An equivalent result holds for S*(UH)( ) for @ and 3 other than o = 7 = 0. The
lemma now follows using (71). |

The use of the results of the three lemmas above enables us to express the residual
error §T*(?t1)(2) in the order condition at the (¢ + 1)th iteration in terms of the
residual error 6T*(U)(z) at the oth iteration plus the floating point errors introduced
“locally” by the oth iteration.

LEMMA 26.
STV (2) = S5 (). 6T (2) + £57)(2),
where
£ = {7 E) T 5D - SO0 )]} mod I TI
Proof. The result is an immediate consequence of Lemmas 23, 24 and 25. |

THEOREM 27. The residual error satisfies
T*(a+1) Zg*(U) E*(O‘)(Z)’

where

8) GO0 = { SH(z) - §HTH () SHUF(z), 0< <o,
J

Ti41, j=o.

Proof. The result follows by induction from Lemma 26. |
We see from (81) that the residual error 67*(°+D(2) is composed of the local

“(o).

errors E*(j)t(z) propagated by ¢, The next lemma and theorem give bounds

independent of ¢ for the propagation matrices g*f“"l). Consequently, as for the
NPHS, the residual error grows additively with .
LEMMA 28. If p is so small and T (2) and §T*(7)(2) are not too large so that

71 llag ) [k + DISTE G + 1577 |

l\DI»—k

+ L0+ D)D)+ k+ 1) }
then
1S ()] < 26 - (k + 1) - [a”].

Proof. From (57),
||5*(0+1)(Z) .5(0)(Z) . (p*(a) . F(">)‘1||

IN

1S TED ] 1S ()] - ([ 1) =)

IN

k(7). (k+1).



But, using Theorem 4 and Lemma 25
||5*(0+1)(Z) .5(0)(Z) . (p*(a) . F(">)‘1||
= {5 @) 5@+ 6@} - SO )7
= [|§*9)(2) { N+ ()1 px(e)  plo) 4 9%)(2)} (T*(2) . p())=1
+ 037 () - SO () 1)

> ol |71 ()|
[ TN flag ) { G+ DI @I+ 16T )]} - 1570 (=)
I T LT () ke D SISO 1S - p
> 18- {Jal1 7 = 6 flag I - [+ DISTO ()] + T ()]

— 101K (] k1) - (k+ 1) .ﬂ}
> a7t 15 )1/ 2.

The result now follows. ) |
THEOREM 29. If y is so small and §T') () and §T*(7)(2) are not too large so
that

w9 - Jal ] {llag I [k + DISTY )]+ 7D (=)
1
+ L0k (W + k4 1) ) <5, G <,
then

1G5 < 2619 (k4 1) - [ |+ O(n), <o

Proof. From (81) and Lemma 25
S () = 67 () - S (2) + Zg*<"> 3 H ().

We proceed by induction. Assume the theorem is true for gj;(_"f (2), g;‘(";( ), e g;‘(">(z)

(the initial case, j = ¢ — 1, is proved in Lemma 28 since QZ(_Ul)(z) = S*(U)( )). From
(57),

||5*(0+1)(Z) . S(j)(z)(r*(j) . r(]’))—ln < ,{(j)(k +1)
But, using Theorem 4, Lemma 25, and the inductive hypothesis,
IS4 (2) - 560 ()00 1)
> Hg;(_al)(z) . 5*(]’)(Z) . S(j)(z) . (r*(j) . r(]’))—l

+ ZQZ(U)(Z) ) 9"*/(2(2) S (z) () )Y
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S 167 () { ||m<3>||+1( (0))=1p*() . 706D 4 9z )}(p*(j>.r(j>)—1||
_K<j>z{k+1}.{2.02/@(‘)~(k+1)~(||v<”||+k+1 ] - ﬂ}
L=j
{2/»:(“1) (k1) - [V + O(u)}
> 1165 I{1at” 171 = wD [[lag Ik + DISTE ()] + 17" ()] } - Ow)
> ag”1 1G9 ()12 - O(w).
[ |

To simplify the analysis, we split the local error ﬁ(a)t(z) into three parts and
analyze the propagation of each part separately. Let

*(U) B 0’ g = 0,

(82) Li76) = { I G0 (2) - 45(7(z) (mod A TTINY) gz

(83) L3 (z) = AT ) (mod AL 020,
oy~ [0 7

0 676 = { iy ey (o ey 030

and define

(85) *(a+1) Zg*(a) *(]) (2), i=1,2,3.

Then, according to Lemma 26 and Theorem 27,
T*(O'-I—l) ZS*(U+1)

LEMMma 30.

EI M < 8 (e 1 (U + 1) e
o—1

F16(k + 1% a2 - Z k0 kG (ImD]] + 1)

j=0

+0(1).

Proof. From (82) and (85), from Lemmas 23 and 28 and from Theorem 29,

et e = IIZG*“’) L9 ()]
N o—1 o )
< IS - 1657 ()] + Z 1G] - 115D ()] - 183 (2)]]
< {202 k+ D([|m?]] + 1) /1}{2/@(0)]6—1—1 <0>|}
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+Z{2 020k + D(llm )l + e} - {26k + 1) - ]}

]_

{2000+ 1)1+ O}

and so the result follows. |
LEmMmA 31.

1€ TN < 64w (ke DO p5 - Jab”] - p

o—1
+128(k +1)7 - |a80>|2 '“Z k@) RUFD - |||
j=0
+0(p?).

Proof. From (83) and (85), from Lemmas 24 and 28 and from Theorem 29,

& @I = IIZG*“’) Ol
< 67l + Z 16,7 )11 - 11637 ()]

IN

{320k + PN g5+ 0 157 (2]
o—1

+ 3 {820k + DY e+ O b IS 1165 ()

j=0

[320k + P10 -+ 0 } - {26k + D0al])

+Z{32k+1) DN p5 -+ O(u } {2,4])]94_1 (0)|}

j=0

IN

A2k + 1)l + O }

The result now follows. |
LEMMA 32.

1€ @I < 86t (k4 1 (][ + K+ 1) - faf”] -
o—1
+16(k+1)3.|a80)|2.NZK(1)5(1+1)(||V(1)||+k+1)

j=0
+0(1).

Proof. From (84) and (85), from Lemmas 25 and 28 and from Theorem 29,

||g*(0+1) _ ||Zg*(0) *(J)( I
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< 10371 (2) ||+ZG*<"> ) - A @)l
< 2{101( ||V(U)||+k+1)'||S*(U)(Z)||'||S*(U)(Z)||'ﬂ}
+§2 {101 DN + &+ 1) NSO 15D 1165 )]
j=0
< poz|pwn+h+1u}p4®k+1m”@w+1}
-+§:{202qp0n|+k-+n.ﬂ}{zﬁokk+4,mﬁn}{k+1}
j=0
.{250+U(k+1)myn4-ogg}.
The result now follows. |

Using the above three lemmas, we can finally give the bound on the residual error.
THEOREM 33. If p is so small and 6T(j)t(z) and §T*U)(z) are not too large so
that

([|In]] + & + 1)pe < 0.01

and
w9 a® - {llag ()] [k + DISTE @)l + |67 ()]
b 0Lk 4+ D) k1) }<— j<o,
then
(86) 16T*C+D ()| < Fr + 2k + 1) - (0)|Z (]+1)F*
where
(87) By = 8x9(k+1)7 - o] - p
L& 41+ 8k 4+ %5 DI+ ()] 4k + 1)}
Proof. Sum the error bounds given in Lemmas 30, 31 and 32 |

9. The Inverse of a Striped Sylvester Matrix. In this section, a formula is
given for the inverse of M,, expressed in terms of both S(z) and S*(z). This enables
estimating the condition number of M,, without explicitly computing M 1.
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Associated with the NPHS S(z), define the order ||n|| matrices

p(nﬂ_l)

0

(no)
Up

[ pl@
P p(ng—l)
0
L 0
(88)
and, for 3 =1,2,...,k,
o,
Up
(no)
(89) Us=| "9
0
| 0

e

qgnl—l)

0

1
o)

oy

0

qgnl—l)

0

(n1)

Ui,p

0

i

q;{/_nk_l)

0

05

0

q](cnk—l) T
0
0
wp |
0
0 .

Finally, for any power series a(z) = > ;o al®2* and any integer function f(i, 5),

i,j = 1,2,..
(i,7) is alFBI),

., let [a(f(i’j))]] denote a matrix of order ||n|| whose element in position

The main result of this section is Theorem 34 below which gives the inverse of

M, in terms of the NPHS S(z) and the NSPS S*(z) of types n for A(z).

THEOREM 34. In terms of the normalized NPHS S(z) and the normalized
NSPS S*(z) of types n for A(z), the inverse of M, satisfies

(90) M { [l ™) +0v i} = o) {Pf [ortmi=i=s+0)] @Z;ué 1= } |

where

Ovirr =

O {

k

[(le)g—i)] B Z [a(“”nllﬂ_j)] [(9111)(;,_0”1)]

a=0

+ [5r(i+j—2)] [v*(llnll—i—j+1)] +3° [mgﬂ'—l)] [q;<||n||—i—j>] }

Proof. The coefficient of z*+7=2 for i,j = 1,2, ..

of (10), namely,

ps=1

5 ||n]], in the first component



1s

no k ne—1
Zagﬁj—z—z)p(z) + Z Z a&iﬂ'—z—z)q&z) — p=linlltiti=1) 4 5.(+i=2),
£=0 a=1 £=0

This is the (, j)th component of

(91) [rIm+=D] 4 [50H-2] 2 [agllnllw‘—n] [l i45-2)]
k
bS[0 [ g, P
a=1
Similarly, the coefficient of z*+/=1 for i, j = 1,2,...,[|n|, in the (3 + 1)st component,

B = 1,... k, of (10), namely,

a0(2) us(2) + Y @a(2) va,p(2) = MH s (2) + Swp(2),

1s
70 . . k 7o . . . .
Z agz+y—£—1>ug> + Z Z agjﬂ—‘—l)v% — wg—llnll+z+y—2> + 5w§;+y—1>.
£=0 a=14=0

This is the (, j)th component of

(92) [wEB—IlnIHHJ—?)] i [Mg‘ﬂ—l)] - [agnnnw—n] [u%—nnuwﬂ—m]
k .
+ 0 [allimi] [U%muwﬂ—l)} 4 M, UL
a=1
Next, the coefficient of /=71 for i,j = 1,...,||n||, in the first row and first

column of (48) for a normalized NPHS and a normalized NSPS, namely,

p(2) v (2) + D us(2)gp(z) = ML @)+ 272 (0rrr)00(2),

=1
1s
Z pi=i=t=1) (D) 4 Z Zq;(l—y—f—l)ug) _ (9111)83]—1).
£=0 pf=14=0

This is the (, j)th component of

k

(93) [p(—||n||+i+j—2)] [v*(|lnll—i—j+1)] n ;[ug—nnllﬂﬂ_l)] [q;(”””‘i—ﬂ]
= [(9111)8i6j+1)].

The coefficient of z*=/~1 in the first column and the (a + 1)st row, a = 1,..., k, of
(48), namely,

4a(2) V" (2) + D vas(2)a5(z) = 27 (Orrr)a0(2)
ps=1
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1s

N k na
§ 5 rlimimesh) g0 4 LT, = (07,0,
£=0 pf=14=0

This is the (, j)th component of
k
(=linll+iti=2)| | *Ulnll—i—i+1) L linll+it “(lInll—i-3)
(o) [gf =] [ty +;[ I )
[911 G5 Hl)]

Also, the coefficient of 2i=7 for i,j = 1,...,||n|| in the first component of (50)
for a normalized NPHS and NSPS, namely,

)+ zsz@ = (ah”) ™" ao(=) + (0rv )o(2).
is the (¢, j)th component of
(0l [aéi_j)] + [(efv)gj—f')] _ {r<—llnll+z’+j—1>] [ *<||n||—z'—j+1>]
n Zk:[ (=llnll+i+j - ] [q[»;(nnn—z’—j)].
p=1

We are finally ready to prove the theorem. From (91), (92), (93), (94) and (95),

M, {pt [peii=i=s ] 4 Zk:u;j [q;umn—i—j)]}

= {[r(—l|n|l+i+j—1)] n [::(12'+j—2)] _ [ag||n||+z’—j)] [p(—||n||+i+j—2)]
k
_%:1 [ari =] [qgtbeiti=2] L [yriml-i=i)
2 N
_; [agrii=0] [ gt }i =)
) [v*(||n||—i—j+1)]k+ﬁz:;[ 4] [
G i [
- Bl ot



= (aéo))_l [aéi_j)] +0vrrr.

The result (90) now follows. |

Corollary 35 below drops the requirement in Theorem 34 that S(z) and S*(z) be
normalized. In particular, the results of the corollary apply when S(z) and S*(z) are
scaled.

COROLLARY 35. In terms of the NPHS S(z) (unnormalized) of type n for A(z)
and the NSPS S*(z) (unnormalized) of type n for A*(z), the inverse of M, is given

by

(95) M1 { [aéi_j)] + 91X}

k
—al” { (roy) 1P [v*(|lnll—i—j+1)] + 3 () [q;(”n”—i—j)]
ps=1

where

frx = aéw{[ 5 ])] Zk:[ (cvlln||+i_j)] [(9111)55,_0j+1)]

a=0

F(070)” [5r<z+] z)] [U*<||n||—z'—j+1>]

N Zk: () 7] [0
=1

Proof. The normalized NPHS is obtained from an unnormalized one by mul-
tiplying it on the right by the diagonal matrix diag['yo_l, .. .,'yk_l]. Similarly, the
normalized NSPS is obtained from an unnormalized one by multiplying it on the left
by the diagonal matrix diag[ys™", .. S 1. The result now follows directly from
(90). Note that in the definition of f7x, we continue to associate 6rr7(x) and v (z)
with a normalized NSPS.

|

ExAMPLE 36. Continuing with Examples 2 and 3, according to Theorem 34, the

NPHS (25) and the NSPS (44) give the inverse of the striped Sylvester matrix M,,
in (22) as

1 0 0 0 0 0
-1 1 0 0 0 0
1 2 -1 1 0 0 0
Mo -2 2 -1 1 0 0
3 -2 2 -1 1 0
-3 3 -2 2 -1 1
-4 44 0 0 0 O 0 5 0 10 =57 37
44 0 0 0 0 O 5 0 10 —-57 37 O
3 1 —22 36 -9 0 0 O 0 10 -57 37 0 0
BENERE 36 -9 0 0 0 O 10 —57 37 0 0 0
-9 0 0 0 0 O —57 37 0 0 0 0
-4 0 0 0 0 O 37 0 0 0 0 0
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—-73 —48 0 0 0 O 0 —24 37 —48 22 0
—48 0 0 0 0 O —24 37  —48 22 0 0
-13 -9 -7 0 0 0 37  —48 22 0 0 0
+ -9 -7 0 0 0 O —48 22 0 0 0 0
-7 0 0 0 0 O 22 0 0 0 0 0
1 0 0 0 0 O 0 0 0 0 0 0
—44 3 0 0 0 O 0 -1 0 -2 4 0
3 0 0 0 0 O -1 0 -2 4 0 0
—131 137 123 0 0 O 0 -2 4 0 0 O
+ 137 123 0 0 0 O -2 4 0 0 0 O
123 0 0 0 0 O 4 0 0 0 0 O
—44 0 0 0 0 O 0 0 0 0 0 O
37 0 1 0 2 -4
0 37 -—48 74 —96 44
1 0 o 24 —37 48 —22
- 37 0 0 -9 37 —55 36
0o 0o -7 0 23 -9
0 0 1 0 2 -4

10. The Inverse of a Mosaic Sylvester Matrix. In this section, a formula is
given for the inverse of M expressed in terms of both S(z) and S*(z). This enables
estimating the condition number of M? without explicitly computing M1

Associated with the NPHS S(z) and the NSPS S*(z), for 8 = 1,2,...,k, define

the ||n|| x k||n|| matrices

nl||—-1 0 n||—1 0
vﬂl@ - .. Ugg U}gl}ﬁll ) U](”)j
Vﬁ: : = : 5
0 0
o) "o
qgllnll—2) qgo) 0 ql(cllnll—2) qz(co) 0
0= : : ’
0 . 0
qg) B qk)
0 0
Mo L yx(n0) u;@) uj““) uz@) uzw)-
0 0 0
_— o 0) u;(m) uz(m)
0 0 0
L 0 0 0 0 0 0
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and

r q;(o) q;;(nu—l) p;(f) p;;n—l) P;(,Z) p;:k—l) 7
: 0 : 0 : 0
Q;‘S _ q;;(nu—l) e p;;;h—l) e . p;‘;:k—l)
0 0 0
i 0 0 0 0 0 0 |
where ng = ||n|| — ng. For 8 =1,2,...k, also define the ||n|| % k||n|| residual error
matrices
W5 = [6W5,04,,...,0,,]
and
R = [6Ra 0711’ . 'aonk]a
where
_ _ r §plinll=2) Sp(no—1) 7
(In]l-1) (no)
6wﬁ 6wﬁ
_ ' _ (0)
oWs = st R= or
B
0
s §r(0) :
g - i 0 0 ]

and 0, is a [|n|| x ||n|| — ng matrix of zeroes. Also, let

0=

where each 8, 5 is an (||n|| — na) X (||2|] — ng) matrix given by

G i
ga”@: : E
(HIII)E;?E-I_Z) (QIII)(CJ|7H||+na—nﬂ+1)

with f777(z) the error appearing in equation (48). Finally, let [aéi_j)] denote an order

[|n]], lower triangular, matrix as in §9.
The main result of this section is Theorem 37 below which gives the inverse of

M in terms of the NPHS S(z) and the NSPS S*(z) of types n for A(z).

n

THEOREM 37. In terms of the normalized NPHS S(z) and the normalized
NSPS S*(z) of types n for A(z), the inverse of M, satisfies

(96) My {(@) g + 6710y b = @ o] v 4 > o= s,
p=1
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where

a1t k =1
R R L
p=1
Proof. Let
_ p(||n||—2) p(nu—l) q§||n||—2) qgm—l) q;(clln”_z) ql(cnk_l) _
0 0 0
p(®) QEO) q](co)
L 0 0 0 |

Then, the order condition (10) for an NPHS implies that
(09 M0 = 0[] - s
To see this, note the (i, j)th component, 1 <7 < ||n|| —ng, 1 < j < ||n]|, of (98) is the

coefficient of zZI?ll=i=J7 in

k

ap(z) p(z) + Z aq(2) qolz) = z”"”_lr(z) + 6r(2).

a=1

The remaining components of (98) are obvious identities.
Similarly, for 1 < g <k, let

r n||—1 nao n||—1 niy n||—1 ng) 7]
u(ﬁ” II-1) u(ﬁ ) Uglylﬁ II-1) Ugyﬁ) U](glyl@” ) vl(c,ﬁ)
¥ 0 0 0
Vﬁ ug ) Ug,g Ul(c,za
0 0 0
U(ﬁ ) Ug,g vl(c,g 1

Then, the coefficient of zlIP=i=7+1 1 < i < ||n|| = no, 1 < j < ||n|| in the order
condition (10) for an NPHS, namely,

a0(2) us(2) + Y @a(2) va,p(2) = MH s (2) + Swp(2),

a=1

gives the (¢, j)th component of
(99) MV =V [aﬁf‘”] W
The remaining components of (99) are easy to verify.
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Next, observe that the duality theorem 4 and its corollary 5 imply that

k
(100) Q' VY V- Q= (a) T gy + 0.
=1
Combining (98), (99) and (100), we obtain the result (96). |

Corollary 38 below drops the requirement in Theorem 37 that S(z) and S*(z) be
normalized. In particular, the results of the corollary apply when S(z) and S*(z) are
scaled.

COROLLARY 38. In terms of the NPHS S(z) (unnormalized) of type n for A(z)
and the NSPS S*(z) (unnormalized) of type n for A*(z), the inverse of MY is given

by

(101) M= () Ty + 05 |

_ k e =
= (y075)7' Q' [aéi_”] vy > (75 [aél_])] 1 s,
ps=1

where

.11 k —iy] L
(102)9;)( - §_ (")/0"}/3)_16Rt [aél ]):| V* _ Z("}/ﬁpy;)_léwﬁt [aél -7):| Q;
ps=1

Proof. The normalized NPHS is obtained from an unnormalized one by mul-
tiplying it on the right by the diagonal matrix diag['yo_l, .. .,'yk_l]. Similarly, the
normalized NSPS is obtained from an unnormalized one by multiplying it on the left
by the diagonal matrix diag['ya‘_l, .. .,'yz_l]. The result now follows directly from
(96)EXAMPLE 39. Continuing with Examples 2 and 3, according to Theorem 37, th:
NPHS (25) and the NSPS (44) give the inverse of the mosaic Sylvester matrix. The

relevant matrices in the inverse formula (96) are

0 -2 0 -3 0 —4]1 -1 -5 -3 -2 2
o 0 -2 0 -3 0|0 1 -1 -5 -3 =2
o 0 0 -2 0 -3|0 0 1 -1 -5 -3
0o 0 0 0 -2 0|0 0 0 1 -1 =5
i -1 2 -2 3 3|0 0 0 0 o0 o0
ME— |0 1 -1 2 -2 3j0 0 0 0 0 0
"~ o 0o 1 -1 2 —2/0 0o 0 0 0 0|
0 0 0 ©0 o0 o0]1 -1 2 -2 3 -3
o o o o0 o0 0|0 1 -1 2 -2 3
o o o o o0 0|0 0O 1 -1 2 =2
o o o ©0o o 0|0 0O 0O 1 -1 2
Lo o o o o o|0O 0o 0 0 1 -1 |
11 -1 -1 0 0
01 1 -1 -1 0
()1 = o0 1 1 -1 -1
oo o 1 1 -1 |
o0 o o0 1 1
o0 0o 0 o0 1
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36 =22
- —22
—22
—22

36
—22

—428
—159
0
0
0
0

—103
—428
—159

0
0

249
—103
—428
—159

57
249
—103
—428
—159

—40

74
—40

0
5
0
0
0
0

10
0
5
0
0
0

o w OO

—57
10

—136
—147

0
0
0
0
0
0

-13 37|10 0 0 0 1
37 00 0 O 0
0 0 0
0 0 0
0 1 0 0 0 O
0 0Of0o 0 0 0 O

-9
-13
37
0

0

0

0

0

7
-9
-13
37

0
0
0
0

0
0
0

117
—136
—147

0
0

48
117
—136
—147

—22
48
117
—136

—147

—52

TNOO OO
<+ 0
|
o o oo
A

37 —24
—24 0
0 0| =52
0 0
0 0
0 0

—48
37
—24
0

0

0

22
—48
37
—24
0

0

37

[=elieloie)

—44

—44 37

—44 0

—44 0

—44 0
37 0

0
0
0
0
0
0

—131
0
0
0
0
0

0
0
0
0

137
—131

123
137
—131
0

0

0

123

123 137

37 137 —-131
—131 0

0

Vo =

and

19 =20

—-20

28
19

(== lieioe)

28

08 4 0
04 0 O
00 0 O
00 0 O
00 0 O

-1

19
—-20

28
19

—-20

Using (96), we now obtain

—-333

703
3367
1702

—3626
—1036

1369

—259
—592
814
1480
—555
—888

0
1369

851
—1184
—-1110

—-333

999
851
2294
—518
—-1924

0
0
0
0
0

999
851
—1813

0
—2738

2960

0
1369

259

—1776

—518

1628

814

—148
—148

—296
—296

0
0

37
37
—37
—37

74

—148
—148

74
—74
—74

148
148

296
296

148
148
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333 —851 —2331 3552 7141 7
—999 1184 5624 296 —888
—851 1110 5957 —1776 —9731
1813 —2960 —9953 4736 6327

518 —259 -—3626 —1776 2590
—814 1776 4329 —=5032 —5439
1369 1369 —1369 —1369 0

0 1369 1369 —1369 —1369

148 —74 333 666 —629

148 —74 —1036 666 2109
—148 74 1036 703 629
—148 74 1036 703 =740 |

11. Stability. In this section, bounds for the errors §5(z) = S(z) — Sg(z) and
85*(z) = S*(z) — Sg(z) are obtained. Since S(z) and S*(z) are scaled, these same
bounds serve also as bounds for the relative errors in S(z) and S*(z). To make the
comparisons meaningful in the above, we insist that Sg(z) and S§(z) are such that

VE(0) = V(0)=diag[v,..., ],
re(0) = r(0) =10,
and
vp(0) = v (0) =g,
Rp(0) = R(0)=diag[yi, ..., 7).

We begin by first finding bounds for 65(z). From (6) and (10)
Al(2) - 85(2) = 6T"(2) + O+,

So, the constant terms® 6ugo) and 61}&0) for 0 < a, 8 < k of S(z) are zero. It then
follows that the remaining components of §5(z) satisfy

(103) My - 8x =[600 . gprlinli=0
where
5 = [5p© . 6pro D sg™, L 6gm I 16gl®) L gl
and
swiV o swlY
(104) Moty = | S
5wg|lnll) 5w}(€||”||)
where
6u(11) 6u(1n”) 61}81) 61}5711) 61;](612 61}](;?1’6)
8y = : : : : el :
6u§€1) 6u§€n”) 61}5%2 61}57;) 61}](617])6 61}](;?]:)

9 In actual fact, the computations in (18) may yield errors resulting in nonzero values of (SuEBO) for
1 < B < k. But, these errors, each resulting from two floating point operations, are comparatively
small and are ignored in order to simplify the analysis.
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From (103) and (104), it follows that

(105) 16:5()ll max {||6 ]|y, [|6Y[]1}
[Inf] - MGl - max {[|6r ()], [18W ()]}
[Inl] - (1Ml - (18T (2)]].

Thus, to obtain a bound for 65(z), we need only to obtain bounds for M ! and
§T*(z). This is done formally in Theorem 40 below. In the theorem, 677(z) is the
residual error corresponding to the NPHS computed by the algorithm of §5 in o 4+ 1
steps. So, n = m(7t1) and a bound for ||§T(z)|| is given by Theorem 22 in which
6T(U+1)t(z) = 6T%(z). At the point m(“tY) we drop the superscript o + 1 so that
S(z) = St(2), k = k7T and so on. A bound for M, ! is then obtained directly
from Corollary 35 without changes to notation. The point m(?) is the last stable point
(i.e., k(7)< 7) prior to the point n along the diagonal passing through n. The point
n itself need not be stable.

THEOREM 40. If pu is so small and §T"(z) and 8T*(z) are not too large so that
the conditions of Theorem 22 are satisfied and

(106) 2k Il - flag (DIl - 6T ()| < 7

[ANRVANVAN

and
(107)kllnl® - flag ()] - {(k + 2) (16T ()]
20k + 1) (lInf| + )llag ' ()] [
Y

(k+ DT ()l + |I5T*(Z)|I]} <1/2,

then
o—1
0 — 0 .
(108) [[8S(=)[| < 2llnl[* - a§”] - lag () § Fo + 20k +1) - Jag”| > wU+VE; &
Jj=0

where F; is defined in (80).

Proof. We begin by finding a bound for érx appearing in the inverse formula (95)
for M,,. A bound for ;x depends on bounds for 67(z), 0r7(2), Or11(%) and 1y (2).
Using (106) and Hadamard’s inequality, a bound for 67(z) in (11) for a scaled NSPS
is given by

10r(2)[] < kL Alnl] - lag ()1 (16T (2)[] < 7/2-
So,
|det(S(2))] = /2.
Next, fr7(z) in (46) for a scaled NSPS is bounded by
1071 < [lag ()] - {(k + DIST* (2)I] + 18T ()]I} -

Consequently, 0rr7(z) in (48) for a scaled NSPS (note the change from a normalized
NSPS) is bounded by

(109) (sl = [1S() (T 000(2) S
= {I5(2) (T D) 651 (2) 579 (=) /det(S(2)]
2l + V161127
2tk + Dlla I sz o) + 187 ()1}

v
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In addition, a bound for f7v(z) in (50) for a scaled NSPS (here, also, note the change

from a normalized NSPS) is given by

107v ()l = I {A"(=2)0rrr(z) = 6T (2)(I" D) 7157 (=)} /I

2k(k + 1)! il - Hlag ' (
v

We are almost ready to give a bound for 8;x appearing in the inverse formula
(95). But, first observe that

Hen 8™ < linl- 18w )l

< k(k+ DT + Ny k4 6Tl + 157 (11}

and that
k
1> [alli==0) [ iH "] < Znnn 1611)a ()]
a=0
<l WL
Thus,
k
0 i—j nll4i—i i—j+1
lorxlls = ||aé>{[<em>é D=3 [aleti=n] {(r00) 557+
a=0

+ (vo) [wﬂ'—z)] [U*<||n||—z'—j+1>]

k
n Z('yﬁ'y;)_l [&Ugﬂ—l)] [q;(H”H—Z—J)] } I
ps=1
lInll - 167y (I + 1]l - 1651 (2)]]

+ (r07) " Il NIST )] + D (vsv3) ™ Hinll - 18T (2)]]
B=1
Il {107y (DI + 107 ()] + £[I6T7 ()1}
k[l {(k + 2)[|67" ()]
+2(k+1)!(||n||7+ D[ag ()] [

IN

IA A

(k+ )57 () + ||6T*<z>||]}.
It then follows from (107) that

(i—4) -1 -1
(110) 1a§™] " orxll < linll- llag )1l orxlls < 172,

Cq-1
and so 1)) + [agl_])] Orx is invertible (Stewart [27, page 187]). Consequently,

() | { [t +91x}_1||1 < | {funn + [aéi_”]_lﬁzx}_l [aéi_j)]_l||l
0[S
< S
- [aél_])] Orx |1
< ol [l e
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Therefore, a bound for M1 in (95) is given

.. -1 ..
(2) (M < I (o™ +orx bl el {7 Ry [prlinizien
k
n Z ’Yﬁ’Y@ 1Utﬁ [ ;(H”H—Z—J)] I
ps=1
-1 k
0] i—7 N\ —
< 20a I ab ] Y )
£=0
0] —
< 2ulnl] - [a§"] - [lag ()]
The result (108) now follows from (105) using (79) and (112). |

Next, we find bounds for 5*(z). From (30) and (34)
S*(2)A(2) = 6T*(2) + O(=IPI+L),

As for the NSPS, for the sake of simplicity, here again we ignore that the constant
term errors, 6w*(0) for 1 < 8 < k. This is done with no great loss of generality, since

these are the comparatlvely small errors made in computing 6u *(0 )( ) from

u;(o)aéo) + v*(0>a§30) -0

with v*(9) = 4% Tt then follows, in a fashion similar to solving (38) and (40) that the
remaining components of §5™(z) satisfy

(113) sX*. M, = [6wi(1), .. .,6w1<(”n”)| o |6w;:(1), ce 6wz(”n”)],
where

st = sor 1) surnl=no) gy (D gy Winlimm) sy () sy linllmre |

and, for 1 < a < k,
(114) syt M = oD, e DL s ),
where

sVt = [8qx®, .. gDyt O sl eI

From (113) and (114), we get

(115) 1657 (=)l (k + 1) max {[[6X7[|1, [[6Y7[|1 }

<
< (b + DM oo - (18T (2)]].

Thus, to obtain a bound for §S*(z), we need only to obtain bounds for AM*~!
and §7*(z). This is done formally in Theorem 41 below. In the theorem, §7%(z)
is the residual error corresponding to the NSPS computed by the algorithm of §5 in
o 4 1 steps. So, as for the NSPS, n = m(?*!) and a bound for ||§T*(2)|| is given
by Theorem 33 in which §7*("T1 () = 6§T*(z). At the point m(“+t1) we drop the
superscript o + 1 so that S™(z) = S*(U‘i'l)(z), k= ktD and so on. A bound for

49



M:~1is then obtained directly from Corollary 38 without changes to notation. The
point m(?) is the last stable point (i.e., k(7 < T) prior to the point n along the
diagonal passing through n. The point n itself need not be stable.

THEOREM 41. If pu is so small and §T"(z) and 8T*(z) are not too large so that
the conditions of Theorem 33 are satisfied and

(116) 2k! - [Inll - lag ()] - 16T ()] < 7
and
(117) sk + Dag”] - flag ()] - { G+ Dlnl? - 8T (=)
s 2R per Gyl + o < 12,
then
(118) 165 () < 26k + 1|l - lab”| - lag ' (2)]]
: {F; +2(k+1) - |l §5<i+1>F;} ,

where I} is defined in (87).
Proof. From (109),
10llc < (k+ D|0rrr(2)]]
26(k + 1)(k + D)Y]ag ' (
v

Note that the assumption (116) is used in (109) to derive the bound for 777(z). Thus,
0% appearing in the inverse formula (101) is bounded by

< Nt k1 D1 + 167 11}

.1 -1 k .71
Wixlloe = 16— (ove) ™ 0R" [af ™) V" = 3" (3p9p) owh [al ] Qe

g=1
2k + 1)(k fyr DUag L g4 1yygs7 o)) + 167 (11}

+ (3070) T (e Dllnll” - 18T ()] - llag ™ ()] 15 (2)]]

IN

+ > (rerp) e+ D)l - 6T - [lag ()] - (157 (2)]]
B=1

IN

k(k+1) - flag* ()]

~{<k+ Dilaf?ls7 () + 2E Y

(k-4 DIT G+ I
Therefore, using the assumption (117),
-1
(@S ™ Ty + O [loo < 2]l
and so

-1 -1
OIM; oo < @) T + 0 b Ml - 1(7096) 7" Q" [ V"
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k
#3265 [ ] Qe
ps=1
< 26(k +1)(|n[| - [a§™] - [Jag 1 (2)]]-

The result (118) now follows from (115) using (86) and (119). |
THEOREM 42. The algorithm VECTOR_PADE for computing S(z) and S*(z) is
weakly stable.
Proof. Tf the conditions of Theorem 40 hold, then from (108)

185(=)]] < 2r|n))? - [al”] - llag ()| { Fo + 27(k + 1) - |al”] - ZF ,

where
Fy = ar(k+ 1) 1ol 1 {(lImD 11+ b+ 1)+ 4p; DN+ (D + & + 1D}

Likewise, if the conditions of Theorem 41 hold, then from (118)
1857 ()] < 26k + D*lInl] - at”| - [lag™ ()] § £ +27(k + 1) - Jap ZF* ,

where
Fy=8r(k+1)?-af”| -
L& 41+ 8k 4+ %5 DI+ ()] 4k + 1)}

Thus, if the problem is well-conditioned (i.e., if the condition number £ associated
with the matrices M,, and M, is not too large), then the computed solution S(z) is
close to the exact solution Sg(z) and S*(z) is close to the exact solution S%(z). The
algorithm is therefore weakly stable [7]. |

12. Experimental Results. Numerical experiments have been performed to
compare the analysis of the algorithm with its practice. A summary of the conclusions
is presented here; details appear in [9].

The algorithm VECTOR_PADE was implemented using Sun Fortran 1.3.1. All
calculations were performed in double precision. The linear systems (16), (20),
(38) and (40) arising at intermediate steps of the algorithm were solved using the
LINPACK routines SGEFA and SGESL. The results were then compared to the
exact answers, obtained via the Maple computer algebra system. Tables 1 and 2
give the results of one small but typical experiment for which n = (18,19,19) and
Al(z) = [ao(2), a1(2), az(2)] with ag(z) = 1 and with coefficients of a1(z), as(z) ran-
domly and uniformly distributed between —1 and 1. The tables give results at all
intermediate points along the diagonal through n. In these tables, the errors (rep-
resented in scientific notation with two digits of accuracy and the exponent enclosed
in parenthesis) in the computed SU)(z) and S*U) and in the order conditions are
given for two values of the stability parameter 7. The value 7 = 10* in Table 1 indi-
cates a willingness to accept only those striped Sylvester matrices M, ;) and mosaic
Sylvester matrices M ;) with condition numbers less than 10*, approximately (i.e.,
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Table 1

Errors at intermediate steps: 7 = 10%

i o sl “”%f(ﬁl“ 0| | Bl
T 120Q) ] 5.6(-17) | 1.4(-16) 2.8(-17) 7 0(-17)
2] 1.82) || 2.2(-16) | 6.5(-16) 2.5(-16) 6.5(-16)
3 1.6(2) ] 2.8(-16) | 9.8(-16) 5.2(-16) 1.8(-15)
47952) || 1.8(-16) | 8.3(-16) 8.6(-16) 2.0(-15)
51 6.6(2) | 1.9(-16) | 1.7(-15) 8.7(-16) 2.9(-15)
a1 | 17¢16) | 1.2(-15) 1.0(-15) 2.1(-15)
6| 1.13) || 3.2(-16) | 2.3(-15) 9.7(-16) 4.8(-15)
7 153) || 15(-16) | 1.2(-15) 9.0(-16) 6.6(-15)
81 91(3) [ 3.0(-16) | 1.8(-15) 8.2(-16) 4.4(-15)
9 373) [ 38(-16) | 4.9(-15) 6.8(-16) 1.3(-14)
10 [[293) ] 3.7(-16) | 3.3(-15) 1.1(-15) 1.2(-14)
- 3:2(6) [ 3.1(-16) | 5.6(-15) 1.0(-15) 4.6(-14)
11 [[203) [ 1.1(-15) | 8.1(-15) 1.5(-15) 1.4(-14)
[ T6(4) || 1.2(-15) | 7.4(-15) 1.9(-15) 1.8(-14)
12]293) ] 7.9¢-16) | 9.5(-15) 2.4(-15) 2.2(-14)
[ 41(4) | 83(-16) | 1.0(-14) 2.6(-15) 2.3(-14)
-6.3(4) || 1.0(-15) | 2.4(-14) 2.5(-15) 2.9(-14)
[TI@) | 76(-16) | 1.7(-14) 2.8(-15) 3.3(-14)
STIG) | 6.7(-16) | 1.3(-13) 3.2(-15) 1.4(-13)

those for which x) < 10%). Striped and mosaic Sylvester matrices not satisfying
this criterion are assumed to lie in an unstable block and are skipped over. An un-
stable point 1s identified by the value “-” in the column labeled “”. In Table 2, the
value 7 = 10° permits a much greater tolerance for ill- condltlonmg and results in an
expected deterioration in the accuracy.

It was observed that the large constants and powers of ||m{)|| and ||»\/)|| that
occur in the bounds derived above are not manifested in the experiments. Also,
|67 (2)|| and [|67*(z)|| depends on £Y) and not k) kU*D) and the overall error is
proportional to the largest k() encountered. As for the case k=1 reported in [13],
operational bounds on the errors in the order conditions are

j=0

18T ()] < C(k + Dp (ZH(W IIm(”II) +0(u?)

and

187" (2)|| < C(k+ 1) (fomp IIm(”Ilz) O(u?),

j=0

where C'is a moderate constant. In addition, for the errors in the solutions, opera-
tional bounds are

165()I < Crlk + D) (fommllmmll) +0(u*)

j=0
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Table 2

Errors at intermediate steps: 7 = 10°

i o sl “”%f(ﬁl“ 0| | Bl
T[122) [ 5.6(-17) | 1.4(-16) 2.8(-17) 7.0(-17)
2] 1.82) || 2.2(-16) | 6.5(-16) 2.5(-16) 6.5(-16)
3]1.6(2) || 28(-16) | 9.8(-16) 5.2(-16) 1.8(-15)
4]952) || 1.8-16) | 8.3(-16) 8.6(-16) 2.0(-15)
5(6.6(2) || 1.9(-16) | 1.7(-15) 8.7(-16) 2.9(-15)
6| 41(7) | 1.7(-16) | 1.2(-15) 1.0(-15) 2.1(-15)
7 TIE) | 31(-12) | 3.4(-11) 9.2(-12) 1.2(-10)
81 15(3) | 28(-12) | 1.9(-11) 1.5(-11) 1.5(-10)
91 9.13) | 45(-12) | 3.7(-11) 2.8(-11) 5.6(-10)
10 [[373) [ 4.9(-12) [ 9.5(-11) 2.9(-11) 3.7(-10)
11 [ 293) [ 43(-12) | 7.3(-11) 4.0(-11) 3.5(-10)
12 [32(6) [ 38(-12) | 1.7(-10) 4.7(-11) 1.9(-9)

13][203) [ 13(-11) | 1.3(-10) 2.9(-11) 2.2(-10)
14 [[1.6(4) [ 1.3(-11) | 1.4(-10) 2.0(-11) 1.9(-10)
15 [[293) | 85(-12) | 1.1(-10) 3.2(-11) 3.5(-10)
16 [[41(4) [ 6.3(-12) | 1.1(-10) 3.4(-11) 3.5(-10)
17 [[63(4) | 65(-12) | 1.5(-10) 3.6(-11) 6.5(-10)
I8 1.1(4) [ 68(-12) | 1.8(-10) 3.6(-11) 4.4(-10)
19 1.106) [ 9.0(-12) | 2.2(-10) 3.3(-11) 8.1(-10)

and
165 ()] < Cr(k+ 120 [ > 6D p;[mW)2 | +O(n?).

13. Conclusions. In this paper we have presented a new fast, weakly stable
algorithm for the computation of Padé-Hermite and simultaneous Padé systems. The
algorithm requires O(||n||* + s%||n||) operations to compute a Padé-Hermite system
and a simultaneous Padé system of type n = [ng, ..., ng], where ||n|| = ng + - - - + np
and s is the largest distance from one well-conditioned subproblem to the next. The
algorithm can also be used for fast stable inversion of striped or mosaic Sylvester
matrices (see ([21] for the case k& = 1 and ag(z) = 1). The algorithm relies on the
ability to specify when a given subproblem is well conditioned. The stability estimates
come as a result of “approximate” inversion formulae for striped and mosaic Sylvester
matrices derived in this paper. In addition to a complete stability analysis, we have
also provided some numerical experiments that verify that the algorithm performs as
theoretic results imply.

There is a number of open research problems that result from this work. The
algorithm that has been presented is fast rather than superfast as is possible in the
case of exact arithmetic [10]. Tt is possible to modify the algorithm so that it takes
steps in a quadratic fashion as done in [10]. However, while this approach will work in
the generic case, it is possible to find examples where not all the required subproblems
are stable. In these cases the algorithm might not be numerically stable. It would
be of interest to find a superfast algorithm that works in all cases and in addition is
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numerically stable.

In cases where the largest step-size is small the algorithm has complexity O(||n||?).
However, there are cases where the algorithm may require a very large step-size and
and then have a higher cost than Gaussian elimination. This will happen if there is
a very large unstable block, or if the stability parameter 7 is chosen to be too low. It
would be of interest to find a fast, stable algorithm that has complexity O(||n||?) in
all cases.

Our algorithm proceeds along a diagonal path in the corresponding Padé tables of
our approximants. It would be of interest to find fast, stable algorithms that proceed
along alternate paths in the Padé tables. An example of this in the Padé case is found
in [18] where the computation proceeds along straight-line paths. In the context
of matrix solvers this is the difference between giving a Toeplitz solver instead of a
Hankel solver as is done in [13].

The M-Padé approzimation problem is a generalization of the Padé-Hermite ap-
proximation problem which requires that the residual in (1) vanishes at a given set of
knots zg, z1, ..., 2y-1, counting multiplicities ([3, 4, 5, 25]). The case where all the
z; are equal to 0 is just the Padé-Hermite problem. In this case the coefficient matrix
for the associated linear system is the matrix of divided differences. It would be of
interest to determine stability parameters for such matrices, with a view to developing
fast, stable algorithms for computing this approximation problem. Along these lines,
some experiments for the case k=2 are reported in [8].
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