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A bstract

Subspace identification methods identify certain matrices, which capture the 

correlations between the process inputs and outputs in non-parametric coefficients 

form, as a first step by regressing the process input-output data. The focus of the 

research presented in this thesis is to use these subspace matrices for multivariate 

controller synthesis and performance analysis. The subspace matrices based 

approach is used for the closed loop estimation of the dynamic matrix and noise 

model; predictive controller design without identifying parametric models; controller 

performance analysis using the Linear Quadratic Gaussian (LQG) controller as 

a benchmark; estimation of multivariate Minimum Variance Control (MVC) 

benchmark without calculating the interactor matrix; and feedforward controller 

performance analysis for identification of the important disturbance variables. The 

approach used in this thesis can be considered a ‘data driven approach’ in the sense 

that no traditional parametric models are used. Hence the intermediate subspace 

matrices, which are obtained directly from the process data and otherwise identified 

as a first step in the subspace identification methods, are directly used for closed 

loop identification, controller design and performance analysis.
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Chapter 1

Introduction

1.1 An overview of objectives of this thesis

A typical industrial plant can contain thousands of controllers ranging from 

proportional, integral and differentiator (PI/PID) controllers to the more advanced 

model predictive controllers (MPC) such as dynamic matrix control (DMC) 

[15, 16], quadratic dynamic matrix controller (QDMC) [14, 30], robust multivariate 

predictive controller (RMPCT) [78], generalized predictive controller (GPC) [12,13], 

etc. With a goal towards optimal performance, energy conservation and cost 

effectiveness of the process operations in the industry, design of optimal controllers 

and controller performance assessment have received much attention in both the 

industry and the academia. Typically a ‘model’ or some sort of mathematical 

representation of the process and the controller objective are required not only for 

designing suitable controllers but also for analyzing the controller performance. For 

predictive controllers, which use a model of the system to make predictions, model 

identification forms the critical part of the controller design. Identification aims at 

finding a mathematical model from the measurement record of inputs and outputs of 

a system [87]. Parametric model, such as a transfer function or a state space model, 

identification involves obtaining reduced order models of a pre-specified structure 

for a system which could be of a very high order and complexity. Non-parametric

1
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2

modelling approaches, such as impulse/ step response coefficient forms and frequency 

domain based methods, can also be found in the literature for controller design and 

performance analysis. More importantly non-parametric model based controller 

design and analysis tools have been successfully used in the industry. Identification 

of parametric models for the process is typically used as a first step in the controller 

design although the transfer function may have to be eventually converted into a 

non-parametric model form for obtaining the control law. Data driven approaches 

to obtaining the prediction matrices used in the controller design directly from the 

process data, and avoiding the intermediate parametric model identification step, is 

an area of active research in recent years.

Conventionally prediction error methods are used to identify parametric models. 

Subspace identification methods, with their computational advantages, have 

emerged as a powerful alternative to the prediction error methods over the 

last decade. Subspace identification methods estimate state-space representation 

directly from the input-output data and eliminate certain constraints of the 

prediction error methods such as priori structure selection and non-linear 

optimization. Subspace identification methods identify certain matrices, which 

capture the correlations between the process inputs and outputs in non-parametric 

coefficients form, as a first step by regressing the process input-output data. Lower 

order state space system matrices of a pre-specified structure are then obtained from 

these intermediate matrices. Since these intermediate matrices can be used to derive 

a predictor for the system, there have been recent attempts to design predictive 

controllers directly from these matrices. This thesis attempts to address some of 

the issues previously ignored in the subspace matrices based design of predictive 

controllers and expands the data driven subspace approach to other important 

process control areas such as closed loop identification and controller performance 

assessment.

As much as model identification is a critical pre-step to design optimal predictive 

controllers, performance analysis is an important post-step to ensure optimal 

performance of the designed controller in operation. With the process modifications
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over time the models used in the controller may need to be revisited and re-identified 

to improve the controller performance. Open loop model identification may not be 

possible whenever model changes are detected. Closed loop identification is a more 

feasible solution under such a scenario. Hence, closed loop identification, predictive 

controller design and controller performance assessment are closely related areas for 

industrial control applications.

The focus of the research presented in this thesis is the data driven subspace 

approach. The subspace matrices based approach is used for the closed loop 

estimation of the dynamic matrix and noise model; predictive controller design 

without identifying parametric models; controller performance analysis using the 

Linear Quadratic Gaussian (LQG) controller as a benchmark; estimation of 

multivariate Minimum Variance Control (MVC) benchmark without calculating the 

interactor matrix; and feedforward controller performance analysis for identification 

of the important disturbance variables. The approach used in this thesis can be 

considered a ‘data driven approach’ in the sense that no traditional parametric 

models are used. Certain intermediate subspace matrices obtained directly from 

the process data, which are identified as a first step in the subspace identification 

methods, are used in the closed loop identification, controller design and performance 

analysis.

If some of the disturbance variables are measurable, analysis of feedforward control 

performance is a worthwhile study. The subspace matrix corresponding to the 

measured disturbance variables can be easily estimated under closed loop conditions, 

if the measured disturbances are assumed to be uncorrelated with setpoint. These 

parametric matrices can be used to incorporate feedforward control into the optimal 

LQG controller and also in the minimum variance controller. This provides a means 

for the profit analysis on implementation of feedforward control on the process.

One of the important tasks that arise during the design and implementation of 

feedforward control is the selection of important disturbance variables from the 

many available measurements. Dynamic multivariate analysis of variance of the
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measured disturbance variables using principal component analysis provides a tool 

for finding those variables which contribute most to the process output variance.

Although many predictive control strategies have been proposed in the literature, 

for practical reasons, industries rely on the commercial advanced control software 

packages such as Dynamic Matrix Control (DMC) (Aspen Tech) and Robust 

Multi-variable Predictive Control Technology (RMPCT) (Honeywell), etc. for the 

implementation of advanced control systems. For the performance analysis of such 

advanced control applications understanding the working mechanism of these control 

systems is necessary. Variances based controller performance indices may be used 

as a measure of the controller performance. Comparing the designed controller 

objective with the achieved controller performance has also been suggested for the 

performance assessment of industrial model predictive controllers.

In this thesis a study is presented on the implementation of an MPC application 

on an industrial process and the performance analysis of the advanced control 

application with respect to the objective of the implementation of the controller. 

The significance of the application is that the performance of the controller can be 

measured in terms of the process operation in the optimal operating range, rather 

than in terms of the variances of the process variables.

1.2 Contributions of this thesis

This thesis combines both theoretical work and industrial applications in the 

three important areas of advanced control applications; identification, design and 

performance analysis, using a new data-driven subspace approach.

1.2.1 Contributions to the theory

The main theoretical contributions include:

1. Derivation of subspace matrices based identification algorithm for the
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identification of dynamic matrix and noise model from closed loop data.

2. Extension of the above closed loop identification algorithm to the case of measured 

disturbances in the system.

3. Derivation of a design methodology for obtaining a GPC-type predictive controller 

directly from the process input-output data using the subspace matrices.

4. Inclusion of all the ‘bells and rings’, such as,

a. Integrator in the controller law

b. Feedforward control

c. Noise model tuning

required for the practical implementation of the subspace matrices based predictive 

controller.

5. Proof of equivalence between the subspace matrices based predictive controller 

and the generalized Predictive Controller (GPC).

6 . Derivation of expressions for calculation of the LQG-benchmark of process input 

and output from the subspace matrices estimated using the closed loop data.

7. Extension of the LQG-benchmark to the case of feedforward plus feedback 

controller on the system.

8 . Deriving the LQG-benchmark based performance indicators for controller 

performance analysis.

9. Derivation of expressions for the calculation of confidence intervals for the LQG- 

benchmark obtained using the subspace matrices approach.

10. Derivation of a methodology for obtaining the multivariate MVC-benchmark 

which does not require the calculation of the interactor matrix.

11. Proof of equivalence of subspace matrices based approach to the transfer function 

approach in deriving the multivariate MVC-benchmark for controller performance
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assessment.

12. Extension of the subspace matrices based MVC-benchmark calculation to that 

of feedforward control.

13. Dynamic analysis of variance for the selection of variables for feedforward 

control, both from the transfer function approach and the subspace matrices 

approach.

14. Derivation of MPC-relevant benchmark variance expressions for performance 

assessment of advanced model predictive controllers.

1.2.2 Contributions via practical applications

The main practical applications include:

1. Application of the subspace matrices based closed loop identification method on 

a pilot scale process.

2. Application of the subspace matrices based predictive controller on a multivariate 

pilot scale process.

3. Application of the LQG-benchmark based controller performance analysis on a 

pilot scale process.

4. An industrial case study with a multi-faceted analysis of the performance of an 

advanced controller application on a settling process. Application of the MVC- 

benchmark and LQG-benchmark based performance analysis techniques on the 

industrial application is also shown.

1.3 Organization of the thesis

This thesis is organized as follows. Chapter 2 gives an overview of the existing 

subspace identification methods for the open-loop and closed-loop data. This
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chapter provides the basic background required for understanding the rest of the 

thesis. The rest of the thesis is organized in the sequence of identification, controller 

design and performance analysis techniques.

In section 3, the identification method for obtaining the process dynamic matrix and 

the noise model from closed-loop data with setpoint excitation is described. The 

main results of the paper are demonstrated through an application on a pilot scale 

process. In section 4, the design of a predictive controller directly from the subspace 

matrices is described with a demonstration on a multivariate pilot scale process.

Section 5 describes the methodology for LQG-benchmark based controller 

performance analysis using the subspace matrices and the routine process operating 

data. In section 6 the expressions for obtaining the confidence intervals for the 

LQG-benchmark curve are derived.

In section 7, the methodology for obtaining the MVC-benchmark for process output 

without the calculation of the interactor matrix is described. It is also theoretically 

shown in the same chapter that the derived subspace matrices based methodology is 

equivalent to the interactor matrix based transfer function approach derived in [42]. 

In section 8 the analytical procedure for the dynamic multivariate analysis of the 

process output variance from the feed-forward variables is described. This analysis is 

based on the numerically robust singular value decomposition (SVD) methodology.

In section 9, an industrial case study of the controller performance analysis on a 

settling process is presented.

This thesis has been written in a paper-format in accordance with the rules and 

regulations of the Faculty of Graduate Studies and Research, University of Alberta. 

Many of the chapters have appeared or are to appear in archival journals and 

conference proceedings. In order to link the different chapters, there is some 

overlap and redundancy of material. This has been done to ensure completeness 

and cohesiveness of the thesis material and help the reader understand the material 

easily.
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Chapter 2

R eview  on subspace identification  

m ethods

2.1 Introduction

Conventionally, a system is modelled by a transfer function, which is a fractional 

representation of two polynomials with real coefficients, identified using an iterative 

optimization scheme for a nonlinear least-squares fit to the data [80]. Subspace 

identification methods offer an alternative for the identification of a ‘model’ for the 

systems and are based on computational tools such as QR-factorization and SVD, 

which make them intrinsically robust from a numerical point of view. Subspace 

identification methods are also non-iterative procedures (avoiding local minima 

and convergence problems) and can be easily converted into an adaptive version 

of model identification [87]. Subspace identification methods are intrinsically 

suitable for multivariate systems identification compared to the prediction error 

methods. This section gives a brief description of the main types of subspace 

identification methods available in the literature. A more detailed presentation 

of these methods can be found in the standard book on subspace identification such 

as [93] and the special issues of the journals Automatica [1, 2] and Signal Processing 

[3], along with the references therein. Other variations in subspace identification

9
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techniques, such as DSR [102, 105], errors-in-variables (EIV) approach, and the use 

of weighting matrices in subspace identification are not presented here and can be 

found elsewhere.

Although the principal goal of the methods described in this chapter is to identify 

the state space system matrices { A, B, C, D }, certain subspace matrices are 

first calculated as an intermediate step. The rest of this thesis uses only these 

intermediate matrices for identification, control and analysis purposes. Nevertheless, 

this chapter provides some insights into the special features of the subspace 

identification methods.

2.2 Subspace matrices description

A linear time-invariant system can be represented in a state space innovations form 

as:

xk+i = Axk + Buk + K ek (2.1)

yk — Cxk T Duk -f- ek (^-2)

where uk(l x 1), yk(m x 1) and x k{n x 1) are the vectors of /-inputs, m-outputs and

n-states respectively of the system. K  is the Kalman filter gain and ek(m x 1) is an

unknown innovations process of white noise with the following covariance matrix:

E le ^ }  =  S (2.3)

ek is assumed to be stationary. The state space system matrices A, B, C, D, K  

and S  are of the dimension ( n x n ) ,  (n x l ), (m x n ), (m x l ), (n x  to) and (to x  to) 

respectively. Subspace identification starts with obtaining the measurements of the 

inputs and the outputs uk, yk for k E {0,1, ...,2N  + j  — 2)}. The data is then 

arranged in the block Hankel matrices form of N- block rows and j-  block columns,
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defined as:

MO M l . . . U j - 1

Up =
M l m 2 . . . U j

U n - I u n  ••• U N + j - 2

U n M jV +l . . .  U N + j - 1

U f  =
M jV +l MjV+2 U N + j

M21V-1 M2JV . . .  U 2 N + j - 2

VO y i  . . . y j - 1

=
V l 2/2 . . . V j

V n - i y N V N + j - 2

V n V n + i V N + j - -1

II

V n + i y N + 2 V N + j

V 2 N - 1 y 2 N V 2 N + j - 2

(2.4)

(2.5)

(2.6)

(2.7)

N  and j  should be chosen ‘sufficiently large’ (so that the data Hankel matrices 

contain enough information on the system), and typically j  max(miV, IN) (‘very 

rectangular’ block Hankel matrices), as this reduces both the computational load 

and noise sensitivity [87]. Each element in the above data Hankel matrices is a

column vector of inputs and outputs, i.e., Ui

subscripts p and /  denote ‘past’ and ‘future’ in t 

elements in the p-matrices and /-matrices are separated by N  sample instants. The 

past and future state sequences are similarly defined as

M u 2/u
and yi = . The

Mi/ 2/im

ie sense that the corresponding

X q %1 ■■■ X j ~  i

X n  X n + 1  . . .  X N + j - 1

(2.8)

(2.9)
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The following matrix input-output equations can be formed [87] by recursively 

substituting the system equations (2.1)-(2.2)

(2 .10)

( 2 .11)

(2.12)

where TN is the extended observability matrix, HN and H SN are the lower triangular 

Toeplitz matrices containing the impulse response coefficients/Markov parameters 

of the system due to the deterministic inputs and the unknown stochastic inputs 

respectively. An  and A SN are the reversed extended controllability matrices of 

{A, B }  and {A, K }  respectively. The subscript, N,  follows from the number of 

block-rows taken in the block Hankel matrices as shown above. The system related 

matrices are expressed as

C

CA
(2.13)

CAN~l

D 0 ... 0

CB D  ... 0
(2.14)

CAN~2B CAN- 3B  . . .  D

0 ... 0

C K I m  -  0
(2.15)

CAn ~2K  CAn ^ K  . . .  Im

A n =  AN~l B An~2B  . . .  B (2.16)

A sn =  AN~lK  An ~2K  . . .  K (2.17)
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By substituting equation (2.11) in equation (2.10) we can write

X f ANr ]N (A N - A Nr'NHN) (A aN -  A NTfNH sN)
YP
Up

En

(2.18)

where t represents the Moore-Penrose pseudo-inverse. Substituting equation (2.18) 

in equation (2.12), we can write

where

Yf — LwWp +  LuUf +  LeEf

Lw — > subspace matrix corresponding to the

states

Lu — > subspace matrix corresponding to the

deterministic inputs

Le — v subspace matrix corresponding to the

stochastic inputs

The matrix Wp is formed by the concatenation of Yp and Uv as

Wp = YP
U„

(2.19)

(2 .20)

If we take a closer look by expanding subspace matrices (see figure 2.1), we observe 

that the first row of the subspace matrix Lw is the ARX model of the system. As 

N  — y oo, the last row of subspace matrices Lu and Le transform into impulse 

response models for the process and disturbance respectively.

2.3 Regression techniques

The subspace matrices can be identified from the data Hankel matrices using 

regression techniques. Several regression techniques, including the usage of
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weighting matrices, have been suggested in the literature for numerical advantages 

and special cases of data collection. The simplest regression method is the least 

squares method. The conditions on the process data for using the regressions 

techniques, as evident from equation (2.19), are as follows:

i. The deterministic input Uk is uncorrelated with efc, and is not identically 

zero,

ii. Uk is persistently exciting of order 27V, and

iii. The number of measurements goes to infinity, j  — > oo.

The open loop identification of the subspace matrices using the least squares solution 

involves finding the prediction of the future outputs Yf  using a linear predictor:

Yf  = LmWp + LuUf

The least squares prediction Yf can be found by solving an optimization problem:

mm
L.

Lw
Uf

|2
If

Yf  is found by the orthogonal projection of the row space of Yf  into the row space 

spanned by Wp and U/ defined as [93]:

Y, =  V
w„

U f
(2.21)

) - ( 2.22)

This projection can also be implemented in a numerically robust way with a QR- 

decomposition [91, 92, 93, 102, 119] or using PLS [105].

r  -1 t r i
■ Wp -

i i

-

Lw Lu =  Yf
. Uf .

=  Yf w ?  u j ( Wp Uf

2.4 Open loop subspace identification m ethods

In principle, the subspace methods can be described as estimation of a rational 

covariance model from observed data followed by stochastic realization [79]. In the
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open loop subspace state space identification methods, the sequence of the future 

states, Xf ,  and the extended observability matrix, T/y, are estimated using equations 

(2.11)-(2.12) and the estimation requires that the pair {A, C}  is completely 

observable since only the modes that are observable can be identified from observed 

I/O-data. Furthermore, the pair {A, B K  } requires to be controllable. This 

implies that all modes are sufficiently excited (persistent excitation). Note that even 

though the deterministic subsystem can have unstable modes, the excitation Uk has 

to be chosen in such a way that the deterministic states and output are bounded 

for all times. Also the deterministic and stochastic subsystem may have common 

or completely decoupled input-output dynamics. If the pair {A, C } are observable, 

then the rank of Tn  is equal to the state order n.

Subspace identification involves estimating a basis for the states of the system 

from the data Hankel matrices. It must be remembered that the states identified 

using these techniques do not have any physical meaning. The different subspace 

identification techniques available in the literature differ in the manner in which 

this basis of the state space is estimated. The different choices for a basis differ in a 

transformational matrix T  that transforms a model {A, B ,C ,D  } into an equivalent 

model {AT, T~XB, CT, D } [61].

The numerical tools used in the estimation of this basis range from SVD (used in 

[87], N4SID [93]), QR-decomposition (used in MOESP [119, 120, 121]), canonical 

variables (used in CVA [72, 73, 74, 75, 76, 77,107]), etc. Some subspace identification 

methods also differ on how the disturbances are characterized.

2 .4 .1  N 4 S I D

N4SID can be explained as a linear regression multi-step ahead prediction error 

method with certain rank constraints [52]. Using the SVD approach the reduced 

order observability matrix, Tn, and the non-steady state Kalman filter estimate of 

state sequence, Xf ,  are obtained. Under the assumptions listed in section 2.3 the
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following oblique projection is defined:

0 N = Yf / UfWp
r Sn o

1 1Ei

•

Ux U2

J o 1
o

•2S i

(2.23)

(2.24)

where the last l(N  — n)’ singular values are approximately zero (or very small 

compared to the first ‘n ’ singular values) and the projection A/pC  is defined as 

the oblique projection of the row space of A  £ 5Rpx-J along the row space of B £ $tqxi 

on the row space of C £ 9ftrxj:

r
A / — A CT Bt

CCT CBT 

BCT BBT
(2.25)

The matrix On  is equal to the product of the extended observability matrix and the 

estimated Kalman filter state sequence:

On  =  T n X n 

Therefore Tn and X n are determined using the SVD as

r n = UrSZ 

xn = skvT

(2.26)

(2.27)

(2.28)

See [93] for the derivation of the above result. As can be seen, the system order is 

obtained using the SVD function.

The state space matrices A, B, C, D, K  and S  can then be estimated by 

using either the reduced order observability matrix or the state sequence estimate 

[11, 73, 75, 91, 92, 93, 102, 105],
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2 .4 .2  M O E S P

MOESP [119] uses QR-decomposition, followed by SVD, as the numerical tools to 

obtain the extended observability matrix:

(2.29)
Uf Ln  0 0 Q1

w p = L21 L22 0 Q2

y f Lzi L32 T33 Qz

and

L.32

r I
1 1

0

11

Ux U2 0

1 1
0

1

Sr
1

(2.30)

The reduced order observability matrix of the system is derived as

r n =  U-lSI  (2.31)

(2.32)

Hence the system order is obtained using the SVD. From the reduced order 

observability matrix, Tra, the system matrices A  and C  are derived. Using {A, 

C}  and r n with the process input-output data, the rest of the system matrices are 

identified.

2 .4 .3  C V A

In this method canonical variables are used to provide an ordered basis of the state 

space, ordered in terms of the predictive ability of the states [72, 73, 74, 75, 76, 77, 

107]. The canonical correlations between ‘the past, Wp, conditional to the future 

inputs, U /  and ‘the future outputs, Yf, conditional to the future inputs, U /  are 

used as the basis of the state space. If k is the true and finite state order and there 

is sufficient information to reliably determine the order k, then the first k canonical 

variables give an optimal selection of system states in terms of maximizing the 

likelihood function [73]. The CVA [75, 73, 107] algorithm uses Akaike Information 

Criteria (AIC) to determine the state order.
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Note that Van Overschee and De Moor [92] have classified the above three methods 

as special cases under a unifying framework and the difference between the three 

algorithms are expressed in terms of the weighting matrices involved in the SVD. 

Other variations in the subspace algorithms will also calculate the same result (upto 

within a similarity transformation) provided the same system order n is chosen and 

the number of data points go to infinity (since all algorithms are asymptotically 

unbiased) [92].

2.5 Closed loop subspace identification m ethods

Closed loop data cannot be used with the above methods for model identification 

because of the correlations between Uf and E f  in equation (2.19) (see figure 2.2). 

Several approaches have been used to overcome this constraint. The various closed 

loop subspace identification approaches reported in literature can be summarized as 

follows:

2 .5 .1  N 4 S I D  a p p r o a c h

The N4SID approach [94] makes use of only the process input-output data (C\ =  0; 

C2 =  C; w(t) =  0; r(t) does not have to be measured) and the knowledge of the first 

few impulse response (Markov parameters for multivariate systems) of the controller. 

The controller equations can be written as

4+1 =  A V k + B ‘yk (2.33)

n„ =  rk - C cxck - D cyk (2.34)

where { A°, B c, Cc, Dc } are the controller system matrices. The controller cannot 

be unstable.

Following the notation in [94], define Z0\i~i as the data Hankel matrix of the 

variable Zk with i-block rows and j-block columns (Zo|i-i is built similar to the data 

Hankel matrices defined in equations (2.4)-(2.7)). Certain pseudo data matrices are
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constructed from the input and output data Hankel matrices using the knowledge 

of the controller IR/Markov parameters:

Np\q — Uq\2n ~i + 

Mp\q = Up\q + Hp_q+1Yp\q

(2.35)

(2.36)

where 0 < p < q < 2N  — 1, H c is the lower triangular block-Toeplitz matrix for the 

controller, and Np\q and Mp\q (not block Hankel matrices) are uncorrelated with the 

disturbances. Under the assumptions that:

1. rk is uncorrelated with the disturbances.

2. The matrix iV0|2jv-i has a full row rank 2mN.

3. j  — >■ oo and

4. The closed loop problem is well posed, i.e. (Ii + DDC) is invertible, then

U q \ N -  1
r  -|

—  Y n \ 2 N - i /
N o \ 2 N - 1

T o | a t - i

_ M n \ 2 N - 1
Y n \n - i

Y n \ 2 N - i /

Therefore, define the oblique projection

O n  =  Y n \ 2 N - i / i

Ui U2

— Pn X n  +  Q n M n \2N-$-37)

A h v |2 iV - l

U 0 \ N - l

Y q \ N - 1

1 S n 0

- 0 0 V S

(2.38)

(2.39)

where state order =  rank(Ojv) and estimated states sequence X N =  SHV^. A state 

space model for the process is subsequently identified from the estimated states.

The limitation of this method is the requirement of the knowledge of the controller. 

In industrial systems, the accurate knowledge of the IR coefficients/ Markov 

parameters of the controller may not always be available.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

2 .5 .2  M O E S P /  C V A  a p p r o a c h e s

The overall strategy of these methods is similar to the joint input-output 

identification strategy. These methods do not require the knowledge of the

controller. Apart from setpoint excitation, these approaches [73, 113, 122, 71] 

need an additional dither signal excitation, w(k),  added to the controller output, 

u e(k), to make the process input independent of noise. CA =  C  and — 0. 

r{k) is the setpoint which is a white noise sequence. v(k)  is the white noise 

(disturbance) added to the process output, yk, through a noise model, F.  Then

the measurable input vector is 

ue(k) e{k) u{k) y ( k )

w(k) r(k) and measurable output vector is

, where u e = Ce  =  u — w  and e = r — y. Using this 

information a global state space model is first identified using MOESP technique. 

The global state space model is denoted as:

x(k  +  1) =  Ax(k)  +
r  - w(k )

B a £?2
r (k )

(2.40)

ue(k) c A D u £>12

e(k) c 2 £>21 £>22
— x(k)  +

u(k) C3 £>31 £>32

y (k ) _ C A _ £>41 £>42

w(k)  

r ( k )
(2.41)

x(k)  has an order np + n c, where np is the order of the process, P,  and n c is the order 

of the controller, C. The state space representations between ‘w and y’ and ‘w and 

w’ are given by the system matrices [A, B A, CA, £>41] and [A, B x, C3, D3i] respectively 

1122).

Using the rules for concatenating and inverting of state space models, the state 

space models for the process, P,  and the controller, C , are obtained as:

P  = [4 ,B 1,C 4,J}4i][A ,B 1,C 3)D 3 il-1

=  [A, B x,C a, D ai][A -  B 1D n 1C3, B i D ^ ,  - D £ C 3, D ^ 1}
/ A - B 1D 31C3 B i B . l , 1 r  1

3 3 c 4 - d a1d ^ c 3
V

0 A  —  B\D$i  £>3 B 1D3}
, DAADai
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and

C =  [A,B2,C3,D 32][A,B2,C2,D^}~1

A — B2D22C2
>

B2D22
5 C3 —D%2D22C2

0 A — B 2D22 D2 B 2D22
(2.43)

The overall deterministic state space model is first identified using MOESP. The 

order selection in this step needs the specification of the sum of process model order 

and controller order [122]. The individual plant and controller model orders are 

determined/selected in the subsequent model reduction step.

CVA approach [71] uses practically the same approach as MOESP except that the 

CVA algorithm is used to identify the state space matrices of the global closed 

loop system, with AIC used in the selection of the state order. The state space 

representation is then converted to the transfer function representation followed by 

the concatenation and inversion of the closed loop transfer functions to obtain the 

open-loop process transfer function.

2.5.3 Ljung and M cKelvey’s approach via estimated predictors

In the subspace algorithms, the state space matrices are identified from the estimated 

states. Hence this approach tries to reconstruct the ‘Kalman states’ from the past 

inputs and outputs by picking a basis from the estimated predictors. As a first step 

[81] an (na, n6)-order ARX-model is identified from the closed loop input and output 

data. The ARX model is used to calculate the j-step ahead predictors y(t +  j\t) 

from data by replacing ‘future’ u(t) in this prediction with zero. The vector of j-step 

ahead predictors is formed as

Ym(t) =
y(t + i\t) 

y(t + m\t)

(2.44)
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The number of states, n — rank[Ym(t)} for m  > n. The states are obtained using 

the projection

x(t) = LYm{t) (2.45)

for some matrix L. In summary, the identification strategy is,

1. Find y(t + j\t) for j  = 1,

2. Form Ym(t) for t — 1,..., N  and estimate its rank n.

3. Select L to obtain a well conditioned basis and x(t) — LYm(t), t — 1 , N.

4. Find the matrices {A, B, C, D, K  } by using the estimated states.

Note that the states are identified from the estimated predictors and not directly 

from the data, unlike the previously illustrated approaches. The authors [81] state 

that this method is only a ‘feasible’ method rather than the ‘best way’ of identifying 

systems operating in closed loop.

This concludes the review of some of the subspace identification techniques existing 

in the literature, which provide the background for understanding the rest of this 

thesis.
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ARX Model
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G, G0 0 . . .

+ g2 G, G0 ...

U<-\ .
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IR Model of 
deterministic input

u, I 0 0 . . .  o' e ,+ i

u,+\ A 7 0 . . .  0 e,+2
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stochastic input

Figure 2.1: Subspace representation
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Figure 2.2: Closed loop system for subspace identification.
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Chapter 3

Estim ation of Dynam ic m atrix and 

noise m odel for M PC using closed  

loop data

1

3.1 Introduction

Model predictive controllers (MPC) have found many successful applications in 

process industries for more than two decades. One of the key aspects of MPC 

is the prediction of the future process response and minimization of the output 

deviation from the setpoint by manipulating the inputs. A model for the process is 

required to make these predictions based on the past data. Hence an MPC design 

starts with first identifying a nominal model for the process. One of the industrially 

successful predictive control schemes is the Dynamic Matrix Controller or DMC, 

which explicitly uses a lower triangular matrix called ‘dynamic matrix’ containing
1A version of this chapter has been published as a journal paper 

R. Kadali, and B. Huang. Estimation of the Dynamic Matrix and Noise Model for Model Predictive Control Using 

Closed-Loop Data. Ind. Eng. Chem. Res., 41(4); 842-852, 2002.

24
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the step response coefficients corresponding to the deterministic input (s) to the 

process [15, 16]. Many other MPC formulations also use the dynamic matrix in one 

way or the other [10, 78, 88]. For constructing the dynamic matrix, in the case of 

DMC, a step response model for the process is first obtained from the open loop 

data. The step response coefficients are arranged in a specific lower triangular form 

known as the dynamic matrix. However, due to safety reasons and other practical 

limitations, open loop operation of the process may not always be possible or in some 

cases there may be a hidden feedback in the system. Estimation of the dynamic 

matrix from closed loop data is desired in such cases. It has been shown [40] that 

if the model is used for model-based control design then the favorable experimental 

conditions are actually under closed-loop condition.

Closed loop identification refers to the identification of process model and noise 

model using the data sampled under feedback control. Correlation between the 

disturbances entering the process and the input offers the fundamental limitation 

[4, 27, 32, 80, 81, 110] for utilizing the standard open loop identification methods 

with closed loop data (see figure 3.1). Several closed loop parametric model 

identification methods have been suggested in the literature which require either 

certain assumptions about the model structure or knowledge of the controller model. 

The closed loop identification methods found in the literature are broadly classified 

[27] into Direct [108], Indirect [18, 41, 118] and Joint input/output [43] identification 

methods. See [17, 27, 90] for a review on the features and limitations of different 

closed loop identification methods.

The subspace identification method is a relatively new approach used for the state 

space model identification. In this approach, certain subspace matrices of the process 

are first identified, by regression of the data Hankel matrices (refer to chapter 2), 

from which the state space matrices are extracted. Three subspace matrices are 

obtained as a first step of the subspace identification methodologies [91, 92, 93]. 

The subspace matrices {Lw, Lu and Le} (refer to chapter 2) correspond to the 

states, the deterministic input(s) and the stochastic input(s) to the system. These 

subspace matrices are directly calculated from the input/output data matrices in
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a single iteration compared to the iterative schemes used in the prediction error 

methods. Moreover, the subspace identification methods minimize the summation 

of the multi-step ahead prediction errors during the estimation of the subspace 

matrices. This advantage is however lost when lower order state space system 

matrices are estimated from the subspace matrices. Hence directly using the 

subspace matrices is a very appealing idea for designing the predictive controllers 

[23, 25, 26, 56, 59, 103, 104, 106]. The subspace matrix corresponding to the 

deterministic input contains the impulse response coefficients (Markov parameters 

for multivariate processes) of the deterministic input(s) in a lower triangular form. 

Similarly the subspace matrix corresponding to the stochastic input contains the 

impulse response coefficients/Markov parameters of the noise model. This allows 

the alternative approach for direct estimation of the dynamic matrix and noise model 

from the open loop input/output data matrices. However it has been shown [27, 80] 

that the open loop subspace identification methods cannot be directly applied to 

the closed loop data.

Identification of the subspace matrices from closed loop data has recently received 

an attention by a number of researchers [24, 25, 26, 81, 94]. Van Overschee and 

De Moor [94] proposed an N4SID (Numerical subspace state space identification) 

based method for closed loop subspace identification which requires the knowledge of 

the first N  impulse response coefficients of the controller, where N  is the maximum 

order of the state space model to be identified. The knowledge of the impulse 

response (IR) coefficients of the controller are required if one wants to identify all 

the three subspace matrices and subsequently a state space model for the system. 

Ljung and McKelvey [81] presented a method for the identification of subspace 

matrices from closed loop data using estimated predictors and stated that their 

algorithm is merely an illustration of a ‘feasible’ method rather than the ‘best way’ 

of identifying systems operating in closed loop. MOESP (MIMO output error state 

space model identification) and CVA (Canonical variate analysis) approaches are 

also proposed for the identification of a state space model using closed loop data 

[72, 73, 74, 75, 76, 77,107,113,122]. In addition to the setpoint excitation, MOESP/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

CVA approaches use an external white noise signal addition to the controller output 

to make it independent of the noise. A closed-loop state space model is first 

identified from the closed loop data from which the open loop state space matrices 

are retrieved. The principal goal of all the above approaches is the identification of 

a state space model for the system using closed loop data.

Even though the subspace identification method is used as a vehicle, the goal of 

the identification method from closed loop data proposed in this chapter is not the 

estimation of state space system matrices {A, B ,C, D and K }  but the estimation 

of the dynamic matrix of the process and the noise model in impulse response 

form. It is shown in this chapter that if we want to estimate only two of the 

subspace matrices, i.e. only those corresponding to the deterministic and stochastic 

inputs, from closed loop data, then the knowledge of the controller impulse response 

coefficients can be avoided. We can then obtain the process dynamic matrix from 

the deterministic input subspace matrix and the noise model in impulse response 

form from the stochastic input subspace matrix.

The method proposed in this chapter can be considered as a non-parametric 

approach for closed loop identification. Non-parametric model identification 

methods, although known to give less bias error due to less model structure and 

order limitations, could result in higher variance (due to the larger number of 

parameters) compared to parametric model identification methods. This is a tradeoff 

between bias error and variance error in process identification. Actual process is 

typically high-order and nonlinear and it is difficult to be represented by a single 

linear parametric model. Consequently, bias error is inevitable in practice. On the 

other hand, it is known that the variance error can be reduced with the increased 

sample size [80]. Therefore, depending on the application, for example, depending 

on the data sample size, one can choose to use the parametric or nonparametric 

identification method.

However, non-parametric model identification methods do have some practical 

advantages. Consider the case when we want to identify a process model for
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designing and implementing a model based predictive controller. Even if we first 

identify a parametric model for the process (using closed or open loop process data), 

the process model has to be eventually transfered to a non-parametric (impulse or 

step response models) form for designing the MPC. The question is this additional 

intermediate step may introduce an additional error and inconvenience. When 

it comes to industrial implementation, non-parametric model based MPCs have 

shown a considerable success rate. The idea here is why not directly identify a non- 

parametric model and avoid choosing a ‘model structure’, which is unknown and a 

prerequisite for parametric model identification methods.

The remaining of the chapter is organized as follows. Section 3.2 gives the description 

of the estimation of the process dynamic matrix and noise model from closed loop 

data. Remarks on the different steps of the closed loop identification along with 

some guidelines for the practical implementation of the algorithm are provided 

in section 3.3. The closed loop identification method is extended to the case of 

measured disturbances in section 3.5. The application of the proposed method is 

explained using MATLAB simulations in section 3.6 and implementation on a pilot 

scale process in section 3.7. Conclusions from the above work are given in section 

3.8.

3.2 Estim ation of the process dynamic m atrix and th e noise 

m odel from closed loop data

Consider the case when the system (2.1)-(2.2) is operating under closed loop with a 

linear time-invariant feedback-only controller Q, expressed in transfer function form

as

uk =  Q (rk - y k) (3.1)

where rk is the setpoint for the process output at the sampling instant k and (rk—yk) 

is the output deviation from the setpoint. Assume that the controller does not 

cancel any plant dynamics. The control system can be expressed in state space
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representation as

x\k+i) = Acx°k + Bc(rk -  yk) (3.2)

uk =  Ccxck + Dc(rk -  yk) (3.3)

By recursively using the above state space equations we can write the input/output 

equations for the control system

UP = r  ■kx; + H%(Rp - Y p)

X f A ? X f + A%(Rp -  Yp)

U, = r NX-j + H'N( R , - Y t )

(3.4)

(3.5)

(3.6)

where

C-c Dc 0 .  0

IIf-l CcA c
; h% =

CcBc Dc .  0

_ CcA?~' _ CoA?~2BC CcA nc ~?'Bc . . Dc

II<1 A ^ B e A?~2BC Bc

III1 A A l t !  nr»CX 0 . .

rHi 5
II*

r p C  r p  C

X N  X N + 1 . . .  S A T + j- i

The matrices Rp and R f  are constructed in the same way as shown in equations 

(2.4)-(2.7). Using equation (3.4) in equation (3.5) we can derive

up
(Rp -  Yp)

(3.7)

Using equations (2.12) and (3.6) we can derive

(I + Hn H ^ T n

. u f .

{I + Hn H cn ) - 1Hn T\ 

-(/ +  H cNHN)~lH cNTN ( /  +  H cNHN) - lTcN
X f
X f

+ Ri
(.I + H cNHN) - lHf

(I + H cn Hn )~1H cn H sn
+ Et (3.8)
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T heorem  3.1 The input output equations for the closed loop system in equation 

(3.8) can be equivalently expressed as follows

where

Dn =

Tcl =^ u r

T C L  _
J-J a to

Yf

Uf

Yp

Up

Rp

Er,

t  C L1 1 „ ' l c l  ’yr
R f  +

ye

T C L  
ur

t  CL
LiUe

Et

~ ( I  + H cNHN) - lH cNH sN]

Lcwl = (I + Hn H cn ) - 1Hn H[N
r C L  
Jye

(3.9)

N

(3.10)

(3.11)

(3.12)

Proof: Consider the equation (3.8):

'  Yf '

. Uf  .

( /  +  HNH cN)~lTN {I +  Hn H ^ H n F 

-(I +  H cNHN)~lH cNTN (I + X f

+
(I + HNH cN)~lHNH cN 

Jc1N

R f  +
Tsl N(i  + Hn H ^ h :

N

Et

Using equation (2.18) and (3.7) in the above expression, we can express

(I + Hn H ^ - ' T n

$i

' L
_ - ( I  + h cn h n ) - 1h cn t n (I + ii , LuL .

Yp

Up

Rp

E„

where

r CL  
V

Li

r 2 —Ly ~
T 3 _
y

l \  L l  L \  L i
t C L  _  
L u ~ L i L l  L \  L i  

( i  + //.vff;,.)-'r ',.4 'vr;v -  (7 +  HNH cN)~lHNr N ( a j ,  -  

(7 +  /7v//:v r ' r . v ( a n  -  ANTfNHN) +  (7 +  77;V 7/s,, j - 17/.v r%. yl;v (r(v) t 

(7 + 77JV775,)-177„r5, (A£, -
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r4v

Ll

T 3L u

Lt

= {I + HNHti) - 1TN (*!>N - A NT'NH aN)

=  - ( /  +  -  ( /  +  H ^H n ) - 1̂  [A^ -  A ?

=  - ( /  +  (Ajv -  A n T%Hn ) + ( /  +  ( r cAr)t

=  (J +  ^ ^ - ^ f A ^ - A f ^ ) ^ ]

=  - ( /  +  H f f H N ^ H f f r s  (A sn -  ANTlfHsN)

Therefore, we can write

" Yf Lcl r C L

— LPDP T yr
R f  +

ye

. u f .
r  C L  

ur
r C L  
^ue

Ef (3.13)

With the above theorem, the estimation of the closed loop subspace matrices using 

the closed loop data is essentially an open loop identification problem. We can define

E f'  V s ' M p +

j C L
yr R f  +

r C L
ye

. u f . . .

r C L
ur

t  C L  
ue

where Mn
yP
up
Rp

Prom the above equation, and since R f  can be chosen as

a random binary signal uncorrelated with Mp and Ef, the closed loop subspace 

matrices {L%L, L^f', LyL, Lcp̂ }  can be obtained as a solution of the least squares 

estimation problem. {Uf and Yf} are found by the orthogonal projection of the row 

space of {Uf and Yf} into the row space spanned by {Mp and Rf}.

t
r  C L  r C L

u ur = Uf

11

= Uf K

r C L  t  C L  
y yr =  Yf

Mp

Rf

Mp

Rf
M TP R j r 1 (3.14)
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Yf M j R j
R■f

M l  R l - l (3.15)

This projection can be implemented in a numerically robust way with a QR- 

decomposition. The first row of Yf  represents the one-step ahead predictions for 

the input. Therefore the white noise disturbance sequence entering the process can 

be estimated as

r lT
e f  —  & N  & N + 1 ••• & N + j - 1 =  17(1 : m ,:) -  1)(1  :m . :) (3.16)

where »(1 : m , :) represents a vector containing the elements from rows 1 to m  and 

all the columns of the matrix. Let us define

S , =  Uf — Uf =  L % E , (3.17)

The block Hankel matrix, Ef,  for the noise can be constructed using the estimated 

noise, e/. Therefore, is estimated as,

- c l (3.18)

3.2.1 Estimation of the process model

Consider the following identities:

(.AB r 1 =  f i - U - 1; A~1B = A - \ B - 1) - 1 = ( B - 'A ) -1

we can write

L °l = {I + HNH cNy lHNH cN = {{Hn H cn ) - \ I  + Hn H cn ) Y 1

= {(Hn H ^ ) -1 + 1 }-1 (3.19)

L l l  =  (I + H cNHN)~lH cN = {{Hcn ) - \ I  +  H ^H m) } -1

= +  Hn } - 1 (3.20)

Therefore,

=  { ( f W f t r '+ Z } - 1 P i l - '  +  S . )

=  { ( ( ^ ) - 1+ f f N]-1[(ifN^ ) - 1+ / ] } - 1
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{[(ffS,) -1 + ^ 1- H W )- 1 + ffjv] / # } - 1

= H,IN (3.21)

Hence Hn , which contains the Markov parameters corresponding to the 

deterministic input, can be identified as

V  —  T C L (  T C L \ —1 t t j s f  Jj y r  y £ j u r  j (3.22)

G0 0 ... 0

Gi G0 ... 0

  0

Gn - i ..........  0

where Gi represents the Markov parameter of the deterministic input of the i-th 

delay. The dynamic matrix containing the system step response coefficients, Sn , 

can be obtained as

Sn  =

so 0 ... 0 G0 0 ... 0 I  0 ... 0

Si so ... 0 Gi Go 0 I  I  ... 0

.................. 0 .................... 0 ...............  0

s n - i  ............... 0 Gjv-i .........  0 I  I  ... I

(3.23)

HN

I  0 

I  I

0

0

0

I

(3.24)

I  I

where Si represents the ith step response parameter of the deterministic input.

3.2.2 Estimation of the noise model

The noise model can be estimated from the residuals of the input data. Using the 

definitions for and provided in theorem-1, the noise dynamic matrix is 

obtained as

H'n  =  (3.25)
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Hpj contains the impulse response coefficients corresponding to the stochastic input.

Hi* =

I

u

JN —1

0

I

0

0

0

0

(3.26)

where L; represents the ith impulse response coefficient /  Markov parameter of the 

stochastic inputs. Thus the first column of H SN represents the noise model H(z~1) 

in IR-form.

H(z  1) — I  -\- L \ Z  * + L 2Z 2 T ... + L iZ  * + ... T L n - i Z - N + 1 (3.27)

3.3 The algorithm

The following are the steps in the proposed closed loop identification:

S te p  I. Construction of the data Hankel matrices {Up,Uf ,Yp, Yf , Rp, Rf }  using 

the closed loop data. By linear regression the deterministic closed loop subspace 

matrices are identified.

Remarks: The guidelines presented in section 3.4 can be used in the selection of 

the number of rows and columns. By adding a persistent exciting signal, which is 

uncorrelated with the process noise, in the setpoint, we ensure unbiased estimation of 

the closed loop subspace matrices. This step is an open loop identification problem 

with the setpoint change being the external inputs and the closed-loop subspace 

matrices as the model to be identified.
i

S te p  II. Estimation of the vector of noise data from the ‘output data Hankel matrix’, 

and ‘residual data Hankel matrix’ corresponding to ‘input data Hankel matrix’. 

Estimation of the stochastic closed loop subspace matrices.

Remarks: The first row of the residual matrix (Yf — Yf) represents one-step ahead 

prediction errors and an unbiased estimate of the noise entering the process since 

the feedback does not effect the current noise. The matrix, 5 f  — (Uf — Uf) is the
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residual data Hankel matrix corresponding to the input. The noise data Hankel 

matrix, Ef,  is constructed using the vector of estimated process noise. By linear 

regression, the stochastic closed loop subspace matrix, L\, is estimated.

S tep III. Retrieving the open loop deterministic subspace matrix from the closed 

loop subspace matrices.

Remarks: Closed loop subspace matrices are just the open loop subspace

matrices weighted by the subspace matrix corresponding to the sensitivity function. 

The analogies between the process/noise transfer functions and the open loop 

deterministic/stochastic subspace matrices are obvious. The method presented 

in this chapter is parallel to the approach used in ‘joint input/output closed 

loop identification method’, which is well known in the transfer function domain. 

However with the ‘joint input/output closed loop identification method’, inverting 

the transfer function (or transfer function matrices for the multivariate systems) can 

give problems such as, the resultant transfer function (matrix) may be improper or 

of high order. No such problems are encountered in the subspace matrices based 

approach proposed in this chapter since we are dealing with matrices instead of 

transfer functions, provided the closed loop subspace matrices are of full rank. See 

the guidelines in section 3.4 for avoiding the closed loop subspace matrices from 

becoming rank deficient.

S tep IV. Retrieving the open loop stochastic subspace matrix from the closed loop 

subspace matrices.

3.4 Some guidelines for the practical im plem entation o f the  

algorithm

Building the data Hankel matrices is the first step in all the subspace based 

identification methods. If one wants to identify a state space model for the system 

using the subspace identification methods, then the number of rows, N , is chosen to 

be higher than the order of the state space model to be identified [93]. The number
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of columns, j ,  should tend to infinity. Since we have finite data in real situations we 

can only choose a finite j ,  the maximum number of columns that can be constructed 

with the available data. As far as the closed loop identification method presented 

in this chapter is concerned, we are identifying only the subspace matrices and not 

the state space system matrices. Here are some guidelines that can help in deciding 

the number of rows and columns of the data Hankel matrices:

a. To obtain the complete process model, the number of rows, N, should be chosen 

such that the last impulse response coefficient (last element of the first block-column 

of Hn ) is close to zero.

b. The choice of the number of columns really depends on the excitation signal used 

for identification. The richer the excitation signal the fewer the number of columns 

required. The number of columns is chosen in such a way that the corresponding 

impulse response coefficients in the columns of the subspace matrices are very close. 

The higher the number of columns taken in the data Hankel matrices the closer will 

the corresponding coefficients in the columns be.

c. It may be a good idea to check the rank of the closed loop subspace matrices 

before retrieving the open loop subspace matrices. If the closed loop subspace 

matrices are rank deficient then either decrease the number of rows or increase the 

number of columns of the data Hankel matrices. However decreasing the number of 

rows decreases the number of Markov parameters obtained in the identified subspace 

matrices.

d. Numerical tools like QR-decomposition can be used to avoid numerical problems 

associated with the inversion of large matrices, specially in step 1.

e. Multivariate systems: Although, in principle, all the derivations in this chapter 

are applicable to multivariate systems, numerical problem is a potential concern. 

As the number of variables increases the size of the data Hankel matrices can 

be prohibitively high, specially for systems with a long settling time. MISO 

identification instead of MIMO identification can reduce the size of the data Hankel 

matrices. Slower sampling can be used for processes with slow dynamics. Numerical
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techniques such as QR-decomposition can be used to deal with the inversion of large 

matrices for multivariate systems.

f. Studies on derivation of statistical properties for subspace based identification 

methods are an area of active research and have been considered in [53, 67, 93, 119] 

and the references therein, where it has been shown that under open-loop condition 

subspace identification can yield a consistent estimation of the parameters. As the 

proposed method in this chapter is equivalent to an open-loop subspace identification 

problem, the same conclusion can be applied.

3.5 Extension to  the case of measured disturbance variables

The closed loop subspace based identification method explained in the previous 

section can be extended to the case where some measured disturbances are 

available for feedforward control. Consider the case when measurements of some 

of the disturbance variables are available and we want to identify the subspace 

matrix corresponding to these variables. Let vt(h x 1) represents the vector of 

measured disturbance variables. Assume that the measured disturbance variables 

are uncorrelated with the setpoint changes. Consider a feedback-only controller 

described in equations (3.1)-(3.6) acting on the process represented by

xk+1 = A xk +

Vk Cxk +

B B„

D Dv

uk 

vk 

v*k

Vk

+ K f ek

T

(3.28)

(3.29)

The matrix input-output equations (2.12) and (2.19) are modified to include 

measured disturbances

Yf =  T  NX bf  +  HNIJf +  HvNVf  +  H%Ef 

=  LbwWp +  LuUf  +  LvVf  +  LeEf

(3.30)

(3.31)
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where

T T V

N

Dv

CBV

0

D°

0

0

w ;  =

CAn ~2B v CAn ~3B v ... Dv

YP

YP

(3.32)

(3.33)

and, Vp and Vf are the ‘past’ and ‘future’ data Hankel matrices of vt defined in the 

same way as those corresponding to ut defined in equations (2.4)-(2.5).

Similar to equation (3.14) we can derive

Y f ' 1%L Lcl Lcl r C L±Jq.£>
ZHZ y Mp + yr R f + yv vf + ye

. Uf  .

t CLur r  CL  ^uv t C LL/ue
Ef

where in addition to the definitions in equations (3.11)-(3.12) we used

+ L °L = ( I + H NH},)-l irN (3.34)

The closed loop subspace matrices are identified by data projections as shown in 

section 3.2. The matrix containing the Markov parameters corresponding to the 

measured disturbance variables is obtained from the closed loop subspace matrices 

with

T T V  __ ( t C L \  — I t C L
n N — K^ur J nuv (3.35)

3.6 Closed loop simulations

Certain comparative simulations were carried out in MATLAB for two cases, 

univariate and multivariate systems, between the non-parametric approach 

presented in this chapter, MOESP [122] and CVA [71, 113]. The purpose of 

this exercise is to check the validity of the proposed non-parametric approach
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of closed loop identification for both univariate and multivariate systems, which 

does not require controller knowledge for closed loop identification, and also to 

see how it performs compared to the existing subspace identification methods, the 

MOESP/CVA approaches2.

3.6.1 U nivariate  system

Consider the following system [93]:

0.6 0.6 0 1.6161 -1.1472

Xk+l -0 .6 0.6 0 xk + -0.3481 uk + -1.5204

0 0 0.7 2.6319 -3.1993

Vk -0.4373 -0.5046 0.0936 x k + [—0.7759]ufc +  ek

where x k, yk, uk and ek represent the system state, output, input and the unmeasured 

random noise respectively at time k. A PID controller, 0.1 +  +  0.08s, is tuned

online for the above system for good setpoint tracking and disturbance rejection 

performance. We assume that the controller knowledge is unknown for the closed 

loop identification. ‘Close loop input/output/setpoint’ data is obtained by exciting 

the system using a designed ‘RBS’ signal of magnitude 1 for the system output 

setpoint and random white noise of standard deviation 0.1 in MATLAB-Simulink. 

The closed loop data is plotted in figure (3.3). Using the closed loop subspace 

identification method presented in section 3.2, with rows(iV) =  30 and columns(j) 

=  2000 in the data Hankel matrices, the subspace matrices Hn  and H SN are 

identified. Due to the presence of noise, the upper non-diagonal elements in Hn  and 

Hn  will not be exactly zero but very small numbers (they approach zero as j  — > oo). 

The true impulse response coefficients of the system can be calculated from the state
2It has been shown by Van Overschee and De Moor [92] that the difference between the three subspace

identification algorithms N4SID/MOESP/CVA is the difference in the way the weighting matrices are used in the 

subspace identification algorithm. In fact, MATLAB-6 offers a feature called N^weight for the ‘N4SID’ command

wherein the user can specify MOESP or CVA and the respective weighting matrices will be used, so that it is

equivalent to using MOESP/CVA subspace identification algorithms. Hence in the simulations presented in this 

section, the MOESP/CVA weighting matrices are used in the ‘N4SID’ algorithm in MATLAB, instead of writing 

separate algorithms for MOESP/CVA.
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space system matrices provided above. The identified impulse response coefficients 

are plotted against the true impulse response coefficients in figure (3.4). It is 

illustrated that the identified impulse response coefficients match very well with the 

true coefficients. Closed loop MOESP/CVA is used to identify the deterministic part 

of the system using the same set of closed loop data. Impulse response coefficients 

identified through MOESP and CVA are plotted against the true impulse response 

coefficients in figure (3.5). We can see that impulse response coefficients identified 

from both MOESP and CVA methods are reasonably well matching with the true 

impulse response coefficients in this univariate systems. Therefore, all three methods 

yield similar results for this univariate systems.

3.6.2 Multivariate system

Consider the following system taken from MATLAB/MPC toolbox manual.

yi(s)

_ ifcOO

where {?/i(s), 1/2(3)}, {ui(s),U2(s)} and w(s) represent the system outputs, inputs 

and random noise disturbance respectively. A state space based MPC controller 

is designed in MATLAB for the system. A sampling period of T  =  2 time units 

is used in the simulations. Close loop input/output data is obtained by exciting 

the system using a designed ‘RBS’ signal of magnitude 1 for the setpoint (rt) 

and random white noise (wt) of standard deviation 0.1 in MATLAB-Simulink. We 

assume that the controller and wt are not known for the closed loop identification. 

The closed loop data is plotted in figure (3.6). The proposed non-parametric closed 

loop identification algorithm is used with rows (N) =  50 and columns (j) =  2500 

in the data Hankel matrices to identify the subspace matrices Hn  and Hf^. The 

identified impulse response coefficients are plotted against the true impulse response 

coefficients in figure (3.7). It can be see from the plot that the identified impulse 

response coefficients match very closely with the true coefficients.

Next, the MOESP approach is used to identify the deterministic part of the system

12.8e- s —18.9e_3s ui(s) 3.8e_Ss
16.7s+l 21.08+1 + 14.9s+ l
6.6e~7s —19.4e~3s u2(s) 4.9e~3s
10.9s+l 14.48+1 13.2s+ l
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using closed loop data. The impulse response coefficients identified using MOESP 

approach are compared with the true coefficients in figure (3.8) and the result 

is not quite comparable with the one obtained using the proposed method. It 

should be noted that a better match between the identified and true coefficients 

using MOESP could be achieved only with a very high order model (the resultant 

deterministic model being at least of 20th order or more). The order of the end 

model could probably be reduced using a standard model reduction method but 

with a compromise in terms of bias error and complexity. The CVA approach [71] 

involves the inversion of a transfer function matrix which may not always be possible 

in MATLAB due to the time delays or due to the fact that the resultant matrix 

could contain improper transfer functions.

3.7 Identification of the dynamic matrix: Practical

application on a pilot scale plant

The proposed method for the estimation of the dynamic matrix from closed loop 

data is tested on a pilot scale system. The system considered is shown in figure 

(3.9). The input (u) is the inlet water flow rate and the process variable to be 

controlled (y) is the level of water in the tank. The tank outlet flow valve is kept 

at a constant position. The head of the water in the inlet pipe can be considered 

as (an unmeasured) disturbance. The tank level is controlled by a PID controller, 

2 5_|_ M5 _|_ An ‘RBS' signal of series of setpoint changes to the level is designed in 

M A TLA B .  Closed loop data of the process input, setpoint and output is collected 

and plotted in figure (3.10).

Data Hankel matrices of dimensions rows (N) =  200 and columns (j) =  1500 are 

constructed for the closed loop data and the subspace matrices H ^  and H SN are 

identified using the closed loop identification method presented in the previous 

sections. The columns of the subspace matrices are plotted in figure (3.11). It 

is illustrated in the figure that the impulse response coefficients in the columns of
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Hi are matching with each other.

The accuracy of the impulse response coefficients in the matrix is checked by 

doing an open loop identification. Open loop data is collected by exciting the 

process with an input !rbs’ signal of magnitude 1. The impulse response coefficients 

identified using the open loop subspace identification method are plotted together 

with the coefficients identified suing closed loop data in figure (3.12).

We can see that there is some mismatch in the impulse response models in the 

subspace matrices identified using closed loop data and those identified using open 

loop data. The mismatch may be due to the different operating regions excited 

between closed loop and open loop identifications and effect of feedback control. The 

noise model mismatch may be traced to the time varying nature of the disturbances 

entering the process.

3.8 Conclusions

This chapter provides a subspace identification based method for the identification 

of process dynamic matrix and the noise model from closed loop data. The closed 

loop subspace matrices are first obtained by persistent setpoint excitation of the 

closed loop system. The open loop subspace matrices are then retrieved from the 

closed loop subspace matrices. The process dynamic matrix is obtained from the 

deterministic subspace matrix and the noise model in the impulse response form is 

obtained from the stochastic subspace matrix. The method can be easily extended to 

the case of measured disturbances. Results from computer simulations and practical 

application on a pilot scale plant are provided to illustrate the proposed closed loop 

identification method.
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noise

inputset point outputController

disturbance
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Figure 3.1: Closed loop system.
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Figure 3.2: Comparing the existing closed loop subspace state space identification methods and 

the new approach.
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Figure 3.3: univariate system: Closed loop system data
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Comparing the actual IR-coefficeints with those from l_u and Lfl
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C L
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o
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Figure 3.4: univariate system: Comparing the true (solid) IR-coefficients with those obtained in 

the subspace matrices (dotted).

True(-) and MOESP identified(..)
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2520
Time

True(-) and CVA identified(..)
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S - 0 . 5

20
Time

Figure 3.5: univariate system: Comparing the true (solid) IR-coefficients with those identified by 

MOESP/CVA approaches.
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Closed loop data Closed loop data
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Figure 3.6: Multivariate system: Closed loop system data
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Figure 3.7: Multivariate system: Comparing the true (solid) IR-coefficients with those obtained in 

the subspace matrices (dotted).
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Figure 3.8: Multivariate system: Comparing the true (solid) IR-coefficients with those identified 

by MOESP approach.
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Figure 3.9: Experimental setup.
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Closed loop data

10

9.5 

cc 9

8.5 

8
200 400 600 800 1000 1200 1400 1600 1800

1200 1600 1800800 1000 1400200 400 600

11 

10 

>- 9

200 400 600 800 1000 1200 1400 1600 1800
Samples

Figure 3.10: Pilot scale process: Closed loop system data.
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Figure 3.11: Pilot scale process: IR-coefficients from the consecutive columns of the identified 

subspace matrices.
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Comparing the IR-models
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Figure 3.12: Pilot scale process: Comparing the IR-coefficients from subspace matrices identified 

using the open loop data (dotted line) and that from the closed loop data (solid line).
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Chapter 4

A data driven subspace approach  

to predictive controller design

i

4.1 Introduction

Predictive controllers have been widely used in process industries for more than 

two decades [10, 78, 88, 99]. Several forms of predictive controllers like IDCOM 

[101], DMC [15, 16, 78], QDMC [14, 30], GPC [12, 13], etc. have been proposed 

and successfully implemented in process industries through the years. The term 

predictive control does not designate a specific control strategy but a wide range 

of control algorithms which make an explicit use of a process model in a cost 

function minimization to obtain the control signal [10, 29]. Hence a model of 

the process is the basic requirement for the design of predictive controllers; this 

is first identified using plant input and output data. Prom the process model, 

predictor matrices can be obtained (for example, the dynamic matrix constructed
1A version of this chapter has been published as a journal paper 

R. Kadali, B. Huang, and A. Rossiter. A data driven subspace approach to predictive controller design. Control 

Eng. Practice, 11(3); 261-278, 2003.
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using step response coefficients in DMC [15, 16]). The predictor matrices are 

used to obtain predictions of the process output which are used in the controller 

design. However, it has been found recently that these predictor matrices can be 

directly obtained from the input/output data by using the subspace matrices (a term 

used in the subspace identification literature), eliminating the intermediate step 

of process model identification and providing a means for designing a predictive 

controller, in the generalized predictive controller (GPC) framework (e.g. [56]), 

without a parametric model. Since no traditional parametric model is required for 

the controller design this approach is also referred to as the “model-free approach” , 

and this term has been adopted in the literature (for example see [26, 112]). The 

idea is to obtain the controller matrices used in the predictive controllers directly 

from the data without the intermediate parametric model identification step. Hence 

this approach can also be considered as a direct data driven approach. Moreover, 

subspace identification methods involve minimizing the summation of multi-step 

ahead prediction errors, making the subspace matrices based design approach a 

suitable approach for predictive control.

The predictive controller based on subspace matrices uses the same cost-function as 

GPC and hence an important question is how one obtains the predictions utilized 

within the cost function. One of the key aspects in GPC is the assumption of 

an ARIMAX model for the process [7, 12]. This requires pre-specification of the 

order and structure of the model to be identified for controller design. Typically 

one uses reduced complexity models which frequently introduces bias errors. In 

the traditional (prediction error methood) PEM approach, the model is usually 

identified in a nonlinear, iterative manner, and in general Diophantine equations 

need to be solved to obtain the prediction matrices. On the other hand, the 

predictive controller designed using subspace matrices makes no pre-assumptions 

about the structure and order of the process model (alleviating some bias errors). 

Moreover the prediction matrices are obtained through a single matrix algebraic 

calculation. In summary, the subspace approach to predictive control has the key 

features of GPC [12, 13] like: (1) long-range prediction over a finite horizon; (2)
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inclusion of weighting on outputs and control moves in the cost-function and (3) 

choice of a prediction horizon and a control horizon after which projected control 

moves are taken to be zero. It combines these with the added advantages of: (1) no 

pre-assumptions about model order or structure; (2) parametric matrices obtained 

in a single iteration and (3) not having to solve Diophantine equations. We also 

note that extension to the multivariate systems is straightforward with the subspace 

approach.

Although the idea of designing predictive controllers using the subspace matrices, 

such as model-free LQG and subspace predictive controller [23, 25, 26], or using the 

state space model identified through subspace approach [103, 104, 106], has been 

around for a few years, designing a predictive controller from subspace matrices with 

all the features of the traditional predictive controller has not been investigated 

fully. The equivalence of finite horizon LQG to GPC is well known [7]; however 

there are several other important issues that need to be addressed in the subspace 

predictive control framework and they form the main contribution of this chapter. 

The following are the issues considered in this chapter: (1) derivation of a predictive 

control law in the GPC framework (with systematic inclusion of integral action, 

an issue ignored in previous works); (2) extension of the predictive control law to 

include feedforward control to compensate for measured disturbances; (3) inclusion 

of a constraint handling facility and (4) tuning of the noise model.

The chapter is arranged as follows. Section 4.2 gives an overview of GPC design. 

Subspace approach to the predictive controller design with enhanced features is 

explained in section 4.3. Inclusion of the independent noise model for tuning is 

discussed in section 4.4. Results from the simulation and actual implementation on 

a pilot scale plant using the proposed predictive control scheme are presented in 

section 4.5 and section 4.6 respectively. The conclusions are presented in section 

4.7.
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4.2 Revisit of GPC

GPC design [7, 12, 13] starts by first identifying an ARIMAX model for the process, 

expressed as

A{z~x)yt =  B ( z ^ ) u t- i  + K t (4.1)

A, B  and C are polynomials in the backshift operator, z -1, with A  and C being

monic. A =  (1 — z~l ) is the differencing operator. The role of the A is to ensure

integral action in the controller by including an internal disturbance model of typical 

load perturbations arising in the process industry [7]. A popular quadratic cost 

function to be minimized is
n 2 n u

J  — T ,  (f't+k — Vt+k\t)2 +  ' y  A(Awt+fc-i)2 (4-2)
k=Ni k= 1

with N2 and Nu being the prediction and control horizons respectively and A being 

the weighting on the control effort. Ni is usually chosen as 1 or the process time 

delay ta- rt+k is the future setpoint for time instant t + k. For a discussion on the 

selection of values for A^, N2, Nu and A, readers are referred to [12] and [13]. Using 

the Diophantine equations

=  Ek + q-k— ^ —  (4.3)
A iz - 1) A K * A iz -1) A

EkB = GkC + q-kTk (4.4)

and equations (1,2) (and ignoring the term Eket+k) we obtain the /c-step ahead 

output prediction equation

Fk Tk
Vt+k =  ^  +  GkA u t+k- 1

— Fkyt T TkA u t_x T GkAut-±.k—i

= f(k )  T GkAut+k- i  (4.5)

where

A u{ = C~xAut\ y{ = C~xyt
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and f(k )  — F^y{ +  Fku{_i is the free response of the process. Define the vectors of 

predictions

A Uf =
- • T

A ut . . A Ut+ Nu 5 V} = yt+i i/t+k

rf rt+i ... rt+k ft+N2 Ff =

Vt+N2 
1T

m  ... m  ... /( jv 2)

then the multi step predictor equations can be expressed as

yf =  G/Sxif +  Ff (4-6)

where G is the dynamic matrix containing the step response coefficients of ^  or the

impulse response coefficients of The GPC control law becomes

A uf  = (GTG + X I)-1GT(rf - F f ) (4.7)

4.3 Predictive controller design from subspace m atrices

Consider a controller objective function which is the same as that of GPC. To

simplify the notation, assume Ni = 1. The cost function to be minimized becomes:
n2 Nu

J  =  £(&+fc|t -  n + k ?  + E  K & u t + k - i ) 2 (4.8)
fc=1 k= 1

=  ( r f  -  V f ) T ( r f  -  V f )  +  A u /  ( A / )  A U f

where the future outputs are over the prediction horizon, t + 1 to t +  N2, and the 

future incremental inputs are over the control horizon, t to t + Nu — 1. For the state 

space representation (2.1)-(2.2), the vector of the optimal prediction of the future 

outputs can be expressed in terms of the future inputs and current states as

(4 .9)

(4.10)

- T
-- Vt+i - Vt+N2

c D 0 0 ... ut
CA CB D O  ... ut+i

= Xt +

C A n - 1 CAN2~2B  ... D ... Ut+Nu-1
TN2xt +  H(1 : -/V2? 1 : Nu)uf 

L w w p +  L uUf

(4.11)

(4.12)
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- ■T * -

V t-N + 1  ••• y t  u t - N . U t- 1 , U f  = u t • Ut + N u~ lwhere wp = ... m u*-m ... uu-1 , Uf — u+ ... u+^m _i and

the dimensions of subspace matrices change to Lw =  (rnA^ x (/ +  m )N ) and 

Lu =  (mN2 x INU).

The predictor equation in equation (4.12) is used in minimizing the objective 

function
N2 N u

J  =  'Y'Xyt+ku — r t+k)2 +  X! ^(ut+k-1)2 (4-13)
fe=i fc=i

to derive the ‘subspace predictive control’ law presented in [23], which computes the 

future control moves as

uf  = (AI  + L l L ^ L l i r f - L wwp) (4.14)

where wp — Wp(:, 1). For a finite {N2,N U}, the above control law is called SPC or 

subspace predictive controller in [23]. As {N2,N U} — > oo, the above control law 

becomes an LQG-controller presented in [25, 26]. However, for implementation on 

real processes the controller should have an integrator since the objective function

(4.13) does not admit zero static error in the case of non-zero constant reference 

unless the open loop process contains an integrator [7]. Hence we need to use the 

GPC objective function, with incremental inputs Ait/, shown in equation (4.8). 

One of the several subspace matrices based predictive controller design approaches 

presented in [103, 104, 106] has also included an integrator. In their method, to 

get an integrator in the predictor, equation (4.12) is multiplied on both sides with 

a difference operator, A  =  1 — z~l , where z~l is the backshift operator, and then 

rearranged to get a predictor equation with incremental inputs and outputs. A 

slightly different subspace identification method called DSR [102, 105] is used in 

their approaches.

In the next section we present a different approach to get incremental variables 

in the predictor equation. The new approach uses an integrated noise model. As 

the subspace model in equation (2.19) is I/O  based, it is logical to use a similar 

technique to that adopted in conventional GPC [12, 13]. As will become clear later 

on, the new approach is equivalent to the original GPC design since the innovations
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form state space representation in equations (2.1)-(2.2) combined with integrated 

noise assumption is equivalent to ARIMAX representation.

4.3.1 Inclusion of integral action through integrated noise model

Consider the noise input et as an integrating noise, which is common in the process 

industries. Therefore,

Cfc+1 — T Q>k 

6k -  A

(4.15)

(4.16)

where ak is a white noise signal and A (= 1 — z~r) is a differentiating operator. Note 

that the system considered in equations (2.1)-(2.2) together with (2.10) is equivalent 

to an ARIMAX representation, as in equation (4.1), considered in the GPC design. 

Substituting equation (4.15) in (2.1)-(2.2), we obtain

zk+1 =  Azk +  B A u k + Kak 

A yk =  Czk +  D A u k +  ak

(4.17)

(4.18)

where zk = xk — xk-\. The subspace matrix input-output expression for the system 

(4.17)-(4.18) is now

A Yf = T NZf  +  Hn AUf + H sNA f

and

A i)f =  Tijzk + Hn A u/  

A yp
— Li,

A  Un
T LuA u f

(4.19)

(4.20)

(4.21)

Using the system representation (4.17)-(4.18) we can write a /c-step ahead predictor

as

Vt+k-i ~  Ut-i — (CAk 1 +  ... +  CA  +  C)zt +  \{CAk 2B + ... + D)Aut

+... +  D A ut+k-i] + [at +  at+i + ... +  ot+fc_i] (4.22)

j

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57

and equations (4.9)-(4.10) change to

Vf yt+1 yt+2 ■■■ yt+N 

=  yt +  r  °N2zt +  SN2,NuA u f

&yPy t + L°w(l : N2m , :) 

-F +  SN2,NuAUf
A u r,

iV2,M Auf

(4.23)

(4.24)

(4.25)

(4.26)

where is the modified extended observability matrix and Sn2,nu is the (A^ra x 

iV„Z) dynamic matrix containing the step response coefficients /  Markov parameters 

and formed from Lu.

Yt =

r °  —
1  N 2 —

S.N 2,N u

yt yt yt

c
CA + C

c a n*-i + ... + c

D

CB + D 

CAB  +  CB + D

0

D

CB + D

0

0

D

CAn*-2B + .. + CB + D CAn*~3B + .. + CB + D 

h  0 ... 0 

h h
= Lu{ 1 : N2m, 1 : N J)

L° is constructed from Lw as

0

h h

L°w{m{k — 1) +  1 : m k , :) =  ^  Lw(m(i — 1) +  1 : m i , :) 1 < k < N2
1 = 1

and F  is the free response of the process output.

A yp

A Ur,

(4.27)

(4.28)

0

0

0

(4.29)

(4.30)

(4.31)
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Note that the matrices L°w and S n 2 ,n u are related in a simple manner to Lw and 

Lu. Even though L° and Sn2!nu can be alternatively directly identified from the 

differentiated data, it is difficult to design an input signal for such an identification. 

Hence, a simple strategy is to identify Lw and Lu and use these matrices to form 

L° and S n 2 ,n u -

The objective function in equation (4.8) can be expanded as

J  = (rf  -  F  -  SN2,NuA u f)T(rf -  F -  SN2>NuA u f ) +  A u f ( \ I ) A u f  (4.32)

Differentiating J with respect to A it/ and equating it to zero gives the control law

Only A u f( l )  is implemented and the calculation is repeated at each time instant. 

Hence at time instant t, we only calculate

Note that the above control law has a guaranteed integral control action and 

obtained directly from the subspace matrices, without any intermediate parametric 

model identification step.

Remarks:

Each block-column of the subspace matrix Lu contains the series of process Markov 

parameters incrementally ordered. Due to the way the variables are arranged in 

the data Hankel matrices, each block-column of the subspace matrices are identified 

independently, i.e., each series of Markov parameters in the subspace matrices is 

identified independently. Hence due to the inherent nature of the subspace approach 

multiple-models for the process are captured in the subspace matrices to be used for

(4.33)

Aut = Aw/(1) =  mi (rf  -  F ) (4.34)

where mi is made of the first Trows of the matrix (Sn2̂NuSn2jnu + A I) 1S%r2tNu- 

Therefore ut is implemented as

JX4.35)
A up
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designing predictive controller. This is clearly an advantage compared to the MPC 

design via parametric model identification.

4.3.2 Inclusion of feedforward control

If some of the process disturbances are measurable, then with the understanding 

that measured disturbances are those process input variables which cannot be 

manipulated for controlling the process outputs, the state space representation of 

the process (2.1)-(2.2) can be modified as

xk+i = Ax k +

Vk Cxk + D D„

Uk

Vk

Uk

Vk

+  Kei

+ fife

(4.36)

(4.37)

where vt(h x 1) is the vector of measured disturbance variables. The matrix input- 

output equations (2.12) and (2.19) change to

Yf =  T NX bf + HNUf + H vNVf + H sNE f  

Y, = i'KX'; +  HNU, -I- Hl:Vf  

= L l w l  + L JJ ,  +  LvV,

(4.38)

(4.39)

(4.40)

where

T T V  ___rlN —

Dv

C BV

0

Dv

0

0

w:

CAN~2B V CAN~3B V . . Dv

YP '
up
vp

(4.41)

(4.42)

with Vp and Vf being the past and future data Hankel matrices of vt (see equations 

(2.4)-(2.7) for reference). The subspace matrices Lbw, Lu and Lv are obtained by
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finding the prediction of future outputs, Y7, by solving the least squares problem.

min \\Yf  -  ( Lbw Lu Lv
L w i L U y L / V

|2 
IF (4.43)Uf

V Vf

The solution is obtained as explained in chapter 2. For predictive control we have 

the values of measured disturbance only upto the current sampling instant, t, (and 

do not have the knowledge of the future values of measured disturbance) i.e., Vk for 

k =  t, t — 1, t — 2,... are known but vt+k for k =  1,2,..., N2 are not available for the 

prediction of yt+k- Therefore we can write the prediction expression for ijf as

Vf = yt +  L±( 1 : N2m , :)

F b +  S'jv2,jvuA'U/

A yp 

A Up + SN2,NuA u f (4.44)

(4.45)

where L^ is constructed from Lhw, and Fb is the free response for the case of measured 

disturbances.
fe

L^(m(k  — 1) +  1 : m k , :) =  ^  Lbw{m{k — 1) +  1 : m k ,:) 1 < k < N 2 (4.46)
1

F b =  yt +  L ^(l : N2m , :)
A Up 
A Up 

Av„

(4.47)

Sn2,nu is the same as defined before in equation (4.29). Therefore, the feedback plus 

feedforward control law becomes

A Uf — (Sn2!NuSN2>Nu + XI) 1 Sx2'Nu(rf — F b) (4.48)

4.3.3 C onstra in t handling

Constraints arise due to physical limitations, quality specifications, safety concerns 

and limiting the wear of the equipment. One of the main features of MPC, its 

prediction capability, is useful in anticipating constraint violations and correcting
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them in an appropriate way [10]. The explicit handling of constraints may allow the

process to operate closer to optimal operating conditions [10]. For the constrained 

case, the computations are more involved. The problem takes the form of a standard 

Quadratic Programming (QP) formulation and the optimization is done numerically. 

The quadratic program solved at every instant is

min J  = {rf  — F)T(rf  -  F) + A u T(&£2tNuSN2tNn)Au -  2(rf  -  F)TSN2,NuA u

matrices A  and B are formed from the constraints (see appendix B). The 

optimization of the above QP formulation is carried out by means of the standard

is sent to the process. Though computationally more involved than the other simpler 

algorithms, the flexible constraints handling capabilities of predictive controllers are 

very attractive for practical applications, since the economic operating point of a 

typical process unit often lies at the intersection of constraints [97, 10]. For more 

discussion on other types of constraints, for example soft constraints or specifications 

on the process response characteristics, readers are referred to [10, 29, 78, 99] and 

the references therein.

4.4 Tuning the noise model

The disturbance dynamics of industrial processes frequently change with time. 

Tuning of the noise model is a key feature of predictive controller formulations like 

GPC [7]. It is necessary to incorporate such a feature in the proposed predictive

=  A ut (Sjr2tNuSN2,Nu +  XI)A u  -  2(77 -  F ) t S n 2,n uA u 

=  - A ut V A u  +  Ct A u
z

s.t. A A u  < B

(4.49)

(4.50)

where

(4.51)

(4.52)

commercial optimization QP code at each sampling instant and then the value of ut
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controller derived from subspace matrices. For this reason we need to separate the 

state space model of the system into two parts, a deterministic part and a stochastic 

part which are similar to the process model and noise model in an equivalent input- 

output transfer function framework as

Vt = V t + V st

= [C(zl -  A)~1B  +  D]ut +  [C{zl -  A)~lK  +  l]et (4.53)

It is observed that both deterministic and stochastic parts have the same poles. 

Hence an equivalent representation for the above equation in the discrete transfer 

function domain would be an ARMAX model

G (« - ')  F i z - 1)
Vt =  w T )Ut+ r n p r f  (454)

H(z~1) and F(z~l) are monic polynomials in z~l . We can write

[ C { z I - A ) - 1K  + 1] =  1 + C K z - 1 + CAKz~2 + ... (4.55)

The assumption that the noise model =  1 is equivalent to assuming that

the Kalman gain matrix, K,  is equal to zero. Therefore if the user desires to 

change the stochastic part of the identified innovation model, without changing 

the deterministic model and hence without changing the system matrices C and A, 

the only way to do it is by changing the Kalman gain matrix, K.

Suppose that the new Kalman gain matrix is represented as K*. K* is a matrix 

(to x n) for a multiple-output system, and a vector (1 x n) for a single-output system. 

We can express K* as

K* = K  + K'  (4.56)

We can then write

[C(zl -  A ^ K *  +  1]

=  1 +  C K ' z ' 1 +  CAK*q~2 +  ... (4.57)

=  1 + C(K + K ,)z~1 + CA(K + K')q-2 + ... (4.58)

=  [C(zI - A ) - 1K  + 1] + [CK'z~1+ C A K ' z- 2 + ...} (4.59)
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The stochastic part of the output with the new Kalman gain matrix is

(y t r  = [C(zl — A)~lK* + l\et

= [C{zl -  A ) - 1K  +  l]et + [CK'z-1 + CAK'z~2 +  ...]et 

= yst +  [CK'z-1 +  C A K 'z -2 + ...Jet

et- 1

yt + C CA  ... CA”- 1 K et - 2

et~

= yst + (TnK')Tep

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

where e„ et- \  et-2  ■■■ et- n and Tn is the observability matrix which can 

be estimated implicitly in the subspace identification method without having to first 

calculate the system matrices C and A, through the SVD approach by inspecting the 

number of dominant singular values in the singular value decomposition of LwWp.

Ut U2 ->■ o<(4.65) 

(4.66)

If n is the number of dominant singular values taken in Si, then TN will be an 

(raJV x n) matrix, where N  is the number of block rows taken in Wp. Since the 

knowledge of the state space system matrices A  and C is not required, the new 

stochastic model can be incorporated in a model free manner. Now the prediction 

with the “tuned” noise model can be written as

(yt) — Vt T (TnK  ) ep — yt T q'n (4.67)

where j n — (TnK')T, which can be considered as a vector of impulse response 

coefficients (Markov parameters for the multivariate systems) with the new noise 

model. 7n is constructed from the estimated observability matrix, Tn, and the user 

specified (n x m) matrix, K ' . Noise model tuning is used as a tool to make up 

for the process-model mismatch resulting from changes of the process from time to 

time or simply as tuning parameters. ep contains the past prediction errors and can
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be estimated from the data as one step ahead prediction errors. In essence adding 

the term [(TnK')Tep] is equivalent to filtering the past prediction errors. Hence K'  

is used as a tuning parameter and is chosen in such a way that it minimizes the 

prediction errors.

Thus incorporating a new noise model simply involves the addition of a new term 

in the calculation of the free response of the process. Hence the free response 

calculation, equation (4.31), modifies as

F  =  yt +  L°w(1 : N2m , :)
Ayp 

A  un
+ TeB (4.68)

where T (N2m  x n )  is a left-upper triangular matrix constructed from the elements 

of In-

T =

7 n ( l )  7 n ( 2 )

7 n (2 ) 7 n (3 )

ln(N2) ... 7„(n)

7n(ra -  1) 7„(n)

7«(n) 0
(4 .6 9 )

4.5 Simulations

The proposed control design method is tested in simulations. The system example 

is taken from MATLAB/MPC toolbox working example.

2/i (s)
V2 (s)

12.8e~s
16.7s+l
6.6e~7s
10.9s+l

— 18.9e~3s 
21.0«+1

—19.4e~3s 
14.4s+l

3.8e~8,

+ 14.9s+l
4.9e~3s
13.25+1

«i(a)

U2(s) 

w(s) +
d (s)

e2(s)
(4.70)

Open loop input/output data is obtained by exciting the open loop system using 

a designed ‘RBS’ signal of magnitude 1 for the inputs, Uk and random numbers of 

standard deviation 0.1 for the white noise sequences, ek, in MATLAB-Simulink. A 

random walk signal is designed for the measured disturbance Wk by passing a white 

noise signal of standard deviation 0.1 through an integrator. Sampling interval is
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taken as 2 units of time. Using subspace identification, with N  — 50 (row blocks) 

and j  =  2000 (column blocks) in the data Hankel matrices, the subspace matrices 

Lw{100 x 250), 1^(100 x 100) and L„(100 x 50) are identified. The simulation data 

and the models from subspace matrices are plotted in (4.1)-(4.2). As can be seen 

from (4.2), the impulse response models from the identified subspace matrices match 

very well with the true impulse response models. Note that even though the signal 

used for the measured disturbance is not a white noise signal, we can still identify 

the model corresponding to the measured disturbance very accurately.

In figure (4.3) the simulation results with subspace based predictive controller 

without an integrator (SPC in [23]) is compared with the predictive controller with 

integral action. As illustrated, the controller with integrator gives no offset for non­

zero setpoints. In figure (4.4) the predictive controller performance is compared for 

the cases without and with feedforward control. Better controller performance has 

been achieved with feedforward control.

For a range of values for A, N2, Nu and constraints on the input moves, Au, a 

subspace matrices based predictive controller is implemented on the above process 

in MATLAB-Simulink. The closed loop system response for different sets of tuning 

parameters is illustrated in figures (4.5)-(4.8).

In figure (4.5) it can be seen that as the weighting, A, on the input increases 

the controller response becomes less aggressive. For a given prediction horizon, 

as the control horizon, Nu, increases, the controller gives more aggressive tracking 

performance as shown in figure (4.6). For a given control horizon, as the prediction 

horizon, jV2, increases the controller gives better setpoint tracking performance 

(4.7). Figure (4.8) shows the setpoint tracking under different constraints on the 

incremental control moves, Au. It can be seen that smaller the magnitude of the 

maximum allowed control moves, more sluggish is the controller response to setpoint 

changes.

Noise model tuning

To illustrate the tuning of noise model with the subspace approach consider the
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process model changes with time, in other words there is a mismatch between the 

true process model and the identified process model used in the controller design. 

Consider the case when the process model from equation (4.70) changes to

yi (s)
_ V2 (s) _

12.8e~3
16.7s+l
8 e~ 7s

10.9s+l

-18.0e ■3 s

21.0s+l
—18e~3s 
14.4s+l

3.8e~Ss

+ 14.9s+l
4.9e~3s
13.2s+l

Ui(s)

u2(s) 

w(s) + e l ( S )

e2(s)
(4.71)

Figure (4.9) illustrates the controller response without and with the on-line noise 

model tuning feature.

4.6 Experim ent on a pilot scale process

The proposed predictive controller is tested on a multivariate pilot scale system. 

The system considered, shown in figure (4.10), is a three tank system with two 

inlet water flows. The levels of Tank-1 and Tank-2 are the two controlled variables 

(CVs). The setpoints (SPs) for the flow rates through the valves-A & B are the 

two manipulated variables (MVs). The flow rates through the valves-A & B are 

controlled through the local-PID controllers on each valve. The setpoints for the 

flow rates come from a higher level advanced controller application. The local-PID 

controllers, which are univariate, are at faster sampling (1 sec). The higher level 

controller, which is multivariate and does computations to minimize an optimization 

function, sends controller outputs every 6 seconds. The system is configured so as 

to emulate a typical multivariate system in the industries.

Tank-3 and valve-C are used primarily to introduce interactions between the 

variables in the system. As can be seen in figure (4.10) a change in the level in 

tank-1 effects the level in tank-2 via tank-3 level. The degree of interaction can be 

manipulated by changing the valve-C position. If the valve-C is completely closed 

then the level in tank-2 is independent of the level in tank-1 (zero interactions). 

By opening the valve-C interactions are introduced in the tank-2 level. Valve-C is
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maintained at a fixed open position throughout the exercise. Note that the level 

in tank-1 is independent of the levels in tank-2 & 3. The step response models for 

the system, which are formed from the impulse response coefficients in the subspace 

matrices, are plotted in figure (4.11). The correlations between the variables are 

clear from the step response plots.

Open loop step-test data for the system is collected by sending two (uncorrelated) 

designed ‘PRBS’ signals for the SPs of the flow rates through valves-A & B. 

Subspace matrices are identified using the open loop data. A multivariate subspace 

matrices based predictive controller is then designed for the system. The controller 

parameters (weighting matrices, prediction horizon, control horizon and noise 

model) are tuned for a smooth controller performance. The closed loop response for 

the unconstrained and constrained (|Au| < 0.5) cases are plotted in figure (4.12) 

and figure (4.13) respectively.

4.7 Conclusions

In this chapter, the design of the predictive controller, in the GPC framework, 

using the subspace matrices calculated through the subspace identification method is 

addressed. Important issues in practical implementation of the predictive controllers 

such as integral action, constraint handling and feedforward control are discussed. 

It has been shown that the noise model can be independently specified by the user 

through the addition of a new term to the predictor equation in the model-free 

manner, which is shown to be equivalent to changing the Kalman filter gain matrix. 

The equivalence of the predictive controller designed from subspace matrices to the 

traditional GPC is shown in appendix D. The proposed predictive controller is 

tested on multivariate systems in simulations and on a pilot scale process.
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Data from simulations
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Figure 4.1: Inputs, measured disturbance and outputs data from simulations.
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Figure 4.2: Comparison of the process and noise models from subspace matrices with the true 

models.
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Figure 4.3: Predictive controller without and with the integrator. w(t)=0; e(s) =0.
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Figure 4.4: Predictive controller without and with the feedforward control. e(s) =0.
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Figure 4.5: Variation of input weighting, A. w(t)=0; e(s) =0.
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Figure 4.8: Constrained predictive controller. w(t)=0; e(s) =0.
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Chapter 5

Controller performance analysis 

w ith LQG-benchmark obtained  

under closed loop conditions

1

5.1 Introduction

A typical industrial plant can contain thousands of controllers ranging from PI/PID 

controllers to the more advanced model predictive controllers like dynamic matrix 

control (DMC) [15, 16], Generalized predictive controller (GPC) [12, 13], Quadratic 

dynamic matrix controller (QDMC) [30], etc. With a goal towards optimal 

performance, energy conservation and cost effectiveness of the process operations 

i n  t h e  i n d u s t r y ,  c o n t r o l l e r  p e r f o r m a n c e  a s s e s s m e n t  h a s  b e e n  r e c e i v i n g  a t t e n t i o n  

both from the industry and from the academia since the notable work of Harris 

[34]. Periodic tuning of the controllers becomes an important task of control
1A version of this chapter has been accepted for publication as a journal paper 

R. Kadali, and B. Huang. Controller performance analysis with LQG benchmark obtained under closed loop 

conditions. ISA Transactions, 41; 2002.
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engineers for obtaining optimal performance from the control systems. Controller 

performance assessment techniques are used as a tool to check the optimality of 

the current controller tuning parameters settings. Several benchmarks such as 

minimum variance control (MVC) [5, 19, 20, 34, 35, 36, 38, 42, 45, 46, 50, 82, 

83, 86, 98, 111], linear quadratic Gaussian (LQG) control [42, 46] and designed 

controller performance versus achieved controller performance [69, 70, 96], etc. have 

been proposed for assessing the controller performance. Among these approaches, 

MVC-benchmark is one of the popular benchmarks due to its non-intrusive nature 

for the univariate systems and routine closed loop operating data can be used for 

the calculation of this benchmark. For the univariate application, only a priori 

knowledge of the process time delay is required for obtaining the MVC-benchmark 

from routine operating data [5, 19, 20, 46, 38, 37, 34, 82, 98, 111, 114]. For the 

multivariate systems, the calculations are more involved and require estimation 

of the unitary interactor matrix [42, 35, 36, 38, 45, 50, 48, 51, 60, 86, 98, 125]. 

However the MVC-benchmark may not be a practical one for those control systems 

whose objective is not just minimizing process output variance but also keeping 

the input variability (for example, valve movement) within some specified range to 

reduce upset to other processes, conserve energy and lessen the equipment wear. 

The objective of such controllers may be expressed as minimizing a linear quadratic 

function of input and output variances. The LQG-benchmark is a more appropriate 

benchmark for assessing the performance of such controllers. However, calculation 

of the LQG-benchmark requires a complete knowledge of the process model [42, 46], 

which is a demanding requirement or simply not possible in practice. An open loop 

test for obtaining the process model may not always be feasible or may be expensive. 

Frequency domain approach is proposed by Kammer ([62, 63, 64]) for testing the LQ 

optimality for the performance assessment of a controller using closed loop data with 

setpoint excitation. However this approach does not give the quantitative values for 

the controller performance in terms of process input and output variances. In other 

words, it does not separate the non-optimality/optimality with respect to process 

response (output) variance and process input variance. In this chapter we propose 

a subspace matrices based approach to obtain the LQG-benchmark variances of the
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process input and output to be used for the controller performance assessment. The 

required subspace matrices, those corresponding to the deterministic and stochastic 

inputs, are estimated from closed loop data with setpoint excitation. The method 

proposed is applicable to both univariate and multivariate systems.

Subspace identification methods allow estimation of a state space model for the 

system directly from the process data. Certain subspace matrices, corresponding 

to the states, deterministic inputs and stochastic inputs, are identified as an 

intermediate step in the subspace identification methods. Several approaches, 

such as N4SID [93] (Numerical subspace state space identification), MOESP 

[119, 120, 121] (MIMO output error state space model identification) and CVA 

[72, 73, 74, 75, 76, 77, 107] (Canonical variate analysis), are popular for subspace 

identification using open loop data. Subspace identification methods also exist for 

closed loop data. Recently Van Overschee and De Moor [94] proposed a subspace 

identification method for the identification of the subspace matrices (all the three 

matrices, corresponding to the states, deterministic input and stochastic input) of 

the process using closed loop data with the knowledge of the first N  impulse response 

coefficients (Markov parameters for the multivariate systems) of the controller, 

where N  is the maximum order of the state space model we want to identify. MOESP 

and CVA approaches were also used for the identification of a state space model using 

closed loop data [73, 113, 122]. In addition to the setpoint excitation, MOESP/ 

CVA approach uses an external white noise signal addition to the controller output 

to make it independent of the noise. The closed-loop state space model is first 

identified using the closed loop data from which the open loop state space matrices 

are retrieved.

Ljung and McKelvey [81] presented a method for the identification of subspace 

matrices from closed loop data using estimated predictors and state that their 

algorithm is an illustration of a ‘feasible’ method rather than the ‘best way’ of 

identifying systems operating in closed loop. The primary goal of all the above 

approaches is the identification of a state space model for the open loop system.
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Favoreel et al [24, 25, 26] have recently proposed a method for the design of optimal 

LQG controllers directly from the subspace matrices, instead of using a state space 

model. Recent work by Kadali and Huang [58] (adapted as chapter 3 in this thesis) 

allows identification of (only two of the subspace matrices, corresponding to) the 

deterministic subspace matrix and stochastic subspace matrix from closed loop data 

without requiring any a priori knowledge of the controllers. This method requires 

setpoint excitation and is also extended to the case of measured disturbances [58] 

(see chapter 3). It provides the tools/means for the calculation of more practical 

controller performance benchmarks like LQG-benchmark using closed loop data. As 

will be shown later in this chapter, the explicit process model is not required for 

obtaining the LQG-benchmark.

The method for designing the optimal LQG controller directly from subspace 

matrices proposed in [24, 25, 26] is extended in this chapter to the case of feedforward 

plus feedback control. If some of the disturbance variables are measurable, analysis 

of feedforward control performance is a worthwhile study. However, this analysis 

requires the subspace matrix corresponding to the measured disturbance variables. 

Using the subspace approach proposed in [58] the subspace matrix corresponding 

to the measured disturbance variables can also be estimated under closed loop 

conditions, if the measured disturbances are assumed to be uncorrelated with the 

setpoint changes. This provides a means for the profit analysis of implementing 

feedforward control on the process.

The main contributions of this chapter in the order of presentation are: (i) derivation 

of the expressions for the calculation of the optimal LQG-benchmark variances of the 

process input and output directly from the subspace matrices, (ii) extension of the 

design of optimal LQG controllers using subspace matrices proposed in [24, 25, 26] to 

the feedforward plus feedback control case, (Hi) extension of the analysis to the case 

of feedforward controller performance analysis, and (iv) illustration of the proposed 

method through an application on a pilot scale process.

This chapter is arranged as follows. Section 5.2 explains the design of the LQG
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controller directly from the subspace matrices. Section 5.3 is the main section where 

the methodology of obtaining the LQG-benchmark variance for the process input 

and output from closed loop data is presented. Incorporation of feedforward control 

in the optimal LQG control is discussed in section 5.4. Controller performance 

analysis indices are defined and described in section 5.5. A summary of the proposed 

method is presented in section 5.6. Simulation results are presented in section 5.7 

followed by an application on a pilot scale process in section 5.8. Conclusions are 

provided in section 5.9.

5.2 Designing LQG-controller using subspace m atrices

A linear time-invariant system can be described in a state space innovations form 

as:

xk+i = Axk + Buk + Kek (5.1)

yk = Cxk 4- Duk +  ek (5.2)

where xk, yk, uk and ek are the process states, outputs, deterministic inputs and 

stochastic inputs respectively. K  is the Kalman filter gain and ek is an unknown 

innovations sequence of white noise with the covariance matrix S. For an /-input 

and m-output system, A, B, C, D , K  and S  are (n x n), (n x /), (m x n), (m x /), 

(n x m ) and (m x m) matrices respectively, where n is the state order.

Using the predictor equations in equations (2.12) and (2.19) for the output of system 

in equations (2.1)-(2.2), we can write

Vf =  Uv^h-i +  H^Uf + H sNef (5-3)

— B'ujWp Lu%Lf -\- (5.4)

where

V t+ i u t + i
Up

V t - N + l U t - N + 1

Vf =

. yt+N .

■uf  =

_ Ut + N

; wp =
Up

! Up —

y*
, Up —

Ut
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and r N (N m  x n) is the extended observability matrix, Hj+ (Nm  x Nl) and H aN 

(Nm  x Nm)  are the lower triangular Toeplitz matrices containing the impulse 

response coefficients (Markov parameters) corresponding to the deterministic input 

Uk and the unknown stochastic input e*, respectively, p and /  denote the past 

and the future respectively. The subscript N  follows from the number of steps 

ahead predictions represented in yf. Lw (Nm  x N(l + m)), Lu (Nm  x Nl) and Le 

(Nm  x Nm)  are the subspace matrices corresponding to the states,the deterministic 

inputs and the stochastic inputs respectively.

(7

CA
N  —

CAN~1

H,

D 0 .  0 Im, 0 .  0

CB D .  0
; h sn  =

C K Im .  0

CAN~2B CAN~ZB  . CAN~2K CAN~3K  ..

N

Recent work by [25, 24, 26] shows the design of the optimal LQG controller by 

directly using the subspace matrices, instead of through a state space model, for the 

system in equations (2.1)-(2.2). The linear quadratic Gaussian (LQG) controller is 

designed to minimize the following quadratic cost function J over the horizon N:
N

J  = E{ {(yt+k -  rt+k)T (yt+k-n+k) +uj+k (Mi) ut+k]} (5.5)
fc=i

N

= 5Z [(yt+k -  n+k)T (yt+k -  n+k) +  (M )  ut+k\ (5.6)
fc=i

where E  is the expectancy operator, A is the user defined non-negative input 

weighting parameter and rt is the reference for output trajectory. Ii is an /-order 

identity matrix. yt+k is the fc-step ahead predicted output given the past inputs and 

outputs and future inputs upto time t.

It should be noted that traditionally the following objective function is used for the
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design of the LQG controllers:
N

J  = E{ [(yt+k -  rt+k)T R  (yt+k -  rt+k) +  uj+k Q ut+k] } (5.7)
fc=i

where R  (m x m) and Q (I x I) are non-negative definite weighting matrices. To 

simplify the presentation the objective function in equation (5.5) is used throughout 

this chapter. Equation (5.5) basically means that all the inputs have the same 

weighting (or equal importance) in minimizing the objective function.

The optimal predictor equation from equation (5.4) is:

Vf — Lwwp 4" LuUf (5.8)

The notation in the cost function can be simplified for regulatory control, by letting

rt+k =  0, as:

J  =  min [yj  yf  + uTf  (XIm) it/] (5.9)
uf

= (Lwwp + LuUf)T(Lwwp + LuUf) + Uf(XINi)uf  (5.10)

Partial differentiation of J  with respect to it/ and setting it to zero yields the LQG 

control law [25] as:

it/ =  (AIni T L^T^) LuLwWp (5.11)

The above control law is the optimal LQG control law as N  — > oo and is equivalent

to an estimated state feedback control law.

It/ =  Clqg Xt+1 (5-12)

where

Clqg =  ( A  Ini +  L I L J - ' l ITn  ( 5 . 1 3 )

and the relation Lwwp = TN^t+i follows from the equations (5.3)-(5.4). Only the 

first control move is implemented and the calculation is repeated at each sampling 

interval.
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5.3 Obtaining LQG benchmark from closed loop data

To assess the controller performance, we compare the current controller performance, 

in terms of output (or input or both) variances, with the variances under the optimal 

control. This gives rise to the question of selection of the optimal benchmark 

controller. Though the primary objective of a control system is often to minimize 

the output variance, we may also want to limit input variance for reasons like 

energy conservation and equipment wear. In other words, a compromise between the 

process input variance and output variance is necessary. The optimal LQG control 

is one of such benchmarks that takes into account both input and output variances 

of the process and represents a limit of performance in terms of input and output 

variances [8, 42, 46].

To obtain the optimal LQG-benchmark variances we need to obtain the closed loop 

expressions for process input and output in terms of the disturbances entering the 

process. From the predictor equation (5.4), we can write yt+1 in terms of the past 

inputs and past outputs as

Vt+i — lypVp +  lupUp + GQut+i +  LQet+i (5.14)

where

lyp = Lw( 1 : m, 1 : mN)

lup — Lw(l : m ,m N  + 1 : (I + m)N)

(5.15)

(5.16)

and the notation A(i : j ,p  : q) represents the rows i to j  and columns p to q of the 

matrix A. Equation (5.14) can be transformed to alternatively express the process 

output in terms of past inputs and past noise with the process and noise model 

impulse response coefficients (see appendix D) as

yt+i . . .  GN

Ut
+

1 
1

*
■ 

1 et

U t - N + 1 _ Z t - N + 2

+Gq ut+i + Lq et+i (5.17)
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where Gj and Lj are the i-th impulse response coefficients (Markov parameters for 

multivariate systems) of the process and noise models respectively. In other words 

we can express the past (state) contribution term, Lwwp, as

lyjUJp G

LwWp —

N

G1 ... 

G2 ...

Gjv 0

Ut

+ L i  .. .  L a t

e t

_ U t - N + 1  _ _ et_AT+2 _

Gat- i GAT

GAT 0

+

Li

L2

0

ut

_ Ut-N+1

L n - i  L n  

Ln  0

0
C t - N + 1

(5.18)

However, the controller output, Ut+\ is calculated using all the data available at time 

lt + 1’, i.e., {ut,yt+i,ut-i,yt, •••}• Hence the original subspace predictor expression in 

equation (5.4) and the subspace based LQG-controller law in equation (5.11) have 

to be modified to obtain the closed loop expressions for Uf and yf. First, define

K tiqa l A / . v ,  +  L lL . r 'L ! , :

G1 g 2 . . .  G a t - i G at Ut

L9 =
g 2 g 3 G at 0

j Up
U t- 1

G at 0 0 0 U t - N + 1

(5.19)

(5.20)

L 0 L i .. .  L n - i L n e * + i

L i l 2 L n 0 e t

L n - i 0 0  . . . 0

! &p —

C t - N + l

(5.21)
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LP

0 0 . 0 e *+2

T o 0 . 0 &t+3

L n L jv- i  . . 0

; e /  =

Z t+ N + l

(5.22)

Note that the matrices Lg and Lh contain the impulse response coefficients (Markov 

parameters) for the deterministic and stochastic inputs and can be formed using the 

subspace matrices Lu and Le respectively. From equation (5.11), we can write

Uf  — (A/jvz 4~ L (i L u L wWp

— ^-lqg\,LgUp 4” LfoGp^

Similarly substituting equation (5.24) in equation (5.4) we can write

y f  — LgUp 4" Lfi&p 4“ LyUf  4- L pq^

— (-f L uKiqg)LgUp 4“ (I  ~  L uK i qg) L hep 4~ L e£f

(5.23)

(5.24)

(5.25)

(5.26)

Now that we have derived closed-loop expressions for both u and y, the next step 

is to calculate their variance expressions which are actually the H% norm of the 

closed-loop expressions weighted by the variance of e. A simple method to derive 

the variance expression is given below.

Let a disturbance enter the process at time = t  4-1, i.e.,

ut =  ut-1

fit =  St-1

e t+ 2 =  e S+3

= U t - N + 1  =  0  

: C t - N + l  =  0

: e t + N  =  0

Then the cumulative effect of the noise et+\ on the process input and output 

variances can be obtained from equations (5.24) and (5.26), which simplify to

Kiqgleet+i

V'o

^1

f p N -

Ct+1 (5.27)
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Vf {J L uKlqg)le^t+1

70

71

I n - i

ei+l (5.28)

where L —
L0

Ln - i

, the vector of noise model impulse response coefficients/

Markov parameters. From the above equations, we can calculate the LQG- 

benchmark variances of the process input and output as

Var[ut} = Y &  Var[et] i>J
i=o  

N - 1

Var\yt] =  Y  Li Var[et]
i= 0

(5.29)

(5.30)

As can be seen from the above equations only the subspace matrices Lu and Le 

are required for obtaining the LQG-benchmark variances of the process input and 

output. The state subspace matrix, Lw, is not required. Therefore the closed loop 

subspace identification method presented in chapter 3 can be used for obtaining the 

optimal LQG control variances of process input and output.

For obtaining the LQG-benchmark limit curve, define

uiqg =  trace{ Var[ut] } 

yiqg  =  trace{ Var[yt\ }

(5.31)

(5.32)

For different values of A, the values for uiqg and yiqg are obtained. A plot of Uiqg 

vs. yiqg represents the optimal LQG performance limit curve that can be used for 

controller performance assessment.

5.4 Profit analysis o f feedforward control

For the case of measured disturbance variables, obtaining optimal benchmark 

variances helps us in analyzing two things: (i) performance assessment of an existing
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feedforward plus feedback controller and (ii) profit analysis of implementing a 

feedforward controller on the process. This analysis in terms of process output 

variance using MVC-benchmark is provided in [42, 51, 60, 86] (also refer to chapter 

3 in this thesis) . In this section we provide the analysis, in terms of both process 

output variance and process input variance, using the LQG-benchmark.

Consider the case when measurements of some of the disturbance variables, vt (hx  1), 

are available where vt is assumed to be white noise; if this assumption is not true, 

then pre-whitening is needed. The process state space representation (2.1)-(2.2) is 

modified to include measured disturbances as

xk+1 = Axk +

yk = Cxk +

B B„

D Dv

uk

Vk

Uk

Vk

+ K ek

Similarly, the predictor equations for the process output can be expressed as

Vf = FbNx t+1 -f- H^Uf +  HftVf +  H sNef 

= L ww p T L uU f T L vVf T L eGf

where

(5.33)

(5.34)

(5.35)

(5.36)

V t - N + l Vt + 1 ' Y p '
Vp ; v f  = ■ w b =J vv p up

v i . V t+ N  . . V p .

The optimal LQG control law, as N  

modifies to

(5.37)

oo, for feedback plus feedforward control,

uf - ( \ I m + L TuLu) - 'L TuL lw bv

where

r bu iqg

Iqg %t+ 1

(5.38)

(5.39)

(5.40)

The relation Lbwwp — TbNxt+i follows from the comparison between subspace 

equations (5.35) and (5.36). Note that Lv is not required in the design of the
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controller and hence not required to be calculated for implementing the controller. 

However Lv is required for obtaining the LQG benchmark.

Similar to the previous section define

LgV —

G v0 G l  . . .
riv
UiV- Vt+1

G* G V2 ... g vn  o
; %  =

Vt

r iv
U N - !  0 0 0 V t-N +1

0 0 0 Vt+2

G l 0 0
; v f  =

Vt+3

riv
vtN -1  **■ 0 Vt+N+1

(5.41)

(5.42)

where G1 is the z-th impulse response coefficient (Markov parameter for multivariate 

systems) of the disturbance model corresponding to vt. Lgv can be formed from the 

subspace matrix Lv. Equations (5.38) and (5.36) can be written as

U f    K l q g ^ L g U p  T  L gvV p  T LfrCp^  (5.43)

yf  =  (-f LuKiqg^LgUp -f- ( /  LuKiqg)LgVvp ( /  LuKiqg)Lhep T LvVf -)-(£e4^)

Consider the measured and unmeasured disturbances enter the process at time =  

t + 1, i.e.,

Ut  =  Ut - i  =  . . .  =  U t - N + 1  — 0  

Vt =  v t - i  = ... = V t - N + 1  = o

et =  et-1 =  ... =  et-N+i =  0

Vt+  2 =  Vt+ 3 =  ... =  Vt + N  =  0

e * + 2 =  &t+ 3 =  ••• =  C t+ N  =  0

Therefore

Uf ^Iqg^vVt K-iqgleet

(Vo 0̂

U)1 l/ll
Vt+1 +

U)N-1 i ’N - l

&t+l (5 .45)
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Vf (I LUKlqg)lVVt ' (I  LUKlqg^leGt —

T0 7o

Tr 7i
Vt+1 +

T v -i 7tv-i

^ 6 )

where lv

i

?>o

i

L0
and le =

r^v
_ u iV-1 1

i-H1£
1

the vectors of noise model impulse

response coefficients/ Markov parameters of measured and unmeasured disturbances 

respectively. From the above equations, we can calculate the LQG-benchmark 

variances of the process input and output as
N - 1 N - 1

Var[ut] =  Y  u i Var[vt\ u f  + Y  ^  Var[et\ i>J
i=0  i= 0

Var[yt] -  T f  + 7i Var\et\ 7?

(5.47)

(5.48)
i= 0 i= 0

Hence only the subspace matrices Lu, Lv and Le are required for obtaining the 

LQG-benchmark variances for the process input and output. Now,

u^g = trace{ Var[ut] } 

y iq g  = trace{ Var[yt] }

(5.49)

(5.50)

By plotting uiqg vs. yiqg for different values of A, as explained in the previous section, 

an LQG feedforward plus feedback controller limit curve can be plotted. It can be 

compared with the feedback-only optimal LQG performance limit curve to analyze 

the benefits of implementing feedforward control. Further discussion is provided in 

the next section.

5.5 Controller performance analysis

One of the advantages of LQG-benchmark is that the controller performance can be 

assessed in terms of both process response (output) variance and the process input 

variance. The LQG tradeoff curve in figure 5.1 represents the limit of controller
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performance, in terms of process input and output variances [8]. That is to say, all 

linear controllers (from PID, MPC, to any advanced control) can only operate in 

the region above the curve. Several useful performance indices in the analysis of the 

controller performance can be obtained from the LQG-benchmark curve.

5.5.1 Case 1: Feedback controller acting on the process with no

measured disturbances

Consider the case when a feedback-only controller is acting on the process and the 

actual input and output variances are represented as (VU)E and (Vy)E respectively. 

The closer (VuY b and (Vy)E are to the limit curve, the closer is the controller 

performance to the optimal LQG controller. If the optimal output variance 

corresponding to (K )/6 is (V°)fb and the optimal input variance corresponding 

to (Vyy h is (V °yb, then the LQG performance indices can be defined in terms of 

process response variance, (rj)^b, and process input variance, (E)fb, as

(„)/> = m u .  =  m u  (551)™ ( v , y i  ’ { 1 (v . y *  K ’

(rjyb and (E)fb vary between 0 and 1. If (r))fb is equal to 1, for the given input 

variance, then the controller is giving optimal performance with respect to the 

process variance. If not, then the controller is non-optimal and there is scope for 

improvement in terms of process response. Similarly if (E)E is equal to 1, for the 

given output variance, then the controller is giving optimal performance with respect 

to the input variance. If not, then the controller is non-optimal and there is scope 

to reduce input variance.

The maximum possible % improvement in controller performance with respect to 

process response variance without increasing the input variance, by retuning the 

controller, can be calculated as

( / , v  =  100% ( , 52)

Similarly the maximum possible % improvement in controller performance with 

respect to input variance without increasing the output variance, by retuning the
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controller, can be calculated as

{Ie) =  ( v S *  100% ( 5 ' 5 3 )

5.5.2 Case 2: Feedforward plus feedback controller acting on the process

For the case of measured disturbances, and a feedforward plus feedback controller 

acting on the process, let the actual input and output variances be denoted by 

(Vu)ffSzfb and { V y Y ^ ^  respectively. Then the LQG curve is plotted using {Lu, 

Le, and Lv}2 and represents the limit of performance in terms of process input and 

output variances for a feedforward plus feedback controller. Let the optimal output 

variance corresponding to (I4)-^&̂ 6 be ( V ° y ^ ^ b and the optimal input variance 

corresponding to {Vy) ^ k^b be (V °y fkfb, then the optimal FF-FB LQG performance 

indices can be defined in terms of process response variance, (77) and process 

input variance, ( E y ^ b, as

(„)//&/* =  (Vv ) f f k f b . fE \ f f b f b  =  (Y u ) f m b  (5 54)
(yj/)//&/6 ’ y J (yuyfbfb yo.o<i)

(ry)//&/6 aild (Eyf^fh  vary between 0 and 1. If ( j i y ^ b is equal to 1, then the

controller is giving optimal feedforward plus feedback controller performance, for

the given input variance. If not, then the controller is non-optimal and has potential 

for improvement by retuning. Similarly if [ E y ^ b is equal to 1, then the controller 

is giving optimal feedforward plus feedback controller performance, for the given 

output variance.

The maximum possible % improvement in the controller performance, with respect 

to process response variance without increasing the input variance, by retuning the 

controller, is calculated for the feedforward plus feedback control case as

( V  — ( v ° ) f f & f b

W " h1b =  ------ 100% (5'55)
2 It should be noted that the subspace matrix corresponding to the measured disturbances, Lv , cannot be identified

when a feedforward plus feedback controller is acting on the process [58]. A feedback-only controller should be acting

on the process for identifying Lv -
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Similarly we can define in terms of the input variance

5.5.3 Case 3: Feedback controller acting on the process w ith measured 

disturbances

Consider the case where a feedback-only controller is acting on the process 

and measured disturbance variables are available. We want to know how 

much improvement in the controller performance is possible by implementing 

a feedforward control in addition to the existing feedback-only controller. By 

implementing optimal feedforward control on the system the process response 

variance will decrease. The same may not hold for the input variance. The process 

input variance may increase or decrease by the implementation of feedforward 

control with the measured disturbances. The following analysis helps in determining 

the incentive for the implementation of a feedforward controller on the process.

We can obtain (VuY b and (Vy)^b from process data. We construct two LQG limit 

curves. (i) Identify {Lu, Lv, and Le} and construct the FF & FB LQG controller 

limit curve to obtain (V°)ff&!:fb and (V°)f f ^ b. (ii) Treat measured and unmeasured 

disturbances as a lumped set of (m x 1) unmeasured disturbances and identify {Lu 

and Le} and construct the FB-only LQG controller limit curve to obtain (V°)fb and

K ) ,b-

The maximum possible improvement in the optimal controller performance with 

the implementation of an optimal feedforward controller is obtained in terms of the 

process response variance and process input variance as

(vy°yb -  (vy°yf f̂b 
(vy)fb

and

(v;Yb -

100% (5.57)

(Vu)Ib 100% (5.58)

respectively.
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The performance analysis indices presented for three different cases above can be 

used in analyzing the incentives, in terms of decreasing both process response 

variance and process input variance, for retuning the controller.

5.6 Summary of the subspace matrices approach to  the  

calculation of LQG-benchmark

Controller performance analysis using LQG-benchmark involves comparing the 

current process input and output variances with the variances if an LQG controller 

were implemented on the process. The method proposed in this chapter allows the 

calculation of the LQG-benchmark variances directly from the deterministic and 

stochastic process subspace matrices, thus not requiring a parametric model, and 

principally consists of the following steps:

1. Estimation for the deterministic and stochastic process subspace matrices from 

the process data. The subspace matrices can be identified by either

(a) Using the process open loop data [91, 93] as shown in chapter 2.

(b) Using the process closed loop data with setpoint excitation [58] as shown in 

chapter 3.

2. Estimation of the process stochastic noise and obtaining the variance, Var[et]. 

Also estimate Var[vt] if any measured disturbances are available; if the measured 

disturbance is not white noise, then pre-whitening is necessary. Routine operating 

data can be used for this purposes.

3. For different values of A calculate the LQG-benchmark variances, uiqg and yiqg. 

Plot uiqg vs. yiqg to obtain the optimal LQG performance limit curve.

4. For the current process input and output variances, Vu and Vy respectively, obtain 

the optimal variance values V° and V°, for both feedback-only and feedforward plus

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94

feedback control cases. Calculate the controller performance analysis indices.

(v)fb (.E Y b

W b (■IE)fb
(,r j ) f m b (£)//&/*

(.IE)f m b

5.7 Simulations

Consider the following state space system (modified from the example in [93])

0.6 0.6 0 1.6161 0.5 -1.1472

Xk-\-1 — -0 .6 0.6 0 Xk + -0.3481 Uk T -0.5 Vk + -1.5204

0 0 0.7 2.6319 0.4 -3.1993

Vk -0.4373 -0.5046 0.0936 x k +  [-0.7759]ufc +  [-0.5]ufe +  ek

A process time delay of 3-samples is introduced for the above system in MATLAB- 

Simulink. A PID controller, [0.1 +  ^  +  0.05s], is tuned for the system. We assume 

the controller knowledge is not known in the following analysis.

Closed loop input/output data is obtained by exciting the system using a 

designed ‘RBS’ signal (with idinput function in MATLAB), with bandpass limits 

0 0.06 and magnitude 1, for the setpoint. The measured disturbance and the 

unmeasured disturbance are random white noise with standard deviations 0.2 and 

0.1 respectively. Note that although the measured and unmeasured disturbances 

can have same standard deviation, different seeds have to be used for generating 

them in MATLAB. Using closed loop subspace identification [58], with N  — SO 

(rows) and j  = 3000 (columns) in the data Hankel matrices, the subspace matrices 

Lu (30 x 30) and Le (30 x 30) are identified. Due to the presence of noise, the upper 

non-diagonal elements in Lu and Le will not be exactly zero but negligibly small 

numbers (they approach to zero as N  — > oo). An optimal feedback-only LQG 

controller is considered as a benchmark for controller performance assessment. For 

a range of values of A (1 — 30), the LQG-benchmark variances of the process input
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and output are obtained for both feedback-only control case and feedforward plus 

feedback control case and plotted in figure 5.2. The controller performance analysis 

parameters are obtained from figure 5.2 as:

parameter value parameter value

(Vy)fb ........  0.0549

('Vu)fb . 13 x 1(T4

('V°)fb ........  0.0506 ( V ° y ^ fb   0.0474

{V°)fb . 1.8 x 1(T4   8.2 x 10“4

(n)fb ........  0.9217 (pYfkfb    0.8634

(Iny b ........  07.83% (I ,) / w    13.66%

(.E) f b ........  0.1385 (£)//&/«•   0.6308

(.IE)fb ........  86.15% {In)f fhfb    36.92%

^ )fb̂ ° r fb 100%   05.83%

(v:)fb- ( y $ i L ^ 10 0%   —49.23%

Table 5.1: LQG-benchmark performance assessment parameters for the simulations.

We make the following observations from table (5.1):

From feedback-only LQG limit curve

From the FB-only optimal LQG-benchmark variances we see that although the 

controller performance is close to optimal with respect to the process output variance 

(92.17 % of the optimal), the performance index with respect to the input variability 

is only 13.85%. Hence there is a maximum possible scope of 86.15% to reduce the 

input variance without increasing the output variance.
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F r o m  fe e d fo r w a r d  & fe e d b a c k  L Q G  lim it  c u r v e

From the FF&FB optimal LQG-benchmark variances we see that the controller 

performance is still close to optimal with respect to the process response variance 

(86.34 % of the optimal), whereas the performance index with respect to the input 

variability is better than with a feedback-only controller 63.08%. Hence there is a 

maximum possible scope of 36.92% to reduce the input variance without increasing 

the output variance.

For the profit analysis of implementation of feedforward controller on the process, 

we see that there is an incentive of only 5.83% reduction in the process response 

variance possible by the implementation of an optimal feedforward controller on 

the process. However, there is 49.23% maximum possible scope for decrease in the 

process input variance. Hence it can be concluded that there is not much incentive 

for the implementation of a feedforward controller in this case.

5.8 Application on a pilot scale process

The proposed method of controller performance analysis using optimal LQG- 

benchmark is tested on a pilot scale system. The system considered is shown in 

figure (5.5). The input (u) is the valve position of the input water flow valve and 

the process variable to be controlled (y) is the level of water in the tank. The tank 

outlet flow valve is kept at a constant position. The head of the water in the inlet 

pipe can be considered as (an unmeasured) disturbance. The tank level is controlled 

by a PID controller, 5 +  +  0.05s. The controller sampling interval is 5 seconds.

An 1R B S ' signal of series of setpoint changes to the level is designed in M A TLA B .  

Closed loop data of the process input and output is collected at a sampling rate 

of 5 seconds. The subspace matrices Lu and Le of dimension 200 are identified 

using the closed loop subspace identification method from chapter 3. The impulse 

response coefficients models for the process and noise are plotted in figure 5.6. The 

optimal LQG-benchmark curve is plotted for a range of values of A, as shown in
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figure 5.7. The actual process input and output variances are compared with the 

optimal variances for the controller performance analysis.

parameter value

(Vy)fb   1.885 x ltT 4

{Vu)fb   1.52 x 10~3

(V ° y b   0.71 x 10-4

('V°)ib   1.66 x 10~4

(■r,)fb   0.378

(Iv)fb   62.30%

(.E)fb   0.11
(Ir,)fb    89.00%

Table 5.2: LQG-benchmark performance assessment parameters for the pilot scale process.

From table (5.2) we can see that the controller performance is non-optimal with 

respect to both input and output variances. There is a maximum possible scope of 

62.30% to reduce the process output variance without increasing the input variance 

and 89.00% to reduce the process input variance without increasing the output 

variance.

5.9 Conclusions

A subspace identification based approach is proposed in this chapter for obtaining 

the optimal LQG-benchmark from closed loop data, for controller performance 

assessment. It has been shown that instead of using explicit process models, only 

the subspace matrices corresponding to the deterministic and stochastic inputs, Lu 

and Le, are required to obtain the LQG-benchmark. The closed loop subspace 

identification method is used to obtain Lu and Le which are subsequently used to 

obtain the LQG-benchmark. The optimal LQG-benchmark method is extended to 

the case of feedforward plus feedback control. Profit analysis for the implementation 

of feedforward control under optimal LQG control performance framework is also
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derived and explained in this chapter. The results of the chapter are illustrated 

through a simulation example and a pilot-scale experiment.
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Actual
performance

(non-optimal)

E  =

Optimal
performance

limit
v;

Vuv°

Figure 5.1: Optimal LQG control performance limit curve. Vu and Vy represent the variances 

obtained from process data while V°  and V°  represent the optimal LQG-benchmark variances.

Optimal LQG-benchmark variance plot; FB-only (-), FF&FB (— )

Actual variances from the process
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Variance of U.
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Figure 5.2: Optimal LQG control performance limit curve.
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x iq”3 LQG-benchmark variance of the input; FB-only {-), FF&FB (— )

3.5

2.5

0.5

20 25 30
X values

Figure 5.3: LQG-benchmark variances of the input.

LQG-benchmark variance of the output; FB-only (-), FF&FB (— )
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0.044
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Figure 5.4: LQG-benchmark variances of the output.
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Input
(valve position)
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(level)
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Figure 5.5: Experimental setup

Estimate of process IR-coefficients
0.15

0.1

0.05

140 160 180 20020 40 60 80 100 120
lags

Estimate of noise IR-coefficients

0.5

80 100
Lags

120 140 160 180 200

Figure 5.6: Impulse response models for the process and noise identified using closed loop data
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Optimal LQG controller benchmark curve
2.5

0.5

1.40.6 0.80.2 0.4
Variance of u. -3x 10'Jt

Figure 5.7: Optimal LQG-benchmark curve for the CSTH
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Chapter 6

Estim ation of the statistical 

confidence intervals for 

LQG-benchmark obtained using  

the subspace matrices

6.1 Introduction

In chapter 5, the expressions for obtaining the LQG-benchmark variances for 

the process inputs and outputs are derived for controller performance assessment. 

Industrial data inherently has noise and this noise transfers to the subspace matrices 

identified for the LQG-benchmark variances calculation. In this chapter we derive 

the expressions for calculating the confidence intervals for the LQG-benchmark 

variances calculated using the subspace matrices based method. We use extensively 

the Kronecker algebra and matrix calculus to derive these expressions.

103
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6.2 Kronecker algebra and m atrix calculus

Differentiation of matrices functions involves Kronecker algebra. Consider a vector 

P =  \ P i ] q x  1 and matrices A  =  [aij\ax/3, B  —  [ b i j } a x p . Assume (a > /3). The following 

rules of operations and differentiation are useful for the statistical analysis provided 

in this chapter. Most of the formulae presented in this section are directly taken 

from [9, 31, 123, 124, 126], without presenting the detailed derivations involved.

6.2.1 Kronecker algebra

A ®  B — matrix[a,ijB]

an B a12B  ... aXpB 

a2i.B <222-6 ... a2 pB

<2q:i B aa2B Q’otpB
a a x f i p

A ® ( B  + C) = A ®  B + A ® C  

( A ® B ) ( C ® D )  = (AC) ® (BD) 

(A ® B)t  =  At ® B t 

( A ® B ) - 1 = A~l ® B - 1 

(A ® B)^ — A* ® B^ (f represents pseudo — inverse) 

(.Is ® B Y  = Is ® B a

A ®  B  =  UX(B ® A)U2 (Ux & U2 are permutation matrices)

where is a permutations matrix defined as

T TO.fi x  of)  
af)

i — 1 j = 1

u:a 2 x /3 2
af3

i=1 j—1
=  Uap (symmetric and orthogonal)

with A“-x/3 being the (a x (3) Kronecker matrix which has ‘1’ in the ?,j-element and

‘O’ elsewhere.
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6 .2 .2  D if fe r e n t ia t in g  a  m a tr ix  o r  a  m a tr ix  fu n c t io n  w .r .t .  a  m a tr ix

dA 
dB  

dA 
dA 

dAT 
dA 

d A - 1
dA

dAB
dM  

d[A <g> B\

dA dA dA

dA
dbn 96i2 • dbu

dB
dA dA dA

. dbal dbcr2 dbvi .

dAT
dBT

= u:a/3

TTOtPxafj
u af3

<T P

E E ®
i = 1 j = 1

dA
dbij

- ( /«  ® ® A - 1)

1>A (I, 0  R ) - l / , 0  A) />B
dM
dA

dM  
dB
dMB + {Ir ® U Z xa° ) ( ^  ® A)(I. ® l/g**)dM  dM

where M  =  [My]rxs and, A and 5  have compatible dimensions.

6.3 Statistical analysis for matrices

When dealing with matrices instead of vectors or scalars, the extra dimension needs 

to be carefully incorporated in the derivations. Consider a matrix

A =

an 0-12 ••• G-ip
021 O 22 .. .  0,2/3

a i a2

Oal Oa 2 ... Oap

The covariance matrix for the matrix A  can be defined as

£ a =  E [(A -  A) <g> (A -  A f

cov(a i ,a i )  con(a2,a i )  ... covfap, ai)

cov(a i ,a 2) cou(a2, a2) ... cov(a^, a i)

con (ax, a/?) cov(a.2,ap) ... cov(a/3,a^)

a x / 3

a./3x.ot/3
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where

each of the block cov(ai,aj) =

cov(au,aij) cov(a2i, ay) ... cov(aai,a ij) 

cov(au,a2j) cov(a2i ,a2j ) ... cov(aai, aij)
is

cov(au,aaj) cov(a2i, aaj) ... cov(aai,aaj) 
an (a x a) covariance matrix. To avoid complex mathematical formulation, the

functions of matrices can be equivalently expressed as functions of vectors formed

by the columns/rows of the matrices. This will allow us to use the vector functions’

Taylor series expansion equations for the functions of matrices. We can express

the matrix A  as a column vector, a, defined as a —

function is a =  A(:);.

ai

a2

a/3

. In MATLAB, the

. a/3xl

6.3.1 Taylor series expansion

If a matrix F(a  x (3) is a function of a vector, p(q x 1), then

F(p) = F(p0) +  Po)T[l] ® I*] ( ^ ~ F (P) \p=.
i= 1

■Po

= F(po) +  £  i  [(P -  po)w ®  IA

with

(6 .1)

(6 .2)

( p - P o ) TW =  ( p - p o ) T ® ( p - p o ) T ® ' . . ® ( p - P o ) 1’ (6.3)

6.3.2 Basic derivations

We can derive
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where

V ; ^ 0 = (6.6)
i= 1 j = 1

v ; f * °  = E E o s r i ,® ( 4 r ,,))T (e.?)
i=i j=i

with Off*1 being the (a/? x 1) column matrix which has ‘1’ in the [a(j — 1) +  i]th- 

element and ‘O’ elsewhere.

We can derive the expression for \  ^  and as follows:

( *)
dA -Q̂  = -  [Ia> <8> A-1] - A " 1

Proof: a = (3 is assumed for A-1 to exist.

AA-l I
5(AA_1) rr 5A_1

1 +  [Ia2 <8> A — — 
da da da
dA~

da
rT dA  . ,
[4 a ®  A ]  - ^ z - A -

[ /q2 ®  A " 1 ’ V"-'v "4 1 (6.8)

(«) ^  = 7„> 0  -4T■ 1 ¥ M ' r 1 =  -  [/„> ® (A1-) - 1] 

Proof: Similar to above.

( « )  ® A<]

Proof:

AtAAt =  Af

^ 4 f  , F r  „ t l  \ 9A  r r  , i  d A
+  [4/3  ®  A  N  ~^rA +  [Ia0 ®  A ]  —5a

5At
5a

Therefore,
5 A t

5a
rr .,_i 5A ,x 
[4/3 ® A] Af = 4 / 3 ® A t ] ^ x^At (6.9)
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O )
d(AT )t  _  _

da 1 .0  ® (^T)'] ¥ ( ^ T)f =  -  ['<* ® (X T ] K f x°(AT)'

Proof: Similar to above.

Note the following properties for the vector a:

E[a — a] =  0 (6.10)

E[(a — h) <g> (a — S)] =  Sa (6.11)

where S's is a column vector obtained from the covariance matrix, E^ (in MATLAB

notation, =  E^(:)). Similarly, A [(a — S)T <g> (a — a)T] =  S'?1, a row vector.

Suppose there is another vector 

uncorrelated with b, then

&J  ̂ formed from a matrix B  = [Bij]axp. If a is

E[(a — a)T ® (b — b)T] =  0 (6 .12)

6.4 Statistical properties of matrices as random variables

For the matrix A
a x 0

where a; is a[Ajjjax/3 — a i | a2 | ... | a.p
(a x 1) column vector. To avoid complex mathematical formulation, the functions 

of matrices can be equivalently expressed as functions of vectors formed by the 

columns/rows of the matrices. This will allow us to use the vector functions’ Taylor 

series expansion equations for the functions of matrices. For example f (A)  can be

equivalently expressed as /(a), where a

a i

a2

a*

. Note the following properties

a/3x  1
for the vector a:

E [ a - t ]  = 0 (6.13)

E[(a — a) ® (a — h)] =  Sa (6-14)

where Sa is the covariance matrix, E^, arranged as a column vector. Similarly,

E[(a — a)T <8> (a — h)T] =  S?, a row vector. Suppose there is another vector b formed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



from a matrix B = [Bij]axp. If a is uncorrelated with b, then

E[(a — a) <g) (5 — S)] — 0

Consider the following derivations:

109

(6.15)

/JFl >JAT ■yaPxa/3
da da ap

The Taylor series expansion for Fi(a) about the point a can be written as

F i =  AT + (a — a)T <g) I, 

E[At ] = AT

dAT
da + . . .

F2(A) =  (A ‘ - A 1) A, [A1 - A ‘ )‘
i T

{ ( A - i ) < g > ( A - A ) r }

Therefore

=  e [ f 2\ =  { e [ ( a - A ) < s > ( a - A )t }}1

-  y t

Therefore we can write the distribution for AT as

a t  & n (A t ,'e a )

3- [F9(>l)]ax„ =  a -1

a = (3 is assumed in derivations 3-4.

dF« dA'
da da I ai (g) A  1 v A xaA~l

(6.16)

(6.17)

(6.18)

(6.19)

(6 .20) 

(6 .21)

(6 .22)

(6.23)
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The Taylor series expansion for F?J(A) about the point a can be written as

F3 = A  1 -  [(a -  a)T 0  Ia 

E[A~1} = A-1

la*® A - 1 v £ xaA - l + ...

4- m A ) ] a2 (A -1 -  A - 1) (8) (A -1 -  A~X)T

dFA
da

d2F4
da2

d A - i
(8 (A-1 -  A-1)

da
1 \ T

d(AT)~1
da

(8 (A-1 -  A-1) jjGt^xor

la* ® U% °a  a 6.a
a ° . a x a ° . a d(AT)~l d A - 1

+
da

v2 v

u:■arxor
2

Ia2 ® I a * ® U y a Ia*®U ° ^TCt'° .OLXOT .Oi

d A - 1 diA7')-1 
<8 v ’

t  r a 2 X a 2 r  r a 2 X a 2 
a 2 U a 2da da

The Taylor series expansion for F4(A) about the point a can be written as

d2F
F4 =  0 +  0 +  [(a -  a)T <8 (a -  a)T (8 Ia2] +  •••

EA-i = E[Ft] = [SaT ® /a2] { ( la2<8 C / i r ^ )

( ja2 <8 IA~1]T) V̂ 2 Xa(AT) - 1 <8 ( la* ® A - 1) V $ xa

US™2 +  (la* ® la* ® U i™ 2) ( / a 2  0  U ^ - a)

[(la* 0  A -1) V ^ xotA~l 0  ( jq2 0  [A-1]1') v £ xa(A
T j a 2 x  a 2 TT<x2 x a 2 i  

a 2 a 2 J

Therefore we can write the distribution for A 1 as

A-1 »  n ( A - \ E a- i )

dFn
da

dA t 
5a
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A "1'

r ) - 1]
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(6.31)



I l l

The Taylor series expansion for F${A) about the point a can be written as

F5 = -  [(a -  fr)T ® Ia] [lap ® A -1] +  ... (6.32)

E[A*] = i f (6.33)

6. [F6{A)\ a(3xa/3 =  (At -  i t )  ® (Af -  i t ) 2

m
da 

52F6 
da2

<g> (At -  i t f  +  \la0 ® U ^ adA t
da

r  T o  TTa 02-a x a / 3 2 .a 1[ L p  ® p J

5 (A j2
da

® (At -  i t )

a/i'

da

+ [4m® U'(a/3  <*> -ta /3 W  '- ' /3 a

5At 5(At)T

r  rotP x  a /3  
a.p

TCc2p.pxo?'P.p
a2p.p

Moreover,
da

dA t 
5a

5a
rrPaxparraPxaP 
UPa UaP

The Taylor series expansion for Fe(A) about the point a can be written as
d2Fe,

Fe — 0 +  0 +  [(a -  a)T ® (a -  a)T ® Iap
da2

(6.35)

(6.36)

(6.37)

[(/«„ ® (yi3’) ')  v X ™ ( A Ty  ® ( / ^  ® 4 *) t ^ ^ * ]

u : r e+ ® ̂  ® ®
[{lag ® A*) ® (/«„ ® (y4T)t) ^ ’“W ]

(6.38)jjPaxpa.Tjapxap't
U pa U aP J

Therefore we can write the distribution for At as

At «  n ( A \ X ai) (6.39)

7. [F7(A, B)]axp — A aXpBpXf)

N ote: We assume (3 = a in functions F7 and Fg for dimensional compatibility.
dF7 dA
da d a B]

(6 .40)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



112

dF7 rr A. d B

d2F7
db da 
d2Fr 

da db

I  ftp ®
dA
da

dB
~db’

(6.41)

(6.42)

(6.43)

The Taylor series expansion for F7(A, B ) about the points {a, b} can be written as

F7 = AB  +  [(a — a)T (8) Ia
dFr
da +

|(a -  a)T <8> (6 — b)T ® IQ

(b -  b)T <g> Ia 

d2F7

dFr
db

(b — b)1 ® (a — a)T (g) /<

5a db 
d2F7 

db da + . . .

=  AB (6.44)

8- [Fs(A B)]apxap = (AB -  AB)  ® (AB -  AB  f

m
da

dF8
db

d2Fg
da2

d2F8
db2

^ B  ® (AB -  AB)T 
da

+ bft ® U%XaP 

dB

r)AT
CI*ft®BT) - ^ - ® ( A B - A B ) U ^ % 6 A 5 )

(Iftp ® A)- t̂  <S> (AB -  AB)t

+ b P ®

T „ 77“ 2/3.pX“ 2/ Mbft  ® j

+

5 £ T
db

AT <g> (AB -  AB) 

dAT dA

j j p a x p a

j-aftp.a 
afta.p

da da

b p  ® b p  ® KpXap] { [lap ® u fp-axaf3p-a

jjp o t X pot

it A „ JJ&P xoipy JJP& x Pck

+

0Br  . T  /T A,d B
~ W A

pa

j j p a x p a  
^  p a

b e  ® ® U%*°'} {[/„, ®
dB dB T

(bP®A)^r ®db db
JJ&P x a p y j j p a x p a

(6.46)

(6.47)

(6 .48)
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Note that we do not have to derive f ^ }  because the terms involving

|  (a — a)T ® (b — b)T ® Iap , (b — t)T ® (a — h)T ® Iap j  are zeros (since a is 

assumed uncorrelated with b).

The Taylor series expansion for Fg(A, B) about the points {fi, b} can be written as

d2F*
0 + 0 + 0 +

+

(a — a) ® (a — a) ® Iap

d2F*
da2

(5 — b)T ® (b — b)T ® Iap | |- 0 +  0 +  ... (6.49)

Eab =  [+  ® 4p] { [bn  ® [(7«0 ® B T)V« r °  ® £ /^ xp“

+ [/«0 ® 4|S ® 4 + “'’] [/o/J ®

+  [ +  ® 4 ,]  { [4p ® [ v ^ < ‘AT 0  (4 , 0  A )V ,t/*”] Ug*'”

+ [4p ® 4p ® r C * ”'’] [4p ®

X b ,  ® ^ )v £ w  ® ^p'’’* '^ 1’]

Therefore we can write the distribution for AB  as

(6.50)

AB x  n (AB,S.4B) (6.51)

The above results will be used in the derivation of the statistical properties of the 

subspace matrices and subsequently the confidence limits for the LQG-benchmark 

curve.

6.5 M ultivariate multiple regression

Most of the presentation in this section is taken from [55] with some matrix 

dimensional modifications to suit this chapter. References at the end of the thesis 

can guide readers who may be interested in the detailed derivations. A multivariate 

multiple regression model can be expressed as

X  = 0 Z  E
(a x b) (a x  c) (c x b) (a x b)
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for S(j) =  S ( i , :) i = 1, 2 , a with

E[H(j 0; Coti(S(j),2(*)) =  ctikl i, k =  1,2, ...,a

where X  contains b trials of a responses, Z  contains b trials of c predictor variables 

and E contains the error terms. The a observations on the j-th  trial have the 

generalized variance matrix E =  {crifc}, but observations from different trials are 

uncorrelated. Here (3 and are unknown parameters.

Given the outcomes X  and the predictor variables Z  with full row rank, we can 

determine the least squares estimates /%) exclusively from the observations, X ^ ,  on 

the i-th response.

4 )  =  X ( i ) Z T ( Z Z T ) ~ 1 

Collecting the univariate least squares estimates, we obtain

(6.53)

P = /3(i) (3(2) ... (3(b) Z T(ZZT)~1 (6.54)7 T \ - 1
X(1) X(2)  . . .  X ( b)

Note that the least squares estimates, j3(i) =  X(i)ZT{ZZT)~1, are computed 

individually for each response variable. However, the model requires that the same 

predictor variables be used for all responses. Using the least squares estimate, (3, 

we can form the residuals: E = X  -  (3Z. The estimated error sum of squares and 

cross-products matrix is

z:Tz: { X  -  P Z ) ( X  -  P Z ?  

b

<711 01 b
(6.55)

061 ••• 066

Let the multivariate multiple regression model in equation (6.52) hold with full

rank(Z) =  a, b > c +  a and let the errors, S, have a normal distribution. Then

(3 =  X Z T(ZZT)~1 (6.56)

is the MLE (maximum likelihood estimator) of (3.

Consider $  =  (X (i) -  Ei)ZT(ZZT)~1 and A =  X (i)Z T(ZZT) - 1. Therefore

P i - A  = EiZ T(ZZT) - 1 (6.57)
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C o v 0 iJ k )  = E[( A - A ) T(/3fc- /3 fc)]

=  ( Z Z ^ - ' Z E l Z j E ^ i Z Z T ) - 1 =  <Jik{ZZT)~1

(6.58)

(6.59)

Hence (3 has a normal distribution with E[/3\ and covariance

S/3 =  SS (8>(ZZT)f (6.60)

Also, 0  is independent of E, the MLE of the positive definite matrix E. For large 

samples, $  and E, have the smallest possible variances.

6.6 Statistical properties for subspace matrices

Calculation of the LQG-benchmark variances of the process input and output 

involves the estimation of the subspace matrices Lu and Le using the process data. 

The subspace matrices may be identified using the process open-loop data (see 

chapter 2) or closed-loop data (see chapter 3).

6.6.1 Subspace matrices identification from the open-loop process data

The subspace matrices Lu and Le can be estimated from the open-loop data using 

the following linear expression:

Note that we have no data to build the matrix Ef.  Hence the data Hankel matrix, Ef  

is formed from the estimated innovations sequence. The estimated noise sequence is 

the one step ahead predictions, Pf( 1 : m , :) where Pf = Yf — LwWp — LuUf. Hence 

the subspace matrices {Lw, Lu and Le} are estimated in two steps:

(*) First the parametric matrices {Lw, Lu} are estimated as

Lw kLp Lu Uf
m N  x (m +  l)N (m +  l)N  x j  m N  x IN IN  x j  

, Le Ef+ m N  x m N  m N  x j
(6.61)

t
(6.62)
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Then

(ii) the data Hankel matrix E f  is built (see equations (2.4)-(2.7) on building 

data Hankel matrices) from the first block row of the residuals, Pf. Le is estimated 

as

L  =  p ,& , (6.63)

The residuals can be obtained as

s  =  Yf — LwWp — LuUf — LeEf (6.64)

The covariance matrix of the residuals is estimated as

01,1 0 1  ,mN
Eh SSr

m N  x m N  j
&mN,  1 &mN,m N

(6.65)

The covariance matrices for the subspace matrices {E ^ , E^e} are estimated as 

follows
T \  - 1

(6 .66)
/ wp wp

E= ®
V. uf . . uf .

Ei u — E/j[(m2 +  ml)N2 + 1 : (ra2 +  2ml)N2,

(ra2 +  ml)N2 + 1 : (ra2 +  2raZ)iV2] 

E i, =  E s®  (£ ,£ ? )-*

(6.67)

(6 .68)

6.6.2 Subspace matrices identification from the closed-loop process data

Estimation of the required closed loop subspace matrices, and L^e,

using the least squares estimation method. Estimation of the closed loop subspace 

matrices from the closed loop data is an open loop identification problem:

Mr,

J 1

'  '

1 1

=

(ra +  l)N x j  (ra +  l)N  x (2ra +  l)N (2ra +  l)N x j
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+

t C L
yr

t C L
•U 41V*

R f +

r C L
ye

T C L■L-Jn.a
Ef

(ra +  l)N  x m N  m ^  X  ̂ (ra +  l )N  x m N  m ^  X ^
(6.69)

Similar to the previous section the subspace matrices {LyL, L%l , Lyf ,  L 

and are estimated in two steps:

(i) First the parametric matrices {LyL, L%l , L£.l , Lcl̂ are estimated as

t CL
yr ' Yt ' Mp

_l cul
f C L

ur . U f  . . R f  .

(6.70)

Then

(ii) the data Hankel matrix E f  is built (see equations (2.4)-(2.7)) from the first 

block row of the residuals, P f L = Uf — L%lMp — i f ^ R f .  is estimated as

L]CL P f LE\ (6.71)

We can obtain the residuals as

Y, -  L ^ M P -  L % R ,  -

Y, -  Lp lMp -  LgLRf  -  L ° t E ,

The covariance matrix of the residuals is estimated as

*1 , 1E= 5 5 t

(ra +  l)N  x (ra +  l)N j

(6.72)

(6.73)

The covariance matrices for the closed loop subspace matrices E l c l , E^cl }

a r e  t h e n  e s t i m a t e d  a s  f o l l o w s

T \  - 1

(6-74)
J L K f  J )

E£ol =  E(g[(2ra2 + l2 + 3ml)N2 +  1 : (3m2 + 12 + 3ml)N2, 

(2m2 + l2 + 3ml)N2 +  1 : (3m2 + l2 + 3ml)N2] (6.75)

Eh <8>
/ Mp Mp

V i

So 1 Rf
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— ^,fl[(3m2 -\- ft -\- 3ml) N 2 -f-1 : (3m2 + I2 +  Aml)N2,

(3m2 +  ft +  3ml)N2 +  1 : (3m2 +  ft + Aml)N2] (6.76)

=  t z Q i E f i f f ) - 1 (6.77)

The open loop subspace matrices, Lu(mN  x IN) and Le(mN  x mN),  are estimated

from the closed loop subspace matrices L y f (m N  x mN),  L ^ ( I N  x mN)  and

L%e(lN x mN)  as follows

4 = £“ (£“ )' (6.78)

4 =  - ( £ “ ) '£ “  (6.79)

The covariance expressions for the open loop subspace matrices Lu and L e, are then 

derived as follows

(£“ )’ «  JV ((£“ )*, E(Igf,,) (6.80)

E(isf), =  [ %  ® W ]  {[/,**> ® r c $ £ xmW'4'

[ ( w  ® )') C ^ Sx” ([i£;]T)t ® ( w  ® (iSbO x"*N( l “ )t]
r j m l N 2 x m l N 2 , 
U m l N 2 “r W  ® W  ® u 2 [£ xmlN2 ImlN2 <2> u\j m 2l2 N 4x m 2l2 N 4 

' m 2l2N 4

[(/mIJv* ® (£“ )*) C“ ™ ,X™"(L“ )' ® ( w  ® ([l £.T)*) ^ x“ ([L“ ]r )t]
TrmlN2x m l N 2TrmlN2x m l N 21 q i \r̂raZJV2 m̂ZJV2 /  (b.bij

L„ =  L“ (L“ )' ra AT ( 4 ,  S j , )  (6.82)

=  [ %  ® w ]  { [ w  ®

[(W ® JfJKSS”™" ® v ' z $ xhnN*

+  ® 7„,w  ® [7rf«= ® U Z S ? xlm’1'

[ g ’ , - Pi ® ( w  0  p ^ v z i j Z ' <  u z Z ' m,N' u : N ' " " N2}

m l N 2x m l N 2 
mlN2

sfic i,, ® w ]  { [ w  ® t c S S xm2,2JV4]
[v ™W>xm«(£ 0)T g  ( W  g, ^

+  [ W  ® Im p  ® [ W  ® K

[ ( W  ® L?)C™ ^f x'« ® C S f  x"*f'(L ?)3’] i r S : xmlN2U Z $ ™ ‘N’} (6.83)

= - ( L g ^ L g 1 ra AT ( 4 ,  S i .)  (6.84)

j m 2l2N 4 x m 2l2N 4 
m 2l2N 4
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-  [S lLCL)t ® 1 /  T T Trm 3lN 4 X m 3lN 4l\ { [ W  ® t/m3W4
\ ( T  ( T I \ T \l/-™'l2N 3X mN  ^  Crm2lN 3x l N  t CL]  TT™2N 2x m 2N 2[Ii m l N 2 ® (A) J V iiV ^  ®  AZJV^ L ue U m 2N 2

r -  -  _ . ™ 2  ivr2 ^ „ , 2  iyr21 r_  ~ jm 3lN 4 X m 3l N 4
' ^ 3 1  \TA+  [ w  ® w  ® c / ^ 22xm2Jv2] [ w  ® c c £ :

\-Crm2l N 3x l N  t C L  /rx ( T /rx ( T C  L \ T \ - [ / m l 2 N 3 XmA’l t j m 2N 2 x m 2N 2 t j m 2N 2 x m 2N 2 \  
[ m l N 2 L ue  ®  { ± m lN 2 ®  ( K e  ) ) Vm l N 2 \ U m 2N 2 U m 2N 2 f

+ [SlSf  ® Imim] { A  ® C w  x’”,“ '<]

[ K f xm((£SI )t)T ® ( W  ® ( i£ l ), ) v f i$ ',x’”JV] c c ^ xmW 

+  A  ® ^  ® t C w xra2WJ] [ W  ® t c S " w ]

[ ( w  ® (£“ )t) t S " xmW ® C 2" ’x" '( ( i “ )t)^
T jm 2N 2 x m 2N 2 t j m 2N 2 x m 2N 2\  

m 2N 2 m 2N 2 J (6.85)

We can also write

Therefore

Ze — Z/e(., 1 . 771) (6 .86)

£*e =  A  (1 : m2iV, 1 : m2iV) (6.87)

6.7 Statistical properties for the estim ated LQG benchmark  

coefficients

The estimated matrices in the calculation of the LQG-benchmark variances can be 

written as

k  =  (XI + L l L C L l  (6.88)

LQG, = ( I - L , k %  (6.89)

LQGU =  —K le (6.90)

Using the expressions derived in section 6.4, we can write the distributions for

the estimated open loop subspace matrices and the LQG-benchmark variances as 

follows:

L l  «  N  (L l,  S i . )  (6.91)
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r(L lL u,E Fl)
rml3N 4x m l3N 4 
ml2N 4

Fi — L^LU ~Ki N   ̂ ^

Efi =  [/Sju ® 7/2^] { [/m;jv2 ® U™a

[ ( w  ® ® «7" xm'vi« ] u'i% *PN2

+ [Jm/.v2 ® W  ® C ® * '2" ’] [ W  ®
TYl2m N 3x m  t /ex (  T  <> r T \ j / m 2lN 3x l N 1 ttI2N 2 x l2N 2 t j l2N 2 x l2N 2 \  

m l N 2 L u ® { l m l N 2 ®  K ) Vm l N 2 \ U l2N 2 U l2N 2 I
r  _ /r>  _  n *. r  _   s r i . , ___a t4 ‘

(6.92)

[^rniF2 ......  . ...

+  [sl„ ® /p«2] { [ W 2 ® u 2 * $ xm,’N4 

[ v ^ ’xmNL ,  ® (/mI„ 2 ® £ D k 5 ?
4- [/■ 7" (S?i T T ^ ^ x P N 2 ]  \ t

<2lN3xlN TjmlN2 x m l N 2 
m l N 2

+ [ w  ® w  ® e ® 2*12' ' 2] [ w  ® u z £ $ xm,’N4'

[ ( w  ® x"  ® xmN  (6.93)

F2 =  A / +  LtuLu »  JV ([A / +  I ) I . .  , E Fl)

F3 =  (A / +  L j i J - 1 «  N  ([A / +  L i t  J - 1, E f , )

S Fa =  [.S'S_ 0  /„=] { (jp „2 ® u ‘; £ * ,4n4)
r / r  ^ . r / \ 7 -  , r T r  \ - l l T \  T W 3 iV 3 x l N u  \  t  , r T r  \ T ] - 1

Tl2N 2x l2N 2
J iO »rO

(6.94)

(6.95)

[ ( w  ® [(A/ +  L ^ r T )  v £ $ xlN[{\I  +  L^Lw)t ]_1 

<8> ( W  «g» (A7 +  L lL u)-1) V ^ xlN(XI +  LTuLu) - l]Ui; p  

+ ( /PJV2 (g) W  (g) U j ^ xl2N2) ( lPN2 (8) U j ^ xl4N4)

[(lP N 2 (8. (A / +  L ^ ) - 1 )  V ^ 23xlN(XI +  LTuLu)~l 

(8) ( W  ® [(A / +  L ^ X r T )  ^ 23xW[(A7 +

TT/2 N2 x l 2N 2 t j l 2N 2 x l2N 2 \
I2 N 2 J

t t 1 2 N 2 x .  . .  . . .  .. 
U72̂ 2 ^AT2

K  =  (XI +  L l L J - ' L l  r a  J V  ( i f ,  E f )

E f
rm l N 2 x m l N 2

\ Ur **/ U. V /

=  [S?, ® W 2] {[W = ® U l ! ^ i Xl‘mN4\

[ ( W  ® i » ) « * x“  ® ® * xWiJ ]  v z i f i

+ [/p„2 ® /p „ 2 ® U S l * 'mN"] [ipw2 ®
\ f r l 3N 3x l N  r T ^  (  T  T  \ i / l 3N 3 x l N l  t  r lmN2 x Im N 2 t  HmN2 xI m N 2 \[VPN2 Lu o  [ll2N2 <8 W)Vi2N2 \ U lmN2 UlmN2 }

r m n - r rl2m 2N 4 x l 2m 2N 4'
;2*v>2 7Vr4

(6.96)

(6.97)

[ C  ® W ]  {[ W  ® £ # $ $  

[ v ^ 8xw[ ( A / + ^ r iiT - ' r
-r-r-ml A72 v « i7  A/2

( W  ® ( A / +  L l L , ) - l ) V ^ ’ xmN
TrmlN2 x m l N 2 

m l N 2

+ [ w  ® ® ( c s ? x’"‘w2] [j-™*2 ® u i ^ % : x,2m2N‘
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{ImlN2 ® { \ I  +  LTuLu) - l )Vrm l N 2 V ^ f ^ K X I  + L lLu) - lf

u;ImN2 x ImN2 t j l m N 2 x ImN2 U lImN2 ImN2

F± = LUK  n  N  (LuK,Y,Fi)

^-‘Fn [ ^ L u ®  -^m2 TV2 j {  [^ZmAZ2 ®  C/,

(6.98)

(6.99)
m 3lN4 x m 3lN4 
m 3lN4

j~rm2lN 3 x lN  
ImN2 k } u;m 2N 2 x m 2N 2 

m 2N 2

m 2 IN3XlN  
m l N 2

+ [ hmN2 ® hmN2 ® [ l l m N 2  ®

f t

4" ®  ^m 2iV2] {  [-̂ ZmAZ2 ®

\ - t /m2lN 3 x l N  t  T  /  t  <> r  \ f > m 2lN3xmN~\ j j m 2N 2x m 2N 2 
[ ImN2 L u ®  { h m N 2 ®  ^ u J h m N 2 \ U m 2N 2

+ [lmlN2 ®InUN2 ®U™:$Xm2N2

I f  (  T jf'-l'\-ifl2m N 2xmN~\ t jm.2 N 2 x m 2 N 2 j  j m 2 N 2 xm? N 2~\K ® ( I lmN2 ® K  )VlmN2 \U m2N2 Um2N 2 j

m 3 IN4 x m 3 IN4 
m 3lN4

[(hmN i® L u)v:% ,r™ N ® v lmrp

[ZlmJV2 ® U;

Ll]

m 3lN4 x m 3lN 4
m 3lN4

m?lN3 x l N

u:m 2N 2 x m 2N 2 r  rm2N 2 x m 2N 2u:m 2N 2 ‘}m 2N 2

F5 = I - L uK * N  ([/ -  Luk],  s F4) 

LQG^ =  ( /  -  LuK)le «  N  (LQGy,

^ LQ G y =  [‘“’Fb ®  -^m27vj {  J^m 2AZ2 ®  U q

(6 .100)

(6 .101)

(6 .102)

m 4N ax m 4N 3
m 4N 3

[ ( W  ® f l K S p " "  ® v 3 sJS ’x"‘w*e] t/,m 2N x m 2N  
m 2N

rm4N 3 X m 4N 31
+  [ / m2jV2 (81 Im2N2 <g> C C ^ Xm2iV] [ / m 27V2 ®  ^ 4JV3 J

{v™2»SxmNie ® (jm2N2 ® o k ™ ? * " 1"] ^ : J xm!^ ; ? m2w}

~t” [*̂Ze ® -̂ m2Az] { ^m2AZ ® 7̂
[T/m 3ArxmjV riT  /  r „ j p \ -Trm3N 2x m  
[ Vm 2N  5 ®  U m 2JV ®  i l5 ) V m 2N

j m 2N x m 2N

j m 4N 2 x m 4N 2 
m 4N 2

il r j m 2N x m 2N
J m 2N

+  [ l m 2N  ® W  ® f / ^ Xm2W] [ W  ® U\■m4iV2 xrri^N2 
m4iV2

[(4™  ® Fs) V $ F * m ® ^ m 3 N  XmN  ; 
m 2N

tpT ]  T j m 2N x m 2 N T T m 2 N x m 2 N \  ( a  m Q 'l5 J ^ m 2N  m 2N  J (6.103)

(6.104)
-Z2 m 2 JV3 x Z2 m2 AT3

lm2N 3x l N  ^  f / l 2m N 3 X m N / 1 rrZ:feJ

LQGU = -A X  r> JV (L<?G„,

2 i0o„ =  [S? ® W ]  {[ W  ® W

rZmA/'xZmAZ'l

r l m N x lm N
ImN

d2m 2N 3x l2m 2N 3
+  [ W  ®  I l m N 2 ®  U lZ N X l m N ] [ h m N 2 ®

\ f f l 2m N 3x m N i  f T kx lT \ T r m 2lN 3 xlN~\ r  j l mN  x ImN t  j l m N  x ImN  i  
[ Im N 2 •‘e ®  { h m N 2 ®  I ' e W l m N 2 j  WmAZ WmAZ /
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+  [s£ ® w ]  {

\yz£$*mNK T ® (imiN ® K)v™;;f™} u S " lmN 

+  [ w  ® i m*N ® £ W “mW] [/mw ®

[(/„»* ® K ) V ^ f xm ® V S ? XmJV-f^] < ” ' * 1 ^ ; “ '* }  (6.105)

6.8 Simulations

Consider the following system

0.6 0.6 0 1.6161 -1.1472

%k+1 — -0.6 0.6 0 xk + -0.3481

+!-113 -1.5204

0 0 0.7 2.6319 -3.1993

2 fe -0.4373 -0.5046 0.0936 +  [—0.7759]«jk_i +  ek

where xk,y k, uk and ek represent the system state, output, input and the unmeasured 

random noise respectively at time k. Open loop process input/output’ data is 

obtained by exciting the system using a designed ‘RBS’ signal of magnitude 1 for the 

system input and random white noise of standard deviation 0.1 for ek in MATLAB- 

Simulink. The open loop data is used to obtain the subspace matrices and their 

covariance matrices using the methodology described in section (6.6.1). The data 

Hankel matrices are constructed with rows (N) =  3 and columns (j) =  500.

The idea of this exercise is to demonstrate the calculations involved in the covariance 

calculations, hence a smaller number is chosen for the row size, N. The calculations 

are done for the first three impulse response coefficients of the closed loop noise 

model if an LQG-controller were implemented on the system. The different steps in 

o b t a i n i n g  t h e  c o v a r i a n c e  m a t r i c e s  a r e  s h o w n  a s  f o l lo w s :

(i) Estimations of {Lu, Le} and {Er,u, Ez,e} from open loop process data.

(ii) Estimation of the matrices

{ L l  (L%LU), [XI + LtuLu] - \  K, (LUK ), [/ -  LUK\,} and their covariance matrices

^{Luky  S [.i-Luky }
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(iii) Estimation of the impulse response coefficients of the noise model LQGy 

(closed loop noise model between yt — > et) and LQGU (closed loop noise model 

between ut — >■ et), and the covariance matrices of the vector of the impulse response 

coefficients. For the above simulations the matrices are obtained as follows

LQGy =

LQGU =

Remarks:

Since we have the covariance matrices for the subspace matrices LQGy and LQGU, 

it is possible to draw confidence intervals for the LQG-benchmark curve plotted 

in figure 5.1. However, for the case of higher magnitude of covariance matrices, 

the confidence limits can be very wide and may not help the original purpose of 

controller performance assessment using the LQG-benchmark curve. In such case, 

the data used for identifying the subspace matrices need to be revisited and the 

excitation signal re-designed so as to obtain smaller magnitude for the covariance 

matrices.

6.9 Conclusions

Expressions for the statistical characterization of the LQG-benchmark variances 

have been derived in this chapter. These expressions, although complex, can be 

used as a guideline for assessing the accuracy of the LQG curve, which completes 

the controller performance assessment using the LQG benchmark. Simulations are 

provided for the derivations.

0.9985

1.3862

1.0879
JLQGV

0.0184 1.1507 1.3079 

1.1507 1.5497 1.0511 

1.3079 1.0511 0.5300

0.1439 0.4102 0.6097 0.6120

0.0854 > ^ lqgu - 0.6097 0.6086 0.6027

-0.0048 0.6120 0.6027 0.4436
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Chapter 7

Performance assessm ent of 

m ultivariate feedback and 

feedforward controllers w ithout 

interactor m atrix

1

7.1 Introduction

Periodic performance assessment of the controllers is important for maintaining 

normal process operation and to sustaining the performance of controllers achieved 

when the controllers are commissioned. Controller performance assessment using 

closed loop data has received much attention over the past decade. Typically, 

the process response variance is compared with a benchmark variance for assessing 

performance of the controller. Several benchmarks such as minimum variance control
1A version of this chapter has been submitted for publication as a journal paper 

R. Kadali, and B. Huang. Multivariate Feedback and Feedforward Control Performance Assessment without 

Interactor Matrix. Submitted for publication, 2002.
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(MVC) [5, 19, 20, 28, 34, 36, 38, 42, 46, 50, 51, 83, 111], linear quadratic Gaussian 

(LQG) control [42, 46, 57, 62, 63, 64], designed controller performance versus 

achieved controller performance [69, 70, 96], etc. have been proposed for assessing 

controller performance. Kesavan and Lee [66] proposed a performance diagnosis 

methodology for multivariate model predictive controllers. Some alternative 

performance assessment techniques with practical considerations are studied in 

[22, 28, 33, 85, 100, 116, 117]. Frequency domain analysis has also been used for 

control loop performance assessment [65]. For a review on the research in this area 

refer to [38, 46, 98].

Among these approaches MVC-benchmark is one of the popular benchmarks. One of 

the reasons for the suitability of MVC benchmark to assess performance of control 

loops in the industry [21, 37, 38, 45, 48, 49, 33, 54, 60, 95, 98, 114, 115, 125] is 

that it is non intrusive and routine closed loop operating data is sufficient for the 

calculation of this benchmark.

Minimum variance control is theoretically the best possible control [6]. If a minimum 

variance controller is implemented on the process, any disturbance entering the 

process would be attenuated within the process time delay. Controller performance 

assessment using MVC-benchmark involves comparing the current process output 

variance with the output benchmark variance if a minimum variance controller were 

implemented on the process. Although the intention of many industrial controllers 

is not m inim um  variance control, MVC-benchmark is used as a first step in the 

controller performance assessment [46, 60]. Designing a minimum variance controller 

for univariate systems involves inverse of the delay free part of the process transfer 

function [6, 38, 42, 46]. Hence the calculation of the MVC-benchmark variance for 

univariate systems from routine closed loop data requires a priori knowledge of the 

process time delay [19, 20, 36, 37, 38, 42, 46, 111]. However, non-minimum phase 

systems may require complete process transfer function knowledge for the calculation 

of the MVC-benchmark variance [46, 116]. For multivariate systems, minimum 

variance controller contains the inverse of the delay-free part of the process transfer 

function matrix, which is calculated as the transfer function matrix premultiplied by
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the interactor matrix [36, 38, 42, 46]. Interactor matrix in the multivariate case is 

equivalent to the concept of time-delay in the univariate case (refer to [44, 47, 109]). 

A priori knowledge of the first few process Markov parameters is required for 

the calculation of the interactor matrix [36, 42, 46]. Hence calculation of MVC- 

benchmark variance is not straightforward in the multivariate case. Furthermore, 

the concept of the interactor is not well known in practice. Hence, estimation of the 

MVC-benchmark without the interactor matrix has been an active area of research.

Ko and Edgar [68] proposed a method for the estimation of the multivariate MVC- 

benchmark using closed loop data, which does not require the intermediate interactor 

matrix calculation. However, along with the knowledge of the first few Markov 

parameters of the process model, this method also requires knowledge of the first 

few Markov paxameters of the noise model and the controller model. Ko and 

Edgar provided two different approaches for the estimation of the noise model and 

computation of the Markov parameters from closed loop data.

Recent results in the subspace approach to closed loop identification [58] inspires 

an alternative approach for the estimation of multivariate MVC-benchmark. In 

this chapter we will show the estimation of the multivariate MVC-benchmark with 

neither the interactor matrix calculation nor the Markov parameters. The only a 

priori knowledge required is the deterministic subspace matrix directly calculated 

from data. The important difference between the “calculation of the subspace 

matrix” and subspace identification is that the former does not extract an explicit 

“model” and is also known as model-free approach in the literature. This will further 

simplify the procedure for the calculation of the multivariate performance index. 

No concepts such as interactor matrix, Markov parameter, multivariate transfer 

function matrix, state space model etc. are needed to apply this technique and 

this will make the multivariate controller performance assessment technique more 

applicable in practice.

Subspace identification methods allow the direct identification of a state space 

model for the system from the data. Certain subspace matrices are identified as
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an intermediate step in the subspace identification methods, which correspond to 

the system states, the deterministic inputs and the stochastic inputs. Normally, 

subspace identification proceeds in two steps. The first step is a data projection 

step to obtain the subspace matrices; the second step is to extract the state space 

matrices from the subspace matrices. However, as will be shown in this chapter, 

the minimum variance controller can be designed directly using the intermediate 

subspace matrices, without a parametric model such as the state space model. 

In fact, the subspace matrices corresponding to the deterministic and stochastic 

subspace matrices implicitly contain the Markov parameters of the process and noise 

models respectively. The closed loop subspace identification method proposed by 

Kadali and Huang [58] allows the identification of the deterministic and stochastic 

subspace matrices from closed loop experiments directly. As will be shown in the 

later sections of this chapter the MVC-benchmark variance calculation requires the 

knowledge of only the deterministic subspace matrix, and therefore provides a new 

approach for obtaining the MVC-benchmark variance from routine closed loop data 

and eliminates the intermediate step of estimating the unitary interactor matrix or 

extracting the Markov parameters.

Most recently, McNabb and Qin [84] proposed an interesting subspace approach to 

multivariate performance monitoring by projecting interactor (or equivalent) filtered 

output data onto past data, but their method, once again, requires a delay matrix 

that is equivalent to the interactor matrix.

Essentially all methods proposed for multivariable control performance assessment 

need either a process model or an identification experiment. In this sense, there 

is no fundamental difference in terms of a priori knowledge required among all 

existing approaches including the one proposed in this chapter. However, what are 

advantages without using the interactor matrix? The interactor matrix is typically 

calculated from Markov parameters and/or the transfer function matrix. The first 

advantage is that the model structure error is avoided without forcing the process 

fit into a limited order parametric model. The second advantage is the conceptual 

simplicity. As the performance assessment technique is mainly used by practitioners,
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simplicity is a key to its acceptance.

The main contributions of this chapter are: (i) designing a minimum variance 

controller using subspace matrices without an explicit parametric model, (ii) 

obtaining the multivariate MVC-benchmark variance directly from data without 

the interactor matrix or Markov parameters, (iii) rigorous proof of the equivalence 

of the proposed approach and the conventional approach while almost all existing 

results show the equivalence through simulations only, and (iv) extension of the 

results to performance assessment of feedforward controllers.

The remaining of this chapter is organized as follows. Section 7.2 describes a method 

for designing a minimum variance controller from the subspace matrices. Section 

7.3 is the main section which provides the method for the estimation of multivariate 

MVC-benchmark without the interactor matrix. Comparison of the proposed 

approach with the conventional transfer function approach for obtaining MVC- 

benchmark variance is described in section 7.4. The proposed subspace based data 

driven approach is extended to the feedforward control in section 7.5. Algorithm 

for obtaining the MVC-benchmark variance from routine process operating data 

is presented in section 7.6. The main results are illustrated though a numerical 

example in section 7.7 followed by conclusions in section 7.8.

7.2 Design of minimum variance control using subspace 

matrices

The m inim um  variance controller (M V C ) is designed to minimize the following 

quadratic cost function J over the horizon N, as N  — ► oo:
N

j  = E { Y <  [(rt+k ~ y t+ kf (rt+k ~ yt+k)}} (7.1)
fc=i

N

= Y  Krt+k ~  Vt+k)T (rt+k- y t+k)\ (7.2)
k=1

where E  is the expectancy operator, rt is the reference for output trajectory. yt+k 

is the fc-step ahead predicted output given the past inputs and outputs upto time t.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



129

Using equation (2.11), the optimal predictor equation can be written as:

Vf — Lwwp Lyiif (7.3)

where

Vf

The notation in the cost function can be simplified for regulatory control, by letting

rt+k = 0, as:

J  -  min [yj yf \

yt+1 U t + 1
Vp

V t - N + l U t - N + l

.  y t + N .

\ U f  =

_ Ut+ N  _

)Wp =
Up

W p  =

y*

j u p  —

u t

(L wWp +  LuUf) {LyjWp ~\~ LuVjj) (7.4)

To obtain the minimum variance control law, we differentiate J  with respect to u ; 

and set it to zero.

8J
duf

= 2L1uLwwp + 2LuLuUf = 0 (7.5)

We obtain the control law as:

Uf  -- (7.6)

where, f represents pseudo-inverse. The above control law is the minimum variance 

control law as the number of block-rows in the subspace matrices Lw and Lu tend 

to infinity.

7.3 Estim ation of the M ultivariate M VC-benchmark

From the very first block-element of Y) in equation (2.11) we can write

+ Lq et+i (7.7)
V t - N + l U t - N + l

Ut+1 — Lyp + LUp

y* Ut
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where

Vp Lw(l : m, 1 : mN)

LUp =  Lw( 1 : ra, m N  + ! : ( /  + m)N)

(7.8)

(7.9)

where the notation A(i : j ,p  : q) represents the rows i to j  and columns p to q of the 

matrix A. Equation (7.7) can be transformed (See appendix D) for an equivalent 

expression of yt+i in terms of the past inputs and the past noise as

yt+1 G, ... Gn

+Lq et-i-i

Ut
+ Li ... Ln

et

Ut-N+1 Zt-N+l
(7.10)

where G{ and L{ are the z-th impulse response coefficients (Markov parameters for 

multivariate systems) of the process and noise models respectively. In other words, 

we can express the past (state) contribution term, Lwwp, as

Lwwp

' G1 1 H-
i Gn

ut
G2 Gn 0

Gn 0
Ut-N+l

0

+

Li ... Ljv-i LN

Ln  0

L at 0

0

et

et-jv+i

(7.11)

However, the controller output, ut+i is calculated using all the data available at time 

‘t +  1’, i.e., {ut, yt+i,Ut-i,yt, Hence the original subspace predictor expression in 

equation (2.11) and the subspace based minimum variance control law in equation 

(7.6) have to be modified to obtain the closed loop expressions for Uf and yj. First,
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define

G1 g 2 ... Gjv-i Gn u t

g 2 G3 . . . Gn 0 u t - 1
l g = ! up —

Gn 0 0 0 U t- N + l

L0 Lx . . . Ln - i Ln e*+i

Lx l 2 ... Ln 0 et
Lh = > &p —

Ln - 1 0 0 0 et-N+i

0 0 . .  0 et+2

L0 0 . .  0 et+3
; c/ =

Ln - 2 Ln -3 . .  0 et+N+i

Since LG and Lh contain the process and noise model Markov parameters, they 

can be formed from the subspace matrices Lu and Le respectively. Therefore the 

equation based on the first column of Yf in equation (2.11) can be alternatively 

written as

yf =  Lqup + L t f e p + L uUf +  L ee.f (7-12)

Substituting equation (7.11) in equation (7.6), we can write

Uf — L  ̂ -(Lwwpy — L̂u\^LGup T LHep} (7.13)

The closed loop expression for yf  can be written as

Vf = (7 — LUL\) (Lgup + Lh^p) + Leef (7-14)

Now that we have derived closed-loop expressions for both u and y, the next step 

is to calculate their variance expressions which are actually the H2 norm of the 

closed-loop expressions weighted by the variance of e. A simple method to derive 

the variance expression is given below.
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Let a disturbance enter the process at time =  t +  1, i.e.,

Ut =  U t - 1 =  .. .  =  U t - N + l  — 0

et =  et- i  = ... =  e t - N + i  —  0

&t+2 = dt+3 =  ••• =  &t+N = 0

Then the cumulative effect of the noise et+i on the process output variance can be 

obtained from equation (7.14), which simplifies to

Vf — (-7 LuL^jLfi et+i

i’o

i ’d-1 
0

e<+i — ^et+i (7.15)

where Lh =
L0

Ln - i

, the vector of noise model Markov parameters, and V’i

represents the Markov parameter of i-th lag of the closed loop noise model if a 

m inim um  variance controller were implemented on the system described in equations

(2.1)-(2.2). ‘d’ is the order of the interactor matrix for the system (2.1)-(2.2) and is 

unique for a given system [89, 109]. The variance of the closed-loop system can be 

calculated from the Markov parameters/impulse response of the closed-loop system 

and the m inim um  variance control variance expression for the process output is 

given by

var\yt \MVC
d- 1
J2 i>ivar[et\fl)f
i= 0

(7.16)

Note that estimation of the interactor matrix is not required for obtaining the 

MVC-benchmark variance. However the above result requires the knowledge of 
Lo

, and hence it appears that estimation of the noise model in the

Ln - i
Markov parameters model is necessary.

Lh =
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However, we will show that the estimation of

loop noise model Markov parameters L%L

Ln - i  

' L™

r C L^N - 1

is not required. The closed

(the vector of closed-loop

noise model which can be estimated from the routine operating data) can be used

L0
and we can still be able to obtain the MVC-benchmarkin the place of

L n - i

variance, where L%L =  ( /  +  LULC) 1Lh (refer to chapter 3). 

T0
where Lh, =

L n - i

, the vector of noise model Markov parameters, and 'ipi

represents the Markov parameter of i-th lag of the closed loop noise model if a 

minimum variance controller were implemented on the system described in equations

(2.1)-(2.2). ld> is the order of the interactor matrix for the system (2.1)-(2.2) and is 

unique for a given system [89, 109]. The variance of the closed-loop system can be 

calculated from the Markov parameters/impulse response of the closed-loop system 

and the minimum variance control variance expression for the process output is 

given by
d- 1

var[yt\Mvc  =  Y  i>ivar[et}i)J 
»=o

(7.17)

Lem m a 1: can be obtained using the vector of Markov parameters of the closed

loop noise model, L%L, in place of the Lh in equation (7.15) .

Proof: The above statement is equivalent to saying that (I  — LuLl)Lh and

( /  — LuL\f)LhL yield the same result. Now,

{ I - L uL{)LchL = ( /  -  LuL\f) (I +  LuLcY1 Lh (7.18)
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Therefore on observation, we need to show that

( I - L uLl) = { I - L UL{) (I + LuLc)-1 (7.19)

to prove the lemma, which is equivalent to showing

( I - L uLl) (I + LULC) = ( I - L uLt)  (7.20)

Expanding the left hand side term in the above equation

(I  ~  LUL{) ( /  +  LULC) = I  +  LULC — LULj) — LuL^LuLc (7.21)

=  I  — LUL  ̂+  {LULC — LuL^LuLc} (7.22) 

=  I ~ L UL{ (7.23)

The last equation follows since LuL^Lu =  Lu.

Lemma 1 is essentially the subspace version of the invariance property of the first 

few Markov parameters of the interactor-filtered noise model under the transfer 

function framework originally derived in Huang and Shah (1999) [46]. This invariance 

property has also been proved in Ko and Edgar (2001) [68].

Hence the Markov parameters of the closed loop noise model can be used in place 

of Markov parameters of the open loop noise model and we can still get the same 

benchmark variance. Therefore we need only the subspace matrix Lu (which contains 

Markov parameters of the process and is estimated from data) for the calculation 

of the m inim um  variance control benchmark. The Markov parameters of the closed 

loop noise model (or noise subspace matrix) can be easily estimated from the routine 

operating data as shown below:

For routine process operating data i.e., closed-loop data with no set point excitation,

the past data Hankel matrix is taken as Mp 

from equation (3.14) in chapter 3 becomes

Yp

Up
. The subspace expression

Yf = L °LMr + L ^ E ,  (7.24)

(7.25)
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and

Yif L y LM V (7 .26)

Using linear regression LyL and Yf can be estimated. The first block-row of 

Y f  — Yf  =  Lye E f  represents the one-step ahead prediction errors of the process 

output. Therefore the stochastic disturbance sequence entering the process can be 

estimated as

e f ejv+i ejv+2 e N + j = Yf (l : m , : ) - Y f (l : m ,:) (7.27)

Using the estimated noise e f  the data block-Hankel matrix E f  can be formed in the 

same manner as shown in equations (2.4)-(2.5). The noise model subspace matrix, 

LZL, can therefore be estimated as

tCL _  
ye Y f - Y f IB , (7.28)

The matrix L%L, required for MVC-benchmark calculation, can be obtained from

Lye as

jJOL _  t CL(.=  L°eL(:, 1 : m) (7.29)

7.4 Equivalence of subspace approach to  the conventional 

transfer function approach in obtaining the M VC- 

benchmark variance

For a multivariate system with /-inputs and m-outputs, the subspace matrices 

Lu(m N x lN )  and Le(mN xm N )  contain the Markov parameters of the deterministic 

and stochastic inputs respectively. Markov parametric matrices are equivalent to 

the impulse response coefficients for a univariate system. The matrices Lu and Le 

would be

1

C
i

o 0 . . . o '

1

o 0  .

1o

Gi

o

o
o

re II Lt L 0 . 0

.................... ... . ■
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It is implicit that there is at least one time-delay i.e., Gq =  0. Due to the time delays,

Lu is rank deficient and hence singular. Now, Lu consists of two components, a non- 

invertible component and an invertible component. Pseudo-inverse of Lu inverts only 

the invertible part of Lu. Hence the term (I  — LuL\j) represents the contribution of 

‘controller invariance’ to the process output variance. The analogies to the transfer 

function domain approach are obvious here.

In the transfer function domain, a unitary interactor matrix is first estimated using 

the process Markov parameters. The multiplication of the inter actor matrix and 

the transfer function matrix represents the invertible part of the transfer function 

matrix. Let d be the order of the unitary interactor matrix if it were calculated using 

the process Markov parameters [89, 109]. The vectors of Markov parameters in Lu 

are essentially disjoint matrices (see appendix F for the definition). In subspace 

approach d represents the number of Markov parameters which make the matrix

( /  — LuL\j) will have zeros below the rows > (dm). Note that the order ‘d’ does not 

have to be estimated in the subspace approach. We mention it only for illustrating 

the equivalence of both approaches.

Let us look at the structure and elements of the different intermediate matrices in 

the subspace approach of MVC-benchmark estimation:

Go

G l
rank deficient till i < d and a full rank matrix at i > d. Hence the matrix

^ m N x k l  P m N x ( N —k)l

Qkmxkm 0  kmx(d—k)m 0

0 (d —k)mxkm M(d—k)mx(d—k)m 0

0(JV — d)mxkm 0 ( N—d)mx{d—k)m I{N—d)m

(7.30)

(7.31)

0  (d—k)m x km  

Q(N—d)m xk m

Qkmx(d—k)m 

I { d —k)m M ( d —k)mx(d—k)m  

Q(N—d)m x(d—k)m,

0 . . .

0 ... (7.32)

0 . . .
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where k <  d is the number of the first few Markov parameters that are zero matrices. 

P  and M  are internal matrices in the calculations. Therefore we obtain

I  k m 0  k m x ( d —k ) m 0  . . .

1

o

1

0  (d—k ) m x k m I { d —k ) m  ^ d ( d —k ) m x ( d —k ) m 0  . . . L i

0 0 0  . . .

L n

Thus only the first d terms remain for the calculation of the MVC variance of the 

process outputs. From the above equation we can see that the controller invariant 

part of the noise model for calculating the MVC-benchmark variance of the process 

output is directly obtained from the subspace matrices. In other words, the subspace 

based approach ‘directly’ gives the interactor filtered Markov parameters of the noise 

model. Hence the calculation of the interactor matrix is eliminated.

In the transfer function approach, the transfer function matrix and the interactor 

matrix for a system can be written (with some abuse of notation used in [46]) as 

follows:

G i z - 1) =  G 0 +  G 1z - 1 +  G 2z - 2 +  ... (7.34)

D(z) = D1z + D2z2 + .... +  Dd_1zd~1+ D dzd (7.35)

The condition for the inter actor matrix from theorem 3.2.1 in [46] is

lim DG =  lim +  ... +  -CfizJ 1 +  G2z 2 +  . . . j  =  K mat(7.3Q)

where T  is a full rank matrix. Therefore we have

DdGi =  0 

Dd-\G \  +  DdG2 =  0

D\G\ + D2G2 +  ... +  DdGd =  K-mat

The above set of equations can be alternatively expressed as two conditions
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C o n d it io n - 1

Go 0 . . 0
r 1 Gt Go . 0 1

D\ D2 • ■ Dd 0 0 . . 0
. 0 ■ -

Gd-1 Gd- 2 . • Go

(7.37)

Condition-2

D] Do D,,

G1

G2

Gd

= K,m a t (7.38)

with K mat — min{m, I}.

We need to show that the coefficients obtained in the subspace approach are same 

as those obtained in the transfer function domain approach, i.e. the above two 

conditions are satisfied by using the matrix (7 — Lu L])j. Therefore we have to 

prove the following theorem for the subspace approach:

T heorem  7.1 ( j  — Lu L\^j contains interactor matrix for the process. An 

interactor matrix can be constructed directly from this expression. The subspace 

approach for the calculation of the minimum variance control benchmark is 

equivalent to that of the conventional transfer function approach.

Proof: Consider the singular value decomposition of the matrix Lu which produces 

a diagonal matrix E, of the same dimension as Lu and with nonnegative diagonal 

elements in decreasing order, and unitary matrices (satisfies the property (.)T =  

(.)_1) <f> and 0  so that

$  E ©T $1 $ 2
Er 0 

0 0

ef
=  Er 6 [  (7.39)

where r is the number of singular values of Lu that are not zero. The matrices $  

and 0  are orthogonal matrices (the columns are mutually orthogonal vectors of unit 

length, i.e. $(:, z)T$(:, j )  =  0 for i ^  j  and 1 for i — j ) and are non-unique:
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(a) $1 spans the range space of Lu, and 

(■b) $2 spans the null space of Lu.

We can write

4  =  0 ! e;-‘ < 4  =  s, e ,:1 e f (7.40)

Therefore we can obtain the simplified expressions (see appendix E for details)

L , 4  =  4>f

I - L u 4  =  $ 2 Of

$2 spans the null space of the matrix Lu. Therefore, $ 2^ (T i  =  0, i.e.,

Go 0 ... 0 

Gl Go 0 ...

(7.41)

(7.42)

(•T - Lu 4) (I  -  Lu 4 )  L„ = (I (7.43)

From the above equation condition-1 expressed in equation (7.37) is satisfied.

Gi
Next, consider the transformed Markov parameter matrix

Ga

'  Gi ' ’  Gi '

LuLl) . Note that the matrices Lu and

Gd Gd

are essentially disjoint 

(see appendix F). Following the corollary 17.2.10 (see appendix G) in ref.[39]

Now let

Gi '

rank — ra n k <

.  ^  . V

H-mat =  <?! +  . .

(I - £.4)
’ Gi ' ' Gi '

> =  rank

. Gd . J . °d  .

(7.44)

Im ••• I'm,

G!

Gn

(7.45)
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Using the corollary 17.5.2 (see appendix G) from [39] we can write

G i

ranklKmat} =  rank Im • • • Im + ra n k <

Gd

— (dm)

+rank

' / r  1 t \
G i G i

I  dm

V

I,dm
- ■t ■

Im Im Im

The matrix

rank

Im  • ■ • I m

' /
Gi 'Gi

I  dm

V . G * .

is (m  x dm) dimensional and rank(

I  dm

Im ■ ■ ■ Im

- ■ t ■ -4
•

Im Im Im

determined in the following manner:

Consider A Im Im and B =
mxdm

G1

Gri

. Therefore,

dmxl

( I - B & ) ( I - A * A )  = ( I - A ' A )  -  & B ( I - A ' A )  

For using the item (3) in appendix G, we take,

K = ( I - A ' A ) \  S  = - B ; T =  £ f; U = ( I - A ' A )

we write

Sn  = I  — 'JZ'R) = A* A  

=  I - T V n  = A^A  

X  = En S T  = A \ A B B f) 

y  =  TU Fn = & ( I -A * A ) A * A  = 0 

Q = T  + U 'R )S T = (A B ) \A B )B ]

M  = X ( I - $ Q )  = A \ A B & ) [ i -B (A B ) \A B ) (A B ) \A B & )]
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(7.49)

(7.50)
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=  A*(ABB*) [ /  -  B(AB)*(ABB+)] =  A*(ABB*) [ /  -  (ABB*)*(ABB*)]

= 0 (7.54)

N  =  ( I - Q Q * ) y  =  0 (7.55)

In the above equations we have taken (I — A*A)(I — A* A)* =  ( /  — A*A), since 

(.I  — A*A) is an idempotent matrix and (*)t(*)(*)t =  (*)*■ We can write

rank[TZ] — rank[(I — 4.^.4)] (7.56)

rank[Q] = rank[(AB)* (AB)B*] (7-57)

rank[A4] =  0 (7.58)

rank[J\f] — 0 (7.59)

rank[T] — rank[B*] (7.60)

and

rank

Using equations (7.46) and (G.2), we write,

rank[Kmat\ — rank[A] +  rank[B] — dm + rank[(I — .4^.4)]

+rank[(AB)* (AB)B*} — rank[B*] (7.62)

=  m + rank[B\ — dm + (d — 1 )m + rank[(AB)* (AB)B*] — ranlffiBty

=  rank[(AB)*(AB)B*] (7.64)

In the above equation we used rank[B\ = rank[B*] and rank[(I — A*A)] = (d—l)m. 

Consider the two cases,

(i) m > I

In this case (AB)*(AB) — Ii. Therefore rank[(AB)*(AB)B^} — rank[B*] = I

and

rank[Kmat] =  I (7.65)

(ii) m < I
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In this case rank[(ABY (AB)\ = m.

Since B is a full rank matrix rank[{AB)^{AB)B^] =  m. Therefore

rank[Kmat] =  m  (7.66)

Hence Kmat is a full rank matrix and condition-2 expressed in equation (7.38) is 

satisfied.

Hence the theorem is proved.

Therefore the matrix ( /  — Lu L\^j performs the same function as an interactor 

matrix in the transfer function domain. But the calculation of interactor matrix 

is not required in deriving the MVC-benchmark variance of the process output for 

controller performance analysis.

7.4.1 U nivariate system

For the univariate case, m = 1 and 1 = 1. Consider the process has a time delay of 

td! samples. Therefore, we have

r 0 0 ... 0

I - L u L l  =

( I - L uLl)lh =

0 0 . . .  0

9 d  9 d + l  0

I d O dx(N -d )

0  (N -d )x d  0  ( N - d ) x ( N - d )

lo h Id- 1 0 0

(7.67)

(7.68)

(7.69)

where k  represents the univariate impulse response coefficient of i-th lag and
1T

Iq l\ . . .I is a vector of the noise model impulse response coefficients. 

From the above equations we can see that a priori knowledge of Lu is not necessary 

for obtaining the MVC-benchmark variance for the univariate case. Only the first
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ld! impulse response coefficients of the noise model are required. However,

O jvx(d-l) P n  x ( N —d) (7.70)

Therefore the first td! impulse response coefficients of the noise model are controller 

invariant, which means that the first ‘d' impulse response coefficients of the closed 

loop noise model are same as those of the open loop noise model, and therefore can 

be identified from the routine operating data. Hence process time delay, ld!, is the 

only a priori knowledge required for the univariate case.

7.5 M ultivariate minimum variance benchmark for the  

feedforward plus feedback control case

7 .5 .1  fe e d fo r w a r d  p lu s  fe e d b a c k  m in im u m  v a r ia n c e  c o n tr o lle r

Consider the case when some of the process disturbances are measurable and 

available for feedforward control. Measured disturbances are those process inputs 

which cannot be manipulated but affect process outputs. The state space 

representation can be modified to include the h-measured disturbances vk as inputs:

r  I uk
B Bv

Vk
Xk+i — Axk +  B Bv +  K^ek

Vk = Cxk T Dvvk T fife 

Equations (2.10)-(2.11) change to

V f  =  T j v ^ t + i  +  H j s i U f  +  H ^ V f  +  H sN e f

L hww h + L uUf + L vVf + L ee f

where

Up vt+l Vt-N+l

Up ; v f  = j Vp —

Vp Vt+N v t

(7.71)

(7.72)

(7.73)

(7.74)

(7.75)
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T T V  ___rlN —

D„ 0

D„

0

0CBV

CAN~2BV CAn~3Bv ... Dv

(7.76)

The subspace matrices Lu, Lv and Le can be identified from the closed loop data 

as explained in chapter 3. The minimum variance control law, as N  — > oo, for 

feedback plus feed forward control can be obtained as,

u , = (7.77)

7.5.2 MVC-benchmark

Similar to the previous section, we can derive

V t - N + l V t - N + l V t - N + l

+  L Up +  L Vp

y* u t Vt

U t+ l  — L y p

where LVp and LUp are as defined before, and

+ L q et+i(7.78)

LVp — Lw(l : m,(l + m )N  + 1 : (I + m + h)N )  

Similar to the previous section, define

Vp

GS G\ ... /~1Vt^N-l 1V
Ct j v 0 0 . 0

IIs>O G\ GI ... r < v
(j j v 0

j Lv
GS 0 . 0

_ 1 0 0 0 (~<V
'J N - 2

r i v
'-TN - 3  ■ . 0

vt+l

Vt

V t - N + l

V f

Vt+2  

Vt+ 3

Vt+N+1

(7.79)
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where Gf is the z-th impulse response coefficient (Markov parameter for multivariate 

systems) of the disturbance model corresponding to Vt- Lg* can be formed from the 

subspace matrix Lv.

Equation (7.77) can be written as

Uf L^^LgUp -(- LqvVp +  Ljiep} (7.80)

The closed loop form of equation (7.74) can be written as

Vf =  — (7 — LuL\^){LgUp +  Lqvvp +  LH(ip} +  LvVf +  Lee.f (7.81)

Consider the measured and unmeasured disturbances enter the process at time 

t +  1, i.e.,

ut = Ut- 1 = . . .  =  Ut.-N+l =  0

vt = Vt-1 = ... =  Vt N+1 =  0

et Ct-l = ... = et- N+l =  0

Vt+2 = Vt+3 = ... = Vt+N — 0

Ct+2 = Ci+3 = • •• =  et+N — 0

Therefore we obtain the simplified expression

Vf = (7 — LuLl)LgV vt+i +  (I -  £ « 4 )£
Oil

= <t>d-1 Vt+1 + V’d-i Gt+1

0 0

—  1 +  4fet+1

where L h  and 41 are defined previously, L gv =

GI

GIN

(7.82)

(7.83)

(7.84)

and fa represents the Markov

parameter of z-th lag of the closed loop noise model between vt and yt, if a minimum
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variance controller were implemented on the system. It can also be shown that $  can 

be identified from the closed-loop disturbances models. Therefore L^VL =

/-'iv,CL 
^0

G: V , C L
N

and L?L =
LoL

t C L
■Lin

can be used in the place of Lgv and Lh respectively, where

L ^L = L ^ ( : ,  1 : h) and L%l = L%PL(:, 1 : m).

Therefore, the minimum variance control variance expression for the process output 

becomes

var\yt \Mvc
d- 1

=  ^2{<f>ivar[vt]<l>l +  ipivar[et}ipj}
i=0

(7.85)

Similar to the previous section the first 'd! Markov parameters corresponding to 

the measured and unmeasured disturbances are controller invariant. Hence the 

closed loop measured and unmeasured disturbance subspace matrices L„l and LPL 

(see chapter 3) can be used in place of the open loop measured and unmeasured 

disturbance subspace matrices Lv and Le in deriving the feedforward plus feedback 

multivariate MVC-benchmark. Hence only the subspace matrices Lu is required 

for obtaining the MVC-benchmark variance for the process output. The matrix Lu 

can be identified using the closed loop subspace identification method explained in 

chapter 3.

7.6 Algorithm  for obtaining the MVC benchmark variance 

from routine operating data for multivariate system s

1. Obtain the deterministic subspace matrix Lu either from the open-loop data (see 

chapter 2) or from the closed-loop data (see section 3).

2. Collect routine closed loop operating data. By stochastic subspace identification 

for the case of measured disturbances estimate the vector of Markov parameters of
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the closed loop noise model for both measured and stochastic disturbances, and 

LchL respectively, along with the noise variances var[vt] and var[et\.

3. Calculate the matrices $  =  (I — LuL\l)L(̂JJ and =  ( /  — LuLl)L%L.

4. Calculate var[y t\M v c  as

var[yt]Mvc  =  $  var[vt\ $ T +  \k var[et\ ^ T

5. Calculate the true process output variance var[yt] and compare it with the 

minimum variance benchmark var[yt\MVC-

7 .7  Numerical exam ple

Using a numerical example we demonstrate the equivalence of multivariate MVC- 

benchmark variance obtained using the subspace approach proposed in this chapter 

to that obtained through an interactor matrix filtering method presented in [42].

Consider the following 2 x 2  system (taken from [42]):

yt =  G(z-1)ut +  H(z~1) at

where

Yt =
Vi (t) 
yi{t)

Ut
Ui(t)

U2(t)
at =

at (t)

ai(t)

z - 1 z ~ 2 1 - 0 .6

G iz-1) =
1 -0 .4 Z -1

0 .3z-1
1 - O .l z - 1

Z~2

II1tcj 1 - 0 .5 Z - 1
0.5

1—0.5z_1 
1

1 - O .l z - 1 1 -0 .8 Z -1 1—0.5z_1 1 - 0 .5 Z - 1

The matrix Lu is constructed from the deterministic Markov parameters. The
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intermediate matrices can be calculated for N  =  3 as

Li! —

0 0 0 0 0 0 1 -0 .6 0 0 0 0

0 0 0 0 0 0 0.5 1 0 0 0 0

1 0 0 0 0 0
j

0.5 -0 .3 1 -0 .6 0 0

0.3 0 0 0 0 0 0.25 0.5 0.5 1 0 0

0.4 1 1 0 0 0 0.25 -0.15 0.5 -0 .3 1 -0 .6

0.03 1 0.3 0 0 0 0.125 0.25 0.25 0.5 0.5 1

Now,

I - K . i l

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0.0826 -0.2752 0 0

0 0 -0.2752 0.9174 0 0

0 0 0 0 0 0

0 0 0 0 0 0

We check to see if (I -  LUL\)  is an interactor matrix by proving

[r -  r « 4 ]

1 0 0 . . 0

G\ 0 . 0 0.3 0 0 . . 0

g 2 Gi . . 0 0.0248 -0.1927 0 . . 0

-0.0826 0.6422 0 . . 0

Gd Gd-1 • Gi 0 0 0 . . 0

(7.86)

with

r i « 1 I" 0.0248 -0.1927 1 [ 1.0248 -0.1927 ,
b =  (7.87)

-0.0826 0.6422 0.2174 0.6422

which is a full rank matrix.

We can obtain the Markov parameters of the noise model if a minimum variance
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controller were implemented on the system as

9  = ( I - L uL{)Lh

1

0.5

-0.0275

0.0917

0

- 0.6

1

-0.1624

0.5413

0

(7.88)

We can see that closed loop noise model Markov parameters under MVC matches 

with the result obtained in by Huang et al in [50] and ‘Ko and Edgar’ in [68].

7.8 Conclusions

Calculation of the multivariate performance index without using the interactor 

matrix is an important step toward practical application of multivariate performance 

assessment technique in addition to the advantage of reduced model structure 

error. It is shown in this chapter the design of the multivariate minimum variance 

controller can be done using subspace matrices. Using the subspace matrices the 

MVC-benchmark variance for the process outputs is obtained from closed loop data 

without having to first calculate the unitary interactor matrix. The method is 

expanded to the case of feedforward plus feedback control performance assessment. 

The equivalence of the subspace approach to the conventional transfer function 

approaching obtaining the MVC-benchmark variance is also proved. A numerical 

example is provided to illustrate the main results of the chapter.
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Chapter 8

Dynam ic m ultivariate analysis of 

variance

i

8.1 Introduction

The first step in controller performance analysis is comparing the process output 

variance with the theoretically achievable minimum output variance, the minimum 

variance benchmark. If the achieved controller performance is unsatisfactory but is 

close to the minimum variance control, then it is necessary to explore the feedforward 

control strategy [34, 60]. If feedforward control can indeed significantly reduce the 

output variance, then the remaining task is to select the measured disturbance 

variables for the implementation of feedforward control. In other words, we need 

to select those measured disturbance variables which contribute the most to the 

process output variance. The difficulty however is that measured disturbances 

may not be mutually independent. To solve this problem, we propose that the
1A version of this chapter was a part of the presentation made a t the following conference 

R. Kadali, B. Huang, and E. Tamayo. A case study on performance analysis and trouble shooting of an industrial 

model predictive control system. Proceedings of American Control Conf., San Diego, 1999.
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measured disturbances can be de-coupled using principal component analysis, as 

will be discussed in this chapter.

It should be noted that the assumption of independence between measured and 

unmeasured disturbances in the analysis of variance is required and is actually 

guaranteed through the modeling procedure shown in the following sections. Any 

portion of unmeasured disturbance that is correlated with the measured disturbances 

is in fact “measurable” disturbance and can always be lumped together with the 

measured disturbance. The unmeasured disturbance produced in the modeling 

procedure is known as innovation sequence and is independent of the measured 

disturbances. This has also been confirmed through the data analysis.

8.2 Analysis of variance for feedforward control

For multivariate feedforward plus feedback control systems, closed loop response to 

both measured and unmeasured disturbances can be written in the transfer function 

representation as

Vt = Geet +  Gvvt (8-1)

where Ge and Gv are rational and proper transfer function matrices. yt is the process 

output vector, et is white noise representing the driving force of the unmeasured 

disturbances, and vt, which is not necessarily white noise, represents the measured 

disturbances. Ge and Gv can be estimated with any standard system identification 

tools. The variance of measured disturbances E[vtvf] =  is decomposed as

E[vtvf] =  =  LXsLr  (8.2)

where £$ is a diagonal variance matrix. vt is then mapped to 5t by a linear 

transformation

St = LTvt (8.3)

where E[8t^ \  =  E$. This makes the elements of St mutually independent.
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Each element of St(t) is then pre-whitened using univariate time-series analysis 

to obtain the corresponding element of the white noise driving force at. i.e.,
i m

St = Gaat, where Ga is a diagonal transfer function matrix and 5t

at

ai(t)

8h(t)

, where h is the number of the measure disturbance variables. With

ah(t)
these transformations, equation (8.1) can be expanded as

Vt — Geet + Gvvt 

= Geet +  GvL5t

=  Geet +  GvLGaat (8-4)

Multiplying the above equation with z~dD, we get

z~dDyt = z~dDGeet + z~dDGvLGaat (8.5)

where D  is the unitary interactor matrix and z_1 is the back-shift operator, d is the 

order of the interactor matrix (the smallest integer that makes z~dD causal or the 

largest power of z in D [42]). This gives

Vt =  Geet +  G$at (8-6)

Gsat can be further expanded into individual components to give

yt = Geet +  Gsian +  Gs2a2t +  ••• +  Gsnaht (8-7)

Therefore,

tr[Var(yt)\Mvc = tr[Var(yt)]Mvc  (8 .8)

=  tr[Var(Geet)\Mvc + tr[Var{Gsialt)\MVc

+tr[Var(Gg2a2t)\Mvc +  ••• +  tr[Var(Gshaht)\Mvc (8.9)

where

tr[Var(GSiait)]Mvc =  trace | ^ [ G (5i(A:)]['yar(ait)][G5i(A:)]T|  (8.10)
U = o  J
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components), at

and Ggi(k) is the Markov parameter of k-th lag for the transfer functio nmatrix Ggi- 

tr[Var(G$iCiit)\MVC is the contribution to the output minimum-variance by the ith 

principal component of the measured disturbances.

The analysis of variance provides the variance distribution among unmeasured 

disturbances, et, and the transformed measurable disturbances (or principal
ai(i)

. In order to implement the feedforward control,

Oh(t) _
we have to trace back to the original measured disturbances from the principal

components. To find the correlation between St and the original measured

disturbances vt, we note that

vt = LSt (8.11)

Therefore

E[vtSf] = LES (8.12)

This yields

Corr(vt, St) = = M  (8.13)

where E„ =  diag(ldv) , and is a diagonal variance matrix. The above equation 

provides a correlation matrix between the transferred disturbances, St, and the 

original measured disturbances, vt.

The correlation matrix, M, is useful for tracing the effects of the original measured 

disturbances on process variance. Prom the principal component contributing the 

highest to the output variance, the important disturbance variables can be identified.

8.3 The subspace matrices approach

Subspace matrices based approach has been the common thread that combines the 

theoretical work presented in this thesis. The dynamic analysis of variance needs
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to be extended to the case of subspace approach, which as stated earlier does not

require the calculation of the interactor matrix. However, the knowledge of the 

first few process Markov parameters is implicitly required in the form of the input 

subspace matrix, Lu.

An equivalent expression of the equation (8.1) for the subspace representation is,

closed loop noise model between the process outputs and the unmeasured and 

measured disturbances respectively. Refer to chapter 3 in deriving the above 

expression. The subspace matrices {L^eL, are equivalent to the transfer

function matrices {Ge, Gv}, and can be identified by regression as shown in chapter 

2. vt is then mapped to 5t.

The subspace matrix, La, between 8t — > at is identified as follows:

Data Hankel matrices A p and A f  are formed (refer to equations (2.4)-(2.7)) for the 

variable 6t. Subspace matrices representation for the variable 8t can be written as

the white noise sequence a/. The subspace matrix La is then obtained by the 

regression

p
(8.14)

where the subspace matrices LJ?eL and contain the Markov parameters of the

(8.15)

A f  is found by the orthogonal projection of the row space of A/  into the row space 

spanned by A p as

A f  = A f / A p  =>■ Lwg = AfA^p (8.16)

The vector of white noise sequence a / =  at at+i ... (it+j-i =  A K 1 • •

) — A /(l : h , :) is then obtained. The data Hankel matrix A f  is then formed from

(8.16)

La =  (A ,  -  A ; )  4 (8.17)
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Equation (8.14) can be expressed as

Yf  = Lw
YP

V„
+  Lye E f  +  i fy l" A f (8.18)

where L$L = Ly^LNLa and LN is a diagonal matrix, LN =
L 0 0

0 0

0 0 L

As explained in chapter 7, pre-multiplying the ‘vector of Markov parameters’ with 

the matrix ( /  -  LuL l ) is equivalent to pre-multiplying the transfer function matrices 

with the term ‘z~dD \  Therefore we can write (see equation (7.82))

Vf — {I — EuLh)L^L et + (I  — LuLI)L$l at

0 Co

'fpd- 1 Cf + Cd-1 a *

0 0

V’O ' Co1 '

i

(M
O

w

1

Ch
SO

Ct + f l i t  + « 2 t +  • . +

tpd-1 1 M l 1 a. 
to

1 1 1 1—‘ 1

(8.19)

(8 .20)

a-ht (8.21)

where LftL — IwL(:, 1 : m) and L f L =  L^L(:, 1 : h). Therefore we can write

tr [Var(yt)\MVC =  tr

yS

d- 1
Y^ipjVar(et)ipj + tr
i=o

+tr Y ,Z jVarM ( € j ) T
i=o

+ tr  J 2 £ jVar(ate)(£j)
3 = 0

J 2 Z jVarM ( t j ) T
3 = 0

/i\X (8 .22)

is the contribution to the output minimum-variance 

by the ith principal component of the measured disturbances. The rest of the analysis 

is same as that outlined for the transfer function approach.
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8.4  S im u lation s

The proposed analysis of variance methodology is tested in simulations. The system 

example is taken from [46].

tti(i)

U2(t)

-..
1

<eS t—1

1

1

CM
1

1—0 .4 * -1 1 - O .lz - 1
0.3Z-1 2~2

I - O . I 2 - 1  I - O .8 2 - 1

+
0 .6 2 - 1 0 .1 2 - 1 0 .2 2 - 1

V l (t)
1 - 0 .4 2 - 1

0 .5 2 -1
1 -0 .4 2 -1

0 .32-1
1 -0 .3 2 -1

0.42-1 V-2 (t)
1 - 0 .3 2 - 1 1 - 0 .2 2 - 1 I - O . I 2 - 1

+
- 0.6

1 -0 .5 2 -1 1 -0 .5 2 -1
0.5 1

d  (t) 

e2(t)
(8.23)

1 - 0 .5 2 - 1  1 - 0 .5 2 -

Open loop input/output data is obtained by exciting the open loop system using 

a designed ‘RBS’ signal of magnitude 1 for the inputs, uk and random numbers 

of standard deviation 0.1 for the white noise sequences, ek, in MATLAB-Simulink. 

The measured disturbance signals are designed as follows

0.6v1 (t) = 

v2(t) = 

V3(t) =

1 -  0.42 
0.4

n a i(*)

- 0.6  2 
0.3

(t)

1 -  0.7r
-(0.6vi(t) + az(t))

Where

ai(t)

a2(t)

a3(t)

are random noise signals of 0.1 standard deviation. Note

that different ‘seeds’ were used in MATLAB for generating the random noise 

signals (ai(£), a2(t), a3(£), ei(t), e2(t)}. Its clear from the above that the measured 

disturbance signal v3(t) is correlated with v1 (t). Hence the measured disturbance 

v3(t) is redundant for the feedforward control design. We will check if the dynamic 

multivariate analysis of variance would detect the redundancy. The analysis is 

conducted using both subspace and the transfer function approaches. Identical 

results with some minor differences (arising form the numerical rounding up errors 

in MATLAB) are obtained for both the approaches.
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Principle

Component
Si 62 *3

Variance

Contribution

ti[Var(GSiau )]

5.8068e-4
ti[Var(G$2a,2t)]

1.1104e-4

tr[Var(GMa3t)]

4.3912e-5

Percentage 78.94 % 15.09 % 5.97 %

Table 8.1: Contribution of the principle components to process output variance

Su &2t Sst

DV1 -0.9750 0.0215 -0.5173

DV2 0.0166 0.9996 -0.0133

DV3 0.2215 -0.0155 -0.8557

Table 8.2: Correlation matrix table

From table (8.1) we can see that the principle components 1 and 2 are contributing 

the highest to the process output variance. From the correlation matrix in table 

(8.2) we can see that for the principle components 1&2 the measured disturbances 

DV1 and DV2 have the highest coefficients respectively. Hence it can be concluded 

that only two of the measured disturbances (1 and 2) are sufficient for designing the 

feed-forward control.

8.5 Conclusions

Dynamic multivariate analysis of variance helps in the selection of important 

measured disturbance variables for feedforward control. The dynamic multivariate 

analysis of variance is solved both in the traditional input-output transfer function 

framework and the subspace matrices approach. The former requires the interactor 

matrix and the latter does not. Thus the subspace approach simplifies the notation 

and facilitates its applications.
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Chapter 9

Synthesis and analysis o f an 

industrial M PC application

9.1 Introduction

The goal of advanced control applications in industry is not only to achieve optimal 

control of the process variables but also to maximize the profit achievable from 

the process through the optimization of the overall operation of the process. 

Implementation of advanced control applications is an exercise of balancing these 

dual goals while achieving process stability. A multivariate advanced control 

application aids in reducing the interactions between the process variables and 

optimizing process operations. Since advanced control applications have more 

involved computations using mathematical models, a slow sampled advanced control 

application is typically built on a faster sampling multiple PID controller system on 

the process. The objective of this chapter is to provide a practical guide to the 

performance analysis of industrial MPC applications.

This chapter discusses the industrial implementation of a commercial MPC 

application and proposes an MPC relevant controller performance assessment 

tool extending some of the theoretical work presented in the previous chapters.
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We show how subspace matrix based approach can be used to define an MPC- 

relevant benchmark for assessing the performance of advanced control applications 

in industry.

The MPC discussed in this chapter was successfully commissioned. It ran for 

about 3-4 months and then shut down due to flow measurement sensor problem. 

Nevertheless, the methodology presented in this chapter is valuable and applicable 

to performance assessment of model predictive controls.

9.2 Process description

The process being considered is a large settling vessel designed to recover the 

“cream” of aerated hydrocarbons from a slurry of hydrocarbons, water, fines and 

sand. The hydrocarbons float to the top of the vessel due to their lower density and 

is recovered in the top stream. The higher density sands settle at the bottom of the 

vessel and is sent away through the bottom stream. A third outlet stream exists 

along the outer periphery of the middle of the vessel.

The settling vessel is a large rake thickener, which facilitates the flotation of 

hydrocarbons and the settling of sand. The feed valve position and the feed density 

are the measured disturbances for feedforward control. The feed is introduced in the 

middle of the vessel, the aerated hydrocarbons float over a weir circling the top and 

sand settles to the bottom. A hot water wash stream is introduced to the settling 

vessel to aid in the separation of aerated hydrocarbons from sand. Rakes rotating 

at the bottom of the vessel push the settled sand towards a small cone from where 

it is pumped away. A diagram of the settling vessel is shown in figure 9.1. The 

middle stream may be recycled back to the settling vessel or sent to a downstream 

separation process.

The depth of the lighter hydrocarbon bed floating at the top of the settling vessel 

is controlled by the rate of middle stream flow rate. A sight glass on the side of 

the vessel allows the operator to see the interface between the hydrocarbon bed and
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Amps on rake-A Amps on rake-A
(CV4) (CV5)

Rake motors
Feed valve position (DV1)

Feed density (DV2)

Water addition flow 
(MV3)

Feed
distributor

Middlings flow 
(MV2) <■

Density (CV2)

Settled sands flow 
(MV1) 4— I

->
Froth
flow

Density (CV3)

Figure 9.1: Settling vessel

the slurry. A variable speed pump provides control over the rate of middle stream 

withdrawal. The aerated hydrocarbons flow over the weir into a sloped launder, 

then flows by gravity to a Deaerator. The setpoint for level in the settling vessel is 

manipulated to maintain the interface level at a certain height and visible through 

the side sight glass. Under favorable operating conditions most of the hydrocarbons 

entering the settling vessel leave in the top stream. The recovery may drop when 

the quality of the oil sands feed deteriorates or when there is an upset in the settling 

vessel. Stable process operation is important to achieve high recoveries consistently 

from the settling vessel.

The following process variables are used in the advanced control application 

Level of the cell CV1 

Density of the middle flow stream CV2 

Density of the bottom flow stream CV3
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% Water in the top stream flow CV4

Motor amperes on rake motor-A CVC1 (constraint)

Motor amperes on rake motor-B CVC2 (constraint)

Pump amperes on bottom stream flow CVC3 (constraint)

Setpoint for bottom stream flow pump speed controller MV1 

Middle stream flow rate MV2

Setpoint for water wash stream flow pump speed controller MV3 

Valve position on feed line to the settling vessel DV1

Density of feed to the settling vessel DV2

9.3 Identification

Open loop data with step changes to the manipulated variables is collected for the 

identification dynamic models for the process. Using DMI software, dynamic step 

response models for the process were identified and converted into transfer function 

models in the MPC-identification software. A MPC controller was then designed 

and tested in simulations and loaded into the DCS.

The following process transfer function models were identified for the system:

Variable MV1 MV2 MV3

CV1 -0 .2 8 6 - 0 .7 3 e ~ 3 0.445(—lO s+ l)
4 5 s 2+ 1 1 s+ 1 95+1 85 s 2 +  155+1

CV2 —0.00045e—35 -0 .0 0 0 7 ( —l ls + 1 ) —0.000142(575+1) e —3
3452+ 9 s + l 23s2 +  1 0 s+ l 70 s 2 +  125+1

CV3 —0.00188e-23 0.0027(—1 0 s+ l)
1 0 s+ l 88s2 +  1 5 s+ l

CV4 —0.433e—73 —0.506e-43
25s2+ 8 s + l 6 s + l

Table 9.1: Identified transfer functions between the CVs and MVs.

Disturbance transfer function models for the system are identified as follows:
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Variable DV1 DV2

CV1 2.86
8 s + l

CV2 0.0074e“ 3* 0.404e-3
7 s + l 27s2+ 9 s + l

CV3 0.0072 0.382(—6 s + l ) e —2s
65s2 +  1 4 s+ 1 40s2+ 1 0 s + l

CV4 2.97e—25 
7 .5 s+ l

Table 9.2: Identified transfer functions between the CVs and DVs.

9.4 Tuning and Optim ization

The advanced control application is then tested online. Optimization function and 

weighting matrices for the controlled variables are carefully determined on the basis 

of the relative importance of the variables in maximizing the profitability of the 

process and achieving stability in the vessel operation. The optimization function 

chosen is maximization of the density difference between the bottom and middle 

streams, max(CV3 — CV2). Similarly appropriate weighting matrices were chosen 

for the controlled variables. The process variables under the advanced control is 

plotted in figure (9.2).

9.5 Performance assessment

Assessing the performance of advanced controller applications is very different from 

the performance assessment of PID-type univariate controllers. The differences come 

from the fact that advanced controller applications are multi-faceted, in the sense 

that they are model-based and multivariate in nature, have an optimizer part in 

addition to the controller part and have application specific tuning parameters such 

as designed closed loop settling time.

Hence the performance assessment of an advanced controller application involves a 

more complex analysis of the different aspects of the application. We see some of 

the different methods of a multi-faceted analysis as follows.
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9.5.1 Online predictions validation

Since the advanced control applications are model-based, validating the model 

predictions online in real-time is a critical step before the commissioning of the 

controller. Most advanced control applications have a bias updating term in the 

predictor to deal with small deviations of the models. By plotting the true value of a 

controlled variable with the model-predicted value the bias in the model predictions 

can be noticed. If significant bias is noticed the model needs to be re-identified. 

From figure (9.3) we can see that the model-predictions do not have any significant 

bias with the true values of the controlled variables. From the auto-correlations in 

figure (9.4) we can see that the prediction errors of the CVs are close to white noise.

9.5.2 Primary assessment of controller performance

Once an MPC application is installed and put on-line, the first step in the 

performance assessment of the application is analyzing the controller response to 

the (a) setpoint deviations of the controlled variables (feedback control) and (b) 

disturbances entering through the measured disturbance variables (feedforward 

control). Moving the manipulated variables in the right direction when the 

controlled variables deviate from their respective setpoints or when disturbances 

enter the process, is a critical indication of the performance of an advanced control 

application. If the controller moves any one of the manipulated variables in the 

wrong direction the process can spiral to unsteady operation.

Under closed loop, MVs are a function of setpoint deviations, (SP - CV), and the 

measured disturbances. From the process model we know the process gain relation 

b e t w e e n  t h e  MVs a n d  CVs/DVs. For a  s e t p o i n t  d e v i a t i o n  of c o n t r o l l e d  v a r i a b l e s  

and /  or a change in the measured disturbances in a particular direction (positive 

/  negative) we expect the advanced controller to move the manipulated variables 

in a certain direction to narrow the setpoint deviation. By plotting the correlation 

coefficients between the ‘setpoint deviations’ and ‘measured disturbances’ with the 

‘manipulated variables’ it can be verified if the controller is moving the manipulated
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variables in the right direction.

Prom the transfer functions in the first row of table (9.1) we can see that when 

CV1 deviates below the setpoint (i.e., (CVlsp — C V 1) < 0 ), the controller should 

move M V 1 "t, M V2  f  and M V 3 4-- The designed MPC is doing exactly that 

in closed loop as can be seen from the cross-correlation coefficients plotted in figure 

(9.5). The process variable CV2 has a setpoint range instead of a single setpoint. 

Hence from the transfer functions in the second row of table (9.1) we can see that 

when CV2 deviates above the setpoint range (i.e., CV2 > 1.4 ), the controller 

should move M V  1 t> MV2  t  and M V 3 t  and vice-versa for C V 2 <1.1. Hence 

by plotting the cross-correlations coefficients between the CV2 setpoint deviations 

(i.e., (1.4 -  C V 2) for C V 2 > 1.4 and (1.1 -  C V 2) for CV  1 < 1.1) and MVs we can 

verify that the controller is moving the manipulated variables in the right direction 

as can be seen in figure (9.6). Similar observations can be made for CV3 and CV4 

as shown in figures (9.7)-(9.8).

From (9.9)-(9.10) it is verified that the controller is moving the manipulated variables 

in the right direction for variation in the disturbance variables.

9.5.3 Controller optimizer performance assessment

The advanced control application on the settling vessel has two parts, the controller 

part and the optimizer part. The objective of the optimizer in the advance control 

application on the settling vessel is to maximize the density difference between the 

densities of the middle and bottom streams. When all the controlled variables are 

within their setpoint limits the optimizer part would take over and try to move the 

manipulated variables in the direction of maximizing the density difference, (CV3 - 

CV2). Hence the next step of performance analysis would be assessing the optimizer 

response when all the CVs are within their respective setpoint limits. Prom figure

(9.11) we can clearly see that the MPC application is moving MV1 (the MV which 

has the highest effect on the process variables) in the right direction to maximize 

the density difference whenever both CV2 and CV3 are within the setpoint range.
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9.5.4 Closed loop settling time based performance assessment

Certain advanced control applications, such as MPC, allow for setting the closed loop 

settling time as a tuning parameter. Hence the next step in the performance analysis 

of the controller is comparing the true closed loop settling time of the controlled 

variables with the designed settling time. Figure (9.12) shows the auto-correlation 

coefficients of the four CVs for the settling vessel. The vertical lines in each of the 

four plots represent the maximum closed-loop settling time specified in the controller 

design. From the figure we can see that the closed-loop settling times of the three 

controlled variables (CV2, CV3 and CV4) which determine the profitability from 

the settling process are well within the maximum closed-loop settling time specified 

in the controller design.

This concludes the initial performance analysis of the MPC application. From the 

analysis it can be concluded that the advanced control application is meeting all 

the control objectives in the optimization of the process performance on the settling 

vessel. The methods described so far enable us to assess the controller performance 

as ‘good’ or ‘bad’.

The next step would be the benchmark-based controller performance assessment. 

The benchmark-based methods assess the ‘optimality’ of the controller performance 

with the benchmarks defining the optimal performance. These methods involve 

more rigorous analysis of the controller performance compared to the user defined 

benchmark for the optimal controller performance. The benchmark-based controller 

performance assessment techniques require partial knowledge of the process model 

for the multivariate case. It is shown in chapters 3, 5 and 7 that the required process 

knowledge can be estimated from the closed loop data if the open-loop process model 

is not available.
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9.5.5 MVC-benchmark calculation using subspace approach with  

weighting matrices

The expressions for obtaining the MVC-benchmark for controller performance 

assessment have been derived in chapter 7. When certain weighting matrices for 

the controlled variables are included in the controller design then the expressions in 

chapter 7 have to be modified as follows.

Consider the case when the objective function for the minimum variance controller, 

as N  — > oo, is
N

J  — [(r̂ -i-fc Ut+k) Qk (ft+k 2/t+fc)]}
k=1

(9.1)

where Qk(m x m) is a non-negative definite matrix. By letting rk = 0 and using 

equation (7.74) we can write,

J  =  min [[if Q t//|

=  [ ! '> '[  I L „ u , f  Q  I L„Uf)

(9.2)

(9.3)

where Q =
Qi 0 0

0 ... 0 has the weighting matrices along the diagonal blocks.

0 ... Qn
To obtain the minimum variance control law, we differentiate J  with respect to Uf 

and set it to zero.

dJ
duf

2LlQLbwwl + 2LlQLuu,  =  0

We obtain the minimum variance control law as:

« / =  - ( L lQ U $ L Z Q ( L iv $  

Similar to equation 7.82, we can derive

(9.4)

(9.5)

Vt I  — L u ( L lQ L uy L l Q ]  L v v t+1 +  I  — L u( L ^ Q L uy L h  et+i (9-6)
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11 1So

1

r d- ! Vt+1 + et+1=<f>wet+1 + -9wet+1

0 0

(9.7)

The minimum variance control variance expression for the process output is given 

by
d- 1 d—\

Var[yt]Mvc = Y ,  C ^ N ( C ) T +  £  C ^ a r [et ] ( 0 T
7=0 7=0

=  Var[yt]vMVC +  V’ar[yt]^fyc.

(9.8)

(9.9)

where Var[yt]vMvc  and Var[yt\eMVC represent the contribution of measured and 

unmeasured disturbances respectively, to the process output variance under 

minimum variance control.

As shown in section 7.3 using theorem-1, the subspaces with the closed-loop noise 

models and (which can identified from the routine closed-loop data) can 

be used in the place of the open-loop noise models Lv and Lh in equation (9.6) 

to estimate the MVC-benchmark variance. Estimation of the closed loop subspace 

matrices from the routine operating data is an open-loop identification problem. 

Refer to chapter 2 for the methodology to estimate the subspace matrices. The 

subspace matrix Lu is constructed from the process Markov parameters formed 

from the process transfer function matrix shown in table 9.1.

The MVC-benchmark based performance index for the controller can therefore be 

defined as

trace (Var[yt\Mvc) trace (Var[yt]vMVC) + trace (Var[yt]eMVC)
V trace (Var[yt\actuai) trace {Var[yt)actuai)

(9.10)

The MVC-benchmark based parameters are listed in table 9.3. As can be seen from 

table 9.3, the advanced control application on the settling process is giving 35.68% 

of the optimal performance based on the minimum variance control as benchmark.
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parameter Value

trace (Var[yt\vMVC) 5.3498

trace (Var[yt\eMVC) 2.3091

trace (Var[yt]Mv c ) 7.6588

trace (Var[yt\actuai) 21.4671

V 0.3568

1 - v 0.6432

Table 9.3: MVC-benchmark based controller performance assessment.

9.5.6 LQG-benchmark calculation using subspace approach with  

weighting matrices

Similar to the previous section, the expressions in chapter 5 have to be modified for 

the case of weighting matrices as follows.

The LQG objective function in this case can be written as
N

J  = [(t/t+fc Tt+k) Qk {yt+k Tt+k) T Wf+fc Rk } (9-11)
k=l

where Qk ( jn  x m )  and Rk  (I x I) are non-negative definite weighting matrices and 

N  — > oo. Consider the feedback plus feedforward controller case considered in 

section 5.4. By letting rk = 0 we can write

J  =  min [yj Q yf  + uTf  R  uf ] (9.12)

=  (Lbwwbp + Luuf )T Q (Lbwwbp + Luuf ) + u j  R  ufb „.,b (9.13)

Qi 0 0

1
& i-* o o . J

where Q — 0 ... 0 and R  = 0 ... 0

0 ... Qn 1 o i

, have the weighting matrices

along the diagonal blocks. We differentiate J  with respect to Uf and set it to zero, 

to obtain the LQG control law as:

u , = - ( R + L l Q L , ) - 1L lQ L lw br 

Equation 5.19 is modified as

i f ” =  (R  +  L Z Q L n) - ' L l Q ;

(9.14)
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(9.15)

Therefore we can derive 

uf  = -KwLvvt+1 -  K wLhet+i

Vf =

(9.16)

(9.17)

(9.18)

(9.19)

we can calculate the LQG-benchmark variances of the process input and output as

Var[ut]LQG =  23 UT Var[vt] « ) T +  23 Var[et1 ( ipT f  (9.20)
z=0 i= 0

= V ar[ut\vLQG +  V ar[ut\eLqG (9.21)

Var[yt]LQG = 23 Var[vt] (T?)t  +  23 7* Var[et] (9.22)

/U q

1 \w

V t+ 1  + e*+1

U>N- 1 1
1—t 1

-S-
( I - L uK w)Lvvt+1 + ( I - LuK w)Lhet+i

'Y'W
1 0 7ow

r'£W

V t+ 1  +
7 r

G t+ l

1 N - l 7 at- i  _

i = 0 i= 0

—  l ^ a r  [ y t  ] vLq G + Var [yt] eLqG (9.23)

As can be seen from the above expressions, the subspace matrices Lu, Lv and Le 

are required for the calculation of the LQG-benchmark variances. The subspace 

matrix Lu is constructed from the process Markov parameters formed from the 

process transfer function matrix shown in table 9.1. Similarly the matrix Lv is 

constructed from the Markov parameters formed from the measured disturbances 

transfer function matrix shown in table 9.2. The subspace matrix Le is identified 

from the open-loop data used in the identification of tables 9.1 and 9.2.

The benchmark variances are compared with the true variances of the process input 

and output. The performance indices for the LQG-benchmark based performance 

assessment are defined in section 5.5.
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As can be seen from equations (9.16) and (9.18), the estimation of the LQG- 

benchmark requires the estimation of the open loop noise models of the measured 

and stochastic noise disturbances. For the advanced control application on the 

settling process, the open-loop noise model for measured disturbances is available 

from the identification step in section 9.3. The current stochastic noise model needs 

to be estimated from the closed-loop data used for controller performance analysis. 

For the advanced control application on the settling process, the model predictions 

for the controlled variables are archived along with the true values from the process. 

Using the predicted/true values of the controlled variables the open-loop stochastic 

noise model can be estimated. We can rewrite equation (5.36) as

Yf  =  LbwW$ + LuUf + LvVf  + LeE f  (9.24)

and

Yf = LbwWp +  LuUf  +  LvVf  (9.25)

Therefore the prediction error term can be extracted as

Ef  = Yf  — Yf  = LeEf  (9.26)

Using the least squares estimation method described in section 2.3 the subspace 

matrix Le can be estimated. The subspace matrix Le contains the Markov 

parameters of the stochastic noise model.

The LQG-benchmark based performance indices for the controller can therefore be 

defined as

trace (Var[yt\LQG) trace (V w W lqg) + trace {v a r [yt}eLQG) ^  
^ trace (Var[yt\actuai) trace (Var[yt\actuai)
e _  trace (Var[ut\LQG) trace (Var{ut}vLQG) +  trace (Var[ut\eLQG)

trace (Var[ut\actuai) trace (Var[ut}actuai)

For the advanced control application on the settling process, The LQG-benchmark 

based parameters are listed in table 9.4.

The following can be deduced from table 9.4 about the performance of the advanced 

control application on the settling process based on the optimal LQG-control 

benchmark:
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parameter Value

trace (Var[ut)vLQG) 0.3202

trace ('Var[ut]eLQG) 0.1074

trace (Var[ut]LQG) 0.4276

trace {Var[ut\actual) 3.4116

trace (Var[yt}vLQG) 4.2402

trace (Var[yt]eLQG) 2.9826

trace (Var[yt\LQG) 7.2228

trace (Var[yt}actuai) 8.0919

V 0.8926

i  - v 0.1074

e 0.1253

1 -  £ 0.8747

Table 9.4: LQG-benchmark based controller performance assessment.

(a )  In terms of the process output variance, the controller is giving 89.26% of 

the optimal performance.

(b) In terms of the process input variance, the controller is giving only 12.53% 

of the optimal performance.

Hence it can be concluded that the advanced control application is giving close to 

optimal performance with respect to the process output variance. However there is 

still some scope to reduce the process input variability to reduce the wear on the 

manipulated variables.

9.6 Conclusions

In this chapter the multi-faceted approaches for the performance assessment of 

industrial advanced control applications have been described and illustrated through 

an application on a settling vessel. It shows that the advanced control commissioned 

in this project achieved a relatively good performance. The proposed method for 

assessment of model predictive control can be applied to other industrial advanced
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Figure 9.2: Closed loop data of the CVs under MPC.
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Figure 9.3: Comparing the model-predictions with the true values (-) of the controlled variables.
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Figure 9.4: Auto correlation function of the prediction errors.
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Correlation coefficents between DV1 vs. MVs

50.2

Figure 9.9: Cross correlation coefficients between D V 1 and M Vs.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



177

Correlation coefficents between DV2 vs. MVs 
3 001-------------1-------------1-------------1-------------1-------------1-------------1-------------1—

>

Figure 9.10: Cross correlation coefficients between D V 2 and M V s.

1.4
£  1.3 
°  1.2  

1.1

1.6

1.4

500 

|  400 

300 

100

0

Figure 9.11: Optimization function operation.

 i________i________ i________ i________ i________ i------------ 1—
200 400 600 800 1000 1200 1400

~j------------ 1” “i------------- r~

_i___________i_
1400

200 400 600 800 1000 1200 1400

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



178

Impulse response estimate Impulse response estimate

°  0.2

-0.5

Impulse response estimate

-0.5

Lags

Impulse response estimate

0.5
CM>
o

-0.5
200 10 25155

Figure 9.12: Auto correlation function of the CVs. The vertical lines represent the maximum 

closed loop settling times specified in the controller design.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0202640443

^



Bibliography

[1] .. Special issue on statistical signal processing and control. Automatica, 30(1), 

1994.

[2] .. Special issue on system identification. Automatica, 31(12), 1995.

[3] .. Special issue on subspace methods for system identification. Signal 

Processing, 52, 1996.

[4] B.D.O. Anderson and M.R. Gevers. Identifiability of linear stochastic systems 

operating under linear feedback. Automatica, 18:195-213, 1982.

[5] K.J. Astrom. Assessment of achievable performance of simple feedback loops. 

International Journal of Adaptive Control and Signal Processing, 5(1):3—19, 

1991.

[6] K.J. Astrom and B. Wittenmark. Computer Control Systems: Theory and 

Design. Prentice-Hall, 1984.

[7] R.R. Bitmead, M. Gevers, and V. Wertz. Adaptive Optimal Control: A 

thinking man’s GPC. Prentice Hall, 1990.

[8] S.P. Boyd and C.H. Barratt. Linear Control Design. Prentice Hall, Eaglewood 

Cliffs, New Jersey, 1991.

[9] J.W. Brewer. Kronecker products and matrix calculus in system theory. IEEE 

trans. on Circuits and Systems, 25(9):772-781, 1978.

[10] C.F. Camacho and C. Bordons. Model Predictive Control. Springer-Verlog 

London Limited, 1999.

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



180

[11] C.T. Chou and M. Verhaegen. Subspace algorithms for the identification of 

multivariable dynamic errors-in-variables models. Automatica, 33(10):1857- 

1869, 1997.

[12] D.W. Clarke, C. Mohtadi, and P.S. Tuffs. Generalized predictive control- part

i. the basic algorithm. Automatica, 23(2): 137-148, 1987.

[13] D.W. Clarke, C. Mohtadi, and P.S. Tuffs. Generalized predictive control- part

ii. extensions and interpretations. Automatica, 23(2): 149-160, 1987.

[14] C.R. Cutler, A. Morshedi, and J. Haydel. An industrial perspective on 

advanced control. In AIChE Annual Meeting, 1983.

[15] C.R. Cutler and B.L. Ramaker. Dynamic matrix control- a computer control 

algorithm. In AIChE National Meeting, 1979.

[16] C.R. Cutler and B.L. Ramaker. Dynamic matrix control- a computer control 

algorithm. In Proceedings of the Joint Automatic Control Conference, 1980.

[17] P.M.J. Van den Hof and R.J.P. Schrama. Identification and control—closed- 

loop issues. Automatica, 31(12):1751-1770, 1995.

[18] P.M.J. Van den Hof, R.J.P. Schrama, and O.H. Bosgra. An indirect method 

for transfer function estimation from closed-loop data. In Proceedings of the 

31st Conference on Decision and Control, pages 1702 -  1706, Tucson, Arizona, 

December 1992.

[19] L. Desborough and T. Harris. Performance assessment measure for univariate 

feedback control. Can. J. Chem. Eng., 70:1186-1197, 1992.

[20] L. Desborough and T.J. Harris. Performance assessment measures for 

univariate feedforward/feedback control. Can. J. Chem. Eng., 71:605-616, 

1993.

[21] L.D. Desborough and T.J. Harris. Control performance assessment. Pulp and 

Paper Canada, 94(11):441, 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



181

[22] P.G. Eriksson and A.J. Isaksson. Some aspects of control performance 

monitoring. In Proc. 3rd IEEE conf. Control Applications, pages 1029-1034, 

Glasgow, Scotland, 1994.

[23] W. Favoreel and B. De Moor. SPC: Subspace predictive control. Tech. rep. 

98-49, Katholieke Universiteit Leuven, 1998.

[24] W. Favoreel, B. De Moor, M. Gevers, and P. van Overschee. Closed loop model- 

free subspace-based LQG-design. Tech. rep. 98-108, Katholieke Universiteit 

Leuven, 1998.

[25] W. Favoreel, B. De Moor, M. Gevers, and P. van Overschee. Model-free 

subspace based LQG-design. Tech. rep. 98-34, Katholieke Universiteit Leuven,

1998.

[26] W. Favoreel, B. De Moor, P. Van Overschee, and M. Gevers. Model- 

free subspace-based LQG-design. In Proceedings of the American Control 

Conference, pages 3372-3376, June 1999.

[27] U. Forssell and L. Ljung. Closed-loop identification revisited. Automatica, 

35(7):1215-1241, 1999.

[28] J. Gao, R. Patwardhan, K. Akamatsu, Y. Hashimoto, G. Emoto, S.L. Shah, 

and B. Huang. Performance evaluation of two industrial mpc controllers. 

Control Engineering Practice, Accepted for publication, 2003.

[29] C. Garcia, D. Prett, and M. Morari. Model predictive control: Theory and 

praqctice - a survey. Automatica, 25(3):335-348, 1989.

[30] C.E. Garcia and A.M. Morshedi. Quadratic programming solution of dynamic 

matrix control (QDMC). Chem. Eng. Commun., 46:73-86, 1986.

[31] A. Graham. Kronecker Products and Matrix Calculus with Applications. John 

Wiley & sons, 1981.

[32] I. Gustavsson, L. Ljung, and T. Soderstrom. Identification of processes in 

closed loop — identifiability and accuracy aspects. Automatica, 13:59-75, 

1977.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



182

[33] T. Hagglund. A control-loop performance monitor. Control Engineering 

Practice, 5(11):1543, 1995.

[34] T. Harris. Assessment of control performance. Can. J. Chem. Eng., 67:856- 

861, 1989.

[35] T.J. Harris, F. Boudreau, and J.F. MacGregor. Performance assessment of 

multivariable feedback controllers. In 1995 AIChE Annual Meeting, Miami 

Beach, FL, 1995.

[36] T.J. Harris, F. Boudreau, and J.F. MacGregor. Performance assessment of 

multivariable feedback controllers. Automatica, 32(11):1505—1518, 1996.

[37] T.J. Harris, C. Seppala, P. Jofriet, and B. Surgenor. Plant-wide feedback 

control performance assessment using an expert system framework. Control 

Engineering Practice, 4:1297, 1996.

[38] T.J. Harris, C.T. Seppala, and L.D. Desborough. A review of performance 

monitoring and assessment techniques for univariate and multivariate control 

systems. J. of Process Control, 9:1-17, 1999.

[39] D.A. Harville. Matrix Algebra From a Statistician’s Perspective. Springer- 

Verlag, New York, 1997.

[40] H. Hjalmarsson, M. Gevers, and F. Bruyne. For model-based control design, 

closed-loop identification gives better performance. Automatica, 32(12): 1659- 

1673, 1996.

[41] P.M.J. Van Den Hof and R.J.P. Schrama. An indirect method for transfer 

function estimation from closed loop data. Automatica, 29(6): 1523-1527, 1993.

[42] B. Huang. Multivariate Statistical Methods for Control Loop Performance 

Assessment. PhD thesis, Department of Chemical Engineering, University of 

Alberta, Edmonton, Alberta, Canada, 1997.

[43] B. Huang and S.L. Shah. Closed-loop identification: a two-step approach. 

Journal of Process Control, 17(6), 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



183

[44] B. Huang and S.L. Shah. The role of the unitary interactor matrix in 

the explicit solution of the singular LQ output feedback control problem. 

Automatica, 33(ll):2071-2075, 1997.

[45] B. Huang and S.L. Shah. Practical issues in multivariate control loop 

performance assessment. Journal of Process Control, 8(5-6) :421-430, 1998.

[46] B. Huang and S.L. Shah. Control Loop Performance Assessment: Theory and 

Applications. Springer Verlag, London, 1999.

[47] B. Huang, S.L. Shah, and H. Fujii. Identification of the time delay/interactor 

matrix for MIMO systems using closed-loop data. In Proc. 13th IFAC World 

Congress, volume M, pages 355-360, San Francisco, July 1996.

[48] B. Huang, S.L. Shah, E.K. Kwok, and J. Zurcher. Performance assessment of 

multivariate control loops on a paper machine headbox. Canadian Journal of 

Chemical Engineering, 75(1): 134-142, 1997.

[49] B. Huang, S.L. Shah, and K.Y. Kwok. Case studies of performance monitoring 

of multivariable processes. In The 45th CSChE Conference, Quebec, Canada, 

October 1995.

[50] B. Huang, S.L. Shah, and K.Y. Kwok. Good, bad or optimal? performance 

assessment of multivariable processes. Automatica, 33(6):1175-1183, 1997.

[51] B. Huang, S.L. Shah, and R. Miller. Feedforward plus feedback controller 

performance assessment of mimo systems. IEEE Trans, on Control System 

Technology, 8(3)(3):580-587, 2000.

[52] M. Jansson and B. Wahlberg. A linear regression approach to state-space 

subspace system indetification. Signal Processing, 52:103-129, 1996.

[53] M. Jansson and B. Wahlberg. On consistency of subspace methods for system 

identification. Automatica, 34(12):1507-1519, 1998.

[54] P. Jofriet, C. Seppala, M. Harvey, B. Surgenor, and T.J. Harris. An expert 

system for control loop performance. In Pulp and Paper Canada, page 207, 

1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



184

[55] R.A. Johnson and D.W. Wichern. Applied Multivariate Statistical Analysis. 

Prentice-Hall, 1982.

[56] R. Kadali and B. Huang. A data based subspace approach to predictive 

controller design. In The 50th CSChE Conference, Montreal, Canada, 

November 2000.

[57] R. Kadali and B. Huang. Controller performance assessment using LQG- 

benchmark obtained under closed loop. ISA Transactions, 2001. Accepted for 

publication.

[58] R. Kadali and B. Huang. Estimation of dynamic matrix and noise model for 

model predictive control using closed loop data. Industrial and Engineering 

Chemistry Research, 41(4):842-852, 2002.

[59] R. Kadali, B. Huang, and A.J. Rossiter. A data driven subspace approach to 

predictive controller design. Control Engineering Practice, 2002. Accepted for 

publication.

[60] R. Kadali, B. Huang, and E.C. Tamayo. A case study on performance analysis 

and troubling shooting of an industrial model predictive control system. In 

Proceedings of 1999 American Control Conference, pages 642-646, 1999.

[61] T. Kailath. Linear System Theory. Prentice Hall, Englewood Cliffs, NJ, 1980.

[62] L. C. Kammer. Performance Monitoring and Assessment of Optimality 

under a Linear Quadratic Criterion. PhD thesis, Department of Systems 

Engineering, The Australian National University, Canberra, Australia, 1998.

[63] L.C. Kammer, R.R. Bitmead, and P.L. Bartlett. Signal-based testing of lq- 

optimality of controllers. In Proceedings of 1996 IF AC World Congress, June- 

July 1996.

[64] L.C. Kammer, R.R. Bitmead, and P.L. Bartlett. Optimal controller properties 

from closed-loop experiments. Automatica, 34(1):83-91, 1998.

[65] S.J. Kendra and A. Cinar. Controller performance assessment by frequency 

domain techniques. Journal of Process Control, 7(3):181—194, 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



185

[66] P. Kesavan and J.H. Lee. Diagnostic tools for multivariable model-based 

control systems. Ind. Eng. Chem. Res., 36:2725-2738, 1997.

[67] T. Knudsen. Consistency analysis of subspace identification methods based 

on linear regression approach. Automatica, 37:81-89, 2001.

[68] B.S. Ko and T.F. Edgar. Performance assessment of multivariate feedback 

control systems. Automatica, 37(5):899-905, 2001.

[69] D.J. Kozub. Controller performance monitoring and diagnosis: Experience 

and challenges. AIChE Symposium Series, 93(316):83, 1997.

[70] D.J. Kozub and C.E. Garcia. Monitoring and diagnosis of automated 

controllers in the chemical process industries. In AIChE Annual Meeting, 

St. Louis,MO, Nov. 9 1993.

[71] S. Lakshminarayanan, G. Emoto, S. Ebara, K. Tomida, and S.L. Shah. Closed 

loop identification and control loop reconfiguration: an industrial case study. 

Journal of Process Control, 11:587-599, 2001.

[72] W.E. Larimore. System identification, reduced-order filtering and modeling via 

canonical variate analysis. In H.S. Rao and T. Dorato, editors, Proceedings of 

1983 American Control Conference, pages 445-451. IEEE, New York, 1983.

[73] W.E. Larimore. Statistical optimality and canonical variate analysis system 

identification. Signal Processing, 52:131-144, 1996.

[74] W.E. Larimore. Canonical variate analysis in control and signal processing. 

In T. Katayama and S.Sugimoto, editors, Statistical Methods in Control and 

Signal Processing, pages 83-120. Marcel Dekkar, New York, 1997.

[75] W.E. Larimore. Canonical variate analysis in identification, filtering, and 

adaptive control. In Proceedings of the 29th Conference on Decision and 

Control, pages 596-604, December 1990.

[76] W.E. Larimore. System identification of feedback and ‘causality’ structure 

using canonical variate analysis. In Preprints 11th IFAC Symposium on System 

Identification, pages 1101-1106, July 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



186

[77] W.E. Larimore. Optimal reduced rank modeling, prediction, monitoring, and 

control using canonical variate analysis. In Preprints IFAC Advanced Control 

of Chemical Processes, pages 61-66, June 1997.

[78] J.H. Lee and B. Cooley. Recent advances in model predictive control and other 

related areas. In Chemical Process Control-CPC V, CACHE, pages 201-216, 

1996.

[79] A. Lindquist and G. Picci. Canonical correlation analysis, approximate 

covariance extension, and identification of stationary time series. Automatica, 

32(5):709-733, 1996.

[80] L. Ljung. System Identification: Theory for the user. Prentice-Hall,

Englewood, NJ, 2nd edition, 1987.

[81] L. Ljung and T. McKelvey. Subspace identification from closed loop data. 

Signal Processing, 52:209-215, 1996.

[82] C.B. Lynch and G.A. Dumont. Closed loop performance monitoring. In Proc. 

2nd IEEE Conf. Control Applications, pages 835 -  840, Vancouver, B.C., 

Sept. 13-16 1993.

[83] C.B. Lynch and G.A. Dumont. Control loop performance monitoring. IEEE 

Trans. Control Sys. Tech, 4(2): 185-192, 1996.

[84] C.A.R. McNabb and J.S. Qin. MIMO control performance monitoring based 

on subspace projections. In AIChE Annual Conference, Reno, 2001.

[85] T. Miao and D.E. Seborg. A monitoring strategy for flow and pressure control 

loops. In The 2nd Asia-Pacific Conf. on Control and Measurement, Wuhan- 

Chongqing, China, June 1995.

[86] R. Miller and B. Huang. Perspectives on multivariate feedforward/feedback 

controller performance measures for process diagnosis. In Proceedings of 

ADCHEM, page 435, Banff, Canada, 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



187

[87] M. Moonen, B. De Moor, L. Vandenberghe, and J. Vandewalle. On- and 

off-line identification of linear state-space models. International Journal of 

Control, 49(l):219-232, 1989.

[88] M. Morari. chapter model predictive control: Multivariable control technique 

of choice in the 1990s? Advances in Model-Based Predictive Control, 1994.

[89] Y. Mutoh and R. Ortega. Interactor structure estimation for adaptive control 

of discrete-time multivariable nondecouplable systems. Automatica, 29(3) :635— 

647, 1993.

[90] T.S. Ng, G.C. Goodwin, and B.D.O. Anderson. Identifiability of linear 

dynamic system operating in closed-loop. Automatica, 13:477-485, 1977.

[91] P. Van Overschee and B. De Moor. N4SID: Subspace algorithm for the 

identification of combined deterministic-stochastic systems. Automatica, 

30(l):75-93, 1994.

[92] P. Van Overschee and B. De Moor. A unifying theorem for three subspace 

system identification algorithms. Automatica, 31(12):1877-1883, 1995.

[93] P. Van Overschee and B. De Moor. Subspace Identification for Linear Systems: 

Theory implementation applications. Kluwer Academic Publishers, 1996.

[94] P. Van Overschee and B. De Moor. Closed loop subspace system identification. 

In Proceedings of the 36th Conference on Decision and Control, pages 1848- 

1853, 1997.

[95] J.G. Owen, D. Read, H. Blekkenhorst, and A.A. Roche. A mill protype 

for automatic monitoring of control loop performance. In Proc. Control 

Systems’96, page 171, 1996.

[96] R. Patwardhan. Studies in synthesis and analysis of model predictive 

controllers. PhD thesis, Dept of chemical and materials engineering, University 

of Alberta, 1999.

[97] D.M. Prett and R.D. Morari. Optimization and constrained multivariable 

control of a catalytic cracking unit. In Proceedings of the joint ACC, 1980.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



188

[98] S.J. Qin. Control performance monitoring - a review and assessment. 

Computers and Chemical Engineering, 23:173-186, 1998.

[99] S.J. Qin and T.A. Badgwell. An overview of industrial model predictive control 

technology. In Proceedings of CPC- V, Tahoe City, California, 1996.

[100] R.R. Rhinehart. A watch dog for controller performance monitoring. In 

Proceedings of the 1995 American Control Conference, pages 2239 -  2240, 

Seattle, Washington, U.S.A., 1995.

[101] J. Richalet, A. Rault, J.L. Testud, and J. Papon. Model predictive heauristic 

control: Applications to industrial processes. Automatica, 14:413-428, 1978.

[102] D.D. Ruscio. A method for identification of combined deterministic stochastic 

systems. In Applications of Computer Aided Time Series Modeling. Editor: 

Aoki, M. and A. Hevenner, pages 181-235. Springer-Verlag, 1997.

[103] D.D. Ruscio. Model based predictive control: An extended state space 

approach. In Proceedings of the 36th Conference on Decision and Control, 

pages 3210-3217, 1997.

[104] D.D. Ruscio. Model predictive control and identification: A linear state 

space model approach. In Proceedings of the 36th Conference on Decision 

and Control, pages 3202-3209, 1997.

[105] D.D. Ruscio. On subspace identification of the extended observability matrix. 

In Proceedings of the 36th Conference on Decision and Control, pages 1841- 

1847, 1997.

[106] D.D. Ruscio and B. Foss. On state space model based predictive control. In 

IFAC Dynamics and Control of Process Systems, 1998.

[107] C.D. Schaper, W.E. Larimore, D.E. Seborg, and D.A. Mellichamp. 

Identification of chemical processes using canonical variate analysis. 

Computers and Chemical Engineering, 18(1):55—69, 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



189

[108] R.J.P. Schrama. An open-loop solution to the approximate closed-loop 

approximation problem. In Proceedings of IFAC identification and system 

parameter estimation, pages 761-766, Budapest, Hungary, 1991.

[109] S.L. Shah, C. Mohtadi, and D.W. Clarke. Multivariable adaptive control 

without a prior knowledge of the delay matrix. Systems and Control Letters, 

9:295-306, 1987.

[110] T. Soderstrom and P. Stoica. System Identification. Prentice Hall 

International, UK, 1989.

[111] N. Stanfelj, T.E. Marlin, and J.F. MacGregor. Monitoring and diagnosing 

process control performance: the single-loop case. Ind. Eng. Chem. Res., 

32:301-314, 1993.

[112] A. Stenman. Model on Demand: Algorithm, Analysis and Applications. PhD 

thesis, Dept of EE, Link ping University, SE-581 83 Link ping, Sweden, Apr

1999.

[113] A.K. Tangirala, S. Lakshminarayanan, and S.L. Shah. Closed-loop 

identification using canonical variate analysis. In The 47th CSChE Conference, 

Edmonton, Canada, November 1997.

[114] N.F. Thornhill, M. Oettinger, and P. Fedenczuk. Refinery-wide control loop 

performance assessment. Journal of Process Control, 9(2): 109-124, 1999.

[115] N.F. Thornhill, R. Sadowski, R. Davis, J.R. Fedenczuk, P. Knight, M.J. 

Prichard, and D. Rothenberg. Practical experiences in refinery control loop 

performance assessment. In UKACC’96, 1996.

[116] M.L. Tyler and M. Morari. Performance assessment for unstable and 

nonminimum-phase systems. Technical Report IfA-Report No 95-03, 

California Institute of Technology, 1995.

[117] M.L. Tyler and M. Morari. Performance monitoring of control systems using 

likelihood methods. Automatica, 32:1145-1162, 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



190

[118] P.M.J. Van den Hof and R.J.P. Schrama. An indirect method for transfer 

function estimation from closed loop data. Automatica, 29(6): 1523-1527, 1993.

[119] M. Verhaegen. Identification of the deterministic part of mimo state space 

models given in innovations form from input-output data. Automatica, 

30(l):61-74, 1994.

[120] M. Verhaegen and P. Dewilde. Subspace model identification part 1. the 

output-error state-space model identification class of algorithms. International 

Journal of Control, 56(5):1187—1210, 1992.

[121] M. Verhaegen and P. Dewilde. Subspace model identification part 2. analysis 

of the elementary output-error state-space model identification algorithm. 

International Journal of Control, 56(5):1211-1241, 1992.

[122] Michel Verhaegen. Application of a subspace model identification technique to 

identify LTI systems operating on closed-loop. Automatica, 29(4): 1027-1040, 

1993.

[123] W.J. Vetter. Derivative operations on matrices. IEEE trans. on AC, pages 

241-244, 1970.

[124] W.J. Vetter. Matrix calculus operations and taylor expansions. SIAM  review, 

15(2):352-369, 1973.

[125] A. Vishnubhotla, S.L. Shah, and B. Huang. Feedback and feedforward 

performance analysis of the shell industrial closed-loop data set. In Proceedings 

of ADCHEM, pages 295-300, Banff, Canada, 1997.

[126] Alexander Weinmann. Uncertain Models and Robust Control. Springer-Verlag, 

New York, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A ppendix A

Closed loop subspace 

identification when a FF plus FB  

controller is acting on the process

Consider a feedback and feedforward controller acting on the process (2.1)-(2.2). 

The controller can be expressed in transfer function form as,

uk =  Qi (rk - y k) + Q2 vk

where vk represents the measured disturbance variable. Assume that the measured 

disturbance variables are uncorrelated with the setpoint changes or the unmeasured 

disturbances. The controller subspace representation (3.2)-(3.3) changes to

We derive

U, = T‘NX } + H'NR , - H ‘NYl  + H fNV{ (A.l)
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Therefore, we can write

Uf  = TcNX cf  + H cNR f - H cN(TNX f  + H NUf  + H vNVf + H sNE f ) + H fNVf  

= (/ + H ^ H n Y ^ X }  -  (/ + H cNH Ny lH cNTNX f  

+ (J +  H ffH s ^ H fr R f  -  (I + H ^ H ^ H ^ V f  

- ( /  + H cNH N) - xH cNH sNE f  + (I + H cNH Ny lH fNVf  (A.2)

TNX f  + Hn (Tcn X j  + H%Rf  -  H cNYf  + H fNVf ) +  H vNVf  + H sNEf  

(I  +  Hn H ^ T n X j +  ( /  +  HNH cN)~1HNTcNX cf  

+ (I + H N H ^ H N H ^ R f  +  (I +  H N H ^ H N H ffV f  

+ ( /  +  Hn H ^ H W j + (I + H n H ^ H ^ E f  (A.3)

As becomes clear from the above expressions, H VN cannot be extracted from 

and LgL.

Similarly,

Yf =
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A ppendix B

QP formulation for constraints 

handling

QP-formulation of the constraints is well known and available in the literature. 

Typical process constraints are as follows:

Umin ^ ut ^  Umax Vt Amplitude lim its

A^Umin 5̂  A>Ut =  u t -  U t-1 ™ Ai.Umax Vt Slewrate lim its

Vmin — Vt ^  Umax Vt Quality lim its

These constraints for the predictive controller can be expressed as

Umin 5: Uf+k — Umax k —0,1,2,..., iVu — 1

£^Um in — ^ Ut+k — ^ U m a x  —0,1,2,..., Nu — 1

Vmin — Vt+k\t — Umax k — 1,2,..., JVjj

Define
T

L i  = ^ U min /S.Um in 3

Ux = /\ i ju max /\U m ax
T

3

L, =

Urt Ut- 1

Umin Ut—1

Uo

Umax Ut—\

Umax Ut—i
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Ls = 

Us =

n  =

Vmin

Umax

1 0 

1 1

Vmin

Vri

F-,

-F -, and

0

0

1 1 1 1  

The constraints can be rewritten as:

L\ < / \ i i f  < U\

Z/2 ^  F AU f < Us

Ls < SN2,NuA llf  < Us

These constraints can be combined to the form of a single matrix inequality:

A A u  < B

with

A

B

- I  ~ F  - S n 2,nu I  F  S n 2,nu

n T
- L x - L 2 - L s  Ux Us Us
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A ppendix C

Equivalence of subspace and GPC  

predictor matrices

The vector of predictor equations used in subspace based predictive controller is

yt-N+i

yt+i
yt

u t

= Lw( 1 : N2m , :) +  Lu( 1 : N2m, 1 : Nul)
Ut - N

_ yt+N2 . .  Ut + N u - 1 _

Ut- 1

Therefore for a k-step ahead prediction

yt+k =  Lw((k -  1 )m  +  1 : k m ,:)

+Lu((k — 1 )m + 1 : km , :)

V t-N + X

yt

U t - N

U t - 1 

Ut

Ut+Nu- 1
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L°w{{k -  1 )m  +  1 : km , :)

V t - N + l

yt

U t - N

Ut - 1

+ S N 2, m ((k  -  1 )m  +  1 : km , :)

A u t

A  Ut+Nu-

p N - i  ••• P i  Po 9 j v - i  ••• Qi Qo

V t - N + l

Vt

U t - N

Ut - 1

+ 1 Si So

A u t

Aut-i-m—i 

' - N+%= [po+Pi* 1 +  . . .+Piv-1^"

+ [? o  +  Q iz  1 - \ - ■■■ +  q . N - i z  N + 1] u t - i

+  [so +  Si-z 1 +  ... +  S k - \ Z  2+1]Ai*t_|-fc_i

=  P{z~1)yt +  1)wt-i +  ^fcA^+fc-! 

Comparing the above equation with equation (4.5), we observe that

p  =  Q =  -  c fc

( C . l )

(C.2)

Therefore, the parametric matrices obtained in GPC design by first identifying 

an ARIMAX model for the process and then through recursive solution of the 

Diophantine equations [7], are directly identified by the subspace identification. 

This removes the requirement of pre specifying order and structure (ARIMAX) for 

the process model.
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A ppendix D

Equivalent subspace 

representation

We can re write equation (5.14)

V t - N + l U t - N + l

II1—
1

+

4 " lup

Vt u t

+  &t+1

We can also express yt+1 as 

Vt+i — Vt + G\Ut + L\et + et+i

V t - N U t - N

hip +  lup

. y ^ 1 . Ut ~ 1
r -| r

+ G\Ut + L\et + et+i

V t - N - 1 Ut - N - 1

lyP “1“ l-Up

V t - 2 U t - 2

(D .l)

r ut r -] et
+ Gx G2 + Li L2L J Ut - 1 L J et-i

+  &t+1

V t - 2 N + 1 U t - 2 N + 1

h P +  lup

V t - N U t - N
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+ Gi ... GN

Ut

+ L i ... Ljv

et
+ 6t+1

U t-N + 1 C t - N + l

As N  — > oo, an equivalent expression of yt+\ in terms of the past inputs and the 

past noise can be written as

yt+i = G! ... GN

u t e t

+

1

i—
l

i
_ U t-N + 1  _ _ e t - N + i

+  e t+ {  D.2)
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A ppendix E

Simplified matrix expressions from 

singular value decomposition

Let A  represent an m x n matrix of rank r < min(m, n ). The so that

A  =  X £  Y 1
r i

i
M -3 O

I

V
Xx X2

. y2r .0 0
= x 1 £ r y T (E.l)

where r  is the number of singular values of A  that are not zero. The matrices X  

and y  are orthogonal matrices i.e., the columns are mutually orthogonal vectors of 

unit length and are non-unique. We can derive

A t A  =  ( y  £ r X l )  ( X x Er y T ) =  y  E2 y T  

<Ar A)' =  ( \ \  Ej I f  )t =  Vj E f  V f

(E.2)

(E.3)

Therefore we have

A* A = {At A)^At A  

AA^ = A(A t A )'A t

y Er- 2 yT y ez y  = y y
Xi £r y y e~ 2 yT y Er x1i

(E.4) 

=  X x X^E.5)

The matrices X  and Y  are unitary matrices. Hence we can also write [39]

I  -  A^A = y  y T (E.6)

I - A r f  = X 2 X l  (E.7)
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Both the matrices (7 — A  A) and (7 — A A )  are idempotent. Note that Y? is an 

n x  (n — r) matrix. Hence I  — A  A  will have a rank of n — r.
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A ppendix F

Essentially disjoint condition

From [39]

Lem m a 17.1.4. Let U and V  represent subspaces of Rmxn, then

(1) U and V  are essentially disjoint if and only if, for matrices U ^U  and V gV, the 

only solution to the matrix equation

U +  V =  0 (F.l)

is U =  V  =  0; and

(2) U and V  are essentially disjoint if and only if, for every non-null matrix XJGU 

and every non-null matrix V gF , U and V  are linearly independent.

We assumed that the process transfer function G{z~v) is equation (7.34) is full rank 

with proper and stable transfer functions. Hence the following claims can be made

(a) The vectors

other.

1

C
!

o
1 t

o

1 1

O

i

G1 Go 0

I

CN
O 

:
1

)

I

i-i 
.

e> 
:

I

5

i
o

:
i

, ... are all essentially disjoint to each
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(b) The matrices Lu =

Go 0 .. . 0 Gi

G\ Go - . 0
and

g 2

g 2 G\ .. . 0 g 3
are essentially disjoint.
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A ppendix G

Corollaries from [39]

(1) Corollary 17.5.2 Let A  represent an m  x n matrix and B an n x p matrix. 

Then,

rank(AB) =  rank(A) +  rank(B) — n +  rank (I — — A^A)] (G.l)

(2) Corollary 17.2.10 Let A  represent an m x n  matrix, B a n m x p  matrix. Then 

rank[(/ — A4J)#] =  rank (B) if and only if C(*4.) and C(B) are essentially disjoint.

(3) From chapter 18 Let 1Z represent an n x q matrix, S  an n x m  matrix, T  an 

m  x p matrix, and U a p x q matrix. Then,

rank(lZ + STU ) =  rank(7Z) +  rank(Q) +  rank{M ) +  rank{J\f)

+rank [(/ -  M M ])X Q ?y{I -  JsfiM)}

—rank{T) (G.2)

where

Sn  =  I - K l V )  T k  = I-V }1 Z \ X  = £nS T , y  = TU Tn ] 

M  =  X ( I - Q ^ Q ) ;  M = ( I - Q Q f) y

Refer to [39] for proofs of the above corollaries.
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A ppendix H

Scope for future work

The work treated in this thesis is derived from innovations form representation 

for multivariate linear systems and the subspace matrices are of the N4SID type 

obtained with least squares solution. Several subspace methodologies are available in 

the literature which use different numerical techniques such as CVA and PC A in their 

identification algorithms. It would be interesting to use subspace matrices obtained 

by different numerical techniques to extend the work presented in this thesis. More 

over, with appropriate modifications to the representation of the system, the work in 

this thesis can be extended to the case of non-linear systems, time-varying systems, 

and linear systems with special data and process conditions such as the presence 

of state noise, process input noise and correlated measured and/or unmeasured 

disturbances to the process.

Interactor matrices are used in some areas of process control apart from using it to 

obtain the multivariate MVC-benchmark as shown by [36, 42, 46]. The interactor 

free approach to control presented in chapter 7 has applications in such areas as 

multivariate recursive/adaptive control.

Time delays are considered as infinite zeros. For non-minimum phase (NMP) 

systems, the interactor should also include the NMP zeros. As shown in [42, 46], the 

interactor used in the NMP case is obtained by multiplying the interactor matrix
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corresponding to the time delays (infinite zeros), -Dm/, with the interactor matrix 

corresponding to the NMP zeros, Dn m p■ The interactor free multivariate MVC- 

benchmark methodology in chapter 7 is applicable for only minimum phase systems. 

For non-minimum phase systems the interactor ( /  — LuLu1) needs to be modified 

to account for the NMP zeros. This remains an issue open for research.

Fault detection and identification (FDI) is an emerging area of control research 

which, apart from detecting sensor faults and actuator faults, widely makes use 

of subspace methodologies to detect ‘parametric’ changes to the real systems over 

time. FDI methodologies typically involve recursively identifying the interested 

parameters and checking for any changes with statistical tests. In some FDI 

methodologies state space representation is used and the computations are quite 

involved for practical application on real systems. Since subspace representation 

is equivalent to state space representation, it would be interesting to verify if 

formulation of the FDI problem as a function of subspace matrices can simplify 

the computations involved.
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