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Abstract

Let A1 denote the first Weyl algebra over a field K of characteristic 0; that is, A1 is

generated over K by elements p, q that satisfy the relation pq − qp = 1. One can view

A1 as an algebra of differential operators by setting q = X, p = d/dX.

The basic questions which are addressed in this paper is what are all the maximal

diagonalizable subalgebras of A1 and if K is not algebraically closed, what conditions

should be placed on the element x ∈ A1 so that x is diagonalizable on A1. Thus, we

use these diagonalizable elements to verify the Jacobian conjecture for n = 1.
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Chapter 1

Introduction

Let K be a field of characteristic 0. The first Weyl algebra A1 is an associative algebra

generated over the field K by elements p and q which satisfy the defining relation

pq − qp = 1. The Weyl algebra A1 is a simple, Noetherian domain of Gelfand-Kirillov

dimension 2. It is canonically isomorphic to the ring of differential operators K[X][ d
dX

]

with coefficients from the polynomial algebra K[X]. The n-th Weyl algebra An is the

tensor product A1 ⊗K A1 ⊗K A1 ⊗K ...⊗K A1 of n copies of the first Weyl algebra.

Before 1968, not much was known about the first Weyl algebra: the commutativity

of the centralizer C(x) of an arbitrary nonzero element x of the first Weyl algebra

had been proved by Amitsur [A] (see the paper of Goodearl [G] for generalization),

the global dimension of the first Weyl algebra, which is 1, had been calculated by

Rinehart[R], and Dixmier had proved that each derivation of the Weyl algebra is an

inner derivation [D1]. After 1968, more progress was made in the study of the higher

Weyl algebras An, n ≥ 2, due to new techniques associated with the Gelfand-Kirillov

dimension, introduced by Gelfand and Kirillov [GK1, GK2] that were created at that

time. For more details, the interested reader is referred to the following books [BJ,

BA, GW, KL, MR].

The importance of the Weyl algebra has grown steadily in the last 30 years; The

work on noncommutative Noetherian ring that followed A. Goldie’s famous theorems

on quotient rings of Noetherian rings and the fact that the Weyl algebra is the sim-

plest after finite-dimensional ones ring of differential operators has only added to its

importance. In the fundamental paper [D2], Dixmier started a systematic study of the

structure of A1. The key idea of [D2] is that one can study properties of elements via
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properties of the corresponding inner derivations. So, for an arbitrary element x of the

Weyl algebra A1, one can attach the inner derivation ad(x) of the algebra A1. The

main result of [D2] is the description of the automorphism group of A1: Let λ ∈ K,

and n be an integer ≥ 0. The derivation 4 = ad( λ
n+1

pn+1) on A1 is locally nilpotent,

so that Φn,λ = exp4 is a well defined automorphism of A1 with Φn,λ(p) = p and

Φn,λ(q) = q + λpn. He also defined the automorphism Φ′
n,λ of A1 such that Φ′

n,λ(q) = q

and Φ′
n,λ(p) = p + λqn. Then he showed that the automorphism group G of A1 is

generated by Φn,λ and Φ′
n,λ for all integers n ≥ 0 and λ ∈ K.

Let V be a finite-dimensional linear space over a field K and T be a linear trans-

formation of V . The transformation T is called diagonalizable if there exist a basis of

V that consists of eigenvectors. We are interested in maximal diagonalizable subalge-

bras of A1. In Chapter 4, we show that the subalgebra Kpq + K is such an algebra

(see Theorem 4.5). Then, up to automorphisms of A1, Kpq + K is the only maximal

diagonalizable subalgebras of A1. But if K is not algebraically closed, we need more

conditions to restrict to the semisimple elements of A1 so that they are also diago-

nalizable in A1 (see Lemma 4.7). The solution to Problem 4.1 shows how to use the

semisimple elements to connect the Dixmier conjecture with the Jacobian conjecture

if K is algebraically closed. Using this, we can verify that the Jacobian conjecture for

n = 1 is true. The Jacobian conjecture is an old and interesting problem, that has

inspired a lot of great mathematics, but so far has been resistant to any attempt at

proving it, even if n = 2.
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Chapter 2

Properties of the Weyl algebra

In this chapter, we will introduce the Weyl algebra. We begin with an account of the

history of the Weyl algebra and then describe the main structure of the Weyl algebra.

2.1 The history of the Weyl algebra

Interest in the Weyl algebra began when a number of people like Heisenberg, Dirac or

Born(1882) were trying to develop the principles of quantum mechanics used to explain

the behavior of the atom, using dynamical variables that do not commute. One is

interested in polynomial expressions in the dynamical variables momentum, denoted by

p, and position, denoted by q. It is assumed that the variables satisfy the (normalized)

relation pq−qp = 1. This is what we now call the first Weyl algebra. The Weyl algebras

of higher index appear when one considers systems with several degrees of freedom.

Weyl’s pioneer book The theory of groups and quantum mechanics[WH] was perhaps

their first appearance in print. Then Littlewood (1903) [L] used the language of infinite

dimensional algebras to describe the objects. In his paper Littlewood established many

of the basic properties of the Weyl algebra. He showed that any element in the Weyl

algebra has a canonical form (Lemma 2.3) and that the algebra is an integral domain

(Proposition 2.8). He also showed that the relation pq − qp = 1 is not compatible

with any other relation, or, as we would now say, the only proper ideal of this algebra

is zero (Proposition 2.9). Dixmier (1924) introduced the notation An for the algebra

that corresponds to the physicist’s system with n degrees of freedom. The name Weyl

algebra was used by Dixmier as the title of [D2]. He connected the Weyl algebra with
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the theory of Lie algebras, and in [D2], he described the automorphism group of the first

Weyl algebra. At the end of this paper, he listed six problems and some of them are still

open. Of course, the Weyl algebra is often used in the study of systems of differential

equations (in this context the theory is often called Algebraic Analysis). This approach

comes from people like Malgrange and Kashiwara (see for example [M, K, KK]) and,

at the same time, from Bernstein (see [B]).

2.2 Basic properties of An

The Weyl algebra is a ring of operators on a vector space of infinite dimension. Let

K[X] be the ring of polynomials K[X1, ..., Xn] in n commuting indeterminates over

K. The ring K[X] is a vector space of infinite dimension over K. Its algebra of linear

operators is denoted by EndK(K[X]), and we define the operators pi on K[X] by

pi · f(X) = ∂f/∂Xi, qi · f(X) = Xif(X), ∀ f ∈ K[X].

Actually, the Weyl algebra is defined as a subalgebra of EndK(K[X]), then we

introduce the definition of An:

Definition 2.1 The n-th Weyl algebra An is the K-subalgebra of EndK(K[X]) gen-

erated by the elements p1, ..., pn and q1, ..., qn.

Consider the operator pi · qi and apply it to a polynomial f ∈ k[X]. Using the rule

for the differentiation of a product, we get pi · qi(f) = Xi∂f/∂Xi + f. In other words,

pi · qi = qi · pi + 1

where 1 stands for the identity operator. It is more convenient to rewrite the formula

using commutators. If x, y ∈ An, then their commutator is defined as [x, y] = x·y−y ·x.

The formula above becomes [pi, qi] = 1. Similar calculations allow us to obtain formulae

for the commutators of the other generators of An. These are summed up below:

[pi, qj] = δij,
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[pi, pj] = [qi.qj] = 0,

where 1 ≤ i, j ≤ n. (δij is the Kronecker delta symbol: it equals 1 if i = j and zero

otherwise)

Remark 2.2 From this definition of An, it is easy to see that An
∼= K[X1, ..., X2n]/J

where K[X1, ..., X2n] is a free algebra, and J is the two-sided ideal of K[X1, ..., X2n]

generated by the elements [Xi+n, Xi] − 1 (i = 1, ..., n,) and [Xi, Xj] (j 6= i + n and

1 ≤ i, j ≤ 2n). Then this implies that An
∼= A1⊗K A1⊗K A1⊗K ...⊗K A1. That is the

definition we mentioned in the introduction.

We now construct a basis for the Weyl algebra as a K-vector space. It is easier to

describe the basis if we use a multi-index notation. A multi-index α is an element of

Nn (0 ∈ N), say α = (α1, ..., αn). By pα we mean the monomial pα1
1 ...pαn

n and likewise

qα = qα1
1 ...qαn

n . The degree of this monomial is the length |α| = α1 + ... + αn.

Remark 2.3 We have

pαi
i q

βj

j =

min{αi,βj}∑

k=0

αi(αi − 1) · · · (αi − k + 1)βj(βj − 1) · · · (βj − k + 1)

k!
q

βj−k
j pαi−k

i

Lemma 2.4 The elements {pαqβ: α, β ∈ Nn} constitute a basis of An as a vector

space over K.

Proof. See [C] Proposition 2.1. ¤
This basis is known as the canonical basis. If an element of An is written as a linear

combination of this basis then we say that it is in canonical form.

The degree of an operator of An behaves like the degree of a polynomial. The

differences are accounted for by the noncommutativity of An.

Definition 2.5 Let a ∈ An. The degree of a is the largest length of the multi-indices

(i, j) ∈ Nn ×Nn for which piqj appears with non-zero coefficient in the canonical form

of a. It is denoted by deg(a) (deg(0) := −∞).
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For example: the degree of 3p2
1q2 + p3

1p
2
2q

4
1q2 is 10.

Lemma 2.6 For a, b ∈ An, we have

• deg(ab) = deg(a) + deg(b),

• deg(a + b) ≤ max{deg(a), deg(b)},
• deg[a, b] ≤ deg(a) + deg(b)− 2.

For more details and the proof of these lemmas, see [C] Chapters 1 and 2.

As in the case of polynomial rings over a field, Lemma 2.6 may be used to prove

the following result.

Proposition 2.7 The Weyl algebra An is a domain.

Proof. Let a, b ∈ An. If ab = 0, then deg(ab) = deg(0) = −∞. Then

deg(a) + deg(b) = −∞.

So either deg(a) or deg(b) is −∞, thus either a or b is 0. ¤
If we are familiar with commutative rings, we may find An very peculiar. Com-

mutative rings have many two-sided ideals, but not so An. A ring whose only proper

two-sided ideal is zero is called simple. A commutative simple ring must be a field, but

this is not true of noncommutative rings. The Weyl algebra is a simple ring, but it is

very far from being even a division ring.

Proposition 2.8 An is a simple algebra with centre K. In particular, every endomor-

phism of An is injective and there are no non-trivial two-sided ideals.

Proof. Let I be a non-zero two-sided ideal of An. Choose a 6= 0 of smallest degree in I.

If deg(a) = 0, then a ∈ K. Then I = An, since An ·a ⊆ I. Now assume deg(a) = t > 0.

Suppose that (i, j) is a multi-index of length t. If piqj is a summand of a with non-zero

coefficient and is 6= 0, then [qs, p
iqj] 6= 0, since [qs, ps] = −1. Hence [qs, a] 6= 0. So

deg[qs, a] ≤ t − 1, by Lemma 2.6. Since I is a two-sided ideal of An, it follows that
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[qs, a] ∈ I. But this contradicts the minimality of a. Thus j = (0, ..., 0). Since t > 0,

we have is 6= 0, for some s = 1, 2, ..., n. Hence [ps, a] is a non-zero element of I of degree

s− 1, and again we have a contradiction. ¤

Definition 2.9 The filtration of An is the increasing sequence F of vector subspaces

Fi of An:

Fi =
{∑

kαβpαqβ such that |α|+ |β| ≤ i for i ∈ Z.
}

Clearly, the filtration satisfies the following properties:

• ⋃
i≥0 Fi = An,

• For every i, j ≥ 0, FiFj ⊂ Fi+j.

In addition, Fi = {0} if i < 0, and F0 = K. Furthermore all Fi have finite

dimension. From the filtration we can define the corresponding graded algebra grF (An),

grF (An) =
⊕
i≥0

F (i) =
⊕
i≥0

Fi

Fi−1

.

Moreover, grF (A1) ∼= K[X1, X2].

The Weyl algebra An is not a left principal ideal ring either. For example, the left

ideal generated by p1, p2 in A2 is not principal. However, every left ideal of An can be

generated by two elements, the proof of which may be found in the original paper of

[S].

2.3 Some useful results about A1

Now we turn our attention to the main focus of this thesis, the first Weyl algebra A1.

We will dispense with the subscripts for the generators of A1, and write them simply

as p and q. Here we will discuss some useful properties and results of A1.
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We have introduced the basis of An above. Now we give the formula of the multi-

plication of the basis elements in A1:

(piqj)(pkql) = pi+kqj+l + jkpi+k−1qj+l−1 +
1

2!
j(j − 1)k(k − 1)pi+k−2pj+l−2 +

+
1

3!
j(j − 1)(j − 2)k(k − 1)(k − 2)pi+k−3qj+l−3 + · · ·

=

min{j,k}∑
t=0

1

t!


 j

t





 k

t


 pi+k−tqj+l−t

.

Remark 2.10 We have

(pq)p = p(qp− pq) + p2q = −p + p2q = p(pq − 1).

Then, if f ∈ K[T ],

f(pq)p = pf(pq − 1),

and by induction, if n is an integer ≥ 0,

f(pq)pn = pnf(pq − n).

Similarly

qnf(pq) = f(pq − n)qn.

In particular,

pnqn = pn−1(pq)qn−1 = pn−1qn−1(pq + n− 1)

and, by repeating the above, we obtain,

pnqn = pq(pq + 1)(pq + 2) · · · (pq + n− 1)

Definition 2.11 Let x be an element of the Weyl algebra A1. Its centralizer is defined

as C(x) = {y ∈ A1 | xy = yx}

The centralizer plays a very important role: it connects many of the classifications

of elements in A1 (see Section 3.2). Now we consider some nice properties of the

centralizers of non-scalar elements of A1.
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Theorem 2.12 ([A]) Let x ∈ A1 −K. The centralizer C(x) is a commutative subal-

gebra of A1 which is a finitely generated free K[x]-module.

Before proving Theorem 2.12, we consider A1 as the ring of all differential polynomials

in the variable p with coefficients in K[q], i.e., any element in A1 is of the form x =

x(p) = α0 +α1p+ ...+αnp
n where αi ∈ K[q] with multiplication defined by the relation

pa = ap + a′ for a ∈ K[q]. Here it suffices to prove the theorem for n ≥ 1, since if

n = 0, then C(x) = K[x] which is a polynomial ring. Here we define the order of x as

the exponent of a non-zero term with the highest exponent. Clearly, the order is well

defined. Before proving the theorem, we introduce a definition: for the largest n such

that αn 6= 0, αn is called the leading coefficient of x. We shall use the following two

lemmas.

Lemma 2.13 ([F], 10.1) If αn, βn are respectively the leading coefficients of two poly-

nomials f(p), g(p) of order m which commute with x then αm = cβm for some c ∈ K.

Proof. Let order(x) = n and x = τ0 + τ1p + ... + τnp
n where τi ∈ K[q], n ≥ 1. Since

x(p)f(p) = f(p)x(p), then by comparing the coefficient of pn+m−1 on both sides we

obtain:

mτ ′nαm + τnαm−1 + τn−1αm = nα′mτn + αmτn−1 + αm−1τn,

Thus, the leading coefficient αm satisfies the homogeneous linear equation: mτ ′nαm −
nα′mτn = 0. Similarly, the leading coefficient βm of g(p) satisfies the same equation and,

therefore αm = cβm for some nonzero constant c. ¤

Lemma 2.14 ([F], 10.2) The set of elements in C(x) of order ≤ m is a finite di-

mensional vector space over K.

Proof. This follows immediately from Lemma 2.13, by induction on the order m. ¤
We proceed now with the proof of Theorem 2.12:

We first show that C(x) is finitely generated: Let Zx = {z ∈ Z| z = order(y) for y ∈
C(x)}. Since C(x) is a ring and order(fg) = order(f) + order(g), it follows that Zx
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is closed under addition. Let Z̄x = {z̄ ∈ Z/nZ| z ∈ Zx}. Then Z̄x is a subgroup of

the additive cyclic group of all residue classes mod n, so Z̄x is cyclic of order t and

t is a divisor of n. Let 0̄ = z̄1, ..., z̄t be the t classes mod n of Z̄x and let zi be the

minimal nonnegative integer of its class z̄i. Choose fi ∈ C(x) to be a polynomial of

order zi and clearly we can choose f1 = 1. Such fi’s exist, since Zx is closed under

addition. Now it suffices to show that these fi are free generators of C(x) over K[x].

Let f1g1 + · · · + ftgt = 0 for some polynomials gi ∈ K[x]. If gj 6= 0 for some j, then

order(fkgk) = order(fjgj) for some k 6= j. But

order(fkgk) ≡ order(fk) ≡ zk(mod n) 6≡ order(fjgj) ≡ zj(mod n).

We have a contradiction. Consequently gi = 0 for all i. It remains to show that any

element f ∈ C(x) can be written as f = f1g1 + · · · + ftgt for some gi ∈ K[x]. This is

obtained by induction on the order of f . If order(f) = 0, then f = c ∈ K by Lemma

2.13, and hence f = cf1. Let order(f) = m. Since m ∈ Zx, m = zi+sn for some integer

s ≥ 0, so order(f) = order(fix
s). Then by Lemma 2.13, g = f−cfix

s ∈ C(x) for some

constant c, and order(g) < order(f). Thus, by induction f − cfix
s = f1g1 + · · ·ftgt.

We turn now to prove that C(x) is commutative. Let f ∈ C(x) be a polynomial

whose residue class of order(f) mod n generates the cyclic group Z̄x. Then the set of

all orders of the polynomials of the form

H(f, x) = y0 + fy1 + · · ·+ f t−1yt−1, yi ∈ K[x],

contains all but finitely many integers of Zx (t is the order of Z̄x). So we can assume

this contain all integers z ∈ Zx for which z ≥ r, for some fixed r. Hence any h ∈ C(x)

can be written in the form h = H0(f, x)+h0, where h0 ∈ C(x) and order(h0) ≤ r. From

Lemma 2.14, we know the set of all polynomials h0 is finite dimensional, we say the

dimension is l. Let xλh = Hλ(f, x) + hλ, where λ = 0, 1, ..., l and order(hλ) ≤ r. The

polynomials hλ are K-dependent, so Σkλhλ = 0, for kλ ∈ K where not all kλ = 0. This

yield that (
∑

kλx
λ)h =

∑
kλHλ(f, x). This proves that for every h ∈ C(x) there exist

H(f, x) and K(x) (K(x) 6= 0) with constant coefficients such that K(x)h = H(f, x).
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Then the set of all polynomials H(f, x) commute with each other, and we know the

polynomials of C(x) commute with the polynomial of K[x], so if Ki(x)hi = Hi(f, x)

for hi ∈ C(x) i = 1, 2, then

K1(x)K2(x)h1h2 = (K1h1)(K2h2) = H1H2 = H2H1 = (K2h2)(K1h1) = K2K1h2h1.

Since A1 is domain by Prop 2.6, then h1h2 = h2h1. ¤
From this theorem, we obtain the useful corollaries about the centralizer C(x) stated

below.

Corollary 2.15 ([D2], 4.3) Let x ∈ A1 −K. C(x) is a maximal commutative subal-

gebra in A1, and any maximal commutative subalgebra is the centralizer of each of its

non-scalar elements.

Proof. Clearly, C(x) is a commutative subalgebra, so we just need to show it is maximal.

Let y ∈ A1 such that y commutes with C(x). Then y commutes with x, and so

y ∈ C(x).

Suppose B is any maximal commutative subalgebra in A1. Clearly, B 6= K. So there

is x ∈ B −K such that B ⊆ C(x). By maximality, B = C(x). ¤

Definition 2.16 Let B be a subalgebra of A1. The centre of B denoted Z(B) is

defined as Z(B) = {y ∈ A1 | xy = yx for all x ∈ B}.

Corollary 2.17 ([D2], 4.4) Let B be a non-scalar subalgebra of A1, and B′ = Z(B).

(1) If B is not commutative, then B′ = K.

(2) If B is commutative, then B′ is a maximal commutative subalgebra in A1.

Proof. (1) Suppose B′ 6= K. There exists a non-scalar element x in B′. Then xy = yx

for all y ∈ B, thus B ⊆ C(y) and so B is commutative. Contradiction.

(2) Suppose B is commutative, then B ⊆ B′. Let B′′ = Z(B′). Any y ∈ B′′ commutes

with B, so y ∈ B′ and hence B′′ ⊆ B′. Since B 6= K, B′ is commutative by Lemma 2.13.

Then B′ ⊆ B′′ and hence B′ = B′′. Thus B′ is a maximal commutative subalgebra in

A1. ¤
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Remark 2.18 B is maximal commutative. ⇔ Z(B) = B.

Corollary 2.19 ([D2], 4.5) Let x, y ∈ A1 −K. xy = yx ⇔ C(x) = C(y).

Proof. Follows from Corollary 2.15. ¤

Corollary 2.20 ([D2], 4.6) Let x, y ∈ A1 −K. xy 6= yx ⇔ C(x) ∩ C(y) = K.

Proof. (⇒) Suppose C(x)∩C(y) 6= K. If we have a non-scalar element z ∈ C(x)∩C(y),

then C(x) = C(z) = C(y).

(⇐) This follows from Corollary 2.15. ¤
The next proposition describes certain elements in A1 and what their centralizer

look like.

Proposition 2.21 ([D2], 5.3) Let i, j be positive integers such that i ≥ j. Let d =

gcd(i, j), i = i′d and j = j′d. Then,

(1) C(p) = K[p], C(q) = K[q].

(2) C(pn) = K[p], C(qn) = K[q] for every positive integer n.

(3) If i = j, then C(piqj) = K[pq].

(4) If i 6= j and i′ 6= j′ + 1, then C(piqj) = K[piqj].

(5) If i′ = j′ + 1, then

piqj = (p(pq + d− 1)(pq + 2d− 1) · · · (pq + j′d− 1))d and

C(piqj) = K[p(pq + d− 1)(pq + 2d− 1) · · · (pq + j′d− 1)]

Proof. See [D2] Lemma 5.3. ¤
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Chapter 3

Automorphisms of A1

In this chapter we will describe what the automorphism group of A1 looks like. In 2008,

Belov-Kanel and Kontsevich [BK1] conjectured that the automorphism group of An(C)

is isomorphic to the group of the polynomial symplectomorphisms of a 2n-dimensional

affine space

Aut(An(C)) ' Aut(Pn(C)),

where Pn(C) is the Poisson algebra over C which is the usual polynomial algebra

C[x1, ..., x2n] endowed with the Poisson bracket:

{xi, xj} = ωij, 1 ≤ i, j ≤ 2n,

where (ωij)1≤i,j≤2n is the standard skew-symmetric matrix:

ω = δi,n+j − δn+i,j.

3.1 Morphisms of A1

Since A1 is non-commutative, when we give it the structure of a Lie algebra, it has

many non-trivial Lie algebra properties. In this section, we consider A1 as a Lie algebra.

We will construct the automorphisms of the Lie algebra A1. The following definition

should come as no surprise.

Remark 3.1 A linear transformation φ: L → L′ (L,L′ Lie algebras over K) is called a

homomorphism if φ([x, y]) = [φ(x), φ(y)], for all x, y ∈ L. Also, φ is called a monomor-

phism if Ker φ = 0, an epimorphism if Im φ = L′, and an isomorphism if it is both a
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monomorphism and an epimorphism. An automorphism of L is an isomorphism of L

onto itself. We write gl(V ) for End(V ) viewed as a Lie algebra and call it the general

linear algebra (because it is closely associated with the general linear group GL(V )

consisting of all invertible endomorphisms of V ), where V is a finite dimensional vector

space over K. Any subalgebra of a Lie algebra gl(V ) is called a linear Lie algebra.

Definition 3.2 A representation of a Lie algebra L is a homomorphism φ: L → gl(V )

(V is a vector space over K). The adjoint representation ad: L → gl(L) sends x to

ad(x), where ad(x)(y) = [x, y].

It is clear that ad is a linear transformation and preserves the bracket operation. We

calculate:

[ad(x), ad(y)](z) = ad(x)ad(y)(z)− ad(y)ad(x)(z)

= ad(x)([y, z])− ad(y)([x, z])

= [x, [y, z]]− [y, [x, z]]

= [x, [y, z]] + [[x, z], y]

= [[x, y], z]

= ad[x, y](z)

The kernel of ad consists of all x ∈ L for which ad(x) = 0, i.e., for which [x, y] = 0 for

all y ∈ L. So Ker ad = Z(L) (the centre of L). We now consider L as the first Weyl

algebra A1.

Remark 3.3 ad(x) is a derivation of A1, i.e., ad(x)(yz) = y(ad(x)(z)) + (ad(x)(y))z.

Since

[x, yz] = xyz − yzx = y(xz − zx) + (xy − yx)z = y[x, z] + [x, y]z

Remark 3.4 Suppose x ∈ L is an element for which ad(x) is nilpotent, i.e., adn(x) =

ad(x)n = 0 for some n > 0. Then the usual exponential power series for a linear

transformation over K̄ (the algebraic closure of K) makes sense over K, because it has
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only finitely many terms: exp(ad(x)) = 1 + adx + (adx)2

2!
+ (adx)3

3!
+ · · · + (adx)n−1

(n−1)!
. We

claim that exp(ad(x)) ∈ Aut(L). For this, we use the familiar Leibniz rule:

adn(x)

n!
(yz) =

n∑
i=0

(
adi(x)(y)

i!
)(

adn−i(x)(z)

(n− i)!
).

Then we have:

exp(ad(x))(y)exp(ad(x))(z) = (
k−1∑
i=0

(
adi(x)(y)

i!
)(

k−1∑
j=0

(
adj(x)(z)

j!
)

=
2k−2∑
t=0

(
t∑

i=0

(
adi(x)(y)

i!
)(

adn−i(x)(z)

(t− i)!
))

=
2k−2∑
t=0

adt(x)(yz)

t!
(Leibniz rule)

=
k−1∑
t=0

adt(x)(yz)

t!
(adn(x) = 0)

= exp(ad(x))(yz)

Therefore, exp(ad(x)) is invertible with inverse exp(−ad(x)).

Here we will give the key definition of this paper.

Definition 3.5 (1) (V a finite dimensional K-vector space) Any x ∈ End(V ) is called

semisimple if the roots of its minimal polynomial over K are all distinct.

(2) (V an infinite dimensional K-vector space) Let x ∈ End(V ). Let F (x) = {v ∈
V | dimVv < ∞} where Vv =

∑
n≥0 Kxn(v) (n ∈ Z). We say that x is semisimple if

• F (x) = V and

• x|Vv is semisimple for all v ∈ V.

Moreover if K is algebraically closed, x is semisimple if and only if x is diagonaliz-

able.

For more information about Lie algebras, the interested reader is referred to [HU].
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3.2 Classification of elements in A1 and the Dixmier

partition

Next we will recall the partition of A1 into different classes. The elements in different

classes have different properties. Later we will find a relation among different classes

(Refer to [D2] 6.1).

Let Ā1 be the algebra A1 ⊗K K̄. Let x ∈ A1 and let y ∈ Ā1. Set Vy :=
∑

n≥0 K(adn(x))y and put F (x; A1) := {y ∈ A1 | dimVy < +∞}, and F (x; Ā1) :=

{y ∈ Ā1 | dimVy < +∞}, then it follows that F (x; Ā1) = F (x; A1) ⊗K K̄. Let λ ∈ K̄

and let F (x, λ; Ā1) := {y ∈ Ā1 | (adĀ1
(x) − λ)ny = 0, for some positive integer n}.

Now we have,

F (x; Ā1) =
⊕

λ∈K̄

F (x, λ; Ā1).

Let N(x) = N(x; A1) := {y ∈ A1 | adn(x)(y) = 0 for some positive integer n} =

F (x, 0; A1), and D(x, λ; Ā1) := {y ∈ Ā1 | adĀ1
(x)(y) = λy}. Also D(x, λ; Ā1) ⊂

F (x, λ; Ā1) and

F (x, λ; Ā1) 6= 0 ⇔ D(x, λ; Ā1) 6= 0.

Let D(x; Ā1) :=
⊕

λ∈K̄ D(x, λ; Ā1), and D(x) = D(x,A1) = D(x; Ā1) ∩ A1.

It is immediate that N(x) ∩D(x) = C(x).

We will state some useful results about F (x), N(x) and D(x) for some x ∈ A1.

Theorem 3.6 ([D2], 6.5) Let λ be a non-zero element in K̄. Let x ∈ Ā1. Then

D(x, λ) = F (x, λ).

Proof. See [D2] Lemma 6.5. ¤

Corollary 3.7 ([D2], 6.6) Let x ∈ A1, then either F (x) = D(x) or F (x) = N(x).

Proof. We could suppose K = K̄, then

F (x) =
∑

λ∈K

F (x, λ) = N(x) +
∑

λ∈K,λ 6=0

D(x, λ) = N(x) + D(x).
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Suppose F (x) 6= N(x) and F (x) 6= D(x). Then there exist a non-zero λ ∈ K, a non-zero

y ∈ D(x, λ), and a z ∈ A1 such that ad(x)(z) 6= 0 and ad2(x)(z) = 0. Then

(ad(x)− λ)(yz) = ad(x)(yz)− λyz

= y(ad(x)(z)) + (ad(x)(y))z − λyz

= y(ad(x)(z)) + λyz − λyz

= y(ad(x)(z)) 6= 0,

and similarly

(ad(x)− λ)2(yz) = y(ad2(x)(z)) = 0.

Thus, F (x, λ) 6= D(x, λ) which contradicts Theorem 3.6. ¤

Theorem 3.8 (Dixmier partition) The set A1 \K is a disjoint union of the following

non-empty subsets.

∆1 = {x ∈ A1 \K : D(x) = C(x), N(x) 6= C(x), N(x) = A1}

∆2 = {x ∈ A1 \K : D(x) = C(x), N(x) 6= C(x), N(x) 6= A1}

∆3 = {x ∈ A1 \K : D(x) 6= C(x), N(x) = C(x), D(x) = A1}

∆4 = {x ∈ A1 \K : D(x) 6= C(x), N(x) = C(x), D(x) 6= A1}

∆5 = {x ∈ A1 \K : D(x) = C(x), N(x) = C(x), C(x) 6= A1}

Elements of ∆1 are locally nilpotent and elements of ∆3 are semisimple.

3.3 The Automorphism Group of A1

What is the automorphism group of A1? Dixmier answered this question in [D2]. We

will summarize some of the key results of this paper. Let n be an integer ≥ 0 and let

λ ∈ K. In the introduction, we introduced two endomorphisms Φn,λ and Φ′
n,λ of A1 such

that Φn,λ(p) = p, Φn,λ(q) = q + λpn and Φ′
n,λ(q) = q, Φ′

n,λ(p) = p + λqn. By Remark
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3.4, we know that Φn,λ and Φ′
n,λ are automorphisms of A1. Let G =< Φn,λ, Φ

′
n,λ| n ∈

Z+, λ ∈ K >. We will prove that G = Aut(A1) (see Theorem 3.16).

We now introduce a new definition to prove the main theorem: Theorem 3.16. Let

x =
∑

αijp
iqj ∈ A1, the set E(x) consists of pairs (i, j) such that αij 6= 0. Let t, s be

real numbers, then we set

χt,s(x) = sup
(i,j)∈E(x)

(ti + sj),

(we agree that χt,s(0) = −∞). Define the set E(x, t, s) ⊆ E(x) as the pairs (i, j) ∈ E(x)

such that ti + sj = χt,s(x). The polynomial
∑

(i,j)∈E(x,t,s) αijX
iY j is called the (t, s)-

associated polynomial of x.

Lemma 3.9 ([D2], 7.2) Let x ∈ A1. Consider that F (x) is finitely generated as

C(x)-module. Then F (x) = C(x).

Proof. Refer to [D2] Lemma 7.2. ¤

Lemma 3.10 ([D2], 7.3) Let t, s be positive integers. Let x ∈ A1, y ∈ F (x), υ =

χt,s(x), ω = χt,s(y), and f and g be the (t, s)-associative polynomials of x and y re-

spectively. We suppose that υ > t+ s and that f not is a monomial. Then we have the

following cases:

(a) fω is proportional to gυ;

(b) s > t, s is a multiple of t, and f(X,Y ) has the form λXm(Xs/t + µY )n), where

λ, µ ∈ K and m,n are integers ≥ 0;

(c) t > s, t is a multiple of s, and f(X,Y ) has the form λY m(Y s/t + µX)n), where

λ, µ ∈ K and m,n are integers ≥ 0;

(d) t = s and f(X,Y ) has the form λ(µX+νY )m(µ′X+ν ′Y )n), where λ, µ, ν, µ′, ν ′ ∈
K and m,n are integers ≥ 0.

Proof. Refer to [D2] Lemma 7.3. ¤
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Proposition 3.11 ([D2], 7.4) Let t, s be positive integers, x ∈ A1, υ = χt,s(x), and

f the (t, s)-associative polynomials of x. We suppose that:

1. υ > t + s;

2. f is not a monomial;

3. we are not in one of cases (b), (c), (d) in Lemma 3.9.

Then F (x) = C(x).

Proof. Let Ω = {ω ∈ Z | ∃ y ∈ F (x) such that χt,s(y) = ω}. Then Ω + Ω ⊆ Ω and, in

particular, for each ω ∈ Ω the set {0, ω, 2ω, ...} ⊂ Ω. Let Ω′ be the canonical image of

Ω over Z/υZ, and since Ω′ is finite, let Ω′ = {0, ω1, ω2, ..., ωr}. So the elements of Ω

are:

0, υ, 2υ, 3υ, ...;

ω1, ω1 + υ, ω1 + 2υ, ω1 + 3υ, ...;
...

ωr, ωr + υ, ωr + 2υ, ωr + 3υ, ...

Let yi ∈ F (x) such that χt,s(yi) = ωi. It suffices to show that ∀y ∈ F (x), y ∈
K[x]y0 + K[x]y1 + ... + K[x]yr. It is obvious for χt,s(y) = 0. Now assume it is true

for y with χt,s < n. Suppose n = ωi + mυ, then χt,s(x
myi) = n. Let g, h be the

(t,s)-associative polynomial of y, xmyi respectively. By Lemma 3.10, gυ and hυ are

proportional to fn, thus g and h are proportional. Hence there exists ζ ∈ K such that

χt,s(y − ζxmyi) < n. We have y − ζxmyi ∈ F (x) and y − ζxmyi ∈ K[x]y0 + K[x]y1 +

... + K[x]yr. So F (x) = Σik[x]yi. By Lemma 3.9, we have F (x) = C(x). ¤
For example: let x = p2 + q3 ∈ A1. We have χ3,2(x) = 6 and the (3, 2)-associative

polynomial of x is X2 + Y 3. Therefore, F (x) = C(x).

Remark 3.12 Let V be the vector space Kp + Kq. Any element of the special linear

group SL(V ) of V can be extended uniquely to an automorphism of A1. Let G′ ⊂ G

be the subgroup of Aut(A1) generated by Φ1,λ and Φ′
1.λ, for λ ∈ K. G′ ∼= SL(V ), since

Φ1,λ | V and Φ′
1.λ | V generate the group SL(V ). In particular, there is an element Ψ

of G′ such that Ψ(p) = q, Ψ(q) = −p. (Ψ = Φ′
1,1 ◦ Φ1,−1 ◦ Φ′

1,1)
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Now we want to consider what kind of elements x of A1 satisfy N(x) = A1 or

D(x) = A1.

Lemma 3.13 ([D2], 8.3 and 8.4) (1) If x ∈ K[p], then N(x) = A1.

(2) If x = λp2 + µq2 + ν, where λ, µ, ν ∈ K, λ 6= 0, µ 6= 0, then D(x) = A1.

Proof. (1) We have p ∈ N(x) and [x, q] ∈ K[p], so q ∈ A1. (2) We can suppose K = K̄.

Since x = (
√

λp + i
√

µq)(
√

λq − i
√

µp) + ν, we have m = 1√
8i
√

λµ




1
2
√

λ
1

2
√

λ

1
2i
√

µ
1

−2i
√

µ


 ∈

SL(V ) such that 1√
8i
√

λµ




1
2
√

λ
1

2
√

λ

1
2i
√

µ
1

−2i
√

µ






√

λp + i
√

µq
√

λp− i
√

µq


 = 1√

8i
√

λµ


 p

q


 .

This means that there exists Φ ∈ G′ such that Φ(x) = pq + ξ where ξ ∈ K. In the

introduction, we observed that [pq, pαqβ] = (α− β)pαqβ, so D(x) = A1. ¤
The following theorem is the key theorem for the proof our goal for this chapter.

Theorem 3.14 ([D2], 8.8) Let x ∈ A1, such that F (x) = A1. Then there exists

Φ ∈ G such that either Φ(x) ∈ K[p] or Φ(x) has the form λp2 + µq2 + ν, where

λ, µ, ν ∈ K, λ 6= 0, µ 6= 0.

Before proving this theorem, we first state the following technical lemma.

Lemma 3.15 ([D2], 8.7) Let x = Σαijp
iqj ∈ A1. Let ρ be the smallest integer ≥ 0

such that αi0 = 0 for i > ρ. Let σ be the smallest integer ≥ 0 such that α0j = 0

for j > σ. We suppose there exists integer i0 ≥ 0, j0 ≥ 0 such that αi0j0 6= 0,

(i0, j0) 6= (1, 1), and σi0 + ρj0 > ρσ. Then F (x) 6= A1.

Proof. If i0 = 0, then ρj0 > ρσ, and so j0 > σ, which contradicts the definition of σ.

So i0 > 0 and j0 > 0. There exist irrational numbers t, s > 0 such that si0 + tj0 > tσ

and si0 + tj0 > ρs. Then there exist i′, j′ such that αi′j′ 6= 0 and si′ + tj′ = χs,t(x).

Then si′ + tj′ > tσ and si′ + tj′ > ρs. By a similar argument used to prove i0, j0 > 0,

we have i′ > 0 and j′ > 0. If i′ = j′ = 1, then s + t ≤ si0 + tj0 ≤ si′ + tj′ = s + t,
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and hence i0 = i′, j0 = j′. Therefore (i0, j0) = (i′, j′) = (1, 1). Contradiction. So i′ > 1

and j′ > 1. The (s, t)-associative polynomial f of x is αi′j′X
i′Y j′ . This is a monomial

since (i1, j1), (i2, j2) ∈ E(f). We have si1 + tj1 = si2 + tj2, so s(i1 − i2) = t(j1 − j2),

but s and t are linearly independent, so i1 = i2 and j1 = j2. Suppose i′ ≥ j′ and let

yn = adn(x)(p).

Claim: the (s, t)-associative polynomial g of yn is

βX1+n(i′−1)Y n(j′−1)

where β ∈ K, and β 6= 0. For n = 0, it is clear. Now assume it is true for n, then the

(s, t)-associative polynomial of yn+1 = [x, yn] is

∂f

∂X

∂g

∂Y
− ∂f

∂Y

∂g

∂X

= i′αi′j′X
i′−1Y j′n(j′ − 1)βXn(i′−1)Y n(j′−1)−1

−j′αi′j′X
i′Y j′−1(n(i′ − 1) + 1)βXn(i′−1)Y n(j′−1)

= (−j′ + nj′ − ni′)αi′j′βX i′+1+n(i′−1)−1Y j′+n(j′−1)−1

where −j′ + nj′ − ni′ ≤ −j′ 6= 0. Then

χs,t(yn) = s(1 + n(i′ − 1)) + t(n(j′ − 1)).

Since i′, j′ > 1, χs,t(yn) tends to ∞ as n tends to ∞. So p is not in F (x) and hence

F (x) 6= A1. If i′ ≤ j′, then q is not in F (Ψ(X)) and hence F (Ψ(X)) 6= A1. ¤

Now it is time to prove Theorem 3.14:

Let ρ, σ be the integers of Lemma 3.15. We prove it by induction on ρ + σ.

(i) If both ρ ≤ 2 and σ ≤ 2, then σi0 + ρj0 ≤ ρσ ≤ 4 and hence χσ,ρ ≤ 2. Then x

has the form

αp2 + 2βpq + γq2 + δp + εq + ζ (α, β, ..., ζ ∈ K).

If β2 − αγ = 0, then αp2 + 2βpq + γq2 = 1
γ
(βp + γq)2 + β. Thus there exists
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 β + 1/β −α

−γ β


 ∈ SL(V ) such that


 β + 1/β −α

−γ β





 βp + γq

0


 =


 p

0




and so there exists Φ ∈ G′ such that Φ1(x) = α′p2 + δ′p + ε′q + ζ ′. If ε′ = 0, then we

are done. If ε′ 6= 0, we assume ε′ = 1 so that

Φ2,−α′(Φ1(x)) = α′p2 + δ′p + q − α′p2 + ζ ′ = δ′p + q + ζ ′.

Thus Φ′
1,− 1

ζ′
◦ Φ2,−α′ ◦ Φ1 is the required automorphism.

If β2 − αγ 6= 0, then

Φ1,−β
γ
(x) = αp2 + 2βp(q − β

γ
p) + γ(q − β

γ
p)2 + δp + ε(q − β

γ
p) + ζ

= α′p2 + γ′q2 + δ′p + ε′q + ζ

where α′ 6= 0, γ′ 6= 0. Now we have

y = Φ
0,− ε′γ′−1

2

(Φ1,−β
γ
(x))

= α′p2 + δ′p + ζ ′ + γ′(q − 1

2
ε′γ′−1)2 + ε′(q − 1

2
ε′γ′−1)

= α′p2 + δ′p + γ′q2 + ζ ′′.

So Φ′
0,− δ′

2α′
◦ Φ

0,− ε′
2γ′
◦ Φ1,−β

γ
is the required automorphism in G.

(ii) If ρ is an arbitrary nonnegative integer, then using Ψ ∈ G′, we can assume

ρ ≥ σ. If σ ≤ 1, then we can write

x = α00 + α10p + ... + αρ0p
ρ + α01q + α11.

It is clear for ρ ≤ 1. Assume the thorem is true for ρ − 1. If α11 6= 0, we can assume

α11 = 1. Then

Φρ−1,−αρ0(x) = α00 + α10p + ... + αρ0p
ρ + α01(p− αρ0p

ρ−1) + p(q − αρ0p
ρ−1)

= α00 + α10p + ... + αρ−2,0p
ρ−2 − α01αrho0p

ρ−1 + α01q + pq
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and we are done by the induction hypothesis. If α11 = 0 and α01 6= 0, we can assume

α01 = 1. Then

Φρ,−αρ0(x) = α00 + α10p + ... + αρ0p
ρ + q − αρ0p

ρ

= α00 + α10p + ... + αρ−1,0p
ρ−1 + q

and again we are done by the induction hypothesis.

(iii) Now we suppose ρ > 2 and σ > 2, and we assume the thorem is true for

ρ + σ < n. We want to show it for ρ + σ = n. So suppose ρ ≥ σ ≥ 2 and ρ > 2, then

ρ + σ < ρσ. If (i, j) ∈ E(x), then by Lemma 3.15, either σi + ρj ≤ ρσ or i = j = 1, so

that σi + ρj = σ + ρ < ρσ. So χσ,ρ(x) = ρσ and the (σ, ρ)-associative polynomial of x

has the form

(∗) f(X,Y ) = αρ0X
ρ + ... + α0σY

σ where αρ0 6= 0, α0σ 6= 0

By Lemma 3.11, when t = ρ and s = σ, we see that we are in one of cases (b), (c) or

(d) of Lemma 3.10. As ρ ≥ σ, we are in either case (b) or (d). Suppose we have case

(b). Then ρ is a multiple of σ and f is proportional to (Xρ/σ + µY )σ, where µ ∈ K,

µ 6= 0. If we multiply x by a scalar, we can suppose

x = (pρ/σ + µq)σ +
∑

(i,j)∈E

αijp
iqj,

where σi + ρj < ρσ, when (i, j) ∈ E. Then

y = Φρ/σ,−1/µ(x) = µσqσ +
∑

(i,j)∈E

αijp
i(q − µ−1pρ/σ).

We have

χσ,ρ(q − µ−1pρ/σ) = ρ and χσ,ρ(p) = σ,

so

χσ,ρ(
∑

(i,j)∈E

αijp
i(q − µ−1pρ/σ)j) < ρσ.

Let σ1 = σ and ρ1 < ρ, then by the induction hypothesis, there exists Φ ∈ G such

that Φ(y) is as described in the theorem. Since Φ(y) = Φ ◦ Φρ/σ,−1/µ(x), the lemma
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holds for this case. Suppose x has the form (d). Then ρ = σ and f is proportional to

(X + µY )t(X + νY )ρ−t, where µ, ν ∈ K, and t is an integer such that 0 ≤ t ≤ r. If we

multiply x by a scalar, we suppose

x = (p + µq)t(p + νq)ρ−t +
∑

(i,j)∈E(x)

αijp
iqj,

where i+ j < ρ, when (i, j) ∈ E(x). We can assume t > 0, otherwise we could consider

x = (p + νq)(p + νq)ρ−1 +
∑

(i,j)∈E(x) αijp
iqj. Then

y = Φ1,−1/µ(x) = µtqt((1− νµ−1)p + νq)ρ−t +
∑

(i,j)∈E(x)

αijp
i(q − µ−1)j.

Let σ1 = σ = ρ and ρ1 < ρ, and use the same argument as in case (b). ¤
Now that all the preparation work is done, we will prove the main theorem of this

chapter.

Theorem 3.16 ([D2], 8.10) The automorphism group of A1 is generated by auto-

morphisms Φn,λ and Φ′
n,λ for all integers n ≥ 0 and λ ∈ K (Aut(A1) = G).

Proof. Let Θ be any automorphism of A1, we will show Θ ∈ G. We know N(p) = A1,

so that N(Θ(p)) = A1 and thus by Lemmas 3.13 and 3.14, we have Θ(p) ∈ K[p]. Since

p ∈ C(Θ(p)) = K[Θ(p)](Prop 2.21), we have Θ(p) = α + βp where α, β ∈ K. Then

1
β
Φ0,−α

β
(Θ(p)) = (α + βp + β(−α

β
)) 1

β
= p. So we can assume Θ(p) = p and thus

[p, Θ(q)− q] = Θ[p, q]− [p, q] = 1− 1 = 0.

Hence Θ(q) − q ∈ K[p] = C(p) and so Θ(q) ∈ q + K[p]. Thus, Θ is a composition of

automorphisms Φn,λ’s. ¤
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Chapter 4

Diagonalizable elements of A1

4.1 Maximal diagonalizable subalgebras of A1

In this section, we will talk about the maximal diagonalizable subalgebra of A1. In the

previous chapter, we studied the automorphism group of A1. If we can find a maxi-

mal diagonalizable subalgebra, then we can describe the other maximal diagonalizable

subalgebras.

Remark 4.1 Let L be a Lie algebra. A subalgebra T of L is called diagonalizable if

we can write L =
⊕

Lα, where Lα = {x ∈ L | [t, x] = α(t)x for all t ∈ T} (α is a

function T → K). A maximal diagonalizable subalgebra H of L is a diagonalizable

subalgebra that is not properly included in any other diagonalizable subalgebras.

Remark 4.2 Any diagonalizable subalgebra T of L is abelian. T =
⊕

(T ∩Lα), so we

can assume any element of T is an eigenvector of ad(T ). We will show ad(T )(x) = 0,

for all x ∈ T . Suppose, on the contrary, that [x, y] = ay (a 6= 0 ∈ K) for some nonzero

y ∈ T . Then [y, x] = −ay. Since x is an eigenvector of adT y, [y, x] = −ay = bx

(b ∈ K). If b 6= 0, then x = (−a/b)y and hence [x, y] = 0. Contradiction. So a = b = 0.

We now introduce some technical definitions.

Definition 4.3 A totally ordered set is a set S with a binary relation ≥ on it such

that the following hold for all a, b, c ∈ S:

• a ≥ a.

• If a ≥ b and b ≥ a, then a = b.
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• If a ≥ b and b ≥ c, then a ≥ c.

• Either a ≥ b or b ≥ a.

Definition 4.4 Let S be a set equipped with a total order ≥, and let Sn = S×· · ·×S

be the n− fold product of S. Then the lexicographic order ≥ on Sn is defined as follows:

If a = (a1, ..., an) ∈ Sn and b = (b1, ..., bn) ∈ Sn, then a ≥ b if a1 ≥ b1 or a1 = b1,

a2 = b2,..., ak = bk, and ak+1 ≥ bk+1 for some k = 1, 2, ..., n− 1.

For example: let S = N. (5, 1, 0) > (4, 9, 9) and (3, 3, 5) > (3, 3, 3).

Now we have

[pq, piqj] = pqpiqj − piqjpq = −ipiqj + pi+1qj+1 + jpiqj − pi+1qj+1 = (j − i)piqj.

From this we conclude the subalgebra Kpq+K is a maximal diagonalizable subalgebra

of A1.

Theorem 4.5 h = Kpq + K is a maximal commutative diagonalizable subalgebra of

A1.

Proof. Step (1): h is diagonalizable.

Let
∑

i,j kij piqj ∈ A1, where kij ∈ K, and let αpq + β ∈ h, where α, β ∈ K.

We have

[αpq + β,
∑
i,j

kij piqj] =
∑
i,j

kij α[pq, piqj] =
∑
i,j

α(j − i)kijp
iqj.

By lemma 2.4, we know {piqj : i, j ∈ Nn} is a basis of A1 and hence A1 has a basis of

eigenvectors.

Step (2): Any diagobalizable subalgebra of A1 containing h is in K[pq] .

Suppose h is not maximal, then there exits an h′ which is a commutative diago-

nalizable subalgebra of A1 properly containing h. First, we show that h′ is contained

in K[pq]. Clearly, [z, αpq] = 0 for all z ∈ h′ and αpq ∈ h. This implies z ∈ C[pq].

Therefore h′ ⊆ C[pq] = K[pq] (Prop 2.21).
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Step (3): Claim: For i 6= j, [(pq)n, piqj] = n(j − i)pi+n−1qj+n−1+ lower terms (by

lexicographical order).

For n=1, [pq, piqj] = (j − i)piqj

By induction, assume the claim is true for n, then

[(pq)n+1, piqj] = (pq)npqpiqj − piqjpq(pq)n

= (pq)n(pi+1qj+1 − ipiqj)− (pi+1qj+1 − jpiqj)(pq)n

= [(pq)n, pi+1qj+1]− i(pq)npiqj + jpiqj(pq)n

= n(j − i)pi+nqj+n − ipi+nqj+n + jpi+nqj+n + lower terms (by hypothesis)

= (n + 1)(j − i)pi+nqj+n + lower terms.

Step (4): show h′ = h.

Let b ∈ h′, we can write b =
∑

n αn(pq)n +αn0(pq)
n0 , where αn0(pq)

n0 is the leading

term. Since b is diagonalizable, there exists a basis {es} of A1 such that [b, es] = cses

for some cs ∈ K. We can write es = e + f where e =
∑

t βtp
tqt and f =

∑
i6=j βijp

iqj.

Let βi0j0p
i0qj0 be the leading term of f , where βi0j0 6= 0. Assume f 6= 0.

By step (3), we have

[b, es] = [b, e + f ] = [b, e] + [b, f ] = [b, f ]

= [
∑

n

αn(pq)n + αn0(pq)
n0 ,

∑
i,j

βijp
iqj + βi0j0p

i0qj0 ]

= βi0j0αn0n0(j0 − i0)p
i0+n0−1qj0+n0−1 + lower terms

= cses = cse + csf.

Since βi0j0αi0n0(j0 − i0) 6= 0, cs 6= 0. Suppose b is not in h, then the degree of the

leading term n0 is larger than 1 and therefore (i0 + n0 − 1) + (j0 + n0 − 1) > i0 + j0.

Therefore, βi0j0αi0n0(j0 − i0) is not in f . It follows that f = 0 and es = e ∈ C[pq].

So the basis {es} ∈ C[pq], and hence C[pq] = A1. But this is not possible, since for

example p ∈ A1\C[pq]. Contradiction. ¤
We now know many of the maximal commutative diagonalizable subalgebras, but

we want to know all such subalgebras of A1. We will consider two situations: (1) K is
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algebraically closed, (2) K is not algebraically closed.

Theorem 4.6 ([D2], 9.2) Let x ∈ A1 −K. Then the following are equivalent:

(1) x is semisimple,

(2) There exist an automorphism Φ of A1 such that Φ(x) has the form λp2 +µq2 +ν

where λ, µ, ν ∈ K, λ 6= 0,µ 6= 0,

Moreover, If K is algebraically closed, there exists Φ ∈ G′ such that Φ(x) = δpq + ζ

where δ, ζ ∈ K and δ 6= 0.

Proof. This result follows from Lemmas 3.13 and 3.14. ¤
From this theorem, we obtain that if K is algebraically closed then the subalge-

bra Kpq + K under the automorphism group G is the only maximal commutative

diagonalizable subalgebra of A1.

If K is not algebraically closed, the above statement is not ture. Hence we want

to know what conditions should be placed on λ and µ so that x = λp2 + µq2 + ν is

diagonalizable.

Lemma 4.7 Let x = λp2 +µq2 +ν where λ, µ, ν ∈ K, λ 6= 0 and µ 6= 0. If
√−µ

λ
∈ K,

then x is diagonalizable.

Proof. If
√−µ

λ
∈ K, then we can write x = λ(p−√−µ

λ
q)(p +

√−µ
λ
q).

Let M =


 1 −√−µ

λ

1
√−µ

λ


, so M ·


 p

q


 =


 P −√−µ

λ
q

p +
√−µ

λ
q


. Thus, detM = 2

√−µ
λ
.

Let M ′ =


 det−1M −√−µ

λ

det−1M
√−µ

λ



−1

then M ′ =




√−µ
λ

√−µ
λ

−1
2

√
−λ

µ
1
2

√
−λ

µ


 . Since detM ′=

1, hence M ′ ∈ SL(V ) and

M ′ ·

 P −√−µ

λ
q

p +
√−µ

λ
q


 =




√−µ
λ

√−µ
λ

−1
2

√
−λ

µ
1
2

√
−λ

µ


 ·


 P −√−µ

λ
q

p +
√−µ

λ
q


 =


 2

√−µ
λ
p

q


 .

So there exists Φ ∈ G′ such that Φ(x) = δpq + ζ, where δ 6= 0. ¤
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4.2 Semisimple elements of A1

Let K be an algebraically closed field. First, we consider the following problem:

Problem 4.1 (1) Suppose x ∈ A1 is semisimple and let Φ be any algebra endomor-

phism of A1. Is Φ(x) also semisimple?

(2) If Φ(x) is semisimple for all semisimple x, is Φ an automorphism of A1?

Actually, if true, this would show the Dixmier’s conjecture which says that any endo-

morphism of A1 is an automorphism(see [D2] Problem 11.1), but it has been shown

that if the Dixmier conjecture holds for An then the Jacobian conjecture holds ([C]

Theorem 4.2). We don’t know whether the converse is true.

Remark 4.8 Let F : Kn → Kn be a polinomial map. Let ∆F = detJ(F ) where J(F )

is its Jacobian matrix. The Jacobian conjecture states that:

If ∆F is a non-zero constant on Kn, then F has an inverse polynomial map on the

whole of Kn.

To answer Problem 4.1, we can assume x = pq ∈ A1, since K is algebraically

closed and semisimple elements of A1 are all conjugate under the automorphism group

G. For (2), since A1 is simple, it suffices to show that Φ is surjective. If Φ(pq) is

semisimple, then we could assume Φ(pq) = pq, so that Φ(p)Φ(q) = pq. By Lemma 2.6,

deg(Φ(p)Φ(q)) = deg(Φ(p)) + deg(Φ(q)) = 2. If deg(Φ(p)) = 2 and deg(Φ(q)) = 0,

let Φ(p) = αp2 + βpq + γq2 + δ where α, β, γ and δ ∈ K and let Φ(q) = δ′ . Then

(αp2 + βpq + γq2)δ′ = pq and it follows that α = γ = δ = 0 and δ′ = 1
β
. But, then

Φ(pq) = Φ(p) = pq, which contradicts the fact that A1 is simple. So deg(Φ(p)) =

deg(Φ(q)) = 1. Now assume Φ(p) = αp + βq + δ and Φ(q) = α′p + β′q + δ′. Since

(αp + βq + δ)(α′p + β′q + δ′) = pq, we have four cases to consider: Φ(p) = kp and

Φ(q) = 1
k
q, Φ(p) = −kp and Φ(q) = − 1

k
q, Φ(p) = kq and Φ(q) = 1

k
p, Φ(p) = −kq and

Φ(q) = − 1
k
p for some k ∈ K. Since K is algebraically closed, we can assume k = 1. In

all cases, Φ is surjective, and hence Φ is a automorphism of A1.
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For (1), if Φ is an arbitrary endomorphism of A1, it seems to be hard to answer

this problem in general. To prove the Jacobian conjecture, however, it suffices to show

that particular endomorphisms of A1 are automorphisms, namely, those of the form

φ : A1 → A1 such that φ(q) = F and φ(p) = D, where F ∈ K[q], D is a derivation of

K[q] and [D,F ] = 1. Note that for a ∈ A1,

deg([p, a]) ≤ deg(a)− 1.

There exists an n ∈ N such that adn(p)(a) = 0. Since

φ(ad(p)(a)) = ad(D)(φ(a)),

we have that (ad)n(D)(φ(a)) = 0. If φ is an automorphism, then D is locally nilpotent.

It follows that K[F ] = K[q], which is the Jacobian conjecture (for more details see

[C]).

Now it suffices to prove that φ preserves semisimple elements. Suppose D is a

derivation of K[q]. Then D(qi) = iqi−1D(q) and hence

(D −D(q)p)(qj) = 0.

Since {qj} forms a basis of K[q], we have that D = D(q)p = Hp, where H ∈ K[q]. Since

D(F ) = 1, we have F = αq + β where α, β ∈ K, α 6= 0. Also, if [D,F ] = D(F ) = 1,

then H = 1
α

and D = 1
α
p. So φ(pq) = pq + 1

α
p, which is semisimple.

It is almost trivial to prove the Jacobian conjecture for n = 1.

To say that x ∈ A1 is diagonalizable has two possible interpretations: one is that x

is diagonalizable on A1, as considered above. The other is that x is diagonalizable on

K[X]. So we want to consider another problem:

Problem 4.2 Let x ∈ A1. Are the two notions equivalent?

The answer is NO. For example, p2 + q2 is diagonalizable on A1, but not diagonal-

izable on K[X]. Also pnqn (n is an integer > 1) is diagonalizable on K[X], but not

diagonalizable on A1.
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By Remark 2.10, we know pq ∈ C(pnqn), but pq is diagonalizable on A1. We want

to find some relations between these two notions, now we can ask:

Problem 4.3 Let x ∈ A1 be an element which is diagonalizable on K[X]. Does there

exist an element in C(x) which is diagonalizable on A1?

Here we will assume that K = C. Since x is diagonalizable on C[X], we can write

C[X] =
⊕

λ Vλ, where the λ′s are the eigenvalues of x. The centralizer C(x) acts on Vλ

naturally, we would like to show this action is diagonalizable. First step, we will show

that Vλ is finite-dimensional for every λ.

We now give the following technical theorem, this is the standard theorem on Or-

dinary Differential Equations.

Theorem 4.9 Let matrices A(t) = (aij(t)) be given with elements depending on t. If

A(t) is real-valued (complex-valued) and continuous on the (arbitrary) interval J , then

the set of real (complex) solutions y(t) of the homogeneous equation y′ = A(t)y forms

an n-dimensional real (complex) linear space.

For fixed τ ∈ J , the mapping

η → y(t; τ, η) for every τ ∈ Rn(Cn)

defines an isomorphism (a linear, bijective mapping) between Rn (Cn) and the space of

solutions.

Proof. See [WW] Theorem 15.1. ¤

Lemma 4.10 Let x ∈ A1 −K. The space Vλ is finite-dimensional.

Proof. Let D 6= 0. and let D =
∑n

i=1 fip
i ∈ A1. Write D =

∑n−1
i=1 fip

i + fnp
n, and

divide both sides by fn, let D′ = D
fn

=
∑n−1

i=1
fi

fn
pi + pn where fn 6= 0. Since the zero set

of fn is finite, there is an open neighborhood U in C on which all fi

fn
are continuous.

By Theorem 4.9, the dimension of {g ∈ K[X]|D′(g) = 0} is n.
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For every y ∈ Vλ, we have x(y) = λy. Let D = x − λ, then Vλ = kerD and hence

Vλ is finite-dimensional for every λ. ¤
Next, we think that the elements which are diagonalizable on C[X] are in C(p(q−c))

where c ∈ C, but we do not have a complete answer.

First, let x =
∑

α,β cαβpαqβ ∈ A1 be diagonalizable on C[X]. Let Dm be the sum

of terms of x such that m = β − α is maximal. Applying Dm to the leading term of

an eigenvector, we have

Dm(Xn) =
∑

α,β

cαβ(n + β)!

(n + m)!
Xn+m.

If m > 0, then
∑

α,β cαβ(n + β)! = 0. This holds for infinitely many n ∈ N, hence all

cαβ are 0 and Dm = 0, so m = 0. Thus x has the form

∑
m≤0

∑

β−α=m

cαβpαqβ.

We can write x = Dm + Ds, where Dm is the terms of x such that α = β and Ds is

the terms with α > β. Thus, Dm(Xn) = λXn for all Xn ∈ C[X]. We observe that

λ only depends on n (the degree of Xn), and defines a function F from N to C by

F (n) = λ. Let f ∈ C[X] and Dm(f) = λf . Then F (deg(f)) = λ. For any g ∈ C[X],

we can write Xn = Σλgλ since C[X] =
⊕

λ Vλ, where the λ′s are the corresponding

eigenvalues. There is one and only one λ such that

deg(Xn) = deg(gλ) for some gλ ∈ Vλ.

I find this problem particularly interesting. As part of my further research, I would

like to continue working on it and hopefully I can solve Problem 4.3.
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