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ABSTEACT

The o opagation ot intence ratiytio; in 0 majre*ized
plasna 15 investicar -7 theoo-tically. TH o prasT AT, f
tntense Cadiaticon oA nlasma car alter = h pla-ma Jdernsicy
profile o -he reqinn of *he heam. This yl*eraticn can bhe

caused by *he ponderometive force or by the heating cf ‘50
plasma by the raliaticen. We have calaalated the eauilivrium
dcnsi+ry profiles and  hence  +he  lioter*ric £ , for each
mechaniam. Lo owave eguation was ther colved asirg a0 WEKB-
mo*h)d‘ and  d1fforenrial ecuations were derived that aove:

the proraagation ot +he beam in *he placna. Tt ic shown *ha*
the behraviour ot the br-am prcrvagation  1s  Yetermined bv a3
compe+i*i10n hetween 2A1{fr..*ion 0of *he heam and *he focusing
tendency ¢f the beam grodecs1 by the alterel Jdernsitr
rrofile. The nat*turce of‘the soly*tisn *¢ *F- wave equa*ion 1is

discussed alonag with e:zplications to  the laser solenoid

fusion concep*.
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1. INTEODUCTION

1.1 THE LASER AOLFNUID APPROACH TO FU1un

Studies of heating ot Bagneticaijy contined plasmass t o .

. At

thermono 1o tomporatgre.s fave led to the anvestigation af N
I

i\

Several tocsible hea s TgonCLme s, opge of Uhlfhjlb the ' lawme

~

. - s N N \
T Sedenord avpr goh Peoresed by dDawson et al (Y97 . Thie

N

SCheae conn, v op I slende; Plassd columuy Coniined gy

a s50lenoyrdg) SAYRNetIe tleld 0y - 500 KGy o ihtenze, lon.o

Wave.n gt h dase Ladilit 1o (L0210.0 an Cux laseyg) Ilrecuo
s

axiiily o SSOT heat e plasga colann o “he:rzonuclenr

tear rature., ( ~ 108 %) . This  sigplae SCoBetry  Las  the

alvanta ;o of Ueing relcetively s+aple and the heati1ny  source

(COy laver) holds consileravle promise in belng scaled up to

the reqguired output. However, +he thysics of the laser s
Plasma interaction Iust be Caretully dnalysel both
theoretic:lly and eXxperimentally before large scale

solenoics caan b coastructed. <D this thesis, we concider
theoretically one aspect of thisg lnteraction; the beag

trapping or self - focusing problen,

1.2 REVIEW OF PREVIOUS WO=K UN 5EZAM TERAPPING ANC SELP -

FOCUSING

Stelinhauer d4nd Ahls*ron (19717 showed that a laser



propagating 1ot theta pioch would be relsaccoed out 0! the

plasma (1. pocome antrasced) atter propagat ing o oa it oyace
of 1 tew Lean wilths because o the Jensicy moximpui oo [ID N
produced by  the  biach. As t1yht tends to bend o ¢t he
ditect* ton o Incrieasing refracslve index N, and S W A n
depends 0 *he placoa den n ., by N (1—n/h') (wiere 0>

the ciri1tical density cor the laser tadratron), then 14 ¢t he

densitsy Sad C omaniamua on o axis, the laser li1ght would teng to
-~
bern o (retract) *ovards tiée axis ot tae soleaoid instead o1
Y -
refracting  out Cl th - Dplasma. Usinad a4 patiolic lensaty

protile, :teruhauer and Ahlstiom (1971) employed ray optics
to  show tpat  the rays became  tiar o od in the plaspa and
oscillated about th. AX1s a8 taey projaygated  along  the

—

plasma colunn.

Huaphries  (1974) apalytically soive’® for the waveguide
type modes 10 a plasza with a parabolic density profiie and
deterrinel the width of ®he smaliest rundamental mede. Mani
t al (1975) soived the wave eguation with a pa-atolin
density rrofiie and a Gaussidan intensity protile and
producead solutions which showed thé 'beam aiternately

focusing and defocusing in agreement with ray optics.
9

In all the above analyses, th ~-1: .a was assumed to

possess an aronit :ryv density profile, however it 1S Known

tna® the presence ¢t an intense laser beaa can produce =z

oy

density winimuxz on axis either by the pondercaotive force

(Hora (1571)) or by the rneating of the ©plasma (sSee Burne--



and ottenborger (1974y o, Pl Y R O S RTEL IR ST
Laser on the plasas can 1i *urn 1ftect the Jarer bea 0 ot
(by Cduninag tocdaang) o o taat oy a1t - Conlivpntent o trogtmont
16 DeCen ayy. el = tocusie g 10 e Leaule ol the Lo
producing Tt own tavouranle ety g1 tale eataer bv o he
ponderomot 1ve S opce o by heating. The 1o s ] -
consrarent tredtme Lt Ot the bponderorot 1ve mechanie s 1q Y
NOZAgnet 1yl Planma war g1vern Ly Lodr vt 21 (1974) and My
(15 /o) e onca b lat oy solations wers tound. The heat o

BeCnaning Wil lavestigated analvtically oy sodhy ot al
(1474b) tor an unaeguetized jilaswa and numerically v Feyt
and Fleck (1%70) tor o Jdagiaetized  DiasDa. sothn Ot thege
investigations  showed tne alternate focusing - etocusing

benaviour ©o: the bean Fropagation.

Several exfperiments have observe® ‘eag trapplng oanid

they are 1lis+el in the references. fowever, they onily
demonst rate this effect over short distanceos  anAd for

teaperatures zucn less than the thermonuclear regjine.

—h
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ZNT WwWORK

In this tresis we extend the results of Sodha (Y974Lk)
and M¥ex (1970) by inclelin: a1 pagnet:- fi=1ld irszide the

plasma. The procedure usei 1s to comrute *he steady state

dielectric of the macgpnetized placma (Crapter ) and  thes

e

&

solve the wvive ejuation (Crapt 3) us1ing “he WK® method of

[89]
ry



, :
Anaanhov o ] (1706 At ot O O ! ol Lo

whiloch fectihe et oy L S S R S ) T DR Sher Ty o he
ti t o Pl . Wero e Live gty Y t t
COLat ot the s eguat o Drster o nnd Ao TR
Pecabts g the 1 Dl ot rog, POl the T e - oo
| IO Cheme ru Ol .

We Cons Lder 1no*fa . tlhos 1o, two Lechang o Litat Wil
Pro:iuce  tie tavourarn !, vty oy For o Loy ‘
AFes toe poRde I ONOt IV S CHAbd oG Lt b hews oy Lvonan .
In o section ool W compate tue ctogde e e, dledectiro € g
to the ponderomotive (g1 e, B U SRR Mot 1o 1o 1nvolveld
(1. lacsma 15 pusted T adiad LYo et wardo trox *he Ly

beam) , jpulse tiames  aro Ceguried too e larger than  thoe

: £
dEOUSTIC transit tame T2 tn onder to o estabDica b
A s
egilibriva (wneZe ¢ 13 *he ion =ound v Yound o 1S S

/e bean wiith).

In seccioi L.l we extend -ae worr  of Sodha el a4l
(1974b) and use the kinetic forzmalico . Sharkrovesky et al

{1466) to Compute the dielectric €  for the CasSe wheroe
;

- . . \\ - N . .
heating causes 4 o Ustribution. of  the Diasma. AS the

{

results or this .. ©Ly turn  out to be guite restricted,

especlally to low intensitiss, we will denote these results
as "weak heating™  results. The weaX heating results are
extend 1 the next section so as to include the effects or

1on heatice and *herfma. conduction where we use a siaplified

n
a
Vs
p—
b
[ &4
9]

fluid trecry apvoroach *o cozxpute €. These resu_=



Gelpot e 0 ot Lo o trn g™ oy ult t bl tent g cte b

tle t.t‘i!l.ﬂ;. fﬁ,‘.g"_ ‘L:SH‘I \IH‘II"i" I 1 1T ".,., ~i ‘ -

dDeT roh R R IR (I 1 tho i b ben oty g
N + 7 1 . N . . v * + - + . 4 + N
Wttt o) st D L e Gallot e oot q a0 1M 1 n
o e v ok \'% taer e Lo el Gl .
o canvia, R A T A S R S P A T vl s taon
. . , TR
A beang Gy g e CRTI T L valod tor @ o0

(4
( ‘y\ll)fr(” ISR RN ), '\V,:l‘ 1 CoLislder th tadiat 1o o
be monocaron oty e adino o neglect fhe a1 lasaig dyviogm
A thereby cons i CiLy o tne padial cquiliorie, whicn a.-an:
that o treatmens 1 ot Puldy volt - Coucistent .
Cgs unit: S used throuthout wxcept we adnere +o the

COLVERti L Of eXDCessin: tedpelature in electron volus (e7)

and power in watts.



DELRE O UNSE TNY  CALC RN Do N G NONM-INTAE DL O

In thile, gt W U O e t teleco e € o
g et e na e o tae N T N S I T e CrT oM tgn et
Ladiat - o, L G 1N o e tron ol by employang oyt lug
moder ol e cal e ¢ ol listoale Pla Wil the
Potded vwotive T oso e 1 tespon abie for o altering the s
deasity pros L, T the next two Soct Lons  we ‘u::v Kinet o
and tlurd ooy pepectavely to calculate g CXTIC TS LIon ol
the e lectrre wieis noeating o the plasma oy the tadiation
tleld it tue deanaty protal. .

.1 COLLTOTONLI S5 PUASYA = DPONDFROMOT IVE FULCEH

.

¥e beqgin by tieating the electrons s a4 flui? oand solve

ence of

s

for the motion orf the electron  Zluié  in  the pre

dquetic radiation (1e¢.  laser). The equation

strong «2liectrox

of motion ©f the electrons is

vhere pczntTe. We solve [..1} by separating oscillatory and

non-osciliatory gucaties;

R



_a —A o ~
veuoe v o] e [y
- = - E’
g = Ee; + Ae L[

N

— ~~
where ’U. 15 the anperturbed fluid velocity and U 1¢ the +ine

valbying perturbation snduced by the  radiation  field. The
—

total electric tield £ 1c composed ot the time varying lase:

—

—~
tield E  and e electrostatic  rtield dur to any charge

sy
Separation between eclectrons and ions. I+ is asruned that
no external d.c. electric field 1s arplied. The total

-t

magne+1c rield 1s composed o¢: the laser field contribution

—~ ' —>

B and a couus+tan+, externatly appliea a.c.  field, E=(v,u,B8).
. . . (-ut

All oscillatory guantities are taxen ‘o vary as e r Where

& 1s the frequency »>f the radiation field, so tha-
substitution of (2.2} into {2.1} yields the =zeroth order
velocity (for LJ2>>A§:e283_méc2, and E>>T/el where L is a

typical scale leagtnh), .



L\\\¥‘

(2.1} %:-cy
(MW

We restrict diocussion 1n thils section to the collisionless
time scale, o that 1t no collislonless heating takes place,

we have

VFe = Tc V"c

(2.4}

.

ng {2.3} and (2.4} tu ether with the Maxwell eguation

~

(2.5} R=-¢< VUxE

<
LW

in {2.1}, we obtain after averaging over tast time scales

~Cles-& (E-VJE + ExVx E |- e 2k,
Tc 20}(»7( /";57;

—
Vn,

{2.6} &
Ne

The second term in (2.6} represents the non-linear
(ponderomotive) force due to the oscillatory field. It 1is

to be understood that the density ne 1n the above ‘huation

is the time averaged density <nc> . Using Ampere's law

(=]

(2.7} ﬁx B, T “4Tnee "L
Cc




{2.b} becomer,

— — -
(2.85 Vn, “ele, - e (F-V)E'+ ExVxE |-(VxB )xb

Ne T 2/'}‘:7¢ o
Upon using the 1dentiiies

(2.9} E xV x F+(F-V)E = Vafj
{2.10} (—V.x B_)X%D:(B,'v>zo“%

in {Z.8}, we obtain

— - .1 n_—
2.1 Vn.- _ebe, - ¢ VE_ L VE
nt TC 4#&‘\’1 ntrc y;f

—h

where we have assumed that the external magnetic fielid B, to
varyr only in the radial direction. Equation {2.11}
represents the equilibrium equation satisfied by the
electron fluid 1in the presence of a radiation field. Tae
second term on the right-hand-side (the ponderomotive force)
can cause a redistribution of electrons thereby producing

radial ‘density and magnefic field gradients. The ions are



coupled to the electron motion througyh the charge coparation

field F,,.

—
It the ponderomotive torce and the VB2 force have scale
loggths greater than a Devye leagth, then we can neglect the

elecrrostatic ti1eld E over these scale lengths and write

{2.11} as
: — = 2 - Pl
(2.123 Vn, - o, VE -1 VE
n, nT. &7

y 1
where a('z%m‘“ T¢

We solve {2.12} in the infinite conductivity limit,

le. assuming frozen magnetic field lines, such that

{2.13} Ne = E
B

Q

[+

vhere o, ,B, are the dersity and magnetic field far away from
the l1aser beam. The solution of {2.12}, using f2.13}, that

satisfies the boundary condition; n,—¥ 0, as E—P0 is



11

(2. 14} _Qf\ﬂzf_%(”)-fl):—qrE

where

M= Ne/n,

(2.15) (.- grin, T
vBl
' -4

For sufficiently high wmagnetic fields, F,<<1-:dﬂd {2. 14}

e
becomes

b4
(< VRN 74

-

Thus it t.ois i1.1it, the equilibrium density profile is
rparabolic n . as compared to the exponentiél dependenée
(Max (1976)) founc ° field free case (B=0). The axial
magnetic field ce: .. -ef - -educe the plasma depletion due
to the ponderomotive oo - : 2.pected.

With the knowledg: ‘1 hrium density profile,
M. ¥e can write down the . Zz7.ectric vazlid for

w? )23:, and collisionless .. as



h Y

(2-17} (—:l-i)f_/7:é,_-+§(s)

w’\,
1 by °
where Wp. = 4% Y\,e//»\c
Wp /2
{2.18) €z V- Y/

$EY: ©p (1 - m(E))

~r

The non-linear teram, §(E2), of the dielectric vanishes for
E2 — (0 as the plasma becomes a linear mediua (é—OéL) with
no strong electromagnetic field present. For the case of

3

the ponderomotive force in a strong magnetic field (ﬂ <<1)

§ becomes

~

: 2
{2.19} I(E): w;. é,O(rE ) fg.<<]

2t

This expression will be used la+ter in the solution of the

wave equation and the subsequent investigation of self-
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tocus1ng.

2.2 COLLISTONAL HEATING - KINETIC THEORY

In this section we compute the steady-state intensity

dependent density and temperature proriles where collisional

(inverse - bremsstrahlung) .heating of the elect.ons is taken
into account. As thls process 1involves electron=-1on
collisions, the time scale required to establish an

equillibrium Is much longer than the acoustic transit time
?:c, SO0 we are dealing with a longer time scale process
than in the ~case of the pondercomotive mechanism. Ke
restrict the analysis to 1ntensities such that the
ponderomotive rorce discussed in thae previous section may be

neglected.

We begin by solving the Boltzmann equation;
— - -2 o~
{2.20} B{‘} + ’\)-D;§ +a '9;f+(%xv)o ){S:J;/J‘t

where 3=—ef/m¢,3%=e8/mc and d £/t is a suitable collision

term. ,

The solution of {2.20} will follow the formalism of
Sharkrofsky et al (1966) whereby we expand the distribution

function , f, in terms of spherical harmonics; E a) 1ie.
mg
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$(3) = Z § (mﬁxmr(n)

1/%’ Amas

"0 C ' Mgt
+ 5'.(, cosSe +5H°Slv\ oﬁf + 5‘"5'1»\6 Singt

=3

Pon

- -
(2.21} :§,+ 5"7)+-'
v
where t_=f_ (w) 1s the symmetric portion of the distribution

functiorn and

§.,()

1o

§ (V)

£ (V)

leo

al i
1

1s the first order, asynmetric correction to the
distribution function. Expansion {2.21} was used by Sodha
et al (1974) 1in the investigation of seif—focusing in a

field-free (q=0) plasnma.

According to Sharkrofsky et al, expansion {2.21} 1s

useful if;

(1) in one wave period, the change in the electric field

seen by the vparticle 1is smail. This condition can be

represented by



{2.220}

where 'U‘ 15 the electron theraal vvlm*xty/.

(11) the electric f1eld be sSuch that the electron  ul ver
velocity, 1,w‘x/%9), 15 small compared to 1{, 1o,
AN
AL i ~
(2.220) v) << |

Substi*t1iution ot the spherical harmonic expansion {...Z1}
R 4

into the Boltzmann equation {<.20} yields;

1. The 1=0 scala: (density) equation
- N —_ 3
(2-23} 3§ +12.5,+3(vVa-5)- Y ’bv(i,*l 31-5.) = o
¢t o 3 .1)1 ¢ f\--'vt %c

vhere P is the electron-ion collision fregquency.

2. The i=1 vector (mometum) equation
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-—
— — - 5
- -
v ) + .
() 3{5.1’1));,5-0‘0 '\)go +_§1‘x'5. !

Due  to  the  propel tles o the spherical Lo munﬂ .
cnoenbhle  averaaen ot cala anti voector gquantityie. v
detiped ol

0 .
-
- Y oA W
V= Yy — <V>" MY Vi d
n -5
(.25}

L
F=8mD — <@ 1[G vy
v 3n

[+

In the presence «of +*1me varyini fields, we assuae o
: , (ut . : . ,
time depenlence oI o e ana expand toe distributzon

function as a Fouriler series;

. = K kwlt 2x - et
{2.26) SZZ §°e -
K

From {Z.:5}, we see that the dencity 1is given by



whe o the

no

il
P2 B

vhieoe tne

cftects.
the-mail ve

Yhe e.nm.

(2.29)

-~ . 4 - . - S
These eftects can e

if¢ alch 1wess *han

i0C1tie.

Wave (1£<<U/k~c) and we thereb

k>1.

-
S
O
£l

2
6]
8]

nggloctei

tae

Nn=49Mn - > Bt T
- K o
e ] e 1 IS be faaken.
s T —_—
/)
\
n e = 47 € ﬁr’b JT),
. o
]
» / .
:K, X201 are assocaated with a.c.

tor

y Sset

PR,
N

the

phnase velocity

17

AY
o c\n let e
-
/
|
Kf>0/ /, Z/ - -
e

ace  Charje

WhNe e

Cad Se

-

Q1

{<.25} we see that the av&raje



-k (‘kldt c Kk \l
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In the toliowiag treatsont, we simielaity the analysis by

consideping caly tne dle. and o tundasental o harmonic faepme
(k=0, 1) 10 the ox;ansion or ot Shie 1no Justified whenp
RLyhest freguency Intere st 1s the  occillation frequen
ot the oo, Wasv Sl nce aljbhor narzonic terme wlill have
frequencic . constde:r sily 1oaoved froa Ly otnerl Ireguency of

interest.  This icpies tis ICequency ordern tag 4,3>>)2,gf,9;,

etC.

We <substitute the Fourier CXpansion {l..6} 1ato the

Boltzmanu eguation (2.2}, retaining only the k=0,1 terme

.u
-
+
b
O
i
~

and obtain the resulting density and momentua o«
which w1ll each split into oscillatory ané nor-o. .. _.

parts. The 1=0 (density) eguation ylelds;

»y

AN
3

-{2.;1a} _ _1‘_'!_ 9 ’UZT’(?:‘*I P ;o‘)) )
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{.. 31D} ¢ e

'he momentum vjuation yields;

PR

! (o] -5 0 » 1
(2. 3.0} 'Ua)-;{fa 2, % +1L?< (‘1 ano ) +

— - —‘0—
+ QX 57+ i - ©

. - ! ! 4 a0 !
(W 4»’\)3;5_) + a 3\,5‘, + a 4)1‘5‘, +
{2.32b} . A
— i I_:_'
+ S)eri + 7)5; - ©
1 the above equdations, aO:-eEO/m& where EO is an

. .. . . . 2
electrostatic field (ie. due to charge separation) and atl=-

- - . .
eEl/% where E* 1s the amplitude of the e.a. wave. The
neclect of c.c. Space <charge effects implies that ni=gQ

. . — - ¢ . . —' - . ’
walch, froz {..28} implies that r, =0. e therefore set £, =0

-
i~ an- {2.32} and solve ther for f:,fl,and f/. Take
1 ~:gnetic field alceng the z-axis only, then from

.t car ~hown that

(Rl
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From {..320u} 1t can bLe shown that

| ' ! g"o
{(2.35} - f = M e El' D,b,o

t —_
'y J e

where



vo('L\) ‘_fl(. O

—
|
]
log
—
N

M Priw O

L
J ) R 1
(Ve w) -#.J\c

(Ve ) + ¢
Pr v

Substitution of {2.33} and {<.35} into {2.32a} will
yleld an equation tor +he Ssywmetric par* ot the distribution

function f:(w). We wrlte the gradient operator as | «”+2
L

where the directious are with respect to the external
- - - . ~ . : ‘ .
magnetic tield b, . If the following assumptions are nade,
1. linearly polarized e.m. wave _ .

2. EOKKE! (or scale length/5> Debye length)

3. w2 >R 2 OS2 .

the equation for f: becomes

»
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"
LY °
—P'-QC 7)14_&(1 J
{(2-37}
—_ 1 hi
t R, .(214) e D (0,50)] ¢
_p\' -‘(\_'1 _Q—c __’)1+ y}l
L] o
+ ’LL Dv nb}hv ('»V Du,{> 4—} -f ) = o
2V A *
where Iy t .
W= To+“1(a)\37(:+mef §
Lt ‘? 2 é““c“’“z\—'
T
= 4 m,v
2
In order to simpl.ify the above equation, we

dimensionally investigate the ordering of terms in {2.37}..

Taking the scale length for per adicular gradients to be L,

we find that

term (1): ' tl’lv};o o~ (gg)L_E £0
3L A/ 3
L o
term (2): 'U‘I‘);. —~ 3)"250"
30047 4/ 3
terc (3): V,Z{O:o(assuming £ uniform along ‘1-3:)
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term (4): by symmetry the cross product vanishes

o
term (5): g et s 5;
3
where ‘312“% and 4, 1s the electron Larmor radius. Thus.
S A

the orderiuy ot the surviving terms is

| L L
Therefore the neglect of ternms (1) and (2) 1in {2.37}
a(
L
Since fﬂfEmC/m‘-, We can write this condition as

| L
{2.39} (.Q_‘) << |
L

y

Thus the ion Larmor radius must remain much smaller than any

requires
R

)<<'{

SCale lengths of interest, .and this implies that radial
thermal conduction 1losses from regions of size ~ L will be

negligible.

Assuming that {2.39} holds, the egquation for £2 is



{2.40}
The first integral of {2.40} is

{2.41}

| N

LAZ/I-V(_Z_:WDK-YD(_) _4530):6
3

Since f:and- 'bufoo —» 0 as u —»>co (more rapidly than u¥*

—Peo ) then as (2.41} nust nold for all u, C mué\b—«be zero to

satisfy the limit u—pwm. Thus we BuUst solve

The solution for f: is

T
{2.423 5:00: A 2*?[' fnl 24

2 Te

2 T
- _ . P 2,

L)

. . oL 1r® .
Prom the normaliza*ion condition ne=+'l ’\Jidv,ue find
A _
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that ,

3/L
A= n, M )
QWTE
sOo that
[ :VL \ 1
(2.43) i T Ne /Do) exp (- MmeV )
25T, 2 Tx

The above distribution function is Maxwellian with  an
éffective electron temperature TC¥TL(T+XKE2). Using {2.43},

f: and Efmay be computed.

We pow derive an equation for the electron density fronm
the above results considering only the steady-state, which
. . ' > .
1s defined to be when the zero-order (d.c.) current, JO%, is

zero (1ie. ﬁjO:O, Sce {2.30}). Setting

mﬂ)?;oim:o

{2.44} I = ﬁcf
, 3

]

and using {2.43} ana {2-33} 1in {2.4uf;zields (see Appendix
) Y
a)



(2.45) 3. (n.Tg)=-ncek

This is the equilibrium equation for electrons.

'We can repeat the entire procedure for ions and solve
for f*"t' etc. dl.)d obtain exactly the same equation as ({2.45}
except that Te would be replaced by T, =T, (@ constant),
because of the assumption that the ions are not heated by

the e.m. field. Thus for ions the equilibrium eguation

would be (e — -¢)

’.{2./46} To >rnl': Zﬂ‘-ef

We solve for n, by assuming that scale lengths are nmuch”
larger than a Debye 1length so that we have the quasi-
neutrality condition Bxn-, and eliminate E® from {2-45} and

¢

{2.46} to obtain

{2.47} n, = ,Co/
¢ T T,

. 1 2 =
Now B,—» n_ as Tc—r. To (Le. as E2—90) so that C° 2'I;nc
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aud /

~ 1!
¢ = (""o‘hgl/l.)

(2.4 M= e
No

1s the equiliovrium density profile 1n the presence of the en

field 1n «a @magnetized plasma. In the unmaguetized case,

collision:s play a dominant role and Sodlha et al (1974) have

found the equilibrium profile to Le, by 2 similar Xinetic

theory yprocecure,

-5/ \
R
{2.49) m = ( 1+ E/l) AN

"hus there is a significant increase in +the depth of the
density well 1in the B=0 case as expected. It must be
stressed however, that ({Z.48} 1is not wvalid for arbitrary
magnetic 11elds (B,) and 1intensities (E2). The assumptions
.used to derive {2.48f restrict the values of thesé

parameters and we review these assumptions below.

The conditions for validity of {2.48}, along with

assumptions about sywmmetry, are
= 2

1. "3‘ (U2/L)2 << 1
= 4 2

2. 57_ (Y /ny) 2 <<

3. P2 2w?
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4. Y71:(.1(-/1.)? <<

Conditions 1 and 2 are required for  the validity of the

truncation ot the expansion ot the distribution function
/

whereas the last two  conditions  simplified  the analysis.,

Conditions 2 and 4 are *the mos* stringent anl table 1 chows

the values of parameters reqguired tor lidity for various

initial temperatures. We o assume CO,  radiation, and the

scale length L to be the beam size, L~0.1 cn typlcasly.

The results obtained here (density and temperature
profiles) have been compared with those from a one-
dimensional MHD code (Milroy (1970)) and found *~ agree well

(see Figure 1).

We now compute tne non-linear dielectric explicitly
using the formalism of the expansion scheae of Shacrkrofsky
et al (1906). Prom the definition of the a.c. conductivity

1, we have that

9

f i Ob; -‘| .
(2.50) ]'J' =9 Eoos ﬁcf v d v
3

0

b
Substituting for ff from {2.35} we see that G:.1 can be

written as



[ <] \

L. } 7 o
(-omp Oy = AT e | om0 50 d
3 D\«c J
]
Using the UYdO(lHQ'j)’(KS%P\(A)J, the Componrents ot WL N
- J
' oA b cw
-~ - -«
Mll MIL - M_T] — e,

=
=
R
o
T
N
A4
\/

/ / { !
- - = N o= o
My = M T g .

Putting the above ¢xXxpgroseions to use in {2-51} together with

the PXPression l»fivpd earlie: for f: gives, aftfter
integration

=66 -cen + tetp s2)A
(2-52} %y = Py = O35 } ° g (/"th)
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{<. i} G;l - —-(Tl_l = ¢ ?(1‘”( —nt 1 €,7<“ﬂr
2 vy I —
3Vim ot (1ea,EY) PR
and aill other codponcats vanlsh.  Now the conponents
dielectric tensor e
!
{2.54} €0 = J: — ¢« $7 G-
TN -
and treus becoae:, using | DA} and (L4093,
- <
€, €& o
{2.54} ¢z - €, 6‘ (@)
J
o . © €
L .
h € C e /
shere = ~ - = '
|~€|.‘611‘€3)"6L*§(5>*16

N
N
,J
Mt
bo
P
n
(4.
4
tlp
r—
Foy
l
L
S
o
(S

'

|
C
w
N
S:r'

{2.57} € =

(O

the



This non-lineag ttedectrie wWwrls be uced Lat er in tue
SOLIt 100 O thv wave eyt ion.
N COLLINTONAL HFATING - FLUID TELYOLY

In this  cectlon  we  try  an a0.Loach  that e lese
restliacted  thoen the mole [igorous <inotic dpproach used in
the previous sect 1o, foer exenmble, the the kinctic ipproaca
did not allow ter aon heating or  for radial theraa,
conduction whereas  wne tollowing theory remove: =<heco

restriction:.

We start from the

terms are neglected (lLe.

2
4

1f  we are solving for thne

time scaleo). The momentur

balance ecguatioxn 15 the

(3,

{2.59}

The electrical conducti

P

valid a-

be infinite,

~frozen field cordition

STatl.

nigh tenmperatures,

tluid equations where inertial

=0) which 1s a valid assuaption

i

equlilipriiuzs state (1e. for long

equatlion becomes a pressure

external magnetic fielid),

134

y ¢f the tlasma is assumed to

-
wnich gives the

Vit



{00} ’YZ - Nn - _B;
Mo 3.
rhe election oad jon vabx;y Cquat ton e
{. -0} 'L*}{'b 6,_1—L~' Dr(krarﬂr()\ 7;-‘ e IO
F I nr fz,q

o, (x %) Tl =

{00} ",‘" —{!_ —
. (%

N

In the above egiation:s, | 15 the luaser 1ntensity S (W/om?),

~

J% 15 the invu:sw—bLymu:t:4nlun¢ 1hAw[ptlon'rnvi,;g1wnt, R;‘
7
are the «clection, 10on *herael corductivities nd 2 1s tac

e-1 eguilibration time. ,

We accowmodate tho 100 heatiny by ASSUDing a fixed 1on-

electron teamperature ruotic for oll spatial points, ie.

{2.63] T. =6 T, O Lfe = |

This assumption 1s related to the temporal structure or the

laser profile (Vag Set al (19795)).
Using {<.60}) an-:2 {2.03} in the pressure balance

€jquation, we ¢ talnk an expression for the density,
I/
. T oL T
\ 7 [(!49) /7.//4 (wa)ﬂ,/:L

vhere we have definei

{2.65) .= Yon. le

For strong B-fislds, @£<<1 and {2.64} becones
|t



{(2-.bo} ’722“ | — ("f‘)/z'/?_

We now have ’)7 e tunct1on ot v lectyon temperature, oo
wWe o must Use the ener rodonservatior dUations to solve fo
T, 10 terms of the 1nput laser oW Adding {<L.61}) tou

{{.062}, urilug {<.00}, we obtain an CYuUL tion gove: alng i,

Z.07} 1 .
(<. O, T, 4 =~ O Te + 2T, X v I, An —

2(' éz(
vhere  we  hay. Avsumned  that the electron rudiaid thermal
conductivity is  puch slalieg than t he ion thermi]

conductivit, 1y Bagnetlc fields of inteiest. We Can rewrite

i
the 2, X “eID 1n {2,067} Ly noting t' .+ :{-:C/Tl-,L theretfore
oK =-Ce2: Te ==L Ly {2.07§ ovecones
' 208T )Y R

T<
2.68}

_ ' -
Drr.-if + f\~ "\fTe —'—l Tc '(gf TC )1*(61{) -Z\L“é}:o
2

N

The laser lntensity is taken to be Gaussian with bean

width OF 50 that we have

2.65 - T ~L 2

(2.65, o= Lexp-r200)

where I, (w/cm2) 13 the on-axis laser intensity. The

inverse-bremsstxahlung apsorption coefficient ana -on

thermal conduc=ziviry Yilroy (1976) and Spitzer {(19¢7)
. »

respectively) are



ju

-7 1
(2_70) Av: .61 x |0 ' nl ZA(/“_)J’MJL

7/
Te

15 -1/
(2.71} k“: /. & x/o " /7: (97;) lj»/)_/t
2

whore /\ ic the laser wavelength 1n microns and ln A is the

-
Coulomb logartithm.

Us1ing {«.09} to {<.71} -the last term 1n {2.b68}) can be

written as

(2.72) T, A = A

r) frp(—.f1/2£t2>

6 X, 7.
where 2=1, .and
16 2 1 1 -7+
(2.73; Arys §. 4xi0 A(ﬁ) B, Ni(r) ® L,

We solve {2.68B} by assuming the fcrm of the electron

temperature profile to be Gaussian, 1i1.e. ,
A 1
(2.74) Tz T exp(-r/25 )+ T

This assumption is reasonable since the laser intensity is
Gaussian and a form similz: to {2.74} was obtained 1in

-ion 2.2 4s1ing etlic theory. Equation {2.74} has three

parameters to solve for[ the width ©f, the maximum on-axis

tempe-ature T,, and =« téqperature far awayvy from the axis



o
s

T, - To simplily the analygis, We Testr1ior ourselves to e

reyion reay the axis and assuge T, >> T, so that we may yye

(o]

the approximate form ot the temperature preotile
T =T (- /260 )
(2.75) e = 1) €up O,

Substituting {2-75} into {2.64} yields the equation

(2.70) T ¢ u‘”wp(‘ ,1/26;z)~ 2 =0
T

1
Q.Gj 1;

We set r=0 1n {2.7v0} and obtain an expression for the op~

axls tempergture Tl,

2 1
(2.773 T = 9 Aco)

| N

pA

Differentlating {2.76} twice with TespAct Lo r and.thgn
Setting r=0 yields a relation for the temperature profila

vidth O, (see Appendix 3)

1~ "'~
{2.78} G- = { Gy

Thus the tewmpPerature profile is wider +than the lasqy
intensity profile py 5/2, which is a nmore realistic
situation thak that found ik section 2.2 where the widthg

were the same. Zgquation {2.78} sho- s the effect of a non~
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zero  vtadiel  thermal  conductivity. Note  that (277} and

{2.78) are only valid tor T’ >N T, -

Using (2.77} and {2.78} in (2.64} we can WyAte the

density protil. as

1/

1 N \ /A
{2.79} /7‘5[\*Q":/)]I(o)goek{)(-f'/lu"l):]—’(1’7{0){(4'0(\%/20;1)

~19 -t/
where °§: S.23x10 6un. A (ire) e 4
B,

setting r=0 in {2.79}, we obtain an expression fOr the

_ " On-ax1s defsity ratio 07(0) ,'

<1/

{2.80} VIGOE ( 1 +2~E,)

Equation {2.79} c€an now be written as

174

{2.81} ’7(*)‘: [| + X(Ir)] - Xir>

where

{2.82} X(")‘—' ~; E. , e,tp(-"l/zv;\)
(/f?‘\}é",)/”

1

\

The real part of the dielec:zric car now be vfitth as,
| _ \\\\\k .
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for i~ 2>>~Q(21

(2.83) €y €.+ $(X)

where
1

{(2.8u3 §“>: L.fﬁ: (" /)](X))
Lod

The on-axis (wlectron) temperature %, and density ratio

17(0) are plotted in Figure 2 for various laser powers.
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3. SOLUTION OF THE WAVE EVQUATION WITH A NONLIHRAE

DIELECTHRIC COPSTANT

In this ¢hapter we colve ghe wave equation using a ¥KB
- solution wvhlch was developed by Akmanov et al (1966) forx
the study of ¢,m. wvave propaggsvion in liquids and crystals
with nonlinegdrl f§lectrics. As was mgntioned in yhe
introduction, vé asSsume the freguency ordering w2 >> J§&2,
such ihat e Cal qpeglect the non~vanishing off-diagonal
elempnts ¢ the dielectric tensor because thesSe terms are of
0(L.°/w?) and hence very small. We thereby study 1linearly
polarized selutlons of the wave eguation with a dielectric

of the fornm

(3.1 €= ¢, + & + € ?

where

(3.2} }:w,},(.-,‘?>

and the effect of the magnetic fjeld is to alter the densyty
profile. The jmaginary part of the dielectric is assumed to

be much smaller than the real part since ¢ 2>> <02,

The wave eguation is
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(3.3 v

ary!
*

<Jb

| ]

1

m}ﬁl

]+'_c_fe£:o
‘ C

3

Equation (3.3} can be analyzed by employlng the c¢ongapt of
slowly wvarying amplitudes (Akmanoy et al (1966)) vbereby a

weakly converging (or diverging) beam can be represeyted by

>

.4y E=é€l E(r)z)s) €1P[~<.(Uf—-k2)] 4+ c.c.
T2

where € is a unit polarization vector and s is a paraneter
which accounts for the difference between the actual bean
and a plane wave state. The difference is due of course to
the action of the nonlinearity or to diffgraction.

Substitution of‘{3.u} into (3.3} yields,

! CkD. - kb Wl (72 - o
{3-5} (V_L+buf2 ?t +_c_é)£ 38, 85)

. - - = 2.
vhere we have neglected V[{-?}compared to k& which 1is
valid for w2 >> by 2- e solve (2.5} with cyligdrical

symmetry (V2=9, +r-1) ) and by neglecting 9,8 cempaved to
i L g
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\ "
\1
k2f . This latter assumption implies that the scale lengtu
of wvariation or the amplitude of the electric field alony
the direction of bPropagation must be greater than the
wavelength ot the radiation tield (i.e. slowly wvarying

amplitude assumptidn). Following Akmanov et al we take the

WKB~solution for the amplitude to pe

—-C k SCr )

where s=s(r,z) is the addition to the eikonal which accounts
for the nonlinearity in the dielectric and E(r,z) is the
amplitude of the e.n. Wave. Substitution of (3.6; into
{3.5}, withb QHE << k2€yields ah equation that can be split

ipt~ real and 1maginary parts as

t o 2 ‘
G0y e B K0 s) Eu e e 2 Ty oo KTE 4
t'e (e +F)E o

1

!

e

kEIBN.f + £ 9, EI'B,\S + ¢! KEZ),S-f kDE E™ +

3. 7b} RS
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Equations {3.7a} and {3.7b} are gimilar to those obtajned in
the study of 1., Iike (linear) yedia whose solutiops are
cylindrical or spherical converging (or diverging) waves.
The difficulty in the above equations 1s tnat the amplitude
E(r,z2) and the  eikonal S(r,z) are coupled by the
nonlinearity. Following Akmanov ¢t al, the seclution of
{3-7} for s(r,z) will be generalized to cylindrical or
spherical vaves with variable radqius of curvature wvhereby we

take |
(3. 3] SCna) = ey e o)
2

where f () 1s interpereted as the radius of curvature, and
P(2) is the «chanje in the phasa of the eikonal due o the
nonlinear medium. The so0lution for the amplitude will be
obtained by employing a Gaussian- shkaped ansatz,

2
(3-9] E'= B exp(- r¥/ar sy ) F o0

—

()

“+

where a is the 1/e beaz size a* z0, L(z) is a dimensinpoless
bear-size par:cameter, F(z) accountg Lor the ebsorption py the
medium, and E2 is the on-axis field intsnsity. Egunation
{3-9} assumes that the laser intensity profile :r._amains
Gaussian at all times. however the on-axisS intensity
E2/£2(z) and beam width a<(z), change as the béam nropagates

through the mediunm.

In the following dicussiors ve will neglect the effect
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of abgorption over length scales ot luterest.  This will be
valid it the plasma is sufficieptly hot 5o that classical
i“VQISQ*bIUMSStthlUng absorption 1is veak, 1.e. the plasma
1 opticelly thin over length scales of interest., The
neglect of dbsorption implies that the lmaginary part ot the
dielectriC‘ (1.e. in {3.1}) <an be heglected compared to
the real part., The discussion 18 exacCt fo; the case of the
pondergpotive gponlinearity if po collisionless absorption

procesg occurs,

We substitute {3.8} and {3.9} into {3.7a} and {3. 7D}

with F(z)=1 (i.e. no absorption) and obtain fronm {3.7b},
S
{3.10) pred= $ bi'g(i)

and from {3.7a}, using {3.10;,

2 - ]
ro_ 2 -zkl(_clgg{'; )-k +
{3.113 L\\;’i1 Q{"S—I 2 2y &T

e (o) [ <o

As  {3.711} must hold fo:r all r anpnd 2, 1p particular =0, we

Set r=0 jip {3-11} to get an eguation for tte phase P(z).

. T
{3.123 Dz p(2>z ~-_! v ul_{- [

Tir L
k‘a.l; JCL[L

where
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I ! e SNV | t
(3. 13 [ 'k = W + Lop
The quantity r Ceplesents the ponlitearl wave numbey  chite
due te the change 10 the ou axis densivy,

In order to ohtain un equation for the bogy widt
paraweter (z), we ditrerentiarte {(3.711}) twice with Yoo pect
to r and set =0, and use {3. 1.} to get, after sone

manipulation,

ks
{3.14} ta <

- Lo E:.j[(éii{]
1 =

)aa&z): J
{ Lo o 52470)§r (Yeor)

————

{3.15} Y3 at E

where {3.14} 1s for the pondercnotive and weak heating cases

2

1t

discussed in .1 and 2.2 where §. was a function oY
Equation {3.15} applies to the strong neating case discussed

in 2. where j£:=jF(X), In the above equations i - prime

n

denotes differentiazion of wWitn respect +o its . gegzent.
IS RS

LY
b

Equation {3.14} and {3.15} describe :=e propagatioa of
the la: be-:ua throuéh the plasne over distances where
absorptic 15 owot important. e will refer to the

differential equation for f£(z) as the self-focusing eggation
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{

tor the pavticuajar mechan: B Involved (1., bonderomot j v,
Wodko or vtrong heating) . The beanm will converge (1.0, tne

ettective  beamn-width 1t (z) decreases) ouly it the slope ot
f(z) 1o o decrvasing  tunetion ot 2z, 1.e. % t(z)<v. by
i[l:ipt‘(?t Lon Ol the Selt-tocusiig cquatrtoe. o we 5o that tnlc
condition 1o only ael it ype second term on the riyht-hand-=
sade 1n larger than the f1rpst, rhe Second term 15 duo to
toe nonlanesiity in the diclectiic and 18 thus *he  focusing
term  while the first terg s the difrraction term and 1t Lt
doplnates the tocnsing tery , then the beam will tend  to

Fiv orge (i.e. a?fﬂ)\_ A steady state cdan occur if the two

teros balance « xacily.
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4. SHELV=-FOCUSTNG IN A AAGNETOPLA MA

In this chapter, ¥Ye o lnvestigate  colutions to the
Cquatlons derived 10 Cog; ter 3 owhaich describe | seli-tocusin,
1.¢, equations {3-10), (.14} and {3-1%f - These oquations
do not adm:* au easy auglytic solution “XJept ounder  specral
couditiong,  however o good deal  of intorma* 10L can be

ovtalned without res0rting to a numerical solution.

D SOLUTIONG

—3
s}
=
ae}
as}
h 1

4.1 SUVEADY=-STATE SFLF-FOCUSLING - SE -

In thls section we 1ovestijate selt-trapped (or soliton
like) sclutions where tae bean bropagates 1n a4 stealy-state

manner (i.e. with no convergence or divergence). This

~

occurs when tne self-focusing process 1is exactly balar -ed by
diffractior. Tue ponderomo+ive and weak heating cases wiil
be considered first yhere <the nonlinear part of the

dielectric j{, 1s a function of E2, followed by a +reatment

of the strong heating case

In the steady-state case we take a —> a, (aE will
denote the equilibriuz bean size), f(z)=1 and  all
derivatives vanish (5,£=2,£=9,¢=0). From (3.12} we obtain

for the wavenuaber shift .

E

2- l _ T
(4.1} - -U I QCAE’—



and Lrow {3, 34} we obtatn tor the beam 170
N 1
(o ac = < L
IR Eﬁl }(Fol)

Equation {41 a5 che ditporsion relarion 1o the  noul
T

medium  ror equilibiiu Propagation.  This Ccan be seen

clearly 1!t we Substitute the OXDICSS10ons foL < and o q
y, ! £

{4.1},
1 1 B ,) - 1
{u.3} A N 7[°) et
vhere 3 (J) 1s the, on-axis density ratio. This dispe
H
selarioun resenbles raaz obtaln-d for plesma ¢

Vave juldes wmr o tue Just terg 1s the correcti~n due to
fact that the beaw iv bounied (i.e. self-trapped), an
Secont term cuovws tuo erfect of the plasma depletion in
Frésence  f tue beam. Thus the nean dppears to rropaga

e

a selt made wyveguide, or liggt L

M

Equation (4.2} g:ves the bean Size, (as a functi

2) that is reaui-ed for sSelf-tr

1

the cn-.x.s iuteasity

propagaticu. w1lth a:ae, the beam propagates uynif
through the nlasma with no « .ge in  size. for a

intensit”, thls gives the critical pPOwer required rfor

r ec rcropagation ) 2 2
trappo tropagation (crox . o)

(& T =3 ox 'Ojalfol (W“f{5>

U,

lneagr
moL o

1nto

r:ion
111led
the
d the
the

te 1n

on of
apped
orolv
Jiven

self-

A



From {A.0} we can obtain o condition  top the equilhibrium

4+
L

beam si1ve, AE, O reach  a gihinmum by setting &Ag/JH?:U.
[+

This gives

as the coudlt on ror the minimuy efcullibrjum beam cjize o

to occyr- It will 1+ spown  later  that  the Xxistence ot
aE) . 15 a resul*® of the limltavionu on the bedm ©igze due o
Py

drffractlon oriiect.. and saturatyign ot the nonlinedarity.
e NOWw investlgate tiece equilibrium gquantities for the
cases Jiscussed in Chuapter
a) dbonderomotive nonlinearlty in s« Stroung Rdgnetic field.

We treat the case where f<K1 50 that some andlytical

progresy €z21 be made. From {<.1R) we have +hat

(s .61 F(E) = 0f poo A7 po<el

!
2t

SO theatk '§‘ is parabolic 1n E . From (4.2}-ve see that for

1e

(4.7} 0z 2%
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The €quilibrium bean size Lo the ricld tre, (150) casne hag

recently Loen obtaiped (Max (1976)) and was found to be,

1
{4, 9} az = ,zclexp[—(,& /L]
. X k.
it “p e

-

Thys the oqgquilirriym Ltegm  size 15 much larger for the
magﬂvfizvd plasma than tor an  unmaqgnet ized plasma when

Q&Ef: 1. The magnetic  (ield .6 SOHUlres mole powe

achjeve self-trapped Plropagetlon than the tjield free case

hegguse  the magnetic tieid reduces the plasma depletion in
the b€am and hence reduces  the 'strength' ot the self-
focysing ortecr. A LATLJor pPedl slze is ?he:efoxe required
to geduce the diftraction e; .vct (which 1is provortional to

1/a%) %0 balance *ue weaker seli-focusing.

The critical power is found from {4.9} to be

7
{4_9} Tzr = €.ox 1o ‘,£1§_
LJ’_ P‘ ~,

Whics gives, for co, lager, f3~0.1, p?lo 0.1 and T~

100V a %r ~ 2x1011 Gaetg.

b)Keak heating in a magnatic field.

Trom {2 48} We have thar

~ r~
(-10} 2 = T ED)
] e



vbich tor o(hf'lg((], give:s the parabolic torw
1 1
{“’1]) I 2 _(::E— O(L\ Ea
Lot 2

The equr . ibrium beam size is

s

e
. p \ .
(.12} at= 2 ¢t ( P+, E /)

. h .

lA)p_ o(h Eo 1/7_

which for (%f5<<1, Jives the critical power

3

(4. 13) Y. = 6oxio™ ¢
1

Lo,

For €O, laser, Tc‘§J1OOeV, L2/ 2~ 0.1, this gives a P
107 W. Thus the ponderomotive rorce in a4 strong magnetic
field requires considerably nmore power than the heating
novlinearity 1in order to achieve the salf-trapped state.
This 1s due to the ponderomotive force being inherently weak
until high intensities are achieved. He:thus Conclude that
the heating of the plasma an¢ ibsequent Aensity depletion
1s by far the wore dominant mechanism for gelf-focusing for
laser 1intensities or interest in present Jay laser - plasna

experiments,

AS the heating nonlinearity is bgt parabolic for
o(v\E: ~1, we can compute ae),\,; from ({4.10} vysing (4.5}. The
copdition for minizunm equilibrium beax size to occyr is

(4,14} o5 =1

h 7o



50

Substitution ot {#.14} ivto (4-12} yields
{4.15) a ) i S
€ M /QJP-
which is of the order ot o few vacuum wavelengths across
‘ )
(for ,2<1R)- Similar results have been found for the

ponderomotive and weak hedting cases 1l the field-free

(B, =0) situarion. Max (1976) and Sodha et al (1974) find
a ) ~C/w, as the typicel scale leng:  for these situations
e Mage, p-

even though the nmechanisps tor the nonlinearity are

different. Also, Kaw et al (1973) find that scale lengths
of the ordep of CAAA.across the beam are the spallest scale
lengths for yhich the filimenyation instabllity will occur.
Max (1976) has sugygested .that the self-trapped :+ates, waich
are equilibzium states, represent the final staj;e of the
filime~*-*1iopy 1nstability becguse the scale lengths are the
same. 1acuss the validity 0f obtaining such small scale

lengths acrogs the beam in a Jater chapter-.

It is interesting at this point to examine the
dispersion rglation (4.3} for a cut-off beam size, aE%V
o

wvhereby c2k¥#0, and solutiqus to the wave equation 4> rot

propagate. This Ccut-off is

{(4.16) a;“ - e/t
)C,o /_. (’";%ﬁl ry?(o)

Thus aE) ~ for t,2/tv 2<<1 s0 that a cut-off can only
tlo -

occur for heaa sSizes of the order of a vacuug vavelength.
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As we have seen that a y\ =~ ¢ thel a <a . and cut-offs
} ) €)oo i “UE) i t-of

will therefore not exicst for &tzﬂé 2<< 1.

L
.

.C)Strong heating in a @magne+ic field.

~% this point we solve for the equilibrium aolutions to
equations {3.12} and r3.15) for the strong heating case
studied in 2.3, Settingy f(z)=1 and %f:o 1p {3.15, we

obtain for the equilibrium radius

2 1 [
ag =z ¢

——

" Yoy $(Xeo)

' ty
(4.17) Y (14~ E)()42%E)
b s £,

The disper.ion relation obtained from {3.12} by setting %¢:O
is identical to (4.3} except that _E- is given fpy ({2.84j.

From {4.17}, we find that the nininum equilibrium beam sjize

.

occurs for

{(4.18} | & £, /4Vr¢

and thig gives

<

4.19 a ., T 2. C
{ ) E}hwm j /%NL

So again the typical mininum beag size is of the order of



C/w as found in the previous discussion ou weak heating ig Y

r-
part (b).

4.2 NONEQUILIpRrIYyM SELF-FOCUSING - WihAK FOQCUSING LIMIT

\

We now exagihe the physical significance of the
equilibrium beam size by discussing the cases for which the

function I is parabolic in E for example Lie

.'
ponderomotive cage for f3<<1 or the weak beating case when
0&E§<<1. For thege parabolic cases, by substituting (4.2}

into the self-focysing equatioun. {3.14}, the followiung resuls

is obtained

< ! 4 - !
(4.20) ;;uﬂa% ';;;5,( T 1)

Thus, if a2>a§, t hen if<0 and self-foacusing will occur

(i.e. f(z) will qecreaSQ)l Self-focusing will not occur 1if
a2<ag since %f)O and the beam will diffract ccntinuously
with f increasiny with z. So 3, is the aritical bean size
for wvhich self-focusing will occur and for a given
intensity, ag determines the critical power, that above
which, self-foéusing vill occur. For P <P , no self-

cr

focusing will take place.

We now invegtigate nonequilibrium solutions for the



beam sige parametel 1 py introducing the dirtracyion
"distance Rd:de, vhich is o familiar quantity in ligear
optics. Its  significCunce can be  seen by set'ing the

focusing term in {3.14} to zero (i.e. E2 9 0) s0 that it

becomes

' |
Zgzg(a) = —

b3

R,

7

with solytion

1 1
- T
{4.21} S =l+2 /Ry
where the bpoundary conditions £(0)=1 and %f(O):O have pegen
used. Thus a beal Propagating a distance z=R Will pave
increased 1its Dbean SiZe:-by a factor of V»Z due to

diffractinu. Ne cah lntroduce a similar cuatity R =kaasr

S

vhich we wvill call the self-focusing distance, and it
i

represents thne . distance :he beam has to propagate for 4the

wvidth to decrease by a factor of.V¥2, in the absence of

diffraction. In terms of RA'and RS we can write {4.20} as

i
(4-22} 9, Fe> = _'_3 ( 0 él
3 A S
Thus self~focusing will only occur if R; < Rd’ (1.e. 1t

focusing dominates over diffraction). wWe Tecall thaf'{u‘22}



I~

sS4

vill only be valid 1or the casecs whore ¢ is  parebolic  1n

E,-

The solutiopn ot (4.2} wita £(0)=1 and )ef(O):O isg

{4-23}) I g - L )e

r
a0 that fo ¢ <KA

» the beam will Converge slowly.

N
For the ponderomotive nonliyedrity in a stryng ndgnetic

field, we have fron. {4.7;

(4. 26 R s 2kc’a’ <<l
wf}anr Eol

apd for the weak jeating case

. .
P\s: chza,z’ ) O(AE‘2<</

{4.25}
e

FOTr a COL lasep heated plasma with,-%f/“,%vo.1, T~ 100 ev
and g~0.1, {4.214} and  {4.25} say that a self-foCusing
distance of 0.1 au requires intensities of 10#4 W/cBR ap4d

101% W/cm?2 respectively, where agaln v see that. the

ponderomotive noplihearity requires much higher jatensitijies

.than the weak heatjing case to give the sanme effect onp

focusing, ' E:w\
. ‘i
In pigure 3 we plot {4.23} for P@%rious ValU§s\of

N



RJ/R5 - It can be seen how the beam converges nore rapidly
as the self-focusing dist&nco decreases. It must be noted
that {4..23} 1is only valld for «(3.55/12<<1 or o, B2/12<K1 so
that as f decreases the approximations will be in jeparay.
Thus the prediction of catastrophic self-focusing
(1.e. f'—fk) as Z-» &‘&,/(QE—Hf) ) by {(#.23} is invalid, and

we expect new teatures to appear when f gets smaller.

4.3 NONEQUILIBRIUM SELF-FOCUSING - OSCILLATORY WAVEGUIDE

STRUCTURES

In this section we examine solutions of the self-
focusing equation for which the non-parabolic torm for j[ 1s
used. This corresponds to situations where the initial
intensity 1is sufficiently high or where focusing has caused
the 1intensity to become very large_ such  that the
approximations uged in the previous section break down. The
ponderomotive mechanism‘is not treated in this section as no

analytic solutions can be ob*ained for x,E2 > 1.

We begin by considering the weak heating case and

rewrite equation (3.14} by defining a new function u, (£),

(6.26) U, (s)= =1+ oo ﬂ;_ﬁ)
lkigl QCIKAI ;"



vhere f 15 grven vy {2.58) . Then the selt-1ocusing equdation

{3.14} can be written uas
(.27} 3, 5w = 2 PRED

Equation (4..7} yields, upon lntegration, the conservation

law

(4.28} A (Dg§)1~ U(3)==0¢
2

where C 1s a constant. Using the boundary conditions at z=(

$coy = |

{4.29] o ,
f3Co) = f(o) Bzg("):-é—

©

wvher~ the last condition is derived from the fact that ﬁ (9)
is identified as the initial radius of curvature of the
incident beam. If the incident heam is a finite plane wave,
then»iﬁ,(O):O;ﬁ) R,—p <o . Thus, evaluating (4.28} at z=0
with the boundary conditions {4.29} determines the value of
C as

(4.30} C = - U

{
2RS

¥e can now :zake use of {4.28} to compute the  minimun
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value attained by the beam 5 o parameter L0 The oxlatenc.
ot fmJ Comes trom the tact that as  the bean Lovunes, the
effective latensity  of  the  bean LnCreases,  causing the
second teruw on the vight-hand-c1de o {3.14y (the  pocusing
term) to Jdecrease in magnitude. Thic dec:case i maynrtaie
15 due to the tact that .§ 15 essentially the derivative of
the density ratic 7, and as the beam "ocuses, the  increase.d

iatensity causes more and wore density depletion in the

4
beam; thus M —0 a4 47*?0. Sl —F0. Therefore the

k- hlgh 1ntensities. a-
_ o \
the same tilme a5 the nonlinéa

N
Lt

5”' 5, the *diifrdctive

'force! (the, R;2r3“ténm . 15 lpcareasing. Thus at

O T -
some polnt the Jiffr:ction can doagonate the focucing and +he
bean will eventawaiiy start to liverge, even though initially

the beam was converging.

Using (.28}, together with the fact +that %I=O at

f=tﬁq and taking R, —peo, we find that Q&A satisfies

-

{4.31} L&, (gh“g ) = L‘,(')

We have solved {4.31} for foo. @5 a function of xfg; these
results apnear in Figure 4 and show the saturating behaviour
of the focusing. Similar results have recently been

publ_shed by Sodka et al (1976).

The strong heating case (2.3) will now be considered in

much the same way. He'begin by writing the self-focusing
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equation {(3.15) oxplicitly as

1
I LA).L 5_“1 E‘o

' - |
{4.32} P g(’t) S — = p
Be K'a'S' | at ct (uzrx,so)”‘/u«,f,)J

By defining a function Uy, (t) as

W ($)= = = o £ 4T

{4.33} =2t R s
X —
elal fcat (o2 )" (14, €,)
then {4.3.} becomes
(4. 34} Dii Scxy) = Df u.(¥)

as we had before. Thus to compute ghA' we have to solve
{4.35} ul(yp\‘,k ): ul(,)

vhere we have used the boundary «conditions Q%f(o;=0 and
f(0y=1. The solutica of {4.35} as a function of a&Eo
appears in Figure 5 where again we see the Saturation

behaviour.
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5. SONE PHYYSICS AND SOME AUPLICATIONS OF SELF-FOQCUSING
Iv this  chapter we dlscuss  the previous danalytical
results in t.rwa of some simple paysical arguements and draw

some conclusions based on a physical understanding of « self-
focusing Wee also discuss  come possible applications of

tnese 1deas to tae luser - 30lens.d .usion concept.
I

5.1 PHYSICAL DISCUSION OF SELF~FOCUSING

9]

The self-,ovcusing  process comes down to a simple
competition between two efrects; the tendency of the bean to
focus due to the density depletion in the bgﬁp caused by

radiation pressure or heating, and the tendency of the bean

to defocu. , due to diffraction. Tne dominant orf the two
effects deterxzines ‘the naéure of the beam propagation. A

a

balance can also occur bé{ueen the two effects, as was seen
in 4.1, where the diffraction of tae bean vas) exactly
compensated £for by thel focusing action of the ©plasma
resuiting in the propagation of a uniform beam. For a giver
intensity, this balance conditionrallowed us to determine
the bean size and’ n=2nce the power for which this self-
trapped or equilibrium propagatioﬁ state would exist. In
4.2 we saw that fo: a Given intensity, focusing would only
occur 1f the beam size 'a' was larger than the equilibriunx

value a This 1is because a larger beam size reduces the

£



dittract e 'tolece' and : focusing ac*t1oyp 15 able  to

dominat., causaing the beam to convetrge,

According to  the weak tocusing solutions ol 4.2, once

the tocusing boarvn 4t was  Irrever.inhle and cat tropuic,
1o, the  bean  would  shrink  to  zero .t g pornt focu:s,
causing the  dntensity  to o becowe intinite,  wh'ol is o oan
unphy;:i("dl, 1! not ancomtorta le conclusion. HHW“V(‘I.,, s

the intensity 1ncrease:, the validity or the approximations
used 1 4.0 15 des royea and a aore rijorous discussion must
be used. In 4.3 we round that the beaa size reached o non-
Z¢ .00 mialmun vilue, uﬁlcr e Can expect  for t WO reasons.
First, 1t 15 well known in optics that *he focaul 5ot =iz
of any optical ~~=t-m i5 limited by Jdiffracticn and cuis

wWill prevent the beaa troam tocusiiy to a4 porut. Secoand, the

nonlinearity saguraet. at  hijh intensity causicy  the
strength o: the focusing term to decrease to zero. Thié cdn
be seen in - he sketch (Figure b6) of the nonlinear teram @ of
the dielectric. As the tocusin  depends on-’ the deri: re
of ‘:E " with respect  to  the electric field, then the

saturatipn of thg noniinearit  at high intensities causes
§V——)bj thys ye;kéning the “ocusing term. At the same tikme
the diﬁféaﬁiiﬁ; éff,ct ;é*getting stronger c‘nce the beam is
gettihéfsialler. lT§§éfJeben though the focusing eflect may

s,

indeed dominateyigit;ally, the subsequent convergence of the

beam causes t$e-nonlinearity to eventually weaken (saturate)

I3

and diffractioa to iocrease -o ~he point where it dominates,
turn;hg;,thé”focusing around ard thereby spreacing the bean.

.

» =
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How- ver, a: the Lean spreado, the ditiroction . DO lnes
to  weaken  and  we  can eventually  retyurn to the initial
sltuation  where  the tocusing  will aqgailn  domingt. Over
ditt:action.  Taus an cscillatory behaviour ensue e comprised
ot alternate Locusiuyg and detocusning. Alrs 15 depicted o

Figure 7.

The ot cto ot diffraction an.d saturation ot the
nonl aearity  can also ¢ olain the existence of the minimuin

equilibrium beam size Calcnlated in 4.1, The typicatl

o e

E )

size tor dq . Was A/CAA’ for all mechanisams. This size ig
P .

(tor hbﬁ}g) oL the order orf *he free Space wav.ieng:th of the

radiation and is 4 geueral reature o saturdole nonlineat
nedia (Ak2anov et al  {(1966)). " 1s represents the
diffraction limited beam size for it d(dthJ liffra 18
sC  strong that the nonlineacity canno* ralanc. .- ction
SO that an equilibiium coundition cannot be att. o’ Even
if the blntensity 1s 1ncreased . the nonlinear . Weakens
(saturates) a less effective in compensa*ing for
-

diffraction. 7

5.2 EFFECTS OF ABSORPTION ON SELFP-FOCUSING

In the previous aralysis of self-focusing (Chapter 4)

we ba@;assumed that absorption of the laser could ke ignored

uhich'ﬁeaéi'ftpat the absorption length, lﬂu ., ¥as much

greater than lengths over which the lntensity varied due to



tocusing (o1 dnfocw;NM”. For example it iﬂng Rd) then o we

i

gould expect the ¢ttect of absorption to b significant.  As
the  absorption length varies as T ,wg (for classical
inverse-bremsstrahlung) we shonld  solve  for selt~-focusing
togetuner with absorption in a self-consistent manner i.e.

ary ¢hange in lntensity brought about by absorption will
uhdﬂd? the plasma parameters which in  turn  affect th.
absorption. aowever, i this 18 ~xtremely difficu ¢
ar&iyt;cally SO We  will s@tisfy ourselves by examining a

chaaplitire’ picture and leck { p gross features.

We o oike tae absorptiwn coefficient to be a coustant and
replace the intensitv g by ch‘\‘ woere Kk, 1s constant.

The weak focusing limst, 4.2 is treated in *this vay so that

the self-fccusing cguation {4.22} becomes

l ke

(.1} zaﬂ%,\ S l} - - £
S
S Ra RS/

The soluticn to (5.1} with no absorption (i.e. kaf‘) is

pa

(5.2} 4 §:|—+(|‘KA/R1)21/R;
s

from which we can wefine a focal lencta zg (1.e. when £=0)

of,

(5.2 z

Now z. 1s an order of @magnitude estimate for the scale



b3

length of axial variation of the bom 50 that the neglect ot

absorption requires the condition

N T
(5.4} Zg << fpaL‘
It {5.4} holds, then tor distances much o "ler than the
- . -hi»\ ¢ . . ~ o
absorption length, o =1  and { Ny comuwrs the equation
previously = I 1n 4.2 where ab 1 wWas neglectéd.

Howevel, 1t the absorption length 1. very short, then the
mégnitude oft the selt-focusing term in {5.1} dedrecases
rapidly with 2 and 1f the absorption length is sufriciently

short such that
: T
1
{5-5} 2; 77-ﬁabx

‘then for dista s larger than 4. few absorption lengths,

{5.., becones

' ~ L
(5.5} 5, Y = RTs
o

with solutio
= 1+ 2 /51
(5-7) y /R,

1s 1f the ab. rption is sufficiently strong, it can cause

"ae beam propagation to become diffraction “ominated and the

5

J>eam will thus spread, even though imitially it @may be
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bU

tocusing. Thus, absorption 15 a detocusing mechanism which
1s to be expected as it uodkvﬂﬁ the nonlinearity by
decreasing  the  laser in*onsity. sodha et gl‘(197b) have
recently solved {5.1} numerically and have demonstrated the

defocusing nature of absorption.

In Figure 8 we have plotted the weak (equation ({5.2})
and stronyg (equation {5.9}) absorption solutiens  of {5.1}.
For 1intermediate values of the absorption lergyth, solutions
to (5.1} must lie in the region bounded by +the weak and
.strong dbsorbLLon solutions as  is  clearly séen  in the
numerical results ot Sodha ©t al . We also note that even
if the absorvtion is wedh, als beas s will eventually fefocus
once the propagation Jistance has become comparable to the
absgrption. length so that self—focusihg can only be

maintained tor distances of the order of S“Qbr'

5.3 SCALE LENGTHS OF SELF-FOCUSING

In this section .we turn our attention to the size of
scale lengﬂﬁs over which ‘quatities of interest vary namely
the beanm size and focusing distance (or oscillation
wvavelength). The latter quantity refers to the axial scale
leogth of_ampiitude variation brought about by the focusing
and defocusing of the beam while the former is a radial

Ecale length. In particular we wish to examine the periodic

piOpagation structure found in <he discussion of the weak
1% ‘



(15,
+,

=

and  strong  heating  cases. As the temperature and density
are funcf}ons ot the eolectric fivld, then the dlte[natﬁ
tocusing and defocusing of thé beam 1n the plasma will cause
the temperature and density to vary periodically over the

same scale length (vhich we call A\ creating an axial

osc. )
nonuniforuw plasma. We wish to estimate this scale length to

see what axial variation to expect.

We recall the results of the weak focusing solutions of

section 4.. where we could definc a focal distance Zy to be
‘ T ;}.‘:_‘,.
(5.8 f; ~ RS'Z ROL | K
Z"(‘ - ka
which fo; -RS: Rd.’ could be quite long. 'However, we are
. interested in solut.on: tor higher intensities (i.e. quj
or c§E° of o(1)). For these cases we can ufite the self-

focusing equations {3.14} and {3.15} as :

i
(5-9) o, %=1 ( = - =
. $T\ R RYS)

where
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oL N 2

R, (‘40‘)\&’/2-;1)
. 1 o(;‘fo\/z,

5105 R (3) = J
1 Iy
Ry (1423%E) (1+%F,)
T £

L .

vhere g 27 Hpfav/c?.  If we take ES(f) in {5.10} to be given
by RS(1) (1.¢. £=1) and treat this as a constant, then

{5-9} has the simple solution obtained in {4.1} of

{5-11} &.1: | +[|.. R‘I ]3_’

2
R7) By
1
and setting f=0 yields, in analogy with {5.8}, *focal"

. 7/ .
distance z of

$

A
(5.12 z'zﬁ Ry 25(1)

Equation {5.12} gives an estimate , albeit a crude one, for
the scale length of axial variation of the electric field.
The oscillation length would be ~22;, « For 0("}3‘2 or o(E, of

0(1), {5.12} yields
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4 1
(5. 13} 25' 2~ Ry = T rla
| = ”

1

N

Although the derivation of {5.13} 1s not a very exact one,
it reveals an important property of the tocal or oscillation
length  in that  this length is of the - rder of the initial
beam size 'a' for the higher intensities. This can be | seen
more rigoronsly if, following Max (1976) we consider a bean
propagating 1n the equilibriua self-trapped state and
perturb the solution slightly. This is done by writing the
fight-hdnd side of the self~f6cusing equation as a function
1f‘(az,f), and then expanding 7/ about the eguilibrium in

order to linearize the woquation.

We treat the weak heating <case here, as the strong
heating case gives very similar results. Following the

above procedure, equation {3.14} becomes

. T
(5.14} PRI Pla ) Fw)
VwHere

. '3 2
(5.15] Yiav5)= L [ - 9A%EA
J AQQ‘L;:? a (‘_—_T 2
”“Agéifz)

¥e expand %ﬁ as

(5-16] ’\f’(qllf): ’\f/(q:,l) + (5- I)D;Y’(aj 1) +(at~q"‘) QcLl)L(‘_’:,f)*"-
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Tuen using {5.16}, (5.1u} cdan be written as

5.17 . r — t
S i) (N, NE =~ ol
2t T4 i 1) .
qu ("ﬁ th
\ v+
.
which has the solution that satisfies =1 and Difzo at z=0,

z 2 b3 ’,’CL

5183 §-1=2(ag-a") / - C°5Liqi*(£i)2]

. . Eol
k*ala, evirtbo

Thus the perturbed solutions oscillate with /4“‘given by

1/
T 1 8
{5.19} /\Mc: Va2 7 Kag < [+ Eoﬁ)

% E'.

As the 1nitial beam size was~at,‘tnen We ségfagain k&at the
oscillatior scale length.is determined, in part, by the bean
size. This feature also appears in treatments of beanm-
trapping where the dernsity profile 1is assumed to be given,
instead of solving for it selt-consistently (se. iani et al
{.-74), Feit and Fleck (1976)), where it is found that /tkis
determined by the width of the density profile. As the bean
size determines the width of the density ctrofile (in the
steady state) then this is the reasonm for the coﬁnection

between beam size and f{ .
05
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It i1s worthy to note that (5.13} or {5-719} predict that
for beam sizes of the order of the radiation wavelength r\ .
then A&?'O(A) ( Which violates the assumption that the axial
varidgatiou ot the amplitude is slowly varyinyg (sce discussion
after (3.5}) which helped to .simplify the wave eguation.
Tnus tor the previous discussion to be validg, we require the
initicl beam size 'a' to be much liarger than the radiation
wavelength, i.e. a>>k=1. Therefore, beams that are of the
order ot dd/y C/wp. tenli to wviolate our slowly varyinyg

P e

assumption, so0 that for a))aﬂi_ our solutions should have
A%g>k‘l, even for  high titensities. This 1s in qOﬁ£ra5t
with the conclusi~ n of dax (1970v) whereby she claims that

Aikk—l tor . high intensities, regardless of initial bean
o5

size.

5.4 SHMOOTHING OF INHOMOGENITIES

Mani é; al (1974) pointed out that the axial variations
of temperature and density that accompany the periodic self-
focusing will te smoothed out by axial thermal conduction.
The conduction alohg magnetic field lines is due primari’y

to electrons and lengths over which conduction keeps the

temperature uniform is given by

: S/% "1
{5.20} JQ - 25 x,0 7; T

I -
4 n,
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waere P is  the  time scale involved. For a 1 kev plasma
with nC:7x1ul7 cm—3, !N’N'i cm ftor T ~10 nsec. A; the
heating  time  scales ol interest  in fusion - cactors ar.
neariny 1PﬁOC, then  the temperatures  and  hence density
should be rairly uniform over distances of tens ot
Centimeters. In constrast, fhu is of the order of 4 few
beam size:,  and typically a~0.1 - 1.0 cm, S0 we see that
Au1 <<,&, ‘ very high temperatures and thus the

inhomogeneity in density and temperature introduced by the

non-uniforam intensity should be smoothed out.

in the radial direction, perpendicular to the magnetic
field, the density and temperature variations are determined
by the beam width, and as the beam focuses, the radiai widtan
of the density aad temperature profiles also decrease.
However, radial thermal conduction will Limit +the size of
these profiles.- Heat conduction across field lines is
primarily due to ioans becausg:of tEeLr larger Larmor ’radii,
ani the length over which radial heat conduction will kKeep
the temverature and density uniform is given by

-1 v I/

{5.21} ' [J: jo h, T

For B~ 100 kG, n,~7x1617? cp-3, Te~1 . . then ({5.21} gives
lfv1oﬂ- and 103u for T~ 1ns and Tus respectiveiy. So for
€0, radiation (k—lzxr1qk), even for short iime scales, it is
talikely that beam sizes of a~k—t1 would self-focus as a

density profile that narrow would not be maintained

\Z
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Y

sufricier tly long betore conductLqﬂ“rmuofnwdj¥3~igut. Thuc
for a longer time scale, the ponbvndiculdr4hé;t conduction
can cause the temperature and density profiles to be falrly
uniform across  the extent of the beam, which will tend to

weaken the focusing effect, causing the periodic focusing to

smooth out. In fact, 1f the radial thermal conduction is
very ‘efficlent', thnen this could untrap the beam by not
permitting a density profile to be @maintained. Thus 1in
‘order td& cut down on radial thermal conductior ‘trong
magnetic field 1nside tne plasma will probably L-ve o  be
used . order to trap a laser. beam over large distances, as
required for laser - solenoid fusion schemes.

5.5 APLICATIONS.TO LASER SOLENOID FUSIOHN

W -
We have seen in our discussion of the ponderomotive and

heating mechanisms that the latter is by far the more

1ominant self-focusing process for intensities,of interest

in laser - solenoid fusion (101! - 1012 wW/cm?), even in
strong magnetic fields. However, the focusing of +he luser
beam due tc¢ heating and subsequent expansion of the plasma

causes the intensity to increase by factors as high as 102 -

103 so that the ponderomotive Lorce may become important in .

these high intensity regions either by causing further
plasma depletion or by «coupling the transverse e.n.
radiation to longitudinal ©plasma nodes (i.e. stinulated

scatter.ng processes). Nevertheless we have seen that the

-
e

o
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heating ot the plasma can create ) density profile that is
//

ffavourable' to affect focusy™y even thouyh the plasuwa was

initially uniform.

in the foregoiny andiysis, We have computed the density
profile§ sel f-consistently, but these are only valid when a
steady-state condition has been reached. Tols means tudt
tiese profiles drebestabnghed on time scalés of the order
of the characteristic neating or phonon tfansit times (?1 or
td see 1introduction). Thus we have ﬁot solved the self-
focuéing problem fo1r time scales shorter than these, leaving

the question of the focusing (or defocusing) of the 1inlti~’

portion of the bednm unansw=red. we can, however Glea: Jme
gualitative information on the development of the 2 1.
portion of a laser pulgp by consideriné.a slowly 11 15104
pulse. If the rate of ~:crease of the pulse is suff. rently

slow so that we can apply our weak heating theory as an
approximation over time scales AT <<§;" . then from the
self;focusing‘equation {3-14}, we see that for early tines
in the pulse, where the intensity is wvery swmall, the

focusing term can be neglected and diffraction initially

dominates. For later times the diffraction should become
compensated for by the <rocusing action as the pulse
intenszit begins to increase and at some point the self-

trapped state shouid be attained. As the pulse intensity
increases further, the periodic focusing and defocusing
discussed in 3.3 will ensue. If we recall tha* absorptio:-

is a defocusing mechanism and that for early times the
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plasma will be relatively <cold tmplying  short absorption
lengths,  then  this Process  Wwill tend to cause the early
portions ot the pulse to Jdefccus as  waell as restrict ahy
tocusing " hat mday take place, to regions of length less thaw

<| - These qualitative fea’ ires appear in Figure 9.

The qualitative ccaclusions, a4s shown in Figure 9, hav

been born out 1n a recent tiame dependent numerical tr atam
of the plasma radial dynamics and axi. biam propaga* by
Feit and Fleock (197v), where they have seen features similar

to Figu: - 9, even tor short i nlses.

From the above d scussion, we can conciude tha+ the
inltial portion of tne laser pulse will diffract out of the
plasma as sutficlient tlme has not elapsed to establish 4
density b&pfile sufricier*® to affect beam-trapping. Thus,
unléss tg%?; exists a pre-formed, favourable density
profile; the Dbeam front will tend to defocus. This will
probably alzso be the tendency of the bean just behind the
bleaching wave irout (the sharp boundary between optically
thick and thin regions of the plasna coiumn, See Steinhauer
and Anlstroam (1975)). dowever, the beam mcuy; produce a
density minimum ahead of th= bleaching front because ia the
regioun.. far behind the front the plasma is being heated and
1s expanding, thereby blowing the magnetic field imbedded in
the plasma out as well. This will cause field lines further
ahead to become distorted and take some plasma with them,

thereby creating a density minimum ahead as well. Now the
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drstur l)‘xl(‘<‘ oL the magnet i tae w1l l DIOpPagat e 1t the

fvon velocity Y B/ UxAm, so that 1t i bleacuning wave
propagates at o1 slower than 'UA then  the  heating  and
subsequent evpansion or the plasm . (With th maguetic fi1eld)

will tend to  creote a tavourable density protile ahead ot
the -~ ront and . wey ter 0 tocus t e Leanm (or at 1 ¢ weaken
the ditrvac von tendency) (Burnctt and ftenberger (-970)) .
However, tals regulre: a closer 1ook at *he coupled radial

5

ard ax. L dynamics ot t'e laser - plasma 1nteraction.

By tasing diffractica into account, we o have  © on 1n

3.3, that even thougu catastrophic vit-tocusinyg doeg ot
occur, the mtensitles attained In tie focuSed‘»portions ot
the tean cau be very high irieed. - - 1s quite ‘undesirable
as  .h pu.s the internsity into a Yeglme where parametric
1nstabil ties such as ‘timulated Brillouin scattering (b:ake
et al (1374)) ay pe 1mportant. Alsc this strong focusing
Cdn cr-ate nonunitormities in plasaa density anpd temperature
as discussed earlier. T> reduce the strong focusing, we
couléd use very lairge B-fields so thkat a nearly constant
radial density profile 1is maintained theieby weakening the
focusing tenden: . As . saw tnot -he strong chusing wiil
Vnot take place until som¢ heating has ccnsed a density well
to form, the application of strong B-fields would not be
required until the plasma was 'hot'. - Eowéver, near the L=an
fronf, as the plasma teeoperature is cooler, high zagnetic

fields would not allow c¢n appreciable density profilie to

fora so t .beam trapping.may nc+t even occur.

AN
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I‘};fs to  control the Lo uslng _i_n sodae tashion, iixv
magnetic fdeld would have to  be  dncreased  in o the  high
temperature, heated  pegrlon of the plasma column and not 1n
the bleachliny tront region. So a pre-determined ., ate  of
increase of B alony the axis cou ' help to reduce the strong
tocusing in the hot regions by reducing the amount ot plasma
deplet con 1n the beam. High magnetic tields would also be
neccessarv to preveat difrzdactive losses at the *hot' end ot
the solenoid (the end wheoe theedaser i1 incident; as radial
heat couduction can snooth out a favourable density protile
when h%gh temperatures are reached unless a high magne{ic
field 1s present to reduce *Lis etffect. Bu*t *he use ot aigh
magnetic fields is undesireable f-om the point oﬁ view >t
optaining high beta plasmas tor greater efficiency ih !
rééctors, so that this is dne problem which st11ll has

resolved.

Tc avoid the uwse of high magnetié fieids to céhtrql
strong iocuéing tendencies, .the laséq energy "could be
distributed over many different<135éi;ggnes &0 that the béam‘i
vould be compoSed of radiation spread ovgffmany wavelengths.

1 . )
As the focusing distance zg or oscfllatioq. wavelength

vl
depend‘ on wavelernJth (see equations (5.13} or {5.19}), c.en
the use of a multimode laser 'd tend to smear the

focusing out since some of the modes would be focusing wkile

at the same time others would be defocusing (Offenberger

(1977)) . As opposed to the case where all the laser energy
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‘m
1S5 1 a sinele  wmonochromat s line, Jiving rise to h@igh

Intensitics, any pafticuiar wode of # wultimode lacer would

have omewhat Lower tatns1ty . Lo that strong tocusing
would tead to be less severe  in terms at the high
intenslities  that it would produce. Thi: 15 the result of

[

only some of the laser energy beiny tocused irto a  small
N o :‘“
region at any pArrich¢ngojnt. Also the smearing out of
% s >
the focusing would tend -4 smooth  out inhomogeneities in
‘ . l‘ .
temperature and dengity cauced by noununiform heatiny.

i ‘.'\M
We end this Chﬁgéer by mentioning those are.s related
x

3

to the propagation of laser beams in long. plasma columds
’ L

that require turther lnvestigation. First og all the

- . LEON ! .

stability of the laser bean - plasma systen F&guires“

investigatiou. Steinhauer (1976) has <iaown that the befa.is

b

i - o
‘axlal perturbations - (long,

Stable to long vavelength,

compared wath the focusing length), however Feit and -Maiden $

] ' -
(1976) ©  that short wavelength perturbatiors can cause T
exponential crowth of the bean size. Bq@@iqof these

v L

investigati§ns are quite preliminary. R,
e ¢ . . . \ o J'

Also, ssgttering due to nonlinea; processes such as
stimulated Br;ilouin of Raman scattering (SBS or SRS) may
become important if the bean focuses to high intensities.
Sodha et al (1976) have 'shoun that self—foﬁusing in an

unmagnetized, collisionless plasma can enhance SRS

considerably.

Perhaps the wmost important piece of work that is
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rcquirodg apart  from an actual experiment, 15 a completely
selt-consictent solution ot the coupled, time dependent,
plasma - . ptical problem where both radial and axial plaswma

dynamics are taken ‘into acceant.  Also  the  propagation  of

pultimod. lasers 1n plasmas requires investigation.
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H. CONCLUSTON

In this thesi1s  we Ave shown that the natupe ot the
laser beam propagation ds wnds on  the competition between
the refractive (tocus ) ettect o0t the plasma and the

diftractive (defocusis tendency ot the be 1 result

of thig competition beam will either de provagat
unitormly, or alte Loy tocus and defocus, with the rocal
size limi. ! by Jdiftraction. This behaviour can be produced

by either a collisionless ponderomotive mechanism or by the

heating of the plaswa. We have studied the effect of an
L
externd.ly prodi 'ed magnetic field inside the plaswma and

shown that more laser energy 1s required ;o produce tie same
eftect on thne tocusing of tne beam as compared tojgpt “1eld
free ca'se, as the rlasma depleticn 1is reduééc by the B-
fieli. It was also» shown tBat regardless of the self-
i L .
focu¥ing mechanism, 'the smallest equilibrium beam size is of
the sc<re order, whether or not a magnetic rfield is present.
laus we on-~l-de that it is difffﬁction, which is‘gqmmon'to
all cases comnsidersd, that limits the beam size. | The
heatinc¢ nechanism was “nund to be a far more domihant

process than 2 ponaeromotlve nonlinearity for laser powers

~

interest to solen01d fu510n, although the ponderomOtlve

tf -ce ma: become¢4mportan{ tn the focal regions of the bean.

¥e have speculated that strong absofbtion of the laser

2ay cend to defocus the beaa front for early pulse times

5
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while strony radial  conduction may tlatten the density
profile at late tigess (;kén the plasma 1s hot) and hence
destroy the tocusing mechantisao. A pre-tormed density
miulmur @dy be necessdry to help focus the initial bean
tront whil to connter the eftects ot the strong focusing
that can ocuur later, we have suggested that strong magnetic
fields might have to be v :ed 'or that the laser energy be
distributed  over many «sel lines (1.e. use of a multimode
laser). However, high magnetic fields will probably be
required ot late times to reduce the strong radial thermal

conduction «hich cogld destroy the focusing profile.

P
e .
4
“ w7y .
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Table 1. Restrictions for Weak Heating Model

g - _
To O E2<K S B> ,
(eV) (statvol+*/cm) 2 (k3) :
%0 1.3x10¢ \J_@u 755
192 9 'H';.‘?»
02 1.3x109, ‘jf:ﬁ 2
103« 1.3x1010 7. -
10¢ t.3x1err 230 e’
{Note: the restriction on *he magneti: _ield for a given-

temperature. can be expressed as A mn, T, /B2<<T.Tx10-18 p
which gives B<<1 for n_ =7x1017 cn=3.) ’
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APPENDIX A DERIVATION OF FQUATION {<olh)

We derive the equilibrium ©quation  tor electrons by
setting the d.c¢  curreat to Zero (1.e. Jo=Q). In an axial
ragnetic tield there exi.ots both a radial and @ -component of

e

J*so we set each component to zero to obtdin the equllibrium

equation. The same equation . obtained from both
components so that we will treat only one, -he -component
here. The @ -~ccmponent of the zerce order "d.c.) current i«
© «©
. [ 3 . o '
3 -

T2 vduz-ane| e v v - £2,4 4y
{A1] — { — lJ\\ M

o 3 » 3 01"( ¢
The arove eguation is integr -*ed using the frequency

ordering 922>>1'2 so *that

J’ +Fe§%[’\)>5 ]dv

’

: P ISP
- THe o -‘ijvf.o‘v - 9/~‘kf“v Jodv -

™e
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With f.=n¢AIkexp(-av2/T,) trom {2.42}, the integrations in

.{A2} are straight forward and we obtain
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Setting J9 to
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zero yrells the desired equation,
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APPENDIX B DERIVATIUN OF PQUATIOY (. .7H)
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Setting £=¢ in {8}, we cbtain, using {(<.73} ané (2.77},

~..

>
(B3] J.+4<—'_—L>+29~7/°)-0
o, o 2%t 7]2(0)
Y
/
Now ’ ;
_ - »
-1 v.
T /v 2
Bu) 200 )= (14 A E ) o £ (1¢2%¢)
Gt M (o) (42 &, ST

so that for q3%f1, this term 1is O.Z/C:Z, and it 1s safe to

neglect ttke 3"70) tera and we then obtain (2.78} from (B3}

as
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It the 1ast tera 1n {H 3} cannot Le neglecsed, then 1t
eltect ot the temperature protile widtn 67 would be to widen

1t. We can o state that the validity ot (bSO} 1equires the use

ot sutticiently trons  waagneric ti1elds oas I —poo and
Y s "o

M (U)y —p J  whern e R [: i becomes  too large  toe

assumpt ron ot 1 caussaan shaped  temperature protfile 1o

probably 1n doutt as o« L.



