
Time Series Forecasting using Sequence Models with Attention

by

Elizaveta Kharlova

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering
University of Alberta

© Elizaveta Kharlova, 2021

Abstract

Due to the growing penetration of renewable energy sources, accurate energy forecasts

are required to support their effective integration. In this field, deep learning methods

are currently demonstrating successful results, but there is still a room for improve-

ment that may eventually lead to their wide deployment. We suggest that sequence

processing applications from the field of natural language processing (NLP) can be

adopted to forecasting. Some recent advances in deep learning that brought NLP

to near human performance include sequence models and an attention mechanism.

Considering that these methods apply well to univariate time series such as language,

they can be potentially extended to multivariate time series forecasting. This may

be applicable, for instance, for prediction of photovoltaic (PV) power generation with

added weather features it depends on.

Current approaches popular in PV forecasting include statistical and machine

learning methods as well as basic deep learning models such as feedforward neural

networks and recurrent long short-term memory based architectures. Although deep

learning has claimed some success in this field, there has been no wide adoption of

sequence to sequence models yet. This insight inspired an exploration of adapting

some NLP techniques to multivariate time series forecasting. We propose a sequence

to sequence architecture with attention as a model superior with respect to the base-

line architectures. Overall, this thesis recommends an adoption of sequence attention

models in PV generation forecasting and validates this proposal by improving the

quality of the forecasts.

The model leverages the high resolution multivariate signal by extracting features

ii

from the numerical weather predictions and historical information to produce a binned

probabilistic forecast. Sequence to sequence models benefit from a more expressive

probabilistic forecast due to their recursive structure. The attention mechanism fur-

ther aids context extraction. The proposed sequence to sequence model with atten-

tion outperforms common models, such as long short-term memory networks and

a classic sequence attention model, for photovoltaic generation forecasting. k-fold

cross-validation provides additional insights on the influence of a dataset’s arrange-

ment on the model’s performance and confirms the validity of the design decisions

and architecture choices of the proposed model.

iii

Preface

Some of the work in this thesis is a result of a collaboration with Daniel May at

the University of Alberta, described in article E. Kharlova, D. May, and P. Musilek,

“Forecasting photovoltaic power production using a deep learning sequence to se-

quence model with attention,” published in the proceedings of 2020 International

Joint Conference on Neural Networks (IJCNN). Section 2.2.4, Losses and metrics, in

Chapter 2 is adapted from the publication. Parts of Chapter 3 regarding the archi-

tecture description and probabilistic targets are also based on the respective section

in the article. The experimental setup for benchmark models, section 4.2, is adapted

in Chapter 4, as well as section 5.1 of Chapter 5 discussing this experiment. The rest

of this thesis is the sole original work of the author.

iv

Acknowledgements

I would like to thank my supervisor, Professor Petr Musilek, for his guidance in my

work as well as his advice in exploring my interests in the field of machine learn-

ing. I would also like to thank Daniel May, my colleague and mentor, for patiently

supporting me in my pursuits of deep learning knowledge. I also want to thank Elec-

trical and Computer Engineering Department and the Faculty of Engineering at the

University of Alberta.

v

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Objectives . 2

1.3 Thesis Outline . 3

2 Background 4

2.1 Time Series Forecasting . 4

2.1.1 History of Time Series Forecasting 4

2.2 Photovoltaic Power and Load Forecasting 5

2.2.1 Exogenous Variables . 6

2.2.2 Individual vs. Aggregated Load 6

2.2.3 Forecast Horizons . 6

2.2.4 Losses and Metrics . 7

2.2.5 Deep Learning in PV and Load Forecasting 8

2.2.6 Energy Forecasting State-of-the-Art 9

2.3 Deep Learning . 9

2.3.1 Neural Network . 10

2.3.2 Neural Network Training . 11

2.3.3 Neural Network Regularization 13

2.4 Deep Learning for Language Processing 14

2.4.1 Recurrent Neural Networks 15

2.4.2 Sequence to Sequence . 16

vi

2.4.3 Attention . 17

2.4.4 Transformer . 19

2.4.5 NLP State-of-the-Art . 20

3 Architecture Design 21

3.1 Sequence to Sequence Architecture with Attention 21

3.1.1 Applying E-D with Attention to Multivariate Time Series . . . 23

3.1.2 Probabilistic Targets . 25

4 Experimental Design 27

4.1 Data Description . 27

4.1.1 Training Setup . 28

4.2 Benchmarks . 29

4.2.1 Implementation of Benchmark Algorithms 32

4.3 Design Choices: k-fold Cross-Validation 33

4.4 Original Attention Test . 35

4.5 Recurrent Cell Test . 37

4.6 Model Parameter Tuning . 38

5 Discussion 39

5.1 Experiment 1: Benchmarks . 39

5.2 Experiment 2: k-fold Cross Validation 41

5.3 Experiment 3: Attention . 43

5.4 Experiment 4: GRU . 45

5.5 Experiment 5: Model Parameter Tuning 46

6 Conclusions & Future Work 49

6.1 Conclusions . 49

6.2 Future Work . 51

vii

Bibliography 52

Appendix A: Additional tables and figures 55

A.1 k-fold Cross-Validaion . 55

A.2 Forecasts . 55

viii

List of Tables

4.1 Benchmark Model Architecture Details. 34

4.2 LSTM/GRU Model Parameters. 37

4.3 Parameter Tuning Setup. 38

5.1 Benchmark Model Performance Comparison 40

5.2 Skill nRMSE for k-fold experiment. 42

5.3 Skill nRMSE for PV ablation experiment. 43

5.4 Attention Model Comparison. 45

5.5 Recurrent Unit Comparison. 46

5.6 Model Parameter Tuning Results. 47

A.1 Complete k-fold Experiment Results. 56

A.2 Complete ablation Experiment Results. 57

ix

List of Figures

2.1 A Fully Connected Neural Network. 10

2.2 A Recurrent Neural Network (RNN). 15

2.3 Sequence to Sequence network. 17

2.4 Attention Mechanism according to Bahdanau et al. [3] 18

3.1 Proposed Encoder-Decoder Model with Attention. 24

4.1 Shifted NWP and PV Input Sample. 29

4.2 NWP and PV Input Sample. 30

4.3 Binned Probabilistic Signal. 31

4.4 One-block LSTM Model. 33

4.5 Encoder-decoder Model with Attention according to Luong [25]. . . . 36

5.1 Actual PV Generation PDF Signal. 44

5.2 PV Generation History and Forecast PDF. 44

5.3 Train and Validation Curves for S2S-Attn-2x256. 48

5.4 Train and Validation Curves for S2S-Attn-4x256. 48

A.1 Actual PV Generation PDF Signal. 57

A.2 PV Generation History and Forecast PDF. 58

A.3 Actual PV Generation PDF Signal. 58

A.4 PV Generation History and Forecast PDF. 59

A.5 Actual PV Generation PDF Signal. 59

A.6 PV Generation History and Forecast PDF. 60

x

List of Symbols

E expected value

F forecast behaviour

K attention key

KL Kullback-Leibler (divergence)

P true behaviour

Q attention query

Rt remaining components of a time series

S skill score

St seasonality

T time - forecast horizon

Tt trend

V attention value

α attention alighment scores

H minibatch of activations

θ network parameters

g gradient

v momentum

xi

x network input

a attention alignment function

c attention context

h hidden state (of a recurrent network)

s hidden state of a decoder network

y network output

xii

Abbreviations

ACSWDNB - accumulated downwelling shortwave flux at the bottom.

ANN/NN - artificial neural network.

ARIMA - autoregressive integrated moving average.

CDF - cumulative density function.

CRPS - continuous ranked probability score.

DL - deep learning.

E-D - encoder-decoder.

FFNN - feedforward neural network.

GRU - gated recurrent unit.

HRRR - high resolution rapid refresh.

LSTM - long short-term memory.

LTF - long-term forecast.

MSE - mean squared error.

MTF - medium term forecast.

xiii

NLP - natural language processing.

nME - normalized mean error.

nRMSE - normalized root mean squared error.

NWP - numerical weather predictions.

PDF - probability density function.

PV - photovoltaic (power).

RNN - recurrent neural network.

S2S - sequence to sequence.

STF - short-term forecast.

SVM - support-vector machine.

SW - sliding window.

TF - teacher forcing.

VSTF - very short-term forecast.

xiv

Chapter 1

Introduction

1.1 Motivation

With the growing use of renewable energy sources and the need for its effective in-

tegration, the demand for accurate energy forecasts has increased. A requirement

for higher accuracy is also accompanied by a demand for more information, such as

information supplied by interval or probabilistic forecasts. Deep learning has demon-

strated potential for energy forecasting, but it is still underdeveloped in this area [1].

Natural language processing (NLP) has recently achieved near human performance

on language tasks. The performance of language models has dramatically improved

using novel deep learning approaches. The corresponding techniques were initially

based on a sequence to sequence model, which were designed to reflect the purpose

of language transformations [2]. Sequence to sequence modelling allows mapping

sequences of different lengths, which are connected by non-linear relationships [2].

Furthermore, adding the attention mechanism improved the capacity of the sequence

to sequence models to carry information [3].

Language processing applications include translation, text to speech, text gen-

eration, question answering, and other univariate sequence processing tasks. NLP

models claim positive results at these applications, but have not yet been applied to

1

multivariate time series. Considering the fact that deep learning methods are already

claiming state of the art results in forecasting some multivariate time series, aforemen-

tioned NLP techniques can potentially bring additional improvements to this area.

Therefore, the aim of this research is to extend the use of methods adopted in NLP

to multivariate time series forecasting.

The question is whether the existing NLP architectures can be directly applied

to forecasting multivariate time series. Solar power forecasting is one example of

multivariate time series forecasting, because solar power generation is dependent on

weather variables. Together they can be considered a multivariate time series. From

the lack of wide adoption of NLP methods in multivariate time series processing [4,

5], it can be concluded that the transfer from univariate to multivariate signals may

require substantial changes. The way the model is expected to utilize the data is

different for multivariate time series. Having multiple variables as inputs leads to

larger amount of information. So, the architectural changes will need to reflect the

properties of such signals. Hypothetically, better connectivity between encoder and

decoder may aid the information flow in the network. The goal is then to explore and

evaluate the architectures of sequence to sequence models in multivariate time series

forecasting applications.

1.2 Thesis Objectives

The goal of this work is to explore the application of existing univariate time series

techniques to multivariate time series and to subsequently find a way of adapting

these techniques to benefit multivariate time series forecasting. Several deep learning

methods with origins in natural language processing are set to be explored.

1. The first objective is to analyze the sequence to sequence models and their

application in forecasting.

2

2. Next, attention mechanism is introduced to the forecasting model and its ben-

efits to multivariate time series forecasting are examined.

3. Afterward, possible changes surrounding the analyzed model are explored. De-

sign choices that may affect model performance are to be identified and their

effects investigated.

4. Finally, further validation of proposed model is to be conducted and opportu-

nities for reducing required computing resources examined.

1.3 Thesis Outline

The structure of this thesis is as follows. Chapter 2 begins with an overview of

time series forecasting methods related to this research. It is followed by a brief

introduction to deep learning and its fundamental techniques. Next, a closer look

at the deep learning mechanisms in the field of natural language processing, which

inspired this research, is presented. An argumentation for proposed architecture of

a time series forecasting model is presented in Chapter 3. Chapter 4 describes the

experimental setup. Chapter 5 consists of an overview of the experimental results and

their discussion. Conclusions and possible directions for future work are presented in

Chapter 6.

3

Chapter 2

Background

2.1 Time Series Forecasting

Time series is defined as a stochastic process, a collection of random variables ordered

in time. A time series usually has three components: trend, seasonality, and cyclic

behaviour. Trend, Tt, is a long-term increase or decrease in the process value over

time. Seasonality, St, is a pattern in time series data that occurs with constant and

known frequency, such as time of year or day of week. The remaining component,

containing cyclic patterns, is referred to as Rt [6]. A cycle is a pattern occurring

with a dynamic frequency, such as economic changes. It can be independent or have

short-term correlation.

2.1.1 History of Time Series Forecasting

Time series forecasting has been dominated for a long time by statistical and math-

ematical model-based methods such as exponential smoothing, autoregressive inte-

grated moving average (ARIMA), and support-vector machines (SVM). Some of these

methods are still popular today [6]. Artificial neural networks (ANNs) were underrep-

resented, partly due to the lack of a sufficient amount of data [7]. Although networks

designed for temporal processing such as recurrent neural networks (RNNs) have

been introduced [8], other algorithms such as SVM and random forests have gained

advantage in time series forecasting due to their easier implementation and training

4

procedures. However, ANNs started to gain more appreciation following the increase

in the availability of computational resources. The possibility to train deep neural

networks resulted in new opportunities to explore deep architectures more and to use

them in a wider variety of applications [4].

Time series forecasting can be divided into subfields such as energy forecasting, de-

mand forecasting, financial forecasting etc., with each type of data exhibiting different

properties. For example, energy forecasting field includes forecasts of load demand

and supply, and photovoltaic power. These variables usually depend on several other

features, such as temperature, and are considered smooth. Retail demand forecasting

data is generally intermittent and sparse. Financial forecasting data is smooth, but

depends on a large amount of uncertain variables. The amount and quality of data

are also important in the choice of model, because neural networks usually perform

better when trained on datasets with large amount of information, which represents

the modeled process well [4].

2.2 Photovoltaic Power and Load Forecasting

With the rise of use of renewable energy sources, the demand for accurate forecasts

of solar power generation and load consumption has increased. Photovoltaic (PV) or

solar power is generated by solar panels and depends on the amount of solar irradia-

tion [9]. Electric load is the electric power consumption in either a single household or

aggregated for a certain community [5]. Both PV generation and load consumption

forecasting have economic benefits in the integration of renewable resources.

This section will cover the framework of PV and load forecasting, including possible

addition of exogenous variables, choices of aggregation level and horizon, as well as

common metrics. Finally, current trends in PV and load forecasting are discussed.

5

2.2.1 Exogenous Variables

Photovoltaic (PV) power generation and load consumption are dependent on a va-

riety of other time series. Together, they are referred to as multivariate time series.

For example, PV generation is positively correlated to solar irradiation. Models are

found to benefit from addition of exogenous variables such as local measurements of

temperature, relative humidity etc., or numerical weather predictions (NWP) that in-

clude pressure, relative humidity, solar irradiance, wind speed and direction, etc. [9].

Therefore, weather conditions are considered to be important in forecasting PV gen-

eration. Load is affected by weather changes as well [1]. But it also depends on

individual consumption patterns such as users leaving the house during weekdays at

certain regular times. This includes seasonality such as weekly and daily trends [5].

2.2.2 Individual vs. Aggregated Load

Aggregated load is a sum of electricity usage over several individual households, so

it has a more stable and repetitive signal [1]. Individual households exhibit a more

randomly variant behaviour, because these trends depend more on individual user’s

behaviour. It is therefore easier to predict aggregated load, hence there is more

research on forecasting aggregated load [5].

2.2.3 Forecast Horizons

Load and PV forecasts are usually divided into very short-term forecast (VSTF),

short-term forecast (STF), medium-term forecast (MTF), and long-term forecast

(LTF), based on the length of the forecast horizon [9, 10]. The choice of horizon

depends on the purpose with which the forecast is acquired. In electric power sys-

tems, short term forecasts usually provide immediate benefit for grid operations,

such as maintenance [9]. Long term forecasts are useful for economical purposes [11].

Moreover, different categories also depend on different variables. VSTF and STF can

have an immediate connection to weather, while MTF and LTF do not have such a

6

reliable weather forecasts and therefore rely more on past entries [10].

2.2.4 Losses and Metrics

Several metrics are generally used to evaluate the forecast and describe the model’s

performance due to those metrics having different characteristics [1].

There are widely accepted metrics in different research areas for certain applica-

tions. In addiction, the target can be deterministic or probabilistic, which also affects

the choice of metric.

Quality of forecasting models is usually quantified using direct, possibly normal-

ized, error measures. Normalized error measures are preferable, since they provide

better comparison between results independent of the size of the PV installation [1].

Common direct error measures are (normalized) root mean square error, (n)RMSE,

(normalized) mean error, (n)ME, for point forecasts, and the continuous ranked prob-

ability score, CRPS, for probabilistic forecasts. For a forecast horizon of T steps

t = 1, . . . , T over a target variable with amplitude Pmax, given a forecast F and real

behavior P , nME and nRMSE are calculated as follows:

nME =
1

TPmax

∑︂
t

|F (t)− P (t)|, (2.1)

nRMSE =
1

TPmax

√︄∑︂
t

(︁
F (t)− P (t)

)︁2
. (2.2)

If F (t) and/or P (t) are given as probability distributions, the expected values

E(F (t)) and E(P (t)) are substituted. Within this work, F (t) and P (t) are repre-

sented as binned probability distributions over imax bins. The binned distribution has

been chosen instead of parametric approaches as they are not suitable to represent

distributions of photovoltaic power or load consumption [1]. To calculate CRPS for

such F (t, i) and P (t, i), their probability density functions (PDF) are first converted

to cumulative density functions (CDF) and then compared as follows:

7

CRPS =
1

imaxT

∑︂
t

∑︂
i

(︁
Fcdf(t, i)− Pcdf(t, i)

)︁2
. (2.3)

The best values of nRMSE reported in the recent reviews [1, 9, 12–14] are around

7%. However, no single set of uniformly adapted metrics exists. As performance is

reported on specific data and PV power production exhibits both local and temporal

patterns, direct error measurements are not robust. In order to limit local sensitivity,

many reviews argue for the use of forecast skill score based on nRMSE of the model

compared to the persistent forecast [9] as the preferred performance metric

SnRMSE = 1−
(︃

nRMSEmodel

nRMSEpersistence

)︃
. (2.4)

The persistent forecast can be defined as the most recent window of the target

variable with the same length as the forecast, but without overlap. For a 24 hour

ahead window, this would correspond to the behavior of P−23...0. This work uses

nRMSE, nME, CRPS and SnRMSE, as performance metrics for model evaluation.

SnRMSE is also basis for comparison with other works.

2.2.5 Deep Learning in PV and Load Forecasting

As previously mentioned, deep learning techniques have gained success in application

to time series forecasting in general, and to PV and load forecasting in particular.

Artificial neural networks such as feed forward neural networks were among the first

DL techniques to be successfully adapted to forecasting time series and still remain a

popular forecasting approach [7, 9]. This proves that deep learning can discover trends

and nonlinear relationships in data unlike linear methods. Following that, recurrent

neural networks (RNNs) and its variations, long short-term memory (LSTM) and

gated recurrent unit (GRU), showed success in time series forecasting and started to

outperform ANNs due to their specialization for time series processing [15].

8

2.2.6 Energy Forecasting State-of-the-Art

To establish a baseline for performance comparison, a review of works in energy

forecasting was conducted. To the best of our knowledge, these are the best results

that are related to our application.

For PV generation, some of the best results documented in the literature were

achieved by a fully connected neural network, which exhibit SnRMSE of 42.5% on

an individual model and 46% on an ensemble containing several best performing

networks [16]. The authors rely on exogenous variables such as sun position and

temperature among others. The results were reported on one dataset and no k-fold

validation was mentioned. Another comparable result was reported on a Random

forest model in [9]. The model was supplied with numerical weather predictions

(NWP) as exogenous variables. The reported skill score is ≈42%.

For load forecasting, Gasparin et al. test several popular DL techniques, such as

LSTM, temporal convolutional network (TCN), and sequence to sequence model for

three scenarios [5]. The scenario most relevant to our research is the case where the

data contained individual household electric power consumption. For this application,

the best result is reported for a GRU based model that achieves the NRMSE score of

9.83%. Another comparable scenario is aggregated electric power consumption with

exogenous variables such as temperature and date-time information. An LSTM based

recursive model achieves NSRME of 4.59% for this scenario [5].

2.3 Deep Learning

This section serves as an introduction to deep learning. A concept of neural network

is followed by description of neural network training process. Further, an overview of

regularization methods is presented.

9

2.3.1 Neural Network

A neural network is a graph of computational nodes with adjustable weights, wn,

that aims to best approximate some function f ∗ for a system y = f ∗(x) and achieve

statistical generalization. The nodes composing the network are arranged into layers,

the first being the input layer and last the output. The layers between the input and

output are called hidden. The number of layers describes the depth of the network.

Each layer contains units, which define the width of the network. A small network

can contain one layer, and a large deep network may consist of hundreds of layers or

more. Similarly, the number of units within a layer of a small network may be less

than ten, while a large network contains hundreds. A learning algorithm is applied

to optimize the parameters of the model to approximate a desired function in the

training process [8]. Refer to figure 2.1 for an example of a neural network with one

hidden layer, where values wn represent the weights.

Figure 2.1: A Fully Connected Neural Network.

10

2.3.2 Neural Network Training

The goal of training a neural network is for it to match the true data generating

process that is used to obtain the training dataset. This corresponds to the network

having zero generalization error and performing accurately on new previously unseen

data from the same generating process. Having a low generalization error results

from the network having low bias and low variance. Bias is the error between the

model’s prediction and the target value. Model that has a high bias underfits the

data distribution. Variance is a measure of how the model’s prediction changes if the

dataset is resampled from the underlying distribution. If the variance is high, the

model overfits one dataset and does not generalize well to others. From empirical

evidence, we know that a large and properly regularized deep neural network fits the

data best, which means that it has low bias and variance with respect to the input

data. To achieve generalization, different optimization and regularization techniques

have been designed [8].

Optimization

In order to achieve good performance on the objective function, the network’s pa-

rameters must to be optimized. To train the model and monitor its performance on

previously unseen data, the dataset is split into training set (used for optimization),

validation set (used for monitoring the model), and test set (which acts as a new sam-

ple and verifies the model’s accuracy). Parameter optimization is usually performed

by a gradient algorithm through backpropagation.

Gradient descent is an algorithm used to search for a local minimum of the ob-

jective function during optimization. After calculating a gradient on the data, the

performance on the objective function can be improved by moving in the direction of

decreasing gradient. The gradient is computed by backpropagation, which employs

11

the chain rule of calculus. The gradient update is performed in the following way [8]:

ĝ ← +
1

m
∇θ

∑︂
i

L(f(x(i);θ), y(i)) (2.5)

θ ← θ − ϵĝ (2.6)

In these equations g is the gradient, θ represents the model parameters, x and y are

input and outputs on the network respectively. m is the size of the training set, or,

in case of minibatch gradient descent, the size of the minibatch. And finally, ϵ is the

learning rate.

Momentum is a method that is used to accelerate learning. It keeps an exponen-

tially decaying moving average of past gradients. This way, it can decay or accelerate

the gradient depending on the direction of its movement [8]. The gradient update

becomes:

v ← αv − ϵ∇θ

[︃
1

m
L(f(x(i);θ),y(i))

]︃
(2.7)

θ ← θ + ϵv (2.8)

Here v refers to momentum. There exists a variation of the momentum method called

Nesterov momentum, which differs from the regular momentum by being applied

before calculating the gradient in a certain step of gradient descent.

Gradient descent is significantly affected by the learning rate parameter. If set

inappropriately, a large learning rate can lead to the instability of the network, and

a small learning rate can result in an algorithm that never converges. It is therefore

important to set learning rate correctly for each task [8]. There also are algorithms

that adapt leaning rate during training. They include AdaGrad, RMSProp, and

Adam. The latter is more robust to the choice of hyperparameters and is popular in

current literature [3,7,8,9].

Usually it is infeasible to calculate gradient on the whole training dataset, so it is

estimated from a small subset of the set called a minibatch, randomly drawn from

the training set. Small batches can act as a regularizer in the network due to the

12

noise they add to the training process, given the learning rate is small enough to

compensate for the noise [8]. Minibatch stochastic gradient follows the gradient of

true generalization error but only for the first pass through the training set. However,

to decrease the training error, it is advised to run additional epochs, while drawing

previously seen samples from the dataset [8].

2.3.3 Neural Network Regularization

The goal of regularization is to achieve a small validation error or, otherwise, general-

ization. This is done by applying penalties or constraints to the model parameters to

reduce variance and avoid overfitting. Usually, more than one regularization method

is applied to a neural network.

One regularization technique is to impose parameter norm penalties, such as weight

decay or L2 norm. It restricts the weights to be closer to zero, and results in lower

values of weights, whose covariance with the output target is low. Another algorithm

penalizing the weight parameters is L1 norm. It makes the weight matrix sparse,

which serves as a feature selection mechanism and simplifies training by discarding a

subset of weights [8].

Dropout is a regularization algorithm that mimics the behaviour of bagging or

ensemble networks of networks. It applies a mask, which drops some hidden units,

thus creating a sub network. Ensembling works because different models usually do

not make the same errors on the test set, providing generalization. The difference

between ensembling and dropout is that the subnetworks formed by dropout share pa-

rameters, which makes it computationally cheap. However, dropout reduces capacity

of the model, resulting in a need to increase the model’s size [17].

A popular regularization technique is batch normalization [18]. It is a method

of reparametrization that reduces the problem of coordinating updates across many

layers [8]. Each minibatch of activations is normalized to zero mean, µ, and unit

13

variance, σ.

H ′ =
H − µ

σ
(2.9)

Two new parameters are learned for the minibatch to have an arbitrary mean and

variance. Therefore, the network still retains its expressive power, but learning dy-

namics are easier.

Unlike batch normalization, layer normalization computes the normalization statis-

tics from the summed inputs to the neurons within a hidden layer. That way all the

hidden units in a layer share the mean and variance terms. This method does not

impose constraints on the batch size and is easier to apply to recurrent neural net-

works [19].

With increased depth, networks face a degradation problem, which occurs when

adding layers to a network results in a decrease in training error. This problem can

be solved by training a network to learn residual mapping, which is done by adding

identity shortcut connections [20] that do not add extra parameters to the model. It

was empirically shown that such networks are easier to optimize, and they provide

an increase in accuracy with increased depth [4, 20, 21].

Another way to ensure generalization is to track training and validation perfor-

mance for overfitting. During training, the network’s training error keeps decreasing,

but validation error eventually increases. This represents the bias variance trade-off.

It is desirable to have parameters that provide a smaller validation error, because it

may result in a smaller test error as well. So, if training process is stopped before

the validation error start increasing, we obtain a network with parameters closest to

optimal. This algorithm is called early stopping [8].

2.4 Deep Learning for Language Processing

Neural networks became widely adopted for statistical language modeling, for exam-

ple in statistical machine translation (SMT), after the introduction of NN language

14

model [22]. Currently, natural language processing (NLP) achieves near human per-

formance on a wide set of language tasks [23]. Following is an overview of seminal

methods and models that led up to this achievement starting with recurrent networks

and finally discussing the state of the art.

2.4.1 Recurrent Neural Networks

Recurrent neural network (RNN) is an architecture specialized for processing se-

quences, which could be time series or a language sentence. It is called recurrent

because its state at time t depends on its own value at time t − 1. The state is

the hidden unit in an RNN, so it is referred to as hidden state. An RNN relies

on the ability to perceive sequential information and store memory of previous time

steps through parameter sharing across time via hidden states as illustrated in Fig-

ure 2.2. Such parameter sharing results in a very deep computational graph, which

can lead to an exploding or vanishing gradient problem [8]. Long short-term memory

(LSTM) [24] cells help mitigate this problem by modifying the recurrent cell to intro-

duce gated units. However, they also increase the complexity of the network. Gated

recurrent unit (GRU) [22] cells address this issue and propose a new type of cell. In

this work, we use a term one-block model referring to a multilayer network, because

such a network has one input and one output creating a single block structure.

Figure 2.2: A Recurrent Neural Network (RNN).

15

Teacher Forcing

In case a network is recursive, it can be trained with teacher forcing. Recursivity

means that the network relies on its previous output to produce the next. This

results in a long training process, because the network has to be unrolled for each

step. Teacher forcing implies that instead of feeding the network’s output back into

itself, the network is supplied with the target values [8]. Therefore, the network can

be trained in one pass, which simplifies the procedure. However, it can potentially

be harmful to train the network this way. Because during inference, when the model

is expected to be open-loop, the actual outputs may be different from the targets the

network was trained on [8].

2.4.2 Sequence to Sequence

Since the success of applying RNNs to language modelling, natural language process-

ing (NLP) became a separate area in deep learning. One of the significant discoveries

in this field is the sequence to sequence model by Sutskever [2]. It employs an encoder-

decoder architecture, which consists of two complementary recurrent neural networks

that have different functions. The encoder processes the input language structure and

maps the input sequence to a vector of a fixed dimension, thus learning a latent repre-

sentation of the sequence. And the decoder recursively produces the desired output,

relying on the input sequence representation supplied by the encoder. The networks

are connected through state sharing to provide information flow. This means that

the initial hidden states of the LSTM network of the decoder are set to be the same

as the final hidden states of the encoder network, as illustrated in Figure 2.3. This

method elevated the state of the art for translation [2]. However, due to the fixed

dimension of the vector, this architecture may suffer from information bottleneck.

16

Figure 2.3: Sequence to Sequence network.

2.4.3 Attention

Another recently introduced concept within NLP is an attention mechanism. At-

tention was initially proposed to solve the problem of having a fixed length context

vector that results in an information bottleneck. Bahdanau et al. [3] introduced a

new recurrent architecture RNNsearch, where a GRU cell was modified to include

attention context in the calculation of the gates and hidden states. Attention context

determines alignment scores between encoder and decoder hidden states in order to

provide more information to the model. The hidden state of the decoder, si, is de-

pendent on the previous output of the recurrent network, yi−1, the previous hidden

state, si−1, and the attention context, ci:

si = f(si−1, yi−1, ci). (2.10)

17

The context is calculated based on alignment scores, α, and the hidden states of the

encoder, h:

ci =
Tx∑︂
j=1

αijhj. (2.11)

The alignment scores are a result of a softmax operation applied to an alignment

function, a. They reflect how much attention the algorithm should pay to a particular

hidden state, hj:

αij = softmax(eij), (2.12)

eij = a(si−1, hj). (2.13)

Alignment function, a, can be arbitrary. In [3], it is a feed forward neural network,

designed in the following way:

a(si−1, hj) = vTa tanh(Wasi−1 + Uahj), (2.14)

where va, Wa, Ua are weight matrices. It is also sometimes referred to as an additive

attention model [21]. The attention mechanism is illustrated in Figure 2.4.

Figure 2.4: Attention Mechanism according to Bahdanau et al. [3]

18

Luong et al. proposed a simplified way to apply attention with an LSTM based

architecture [25]. To take into account the alignment information at previous steps,

an input-feeding approach is used in the decoder, where the attention vector is fed

back and concatenated with the input at the next time step. The concepts of global

and local attention were introduced. Global attention is similar to the one discussed

in [3], because it uses all hidden states for the context calculation. On the other hand,

local attention selects a small window of context to which to attend to, which is useful

for long sequences such as a paragraph of text. The authors tested several types of

alignment functions, such as general, dot product, and concatenated. According to

the results of the studied translation task, dot product attention performs best [25].

The following equation of the dot product alignment function is adapted from [25]

for the ease of notation:

a(ht, s̄) = hT
t s̄. (2.15)

2.4.4 Transformer

The transformer architecture is one of the seminal works in NLP [21]. The main

contribution of this work is an introduction of self-attention to replace the RNN.

The attention context in self-attention is calculated for a signal with respect to itself.

This concept suggests that alignment of a signal with itself extracts features more

efficiently and thus can replace a recurrent network in translation and other language

tasks.

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (2.16)

So, for self-attention query (Q), key (K), and value (V) are equal. The alignment

model in this work is a dot-product scaled by a factor
√
dk to prevent the softmax

operation falling into regions of small gradients [21]. This algorithm outperforms

recurrent networks and requires less computational resources than RNNs [21].

19

2.4.5 NLP State-of-the-Art

Current state-of-the-art-language models are based on the transformer. For example,

generative pre-training model (GPT) borrows a transformer decoder architecture, and

the model called bidirectional encoder representations from transformers (BERT)

builds up on it as well [26, 27]. These models achieved state-of-the-art results on

such language understanding tasks as question answering, textual entailment, and

commonsense inference. One of the ideas that significantly improved the performance

of these models is semi-supervised training [27]. This involves pre-training a model

on a large unlabelled dataset and fine-tuning to a specific task. Pre-training helps

the model gain significant word knowledge and improves generalization, while fine-

tuning gives an opportunity to apply the given model to any task and accelerates

convergence [27]. Another idea that improved performance of models like GPT and

BERT is overparameterization, which occurs when the number of parameters in the

model exceeds the size of the dataset. According to experimental evidence, for some

models it results in double descent [28]. Double descent is a phenomenon that occurs

when an initial dip in the validation curve is followed by a rise and then another

dip. This is in contrast to commonly assumed overfitting occurring after the rise in

the validation curve. In this case, model’s validation and test accuracy increases and

after the initial divergence in training and validation curves, it finally converges. This

concept is not limited to NLP architecture and was observed for other applications

as well.

20

Chapter 3

Architecture Design

This chapter encompasses the process of designing the architectural arrangement used

for experiments in this thesis. First, a description of the thought process is presented

as a follow-up from Chapter 2. Next, a theoretical argumentation for the proposed

sequence to sequence architecture with attention is introduced. Finally, a probabilistic

forecasting approach is discussed and model limits identified.

3.1 Sequence to Sequence Architecture with At-

tention

The sequence to sequence model proposed by Sutskever consists of an encoder and a

decoder LSTM networks, each having a different input but connected through state

sharing [2]. It allows decoupling the functions of both networks. The encoder pro-

cesses the variables and learns features that appear useful to forecast the main vari-

able, and the decoder uses these features as its initial state. Thus, the sequence to

sequence model is said to provide better handling of complicated relationships be-

tween sequences [2]. Through successful application to language tasks, this structure

provides a tool for analysis of univariate time series, because language can be con-

sidered a time series due to being ordered in time and having short-term correlation.

In a multivariate time series, the main variable is correlated with several exogenous

variables. The encoder-decoder architecture then should be able to learn those re-

21

lationships better than a general one-block model. Considering these insights, the

following hypotheses were made:

1. Encoder-decoder architecture has a potential benefit in forecasting a multivari-

ate time series leveraging exogenous variables and focusing on the target one.

2. Model’s forecast will be improved due to the encoder-decoder model’s recursive

structure.

Attention

Attention selects which features in the context are most important to the network with

respect to the input [3]. Therefore, attention can be seen as a feature extraction tool.

A multivariate time series provides a larger amount of information to the network

compared to a univariate series. So, the network could potentially benefit more from

an attention mechanism, which is designed to alleviate the problem of information

loss. Another hypothesis is that attention, serving as an additional input to the

decoder, and together with state sharing, will give the decoder an opportunity to

leverage more exogenous information and therefore likely produce a more accurate

forecast of given time series.

Attention, which is applied between the hidden states of encoder and decoder,

serves as an improvement on state sharing mechanism [3]. To keep the state sharing

functionality and provide an extra step of feature extraction, attention can be used

as an additional input to the decoder [25]. Moreover, for a multivariate time series,

attention can extract more context from the features when calculated for each layer

in the decoder. The mechanism connects encoder features to the decoder and decides

which part of these features to pay attention to. Decoder usually receives one step of

a desired variable, but with help of attention more information can be supplied to its

layers at input.

22

3.1.1 Applying E-D with Attention to Multivariate Time Se-
ries

Architecture description

The proposed architecture is a sequence to sequence model consisting of an LSTM

encoder and decoder with state sharing, and including scaled dot product attention

as the feature extractor between encoder features and decoder inputs. This suggests

the following information flow. Please refer to Figure 3.1 for illustration.

The multivariate time series consisting of exogenous variables and the historical

signal of the main variable serve as the input to an encoder, which processes them

into features. The features are produced through two channels: one being the encoder

hidden states, and the second - encoder outputs.

The decoder input is one timestep of the main variable. It is initialized with encoder

hidden states and accepts attention features as an additional input. Attention is first

performed on the outputs of the encoder and the input to the decoder’s first layer

concatenated with its hidden states. This serves as the new input to the decoder.

Next, attention is performed on the hidden states of the consecutive decoder layer

and the encoder outputs and concatenated with the previous layer’s output to be

passed to the next layer. Thus, encoder features are used in each step. In this case,

there is a larger amount of information from the multivariate time series processed in

the encoder. Therefore the network will potentially benefit from additional feature

extraction steps. Decoder then produces one prediction step, which is fed back as the

input to the decoder in the next step of the recursive forecasting process. The decoder

unrolls the forecast this way and provides 24 steps as the final output. As discussed in

section 2.2.3, different forecast purposes have different horizons and require different

exogenous variables. We are interested in (very) short-term forecasts (STF). Within

this category, a day ahead hourly sampled forecast (24 hours) is considered the most

common [5, 9, 11]. Therefore, it will serve as a good reference point.

23

Figure 3.1: Proposed Encoder-Decoder Model with Attention.

Architecture Implementation

The proposed architecture, S2S-Attn, is implemented using LSTM cells as recurrent

units, as illustrated in Figure 3.1. The type of attention used here is the scaled

dot-product attention proposed by Vaswani et al. [21].

The encoder consist of n stacked LSTM layers. The input to the encoder is a

sliding window t−SW...0 of length SW up to the current timestep t0. After the encoder

processes the SW input, it passes its final states to the decoder as the new initial

states. The output of the encoder serves as value and key for all attention mechanisms

of the decoder.

24

Sutskever et. al. found that reversing the input sequence order at the input of

the encoder helped improve the model, possibly because there is a better connection

between the first few words in a sentence [2]. However, the last few points in a time

series are the most important in providing information for prediction. So, the time

series sequence is not reversed.

The decoder features the same LSTM configuration with the addition of the at-

tention layers. These layers attend to the hidden states of the corresponding LSTM

layer as query and encoder outputs as value. The input to the decoder is one step of

the binned probabilistic distribution of the PV signal at time zero.

3.1.2 Probabilistic Targets

The provided time series signal has 1 minute resolution, and the targets have 1 hour

step size. In order to forecast at a required hourly sample rate and utilize the informa-

tion from a high frequency signal, probabilistic targets were chosen. They inherently

convey more information in one step, and thus are potentially more useful to the con-

sumer, because they provide a measure of uncertainty. Learning a more expressive,

probabilistic forecast may also provide a way to leverage the improved information

propagation of the encoder-decoder model. This allows for more information about

past forecast steps to pass on to the next forecast step, freeing up parameters in

the model’s memory. Recent research has also been moving towards probabilistic

forecasts [9, 11].

The model attempts to learn the underlying distribution Ptrue(t) that generates

the actual values of PV power, independent of the forecast format, P (t) or expected

value E(P (t)). Therefore, if a sufficient number of values are available to construct

an approximation P (t) ≈ Ptrue(t), it is beneficial to train with P (t) as target because

it is closer to the modeled behavior.

One popular method of probabilistic forecasting is a parametric approach, when

a particular probability distribution is chosen and the predicted parameters are the

25

mean and variance [11]. For example, a Gaussian or normal distribution can be used.

However, a parametric approach is often considered invalid or suboptimal for PV

or load, and a nonparametric approach is preferable [1]. To avoid the bias of the

parametric method in constructing P (t), we chose a binned probability distribution

of the output variable over each time interval. To affirm the second hypothesis made

earlier in this chapter, we suggest the following. Although all models benefit from

targets that are closer to the actual behavior in general, the encoder-decoder models

benefit further due to their self-recurrence.

Since the goal of the model is to approximate the probability distribution of Ptrue(t)

but only an imperfect, observed P (t) is available, the Kullback–Leibler (KL) diver-

gence emerges as a natural choice of loss function. The KL divergence between two

binned probability distributions with bins i, forecast F (t, i) and true signal P (t, i),

can be calculated as:

KL(F, P) =
∑︂
t

∑︂
i

−P (t, i) ln

(︃
F (t, i)

P (t, i)

)︃
. (3.1)

Architecture Limits

State sharing means that encoder and decoder architectures have to be identical [2].

The shapes of hidden states in encoder and decoder have to be the same in order to be

reused. This limits the capability to experiment with different shapes of model com-

ponents and different sizes of inputs. Eliminating state sharing or using architectures

that do not require state sharing is a potential solution to this issue.

Another problem is the computational capacity. LSTM and other types of RNNs

are well known to require large computational resources, as well as the time required

to train such a network because the structure of an RNN requires sequential process-

ing [8]. This also puts a limit on the size of the model we can experiment with.

26

Chapter 4

Experimental Design

This chapter describes the experimental process. It begins with the description of PV

and NWP data used in this work. Next, to analyze the hypothesis made in Chapter 3,

the experiment is set up to compare the proposed model with a set of benchmarks.

To validate the model’s performance, a k-fold cross-validation is to be performed and

design choices made in the first experiment are to be evaluated with further tests.

Another experiment is introduced to address the architecture limitations discussed in

section 3.1.2. Finally, model’s size is tested within possible limits.

4.1 Data Description

The PV power data used in the experiments has been provided by Landmark Homes.

It contains PV power generation values collected with 1 minute resolution at a net

zero house in Edmonton between January 2016 and December 2017. The NWP data

is a simulation equivalent to the High Resolution Rapid Refresh (HRRR) model,

with hourly resolution. HRRR is an NWP model used to provide short-range hourly

sampled weather forecasts. It is limited to variables common in PV power forecasting

literature: ambient temperature, atmospheric pressure, solar irradiation, wind speed,

and relative humidity. The data is smooth without lumpiness or intermittency.

The dataset was created using TFRecord dataset pipeline [29]. One sample con-

tains standardized NWP features, raw historical PV generation, and PDF targets.

27

The data has been randomly divided into 70%-15%-15% splits for training, testing

and validation. For each set, the samples were selected randomly from the available

dataset such that the forecast intervals from different sets that overlap are discarded.

Thus, no data is repeated in the training, test, and validation sets.

The input to the encoder of a sequence to sequence model or an input to one-block

model is presented in Figure 4.1. It contains the NWP features concatenated with

the raw PV signal. Since one-block models cannot process datasteams with differ-

ent resolution without significant architectural change, we consolidate the two data

streams (NWP and PV historical data) to one data stream with 15 min resolution

by interpolation and averaging, respectively. For each sample, every model receives a

5-day length equivalent sliding window from this data stream as input. The sample

contains temperature, ACSWDNB (accumulated downwelling shortwave flux at the

bottom), solar irradiance, relative humidity at 2 meters height, surface level pres-

sure, wind speed and direction, and photovoltaic generation. The NWP variables are

shifted to provide the weather forecast for the next day. The PV signal consists of

historical PV generation. The NWP and PV sample that does not include the NWP

forecast is demonstrated in Figure 4.2.

Figure 4.3 depicts the corresponding binned probability distribution. The target is

plotted to the right of the red line. Historical signal is added for illustration purposes

and is not included in the model training sample. Persistent forecast, which is used

to calculate the baseline metrics, is also demonstrated.

4.1.1 Training Setup

The experimental setup was implemented in Tensorflow using Keras library [29].

Models were trained with stochastic gradient descent with learning rate of 0.003

and Nesterov momentum of 0.75 as optimizer. The loss was set as the KL divergence

as discussed in 3.1.2. Batch size was 128, and was limited by the computational

resources. Early stopping was used after 10 epochs in case the nRMSE error on the

28

Figure 4.1: Shifted NWP and PV Input Sample.

validation set did not improve.

The models forecasting E(P (t)) were trained using mean squared error (MSE) as

a loss function

MSE =
1

T

∑︂
t

(F (t)−E(P (t)))2, (4.1)

while E(P (t)) ranges from 0 to 1.

4.2 Benchmarks

Initially we formulate two hypotheses:

1. The proposed model can outperform common one-block models used to forecast

29

Figure 4.2: NWP and PV Input Sample.

PV power and achieve or surpass state of the art performance in terms of the

established error measures.

2. Performance improvements stem from predicting P (t) instead ofE(P (t)) on one

hand, and better context extraction through the encoder-decoder architecture

with attention and self-recurrence on the other.

The first claim is evaluated by testing the proposed model, S2S-Attn, against a set of

benchmark models. The second claim is quantified by training 2 types of each model:

one trained to directly forecast E(P (t)) over the target time interval, denoted model-E,

and one trained to forecast P (t), denoted model-pdf. To further assess the impact of

30

Figure 4.3: Binned Probabilistic Signal.

the attention mechanism we also train a classic encoder-decoder model corresponding

to the proposed network without attention, S2S. The baseline models were also chosen

among those used in energy forecasting literature [5, 16]. In summary, the evaluated

models are:

1. Persistence: the persistent forecast model as probabilistic model, using the previ-

ous day P (−23, ..., 0) as the forecast F (1, ..., 24). This model is used to calculate

SnRMSE and enable comparison with other published models.

2. FFNN-pdf, FFNN-E: probabilistic and expected value versions of a one block FFNN

model.

3. LSTM-pdf, LSTM-E: probabilistic and expected value versions of a one-block LSTM

model.

4. S2S-pdf, S2S-E: probabilistic and expected value versions of a sequence to sequence

model without attention.

5. S2S-Attn-pdf, S2S-Attn-E: probabilistic and expected value versions of the proposed

sequence to sequence model with attention.

31

4.2.1 Implementation of Benchmark Algorithms

We attempt to isolate architectural performance influences by keeping the number

of parameters, hyperparameter settings and received input data consistent. For sim-

plicity, the number of units per layer in each model is kept constant. Each S2S model

has a 2-layer encoder and a 2-layer decoder similarly to the S2S-Attn model as dis-

cussed in section 3.1.1. The S2S model is designed according to [2] and is illustrated

in Figure 2.3. Both one-block FFNN and LSTM models consist of stacked feedforward

and LSTM layers respectively. Additionally, they feature a temporal transformation

layer. It projects the output of the last layer of the network into the required output

shape. In this article, the transformation is a feedforward layer. It reduces the num-

ber of timesteps to 24 as per the setup and then transforms the output to the shape

of E(P (t)) or P (t). Please refer to Figure 4.4 for one-block LSTM model. The FFNN

model is constructed similarly, but with feedforward layers.

Each model is trained to perform hourly forecasts up to 24 hours ahead. For -pdf

models, each hour is a probability distribution with 50 bins from 0 to maximum rated

power of the PV installation, while for -E models it is the normalized expected PV

power.

To accommodate the probabilistic forecast, the output of the decoder is projected

into a binned probability distribution F (t) by a projection layer that features a soft-

max operator. In the first decoder step, to forecast F (1), the input is the available

P (0). This stands in contrast to similar models for language oriented applications,

where the first input is usually a start-of-sentence token. The decoder is trained

with teacher forcing, meaning it receives P (t− 1) rather than F (t− 1) to learn how

to forecast F (t). During evaluation, the decoder is fully self-recurrent and predicts

F (t) based on F (t − 1). This has been established as the best practice to speed up

convergence for encoder-decoder models in language-related fields.

In order to keep the model size equivalent for all models, the number of units was

32

Figure 4.4: One-block LSTM Model.

changed. However, for simplicity, all layers in a given model have the same number

of units. Table 4.1 enumerates the parameters used for model evaluation.

4.3 Design Choices: k-fold Cross-Validation

When a universal benchmark dataset is not available, it is useful to validate model

performance. Using skill score as a metric aids in model performance comparison

across other works. Additionally, further experiments can be conducted on data from

different domains or other datasets available from the same domain. However, it

is also necessary to assert model performance on different splits of data within one

application.

It was originally proposed to test the models on a load consumption data. However,

initial experiments determined that the current experimental setup is not directly

transferable to this application. This can be explained by the fact that, according to

33

Model Number of units per layer Number of parameters

FFNN-E 640 ∼428k

FFNN-pdf 616 ∼428k

LSTM-E 184 ∼425k

LSTM-pdf 184 ∼434k

S2S-E 132 ∼425k

S2S-pdf 128 ∼431k

S2S-Attn-E 115 ∼441k

S2S-Attn-pdf 110 ∼423k

Table 4.1: Benchmark Model Architecture Details.

section 2.2.1, load requires a different set of exogenous variables and possibly a change

of hyperparameters controlling the data pipeline, for example sliding window size.

So, with an appropriate dataset generation and experimental setup, the networks’

performance will potentially be comparable on load data.

The results in [30] are reported on one dataset. And it was further observed that the

creation of the dataset by random sampling affects the model performance. In order to

validate the test error of the model, k-fold cross validation is commonly used. Train,

validation, and test sets are randomly chosen from the dataset k times [8]. Therefore,

before implementing the changes required for a load dataset, it is proposed to perform

k-fold validation on the PV generation dataset.

As noted above, the dataset contains two years of PV and NWP data. The amount

of data available for training the model is important, since models usually perform

better when trained on larger datasets [4, 27]. In addition, about seven months of

that data are used to construct validation and test sets. Therefore, two years may not

be enough for the model to capture the data generating distribution well. Moreover,

the PV generation data in Edmonton exhibits a problem, where in winter, during

the periods of snowfall, the generation of solar power is erratic. This decreases the

34

quality of the datasets and reduces the information quantity. Randomly distributing

this dataset into train, validation, and test subsets can result in unreliable samples.

An experiment is set up to investigate this. The original dataset used in [30] was

lost. So, the new datasets were generated from the same NWP and PV data with a

new pipeline and imitating the settings used to obtain the original dataset, such as

the procedure used for splitting and saving the samples, but with a different random

split into train, validation, and test sets. The random seeds were changed for each

split.

Additionally, in the original experiment the models were trained on an NWP sam-

ple shifted a day ahead concatenated with the historical PV data. In order to confirm

this selection, the samples containing the non-shifted NWP sliding window were cre-

ated. The same sample from Figure 4.1 is changed to Figure 4.2. To further justify the

advantage of the exogenous variables, the models are trained excluding the historical

PV variable from the encoder input sample and with shifted input sliding window.

A further untested design choice is teacher forcing. As discussed in section 2.4.1,

training models with teacher forcing may be harmful. Therefore, another parameter

changed in this experiment is training with or without teacher forcing.

Consequently, the experiment comprised of training three models: LSTM-pdf, S2S-

pdf, and S2S-Attn-pdf, on four datasets, additionally testing the application of teacher

forcing and the NWP shift.

4.4 Original Attention Test

Another hypothesis implied in the proposal is that our model outperforms a classic

encoder-decoder with attention model. However, the proof of this was omitted in the

publication [30].

To assess the claim that the proposed model benefits from additional attention

steps and achieves better performance than a sequence to sequence model with one

attention layer, an encoder-decoder model structured according to [25] is used as a

35

baseline to compare to the proposed model.

The network used for this experiment follows a sequence to sequence architecture

similar to the proposed model. The attention mechanism is calculated based on the

dot product alignment model discussed in [25]. The attention context is derived from

the hidden state of the top LSTM layer in the decoder and the hidden states of the

encoder. The context is then concatenated with the hidden state of the top decoder

LSTM layer and is used to calculate attentional vector, which in turn produces the

output through softmax function. The input-feeding approach is also adapted, con-

catenating the attentional vector with the input of the decoder at the next time step.

See Figure 4.5 for an illustration of the architecture.

Figure 4.5: Encoder-decoder Model with Attention according to Luong [25].

The models in the experiment are set up to have the same number of layers and

number of units for a fair comparison. At t = 0 the input is not concatenated with

36

the attentional vector. So, an input projection layer is added to the decoder at t = 0

to provide the required dimension to the input. The rest of the training setup, such

as regularization, is also kept the same.

4.5 Recurrent Cell Test

LSTM is the chosen type of recurrent cell because it is assumed to have the best per-

formance compared to RNN, reducing the problem of exploding/vanishing gradient

problem by introducing gated units. The addition of these gated units, however, adds

parameters to the network thus further increasing the requirements on computational

resources. And the possibility of utilizing different cells was not explored in the pub-

licatoin [30]. GRU [22] is another type of recurrent cell, that also utilizes gated units,

but reduces the number of parameters compared to LSTM. Recurrent networks with

GRU type cells have similar performance to those with LSTM cells. This experiment

is set to explore the possibility of using GRU type cells in the sequence to sequence

model with attention.

Firstly, the two models are set to the same size. This will help determine whether

GRU type cells can perform similarly to LSTM. Then, the models are set up such that

the number of trainable parameters is the same. This means the model with GRU

type cells will be larger as detailed in Table 4.2. The result of this experiment will

help obtain understanding of whether further performance improvements are possible

with less computational requirements.

Model Number of units per layer Number of parameters

S2S-Attn-LSTM 110 ∼423k

S2S-Attn-GRU-small 110 ∼320k

S2S-Attn-GRU-large 128 ∼428k

Table 4.2: LSTM/GRU Model Parameters.

37

4.6 Model Parameter Tuning

In [30], the model size was chosen arbitrarily, based on trial and error tests as well

as local memory limitations. It is nevertheless important to confirm that selection or

possibly find another well performing configuration. To obtain optimal performance

and keep the training within accessible computational bounds, it is necessary to find

the suitable model size. The parameters tuned in this experiment are the width and

number of layers in the proposed model. Grid search was applied, with parameters

ranging from ∼69k to ∼4.8m considering the numbers of units below and above those

in the proposed model. This was done to identify the direction in which the model’s

performance demonstrates improvement. Table 4.3 presents the model sizes tested in

this experiment.

The experiment was set up using the same training settings as other experiments

above, but training the models on one dataset. The only exception was the S2S-Attn-

4x256 model, which was trained with batch size 64 due to local memory limitations.

Model Number of layers Number of units
per layer

Number of param-
eters

S2S-Attn-1x64 1 64 ∼69k

S2S-Attn-1x128 1 128 ∼237k

S2S-Attn-1x256 1 256 ∼867k

S2S-Attn-2x64 2 64 ∼152k

S2S-Attn-2x128 2 128 ∼566k

S2S-Attn-2x256 2 256 ∼2180k

S2S-Attn-4x64 4 64 ∼317k

S2S-Attn-4x128 4 128 ∼1223k

S2S-Attn-4x256 4 256 ∼4805k

Table 4.3: Parameter Tuning Setup.

38

Chapter 5

Discussion

5.1 Experiment 1: Benchmarks

The initial experiment included testing the proposed model against a set of bench-

marks, which were designed to have the same number of parameters as discussed

in section 4.2. The point error metrics for probabilistic versions of the models were

calculated after taking an expected value of the binned probability distribution. The

results are reported on the dataset described in section 4.1 and with the training

setup described in 4.1.1.

As can be seen from Table 5.1, according to the test set performance, the proposed

S2S-Attn-pdf model outperforms all baseline models (SnRMSE = 48.1%). The second

best performance on the test set is achieved by model S2S-pdf (SnRMSE = 45.6%). This

confirms the first hypothesis that encoder-decoder models are better suited for a setup

with high resolution data. Comparing validation and test performance, S2S-Attn-pdf

exhibits a smaller generalization gap then S2S-pdf. This is likely due to the ability of

attention to aid generalization through added context.

Another interesting observation is that performance gains from performing proba-

bilistic forecasts are obvious and strong for the tested encoder-decoder models S2S-Attn

and S2S. This is not the case for one-block models whose results are less conclu-

sive: model FFNN-pdf outperforms FFNN-E, while LSTM-E outperforms LSTM-pdf for the

specific set of hyperparameters listed in section 4.2. Thus, it appears that the per-

39

nRMSE nME CRPS SnRMSE SCRPS

Model Val Test Val Test Val Test Val Test Val Test

Persistence 0.145 0.133 0.063 0.052 2.285 1.944 - - - -

FFNN-E 0.078 0.083 0.054 0.057 - - 0.464 0.376 - -

FFNN-pdf 0.072 0.074 0.041 0.040 1.008 1.032 0.501 0.446 0.559 0.469

LSTM-E 0.073 0.080 0.049 0.054 - - 0.496 0.395 - -

LSTM-pdf 0.080 0.087 0.045 0.047 1.166 1.386 0.450 0.344 0.490 0.287

S2S-E 0.089 0.100 0.058 0.065 - - 0.388 0.249 - -

S2S-pdf 0.068 0.072 0.039 0.039 0.938 1.003 0.529 0.456 0.589 0.484

S2S-Attn-E 0.119 0.121 0.091 0.094 - - 0.184 0.089 - -

S2S-Attn-pdf 0.067 0.069 0.039 0.038 0.917 0.937 0.536 0.481 0.599 0.518

Table 5.1: Benchmark Model Performance Comparison

formance improvement of the encoder-decoder models is not only due to the more

expressive, probabilistic target, as the -pdf variants of the one-block models are not

consistently affected in the same way. Conversely, the performance improvement can-

not solely be attributed to self-recurrence of encoder-decoder models, as S2S-Attn-E and

S2S-E significantly under perform. The performance of S2S-Attn-pdf and S2S-pdf there-

fore stems from the combination of self-recurrence and rich output representation.

Latter enables efficient utilization of the former and is especially relevant for F (1), as

the probabilistic input P (0) conveys more information about the state of the system

at t = 0 than E(P (0)). The same argumentation can be applied to the attention

mechanism. When compared to model S2S-Attn-E, the probabilistic output of S2S-Attn-

pdf provides significantly more features to the first layer’s attention mechanism. This

allows to construct better attention-based context and results in an additional boost

of performance. This validates the hypothesis from the beginning of Chapter 3.

There is no universally agreed upon benchmark dataset for PV forecasting and

many authors use custom datasets for experiments. Additionally, our experimental

40

setup necessitates the use of a custom dataset to demonstrate efficient utilization of

data with high temporal resolution. Although the proposed model S2S-Attn-pdf is well

within the range of state of the art methods concerning the reported direct metrics,

comparison based on such metrics is unreliable given the circumstance. Many sources

argue that using nRMSE based Skill compared to a persistent baseline largely allevi-

ates dataset dependency. From reviewed works, the highest reported values of SnRMSE

are between 42.5-46% [9, 16]. This is significantly lower than the skill of the proposed

model S2S-Attn-pdf with SnRMSE of 53.6% and 48.1% for validation and test sets, respec-

tively. In terms of SCRPS the proposed model also features the largest relative increase

of this metric (51.8%) with respect to other models evaluated by van der Meer and

Munkhammar [1]. However only one study [31] reports a CRPS improvement over

persistence in a scenario similar to that considered in this experiment.

5.2 Experiment 2: k-fold Cross Validation

According to section 4.3, for this experiment, four datasets were created and three

models were used for evaluation: LSTM, S2S, S2S-Attn. Two scenarios were considered.

One was the application of teacher forcing and another shifting the NWP data to

include the forecast for the following day. The results are reported in Table 5.2.

Teacher forcing is not applicable to the one-block models in this experiment, so they

were omitted from the experiment for those cases. The examined scenarios are:

1. SW/no TF: sliding window not including the next day forecast and no teacher

forcing used for training.

2. SW/TF: sliding window, training with teacher forcing.

3. Shifted SW/no TF: shifted sliding window including the next day forecast, no

teacher forcing.

4. Shifted SW/TF: shifted sliding window and training with teacher forcing.

41

SW/no TF SW/TF Shifted SW/no TF Shifted SW/TF

Model Val Test Val Test Val Test Val Test

LSTM 12.6% 11.2% - - 28.9% 29.9% - -

S2S 15.4% 15.8% 14.9% 16.7% 31.2% 34.5% 30.1% 33.1%

S2S-Attn 15.6% 17.1% 16.4% 15.4% 30.3% 35.6% 30.3% 36.2%

Table 5.2: Skill nRMSE for k-fold experiment.

The last scenario is used in the experiment described in section 5.1.

For each dataset, validation, test, and training sets were sampled randomly in order

to avoid seasonal bias in training and evaluation.

Considering the results in Table 5.2 (refer to Table A.1 for full results), the S2S-Attn

model outperforms other models for the Shifted SW/TF case, with the average test

nRMSE skill score of 36.2% for the discussed training setting. However, it is evident

that the performance of the models do not directly replicate the above reported scores.

As discussed in section 4.3, this can be explained by the specific dataset issues such

as small amount of data. The conclusion that the performance of the models is

affected by the dataset and not by the model architectures is made considering that

the relative model performance is consistent in the k-fold cross-validation.

A significant performance gain can be observed for the models that received shifted

sliding window (SW) comparing to those that did not. This confirms the intuition

that providing the next day forecast aids the photovoltaic power forecasting due to

the correlation of the NWP variables with PV generation. Moreover, it is visible from

the table that encoder-decoder model with attention trained with teacher forcing out-

performs that without teacher forcing for the shifted SW scenario. Thus, the design

choice of applying teacher forcing is justified. However, an interesting observation is

that the S2S model achieves better results without teacher forcing. Perhaps, attention

benefits when it is trained on actual targets. Another notable fact is that S2S-Attn

model demonstrates a larger generalization gap compared to LSTM and S2S, although

42

Shifted SW/no TF Shifted SW/TF

Model Val Test Val Test

LSTM 28.5% 29.9% - -

S2S 29.2% 31.3% 28.6% 28.2%

S2S-Attn 27.4% 31.7% 26.9% 33.4%

Table 5.3: Skill nRMSE for PV ablation experiment.

it achieves better performance on the test set than other models.

Table 5.3 presents the results of the PV signal ablation study. For complete results

refer to Table A.2 in Appendix A. The values follow similar trends as those including

the PV history, such as teacher forcing improving the performance of the attention

model but harming S2S, and the attention model having a larger generalization gap.

And although the models’ performance obviously suffers from excluding the PV signal,

the models nevertheless achieve results similar to above. In fact, this experiment

demonstrates that the majority of the performance gain for the models comes from

the NWP variables with the attention model achieving the nRMSE skill score of

33.4%. The proposed attention model also performs the best among the benchmarks.

It further confirms that attention aids feature extraction.

Figures 5.1 and 5.2 demonstrate, respectively, the actual target and the forecast

distribution produced by the proposed model. The historical signal is added for

context, both target and forecast are on the right of the red line. This illustrates

the case where the model succeeds in predicting PV generation despite the persistent

forecast failing. For more examples of forecasts please see Appendix A.

5.3 Experiment 3: Attention

The proposed model was compared to the classical sequence to sequence model with

attention built according to [25]. The reported results are averaged over 4 datasets

43

Figure 5.1: Actual PV Generation PDF Signal.

Figure 5.2: PV Generation History and Forecast PDF.

44

nRMSE nME CRPS SnRMSE SCRPS

Model Val Test Val Test Val Test Val Test Val Test

S2S-Attn-Luong 0.092 0.088 0.052 0.049 1.320 1.242 0.300 0.347 0.491 0.537

S2S-Attn 0.092 0.086 0.052 0.048 1.333 1.228 0.303 0.362 0.487 0.543

Table 5.4: Attention Model Comparison.

and demonstrated in Table 5.4. The input to the encoder is the shifted NWP signal,

and both models are trained with teacher forcing. The model designed according to

Luong et al. [25] is referenced as S2S-Attn-Luong.

From the results on the test set, the proposed model has superior performance

for the specific hyperparameters used in this experiment. However, an interesting

observation is that the model based on Luong architecture performs equivalently to

the proposed model on the validation set, with some metrics having higher scores.

This implies that the proposed model generalizes better. This adds to the conclusion

made in the previous experiment, which showed better generalization of the attention

model. A subsequent suggestion is that additional attention layers provide further

improvement in generalization over a single attention layer by extracting more context

from the features.

5.4 Experiment 4: GRU

For this study, an application of GRU recurrent units instead of LSTM was considered.

The experiment was set up according to the discussion in section 4.5.

According to the results in Table 5.5, the model with LSTM units still performs

best regardless of the number of parameters in the GRU based models. However, an

interesting note is that the smaller GRU model, S2S-Attn-GRU-small with 110 units in

each layer, performs marginally better than the larger model, S2S-Attn-GRU-large with

128 units and the parameter count equivalent to the LSTM based model. GRU is

45

nRMSE nME CRPS SnRMSE SCRPS

Model Val Test Val Test Val Test Val Test Val Test

S2S-Attn-GRU-small 0.094 0.090 0.053 0.050 1.342 1.263 0.292 0.336 0.484 0.530

S2S-Attn-GRU-large 0.094 0.091 0.053 0.051 1.350 1.279 0.287 0.327 0.480 0.524

S2S-Attn-LSTM 0.092 0.086 0.052 0.048 1.333 1.228 0.303 0.362 0.487 0.543

Table 5.5: Recurrent Unit Comparison.

easier to implement, but it has only two gates within the hidden unit, while LSTM

has four. This may affect the memory collection ability of the recurrent unit. Fur-

thermore, LSTM units seem to be more frequently adopted for forecasting [4]. This

may attribute for the result above, and support the choice of using LSTM units in

the proposed model.

5.5 Experiment 5: Model Parameter Tuning

To confirm the parameters chosen for the previous experiment and explore directions

for further improvement, a parameter tuning experiment was set up.

As noted from Table 5.6, the best performing architecture is S2S-Attn-2x256, which

achieves an SnRMSE of 41.1% on a particular dataset in this experiment. This indicates

that the direction for improvement is to increase width and not depth of the network.

However, model S2S-Attn-2x128 also exhibits good results being the second best model

on the test set and achieving SnRMSE of 40.2%. Therefore, a choice of the original

parameters being 2 layers and 110 units is somewhat justified. It is notable that

the model’s performance increases for 2 layers, but then deteriorates for 4 layers,

which is most obvious in S2S-Attn-2x256 and S2S-Attn-4x256. This is possibly explained

by the deeper model overfitting the dataset. Figures 5.3 and 5.4 illustrate this by

plotting training and validation curves of the two architectures. In the figures, y axis

represents the nRMSE value, which is used to monitor the validation performance.

46

nRMSE nME CRPS SnRMSE SCRPS

Model Val Test Val Test Val Test Val Test Val Test

S2S-Attn-1x64 0.088 0.084 0.050 0.047 1.205 1.209 0.381 0.347 0.573 0.524

S2S-Attn-1x128 0.086 0.079 0.049 0.044 1.181 1.108 0.395 0.379 0.582 0.564

S2S-Attn-1x256 0.087 0.078 0.049 0.043 1.207 1.127 0.387 0.387 0.572 0.556

S2S-Attn-2x64 0.092 0.085 0.052 0.048 1.298 1.250 0.353 0.332 0.540 0.508

S2S-Attn-2x128 0.089 0.077 0.050 0.043 1.241 1.063 0.373 0.402 0.560 0.581

S2S-Attn-2x256 0.085 0.075 0.048 0.042 1.172 1.032 0.397 0.411 0.585 0.594

S2S-Attn-4x64 0.089 0.082 0.050 0.046 1.232 1.164 0.375 0.361 0.564 0.542

S2S-Attn-4x128 0.089 0.083 0.050 0.046 1.210 1.143 0.373 0.349 0.571 0.550

S2S-Attn-4x256 0.091 0.083 0.051 0.046 1.286 1.184 0.357 0.350 0.544 0.533

Table 5.6: Model Parameter Tuning Results.

And x axis is the number of epochs the model trained for. Considering that the model

in Figure 5.4, S2S-Attn-4x256, exhibits earlier overfitting, it can be concluded that the

forecasts in this experiment setting will not benefit from deeper architectures.

47

Figure 5.3: Train and Validation Curves for S2S-Attn-2x256.

Figure 5.4: Train and Validation Curves for S2S-Attn-4x256.

48

Chapter 6

Conclusions & Future Work

6.1 Conclusions

This thesis explores the application of sequence to sequence models with attention to

multivariate time series forecasting. To analyze the suitability of these techniques, a

sequence attention model was proposed, based on the sequence to sequence model by

Sutskever [2] and attention mechanism by Bahdanau [3]. Then, a test comparing this

model to standard architectures was conducted. Further, the training design choices

were inspected. An investigation of whether the model’s performance is affected by

the dataset was studied. The proposed attention model was compared to the classic

sequence to sequence attention for validation. Finally, experiments were conducted

on the alternative choice of recurrent units.

The results demonstrated that the sequence models are well suited for multivariate

time series forecasting due to the decoupling of the encoder and decoder functions as

well as the decoder’s recursive nature. Encoder-decoder models appeared to benefit

from a high resolution data and probabilistic targets in the form of binned probabil-

ity distribution for photovoltaic (PV) generation forecasting. Furthermore, providing

the next day numerical weather forecast to the models significantly positively affected

the performance by providing more than 15% gain in nRMSE skill score. Training

the proposed model with teacher forcing further improved the results. The proposed

attention model achieved the best performance across the conducted experiments.

49

On one specific dataset, it achieved an nRMSE skill score of 48.1%. And on a k-fold

cross-validation experiment, with the datasets generated under different conditions,

it achieved an nRMSE skill of 36.2%. The discrepancy between the results is at-

tributed to the differences in the datasets. Overall, it was concluded that sequence

to sequence architectures with attention can gain improvements in multivariate time

series forecasting.

In conclusion, the following contributions were made in the experimental process.

Objective 1, which comprised an analysis of applying sequence models to forecasting,

was met by applying several well-known sequence to sequence models to photovoltaic

power generation forecasting. The second objective was to add an exploration of

an attention mechanism. To complete the goals of objective 2, an analysis of a

proposed attention architecture as well as a review of a classic attention model were

studied. This showed that multivariate time series forecasting can potentially improve

by applying these models.

For further analysis of the training design choices, as specified in objective 3, a

k-fold cross-validation experiment was conducted, studying the effects of teacher forc-

ing and the input sliding window data. As per objective 4, to validate the proposed

model’s performance, the model was tested against a classic sequence to sequence

attention architecture. The use of a different recurrent unit was analyzed to poten-

tially reduce the computational resources without harming the performance. A model

parameter tuning experiment helped in understanding of architecture dynamics and

determined a direction of potential performance improvement. In summary, the ob-

jectives set for this work were met. The results of this research prove that sequence

models with attention are applicable to multivariate time series forecasting in the

energy sector.

50

6.2 Future Work

Overall, this thesis demonstrated that deep learning natural language (NLP) tech-

niques are transferable to multivariate time series forecasting. Moreover, attention

was proven to aid feature extraction. Therefore, to further explore NLP methods, a

self-attention based architecture will be applied to multivariate time series forecast-

ing. This is a part of an ongoing project, which is focused on taking inspiration from

the Transformer and other advanced NLP models. Along the same direction, it is

suggested to employ pre-training and fine-tuning techniques to reduce the computa-

tional capacity requirements. Currently, one model is trained per dataset. However,

the model can be pre-trained on one large dataset, and afterward fine-tuned on a

previously unseen dataset from the same domain, to forecast for different individual

scenarios. Finally, this project can extend to other domains, such as load forecasting.

51

Bibliography

[1] D. van der Meer, J. Widén, and J. Munkhammar, “Review on probabilistic
forecasting of photovoltaic power production and electricity consumption,” Re-
newable and Sustainable Energy Reviews, vol. 81, pp. 1484–1512, 2018, issn:
1364-0321. doi: https://doi.org/10.1016/j.rser.2017.05.212. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1364032117308523.

[2] I. Sutskever, O. Vinyals, and Q. V. Le. (2014). Sequence to sequence learning
with neural networks. arXiv: 1409.3215.

[3] D. Bahdanau, K. Cho, and Y. Bengio. (2014). Neural machine translation by
jointly learning to align and translate. arXiv: 1409.0473.

[4] K. Benidis, S. S. Rangapuram, V. Flunkert, B. Wang, D. Maddix, C. Turk-
men, J. Gasthaus, M. Bohlke-Schneider, D. Salinas, L. Stella, L. Callot, and T.
Januschowski. (2020). Neural forecasting: Introduction and literature overview.
arXiv: 2004.10240.

[5] A. Gasparin, S. Lukovic, and C. Alippi. (2019). Deep learning for time series
forecasting: The electric load case. arXiv: 1907.09207.

[6] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice,
3rd ed. OTexts: Melbourne, Australia, 2021. [Online]. Available: https://otexts.
com/fpp3/.

[7] J. G. De Gooijer and R. J. Hyndman, “25 years of time series forecasting,”
International Journal of Forecasting, vol. 22, no. 3, pp. 443–473, 2006, Twenty
five years of forecasting, issn: 0169-2070. doi: https ://doi .org/10 .1016/ j .
ijforecast.2006.01.001. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0169207006000021.

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[9] J. Antonanzas, N. Osorio, R. Escobar, R. Urraca, F. M. de Pison, and F.
Antonanzas-Torres, “Review of photovoltaic power forecasting,” Solar Energy,
vol. 136, pp. 78–111, 2016, issn: 0038-092X. doi: https://doi.org/10.1016/
j .solener.2016.06.069. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0038092X1630250X.

[10] J. Dumas and B. Cornélusse. (2018). Classification of load forecasting studies
by forecasting problem to select load forecasting techniques and methodologies.
arXiv: 1901.05052.

52

https://doi.org/https://doi.org/10.1016/j.rser.2017.05.212
https://www.sciencedirect.com/science/article/pii/S1364032117308523
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2004.10240
https://arxiv.org/abs/1907.09207
https://otexts.com/fpp3/
https://otexts.com/fpp3/
https://doi.org/https://doi.org/10.1016/j.ijforecast.2006.01.001
https://doi.org/https://doi.org/10.1016/j.ijforecast.2006.01.001
https://www.sciencedirect.com/science/article/pii/S0169207006000021
https://www.sciencedirect.com/science/article/pii/S0169207006000021
http://www.deeplearningbook.org
https://doi.org/https://doi.org/10.1016/j.solener.2016.06.069
https://doi.org/https://doi.org/10.1016/j.solener.2016.06.069
https://www.sciencedirect.com/science/article/pii/S0038092X1630250X
https://www.sciencedirect.com/science/article/pii/S0038092X1630250X
https://arxiv.org/abs/1901.05052

[11] T. Hong and S. Fan, “Probabilistic electric load forecasting: A tutorial re-
view,” International Journal of Forecasting, vol. 32, no. 3, pp. 914–938, 2016,
issn: 0169-2070. doi: https : / / doi . org / 10 . 1016 / j . ijforecast . 2015 . 11 . 011.
[Online]. Available: https : / / www . sciencedirect . com / science / article / pii /
S0169207015001508.

[12] U. K. Das, K. S. Tey, M. Seyedmahmoudian, S. Mekhilef, M. Y. I. Idris, W.
Van Deventer, B. Horan, and A. Stojcevski, “Forecasting of photovoltaic power
generation and model optimization: A review,” Renewable and Sustainable En-
ergy Reviews, vol. 81, pp. 912–928, 2018, issn: 1364-0321. doi: https://doi.org/
10.1016/j.rser.2017.08.017. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1364032117311620.

[13] C. Voyant, G. Notton, S. Kalogirou, M.-L. Nivet, C. Paoli, F. Motte, and A.
Fouilloy, “Machine learning methods for solar radiation forecasting: A review,”
Renewable Energy, vol. 105, pp. 569–582, 2017, issn: 0960-1481. doi: https :
//doi.org/10.1016/j.renene.2016.12.095. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0960148116311648.

[14] S. Sobri, S. Koohi-Kamali, and N. A. Rahim, “Solar photovoltaic generation
forecasting methods: A review,” Energy Conversion and Management, vol. 156,
pp. 459–497, 2018, issn: 0196-8904. doi: https://doi.org/10.1016/j.enconman.
2017 . 11 . 019. [Online]. Available: https : //www. sciencedirect . com/science/
article/pii/S0196890417310622.

[15] D. Lee and K. Kim, “Recurrent neural network-based hourly prediction of pho-
tovoltaic power output using meteorological information,” Energies, vol. 12,
no. 2, 2019, issn: 1996-1073. [Online]. Available: https://www.mdpi.com/1996-
1073/12/2/215.

[16] M. Pierro, F. Bucci, M. De Felice, E. Maggioni, D. Moser, A. Perotto, F. Spada,
and C. Cornaro, “Multi-model ensemble for day ahead prediction of photovoltaic
power generation,” Solar Energy, vol. 134, pp. 132–146, 2016, issn: 0038-092X.
doi: https : / /doi . org / 10 . 1016/ j . solener . 2016 . 04 . 040. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0038092X16300731.

[17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal
of Machine Learning Research, vol. 15, no. 56, pp. 1929–1958, 2014. [Online].
Available: http://jmlr.org/papers/v15/srivastava14a.html.

[18] S. Ioffe and C. Szegedy. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv: 1502.03167.

[19] J. L. Ba, J. R. Kiros, and G. E. Hinton. (2016). Layer normalization. arXiv:
1607.06450.

[20] K. He, X. Zhang, S. Ren, and J. Sun. (2015). Deep residual learning for image
recognition. arXiv: 1512.03385.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
Kaiser, and I. Polosukhin. (2017). Attention is all you need. arXiv: 1706.03762.

53

https://doi.org/https://doi.org/10.1016/j.ijforecast.2015.11.011
https://www.sciencedirect.com/science/article/pii/S0169207015001508
https://www.sciencedirect.com/science/article/pii/S0169207015001508
https://doi.org/https://doi.org/10.1016/j.rser.2017.08.017
https://doi.org/https://doi.org/10.1016/j.rser.2017.08.017
https://www.sciencedirect.com/science/article/pii/S1364032117311620
https://www.sciencedirect.com/science/article/pii/S1364032117311620
https://doi.org/https://doi.org/10.1016/j.renene.2016.12.095
https://doi.org/https://doi.org/10.1016/j.renene.2016.12.095
https://www.sciencedirect.com/science/article/pii/S0960148116311648
https://www.sciencedirect.com/science/article/pii/S0960148116311648
https://doi.org/https://doi.org/10.1016/j.enconman.2017.11.019
https://doi.org/https://doi.org/10.1016/j.enconman.2017.11.019
https://www.sciencedirect.com/science/article/pii/S0196890417310622
https://www.sciencedirect.com/science/article/pii/S0196890417310622
https://www.mdpi.com/1996-1073/12/2/215
https://www.mdpi.com/1996-1073/12/2/215
https://doi.org/https://doi.org/10.1016/j.solener.2016.04.040
https://www.sciencedirect.com/science/article/pii/S0038092X16300731
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1706.03762

[22] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.
Schwenk, and Y. Bengio. (2014). Learning phrase representations using rnn
encoder-decoder for statistical machine translation. arXiv: 1406.1078.

[23] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. (2019). Lan-
guage models are unsupervised multitask learners, [Online]. Available: https:
//cdn.openai.com/better-language-models/language models are unsupervised
multitask learners.pdf.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput.,
vol. 9, no. 8, 1735–1780, Nov. 1997, issn: 0899-7667. doi: 10.1162/neco.1997.9.
8.1735. [Online]. Available: https://doi.org/10.1162/neco.1997.9.8.1735.

[25] M.-T. Luong, H. Pham, and C. D. Manning. (2015). Effective approaches to
attention-based neural machine translation. arXiv: 1508.04025.

[26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. (2018). Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv: 1810.04805.

[27] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. (2018). Improving
language understanding by generative pre-training, [Online]. Available: https://
cdn.openai.com/research-covers/language-unsupervised/language understanding
paper.pdf.

[28] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever. (2019).
Deep double descent: Where bigger models and more data hurt. arXiv: 1912.
02292.

[29] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Leven-
berg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J.
Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-
sudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous sys-
tems, Software available from tensorflow.org, 2015. [Online]. Available: https:
//www.tensorflow.org/.

[30] E. Kharlova, D. May, and P. Musilek, “Forecasting photovoltaic power produc-
tion using a deep learning sequence to sequence model with attention,” in 2020
International Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–7.
doi: 10.1109/IJCNN48605.2020.9207573.

[31] A. Bracale, G. Carpinelli, P. De Falco, R. Rizzo, and A. Russo, “New advanced
method and cost-based indices applied to probabilistic forecasting of photo-
voltaic generation,” Journal of Renewable and Sustainable Energy, vol. 8, no. 2,
p. 023 505, 2016. doi: 10.1063/1.4946798.

54

https://arxiv.org/abs/1406.1078
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1810.04805
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/1912.02292
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1109/IJCNN48605.2020.9207573
https://doi.org/10.1063/1.4946798

Appendix A: Additional tables and
figures

A.1 k-fold Cross-Validaion

Please see Table A.1 for the averaged nRMSE, nME, CRPS, SnRMSE, and SCRPS for

the k-fold cross-validation experiment. The averaged results of the PV historical

signal ablation study are in Table A.2.

A.2 Forecasts

Presented here are additional figures of forecasts produced by the proposed model

S2S-Attn for the scenario with shifted NWP sample and teacher forcing. Figures A.1

and A.2 illustrate a case where the model failed to grasp the PV distribution well.

Figures A.3 and A.4 show an example of PV generation presumably in winter when

there is little generation due to low levels of solar irradiance. And figures A.5 and A.6

demonstrate an example of a day when there are high levels of solar irradiance.

55

nRMSE nME CRPS SnRMSE SCRPS

Model Val Test Val Test Val Test Val Test Val Test

Persistence 0.133 0.135 0.072 0.073 2.612 2.680 - - - -

SW/no TF

LSTM 0.116 0.120 0.067 0.069 1.741 1.841 0.126 0.112 0.330 0.315

S2S 0.112 0.114 0.065 0.066 1.729 1.756 0.154 0.158 0.336 0.343

S2S-Attn 0.112 0.112 0.065 0.065 1.689 1.662 0.156 0.171 0.351 0.381

SW/TF

LSTM - - - - - - - - - -

S2S 0.113 0.113 0.065 0.065 1.745 1.723 0.149 0.167 0.330 0.357

S2S-Attn 0.110 0.114 0.064 0.066 1.699 1.765 0.164 0.154 0.346 0.342

Shifted SW/no TF

LSTM 0.094 0.095 0.053 0.054 1.322 1.379 0.289 0.299 0.491 0.489

S2S 0.091 0.089 0.051 0.050 1.319 1.298 0.312 0.345 0.493 0.517

S2S-Attn 0.092 0.087 0.052 0.049 1.335 1.240 0.303 0.356 0.486 0.539

Shifted SW/TF

LSTM - - - - - - - - - -

S2S 0.091 0.091 0.052 0.051 1.332 1.342 0.309 0.331 0.488 0.501

S2S-Attn 0.092 0.086 0.052 0.048 1.333 1.228 0.303 0.362 0.487 0.543

Table A.1: Complete k-fold Experiment Results.

56

nRMSE nME CRPS SnRMSE SCRPS

Model Val Test Val Test Val Test Val Test Val Test

Persistence 0.133 0.135 0.072 0.073 2.612 2.680 - - - -

Shifted SW/no TF

LSTM 0.094 0.095 0.053 0.053 1.365 1.377 0.285 0.299 0.474 0.486

S2S 0.093 0.093 0.053 0.053 1.363 1.373 0.292 0.313 0.475 0.490

S2S-Attn 0.096 0.092 0.054 0.051 1.431 1.356 0.274 0.317 0.449 0.495

Shifted SW/TF

LSTM - - - - - - - - - -

S2S 0.094 0.097 0.053 0.054 1.425 1.510 0.286 0.282 0.451 0.440

S2S-Attn 0.097 0.090 0.054 0.050 1.441 1.322 0.269 0.334 0.445 0.510

Table A.2: Complete ablation Experiment Results.

Figure A.1: Actual PV Generation PDF Signal.

57

Figure A.2: PV Generation History and Forecast PDF.

Figure A.3: Actual PV Generation PDF Signal.

58

Figure A.4: PV Generation History and Forecast PDF.

Figure A.5: Actual PV Generation PDF Signal.

59

Figure A.6: PV Generation History and Forecast PDF.

60

	Introduction
	Motivation
	Thesis Objectives
	Thesis Outline

	Background
	Time Series Forecasting
	History of Time Series Forecasting

	Photovoltaic Power and Load Forecasting
	Exogenous Variables
	Individual vs. Aggregated Load
	Forecast Horizons
	Losses and Metrics
	Deep Learning in PV and Load Forecasting
	Energy Forecasting State-of-the-Art

	Deep Learning
	Neural Network
	Neural Network Training
	Neural Network Regularization

	Deep Learning for Language Processing
	Recurrent Neural Networks
	Sequence to Sequence
	Attention
	Transformer
	NLP State-of-the-Art

	Architecture Design
	Sequence to Sequence Architecture with Attention
	Applying E-D with Attention to Multivariate Time Series
	Probabilistic Targets

	Experimental Design
	Data Description
	Training Setup

	Benchmarks
	Implementation of Benchmark Algorithms

	Design Choices: k-fold Cross-Validation
	Original Attention Test
	Recurrent Cell Test
	Model Parameter Tuning

	Discussion
	Experiment 1: Benchmarks
	Experiment 2: k-fold Cross Validation
	Experiment 3: Attention
	Experiment 4: GRU
	Experiment 5: Model Parameter Tuning

	Conclusions & Future Work
	Conclusions
	Future Work

	Bibliography
	Appendix A: Additional tables and figures
	k-fold Cross-Validaion
	Forecasts

