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Abstract

This thesis studies the capacity placement problem in ATM VP-based restorable networks.
Previous work on this problem has been heuristic in nature and / or has treated the ATM
spare capacity design problem with exact methods but in a manner that is essentially the
same as for STM path restorable networks. In this thesis, we develop an optimization
approach which lets us exploit the inherently statistical nature of the traffic in ATM in
capacity planning for restoration. Oversubscription factors are defined as the ratio of total
VP bandwidth allocation after restoration to the total installed capacity of the span. An
oversubscription larger than 1.0 is one of the unique properties of ATM networks. There
arc two parts in this thesis. The first part is oriented towards capacity planning that would
permit controlled oversubscription of bandwidth. Three integer program formulations arc
developed to achieve optimal capacity planning with a controlled oversubscription.
Results show that significant capacity savings can be obtained relative to STM if ATM
restoration is allowed even a modest restoration-induced oversubscription of bandwidth
on surviving spans. Then the objective of the second part is to give quantitative guidelines
towards determining a realistic oversubscription factor based on the resultant overload
implication at the cell level. The overload is the worst case oversubscription after restora-
tion in ATM networks. Simulations are completed with two traffic models: on/off fluid
model and auto-regressive model. We find that the tolerable overload depends on many
factors, such as the class and traffic model. In conclusion, a restorable ATM network plan-
ning framework is proposed to exploit the intrinsic differences between ATM and STM

transport.
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Chapter 1. ATM Restoration Problem

1.1 Restoration Problem

The requirements of today’s telecommunication networks are changing rapidly with the
introduction of high-capacity transmission links, the increased amount of data and voice
traffic, and the role of telecommunications as a major part of the world's infrastructure. A
failure occurring in such a large network can result in a huge loss of bandwidth, loss of
service to users, and loss of revenue to operating companies. To ensure service continuity,
service providers have increased their efforts to avoid failures if possible and restore
nctwork failures quickly. At the centre of these efforts lies a challenging question: how
can service providers ensure affordable service continuity? In modern «elecommunications
practice, this is formally called the restoration problem. Because of the huge economic
impact made by network failures, fast and automated restoration has become an essential

adjunct to the deployment of large scale telecommunication networks [1, 3].

Restoration is normally achicved by rapid (within 2 seconds [2]) and accurate rerouting of
affected traffic over a set of replacement paths through the spare transmission capacity in
the network. These restoration paths should have enough capacity to restore the failed
traffic. Also, these paths need to be link disjoint. The restoration problem is significantly
different from the well-studied packet routing and call routing problems and, therefore,

presents demanding real time computational challenges [1].

An important network restoration objective is to reduce network redundancy. Network

redundancy is defined as the ratio of spare to working capacity in a network [1]. Networks



with large redundancies are less economical because the spare capacity required to protect
them is expensive. Minimizing the capacity requirements of the networks while
maintaining the ability to restore the most common types of failures quickly, is a key

objective when solving the restoration problem.

1.2 STM Restoration Schemes

STM network restoration schemes are generally classified into two types: centralized and
distributed. For centralized schemes, all restoration routes are precomputed by a central
controller, and then downloaded to all DCS machines in the network. In the case of a
failure, affected nodes implement predetermined restoration routes and switch lost traffic
to those routes. Distributed schemes, notably the self-healing algorithm [1], establish a sct
of replacement paths without centralized control. Distributed algorithms rely on the
autonomous and independent action of all nodes. When a transmission span failure occurs,
restoration messages are exchanged between nodes to restore the paths containing the
failed span. The replacement connection is found by the network elements and rerouted
depending on network resources available at the time of the failure. The primary
advantage of distributed restoration is fast restoration and robustness compared with other
restoration schemes [2]. Regardless of whether a network uses centralized or distributed
restoration to restore a failure, sufficient spare capacity must exist to accommodate the

restoration routes.

The restoration routes and the associated capacity design problem may involve either span

restoration or path restoration. Span restoration re-routes failed working traffic over a set
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FIGURE 1. Span and Path Restoration

of replacement paths between the two end nodes of a failed span. Path restoration re-
routes failed working traffic over a set of replacement paths between each source and
destination affected by a [ailure. Figure I shows an example in which the failure of span
CD affects two working routes: A to F and K to G. Span restoration finds replacement path
scgments between nodes C and D, whereas path restoration finds end-to-end replacement
paths for the demand pairs A-F and K-G. Path restoration can be more capacity cfficient
than span restoration because it spreads the replacement paths over a larger portion of the

network, increasing the alternatives available for making efficient use of network's spare



capacity. However, path restoration is more complex to implement than span restoration
because it may involve finding replacement paths for several source-destination pairs

instead of only one node pair.

1.3 ATM Technology

Asynchronous Transfer Mode (ATM) is the transport technology of the B-ISDN network
proposed by the International Telecommunications Union (ITU). ATM defines the
switching, multiplexing and transmitting of information over B-ISDN networks. Instead
of reserving time slots as in STM networks, information in ATM is packetized and placed
in short 53-byte cells that are multiplexed and transmitted asynchronously on the
transmission medium. ATM networks can support a variety of services (e.g., telephone,

image, video and data), with a guarantced Quality of Service (QoS).

A Virtual Circuit Connection (VCC) in ATM is analogous to a virtual circuit in data
networks, such as an X.25 or a frame relay logical connection. The VCC is the basic unit
of switching in ATM networks. After a VCC is set up between two nodes in the network, a
variable rate, full-duplex stream of cells maintains a connection. For ATM, a second sub-
layer of processing has been introduced to deal with the concept of a virtual path. A
Virtual Path Connection (VPC) is a bundle of VCCs that have the same endpoints, e.g.,
switching systems, LAN gateways, etc. Thus, cells flowing over all of the VCCs in a
single VPC may be switched together. Because VP switching is inherently more efficient
than VC switching [4], it is advantageous to switch a cell in a VP. This Virtual Path

concept was developed in response to a trend in high-speed networking in which the



control cost of the network is becoming increasingly high in proportion to the overall
network costs. The Virtual Path technique helps reduce the control cost by grouping
connections sharing common paths through the network into a single unit. Network
management actions can then be applied to a small number of groups of connections

instead of a large number of individual connections.

The packets in an ATM network are called cells. The length of an ATM cell is 53 bytes,
consisting of a 48-byte information field and a 5-byte header. Two of the fields defined in
the header are the Virtual Path Identifier (VPI) and the Virtual Circuit Identifier (VCI).
VPl is a 12-bit field (8-bit in UNI), and the VCl is a 16-bit field that together define the
routing information of a cell. As with any other packet-switching network, routing of cells

is performed at every node for each arriving cell.

A difference between STM and ATM networks is that ATM uscs statistical multiplexing.
Statistical multiplexing is a scheme that multiplexes traffic based on the strong law of
large numbers [5]. This law states that for a number of uncorrelated flows, the bandwidth
necessary to satisfy the needs for all of the flows stays nearly constant, even though the
amount of traffic in individual flows can vary. The reason for this is that at any given
moment a few applications could be increasing their traffic while other applications could
be reducing their traffic. According to the strong law of large numbers, these changes
roughly balance each other out. Compared with STM deterministic multiplexing, ATM

statistical multiplexing can offer an improvement in bandwidth utilization [5].



1.4 ATM Restoration

Recently algorithms for ATM network restoration have been studied actively and the VP

has become the focus of ATM restoration [4, 9, 10]. When a VP is restored, all VCs inside
the VP are restored automatically. There is no need to restore individual VCs. Because a

VP can support up to 65536 VCs (recall that there are 16 bits in VCI field), restoration at

the VP level can greatly reduce the network management burden.

Another unique factor of VP-based restoration is that it is basically a path restoration
technique instead of a span restoration technique shown in Figure | because a VP
normally traverses several spans. As discussed in Section 1.2, path restoration has a

significant advantage in terms of capacity efficiency compared with span restoration.

VP-based restoration is distinct from STM path restoration because the path establishment
and bandwidth assignment of a VP are defined relatively independently. The route is
defined in the VPI table of the ATM switch, while bandwidth is logically defined and
managed in the database of an ATM switch. In fact a VP route can be established without
defining its bandwidth, i.c., a zero bandwidth VP may be established. This unique
property makes it possible to establish multiple backup VPs that share the spare capacity
of a span. In Figure 2, for example, two backup VPs { and j arc cstablished for restoration
using span ab. The bandwidth requirement of each backup VP is S units. The routes of
backup VPs are set before a failure. In the case of a failure, bandwidth is allocated to the
needed backup VPs. If VP i fails, the backup VP for VP i uses the spare capacity on to

restore the traffic in VP i. If VP i and VP j arc mutually independent, we only need to



allocate 5 units of spare capacity to span ab instead of 10 units. The sharing of spare

capacity on a span allows spare capacity to be more efficiently utilized [4].

Span ab: - m— T CTTTTTITTTIeeee
spare: S ’ Tl

VPi (capacity= 5) ",
. Pj (capacity= 5)

- - Working VP
.................. Backup VP

FIGURE 2. Spare Capacity Sharing in ATM networks

Compared with STM restoration, ATM restoration is more difficult due to the following
reasons [3]. First, the average number of virtual paths accommodated in a link may be
much larger. The maximum number of VPs that can be normally handled by an ATM
switch is 4096 (12 bits in the VCI field in the ATM cell header for at a N NI). Thus the
number of restoration paths may be tremendously larger than that in STM networks. This
also makes a distributed restoration scheme difficult to implement. By any type of
flooding method, the network may easily become saturated with route searching
messages. The second difficulty comes from ATM’s traffic characteristics. ATM networks
support a variety of traffic types such as CBR, VBR, ABR and UBR. These traffic types
have their own quality of service requirements. For example, real time applications are
very sensitive to cell delay variance, while data communications are more sensitive to cell

loss. Consequently, ATM restoration must consider more factors than only bandwidth



requirement as in STM restoration. The third difficulty is that ATM uses statistical
multiplexing. In contrast to the traffic flow in STM networks, there is no fixed bandwidth
associated with traffic flows in ATM networks. Therefore, if some traffic flow is induced
on a link, without some engineered control and network design, the result could be a

severe overload on that link, an issue overlooked by some ATM restoration schemes.

[n a previously proposed ATM restoration scheme [4], a backup VP is pre-assigned for
each working VP. In the restoration process, traffic in a working VP is normally restored
to only one backup VP. This no-splitable property can prevent VCs inside the VP from re-
routing to different routes, which increases the complexity of restoration significantly. In
the backup VP, there is no cell flow in normal operations. The nodes terminating the
working VP are also the nodes terminating the backup VP. When a failure occurs, the
Sender node (downstream side terminating node of the failed VP) detects the VP failure
and sends a restoration message along the backup route. The Sender node then switches
the failed VP to the backup VP. Each node that receives the restoration message captures
the appropriate bandwidth on the links, and retransmits the message to the next node on
the backup route. When the Chooser node (upstream side terminating node of the failed
VP) finally receives the restoration message, it switches traffic from the failed VP to the
backup VP. This completes, at least functionally, the restoration process for the failed VP.
There are, however, issues of bandwidth coordination to make this simple scheme perform

adequately.



1.5 Problem Introduction

Several spare capacity placement algorithms for ATM VP-based restoration design have
been proposed (4, 10]. They may be classified into two general categories. The first
category of ATM capacity placement algorithms are basically heuristic in nature. In the
algorithm proposed by NTT (4], the shortest route is first set as the initial backup route for
each working VP. Then the algorithm substitutes an alternative backup route for each
working VP one at a time and the spare capacity is calculated with this modified set of
backup routes. If a smaller total amount of spare capacity is achieved using this
substitution, the alternate backup VP is kept. Every VP backup is tested in this manner to
find which backup VP routes require less spare capacity given the current state of spare
bandwidth allocations already placed for previously decided backup VP routes. This
process is repeated until no improvement can be made. In the resultant design, the spare
capacity of a span is forced by the largest capacity VP whose backup route traverses it.

This procedure is conceptually heuristic.

The second category of ATM capacity placement algorithms (6], treats the ATM capacity
design problem with exact methods but in a manner that is essentially the same as for
STM path restorable networks [8]. This means that the spare capacity plan aims to support
all restoration demands with an exact match of restoration bandwidth to failed working
VP bandwidth. This approach is certainly a valid and defensible basis for planning a
practical ATM network today. However, one can observe that this treats the ATM spare
capacity problem as essentially equivalent to STM planning in that failed VPs are rerouted
over backup VPs of exactly equal bandwidth allocation regardless of actual VP utilization.

This is analogous to STM type restoration of STS-n signals as integral entities regardless



of their actual payload fill. There is no way to take signal fill into account in STM
restoration: each signal unit must be replaced exactly or all services borne on the affected
transport signals experience hard outage. This hard outage aspect of STM does not pertain
to ATM because ATM uses statistical multiplexing, however, two or more VPs of a unit
bandwidth allocation could technically be re-routed for restoration and converge on the
same link of unit spare bandwidth. Both VPs are functionally or logically rerouted as
required, but the link bandwidth is oversubscribed at this point. Thus, there may be an
overload effect in the link, i.e., the services in both VPs may undergo a degradation on
QoS. This degradation, though conceivably severe, but, unlike STM, is soft and
continuous, a degradation that arises if the replacement bandwidth is not an exact match to
the failed working bandwidth. Moreover, the actual degradation that occurs depends on
the VP utilization at failure time. If utilizations are low, then the oversubscription of

bandwidth on restoration may not cause QoS to degrade below acceptable service levels.

ATM restoration planning could (if we wish to consider it) exploit a domain that is not
available to STM. This planning would allow us to contemplate bandwidth planning that
does not support strictly perfect replacement of each VP's initial bandwidth allocation.
While not dismissing or minimizing the potential impact on service, which could be
severe if oversubscription effects are uncontrolled, it could be of value to at least inspect
the trade-off between network capacity requirements in dependence on a limited
designed-in allowance for bandwidth oversubscription upon restoration. Specifically, our
interest will be in recognizing the inherently statistical nature of the traffic flows in ATM
and formulating the backup VP design process to permit a controlled maximum amount of

convergent flow oversubscription on spans during restoration. A partial analogy for this



line of thinking is found in the airline business: most flights are slightly overbooked as
part of an overall optimum economic policy for revenue maximizatior.. Most often, the
overbooking is unseen to users as some passengers almost always do not show up.
Similarly in an ATM network, could we not slightly (or even aggressively) overbook the
restoration capacity we design into the network? Unless a failure occurs right when
working VP utilizations are simultaneously at their peaks, the slight overbooking of
restoration capacity may be unnoticed by customers. Indeed, if the trade-off of net
capacity versus tolerable oversubscription is steep, and/or if mechanisms can be built in to
also prioritize VPs when restoration-induced congestion is manifest, then ATM networks
with a controlled degree designed-in bandwidth oversubscription upon restoration may

well be part of an economically optimum overall strategy.

1.6 Outline of Thesis

The preceding discussions introduced the gencral problem of this research, we now
proceed in detail as follows: Chapter 2 presents different types of original integer program
formulations and heuristic algorithms for the capacity placement problem in ATM
networks. First, we will quantitatively define the oversubscription factor based on the
traffic nature in backup VP-based ATM restoration. Then, we will show that the
oversubscription effect can be very severe in some prior work, illustrating that the spare
capacity placement problem must be considered carefully. Three Integer Program (IP)
formulations will be given for (a) minimum spare capacity with respect to design peak
oversubscription, (b) minimum oversubscription with given spare capacity, and (c)

minimum total capacity with respect to design peak oversubscription. In addition to these



IP formulations, two simpler algorithms are also presented to calculate reasonably tight
upper and lower bounds on the required spare capacity. We will then use these
formulations to study the effect of spare capacity saving with various degrees of
oversubscription allowed in ATM restorable network planning. From the results we will

find oversubscription can benefit the capacity saving in ATM networks.

Chapter 3, thereafter, presents a study to address the logical next question of what the
tolerable overload factor can be based on the related cell-level overload implications. We
study cell-level overload from the viewpoint of cell loss ratio degradation. The idea is to
determine a realistic level of cell-level overload effects and cell-level performance
degradation duc to merging restoration flows. This work is oriented toward the cell level
dependence on traffic types and number of VPs in merging restoration flows. Our aim is to
produce quantitative guidelines on the tolerable oversubscription value with which to
design a given backup VP-based restorable ATM network. Two different traffic models
will be used in the respective simulations: an on/off fluid model and an auto-regressive

model.

Chapter 4 is a concluding discussion which proposes and discusses a new overall
framework for ATM backup VP capacity design based on the ideas and results of the

previous two chapters. Finally a summary of the whole thesis will be given.



Chapter 2. Spare Capacity Placement

2.1 Logical View of VP-based ATM Restoration

To understand the traffic on an ATM span after restoration, a logical view of a span j is
illustrated in Figure 3. Assume that span j has a total installed bandwidth allocation that is
based on its nominal working load and some reservation of spare capacity for restoration.
Unlike in an STM network, these working and spare bandwidth allocations are not
necessarily distinct integral transmission sub-units, e.g. DS3s or STS-1s. Rather, each
link’s total bandwidth is viewed as having been planned as two allocations from the total
bandwidth present. In case of another span i failure, all VPs going through span i are re-
routed to other spans. During restoration, some working VPs on the failed span ¢ may usc
span j in their backup routes. These backup VPs were logically present on span j prior to

failure, but then consumed no bandwidth. Only upon failure does the re-directed cell

ATM span j
Working VPs
before restoration
Backup VPs ATM span j
Working VPs
stub release VPs after restoration

FIGURE 3. Logical View of VP-based ATM Restoration



stream appear in each backup VP. Additionally, part of the restoration reaction of the
network may give span j a reduction in cell traffic: this occurs if one or more of the
working VPs on span j is also affected by the failure event, either upstream or downstream
of span j on the path of these working VPs. This is known as stub relecase here and was
previously used in a similar content in (8). Therefore, surviving span j may see both a
disappearance of cell flows from some of its working VPs and a sudden onset of new cell

streams for activated backup VPs that traverse it.
In general, there are three types of traffic on an ATM span after restoration:

I. traffic from working VPs, the undisturbed traffic already existing on the span.
2. traffic from stub release VPs, the traffic rerouted away from the span, and

3. traffic from backup VPs, the traffic choosing the span in their backup routes.

2.2 Oversubscription Factor

We can now quantitatively define the restoration induced bandwidth oversubscription

factor. The oversubscription factor Xj i of a span j in response to failure of another span

i is defined as the ratio of total VP bandwidth allocation after restoration to the total

installed capacity of the span. This can be expressed as follows:
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where

Rr;; is the total allocated bandwidth of VPs on span i whose backup route crosses

span j.

Rs;; is the total allocated bandwidth of VPs which disappear from span j because

they traverse the failed span i which happens to be either upstream or

downstream of span j. (This is called the stub release traffic.)

W; is the total allocated bandwidth of working VPs on span j before failure.

S is the total sparc bandwidth allocation on span j.

Note that X;;; is based on allocated bandwidths of VPs throughout, but not the actual
traffic. The term “‘overload” can more precisely describe the ratio of actual induced traffic
to the link bandwidth. The actual cell-level overload that occurs depends on the actual
utilization of each VP involved, not the bandwidth allocations to the VPs. Therefore, if
each factor in the numerator were to be multiplied by a known cell-level utilization factor.
a true overload measure results. However, for planning purposes, the worst case overload
is obviously the same as the oversubscription factor, thus we continue to refer to X i as the
restoration-induced oversubscription factor since a value X,,; will represent the designed
in maximum oversubscription of bandwidth and hence the maximum tolerable cell-level

overload that could occur in the network as designed.

[t can be appreciated that X i S 1.0 V(j, i) is a basic property of STM restoration

because this implies that the total bandwidth of paths available for replacement of failed
transport signals is always cqual to or greater than the failed bandwidth. In STM, there is

no option of *partly’ replacing one or more failed STS-n signals. Either each is replaced



exactly by a matching restoration path or all services borne by the given STS-n experience

immediate total outage. In ATM, however, the concept X ;i > 1.0 is definitely conceivable

and technically meaningful. As argued, it simply means that span j's total bandwidth is
technically oversubscribed when span i fails. Unlike STM, this is a state of *partial’
restoration in which all services may be affected to a degree in terms of cell loss and delay.
However, no service is immediately terminated or disconnected because the restoration

path bandwidths do not exactly match the pre-failure bandwidths. Whether cell-level

performance exceeds QoS requirements under X ;i > 1.0 will depend on the actual VP

utilizations and traffic parameters at the time of failure.

2.3 Prior Work Involving Uncontrolled Oversubscription
Effects

A heuristic algorithm of capacity placement in ATM backup VP-based restoration was
previously proposed by NTT in [4]. The main problem of this method, described below. is
that while every working VP is assigned a backup VP route to yield a near-minimum in
total backup capacity allocations, there is no designed-in control to coordinate the backup
VPs with respect to oversubscription arising from the set of working VPs that are cut by
the same physical failures. The result is that while a logical replacement route exists to
functionally replace each failed working VP, the total cell-level traffic impinging on other

network spans is uncontrolled.

In the algorithm described in [4], hereafter called KST-Alg, the shortest route is first set as

the initial backup route for each working VP. Then the algorithm substitutes an alternative



backup route for one working VP. The spare capacity is calculated with this set of backup
routes. If a smaller total amount of spare capacity is achieved by using this substitution,
the substitution is kept. Every VP is tested in this manner to find which of all its possible
disjoint alternate routes requires less spare capacity given the current state of spare
bandwidth allocations already placed for previously decided backup VP routes. This
process is repeated until no improvement can be made. In the resultant design, the spare

capacity of a span is forced by the largest VP whose backup route traverses it.
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) Pj (capacity=7)

- - Working VP
.................. Backup VP

FIGURE 4. KST-Alg Backup VP Capacity Allocation (Ideal Situation)

Figure 4 illustrates the capacity minimization principle and how it results in uncontrolicd
oversubscription. In the example, span ab serves on the backup routes for both VP i
(capacity 5) and VP j (capacity 7). Assume KST-Alg has first considered VP j and,
accordingly, then assigns span ab a spare capacity of 7 units. Once span ab has 7 units of
restoration capacity assigned to it, KST-Alg will later realize that it can efficiently route the

backup VP for working VP i over span ab as well because more than enough capacity is



already reserved on ab to serve VP i which needs only S units of bandwidth. This reuse of
span ab in the example assumes that KST-Alg also finds that the rest of the backup VP
route for VP i is suitably efficient on other spans as well. KST-Alg chooses a complete sct

of backup VPs which are efficient in this sense of re-use of capacity.

Thus, functionally speaking, a logical backup VP is planned for each working VP. Such
backup VPs would be fully adequate if one VP fails at a time. What is missing, however,
is consideration that if VP i and VP j happen to share the same physical span, for instance,
xy, then in case of its failure, VP i and VP j will be re-routed simultaneously onto backup
VPs which traverse span ab as illustrated in Figure 5. Therefore, omitting any *stub

Span ab: _a b

working=9
spare: to be assigned

.....
------

VPi (capacity= 5)

VPj (capacity= 7)

-+ — Working VP
.................. Backup VP

FIGURE 5. KST-Alg Backup VP Capacity Allocation with Problems

rclease’ effects for the example, and assuming a W; of 9 units on ab, the result of span cut

xy is a restoration-induced total allocation of 9 +5+7 = 21 units of capacity on span ab,
which only has a total capacity allocation of 9+7 = 16 units. Thus the restoration induced

oversubscription factor X, . is 1.31 = 21/16. What is missing, then, are considerations on



how to coordinate the set of backup VPs from each physical span failure as a
simultaneously instantiated group of backup VPs. The reported capacity results given by
KST-Alg are extremely attractive and widely publicized predictions of very low spare
capacity levels. In what follows, we will see that these low levels will be accompanied by

essentially uncontrolled restoration oversubscription on the surviving spans.

2.4 Implementation of KST-Alg

In this section, KST-Alg was implemented to reproduce and to test the predictions of very
low spare capacity and to validate our concerns of uncontrolled restoration induced
oversubscription effects. The programs are written in the C language and presented in
Appendix C. In the rest of this section, we first discuss the working VP routing method,
and then move on to explain how to use KST-Alg to design the backup VP route for cach
working VP. Next, the oversubscription factor is calculated. Finally, we give a validation

to our calculation.

2.4.1 Working VP Routing for KST-Alg

Given a network topology and working demands, we use the shortest path method to
design the working VP routes and working capacity on each span. For every demand, we
find the shortest path between the end node pair, set up a VP along the path and place the
demand on all traversing spans. If there are several ‘equal’ distance shortest paths, we sct
up one VP on each, and split the demand into these VPs equally. Summing all VPs

requirements on a span, we get the working capacity.



2.4.2 Backup VP Routing Assignment for KST-Alg
First, a subset of all distinct backup routes for every VP is found, i.e., a subset of all span

disjoint routes between the end nodes of the working route. Considering that the number

of distinct routes in a network of S spans is O(2%), the number we use to test the result
typically has to be restricted in practice. Because of the properties of different networks,
we find that hop-limited or distance-limited methods typically used are not realistic. For
cxample, with a given hop limit, there may be thousands of backup routes for some VPs,
while no routes can be found for other VPs in some networks. Consequently, a k-
successive shortest distinct routes method is adopted to generate a useful set of distinct
backup route options for cach VP. We select several shortest eligible routes from this

subset in the results presented subsequently.

It is interesting to note that in some situations, there are no backup route options at all. For
cxample. in the sample network in Figure 6, if a VP (the dotted line) terminates at nodes A
and B, then there are no span disjoint backup routes between them even though this
network is 2 or more connected throughout. To avoid this situation, we change the

working VP design as needed if such a situation is encountered. A VP with the shortest

FIGURE 6. No Backup Routes in Working VP Design



path is checked to see if it has any backup path. If not, we choose another route for this VP
which, although it is not the shortest path, has a span disjoint backup VP. In this case
working & backup VPs are always possible to find as long as a cycle exists in the network

graph between their end nodes.

With these preliminaries completed, KST-Alg is then applied to choose the best backup
route set to minimize the total spare capacity. In the iteration for one VP, we substitute its
backup route with all alternatives. The spare capacity of a span is forced by the largest VP
whose backup route traverses the span. If one route set leads to less total spare capacity,
this substitution is kept. This process is repeated until no improvement can be made by
substituting backup routes for all VPs. A block diagram of KST-Alg implementation is

illustrated in Figure 7 on page 22.

2.4.3 Calculation of Oversubscription Factors

After designing backup VPs with KST-Alg, we check the oversubscription factors on all
other spans for each possible physical span cut. Oversubscription data is obtained by
actual rerouting experiments on each designed network based on all possible span cuts.
Each affected working VP is rerouted to its designed backup VP. We then apply all traffic
(including working, stub release and backup) in the definition in Equation 1 to obtain the
restoration-induced oversubscription on all spans for each span cut. For a network
containing S spans, each of S-/ other spans has an oversubscription factor upon a span

failure. Therefore, the total data set of oversubscription factors is an (S-/) by S matrix.
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2.4.4 Validation of Implementation

The implementation of KST-Alg was verified by checking some program results with

manual calculations.

In the backup design, the spare capacity of a span is forced by the largest capacity VP
whose backup route traverses the span. In the process, we save chosen backup routes into
a file. Later, we check the file and compare it with our manual calculation. For one span,
we find all backup routes which use it, then verify if the spare capacity is equal to the
largest backup VP. One of the five sample networks introduced in Section 2.5.1 on

page 25, Net 3, was chosen to validate the results. For example, in Net 3, span 8 is picked.

We find the following VP’s which use this span. Their capacities are shown in Table I:

TABLE 1. Backup VP Design Validation for Span 8 of Net 3

VP | capacity | VP | capacity | VP | capacity | VP | capacity
19 30.0 55 17.0 72 37.0 75 4.0
76 28.0 78 39.0 79 5.0 81 4.0
84 7.0 85 10.0 87 26.0 89 4.0
90 30.0 91 6.0

Apparently, the largest VP in Table | is VP 78 and its capacity is 39.0. This is exactly the
spare capacity which we get from the program. Other cases were also used to validate the

program and we always ended with the same results.

In the oversubscription factor validation, to calculate the oversubscription on span j upon

a span i cut, we considered the following VPs which use:

(a) span i as working route and span j as backup route;

(b) both span i and j as working route;



(c) span j as working route, regardless of span i.

Then these items are put in the oversubscription factor definition.

[tem (a) is restoration traffic in Equation 1, item (b) is stub release traffic and item (©)is
original working traffic on span j. After determining (a), (b), and (c), we put them in
Equation 1 to calculate the overload factor. For example, in Net 3, the oversubscription
factor of span 6 upon span 7 cut is considered. VP 37 (whose capacity is 4.0) traverses
span 6 and its backup route traverses span 7. Thus, span 7 has 4.0 extra units of traffic after
restoration. Table 2 summarizes all VPs which use span 7 as backup route and span 6 as

working route.

TABLE 2. Oversubscription Factor Validation

VP | capacity | VP | capacity | VP | capacity | VP | capacity
37 40 38 6.0 46 441.0 72 370
75 40 76 28.0 77 95.0 78 39.0

81 4.0 82 82.0 84 7.0 84 7.0
85 10.0 87 26.0 89 4.0 90 30.0
91 6.0

The sum of all traffic is 828. Next we find stub release traffic. In this case, only VP 55
(whose capacity is 17) uses both span 6 and 7 in its working route. It uses span 8 as
backup. Thus, this traffic is taken from span 7 upon failing span 6. Span 7 has a working
traffic 684. Its working and spare capacity arc 684 and 441 respectively. Given these
values we can get an oversubscription factor using Equation 1 of

684-17 + 828
684 + 441

= 1.3288, which is what we get from the program.



2.5 Results and Analysis of KST-Alg

2.5.1 Network Investigated

Five networks and demand matrices previously studied for STM restoration (8] were used
to test KST-Alg. The characteristics are detailed in Table 3. Smallnet is a test network
which has a uniform point-to-point demand matrix with two demand units between all
node pairs. Net | is a U.S. metropolitan area model (also known as the “Bellcore” study
network). Net 2 is a metropolitan area model in the Telus system, Canada. Net 3 and 4
topologies and demands are based on European and US interexchange networks,

respectively.

TABLE 3. Test Network Characteristics

network # node # span # demand pairs | # Working VPs
Smallnet 10 22 45 79

Netl 15 28 67 68

Net2 20 31 153 153

Net3 30 59 263 271

Netd 53 79 347 418

2.5.2 Results

Table 4 shows the spare capacity requirement with KST-Alg and the data for the

consequent oversubscription effects. The spare capacity expressed in percentage

represents the ratio of distance-weighted spare capacity to the distance-weighted working

capacity. Average oversubscription is the mean oversubscription value of all cases where




oversubscription factors arc greater than or equal to 1.0. Maximum oversubscription is the

case with the largest oversubscription factor.

TABLE 4. Spare Capacity and Oversubscription in Designs with KST-Alg

Average Maximum
Network | KST-Alg Oversubscription Oversubscription
Smallnet 28.6% 1.14 1.42
Netl 51.7% 1.39 3.00
Net2 54.3% 1.37 3.32
Net3 31.2% 1.37 4.16
Net4 38.6% 1.46 10.00

The table shows that KST-Alg generates a low redundancy. Smallnet has about 29%
sparing. [n metropolitan networks, sparing is up to 55%. while in long haul networks,

sparing is only up to 39%.

These spare capacity predictions are indeed much lower than those required by STM
nctworks [8]. This finding has gained much industry attention contributing to a general
notion that ATM-based restoration will require very much less capacity than STM-based
restoration. It is important, however, to note that these particularly low spare capacity
levels arc accompanied by significant and strictly uncontrolled oversubscription effects on
surviving spans. With the levels of oversubscription reaching 3 to 10 times nominal traffic
load, cell loss and cell delay in ATM networks would very likely be intolerable for many

applications [6].

Figure 8 illustrates the detailed oversubscription factor analysis of Net3. The upper
diagram shows the oversubscription overall surviving spans when a span is cut. Its

structure is as follows: for each span considered as the failure span i, on the x-axis, the (S-
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FIGURE 8. Oversubscription Factor Analysis of Net3

1) X;; values experienced by other spans are plotted left to right with a vertical line for

each value. Therefore, in the figure, the x-axis is labelled with the failure span names and



in the finc scale the oversubscription factors of all the surviving spans are shown. For
example, in a network of 10 spans, there would be ten clusters of nine X ;i values displayed
side by side to form the plot. The lower plot shows the probability density and cumulative
probability density functions of oversubscription values. These two diagrams demonstrate
that a large number of oversubscription cases is involved in KST-Alg design. The largest

oversubscription is about 4.16 in Net3.

2.6 IP-1: Minimum Spare Capacity with Design Limits on
Oversubscription

The capacity savings implication in KST-Alg relative to STM networks is very attractive,
but the uncontrolled oversubscription implications arc probably unacceptable in practice.
Our aim now is to formulate optimal capacity allocation methods that will still gain as
much ATM-related capacity savings as may be safely possible given an allowed maximum
of restoration-induced oversubscription. In Appendix C, the C-language programs, were

which written to generate the Integer Program tableaus, are listed.

The first [P formulation optimizes the spare capacity placement of a restorable ATM
network given a peak allowable oversubscription factor in the network. The objective

function is:

S
Minimize: { z cj.sj} (2)
j=1

Subject to:

28



1. Sparing is sufficient to keep restoration oversubscription below the design limit, X,,,,

for all failures:

(X, iSX,,) Vi, )j)eS (iz)) (3)

2. Backup VPs are sufficient to meet the target restoration levels (R"9) for all working

VPs:

- lgr' qlak"q -R™? vke P" w(r, q) 4)

i
k

3. Only one backup VP can be used for each working VP, i.e. VP flows are not split:

Y oo - v(r,q) (5)
kep"!

where ak" ? <1 if the ¥ route for backup of g"? is chosen, otherwise ak" “w0.

The traffic in a working VP can not be split in restoration, i.c. only onc backup routc to
restore a working VP. This requirement is the general industrial practice because splitting
a VP cntails a rcarrangement of all individual VCs inside the VP and can be potentially

very complicated.
The definition of variables is as follows:

C_,' = the cost of span j per unit bandwidth (the length of a span may be included

here)

Wj = the working capacity bandwidth allocation on span j

Sj = the spare capacity bandwidth allocation on span j



§ = the set of all spans in the network
g" Y= the working VP on route g for demand pair r
B" ¥ = the portion of demand traffic going through working VP g" 7

P" % = the set of all distinct backup VP routes eligible for restoration of working

VP g"q

]1' ? = the K* backup VP of the working VP g™ ¢

" ? = the portion of restoration traffic going through backup VP "¢
lgr' ql = the bandwidth of the working VP g" 7

|f' ql = the bandwidth of the backup VP /"7

c"r' ¥~ 1if the route of working VP g" ¥ crosses span i, otherwise 0

8::7 = 1 if the ¥" route available for backup of g" 7 crosses span j

R"? = the target restorability level of working VP g ¢ (1.0 used here)

D = total number of non-zero demand pairs in the demand matrix
d" = number of demand units between end-node pairr

Q" = total number of working routes available to satisfy the demand between node

pairr



The main output variables are Sj. the spare capacity bandwidth allocation on all spans.
Also obtained in the solution is the set of values lfi ql which are the total bandwidth used

on restoration route k for working VP g ?. The ji ? information effectively details the

restoration plan for the whole network which accompanies the optimal spare capacity

values. The Iji ql values stipulate for the qth working VP serving part of the total demand
on relation r, which of the & possible routes for its backup VP is actually used in the
design. To implémcnl Constraint | on X i the oversubscription level on span j in
response (o the failure of span i, the above variables are substituted for X ;i as shown

below:

Xm (W AZl g g 5 |

rq .r.q
A D/(WI+SI) (6)

(rq) (r9) g e p*
stub release traffic lost restoration traffic Cross-
from span j after failure ing span j after failure
of span i of span {

Becausc the number of constraints and variables is large, it is generally very time-

consuming and memory-consuming to solve this mixed integer formulation. Several
methods have been taken to accelerate the solving process. First, f,‘r'q is eliminated by
substituting Equation 4 for Equation 6, because the former states the relation between

r, r, r, . : : M M
fi ? and a, ? . Thus we can only use a, ? in the final IP formulation. This eliminates

half of the variables and constraints and greatly decreases the complexity. Second, several

features of the MIP solver program are taken advantage of, such as the method of branch-



and-bound (23], setting the priority of ak" ? according to its traffic volume, i.e. larger

capacity VPs are decided first. Because larger VPs dominate the spare capacity of a span,
if larger VPs are chosen first we do not have to significantly adjust the spare capacity to
accommodate smaller VPs. Additionally, because only one route can be chosen to restore
the failure VP, we set the branch parameter to ‘up’ which causes the selected branching
variable to be set to one, and then forces all the rest of the variables in the constraint to
zero, which eliminates all the infeasibilities in that constraint [23]. These techniques

greatly improve the speed of solving IP programs.

2.7 IP-2: Minimum Peak Oversubscription with Given Spare
Capacity

The second formulation applies to the case where an existing set of spare capacity
allocations has been given and the problem is to find a set of backup VP allocations that
results in the smallest peak oversubscription of a restorable ATM network working within

the given pattern and amounts of available spare capacity. All the variables are the same as

in [P-1, but Sj is now an input instead of an output. This formulation can be used in

general to minimize the maximum impact of restoration in situations where there is not

enough spare capacity for complete restoration without oversubscription.

The objective is:

Minimize: { max(X, ) V(i,j)eS (izj) } (7



where max(X; ;) is the peak restoration-induced oversubscription resulting over all spans

for all span cuts from the assignment of backup VP routes with given spare capacity

allocations. X;; is given by Equation 6. In order to achieve this minimum of maximum

value, which is not a linear formulation directly, a new variable Y is added. Y is defined as

the maximum value of X ;.- Therefore the objective is changed to minimize Y and the

following new constraints are added:

X, <Y @)

The objective is subject to the following constraints:

1. Backup VPs are sufficient to meet the target restoration for all working VPs:

£ lg" e R ke P ving) ©)

2. Only onc backup VP can be used for each working VP, i.e. VP flows are not split:

Y o, =1 v(ng (10)
tep™!

where ak"q =1 if the #" route for backup of g"q is chosen, otherwise ak"q =0.

2.8 IP-3: Minimum Total Capacity with Design Limits on
Oversubscription

The constraint system [P-1 presented in Section 2.6 is adequate for VP restorable designs
without jointly considering the routing of working demands before a failure. IP-1,

however, can be extended to simultancously optimize the working VP routes and the

33



backup spare capacity placement. An IP formulation which minimizes the sum of working
and spare capacity must not only determine the spare capacity per span and the routing of
all backup VPs, but also the working capacity per span and the routing of all working VPs.

By adding the following two constraints to the IP-1 formulation presented previously, the

solution will include the values of Wj. and g" 9 which will now minimize the rotal

capacity-cost required in a path restorable network.

The objective function now becomes:

S
Minimize: { z c;- (Wj+Sj)} (1)
j=1

Subject to:

I. The total capacity on the working VPs allocated to node pair r can carry all the require-

ment of traffic demand relation r:

-B"'d  vgeD,vreD (12)

gkr. ?
2. Span j's working capacity is sufficient to meet the pre-failure demands of all working

VPs which cross it:

D ¢Q
(wj)— Z ZC;’q-lgr'ql =0 VjesS (13)
re=lqg=1

3. Only one working VP can be used for each demand pair.

Y B =1 v(ng) (14)

kepP?



where B,”? =1 if working VP g™ is used to carry the demand r, otherwise B, ! =0.

Here we require that there is only one working VP for one demand pair. If there is no
restriction of the working routes for each demand pair, there are too many working VPs in

the network. This inevitably increases the network management burden.

4. Sparing is sufficient to keep restoration oversubscription below the design limit, X,,,,

for all failures:

(X, ;=X,,) VY(i,)) €S (i#)) (15)
5. Backup VPs are sufficient to meet the target restoration levels (R™9) for all working

VPs:

- lg"a, R ke P v(rq) (16)

s
k

6. Only one backup VP can be used for its working VP, i.e. VP flows are not split:

Y o -p"f v(r, q) a7
kep?

where @, ? =1 if the K route for backup of "¢ is chosen, otherwise a, ?=0.

2.9 Related Bounds for Spare Capacity

In addition to KS7-Alg and the [P formulations above, two more simple algorithms are
presented here to calculate reasonably tight upper and lower bounds on the required spare
capacity of a backup VP-based restorable ATM network. These bounds also provide a

check on the [P-based results to follow. They may also be useful as relatively quick



procedures yielding fairly tight bounds on the sparing requirements of a given network
and working path VP routings in advance of detailed optimization. The lower bounding
procedure in particular may be useful to rapidly generate starting point designs for large
networks, with the IP -based optimization used subsequently to reach a final complete

design.

2.9.1 Upper Bound Algorithm

The upper bounding algorithm is based on KST-Alg with a simple modification to strictly
climinate any restoration induced oversubscription. In KST-Alg, the spare capacity of a
span is set as the largest VP requirement. If several VPs simultaneously fail upon one span
cut, the network may suffer from very high oversubscription. The spare capacity on cach
span in this upper bounding algorithm is set to the sum of all the working VP capacitics
that traverse it, rather than the maximum of such values. For example, in Figure S on
page 18, the upper bounding algorithm derived from KST-Alg says that span ab needs 7+5
= 12 units of capacity, rather than max(7.5) =7 units as KST-Alg does. This results in an

over-provisioned design with a guaranteed maximum oversubscription factor of 1.0.

2.9.2 Lower Bound Algorithm

The lower bounding algorithm is based on IP-1 with the constraint in Equation S relaxed
to allow real valued a. This converts the Mixed Integer Program as presented into a real-
valued Lincar Program (LP) which can be solved much more quickly in general. While
serving as an LP relaxation of an IP problem, this MIP also represents a class of

restoration system where VPs would be arbitrarily decomposable for restoration rerouting.



This can be more concretely represented by letting individual VCs in a VP take different
routes in restoration. Thus, the LP formulation would assume that we are to use several
backup VPs to handle the total flow of each working VP. The sparing achieved is thus a
lower bound for the practical case where only one backup VP is available to restore cach

working VP.

2.10 Results with IP Formulations and Bounding Algorithms

2.10.1 Test Networks

The networks used in testing KST-Alg are now also used in the IP and bounding
algorithms. In addition, two more networks used in other ATM restoration works [6] are
used here. One is the metropolitan area network of Toronto, Canada while the other one is
a US long-haul network. Note that the demand matrices for these two models are
artificially set and, therefore, are clearly unrealistic. The demands were assumed to be the

same between any two node pair.



2.10.2 Results of Spare Capacity

Table 5 summarizes the results of using the four capacity design and bounding algorithms.

TABLE 5. Spare Capacity Requirement Comparison

IP-1 lower bound
Network | KST-Alg | @X,,;=1.0 | upper bound @ X,5=1.0

Smallnet 28.6% N/A? 39.1% 24.9%
Netl 51.7% 74.8% 78.4% 71.4%
Net2 54.3% 82.6% 88.5% 76.9%
Net3 31.2% 81.5% 86.9% 78.7%
Net4 38.6% 92.0% 92.9% 91.4%
Toronto 14.2% 53.7% 56.4% 49.2%
us 5.4% 60.9% 64.2% 60.4%

a. Solving IP-1 for Smalinet is extremely complicated. No result can be achieved within rea-

sonable time.

The results with [P-1 are based on an allowable oversubscription factor X 101 0 1.0. KST-

Alg has the minimum spare capacity but has severe and frequent oversubscription cascs.
IP-1 falls between two bounding algorithms which provide a quick check and potential
starting points for the exact problem. The required spare capacity for IP-1 increases
greatly compared with KST-Alg in order to eliminate the oversubscription effects. In
metropolitan networks such as Netl and Net2, spare capacity found in IP-1 increases
about 60% from KST-Alg, while in long haul networks such as Net3 and Net4 the capacity
increases about 100%. It is also noted that the spare capacity requirement for Toronto and
US networks given by KST-Alg is very low due to the fact that the demand matrix is
uniform and that there is one unit of demand for every node pair. Therefore, in each span,
the spare capacity is at most one demand and shared by several VPs. In these highly

shared capacity networks the required spare capacity is very low.



Another interesting result is the lower bound on spare capacity when we decompose the
VP and distribute the traffic over several routes. It is not surprising that it achieves a better
result than IP-1, because traffic is shared by more spans and spare capacity is shared to a
greater extent. However, we find that there is only a small reduction of the spare capacity
by 1% to 5% from IP-1. Less than 1% capacity is saved especially in Net4. This implies
that we do not have very much room to save the spare capacity, even if some elegant
mechanisms were to be used to decompose and distribute the VP traffic at the VC level.
Spliting the VP traffic can be potentially very complicated, would not likely provide any

big advantage.

Figure 9 shows the oversubscription analysis in Net3 when using IP-1 with the tolerable

oversubscription factor at 1.2 as an illustrated test case. The X ;i data in each is obtained
from separate programs that conducted restoration experiments for each span failurc using
the assigned backup VP routes in cach design. The structure of this figure is the same as
that in Figure 8 on page 27. Thus, the tight clamp on X;; values of 1.2 in this figure
validates [P-1 for its intended properties. The /P-/ design at X,,;=/.2 has about 50% more
spare capacity than the KST-Alg design and 30% spare capacity less than the equivalent

STM design. This capacity saving benefit compared with X,0i=1.0 is discussed in detail in

the next section.

2.10.3 IP-2 Results

Since KST-Alg allocates the least total spare capacity, it is of interest to see how low the

peak oversubscription can be capped within this sparing if /P-2 is applied to the KST-Alg
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FIGURE 9. Oversubscription Analysis of Net3 with X, Set to 1.2

spare capacity design to improve the coordination of backup VP assignments to reduce the

peak oversubscription factor. Figure 10 shows this result for Net-3 which illustrates the



application of /P-2 to improve on the worst-case oversubscription of the KST: -Alg spare
capacity design but with exactly the same spare capacity placement that KST-Alg placed in
the first instance. By rearranging the backup VP assignments, /P-2 manages to reduce the
peak oversubscription of the KST-Alg design to 3.04 from 4.16 (in Figure 8 on page 27)
while retaining 31% spare capacity. The side effect of reallocating backup VPs to reduce
the peak oversubscription is that there are more individual overload cases. When we
squeeze the maximum oversubscription down by applying IP-2, the restoration flows are
distributed more extensively over all spans and then more spans suffer from
oversubscription effects although the peak factor is lowered.
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FIGURE 10. Oversubscription Factors in IP-2 Design for Net-3 with Sparing
from KST-Alg (31% spare capacity)



2.10.4 IP-3 Results
Before presenting the results of IP-3, a simple complexity analysis must be given of the
[P-1 formulation as related to IP-3. Suppose a network has D demand pairs, W possible

working routes for a demand and B possible backup routes for each working VP. The

complexity of IP-1 is O(BDJ because each working VP (or demand) has B choices and

the total number of working VP is D. The complexity of IP-3 is 0( WDBD) because for

every combination of working VP arrangement the complexity is the same as IP-1. There

are 0( WDJ working VP arrangement combinations in total. From this analysis, we can

deduce that it is hard to obtain completed IP-3 runs on networks of any significant size.
Therefore, only three results of the tested networks are given here. In Table 6, the capacity
shows the working, spare and total capacity in the tested networks. Note that the total
capacity is normalized to the case of IP-1 and shown as a percentage. We find that total

capacity saved can be up to 10%.

TABLE 6. Total Capacity Requirement Comparison

IP-1 IP-3
Network @X,=1.0 @X,p=1.0

Net4 100% 97.3%
Wa=702758 S=646108 Wa737197 S=575858

Toronto 100% 90.6%
W=81200 S=43566 W=88300 S=24700

Us 100% 96.3%
W=1832900 S=1115500 W=1958500 S=880300

When the IP is allowed to jointly optimize the placement of working and spare capacity in

a network, it chooses working paths which are coordinated with the network restoration



process. This means that demands may sometimes be routed via paths longer than the
shortest path. This increases the working capacity in the network, but more spare capacity
can potentially be saved. For example, in the Toronto network, the working capacity in IP-
3 is 7100 units more than that in [P-1. On the other hand, the spare capacity is 18866 less.
Overall, the total required may be reduced if working and spare capacity are jointly

minimized.

2.11 Spare Capacity versus Tolerable Oversubscription Design
Trade-off

Using IP-1 it is possible to explore how the total spare capacity of the network responds to
increasing X,,;. Table 7 summarizes the designs for each of our test networks for X,

ranging up to 2.0. For comparative presentation, all spare capacity totals are normalized to
that of X,,/=1.0 case for cach nctwork. The total spare capacity decreases rather quickly as
the design tolerance for restoration-induced oversubscription increases. With 10% design

maximum oversubscription of bandwidth on restoration (X,,; = 1.1), spare capacity is



reduced by a range of 17% to 23%. At a more aggressive X,,; = 1.5, a full 60% to 70%

reduction of the spare capacity is obtained.

TABLE 7. Spare Capacity Requirement vs. Allowable Oversubscription Factor

Design X, Netl Net 2 Net 3 Netd4 | Toronto UsS
1.00 100% 100% 100% 100% 100% 100%
1.05 91.5% 90.0% 90.0% 90.1% 87.5% 87.7%
1.10 82.9% 82.3% 80.6% 81.1% 76.3% 79.0%
1.15 75.0% 75.5% 76.9% 72.7% 66.7% 65.9%
1.20 68.0% 69.0% 65.9% 65.4% 57.3% 57.1%
1.25 62.0% 65.0% 59.3% 58.3% 50.4% 49.1%
1.30 57.3% 58.9% 53.6% 52.1% 40.5% 42.6%
1.40 48.6% 49.9% 43.7% 40.9% 30.4% 32.1%
1.50 40.9% 43.3% 349% 31.1% 23.0% 24.7%
1.75 26.5% 30.4% 22.7% 13.8% 7.1% 11.3%
2.00 17.3% 23.2% 14.2% 5.4% 1.9% 5.5%

X101 15, however, the strict peak oversubscription level that we will tolerate in the IP-1
designs. This maximum X; ;=X,,, may occur for only one specific combination of failure

span and restoration span in the design. It is, therefore, worth inspecting the number of
spans that actually experience a given level of oversubscription within a design tolerance

of X, Figure 11 considers this in terms of the 90th percentile of actual oversubscription
levels experienced by spans over all span cuts versus the design X,,,;. The data shows, for
example, that at X,,; = 1.4, 90% of the spans actually experience oversubscription no

greater than 1.06, 1.08, 1.21 and 1.28, 1.33, 1.36 in Nets 3, 4, 2, 1, US and Toronto

respectively. This adds to the expectation that fairly significant capacity savings could be



possible in practise without severe restoration-induced side-effects, through judicious

choice of X,,; as a parameter for the basic design of the network [10].

90% Actual Oversubscription vs. Design Maximum
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FIGURE 11. 90'" Percentile Actual Oversubscription vs. Design Maximum

2.12 Comments on Tolerable Oversubscription

Here, we discuss the important issue of the oversubscription factor which is tolerable in
network planning. The maximum acceptable level of restoration-induced oversubscription
would depend on whether worst or average case VP utilizations and traffic statistics are

assumed for determining such a guideline. It may also be in part a policy or business issue;

if there is to be strictly no degradation on restoration, then max(X i) = Xio1 = 1.0 and the

network restoration planning is equivalent to STM (i.e., perfect bandwidth replacement).

In a network that is lightly loaded in terms of cell level utilization of the installed



bandwidth, some X;;>1 could clearly be tolerated before QoS guarantees are affected

greatly. An alternate business point of view might be that all VPs should be allowed to
suffer to a degree during a network restoration event. The QoS impact also depends on the
time of the failure relative to the busy period and the equipment provisioning interval. At
the time of an actual failure, each surviving span would assess its actual cell-level
utilization after allowing enough time for backup VP switching to occur. It would then
either do nothing, in which case utilizations were low enough to provide restoration for all
services, or it would mark the lower priority VPs traversing it with a throttling indication
to be acted upon either by the VP sources themselves or neighboring switches. All this
considered, a relatively high X,,, might actually be practical. In practise the aggressiveness
of cach network provider in designing ATM restorable networks would be expected to
vary in this regard. Some quantitative guidelines as to the acceptable X,,, will be obtained
from sub-studies of the theoretical queuing delay and cell loss increase effects for different
merging traffic types discussed in the next chapter. What is useful at this stage, however, is
to provide a design formulation that would allow us to explore the capacity savings that
are obtainable in ATM restoration depending on the maximum restoration-induced

overload factor that is considered admissible.

2.13 Conclusion

Based on a logical view of traffic in backup VP-based ATM restoration, the restoration
induced flow convergence oversubscription factor wa quantitatively defined. The

oversubscription factor was defined as the ratio of presumed bandwidth for restoration to



the actual link bandwidth allocation. The technical property of an oversubscription larger

than 1.0 is one of the unique properties in ATM networks.

The spare capacity placement algorithm KST-Alg proposed by NTT was implemented to
test it for the restoration induced oversubscription effects. The spare capacity requirement
produced by KST-Alg is indeed much lower than required by STM networks. It is
important to note that these particularly low spare capacity levels are accompanied by
significant and strictly uncontrolled oversubscription effects on surviving spans. With very
high levels of oversubscription, cell loss and cell delay in ATM networks would very

likely be intolcrable for many applications.

The capacity savings relative to STM networks are very attractive, but the uncontrolled
oversubscription implications are probably unacceptable in practise. Therefore, we
formulated optimal capacity allocation methods that will still gain as much ATM-related
capacity savings as safely possible by giving us a controlling input on the maximum
extent of the restoration-induced oversubscription. The first IP formulation optimizes the
spare capacity placement of a restorable ATM network given a peak allowable
oversubscription factor in the network. The second formulation applies to the case where
an existing set of spare capacity allocations has been given; the problem, then, is to find a
set of backup VP allocations that results in the smallest maximum oversubscription factor.
The third formulation tries to minimize the total (working + sparing) capacity of a
restorable ATM network with a given design peak oversubscription factor. In addition to

these [P formulations, two simpler algorithms were presented to calculate rcasonably tight



upper and lower bounds on the required spare capacity of a backup VP-based restorable

ATM network.

The results obtained indicated that the total spare capacity decreases rather quickly as the
design tolerance for restoration-induced oversubscription increases. With a 10% design
maximum oversubscription of bandwidth on restoration (X,,; = 1.1), spare capacity is
reduced by a range of 17% to 23%. At a more aggressive X,,; = 1.5, a full 60% to 70%
reduction of the spare capacity is obtained. This suggests that significant capacity savings
can be obtained relative to STM if ATM restoration is allowed even modest restoration-

induced oversubscription of bandwidth on surviving spans.

The tolerable oversubscription factor depends on several considerations. In part, this
factor is a network operation policy. An aggressive network operator may use a large
oversubscription to save more valuable capacity in the network. As the logical next step in
this study. a guideline governing the choice of oversubscription factors will be given based
on the theoretical study of a qucuing model of traffic. In the next chapter, some

simulations are run to find what X,,, might actually be feasible.



Chapter 3. Tolerable Overload Assessment

3.1 Tolerable Overload Assessment Method
In the previous section, we found that a fairly significant amount of capacity can be saved
if even a modest oversubscription factor is allowed in the restoration spare capacity

placement design. The oversubscription factor X; j is only for network planning purposes

because whether a real failure causes an actual overload of traffic and a QoS degradation
depends on several factors. If VPs are not simultaneously utilized at their peak levels, an
actual cell-level overload may not occur. Only in the worst case where all VPs are fully

loaded, docs the oversubscription factor indicate the actual overload in the network. The

overload O can be defined as following:

O=f(X, ,U,T.P) (18)
Where

O is the tolerable overload of the network,

X; j is the oversubscription factors in the network,

U is the utilization factors of VPs in the possible failure cases.
T is the traffic type, e.g., CBR, VBR, ABR, UBR, in VPs, and
P is the traffic parameters, e.g., rate, burstiness.

Here we can find that lots of factors are involved to decide the tolerable overload. The

overload illustrates the ability of allowing overload traffic for an given traffic.



The next question facing network designers/operators is, then, what is a reasonable
theoretical level of overload. Because spare capacity saving increases with a large
overload factor, we should use as large an overload factor as possible. Conversely, since
overload inevitably degrades network performance, it should not be arbitrarily large. A
design method should be provided which identifies the largest overload factor that does

not degrade QoS beyond a manageable level. We therefore note that:

1. The network traffic types affect the tolerable overload factor greatly.
2. Different networks have their own characteristics.

3. Some networks mainly carry bursty traffic, while others mainly carry

continuous traffic.

The tolerable overload, of course, is not the same in different networks.

In order to get the tolerable overload factor, let us first recall the definition of overload in
Scction 2.2 on page 14. It is defined as the ratio of allocated traffic to the link bandwidth.
As we know, traffic multiplexing in STM networks is deterministic. On the contrary,
traffic in ATM networks is statistically multiplexed. There is no easy way to get the traffic
volume directly. To overcome this problem, we borrow the concept of Equivalent
Bandwidth trom Call Admission Control (CAC) algorithms [19]. Equivalent bandwidth is
defined as the effective bandwidth requirement of connections multiplexed into one link
which meets the required QoS. When a new traffic source is added, the network can
decide to accept this new connection based on its equivalent bandwidth and available

bandwidth. Note that equivalent bandwidth only depends on the traffic source. The link



bandwidth into which the traffic is induced is not relevant here. Equivalent bandwidth of

the traffic shows the required bandwidth to accommodate the traffic.

To illustrate how to apply the concept of equivalent bandwidth to the overload calculation,
consider a group of ATM traffic sources that are aggregated into a link. The traffic volume,
or the equivalent bandwidth of the traffic, is 110Mbps. If we route this traffic to a link
whose capacity is 110Mbps, it is obvious that QoS is normal and no performance
degradation occurs. In this case, the overload factor is 1.0. However if we route this traffic
to a link whose capacity is 100Mbps, more cells are lost and the delay increases due to the
queuing overflow. In this case, the overload factor is 1.1 (= 110Mbps/100Mbps). If the
capacity of the link is less, it is expected that overload will be high and the QoS
degradation will be more severe, as illustrated in Figure 12. Our overall objective in
planning ATM network with oversubscription is to find the largest overload factor so that
QoS is still at a tolerable level. This largest overload value, then, is called the tolerable

overload.
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FIGURE 12. QoS versus Restoration Induced Overload Factor



To gain some idea of the tolerable overload in practical circumstances, a group of traffic
sources and a finite queuing buffer are given. We first calculate the equivalent bandwidth
for those traffic sources when QoS is normal. Then we calculate the bandwidth when Q.oS
is still tolerable. Using the definition of overload, the tolerable overload factor for this
group of traffic sources is obtained by dividing the equivalent bandwidth by the least
tolerable bandwidth. How to calculate the bandwidth requirement to ensure a given QoS
becomes the new problem. As there is no analytical method to get the equivalent
bandwidth and least bandwidth [19], we have to use extensive simulations to get these two

values.

To study the effect of traffic characteristics on the overload factor, we will change
individual system description variables, such as source utilization and buffer size, while
keeping all other factors constant. Then, we analyze how the tolerable overload factor
responds to these individual factors. For example, to study the effect of source utilization.
we use a group of traffic sources. The overload factors are calculated in several cases
using utilization of every source equal to 0.1, 0.2, up to 0.9. Analyzing the result, we can
find how the overload factor changes with the source utilization. Using this method, we

can get the effect of other traffic descriptors.

3.2 On/Off Fluid Traffic Model

Several models of ATM traffic have been under active research. Here we use the on/off
fluid model due to its simplicity and adequacy [11]-[13]. This model is also used in

cquivalent bandwidth based call admission control schemes [11], as illustrated in



Figure 13. In the on/off fluid model, there is a continuous alternation of active and idle
periods. In active periods, the source constantly transmits at its peak bit rate. In idle
periods, no cell arrivals occur. The durations of two periods are exponentially distributed
(i.e., in poisson fashion). Such a source model has the advantages of being both simple
and flexible as it can be used to either represent connections ranging from bursty to

continuous bit streams or approximate more complex sources.
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FIGURE 13. State Diagram of an On/OfY Fluid ATM Traffic Model

The on/off fluid model uses three traffic descriptors:

I. R, the peak bit rate, which is the bit rate in active mode,
2. p, utilization, which is the percentage of time in active mode, and

3. b, mean burst length, which is the mean length of the active mode.

Other descriptors can be derived from the above.

m: mean bit rate, m = Rp;
W transition rate out of active state. & = 1/p;

A : transition rate out of idle state. A = p/ (b (1 -p)) . The mean idle length is



/X, ie. (b(1-p)/p).

3.3 Equivalent Bandwidth
Besides the parameters of the traffic model, the following factors are also involved in the
equivalent bandwidth calculation:

l. ¢, the link bandwidth,

2. B, size of the finite buffer, and

3. €, cell loss ratio (CLR).

Consider n traffic sources (R, p,b,) i = 1...n being multiplexed into a link with a finite

queuc (size B) and a link bandwidth c. In general, let Z be a random variable denoting the

aggregate bit rate of all sources. Then, the dynamics of the queuc in the system are defined
as follows:
1.If Z< ¢ and
a. the buffer is cmpty, then
it remains empty;
b. the buffer is not empty, then
its content decreases at a constant rate of ¢ - Z.
2.If Z = ¢, then

the buffer content does not change.



3.If Z> ¢ and
a. the buffer is not full, then
the buffer content increases at a constant rate of Z — c;
b. the buffer is full, then

the buffer is still full, the cells are lost at a constant rate of Z - c¢.

The equivalent bandwidth ¢ is defined as the minimum link bandwidth ¢, where the

probability of cell loss is less than some desired Cell Loss Ratio €.

The analytical derivation of equivalent bandwidth for several mutually independent
identical sources is summarized in Appendix A. A detailed analysis can be found in [13]

and (19].
In general, the distribution of the buffer content is of the form:

N
Fx) = ¥ a0 (19)
i=0
where the z; and @, are, respectively, generalized cigenvalues and cigenvectors

associated with the solution of the differential equation satisfied by the stationary

probabilitics of the system, and the a;’s are coefficients determined from boundary

conditions [19].

The distribution of F (x) is completely determined from the values of the associated
cigenvalues, eigenvectors, and corresponding coefficients. There arc no explicit

expressions for these quantities, so they must be determined numerically.



An important aspect of this problem is numerical stability. The inevitable errors incurred

during numerical integration, no matter how small, are liable to excite the unstable modes

and lead to solutions of F (x) that blow up.

The analysis in previous papers [11]-[14] has shown that the most important factors
affecting equivalent bandwidth are the ratio of peak bit rate to link bandwidth, traffic

source utilization, and mean burst length.

3.4 Cell Loss Ratio Consideration

Cell Loss Ratio (CLR) is an important factor in the calculation of equivalent bandwidth. It
is obvious that equivalent bandwidth is larger if the CLR requirement becomes more
stringent. [n this section, we discuss CLR in normal working conditions and a tolerable
CLR to allow in a restored network state. In this simulation, we only consider CLR due to

the queuing buffer overflow (i.c., bit error rate effects are ignored).

In a real network, several factors are involved in the final system overall CLR, such as the
BER of the transmission media, losses in the ATM concentrator/switch, and software.
Combining all these factors, the overall CLR can be obtained which is dominated by the
worst factor. In our simulation, CLR is only due to queuing saturation. It is expected that
our CLR is of the same order of magnitude as the overall CLR. Therefore, our CLR should

be neither unnecessarily low nor too high.

Assumed values for some of the of major factors affecting the overall CLR include below

10" for the BER of fibre optics. 10™° for the end-to-end objective of the underlying



physical layer DS-3 circuits, 10™'° for ATM concentrator or switch, and 10~ for queuing

of application level software [17]. Different values are adopted in their simulations for
equivalent bandwidth, such as the most stringent CLR service objective of 107 in [11],
more relaxed value of 10~ in (12]-[14], 10™° [11] and 107 in [18]. In [11], the authors

studied the effect of the required cell loss probability ranging from 10™° to 10™>. These

numbers give us a general view of CLR requirement due to buffer saturation. In our
. . -9 . . . " .
simulation, 10  is used as the nominal working objective to calculate the equivalent

bandwidth. In case of overload, a tolerable CLR of 10—5 is assumed. This is consistent

with previous research [13, 16, 15, 20).

Let ¢_g and ¢_g denote the equivalent bandwidth when CLR is 10~ and 10”°
respectively. The physical explanation is that a traffic volume €_g isrouted to a link whose

nominal design capacity is c_¢ . Accordingly the overload is:

€9
O = — (20)
C_s

3.5 Simulation Design
The system model used in our simulation consists of a group of traffic sources, a finite

queue and a transmission link. Cells arrive asynchronously to the queue from the sources.



They are multiplexed on a FIFO basis and transmitted out onto the link. The finite queue is

served by the link.

(Rp ppbl) _—
(Ry gy ;) ————— > FIFO

s 3:55) =1 I
B link

(R Ppn by) —————>

traffic sources

FIGURE 14. Simulation Queuing Model

It should be emphasized that this simulation can only obtain the CLR if a link capacity is
given. The opposite is not feasible by running only one simulation (i.e., to obtain the
equivalent bandwidth with a given CLR requirement). Consequently, to get the bandwidth
requircment for a given CLR, this simulation has to be run several times with a set of
differing link capacity values. The capacity of the nearest CLR is regarded as the

bandwidth required for that given CLR. Based on this mechanism, we get the equivalent

bandwidth c¢_g and bandwidth ¢_g with the target CLR of 10™° and 107 . The

corrcsponding overload factor is calculated using Equation 20.

The traffic sources are mutually independent. Each source is a continuous alternation of
active and idle periods. The length of the active period is a poisson process whose mean
value is b, whereas the length of idle period is a poisson distribution whose mean value is
b (1 -p)/p. Within one period, the traffic is constant. It is either at its peak bit rate or

zcro depending on its state.



In this simulation, an event-driven model is also used. The simulation is not driven by
“timer”, but by “events”. An event is any transition of any traffic source. The transition
can either move from idle to active or from active to idle. Between any two adjacent
events, the state of all traffic sources is unchanged. During these events the aggregated
traffic rate of all sources is constant. A series of transition events is generated for all
sources over the whole simulation time. The length of active and idle periods conforms to
the respective poisson process mean values. After verifying all transition events and traffic
in all periods, we can calculate the buffer content, total traffic, and cell losses according to

the analysis in Section 3.3.

The observation window of the whole simulation is set large enough to hold at least
200,000 transitions of any source. Having tried several values for the window size, we
have found that this number is large cnough to make the results reasonably stable. The

simulation process was repeated several times with different random number seeds and

the average overload factor which raiscs CLR from 107 0 107° was used as the final

result.

This simulation program is written using the C language in a UNIX environment. Its
correctness was checked by a separate Matlab implementation which is, of course, much

slower.



3.6 Results

3.6.1 Simulation Parameters

The parameters for the on/off fluid model used in this simulation were adopted from [11].
In [11], several Call Admission Control (CAC) schemes are compared based on the same
set of traffic descriptors. Traffic models are characterized by three descriptors: peak rate,
utilization and mean burst length. The peak rate is normalized to a reference link

bandwidth. The burst length is in the unit of time intervals. A three-element vector (R, p.

b) is used to represent them. For example, (0.08, 16%, 72) denotes a traffic model whose
peak ratc is 0.08, utilization is 16% and mean burst length is 72. In the simulation in [11]
and our simulation, two basic classes of traffic are used. (0.05, 20%, 80) class 1 and (0.1,
20%, 50) class 2. The numbers of class | and 2 traffic sources are 70 and 35, respectively.
In order to calculate the overload factor for our purposes, the buffer size normally chosen
is 100. Using these values as basic parameters, we can change any one of them to analyze
the effect on the tolerable overload factor. We will discuss the implications of the

following results in Section 3.9. It is worthwhile to reiterate that the tolerable overload

factor is determined for a traffic with a normal CLR of 10 and a CLR of 107} during
restoration. Before going on, it should be noted that tolerable overload factor inherently
shows the tolerance for a newly induced traffic of an existing traffic. For the existing
traffic, if we can induce more traffic along with it before degrading the QoS significantly,

the tolerable overload factor is high.



3.6.2 Effect of Peak Rate

To study the effect of peak rate, using 70 traffic sources whose utilization is 20% and
mean burst length is 80, we varied the peak rate from 0.05 to 0.11. In Figure 15, we find
that by increasing peak rate, the tolerable overload factor increases from 1.070 at peak rate
0.05 to 1.103 at peak rate 0.11. When the peak rate is low, it is expected that we may only
induce a low peak rate traffic. If a higher peak rate traffic is induced, CLR can easily
become intolerable. On the other hand, if the peak rate is high, the tolerance of high peak
rate traffic is increased. Consequently, the tolerable overload factor is high. Therefore, for
network planning, if the peak rate of the network traffic is high, a high tolerable overload

factor should be chosen. On the other hand, if the network traffic has a low bit rate, a low
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FIGURE 15. Tolerable Overload Factor versus Peak Rate of Sources



tolerable overload factor should be used. For example, an overload of 1.19 could be used

with peak rate of 0.10, while an overload of 1.08 could be used with peak rate of 0.06.

3.6.3 Effect of Utilization

Next we change the utilization for two classes of traffic. For class 1, whose peak rate is
0.05 and mean burst length is 80, and class 2, whose peak rate is 0.1 and mean burst length

is 50, the utilization was varied from 10% to 90%. In Figure 16, it is shown that when the
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FIGURE 16. Tolerable Overload Factor versus Source Utilization

utilization is increased from 10% to 90%, the overload factor decreases from [.114 and
1.152 to 1.002. When the utilization increases to 100% (i.e., a constant rate traffic), we can

expect the tolerable overload factor to approach 1.0, the reason being that with low



utilization, and thus more idle periods in the network, we can induce more traffic.

Consequently a high tolerable overload factor may be used for ATM network planning.

[n network planning, if the network is loaded with low utilization traffic, we can use a high
tolerable overload factor which would reduce the spare capacity in the network. In the

case where the utilization is 100%, the tolerable overload factor is close to 1.0.

3.6.4 Effect of Mean Burst Length

Next we change the mean burst length for two classes of traffic. For class | whose peak
rate is 0.05 and utilization is 20%, and class 2 whose peak rate is 0.1 and utilization is
20%, the mean burst length was varied from 30 to 100. In Figure 17, we find that with the
increase of mean burst length, the overload factor increases from 1.027 to 1.082 and 1.068
to 1.160 respectively. When the burst length is high, the idle burst length is also high. This
implies that a long idle period so that more traffic can be induced into the network. For
network planning, if the network traffic has a long burst length and the idle burst length is
also high, we may use a high tolerable overload factor. Otherwise, a low tolerable

overload factor may be used.

3.6.5 Effect of Buffer Size

Next we change the buffer size for two classes of traffic. For class 1, whose peak rate is
0.05, utilization is 20% and mean burst length is 80, and class 2, whose peak rate is 0.1,
utilization is 20%, mean burst length is 50, the buffer size is varied from 30 to 100. In

Figure 18, as the buffer size is increased, the overload factor decreases from 1.119 to
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FIGURE 17. Tolerable Overload Factor versus Burst Length of Sources

1.070 and 1.173 to 1.115 respectively. This is consistent with the change of burst length. A
buffer size increase is equivalent to a decrease in burst length. It is worthwhile to note the

difference between C g and C g and tolerable overload which is their ratio. If the buffer

size is larger, the equivalent bandwidth is smaller but the tolerable overload is also smaller
as shown in Figure 18. This is because the traffic becomes smooth if the buffer is larger. If
the buffer is infinite, the traffic is constant and almost no overload is allowed. Therefore,
the tolerance to overload, expressed as a multiplier of the baseline traffic is more limited
because the system is more efficient in the first place, if the buffer is large. For network
planning, if we have the same network traffic but the buffer size inside ATM switches is
enlarged, a low tolerable overload factor should be used. If the buffer size becomes

smaller, a higher tolerable overload factor may be used.
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3.6.6 Effect of Number of Sources

The cffect of the number of traffic sources on the overload factor is investigated here. The
parameters of traffic types used in the simulation is summarized in Table 8. Each row
represents one simulation case. For example, row | shows the source type (peak of 0.05,

utilization of 20% and burst of 80) with number of sources ranging from 10 to 70. The



“Number of Sources” column shows the range of traffic sources. The “Source Traffic

Type” column shows the characteristics of the traffic used in the simulation.

TABLE 8. Tolerable Overload Factor vs. Number of Sources

Number of Sources Source Traffic Type
from to peak utilization burst
10 0 | 005 20%;% 80
10 70 0.05 10% 80
S 35 0.1 20% 50
S 35 0.1 10% S0
60 70 0.05 20% 80

Figure 19 shows the fourth row of the results. In this graph, the peak rate of the traffic
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FIGURE 19. Tolerable Overload Factor versus Number of Sources

sources is 0.1, utilization is 10%, and mean burst length is 50. The buffer B is 100. In this

graph, we show not only the mean value of tolerable overload factors, but also the



standard deviation of the tolerable overload factors with different initial random seeds.
From this example and the other four sets of results, we find that the tolerable overload
factors is not significantly affected by the number of sources compared with other factors.
This implies, then, that in network planning, the tolerable overload factor is independent
of the number of traffic sources, and relies more on the other factors, such as source
utilization and source peak rate. From our analysis, the tolerable overload is likely to
decrease with a large number of sources because the aggregated traffic becomes more

constant.

3.7 Buffer Fill Study

[n this phasc, we study the buffer fill changes during simulation with respect to the system
descriptions. Because the buffer fill is nceded to compute the cell delay and delay
variance, we record it to show overload effects on QoS. The mean buffer fill and cell loss
ratio are studied when the number of sources changes. The traffic descriptors used in this
simulation are peak rate 0.05, utilization 20%, and burst length 80. The nominal number
of sources are 60 and 39. The respective link capacity is 0.95 and 0.55. The numbers of

sources change from 60 to 70 and from 39 to 46. Results are illustrated in Figure 20 and

Figure 21 respectively. When the number of sources increases from 60 to 68 in Figure 20,

the CLR increases from 10_7 to 10-4. Meanwhile, the overload increases to about 1.11.
and the mean buffer fill increases from 0.7 to 2.9, showing that the mean buffer fill
increases when the overload factor increases due to more traffic induced. All traffic will

suffer from a longer delay in the buffer as well as a larger cell loss ratio. This result is also
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confirmed in Figure 21. In this figure, when the number increases from 39 to 44, the CLR

increases from 10~ to 107*, Meanwhile, the overload factor increases to about 1.13, and
the mean buffer fill increases from 0.7 to 3.3. From these analyses, we find that the cell
delay as well as the cell loss ratio increases when the overload occurs after the restoration
induced flow convergence. Because the sensitivity of cell delay is different with different
traffic types, appropriate methods should be used in ATM switches to decrease the delay
of delay-sensitive traffic. For example, different buffer sizes may be employed for

different types of traffic.

3.8 Auto-Regressive Traffic Model

In the previous study, we used the on/off fluid model to simulate the ATM traffic. To
supplement this rescarch, the auto-regressive (AR) model was also used to study the
overload factor. A very different model from the on/off fluid model, this model, having an
exponential autocovariance, is well suited to model the variable bit rate (VBR) vidco

traffic {21].

In the AR model, within a frame n, traffic is generated at a constant bit rate A (n) . A first-

order autoregressive process A (n) can be expressed recursively as follows:

A(n) = ak(n-1) +bw(n) 21

where w(n) is a Gaussian random variable and a and b are constant cocfficients. Assuming
that w(n) has mean 1} and variance /, the bit rate of the current frame is calculated from

the bit rate of the last frame adjusted by a weight and a Gaussian random variable. Assume



lal < 1, and the process achieves steady state with large n [21]. The steady-state average

E (A) and discrete autocovariance C (n) are as follows [21]:

EQ) = 2 22)
-a
2

C(n) = b 2a" (23)
l-a

This is an elegant mathematical model that has been formed to match real-world traffic.
There is no physical explanation of these parameters. The values of a, b, and 1} are

calculated by matching the average bit rate £ (L) and discrete autocovariance C (n)
measured from real world traffic. For the experimental data in [21], we have the following

values:

a=0.8781 b=0.1108 n=0.572 (24)

E(A) =052 C(n) = 0.0536x(e‘°"3)" (25)
Next, we investigate the impact of the traffic source number on the overload factor. The
number of sources is changed from 60 to 70 and 10 to 20, as recorded in Figure 22 and
Figure 23. In this graph, we give the mean value and standard deviation of the overload
factors across with different seeds. We find the tolerable overload factor is around 1.015

and 1.025 respectively, regardless of the number of sources.

3.9 Guidelines for Tolerable Overload Factor
Determining the tolerable overload factor is a very complicated issue in ATM network

restoration. The traffic characteristics in a real network at the time of restoration will affect
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the tolerable overload factor. From extensive simulations, however, general guidelines of

a realistic expectation for a tolerable design overload factor can be determined, a guideline



that would not degrade the QoS significantly (i.e., if CLR was initially less than 10_9. it

would not rise to more than 10~ ).

Among the factors, the traffic source model is the most important. For Constant Bit Rate
(CBR) traffic (e.g., uncompressed voice traffic), the tolerable overload factor is almost 1.0.
When the traffic is more bursty, the tolerable overload becomes larger, because more
traffic can be induced in the idle periods. For AR model based Variable Bit Rate (VBR)
traffic, the factor is approximately 1.01 to 1.03, while in on-off fluid model based VBR
traffic, the factor is approximately 1.05 to 1.15. Even for the same type of VBR traffic, the
detailed traffic characteristics can greatly affect the overload factor. The following table

summarizes the simulation results.

TABLE 9. Tolerable Overload Assessment Factors

Factor Trend Tolerable Overload Trend
Pecak Bit Rate A A
Utilization A \v/
Burst Length A A
Buffer Size A \v/
Number of Sources A -

With the increase of peak bit rate and burst length, the tolerable overload becomes larger.
With the increase of utilization and buffer size, the overload factor decreases. The number
of sources does not significantly affect the tolerable overload. From our analysis, the
tolerable overload is likely to decrease with a larger number of sources because overall

traffic becomes more constant.



It is anticipated that for Unspecified Bit Rate (UBR) and Available Bit Rate (ABR) traffic,
the tolerable overload factor can be very large because the UBR/ABR traffic is designed to
increase network utilization. UBR/ABR traffic sources are designed to be very adaptive to
the network load. If the network is not busy, UBR/ABR traffic sources generate more
traffic into the network. If there is failure and network becomes congested, UBR/ABR
sources decrease the traffic generation speed accordingly. Only minimum performance
levels are guaranteed for UBR traffic and nothing is guaranteed for ABR traffic [22],

therefore they can be expected to tolerate large overload.

[t should be emphasized that this discussion only gives a general range for factors of
tolerable overload. The practical value of an overload factor for a particular network can
not always be determined exactly. Network operators must study the traffic nature in their
nctworks comprehensively, and carry out extensive simulations to get a practical tolerable
overload factor for their particular network. As a general guideline, an overload factor of

1.1 is acceptable.

3.10 Conclusion

In this chapter. a general guideline of the tolerable overload assessment was given and the
concept of Equivalent Bandwidth in Call Admission Control was used. To assess the
overload tolerance of a group of traffic sources, the equivalent bandwidth of the traffic
must be obtained. Then, if this traffic is carried on a link whose capacity is smaller than its
equivalent bandwidth, the resulting QoS inevitably degrades. The smaller the link

capacity, the more severe the QoS degradation. The overload obtained by dividing



equivalent bandwidth by the link capacity at the critical QoS level is regarded as the

tolerable overload for this group of traffic. In our simulation, “tolerable” is defined as the

cases when CLR goes from 10™ to 107,

Extensive simulations were done to analyze how traffic and network factors affect the
tolerable overload. For CBR traffic, any overload is almost unacceptable. While at the
other extreme, UBR/ABR traffic has a large overload factor. Overload for VBR traffic is
found between the two extremes. For on/off traffic model based traffic, the tolerable
overload factor is approximately 1.05 to 1.15 depending on the traffic characteristics,

while for Auto-Regressive model based traffic, the value is approximately 1.02.

Network operators should analyze the traffic nature of their network comprehensively and
do extensive simulations to determine the practical tolerable overload factor for their

particular networks.



Chapter 4. Concluding Discussion

4.1 Comparative Overview of ATM and STM Restoration
Designs

ATM VP-based restoration is inherently similar to STM path-restoration if the ATM
network design case is approached on a pure VP replacement bandwidth basis. For any
given network, two steps are involved in the design of backup path for STM and ATM

based restoration. These are working Path/VP design and backup Path/VP design.

In the working VP design, VPs can have equal or unequal bandwidth and each demand
pair can have one/multiple VPs. In the second step, each working VP can either have
single equal-sized backup VP or can split the VP over multiple routes. Also, the
bandwidth replacement scheme can be perfect or more aggressive where the

oversubscription factor is greater than 1.0.

With the combination of these factors, we get the comparative overview of ATM versus
STM design cases in Table 10. In cases | and 2, each demand pair has one working VP
with a bandwidth replacement that is perfect. These two cases are equivalent to the STM
path restoration with stub release. In case 3, the bandwidth for each VP is variable and a
backup VP cannot be split to several routes. This is equivalent to STM path restoration
with single backup route constraint. In case 4, each demand has several working routes.
This is equivalent to having multiple pseudo-demand pairs for each demand pair in STM

path restoration, i.e., one demand divided in several working routes are treated as several



demands in restoration. In case 5, bandwidth is not perfectly replaced and a flow

oversubscription is allowed.

TABLE 10. Comparative Overview of ATM versus STM Capacity Design Cases

ATM Restoration Model
Band- | # Working Working Perfect
wnd\t/l;> Routes per VP’s Bandwidth
per Demand | Splitable for | Replace- Relation to STM
Case Pair Restoration ment Capacity Formulation
l constant one no yes STM path restoration
: with stub release
2 variable one yes yes
3 variable one no yes STM with stub release
plus single backup route
constraint
4 variable multiple no yes STM with stub releasc,
and single backup VP
route & multiple
“pseudo-demand™ pairs
S - any of above - no as per above with flow
oversubscription con-
straint

4.2 ATM Restoration Design Methodology

Designing for controlled convergence of restoration flows is a proposed approach which

would let the network planner mediate a controlled trade-off of temporary post-restoration

ATM performance for significantly reduced network capacity. The benefit of the proposed

design framework is that it allows a network operator to first determine an acceptable

restoration stress level and then to design exactly for that grade of restoration performance

with a known minimum of total capacity for restoration. This design approach contributes




to recognizing and enabling the exploitation of the intrinsic differences between ATM and

STM transport methods from a restoration viewpoint.

In addition, when designing a network with acceptable restoration-induced
oversubscription of bandwidth, the potential reduction in QoS could be minimized by a
restoration oriented priority congestion control scheme. In this approach, the network

spare capacity design could be based on a reasonably aggressive X 101 Value to obtain

significant capacity savings; then, at the time of an actual failure, each surviving span
would assess its actual cell-level utilization after allowing enough time for backup VP
switching. In case utilizations were high, ATM switches would mark the lower priority
VPs traversing them with a throttling indication to be acted upon either by either the VP
sources themselves or neighboring switches. This gives several attractive properties:
despite the number of logical VPs traversing the span after restoration, all VPs will
inherently enjoy transparent continuation of service if actual conditions permit restoration
of all VPs. On the other hand, if the net cell-level utilization does constitute a sufficient
overload, then priority VPs can be restored selectively without QoS reduction by
throttling lower priority service class VPs. In this way the benefits of ATM capacity
design to exploit restoration-induced oversubscription of bandwidth can be pursued with a
protective mechanism to ensure QoS for selected services while still granting all services

restoration on a best-effort basis whenever actual network circumstances permit.

Based on this study, the proposed framework for ATM backup VP capacity design would
allow network operators to determine both the traffic assumptions they wish to adopt and

the acceptable QoS impacts during an assumed busy-hour restoration event. Through
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theoretical study of the queuing model, a guideline of X,,, should first be determined. In

addition, some practical operation considerations contributing to X 101 Should be

investigated. These include actual VP utilization levels, probability of failure at design




busy hour, provisioning interval considerations, competitive aggressiveness and risk
tolerance. For example, if busy hour effects are not coincident in the network (i.e., the VP
utilization are not simultaneously at their peak), the network can tolerate a large

oversubscription. All these factors lead to an X,,; recommendation. Once X, is

determined, /P-1/3 can realize the corresponding minimum capacity restorable network.
By analyzing the actual oversubscription cases in the network in detail, the exact X 10l €AN
be determined. This new value is once again put in the IP-1/3 formulation. Through
iterating several times, we finally achieve a satisfied network specific capacity

provisioning. The overall process is illustrated in Figure 24.

If the capacity placement has been given in a network, IP-2 can be used to optimize the

restoration VP routing to achieve the minimum peak oversubscription in the network.

4.3 Summary

In chapter 2, the restoration induced flow convergence oversubscription factor was
quantitatively defined based on the logical view of the traffic characteristics in backup VP
based ATM restoration. An allowable oversubscription larger than 1.0 is one of the unique
propertics in ATM nctworks. Next a heuristic algorithm proposed in a literature was
implemented to verify the severe restoration induced oversubscription if we do not
consider the design carefully. The implications of uncontrolled oversubscription will
likely be unacceptable in practise. Therefore, we formulate optimal capacity allocation
methods that will still gain as much ATM-related capacity savings as safely possible by

giving us a controlled input on the maximum extent of the restoration-induced



oversubscription. The first [P formulation optimizes the spare capacity placement of a
restorable ATM network given a peak allowable oversubscription factor in the network.
The second formulation applies to the case where an existing set of spare capacity
allocations has been given. The problem is to find a set of backup VP allocations that
results in the smallest maximum oversubscription factor. The third formulation tries to
minimize the total capacity (working + sparing) of a restorable ATM network with a given
design peak oversubscription factor. In addition to these three IP formulations, two
simpler algorithms were also presented to calculate reasonably tight upper and lower
bounds on the required spare capacity of a backup VP-based restorable ATM network. Our
results showed that the total spare capacity decreases rather quickly as the design
tolerance for restoration-induced oversubscription increases. This suggests that significant
capacity savings can be obtained relative to STM if ATM restoration is allowed even

modest restoration-induced oversubscription of bandwidth on surviving spans.

Tolerable oversubscription factors depend on several considerations. Partly it is a network
operation policy. An aggressive network operator can usc a large oversubscription to save
more valuable capacity in the network. In chapter 3, the theoretical study of a queuing
model of traffic gave a guideline for the oversubscription factor. Extensive simulations
were done to analyze how traffic and network factors affect the tolerable overload. For
CBR traffic, the overload is almost intolerable. On the other extreme, ABR traffic has a
large overload factor, while the overload for VBR traffic is between CBR and ARB traffic
tolerable overloads. For on/off model based traffic, the factor is approximately 1.05 to
1.15 depending on the traffic characteristics, while for auto-regressive model based traffic.

the tolerable overload is approximately 1.02.



[t is highly recommended that network operators analyze the nature of their traffic
comprehensively and do extensive simulations to determine what is the practical tolerable

overload value in their network.

In chapter 4, we gave a new framework for ATM backup VP capacity design. Network
operators would determine the traffic assumptions they wish to adopt and the acceptable
QoS impacts during an assumed busy-hour restoration event. This leads to a tolerable
oversubscription factor recommendation. Integer programs can realize the corresponding
minimum capacity restorable network. By analyzing the actual oversubscription cases in
the network in detail, we can revise the tolerable oversubscription factor recommendation.
This new valuc is put in the IP formulation again. We can achieve a satisfactory network

specific capacity provisioning by iterating several times as shown in Figure 24.

4.4 Future Work

In this rescarch, we studied the spare capacity placement problem in ATM restorable
networks. We found that a significant amount of spare capacity can be saved if even a
modest level of oversubscription is allowed in ATM restorable networks. This work shows
onc of the basic distinctions between ATM and STM restorable networks:
oversubscription can be larger than 1.0 in ATM networks. As we know, ATM networks are
more complicated than STM networks. ATM restoration requires further research to
determine how the restoration mechanism is implemented using OAM cells/messages to
detect, notify, and re-route failed VP. Another area of research requires using real-time

simulation to study the effect of failed VP traffic on working VPs. The question of



whether restoration should be done of the STM OC level or the ATM VP level to achicve

the largest benefit in the network planning is must also be answered.



Bibliography

(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]

(10]

(1]

(12]

W.D. Grover, “Distributed Restoration of the Transport Network", Book Chapter
11, Telecommunications Network Management into the 21st Century: Techniques,
Standards, Technologies and Applications, IEEE Press, 1994, pp. 337-417.

W.D. Grover, “The Self-hcaling Network: A fast distributed restoration technique
for networks using digital cross-connect machines”, Proceeding of IEEE Global
Communications Conference, 1987, pp. 1090-1095.

T.H. Wu, “Emerging Technologies for Fiber Network Survivability”, IEEE commu-
nication magazine, February, 1995, pp. 58-74.

R. Kawamura, K. Sato, and I. Tokizawa, “Self-healing ATM Networks Based on
Virtual Path Concept”, IEEE Journal on selected areas in communications. Vol. 12,
No. 1, 1994, pp. 120-127.

C. Partridge, “Gigabit Networking”, Addison-Wesley, 1994.

Y. Zheng, W.D. Grover, M. MacGregor, “Dependence of network capacity require-
ments on the allowable flow convergence overloads in ATM backup VP restora-
tion™, Electronics Letters, Vol. 33, No. 5, February 27, 1997. pp.362-363.

Y. Xiong, L. Mason, “Restoration strategics and spare capacity requircments in self-
healing ATM Networks"”, Infocom 97, Kobe, Japan, April, 1997.

R. R. Iraschko, M.H. MacGregor, W.D.Grover, “Optimal Capacity Placement for
Path Restoration in Mesh Survivable Networks”, IEEE ICC’ 96, June 1996,
pp.1568-1574.

W.D. Grover, V. Rawat, M. MacGregor, “*A Fast Heuristic Principle for Spare
Capacity Placement in Mesh-Restorable SONET / SDH Transport Networks", Elec-
tronics Letters, Vol. 33, No. 3, January 30, 1997. pp.195-196.

Y. Zheng, W.D. Grover, M. MacGregor, *Broadband Network Design with Con-
trolled Exploitation of Flow Convergence Overloads in ATM VP-based Restora-
tion”, Canadian Conference on Broadband Research, April 16-17, 1997, Ouawa,
Canada.

H.G. Perros, K.M.Elsayed, “Call Admission Control Schemes: A Review", IEEE
Communication Magazine, November, 1996, pp. 82-91.

R. Guerin, H. Ahmadi, M. Naghshineh, *Equivalent Capacity and its Application to
Bandwidth Allocation in High-Speed Networks”, IEEE JSAC, November, 1991, pp-
968-81.



[13]

(14]

(15]

(16]

(17]

(18]

[19]

(20]

(21}

[22]

(23]

R.O. Onvural, “Asynchronous Transfer Mode Networks, Performance Issues”,
Artech House, 1994, pp. 119-33.

G. Gallassi, G. Rigolio, L. Verri, “Resource Management and Dimensioning in
ATM Networks”, I[EEE Network Magazine, May, 1990, pp. 8-17.

F. Vakil, H, Saito, “On Congestion Control in ATM Networks”, IEEE LTS, August,
1991, pp. 55-65.

J.W. Roberts, “Variable-Bit-Rate Traffic Control in B-ISDN", IEEE Communica-
tions Magazine, September, 1991, pp. 50-56.

C.A. Cooper, K.I. Park, “Toward a Broadband Congestion Control Strategy”, [EEE
Nerwork Magazine, May, 1990, pp. 18-23.

H. Saito, “*Call Admission Control in an ATM Network Using Upper Bound of Cell
Loss Probability”, IEEE Transactions on Communications, vol. 40, 1992, pp. 1512-
21.

D. Anick, D. Mitra, M.M. Sondhi, “Stochastic Theory of a Data-Handling System
with Multiple Sources™, Bell Sys. Tech. J. vol. 61, 1982, pp. 1871-94.

M. Decina and T. Toniatti, “On Bandwidth Allocation to Bursty Virtual Connec-
tions in ATM Networks™, Proc. ICC'90, paper 318.6.1, pp. 844-851.

B. Maglaris, D. Anastassiou, P. Sen, G. Karlsson, and J. Robbins, *Performance
Models of Statistical Multiplexing in Packet Video Communications”, [EEE Trans-
actions on Communications, Vol. 36, No. 7, July, 198, pp. 834-844.

K. Schulz, M. Incollingo, and H. Uhrig, “Taking Advantage of ATM Services and
Tariffs: The Importance of Transport Layer Dynamic Rate Adaptation”, I[EEE Ne-
work, Vol. 11, No. 2, March/April, 1997, pp. 10-17.

“CPLEX Manual”, CPLEX Optimization Corp. 1995



Appendix A: Abstract of Equivalent
Bandwidth Calculation

The following abstract of equivalent bandwidth calculation is based on the analysis in

[19].

Suppose there are N mutually independent identical sources. The unit of time is selected

to be the average “on” period. Within this unit of time, the average “off™ period is denoted

by 1/A.

Let P, (1,x), (0Si<N, 120, x20) denote the stationary probability that at time t, i

sources are on and the buffer content does not exceed x. If at time t the number of on
sources equals i, two elementary events can take place during the next interval At i.c.. a
source can turm on or turn off. Since the “on™ and “off™ periods are exponentially distrib-

uted, the probabilities are (N - i) AAr and iAr respectively. Compound events have prob-

abilitics 0( A12J. The probability of no changeis | = { (N-i)A +i} Ar+ OLAIIJ.

Now,

Pi(t+A8tx)= {N=(i-=1)}AAP,_ (r,x) + (i + )AIP,, (1 x)
(26)
[1- {(N=i)A+i} At]P, (1, x~ (i-c)Ar) +O(A12)

Passing to the limit Ar — 0, yields the following partial differential equations:

dP. dP.
— + (i-C)=—= {(N=i+1}AP,_ —{(N-DA+i}P.+ (i+1)P. (27)
a[ ax i-1 t i+

Let F,(x) be the equilibrium probability that i sources are on and buffer content does not



exceed x,

Fix) = ™ p () (28)
[ — oo

Therefore, we obtain, for i € [0, N],

oF,
(i-c) === (N=i+ DAF, |~ {(N=DA+i}F+ (i+1)F,, (29)

Equation 29 can be rewritten in matrix notation as:

DiF(x) - MF (x) x20 (30)
ox

where D = diag {~c,1-¢,2~-¢,...,N-c} and

r -

-NA I
NA —{(N-1)A+1} 2
(N=DA  ={(N=2)A+2} 3

2A-(A+ (N-1)) N
A -N

By solving Equation 30, we get

N
F(x) = Zaid)ie:#r (31)
im0

where the z; and ®, are, respectively, generalized cigenvalues and eigenvectors associ-

ated with the solution of the differential equation satisfied by the stationary probabilitics

of the system, and the a, s are cocfficients determined from boundary conditions.



N
G (x) = Pr(buffercontent>x) = |- z F (x) (32)
i=0

We refer G (x) as the probability of overflow beyond x.

The distribution of F (x) is completely determined from the values of the associated
cigenvalues, eigenvectors, and corresponding cocfficients. There are no explicit expres-

sions for these quantitics, which must then be determined numerically.

An important aspect of this problem is numerical stability. The inevitable errors, no matter
how small, incurred during numerical integration are liable to excite the unstable modes

and lcad to solutions that blow up.



Appendix B: Test Networks Topology and
Demand Matrics Files

In this appendix, the network topology and demand matrics of all seven tested networks
are listed. The topology files are in SNIF format. The detail description of SNIF format
can be found in TRLabs internal technical report. Briefly, it includes four description lines
starting with: Date, File Name, Network, Program. Then the positions of network nodes
are listed. Finally is the span description, which includes span tag, end nodes, distance,
working capacity and spare capacity of the span. The demand matrix is relatively simple.

It first indicates the number of demands and then list each demand between two node pair.

« SmailNet SNIF file

Date: Jan 30, 1995
File Name: SmallNet.sniff
Network: SmallNet

Program:

s

Node Xcoord Ycoord
-1 1
1 1
1.5 0
-.5 .5
.S .S
1.5 0
.5 -.9
5 .5
1 -1

1

— .
2
o
>

odeB Distance Working
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« SmallNet Demand File

The demand matrix has 45 demands. One unit of demand exists between every node pair

uniformly.

« Netl Snif File

Date:
File Name: bellcore.sniff
Network: bellcore

Program:

Node Xcoord Ycoord

0 35 84

1 76 77

2 42 76

k} 56 69

4 57 27

S 76 51

6 44 54

7 73 36

8 44 43

9 28 44

10 17 33

11 73 18

12 39 18

13 76 62

14 27 63

Span NodeA NodeB DistanceWorking Spare

1 0 1 9 24 0

2 0 2 6 8 0

3 0 14 21 12 o]

4 1 2 14 32 0

5 1 3 6 40 0

6 1 13 11 48 0

7 2 14 16 16 0

8 3 13 8 24 0

9 3 14 11 48 0

10 4 7 7 28 0

11 4 11 7 0 0

12 S 6 S 8 0

13 S 7 7 110 0

14 5 13 10 74 0

15 6 7 11 4 0

16 6 8 11 8 0

17 6 9 11 S8 0

18 6 13 8 58 0

19 7 8 1 124 0

20 7 10 7 250 0

21 7 11 13 44 0

22 9 10 5 262 0

23 9 12 23 0 0

24 9 14 10 168 0

25 10 12 13 84 0

26 10 14 19 0 0

27 11 12 8 8 0

28 13 14 11 48 0
+ Netl Demand File

67

0 1 12

0 2 8

0 4 4

0 6 4

0 10 4

0 13 4

0 14 8

1 2 16

1 3 12



1 4 4
1 5 4
1 6 8
1 8 4
1 9 4
1 10 4
1 13 8
1 14 12
2 3 8
2 6 4
2 10 4
2 13 4
2 14 12
3 5 4
3 6 4
3 7 4
3 8 4
3 9 4
3 10 8
3 13 8
3 14 16
4 9 12
4 16 8
5 6 8
5 7 8
5 10 52
S5 11 4
5 12 4
5 13 8
5 14 16
6 8 8
6 9 8
6 10 32
6 11 4
6 12 4
6 13 8
6 14 16
7 10 24
7 12 16
8 9 12
8 10 40
8 11 8
8 12 16
8 13 12
8 14 28
9 10 40
9 11 4
9 12 4
9 13 4
9 14 16
10 11 20
10 12 36
10 13 20
10 14 a8
11 12 8
11 14 4
12 14 4
13 14 16

+ Net2 Snif File

Date: May 27, 1994
File Name: Telus.nwk
Network: netF

Program:

Node Xcoord Ycoord
0 100 100
1 0 0

2 0 80
3 S0 80
4 70 80
5 0 100
6 C 20
7 20 50
8 100 0

9 30 80
10 70 100
11 0 60



13 60 60
14 0 40
15 40 60
16 50 0
17 75 25
18 20 0
19 100 60
(]
Span NodeA NodeB Distance Working Spare
1 o 4 80 264 0
2 0 10 110 14 0
3 0 19 45 123 0
4 1 6 40 19 0
5 1 12 65 108 0
6 1 18 64 11 0
7 2 5 95 110 0
8 2 9 83 219 0
9 3 4 30 41 0
10 3 9 23 204 0
11 3 10 76 66 0
12 4 10 76 70 0
13 4 13 26 407 0
14 5 10 118 16 0
15 6 14 30 19 0
16 7 11 51 39 0
17 7 12 72 14! 0
18 7 15 20 179 0
19 8 13 76 159 0
20 8 17 76 44 0
21 a8 19 95 44 0
22 9 13 30 299 0
23 9 15 20 146 0
24 11 15 33 204 0
25 12 13 110 423 0
26 12 16 60 178 0
27 12 17 108 26 0
28 13 15 20 334 0
29 13 17 122 116 0
30 14 17 80 19 0
31 16 18 65 70 0
+ Net2 Demand File

53
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3

3
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2

3
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9 17 3
9 18 2
9 19 3
10 11 6
10 12 7
10 13 54
10 15 4
10 16 3
10 17 3
10 18 2
10 19 6
11 12 13
11 13 99
11 15 27
11 16 8
11 17 5
11 18 5
11 19 14
12 13 251
12 15 10
12 16 19
12 17 9
12 18 7
12 19 8
13 15 107
13 16 41
13 17 91
13 18 37
13 19 55
15 16 4
15 17 ]
15 18 3
15 19 4
16 17 3
16 18 2
16 19 4
17 18 2
17 19 6
18 19 4

« Net3 Snif File

Date: June 213, 1994

File Name: British_long_haul.gnif
Network: British Telecom study network
Program: None

Node Xcoord Ycoord
0 27662 58733
1 36839 59453
2 40193 51952
k| 59028 S1473
4 45300 48681
5 36839 451327
6 26544 44810
7 31358 32213
8 39315 39740
9 53040 41815
10 60304 44847
11 64071 37623
12 50965 35670
13 62094 28058
14 53441 30961
15 48094 28886
16 40193 25933
17 32545 19089
18 40272 16914
19 48094 18512
20 51893 19353
21 57272 23060
22 57512 17315
23 61578 24480
24 65811 23221
25 65650 17716
26 59652 14602
27 4737S 10850
28 47454 15240

29 33568 12448



Span NodeA NodeB Distance Working Spare

1 10 958 0
298 00

6 21 2016 0
375813 0

2 166 0 0

10 34 1279 0
4 42 684 0
38800
6 78 2008 0O

7 56 80 0

6 45 448 0

5 S0 139 ¢

8 50 2468 0
10 10 343 0

9 45 961 0
1099 0 0

17 10 11 23 1254 0
18 9 11 56 50 O

19 11 1289 0 0

20 11 13 45 1315 0
21 7 9 91 119 ¢

22 9 12 10 1062 0
23 8 12 10 1061 O
24 12 14 10 878 0
25 8 14 34 0 0

26 8 16 56 63 O

27 7 17 134 0 0

28 7 16 122 102 ©
29 16 17 111 0 0
30 15 16 102 0 0
31 16 18 104 0 0
32 14 15 106 22 ¢
33 15 20 67 219 0
34 13 23 45 202 0
35 13 21 23 1759 0
36 13 14 11 955 0
37 23 24 100 11 0
38 18 19 100 4 ©
39 18 27 66 56 0
40 18 29 67 27 0
41 17 18 29 167 0
42 17 29 44 191 0
43 28 29 46 224 ©
44 26 27 32 90 0
45 25 26 77 7 0
46 22 27 67 205
47 21 24 79 142
48 22 25 55 188
49 19 28 23 117
S0 19 20 11 763
S1 8 17 45 668 0
52 8 19 66 1783 0
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« Net4 Snif File

Date:
File Name: US_Long_haul
Network:
Program:
Node Xcoord Ycoord
0 167.751000 43.902400
1 193.225000 67.479700
2 175.881000 55.284600
3 191.599000 95.122000
4 149.051000 94.579900
5 18.157200 99.187000
6 18.970200 49.864500
7 80.216800 85.094900
8 15.447200 7.317070
9 9.214090 139.024000
10 139.566000 173.984000
11 7.046070 78.319800
12 164.499000 63.956600
13 126.287000 37.398400
14 68.834700 176.152000
15 66.124700 75.067800
16 149.051000 117.886000
17 169.106000 102.439000
18 164.770000 121.680000
19 162.602000 80.758800
20 81.571800 127.642000
21 46.612500 127.642000
22 15.718200 18.699200
23 47.425500 106.504000
24 63.956600 100.271000
25 51.761500 85.636900
26 88.888900 189.431000
27 104.878000 66.395700
28 117.886000 78.048800
29 110.569000 150.678000
30 106.233000 85.365900
31 78.048800 71.002700
32 71.273700 189.702000
33 122.764000 60.433600
34 111.653000 37.398400
35 136.856000 59.349600
36 153.930000 151.491000
37 70.189700 43.902400
38 149.593000 132.249000
39 33.3313300 173.442000
40 140.108000 188.618000
41 28.726300 82.926800
42 107.317000 173.713000
43 123.306000 189.160000
44 39.837400 6.775070
45 39.837400 48.238500
46 52.303500 176.152000
47 94.579900 66.937700
48 162.331000 7.317070
49 79.674800 109.756000
50 42.547400 75.880800
S1 104.336000 49.322500
52 30.000000 45.000000
Span NodeA NodeB DistanceWorking Spare
0 2 5.00000029 0

1

2 0 1 76.0000000 0
3 1 2 46.00000039 0
4 1 12 209.00000030 0
5 20 38 299.00000066 0



6 3

7 4

8 4

9 5

10 1

11 6

12 6

13 7

14 7

15 8

16 8

17 12
18 9

19 10
20 10
21 36
22 9

23 11
24 11
25 5

26 0

27 13
28 14
29 14
30 14
31 14
32 15
33 15
34 15
35 16
36 16
37 16
38 4

39 16
40 17
41 3

42 10
43 20
44 13
45 28
46 22
47 23
48 23
19 23
S0 23
51 24
52 27
53 27
54 27
55 28
56 28
57 29
58 10
59 29
60 22
61 30
62 30
63 31
64 33
65 33
GG 37
67 22
68 39
69 40
70 9

71 10
72 45
73 26
74 34
75 47
76 22
77 45
78 21
79 32

Net4 Demand File

347
0 1

11

168.00000036
214.00000047
16.00000022
91.0000008
349.00000051
36.00000023
316.0000000
29.00000039
1.00000059
12.0000005
30.0000000
250.00000059
2560.00000062
114.0000004
35.0000004
1480.00000073
585.00000065
118.00000084
79.00000068
100.00000014
414.00000025
305.0000000
23.0000002
25.00000028
32.00000028
53.00000014
148.0000008
31.0000000
7.000000138
48.00000015
28.0000008
210.00000037
1011.00000041
243.00000044
20.0000002
721.0000000
79.000000137
3173.00000081
35.00000021
88.00000089
30.0000000
8.0000000
2.00000022
19.000000134
36.00000012
1.00000018
112.00000074
10.00000067
14.0000009
43.0000002
76.00000094
80.00000029
89.0000008
348.00000026
513.00000073
76.00000015
88.0000009
71.00000085
12.0000009
207.00000068
135.0000009
740.00000019
79.00000015
98.0000001
173.00000091
377.00000022
166.00000029
49.0000003
146.0000000
14.00000018
653.00000050
7.0000000
309.00000045
75.00000028
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34 47 4
36 39 2
36 42 1
36 49 2
37 49 1
37 50 1
38 49 1
29 39 1
39 42 4
39 46 1
38 39 1
39 49 1
40 43 1
26 46 1
42 46 1
47 49 1
47 50 2
47 51 3
49 50 3
41 49 1
49 51 1
48 49 1
50 51 1
34 51 1
34 48 1
48 51 1

« Toronto Snif File

The following is the SNIF file for toronto metro network used in [6]. To make the result

comparable to that in [6), only the first 15 nodes and respective spans are used in the IP

formulations.
Date: March 27, 1997
File Name : toronto.snif
Network:toronto metro
Program:
Node Xcoord Ycoord
0 1 1
1 0 0
2 0 80
3 S0 80
4 70 80
5 0 100
6 0 20
7 20 50
8 100 0
9 30 80
10 70 100
11 0 60
iz 20 25
13 60 60
14 0 40
15 40 60
16 50 0
17 75 25
18 20 0
19 100 60
20 110 60
21 120 60
22 130 60
23 140 60
24 150 60
s
Span NodeA NodeB Dist Working Spare
1 0 1 5 0 0
2 0 3 3 0 0
3 0 4 4 0 0
4 1 2 4.5 0 0
S 1 4 3.3 0 0



6 1 5 2.5 0 0
7 2 5 2.3 0 0
8 2 6 2 0 0
9 3 4 3.5 0 0
10 3 9 4.3 0 0
11 4 7 8.6 0 0
12 4 8 4 0 0
13 4 10 5.5 0 0
14 4 11 4 0 0
15 S5 6 2 0 0
16 S 8 3.5 0 0
17 6 8 3.5 0 0
18 6 12 5.7 0 0
19 6 16 7 0 0
20 7 9 3 0 0
21 7 13 5 0 0
22 8 12 2 0 0
23 8 16 4.3 0 0
24 9 10 4 0 0
25 S 13 3 0 0
26 10 11 3 0 0
27 10 13 6.7 0 0
28 10 14 4 0 0
29 11 12 3.5 0 0
30 11 14 3.5 ¢ 0
31 12 14 4 0 0
32 12 15 2.5 0 0
33 13 14 9.4 0 0
34 13 17 5.3 0 c
35 13 18 7 0 o]
36 14 15 3 0 0
37 14 18 3 0 0
l8 14 19 3 0 0
39 15 16 2 0 0
40 1S 19 6.2 0 0
41 15 24 2 0 0
42 16 24 2.5 0 0
43 17 18 3 0 0
44 17 20 2.5 0 0
45 18 19 2 0 0
46 18 20 4.1 0 0
47 19 20 1.4 0 ¢]
48 19 22 2 0 0
49 19 23 3.5 0 o)
50 19 21 6 0 0
51 20 21 4 0 0
52 21 22 4.7 0 (o]
53 22 23 3 0 0
54 23 24 2.5 0 0
595 19 24 5.4 0 0

« Toronto Demand File

The demand matrix has 300 demands. One unit of demand exists between every node pair

uniformly.

+ US Snif File

The following is the SNIF file for Toronto metro network used in [6]. To make the result
comparable to that in (6], only the first 20 nodes and respective spans are used in the [P

formulations.

Date: March 27, 1997
File Name: us.mif



Network:us long haul

Program:

Node Xcoord Ycoord

0 1 1

1 0 0

2 0 80

3 50 80

4 70 80

S 0 100

6 0 20

7 20 50

8 100 0

9 30 80

10 70 100

11 0 60

12 20 25

13 60 60

14 0 40

15 40 60

16 50 0

17 75 25

18 20 0

19 100 60

20 110 60

21 120 60

22 130 60

23 140 60

24 150 60

25 160 60

26 170 60

27 180 60

s

Span NodeA NodeB Dist Working Spare
1 0 1 48 0 0
2 0 3 8 (o] 0
3 1 2 33 0 0
4 1 4 33 0 0
5 2 4 42 0 0
6 2 7 40 0] 0
7 2 S 40 0 0
8 3 6 40 0 0
9 4 6 23 0 0
10 5 8 32 0 0
11 6 7 62 0 0
12 6 10 53 0 0
13 7 12 58 0 0
14 8 9 21 0 0
15 8 10 16 0 0
16 9 13 15 0 0
17 10 11 20 0 0
8 10 13 35 0 0
19 11 12 46 0 0
20 12 15 20 o 0
21 12 17 60 0 0
22 13 14 17 0 0
23 13 16 15 0 0
24 13 22 21 0 0
25 14 16 18 0 0
26 15 18 32 0 0
<7 16 17 32 0 0
28 16 19 36 o 0
29 16 22 16 0 0
30 17 18 29 0 0
31 17 19 18 0 0
32 18 20 27 0 0
i3 18 21 33 0 0
34 19 20 25 0 0
s 19 24 20 0 0
36 20 21 17 0 ]
7 22 23 22 0 0
38 22 25 20 0 0
39 22 27 18 0 0
40 23 24 21 0 0
41 23 26 26 0 0
42 23 27 11 0 0
43 25 26 21 0 0
44 26 27 15 0 0
45 11 14 25 0 0



« US Demand File
The demand matrix has 378 demands. One unit of demand exists between every node pair

uniformly.



Appendix C: KST-Alg, IP Formulation and
Bounding Program

« File structure

All files related to capacity planning algorithms are grouped in one directory. Under
this directory, several modules in their respective sub-directories are used imple-
ment the algorithms. They are listed as follows:

I snif: supporting library. Snif is the network topology description format used
throughout this research. This module includes the procedures to read and write
snif files.

2. route: supporting library. This module includes the procedures to read and write the
VP file, which includes the information of ATM VP working routes, backup
routes. And in this module there are procedure to find the k-shortest path according
to the criteria of number limit of route, hop limit and distance limit.

3. kway: utility program. This module includes the program to generate, working
capacity for cach span, the working VP routes and possible backup routes set.

4. vpbk: utility program. This module includes the program to implement KST-Alg and
upper bound algorithms.

5. oversubscription: utility program. This module includes the program to calculate the
oversubscription factors of a particular capacity planning for a given network.

6. ip: utility program. This module includes the program to generate the IP-1, IP-2, IP-
3 and lower bound program. Because some parts of constraints in these IP formu-
lations are very similar, the programs are grouped into one file with macro *IF" to
generate different pars for each formulation.

7. txt2snif: utility program. This module includes the program to read the result from
the IP solving program, CPLEX, and write the result to a VP description file.

8. test: This module includes the script to generate the capacity planning for each tested
sample network.

Only some important programs which would help the understanding of the algorithms
are listed in this appendix, i.c., vpbk, ip and oversubscription modules.

« KST-Alg and upper bound algorithm implementation

Makefile: /vpbk/Makefile



NI = ../../include

NS = ../../1ib

BIN= ../../bin

CC = gcc

CFLAGS = -I$(NI) -L$(NS) -g -Wall
LINTFLAGS= -I$(NI)

all: vpbk vpspan

vpspan: vpbk.o spancut.o
$(CC) S$(CFLAGS) -o vpspan vpbk.o spancut.o -lns -1lm
cp vpspan S(BIN)

vpbk: vpbk.o sinqlevg
$(CC) $(CFLAGS) -o vp
cp vpbk $(BIN)

.0
k vpbk.o singlevp.o -lns -lm

# delete all executables
clean:
rm -f * o core vpbk vpspan *BAK

indent:
indent -i4 vpbk.c
indent -i4 spancut.c
indent -i4 singlevp.c

report: *.c Makefile Readme
enscript *.c Makefile Readme
echo > report

Main module: /vpbk/vpbk.c

tinclude <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <values.h>
tinclude <«string.h>

tinclude <snif.h>
#include *“route.h”

/* function prototypes */

extern int method:;

extern void niceme();

extern float

calculate_capacily (VP * netVPs, int numVPs, int *hackupvp,

float *spareCapacity, ROUTE *+* all_routes,
SPAN * netSpans, int numSpans);

int
main(int argc, char *argv(})

NODE *netNodes;/* all the nodes in the network +/
SPAN *netSpans;/* all the spans in the network */
ADJLIST *tadj;/* (heads of) adjacency lists */

VP *netVPs;/* all VPs in the network */

int *tag2node, *node2tag, *tag2span, *span2tag;

int numNodes, numSpans, numVPs;



ROUTE **all_routes;

int *num_route;

float *BkSpare, bestCapacity, totalworking;
int *BkRoute, updateVP;

int i, 3:

char stamp(1024]};

if (argc != 6) {
(1 printf(*Usage: vpbk snifFile vpFile routeFile outFile rvp-
File\n”
*\tsnifFile\tnetwork file in snif format.\n”
*\tvpFile\tworking vg capacity and route.\n”
*\trouteFile\tpossible restoration route.\n"
*\toutFile\tsnif file filled with spare capacity\n”
"\trvpFile\trestoration vp capacity and route\n”):
exit(l);

]
StartSNIF(argv(1l)):
Startvp(argv(2]):
StartROUTE(argv(3]):

/* search for the best route */
BkSpare = (float *) malloc(numSpans * sizeof(float));
BkRoute = (int *) malloc(numVPs « sizeof (int)).

for (L = 0; L < numvPs; f++)
BkRoute{i] = (num_route(i} == 0) ? -1 : 0;
bestCapacity = MAXFLOAT;

for ({ = 0, updatevP = -1; { != updateVP; i = (L « 1) % numvps) |
int best = BkRoute[{i];
print{(“%s: considering VP %d path %d\n",
(method == 0 ? *single” ‘sgancut'),
netvPs(i].tag, netvPs(i].path);

for (J = 0: j < num_route[i]: j++) [
float temp;
BkRoute{i] = 73;
niceme():
temp = calculate_capacity(netVPs, numVPs, BkRoute, BKkS-
pare,
all_routes, netSpans, numSpans):
{f (temp < bestCapacity) ({
bestCapacit¥ = temp;
updateVP « |;
best = j§;
printf(®%s: got best route %d to %f\n",
(method == 0 ? “single” : “spancut”), j, bestca-
pacityy}.

}
)
BkRoute([i] = best;

bestCapacity = calculate_capacity(netVPs, numVPs, BkRoute, BKS-

pare,
all_routes, netSpans, numSpans):

/* record the restoration selection to file for performance
analysis */
ChoiceWriteFile(argv(3],
(method == 0 ? ".single.choice” : " span-
cut.choice”),
netVPs, numVPs, BkRoute);



/* record the restoration info to file */
RVPWriteFile(argv([5], netVPs, numVPs,
all_routes, num_route, BkRoute,
tag2span, tag2node, span2tag, nodeltagq);

for (i = 0, totalworking = 0; i < numSpans; i++)
totalworking += netSpans(i).working * netSpans(i].distance;
netSpans(i].spare = BkSpare[i];

sprintf(stamp,
*backup VP using $s\n”
“"#network topology: $s\n”
“#VP description: $s\n”
“#backup route: %s\n”"
“#backup VP file: %s\n”
"#DISTANCE WEIGHTED working = %1.2f, sparing - %1.2f, *
*redundency = %1.2f%%\n",
(method == 0 ? “single cut” : “span cut”),
argv(l], argv[2], argv{3}, argv(5},
totalworking, bestCapacity, bestCapacity * 100 / total-
working);

SNIFProgramStamp(stamp);
SNIFWriteNetFile(argv([4), netNodes, netSpans, numNodes, num-
Spans,
node2tag, tag2node, span2tag, tag2span):

printf(*%s”, stamp);

/* free up memory ¢/
free(BkRoute);
free(BkSpare);

StopROUTE:
StopVvP;
StOpPSNIF;

return (0):

KST-Alg capacity calculation module: /vpbk/singlevp.c

tinclude <stdio.h>
tinclude <malloc.h>

tinclude <snif.h>
tinclude *route.h”

/* only consider each VP cut every time */

/'
* backupVP is a [0 .. numVPs-1] array to record the backup route
index of
* each working VP, so the backupVP[i]) is the ith working VP’s
backup route
* index in the all_route table. so all_route(i]{ backupVvP([i] | is
the actual

* backup route. ~"~""~~~~~~~~ 311 backup routes for ith working vp
*

*

/* spareCapacity is a [0 .. numSpans-1] array to record the spare
capacity */

int method -~ 0;/* single VP backup */



float

calculate_capacity(VP * netVPs, int numVPs, int *backupvp,
float *spareCapacity, ROUTE *+* all_routes,
SPAN * netSpans, int numSpans)

int i, j. span;
float temp = 0;

/* initial span spare capacity */
for (1 = numSpans - 1; i >= 0; i--)
spareCapacity(i] = 0;

/* try all backup VPs */
for (1 = numvPs - 1; { >= 0; i--)
/* skip the un-restorable vp */
if (backupVP[i] == -1)
continue;
/* try spans of that backup VP */
for (3 - (all_routes|[i](backupvP(i]]).num - 1; j >=0; j--) ¢
span = (all_routes[i][backupVP[i]]).span[j];
if (spareCapacity[span] < netVPs(i].capacity) (
spareCapacity({span] = netVPs([i].capacity;

}

/* add up total capacity together ¢/
for (i = numSpans - 1; {1 >="0; {--)

temp ¢~ spareCapacity(i] * netSpans([i].distance;
return (temp):

Upper bound capacity calculation module: /vpbk/spancut.c

sinclude <stdio.h>
#include <stdlib.h>
tinclude <malloc.h>

¢include <snif.h>
tinclude “route.h”

/* consider span cut each time */

/t
* backupVP is a [0 .. numVPs-1] array to record the backup route
index of
* each working VP, so the backupVP{i} i{s the ith working Vp's
backup route
* index in the all_route table. so all_route[i}| backupvP(i] ] is
the actual
* backup route. """"tcncccncs a11 backup routes for ith working VP
L 4
/

/* spareCapacity is a [0 .. numSpans-1] array to record the spare
capacity */

int method = 1;/* span cut backup */

float

calculate_capacity(VP * netVPs, int numVPs, int tbackupVvp,
float *spareCapacity, ROUTE ** all_routes,
SPAN * netSpans, int numSpans)

int i, 3, 1, m;
float temp = 0;
float *tempCapa;



tempCapa =~ (float *) malloc(numSpans * sizeof(float));

for (i = numSpans - 1; { >= 0; i--)
spareCapacity(i] = 0;

/* try to cut all spans */
for (m = numSpans - 1; m >= 0; m--) {
/* init spare capacity +/
for (i = numSpans - 1; i >= 0; i--)
tempCapa(i] = 0;

/* tr¥ all backup VPs through this span */
for (1 = 0; i < numvPs; i++) (
for (1 = netVPs[i}.num - 1; 1 >= 0; 1--) {
*

* if the original route goes through this span, or

say,
* working span is cut
*
if (netVvPs{i).spanfl] == m) {
/* add capacity to all spans of backup VP %/
[ for (3 = (all_routes(i][backupVP(i]]).num - 1; j
>= 0; 3--)

/* add capacity to all backup route spans */
sifdef DEBUG

printf(*add: cut span %d, cut VP %d, spare
span %d, capa %f\n”",
m, L, (all_routes{i][back-
upVP([i]]).span[]j], netVPs[i].capacity);

tendif DEBUG

tempCapa((all_routes{i][back-
upVP(1i]l]).span{j}] +- netvPs[i].capacity;
: ]

/* stub release all other segments of the working
Ve ¢/
for (j = netvPs[i].num - 1; 3 >= 0; j--) |
int span = netVvVPs[i).span(j]:
if (span '= m)
tifdef DEBUG
printf(*sub: cut span %d, cut VP %d, spare
span %d, capa %f\n~",
m, i, span, netVPs[i].capacity):
tendif

tempCapa(span] -- netVPs(i].capacity;

break;

/* compare this span cut with others t/
for ({ = numSpans - 1; { >= 0; i--)
spareCapacity([i] - max(spareCapacity[i], tempCapa{il]);

/* add up total capacity together */
for (i = numSpans - 1, temp = 0; i >= 0; i--)
temp +- spareCapacity[i] * netSpans(i].distance;
free(tempCapa);
return (temp):



« IP-1, IP-2, IP-3 and lower bounding algorithms implementation

Because these four programs are very similar, they are grouped into one single file.
There is a conditional compile for each algorithm. TSPARE, TOVER, TTOTAL
and TVCSPLIT are symbals for [P-1, IP-2, IP-3 and lower bound algorithms,
respectively.

Makefile: /ip/Makefile

NI = ../../include

NS = ../../1ib

BIN=- ../../bin

CC = gcc

CFLAGS = -I$(NI) -LS(NS) -g -Wall
LINTFLAGS= -IS(NI)

all: vpipt vpips vpipv vpipo

vpipv: vpipv.o
$(CC) S$(CFLAGS) -o vpipv vpipv.o -lns -1lm
cp vpipv S(BIN)

vpips: vpips.o
$(CC) S(CFLAGS) -o vpips vpips.o -lns -1lm
cp vpips S$(BIN)

vpipo: vpipo.o
$(CC) S(CFLAGS) -o vpipo vpipo.o -lns -1lm
cp vpipo S(BIN)

vpipt: vpipt.o
$(CC) S(CFLAGS) -o vpipt vpipt.o -lns -1lm
cp vpipt S(BIN)

vpipv.o: vpip.c
$(CC) S(CFLAGS) -DTVCSPLIT -c -o vpipv.o vpip.c

vpips.o: vpip.c
$(CC) S(CFLAGS) -DTSPARE -c -o vpips.o vpip.c

vpipo.o: vpip.c
$(CC) S(CFLAGS) -DTOVER -c -0 vpipo.o vpip.c

vpipt.o: vpip.c
$(CC) S(CFLAGS) -DTTOTAL -c -o vpipt.o vpip.c

¢ delete all executables
clean:
rm -f *.0 core vpipv vpips vpipo *BAaK

indent:
indent -i4 vpip.c

report: *.c Makefile Readme
enscript *.c Makefile Readme
echo >report

main module: /ip/vpip.c

#include <stdio.h>

#include <stdlib.h>
tinclude <values.h>
tinclude <malloc.h>
tinclude <string.h>



tinclude <snif.h>
¢include <route.h>

~N

LI IS

Four possible executive files

tdefine TOVER get the minimum OVER with given sparing

* #define TSPARE get the minimum SPARE capacity with an upper limit
of overload
*

* #define TTOTAL get the minimum TOTAL working and sparing capacity
with an upper limit

+ of overload
*

* #define TVCSPLIT get the minimum SPARE capacity with an upper
limit of

* overload BUT instead of using a IP program, a LP program is gen-
erated.

* (only int d....... varibles are not included)

*

* One of these should be defined in the Makefile
v/

~
*

variable format:

wl23: working capacity for span ¢ 123

s123: sparing capacity for span ® 123

gvl2pl: traffic in working VP for demand #12 routing path 3
Ccvl2p3: coefficient factor, 0 for no traffic, 1 for yes
fv12p3r456: traffic in VP #12 path 3 at backup route #8456
dv12p3r456: coefficient factor, 0 for no traffic, 1 for yes

T 2 % 2 ¢ * % 8

~N

int
main(int argc, char *arqv(])

NODE *netNodes;/* all the nodes in the network */
SPAN *netSpans;/* all the spans in the network */
ADJLIST *adj;/* (heads of) adjacency lists */
vP *netVPs;/* all VPs in the network */
int *tag2node, *nodetag, *tag2span, *spantaq;
int numNodes, numSpans, numVPs;
ROUTE **all_routes;
int *num_route;
FILE *fp;
int i, j., k., 1, m;
float rightside;
float flagrest;
tifndef TVCSPLIT
char *filename;
char *suffix - “.ord”";
tendif TVCSPLIT
#ifndef TOVER
float totalcapa;

float overload = 1.0;



tendif TOVER

tifdef TTOTAL
float *demand;
tendif

tifdef TOVER

if (argc t= 5) {(
printf(“Usage: vpip snifFile vpFile routeFile outipFile\n”
"\tsnifFile\tnetwork file in snif format.\n”"
*\tvpFile\tworking vg capacity and route.\n”
"\trouteFile\tpossible restoration route.\n”
*\toutipFile\trestoration IP formulation file.\n"):
exit(l);

telse TOVER

if ((argc != 5) && (argc '= 6)) {
printf(“"Usage: vpip snifFile vpFile routeFile outipFile
{overload]\n”
“\tsnifFile\tnetwork file in snif format.\n”
*\tvpFile\tworking vp capacity and route.\n"
“\trouteFile\tpossible restoration route.\n”
"\toutipFile\trestoration IP formulation file.\n”
"\toverload\toverload factor (should >=- 1.0) default
1.0\n");
exit(l);

if (argc == 6)
overload - atof(argv(S]):

sendif TOVER
StartsSNIF(argv(1l]);
Startve(argv([2]);

StartROUTE(argv(3]);

if ((fp - fopen(argv{4], “w")) == NULL) {
fprintf(stderr, *fail to open the IP formulation file:
¥s\n", argvi{d}]);
exit(l);

#ifdef TTOTAL
/* get the capacity for each demand pair */
demand - malloc(numVPs * sizeof (float));
for (i = 0: I < numVPs; {++) {
demand{i} - 0.0;

1
for (f = 0; i < numVPs; i++) {
demand([netVPs(i]).tag] +=- netVPs[i].capacity;

}
sendif TTOTAL

/* write header */

/* write objective */
tifdef TOVER

fprintf(fp, “- overload”);
telse TOVER
#ifdef TTOTAL

for (i = 0; i < numSpans; i++) [

fprintf(fp, *- %g wdld *, netSpans{i].distance,
span2taq(il}):



)
#endif TTOTAL
for (i = 0; i < numSpans; i++)

fprintf(fp, “- %g s%1d *, netSpans(i].distance,
span2tag(i]);

tendif TOVER
fprintf(fp, *“;\n\n");

tifdef TTOTAL

/* write the constraint 6, radio button of working VPs for each
demand ¢/

printf(*writing constraint 6...\n");

for (i = 0, m = netvPs[0].tag; i < numVPs; i++) (
if (m != netvPs([i].tag) ({
fprintf(fp, * = 1;\n");
m = netVPs(i].tag:

fprintf(fp, *+ cvildpsld -,

netVPs(i).tagq,
}
fprintf(fp, * = 1l;\n\n\n"):

netVPs(i).path);

/* write the constraint 4, working VP is coeffient (0 or 1) of
each demand */

tifdef verbose
printf(*writing constraint 4...\n");

for (f = 0; i < numVPs; f++) (
fprintf(fp, “%g cvildptld - gveldp%ld - 0;\n”,

demand(netVPs(i].tag], netvPs[i].tag, netvPs(i].path,
netVPs[i].tag, netvPs(i].path):
)

sendif verbose

/* write constraint 5 in IP-3, for working capacity > demand */

printf(*writing constraint 5...\n");

fprintf(fp, *\n\n\n"):
for ({ = 0: 1 < numSpans; i++) {
for (k = 0: k < numvPs; k++) |
for (1 =~ 0: 1 < netVvPs{k].num; l++) {
if (i == netvps(k].span{l]) {
#ifdef verbose

fprintf(fp, *+ gvildptld *, netvpPs(k].tagq,
netVPsik} .pathy;
telse verbose

fprintf(fp, *+ %g cvsldpsid *,
demand(netVPs[k].tag], netVPs(k].tag,
netVPs(k].path);
tendif verbose

break:
}

}
fprintf(fp, “- wtld = 0.0;\n\n", span2tagi]);

sendif TTOTAL

/* write the constraint 3, radio button for all possible backup
route */



printf(*writing constraint 3...\n”");

for (1 = 0; i < numVPs; 1i++) {
for (j = 0; j < num_route(i]; j++)
fprintf(fp, “+ dveldp%ldre03d *, netvPs[i].tagq,
netVPs{i).path, j);

#ifdef TTOTAL
fprintf(fp, * - cvildptld = 0;\n", netVbPs[i].tag,
netvbs(i}.path);
#else TTOTAL
fprintf(fp, * = 1;\n”");
#endif

}
fprintf(fp, *“\n\n”");

/* write constraint 1, actual overload < design peak */

printf(*writing constraint 1...\n");
fflush(stdout);

/* try to cut span { */
for ({ = 0; 1 < numSpans; i++)
printf(*formulating overload in case of failure span %d\n”",
span2tag(i));
/* try to formulate overload of span j ¢/
for (j = 0: § < numSpans; j++) {
Lt (L == 3) |
/* don’t care about span j overload in case of span i
failure v/
continue;

/* overload of span i in case of failure span i +/
rightside = 0.0;
flagrest = FALSE;
for (k = 0; k < numVPs; k++) {
/* check if VP k is cut in case of span i failure ¢/
for (1 = 0;: 1 < netVPs([k].num; ls++) |
if (1 == netVPs([k].span(l])
break:
}
if (1 -- netvPs[k].num)
continue;
/t
* check if the VP k went through span j, if yes, it
is a
* stub traffic and re-routed elsewhere
v/
for (1 = 0; 1 < netVPs(k].num; l++)
if (j == netvpPs(k].span(l}])
break;

P —

£ (1 != metvPs({k].num) {
tifdef TTOTAL
tifdef verbose
fprintf(fp, “- gveldptld *, netVPs(kj.tag,
netVPs(k]}.path);
telse verbose
fprintf(fp, “- %g cvildptld ",
demand[netVvPs (k] .tagqg]}, netvpbs(k].taqg,
netVPs(k].path):
tendif verbose
felse TTOTAL
rightside += netVPs[k].capacity;
tendif TTOTAL
continue;

]
/* check if the backup route go through span j ¢/
for (1 = 0: 1 < num_route(k]}; l++) [

for (m = 0: m < all_routes{k|{1l].num; me+) {



if (j == all_routes[k](l]).span[m]) {
flagrest = TRUE;

fprintf(fp, *+ fvildp%ldr%03d -,
netVPs[k].tag, netVPs(k].path, 1l);

fprintf(fp, “+ %g dvildpsldre03d *,

#ifdef verbose

telse verbose

#ifdef TTOTAL

demand[netVPs(k].taq],
telse TTOTAL

netVvPs (k] .capacity,
tendif TTOTAL

netvPs(k].taqg, netvPs(k].path, 1);
tendif verbose
break;

} /* try next possible route */
} /* try next Vp +/
if (flagrest == TRUE) {

/0

* finish all backup route, now write working and
stub

* traffic

v/

/* write overload factor t*/
sifdef TOVER
rightside -- netSpans{j].working;
fprintf(fp, "- %g overload *,
netSpans(j].working + netSpans[j].spare);
felse TOVER
¢ifdef TTOTAL
if (overload != 1.0) {
fprintf(fp, - Vg wtsld *,
overload - 1.0, span2tag(j]):

)
fprintf(fp, “- %g s%ld *,
overload, span2taq(j]):
telse TTOTAL
fprintf(fp, “- %g stl1d”,
overload, span2tag(j]):
rightside +=- (overload - 1.0) * netSpans(j].working:
tendif TTOTAL
tendif TOVER

fprintf(fp, * <= %g;\n\n”", rightside);

) /* try next overload span */
} /* try next cut span */

/* write the constraint 2, backup route is sufficient to support
working VP */
tifdef verbose

printf(*writing constraint 2...\n");

fflush(stdout):

for (i = 0; i < numVPs; i++) {
for (j = 0. j < num_route([i]; j++)
fprintf(fp, “fvildpsldrs03d *, netvVps(i].tag,
netVPs(i}.path, {§):
fprintf(fp, * - %g dvildp%ldrs03d - 0:\n",
tifdef TTOTAL
demand{netVPs[i].taq]l,
telse TTOTAL
netvbPs[i].capacity,
tendif TTOTAL
netvPs[i].tag, netVPs{i].path, j);



}
]
fprintf(fp, “\n\n");
tendif verbose

/* write bounds for link capacity, just for quick solving */

#ifdef TOVER
fprintf(fp, “overload <= 100.0;\n");
#else TOVER
for (1 = 0, totalcapa = 0.1; i < numVPs; i++) {
totalcapa += netVPs(i).capacity:;

}
for (i = 0; i < numSpans; i++) {
#tifdef TTOTAL
fprintf(fp, * wtld <~ %g;\n”, span2tag(i], totalcapa):
tendif TTOTAL
fprintf(fp, * st%1d <~ %g;\n”, span2taqg(i], totalcapa);

)
sendif TOVER

/* write constraint for exclusive coefficient <= 1 +/
#if 0
¢ifndef TVCSPLIT
fprintf(fp, "“\n\n”);
for (i = 0; i < numvPs; i++) ({
tifdef TTOTAL
fprintf(fp. *cvsldptld <~ 1;\n", netvpPs[i].tagqg,
netVpPs(i].path);
tendif TTOTAL
for (j = 0; j < num_route[i}; j++) {
fprintf(fp, “dveldptldr$03d <= 1;\n”,
netVpPs[i).tag, netVPs(i].path, j§):
| }
fprintf(fp, “\n\n”*):
tendif TVCSPLIT
sendif 0

/* write integers for exclusive coefficient */
¢tifndef TVCSPLIT
fprintf(fp, “\n\nint *):
for (i = 0; { < numVvPs; i++) {
tifdef TTOTAL
fprintf(fp, “cvsldptid *, netVPs(i].tag, netVPs[i].path);
tendif TTOTAL
for (3 = 0; j < num_route([i]; j++) {
fprintf(fp, “dveldptldrt03d *,
netVPs(i].tag, netVvPs[i].path, j);
}

}
fprintf(fp

AN AN B T
tendif TVCSPLIT

/* write end ¢/
fclose(fp):

tifndef TVCSPLIT
/* write order file for all binary variables */

/* record the restoration selection to file for performance
analysis */
i = strlen(argv(4]) + strlen(suffix) + 1;
if ((filename = (char *) malloc(i * sizeof(char))) == NULL)
fprintf(stderr, “fail to allocate memory for choice file
name\n");
exit(l);

strcpy(filename, argvid]);



strcat(filename, suffix);

if ((fp = fopen(filename, “w”)) == NULL)

fprintf(stderr, “fail to open the order file:

name) ;

exit(l);

free(filename);

fprintf(fp, “NAME\n”);

for (L = 0; { < numvPs; 1i++) (
#ifdef TTOTAL

telse

fprintf(fp, * UP cvtldptld
netvVPs(i].tag, netvPs[i).path);
fprintf(fp, “td\n”",
(int) (demand[netVPs[i].tag] + 1));
for (j = 0; < num_route[i]; j++) {
fprintf(fp, * UP dv$ldptsldre03d

netVPs{i).tag, netVPs[i].path, j);

fprintf(fp, ~%d\n”,

¥s\n", file-

(int) (netVPs{i].capacity / 10 + 1));

}

TTOTAL

for (j - 0; < num_route(i]; j++) [
fprintf(fp, * UP dveldp%1ldre03d

netVPs({i].tag, netVPs(i].path,

fprintf(fp, “sd\n”*,

(int) (netVPs[i].capacity / 10

}
sendif TTOTAL
}

fprintf(fp, “ENDATA\n”"):;
fclose(fp):

#endif TVCSPLIT
/* free up memory ¢/
StopROUTE;
StopVvp;
STLOPSNIF;

return (0);

+ Oversubscription calculation module

Makefile: Joversubscription/Makefile

NI = ../../include

NS = ../../1ib

BIN=- ../../bin

CC = gcc

CFLAGS = -IS(NI) -LS(NS) -g -wWall

all: overload

overload: overload.o

$(CC) S(CFLAGS) -o overload overload.o -LS(NS)

cp overload $(BIN)

¢ delete all executables

+ 1))

-lns -lm



clean:

rm

indent:

-f *.0 core overload *BAK

indent -i4 overload.c

report:

*

o

« S

Makefil

e Readme

enscript *.c Makefile Readme
echo > report

Main module: Joversubscription/overload.c

/* oversubscription calculation utility program, the result of this
file can be read by gnuplot */

#include
#include
¢include
¢include
tinclude
tinclude
tinclude

tinclude
tinclude

<stdio.h>
<assert.h>
<stdlib.h>
<math.h>

<malloc.h>
<alloca.h>
<values. h>

<snif.h>
<route.h>

sdefine MAXOVER1O
tdefine FACTOR 100

tdefine max(a,
tdefine min(a,

int

main(int argc,

{

NODE
SPAN

b)
b)

char

ADJLIST

vp
int
int

int

float
float

int

FILE

if (argc != 5)
printf(*Usa

File\n”"

ture.\n”

*\tsn

~ e~
o~~~
[T )
oo
~—
"\
o~~~
U <1
—~
oOU
~— —
~—

*argv(])

*netNodes;/* all the nodes in the network */
*netspans;/* all the spans in the network */
*adj;/* (heads of) adjacency lists */
*netVPs;/* all VPs in the network */
*tag2node, *spanltagqg;

*node2tag, *tag2span,

numNodes, numVPs;
j. 1,

*temp, overaver = 0.0;
overmin = MAXFLOAT, overmax =

ind,

numSpans,

i, m, totalover = 0;

“MAXFLOAT;

thist, total, numhist;

*tp:

{
ge: overload sniffFile vpFile rawoutFile pdfout-

ifFile\tsnif file describing network struc-

"\tvpFile\tworking and backup vp capacity and

route.\n”

woutFile\tfile containing raw overload fac-

"\tpdfoutFile\tfile containing overload PDF and

*\tra
tors.\n”
CDF.\n");
exit(l);

StartSNIF(argv(l]):

StartvP(argv{2]});



tifdef DEBUG
for (i = 0; i < numVvPs; i++)
printf(*%d %d %d %d %1.2f\n”", netvPs[i].tagq,
netVPs[1i].source,

netVPs(i).target, netVPs[i].path, netVPs[i}.capac-
ity);
tendif DEBUG

/* record the restoration info to file */
if ((fp = fopen(argv(3], “w”)) == NULL) {
fprintf(stderr, “fail to open overload raw data file ts.\n”
argv(3]);
exit(l);

’

/* write header of overload factors file */
fprintf(fp, “#Title:\toverload factors\n”);
fprintf(fp, “#Snif:\t%s\n”, argv(l]);
fprintf(fp, “#VP:\t%s\n", argv{2]):
fprintf(fp, *“#Span #:\ttd\n”, numSpans)
fprintf(fp, “#Comment:\trow - cut span, column - overload
span\n\n”);
sif 0
for (1 = 0; 1 < numSpans; i++)
fprintf(fp, *\t%d”, span2tag{i}]):

}
fprintf(fp, *\n");
sendif

temp - (float *) malloc(numSpans * sizeof(float));

hist = (int *) malloc((MAXOVER * FACTOR + 1) * sizeof(int));
for (i = 0; i <~ MAXOVER * FACTOR;: f+4+)
hist[i] - 0;

/* try to cut every span ¢/
for (m = 0: m < numSpans; m++) {
#ifdef DEBUG

printf(“"Now considering span cut %d\n”, span2tag(m]):
tendif DEBUG

/* init spare capacity v/
for (i - numSpans - 1; i >= 0; i--)
temp{i] = 0;

/* try all backup VPs through this span *¢/
for (i = 0:; i < numVPs; i++)
for (1 = netvPs(i].wnum - 1; 1 >= 0; 1--) {
*

* if the original route goes through this span, or
say.

* working span (s cut
*

if (netVPs[i].wspan(l] == m) {
sifdef DEBUG

printf(*vP %d path %d found tranversing span
8d\n",

netVPs[i].tag, netVPs[i].path,
span2tagm]);
tendif DEBUG
/* add capacity to all spans of backup VP */
for (3 = netVvPs{i).num - 1; j >= 0; j==)

int span = netVPs([i].span[j];

/* add capacity to all backup route spans */
tifdef DEBUG

printf(*add: cut span %d, cut VP %d, spare
span %¥d, capa %f\n",

m, i, span2tag(span]. netVvPs[i].capac-
ity):



#endif DEBUG
temp(span] += netVPs[i).capacity;

/* stub release all other segments of the working
VP r/
for (j = netVvPs(i).wnum - 1; j >= 0; j--)
int span =~ netVPs[i).wspan(j];:
if (span != m) (

tifdef DEBUG
printf(*sub: cut span %d, cut VP %d, spare

span ¥d, capa %f\n”",
m, i, span2tag(span]j,

netVPs(i).capacityy);

tendif
temp(span] -= netVPs[i].capacity;
}
break;
}
}
for (1 = 0; i < numSpans; i++) {(
tf (1 == m) (
continue;
}
temp(i] - max(temp[i], 0.0);
temp(i] « (netSpans(i]).working + netSpans(i].spare) ==
0.0 ?

1.0 : ((temp(i] + netSpans[i].working) /
(netsSpans(i].working + netSpans(i].spare)):
overmin = min(overmin, temp(i]):
overmax - max(overmax, temp[i]):
if (temp{i] > 1.0) ¢
totalover++;
overaver += temp[i):
]
fprintf(fp, “%f\tVvf\n*, (span2tag[m] + 1.0 * { / num-
Spans), temp[i]):

ind - min((int) (0.99999+temp[i] * FACTOR), MAXOVER *

FACTOR) ;
hist(ind] += 1;

)

fprintf(fp, “#\n#\n");

fprintf(fp, “#max:\t%f\n”", overmax);

fprintf(fp, “#num of overload:\t%d\n”, totalover);

fprintf(fp, “#saverage:\ti%f\n", (totalover == 0) ? 0.0 : overaver
/ totalover);

if (overmax > MAXOVER)
fprintf (stderr,
“"Err: MAXOVER 10 is less than actual maximum over-
load.\n");
numhist = (int) (overmax +.99999) * FACTOR;

for (i = 0, total = 0; i <= numhist; i++) (
total += hist[i];
if (total >= (.9 * numSpans * (numSpans - 1)) y
fprintf(fp, “#90%% actual overload is: %1.2f\n",
(float) i / FACTOR);
break;

)
fprintf(fp, "“#\n#\n”):
fclose(fp);:



}

/* writing PDF file */
if ((fp = fopen(argv([4], “w”)) == NULL) {
fprintf(stderr, “fail to open the overload pdf file: ts\n”,
argv(d]):
exit(l);

for (i = 0, total = 0; i <= numhist; i++) ({
fprintf(fp, “%1.2f\t", (float) i / FACTOR);
fprintf(fp, “%1.3f\t", (float) hist[i] / numSpans / (num-
Spans - 1)):
total += hist[i]:
fprintf(fp, “%1.3f\n", (float) total / numSpans / (numSpans
- 1))

}
fprintf(fp, *\n"):
fclose(fp);:

free(temp);
free(hist);

/* free up memory v/
StopVvP;

StopSNIF;

return (0):

« Sample network TINY and the resualtant IP-1, [P-2, IP-3

tiny.snif:

Date: February 2., 1995

File Name: TINY

Network: Very tiny sample network

Program: Test Network Working=509 , Spare=532

Node Xcoord Ycoord

1 47.00000077.000000

2 34.00000083.000000

3 22.00000076.000000

4 20.00000050.000000

5 43.00000054.000000

6 85.00000074.000000

Span NodeA NodeB DistanceWorkingSpare
1 1 2 20.00 74 53
2 1 3 30.00 71 74
3 1 4 70.00 71 68
4 1 5 35.00 53 71
5 1 6 50.00 S5 48
6 2 3 20.00 53 74
7 3 5 40.00 16 18
8 4 5 35.00 68 71
9 5 6 55.00 48 55

tiny.dmd: demand matrix

NN = = 0

.23
.55
.98
.41
.92

NN S N
Nwahwn



& W

Y=Y
S Ry
ocaw
[

[P-1:

- 20 s1 - 30 s2 - 70 s3

+ 4+ e+t

+ +

+ +

+

+ +

*

+

s9 ;

dvOp0r000
dvOplr000
dvlp0ro000
dv2p0ro000
dv2plr000
dv3p0ro000
dv4p0ro000
dvs5p0r000
dv6p0r000
dv7p0ro0qo0

3.49 dv2p0r000 + 3.49 dv2plr001 + 3.49 dv2plr002 +
+ 3.41 dv3p0r002 + 7.92 dv4pOr001 + 7.92 dv4p0ro002

3.49 dv2p0roo0o

1 s3 <=

- 35 s4 - 50 sS - 20 86 - 40 s7 35 s8 - 55

dvOplr00l1 + dvOplr002 + dvOplro003

dvlp0r00l1 + dvlip0r002 + dvip0ro003

dv2p0r00l1 = 1.

dv2plr001 + dv2plr002 i
1
1

- 1;

dv3p0r00l1 + dv3p0r002 =
dv4p0r001 + dv4p0r002 =
dvSp0r001 = 1;

dv6p0ro00l1 + dvép0ro02

- 1;

.
.
’
’

+++ 4

- ’

3.41 dv3p0rool
1 s2 <= 0;

+ 3.49 dv2pOr001 + 3.41 dv3p0r002 + 7.92 dv4p0r002

3.49;

3.49 dv2plr001 + 7.92 dv4p0r001 - 1 s4 <= 6.9;

3.49 dv2p0rool
3.49 dv2p0roo0o
+ 3.49 dv2plr002 + 3.41 dv3p0r000 + 3.41 dv3pOrool +
+ 7.92 dv4p0r000 + 7.92 dvdp0r001 + 7.92 dv4p0r002

3.49 dv2p0r00l1 + 3.49 dv2plr000 + 3.41 dv3pOr000 +

1 87 <=

3.49 dv2plr000 + 3.49 dv2plr00l + 3.49 dv2plr002 -

7.92 dv4

*

3.49 dv2p0r001 + 3.49 dv2plr002 + 3.41 dv3p0rool +

+ 3.49 dv2plr002 + 3.41 dv3p6r00l - 1 s5 <= 7.92:

+ 3.49 dv2p0r00l + 3.49 dv2plr000 + 3.49 dv2plrool
3.41 dv3p0ro0o02
-1 s6 <~ 0;
7.92 dv4p0ro0o0
0:

3.41 dv3p0Orooz

p0ro0o02 1 s8 <= 3.49;

7.92 dv4p0r000

= 7.92 dv4p0r001 + 7.92 dv4p0r002 - 1 s9 <= 0;

3.44 dv6p0r00l + 3.44 dvép0r002 - 1 sl <= 0;

3.44 dvé6p0r002 - 1 s3 <= 0;

3.44 dv6p0r00l1 - 1 s4 <= 0;

3.44 dv6p0r0o0l1 + 3.44 dvép0r002 - 1 s6 <= 0;

3.44 dv6p0r000 - 1 s7 <= 0;

3.44 dvé6p0r002 - 1 s8 <= 0;

3.44 dv6p0r000 + 3.44 dv6p0r001 + 3.44 dv6p0r002 - 1 s9 <= 0;
1.115 dv0plr002 - 1 sl <= 3.49;

1.115 dvOplr001 + 3.49 dv2plr001 + 3.49 dv2plr002 - 1 s2 <=~ 0O;
1.115 dvOplr000 + 3.49 dv2plr00l1 - 1 s4 <= 0;

1.115 dvOplr003 + 3.49 dv2plr002 - 1 s5 <= 0;

11121 %yOe}r002 + 3.49 dv2plr000 + 3.49 dv2plr00l + 3.49 dv2plr002

1

.115 dvOplr001 + 1.115 dvOplr002 + 3.49 dv2plr0oo 1 87 <~ 0;



+ 1.115 dvOplr000 + 1.115 dvOplr001 + 1.115 dvOplr002 + 1.115
dvOplr003 + 3.49 dv2plr000 + 3.49 dv2plr001 + 3.49 dv2plr002 - 1 s8

<= 0;

+ 1.115 dvOplr003 + 3.49 dv2plr002 - 1 s9 <= 0;

+ 3.55 dvlp0r00l - 1 sl <= 6.9;

+ 3.55 dvlp0r000 + 3.49 dv2p0r000 + 3.41 dv3p0r00l + 3.41 dv3p0ro02
- 182 <= 0;

+ 1.115 dvOp0r000 + 3.55 dvlp0Or003 + 3.49 dv2p0r000 + 3.49 dv2p0ro01
+ 3.41 dv3p0r002 - 1 83 <= 0;

+

+

3.55 dvlp0r002 + 3.49 dv2p0r00l1 + 3.41 dv3p0Or00l - 1 s5 <= 0;
3.55 dv1p0r00l + 3.49 dv2p0r000 + 3.49 dv2p0r001 + 3.41 dv3p0ro0o0o0

+ 3.41 dv3p0r001 + 3.41 dv3p0r002 - 1 s6 <= 0;

+

- 187 <= Q;

.55
.55
-44
.92
.92
.92

*
~ ~ ~ ~ w w w

92

. 3.4

+

+

+

<+ 1.37
+ 1.37
.37
.37
.37
.49

’
Lonl VY IR R~ R

dvip0r003
dvlp0ro002
dvép0rool
dv4p0rool
dvdp0ro002
dv4p0rool
dv4p0r000

4 dv6p0roo2

dvSp0rool
dvSp0rooo
dvSp0r000
dv5p0rool
dvSp0roo1i
dv2p0ro000

+

7.92 dv4p0r000 +
7.92 dv4p0ro002 -~

7.92 dv4p0rooo -«
+ 3.44 dvep0rool

+

3.55 dv1p0r000 + 3.55 dvlpOr001 + 3.49 dv2p0r001 + 3.41 dv3p0r000

3.41 dv3p0r002 - 1 s8 <= 4.605;

3.49 dv2p0Oro001 + 3.41 dv3p0r00l - 1 s9 <= 0;
3.44 dv6p0r002 - 1 sl <= 7.92;

7.92 dv4p0r002 - 1 s2 <= 3.44:

3.44 dv6p0r002 - 1 s3 <= 0;

3.44 dv6pOro0l - 1 s4 <= 0;

7.92 dv4p0r001 + 7.92 dv4p0r002 + 3.44 dv6p0r001l

1 s6 <= 0;
3.44 dvé6p0r000 - 1 87 <= 0;
3.44 dv6p0r002 - 1 s8 <= 0;

7.92 dv4p0r00l + 7.92 dv4p0r002 ~ 3.44 dvé6p0r000

3.44 dv6p0r002 - 1 s9 <= 0;
1 sl <= 0;

82 <= 0;
.37 dvSp0ro0ol - 1 s3 <= 0;

s6 <= 0;

[ I R

sl <= 3.49;
1.37 dv5p0r000 - 1 s2 <= 0;

115 dvOp0Or000 + 3.49 dv2p0r000 + 3.49 dv2p0r001 + 1.37 dvSp0rooo

v 1.37 dv5p0r001l + 5.01 dv7p0r000 - 1 s3 <= 0;

+ 3.49
+ 3.49
.49

.01

+
9} (9] (%) w

.01

.49

dv2p0rool
dv2p0r000
dv2p0ro001l
dv2p0roo1l
dv7p0r000
dv7p0r000

-

+

5.01 dv7p0r000 - 1 s5 <= 0;

3.49 dv2p0r001 + 1.37 dvSp0ro0l - 1 s6 <= O;
1 587 <= 1.37;

1 s9 <= 5.01;

1 s3 <= 0;

1 s5 <= 0;



sl <~ 34.01;
s2 <= 34.01;
s3 <= 34.01;
s4 <= 34.01;
s5 <= 34.01;
s6 <= 34.01;
s7 <= 34.01;
s8 <= 34.01;
s9 <= 34.01;

int dv0Op0r000 dvOplr000 dvOplr001 dvOplr002 dvOplr003 dv1p0r00o0
dvlp0r00l1 dvlp0r002 dvlp0r003 dv2p0r000 dv2p0r00l1 dv2plro0o0
dv2plr00l1 dv2plr002 dv3p0r000 dv3p0r001 dv3p0r002 dv4p0ro00
dv4p0r001 dv4p0r002 dvSp0r000 dvSp0r001 dv6p0r000 dv6p0Oroo0l
dv6ép0r002 dv7p0r000 ;

[P-2:

- overload;

+ dv0OpOro0o - 1;

+ dvOplr000 + dvOplr001l + dvOplr002 + dvOplr003 =« 1;
+ dvlp0r000 + dvlp0r001 + dvlp0Or002 + dvlpOr003 = 1;
+ dv2p0r000 + dv2p0rc01 = 1;

+ dv2plr000 + dv2plr001 + dv2plr002 =~ 1;

+ dv3p0r000 + dv3p0r001 + dv3p0r002 = 1;

+ dv4p0r000 + dv4p0r001 + dv4p0r002 = 1;

+ dv5p0r000 + dv5p0r001 = 1;

+ dvép0r000 + dv6p0r001 + dv6p0r002 = 1;

« dv7p0r000 - 1;

+

3.49 dv2p0r000 + 3.49 dv2plr001 + 3.49 dv2plr002 + 3.41 dv3p0ro0o0l
+ 3.41 dv3p0r002 + 7.92 dv4p0Or001 + 7.92 dv4p0Or002 - 4.81 overload
<= -3.44;

3.49 dv2p0r000 + 3.49 dv2p0r001 +« 3.41 dv3p0r002 + 7.92 dv4p0roo2
- 9.615 overload <= -1.115;

*

.

3.49 dv2plro0l + 7.92 dv4p0Or001 - 11.565 overload <~ -4.665;

+ 3.49 dv2p0r001 +« 3.49 dv2plr002 + 3.41 dv3pOr00l - 16.37 overload
<= -3.44;

¢+ 3.49 dv2p0r000 + 3.49 dv2p0r001 + 3.49 dv2plr000 + 3.49 dv2plrool
+ 3.49 dv2plr002 + 3.41 dv3p0r000 + 3.41 dv3p0r00l1 + 3.41 dv3p0ro002
+ 7.92 dv4p0r000 + 7.92 dv4p0r001 + 7.92 dv4p0r002 - 7.92 overload
<= 0;

+ 3.49 dv2p0r001 + 3.49 dv2plr000 + 3.41 dv3pOr000 + 7.92 dv4p0r000
- 5.2% overioad <= -1.37;

+ 3.49 dv2plr000 + 3.49 dv2plr001 + 3.49 dv2plr002 + 3.41 dv3p0r002
+ 7.92 dv4p0r002 - 14.475 overload <= -7.495;

+ 3.49 dv2p0r001l + 3.49 dv2plr002 + 3.41 dv3p0Orool + 7.92 dv4p0ro000
+ 7.92 dv4pOr001 + 7.92 dv4p0r002 - 12.93 overload <=~ -5.01;

¢+ 3.44 dv6p0r001 + 3.44 dv6p0r002 - 18.31 overload <= -18.31:
+ 3.44 dv6p0r002 - 9.615 overload <= -4.605;

+ 3.44 dv6p0r00l - 11.565 overload <= -11.565;

+ 3.44 dv6p0r001 + 3.44 dv6p0r002 - 7.92 overload <= 0:

+ 3.44 dv6p0r000 - 9.29 overload <= -1.37:



+ 3.44 dvép0r002 - 14.475 overload <= -10.985;

+ 3.44 dv6p0r000 + 3.44 dvé6pOro01 + 3.44 dv6p0r002 - 12.93 overload
<= -5.01;

+ 1.115 dvOplr002 - 18.31 overload <= -14.82;

+ 1.115 dvOplr001 + 3.49 dv2plr00l1 + 3.49 dv2plr002 - 4.81 overload
<= -3.44;

+ 1.115 dvOplr000 + 3.49 dv2plr00l1l - 11.565 overload <= -11.565;
+ 1.115 dvOplr003 + 3.49 dv2plr002 - 16.37 overload <= -11.36;

+ 1.115 dvOplr002 + 3.49 dv2plr000 + 3.49 dv2plr00l + 3.49 dv2plr002
- 7.92 overload «= 0;

+ 1.115 dvOplr001 + 1.115 dvOplr002 + 3.49 dv2plr000 - 9.29 overload
<= -1.37;

+# 1.115 dvOplr000 + 1.115 dvOplr00l1 + 1.115 dvOplr002 + 1.115
dvOplr003 + 3.49 dv2plr000 + 3.49 dv2plr00l + 3.49 dv2plr002 -
14.475 overload <~ -10.985;

+ 1.115 dvOplr003 + 3.49 dv2plr002 - 12.93 overload <= -5.01;

*

3.55 dvlp0r001 - 18.31 overload <= -11.41:

+

3.55 dv1p0r000 + 3.49 dv2p0r000 + 3.41 dv3p0r001 + 3.41 dv3p0ro002
- 4.81 overload <= -3.44:

+

1.115 dv0p0Or000 + 3.55 dvlip0r003 + 3.49 dv2p0r000 + 3.49 dv2p0roo1l
+ 3.41 dv3p0r002 - 9.615 overload <= -4.605;

+

3.55 dv1p0r002 +« 3.49 dv2p0Or00l + 3.41 dv3pdr00l - 16.37 overload
<= -11.36;

3.55 dvlp0r001 +« 3.49 dv2p0r000 + 3.49 dv2p0r00l + 3.41 dv3ip0r000
+ 3.41 dvip0r0o0l1 + 3.41 dv3p0r002 - 7.92 overload «<- 0:

+

*

3.55 dv1ip0r000 « 3.55 dvlpOr001 « 3.49 dv2p0ro0l + 3.41 dv3p0ro0o0
- 9.29 overload <= -1.37:

+ 3.55 dv1p0r003 + 3.41 dv3p0r002 - 14.475 overload <= -6.38;

+ 3.55 dvlp0r002 + 3.49 dv2p0Or001 + 3.41 dv3p0Or00l - 12.93 overload
<= -5.01;

.44 dvép0r001 + 3.44 dvép0ro002 18.31 overload <~ -10.39;
.92 dv4p0r001 + 7.92 dv4p0r002 - 4.81 overload <= 0:

9.615 overload <= -4.605;

.92 dv4p0r002 + 3.44 dv6p0r002

.92 dv4p0r00l + 3.44 dvé6p0rool 11.565 overload <= -11.565:

.92 dv4p0r000 + 7.92 dv4p0Or001 + 7.92 dv4p0r002 + 3.44 dvép0rool
+ 3.44 dv6p0r002 - 7.92 overload <= 0;:

+
NN NN W

+ 7.92 dv4p0Or000 + 3.44 dv6p0Or000 - 9.29 overload <= -1.37:
+ 7.92 dv4p0r002 + 3.44 dv6p0Or002 - 14.475 overload <=~ -10.985:

+ 7.92 dv4p0r000 + 7.92 dv4p0r001 + 7.92 dv4pOro002 + 3.44 dv6p0r000
+ 3.44 dvép0Or001 + 3.44 dv6p0r002 - 12.93 overload <= -5.01:

+

1.37 dv5p0r001 - 18.31 overload <= -18.31;

+

1.37 dvSp0Or000 - 4.81 overload <=~ -3.44;

+

1.37 dv5p0r000 + 1.37 dv5p0r001 - 9.615 overload <=~ -4.605:



+ 1.37 dv5p0r001 - 7.92 overload <= 0;
+ 1.37 dv5p0r001 - 18.31 overload <= -14.82;
+ 3.49 dv2p0r000 + 1.37 dvSp0r000 - 4.81 overload <= -3.44;

+ 1.115 dvOpOr000 + 3.49 dv2p0r000 + 3.49 dv2p0r001 + 1.37 dv5p0r000
+ 1.37 dv5p0r001 + 5.01 dv7p0r000 - 9.615 overload <= -4.605;

+ 3.49 dv2p0r001 + 5.01 dv7p0r000 - 16.37 overload <= -11.36;

+ 3.49 dv2p0rN00 + 3.49 dv2p0r001 + 1.37 dvSp0r001 - 7.92 overload
<= 0;

+ 3.49 dv2p0r00l1 - 9.29 overload <= 0;

+ 3.49 dv2p0r001 - 12.93 overload <= 0;

+ 5.01 dv7p0r000 - 9.615 overload <= -4.605;

+ 5.01 dv7p0r000 - 16.37 overload <= -11.36;

overload <= 100.0;

fnt dvOp0r000 dvOplr000 dvOplr00l dvOplr002 dvOplr003 dv1p0ro000
dvlip0r001 dvlp0r002 dv1p0Or003 dv2p0r000 dv2pOro0l dv2plro00o
dv2plr001 dv2plr002 dv3p0r000 dv3p0r00l dv3p0ro002 dv4p0rooo

dv4p0r001 dv4p0r002 dv5p0r000 dv5p0r00l1 dv6p0r000 dvép0rool
dvép0r002 dv7p0r000 ;

IP-3:

=20 wl - 30 w2 - 70 w3 - 35 w4 - SO wS - 20 w6 - 40 w7 - 35 w8 - 55
w9 - 20 s1 - 30 s2 - 70 s3 - 35 s4 - S0 s5 - 20 s6 - 40 s7 - 35 s8

- 55 s9 ;
+ cv0p0 + cvOpl + cvOp2 = 1;
<« cvlip0 +« cvlpl « cvip2 = 1;
» cv2p0 + cv2pl + cv2p2 = 1;
* ¢cv3ip0 +« cv3pl + cv3p2 = 1;
* cv4p0 + cv4pl + cv4p2 - 1:
+ ¢cv5p0 + cv5pl + cvSp2 = 1;
+ cv6p0 + cvépl + cvép2 = 1;
« ¢cvlp0 + cv7pl + cv7p2 = 1;

+ 3.55 cvlp2 + 6.98 cv2p0 + 6.98 cv2pl + 3.41 cv3p0 + 7.92 cv4p0 -
7.92 cvdp2 v 2.44% cv6pl - wl - 0.0;

+ 2.23 cv0p2 + 3.55 cvlpl + 3.41 cvip2 + 7.92 cvdpl + 1.37 cvSpl -
1.37 cv5p2 + 3.44 cv6p0 - w2 = 0.0;

* 2.23 cvOpl + 6.98 cv2pl + 1.37 cv5p2 + 5.01 cvip2 - w3 = 0.0;

+ 2.23 cv0p0 + 3.55 cvlp0 + 6.98 cv2p0 + 3.41 cv3ip0 + 3.41 cvip2 -
7.92 cv4p2 + 1.37 cv5pl + 5.01 cvipl - w4 = 0.0;

+ 7.92 cvd4p0 + 7.92 cvdpl + 3.44 cvép0 + 3.44 cvepl + 5.01 cv7pl -
5.01 cv7p2 - wS = 0.0;

+ 3.55 cvlp2 + 6.98 cv2p2 + 3.41 cv3pl + 3.41 cvip2 + 7.92 cvipl -
3.44 cvépl - w6 = 0.0;

+ 2.23 cvOp2 « 3.55 cvlpl + 3.55 cvlp2 + 6.98 cv2p2 + 3.41 cvipl
1.37 cvS5p0 + 3.44 cv6p2 - w7 = 0.0;



+ 2.23 cvOp0 + 2.23 cvOp2 + 6.98 cv2p0 + 6.98 cv2p2 + 1.37 cvSp0 +
1.37 cvSpl + 5.01 cv7p0 + 5.01 cvipl - w8 = 0.0;

+ 7.92 cv4p2 + 3.44 cv6p2 + 5.01 cvip0 - w9 = 0.0;

dvOp0r000 - cvOp0 = 0;
dvOplr000 + dvOplr001 + dvOplr002 + dvOplr003 - cvlipl - 0;
dv0p2r000 - cvOp2 = 0;

dvlpOr000 + dvip0r001 + dvlp0r002 + dvlp0r003 - cvlp0 = 0;
dvlplr000 + dvlplr001 + dviplr002 - cvlpl = 0;

dvlp2r000 + dvlp2r001 + dvlp2r002 cvlp2 =
dv2p0r000 + dv2p0r001 - cv2p0 = 0;
dv2plr000 + dv2plr001 + dv2plro002
dv2p2r000 - cv2p2 - 0;

’

0
cvepl = 0
cv3ip0 = 0;

0
0

dv3p0r000 + dv3p0r001 + dv3p0r002 - ;
dv3plr000 + dv3plr0Gl + dv3plr002 - cv3ipl = 0;
dv3p2r000 + dv3p2r001 - cv3ip2 = 0;
dv4p0r000 + dv4p0r001 + dvd4p0r002 - cv4p0 = 0;
dv4plr000 + dv4plr001 - cvépl =~ 0;
dv4p2r000 + dv4p2r001 - cvédp2 - 0;
dv5p0r000 + dv5p0r001 - cvS5p0 = 0;
dv5plr000 + dvSplr001 - cvSpl = 0;
dv5p2r000 + dv5p2r001 + dv5p2r002 - cvSp2 = 0;
dv6p0r000 + dv6ép0Or00l1 + dv6p0r002 - cv6p0 = O;
dvéplr000 + dvéplr00l1 + dvéplr002 - cvépl = O;
dvép2r000 + dvép2r00l1 - cvép2 = 0;

dv7p0r000 - cv7p0 = 0;
dv7plr000 + dv7plr00l - cv7?pl = 0;
dv7p2r000 - cv7p2 = 0;

R R EEEE EE R I O

*

6.98 dv2p0r000 « 6.98 dv2plr00l + 6.98 dv2plr002 + 3.41 dv3p0rool
+ 3.41 dv3p0r002 + 7.92 dv4p0r001 + 7.92 dv4p0r002 + 7.92 dv4p2r000
+ 3.44 dvéplr00l1 + 3.44 dvéplr002 - 1 s2 <= 0:

*+ 3.55 dvlp2r002 + 6.98 dv2p0r000 + 6.98 dv2p0ro0l - 6.98 cv2pl -+
3.41 dv3p0r002 + 7.92 dv4p0r002 + 7.92 dv4p2r001 + 3.44 dvéplroo02 -
1l s3 <= 0;

* 3.55 dvlp2r000 - 6.98 cv2p0 + 6.98 dv2plr00l - 3.41 cv3p0 + 7.92
dv4p0r00l - 7.92 cvdp2 + 3.44 dvéplr00l - 1 s4 <= 0;

* 3.55 dvlp2r001 + 6.98 dv2p0r001 + 6.98 dv2plr002 + 3.41 dv3p0r001l
- 7.92 cv4p0 + 7.92 dv4p2r000 + 7.92 dv4p2r001 - 3.44 cvépl - 1 s5
<= 0;

- 3.55 cvlp2 + 6.98 dv2p0r000 + 6.98 dv2p0Or00l + 6.98 dv2plro00 -
6.98 dv2plr00l + 6.98 dv2plr002 + 3.41 dv3p0roo0 + 3.41 dv3p0Orool -
3.41 dv3p0r002 + 7.92 dv4p0r000 + 7.92 dv4p0ro0l + 7.92 dv4p0r002 -
7.92 dv4p2r000 + 7.92 dv4p2r00l - 3.44 cvbpl - 1 s6 <= 0;

- 3.55 cvlp2 + 6.98 dv2p0r00l + 6.98 dv2plr000 + 3.41 dv3p0rooo -+
7.92 dv4p0r000 « 7.92 dv4p2r00l + 3.44 4v6pir0G0G - 1 s7 <= 0;

+ 3.55 dvlp2r002 - 6.98 cv2p0 + 6.98 dv2plr000 + 6.98 dv2plrool -
6.98 dv2plr002 + 3.41 dv3p0r002 + 7.92 dv4p0r002 + 7.92 dv4p2ro0l -
3J.44 dv6plr002 - 1 s8 <= 0;

* 3.55 dvlp2r00l + 6.98 dv2p0r00l + 6.98 dv2plr002 + 3.41 dv3p0roo1l

+ 7.92 dv4p0r000 + 7.92 dv4p0ro0l + 7.92 dv4p0r002 - 7.92 cvip2 -
3.44 dvéplr000 + 3.44 dvé6plr001 + 3.44 dvéplr002 - 1 s9 <= 0;
7
3

.92 dv4plrool
.44 dvép0rool

* 3.41 dv3p2r000 + 3.41 dv3p2r001 + 7.92 dv4plr000 +
+ 1.37 dv5plr000 + 1.37 dvS5p2r001 + 1.37 dvS5p2r002 +
+ 3.44 dv6p0r002 - 1 s1 <= 0;

+ 2.23 dv0p2r000 + 3.55 dvlplr002 + 3.41 dv3p2r00l + 7.92 dv4pliroQl
+ 1.37 dv5plr000 + 1.37 dv5plr001 - 1.37 cvSp2 + 3.44 dv6p0r002 - 1
s3 <= 0;



+ 3.55 dvlplr000 - 3.41 cv3p2 + 7.92 dv4plr000 - 1.37 cvspl + 1.37
dv5p2r001 + 3.44 dv6pOr00l - 1 s4 <= 0:

+ 3.55 dvlplr001 + 3.41 dv3p2r000 - 7.92 cv4dpl + 1.37 dvS5plr00l1l +
1.37 dv5p2r002 - 3.44 cvép0 - 1 s5 <= 0;

- 3.41 cv3p2 - 7.92 cv4pl + 1.37 dvSplr000 + 1.37 dv5p2rool + 1.37
dv5p2r002 + 3.44 dv6p0r001 + 3.44 dvé6pOr002 - 1 s6 <= O

- 2.23 cvOp2 - 3.55 cvlpl + 1.37 dvSplr001 + 1.37 dvSp2r000 + 3.44
dvép0r000 - 1 s7 <= 0;

- 2.23 cv0Op2 + 3.55 dvlplr002 + 3.41 dv3p2r00l + 7.92 dv4plrool -
1.37 cv5pl + 1.37 dv5p2r000 + 1.37 dvSp2r001 + 1.37 dv5p2r002 +
3.44 dv6p0r002 - 1 s8 <= 0;

+ 3.55 dvlplr001 + 3.41 dv3p2r000 + 7.92 dv4plr000 + 7.92 dvd4plrool
+ 1.37 dv5pir001 + 1.37 dv5p2r002 + 3.44 dv6p0r000 + 3.44 dv6ép0rool
+ 3.44 dv6p0r002 - 1 s9 <= 0;

+ 2.23 dv0Oplr002 - 6.98 cv2pl + 1.37 dv5p2r001 + 1.37 dv5p2r002 - 1
sl <= 0;

+ 2.23 dvOplr00l1 + 6.98 dv2plr00l + 6.98 dv2plr002 - 1.37 cv5p2 - 1
s2 <= 0;

* 2.23 dvOplr000 + 6.98 dv2plr00l + 1.37 dvSp2r00l - 1 s4 <= O

+ 2.23 dvOplr003 + 6.98 dv2plr002 + 1.37 dv5p2ro002
S5 <= 0Q;

5.01 cv7p2 - 1

+

+ 2.23 dvOplr002 + 6.98 dv2plr000 + 6.98 dv2plrool
+ 1.37 dv5p2r001 + 1.37 dvSp2r002 - 1 s6 <= 0;

6.98 dv2plro02

+

+ 2.23 dvOplro0l + 2.23 dvOplr002 + 6.98 dv2plr000
-1 87 <= 0;

1.37 dvSp2ro00o

+ 2.23 dvOplr000 « 2.23 dvOplr001 + 2.23 dvOplr002 + 2.23 dvOplr003
+ 6.98 dv2plr000 + 6.98 dv2plr00l + 6.98 dv2plr002 + 1.37 dv5p2r000
+ 1.37 dv5p2r00l + 1.37 dv5p2r002 + 5.01 dv7p2r000 - 1| s8 <= 0:

+ 2.23 dvOplr003 +~ 6.98 dv2plr002 + 1.37 dv5p2r002 + 5.01 dv7p2ro000
-1 89 <= 0;

* 3.55 dvlp0Or00l - 6.98 cv2p0 - 3.41 cv3ip0 + 3.41 dv3p2r000 «~ 3.41
dv3p2r001 - 7.92 cv4p2 + 1.37 dvS5plr000 + 5.0Q1 dv7plr0o0l - 1 sl <=

i

+ 3.55 dvlp0r0o00 + 6.98 dv2p0r000 + 3.41 dv3p0r00l1l + 3.41 dv3p0r002
- 3.41 cv3p2 + 7.92 dv4p2r000 - 1.37 cvSpl + 5.01 dv7plrG00 - 1 s2
<= 0;

+ 2.23 dvOp0Or000 + 3.55 dvlp0r003 + 6.98 dv2p0r000 + 6.98 dv2p0roo0l
+ 3.41 dv3p0r002 + 3.41 dv3p2r001 + 7.92 dvdp2r00l + 1.37 dvsSplrCs
+ 1.37 dv5plr001 + 5.01 dv7plr000 + 5.01 dv7plr00l - 1 s3 <= 0;

+ 3.55 dvlp0Or002 + 6.98 dv2p0Or001 + 3.41 dv3p0Or00l + 3.41 dv3ip2ro000
+ 7.92 dv4p2r000 + 7.92 dv4p2r001 + 1,37 dv5plro0l - 5.01 cv7pl - 1
s5 <= 0;

+ 3.55 dv1p0r00l + 6.98 dv2pOr000 + 6.98 dv2pOr00l + 3.41 dv3p0ro000
* 3.41 dv3p0r001 + 3.41 dv3p0r002 - 3.41 cv3p2 + 7.92 dv4p2r000 -
7.92 dv4p2r001 + 1.37 dvSplr000 + S.01 dv7plro0l - 1 s6 <= 0;

+ 3.55 dv1p0r000 + 3.55 dvlpOr00l + 6.98 dv2p0r001 + 3.41 dv3p0ro000
+ 7.92 dv4p2r001 + 1.37 dvSplr001 + 5.01 dv7plr000 + S.01 dv7plro001
- 187 <= 0;

© 2.23 cv0Op0 + 3.55 dvlp0r003 - 6.98 cv2p0 + 3.41 dv3p0r002 + 3.41
dv3p2r001 +« 7.92 dv4p2r001 - 1.37 cv5pl - 5.01 cv7pl - 1 s8 <= O;



+ 3.55 dvlp0r002 + 6.98 dv2p0r00l + 3.41 dv3p0r00l + 3.41 dv3p2r000
- 7.92 cv4p2 + 1.37 dv5plr001 + 5.01 dv7plr000 + 5.01 dv7plr001 - 1
s9 <= 0;

= 7.92 cv4p0 + 7.92 dv4plr000 + 7.92 dv4plr001 + 3.44 dv6p0roo0l +
3.44 dv6p0r002 - 3.44 cvépl + 5.01 dv7plr001 - 1 sl <= 0;

+ 7.92 dv4p0r001 + 7.92 dv4p0r002 - 7.92 cvdpl - 3.44 cvep0 + 3.44
dvéplr00l + 3.44 dv6plr002 + S.01 dv7plr000 - 1 s2 <= 0;:

+ 7.92 dv4p0r002 + 7.92 dv4plr00l + 3.44 dv6p0r002 + 3.44 dvéplr002
+ 5.01 dv7plr000 + 5.01 dv7plr00l - 5.01 cv7?p2 - 1 s3 <= 0;

+ 7.92 dv4p0r00l1 + 7.92 dv4plr000 + 3.44 dvépOr0o01 + 3.44 dvéplr001l
= 5.01 cv?pl - 1 84 <= 0;

+ 7.92 dv4p0r000 + 7.92 dv4pOr001l + 7.92 dv4p0r002 - 7.92 cvipl +
3.44 dv6p0r001 + 3.44 dv6p0r002 - 3.44 cvépl + 5.01 dv7plr00i - 1
s6 <= 0;

+ 7.92 dv4p0r000 + 3.44 dv6p0r000 + 3.44 dv6plr000 + 5.01 dv7plr000
+ 5.01 dv7plr001 - 1 87 <= 0;

+ 7.92 dv4p0r002 + 7.92 dv4plr001l + 3.44 dv6p0r002 + 3.44 dvéplr002
- 5.01 cv7?pl + 5.01 dv7p2r000 - 1 s8 <= 0;

+ 7.92 dv4p0Or000 + 7.92 dv450r001 + 7.92 dv4p0r002 + 7.92 dv4plro000
+ 7.92 dv4plr00l + 3.44 dvep0r000 + 3.44 dv6pOr00l + 3.44 dvép0roo02
+ 3.44 dv6plr000 + 3.44 dv6plr00l1 + 3.44 dv6plr002 + 5.01 dv7plrooo
+ 5.01 dv7p1r001 + 5.01 dv7p2r000 - 1 89 <= O;

- 3.55 cvlp2 + 6.98 dv2p2r000 + 3.41 dv3plr000 + 3.41 dv3plr00l -
3.41 dv3plr002 +« 3.41 dv3p2r000 + 3.41 dv3p2r001 + 7.92 dv4plrooo -
7.92 dv4plr00l - 3.44 cvepl - 1 s1 <= 0;

- 3.41 cv3p2 - 7.92 cv4pl + 3.44 dv6plr00l + 3.44 dvéplr002 - 1 s2
<= 0;

+ 3.55 dv1lp2r002 + 6.98 dv2p2r000 + 3.41 dv3plr002 + 3.41 dv3ip2r001l
+ 7.92 dvdplr00l + 3.44 dvéplr002 - 1 s3 <= 0;

+ 3.55 dvlp2r000 + 3.41 dv3plr000 - 3.41 cv3p2 + 7.92 dvdplr000 -
3.44 dvéplr00l - 1 s4 <= 0;

+ 3.55 dvlp2r00l1 + 3.41 dv3plr001 + 3.41 dv3p2r000 - 7.92 cvipl -
3.44 cvé6pl - 1 85 <= 0;

= 3.55 cvlp2 - 6.98 cv2p2 - 3.41 cv3ipl + 3.44 dv6plr000 - 1 s7 <=

+ 3.55 dvlp2r002 - 6.98 cv2p2 + 3.41 dv3plr002 + 3.41 dv3ip2rool -«
7.92 dv4plr00l + 3.44 dv6plr002 - 1 s8 <= 0;

+ 3.55 dvip2r001 + 3.41 dv3pilro0l + 3.41 dv3p2r000 + 7.92 dvdplroe
+ 7.92 dvdplr00l + 3.44 dveplr000 + 3.44 dv6plr001 + 3.44 dvéplr002
- 189 <= 0;

- 3.55 cvlp2 + 6.98 dv2p2r000 + 3.41 dv3plr000 + 3.41 dv3iplr00l -
3.41 dv3plr002 + 1.37 dv5p0r001 + 3.44 dvép2r001 - 1 sl <= 0;

- 2.23 cvOp2 - 3.55 cvlpl + 1.37 dvSp0r000 + 3.44 dvep2r000 - 1 s2
<= 0

+ 2.23 dv0p2r000 + 3.55 dvlplr002 + 3.55 dvlp2r002 + 6.98 dv2p2r000
+ 3.41 dv3plr002 + 1.37 dvSp0r000 + 1.37 dv5p0r00l - 1 s3 <= O;:

¢ 3.55 dvlplr000 + 3.55 dvlp2r000 + 3.41 dv3plr000 - 1 s4 <= 0;

+ 3.55 dvlplr001 + 3.55 dvlp2r001 + 3.41 dv3plr001 + 3.44 dv6p2r000
+ 3.44 dvé6p2r001 - 1 s5 <= 0;



3.55 cvlp2 -

dv6p2ro0l - 1

- 2.23 cv0p2 +
dv3plr002 - 1

6.98 cv2p2 - 3.41 cv3pl + 1.37 dvSpOro00l + 3.44
s6 <= 0;

3.55 dvlplr002 + 3.55 dvlp2r002 - 6.98 cv2p2 + 3.41
.37 cv5p0 - 1 s8 <= 0;

+ 3.55 dvlplr001 + 3.55 dvlp2r001 + 3.41 dv3plr001 - 3.44 cvép2 - 1

s9

-

0;

- 6.98 cv2p0 + 6.98 dv2p2r000 + 1.37 dv5p0r001 + 1.37 dvSplrQ0o +
5.01 dv7plr00l1 - 1 s1 <= 0;

- 2.23 cv0p2 + 6.98 dv2p0r000 + 1.37 dv5p0r000 - 1.37 cv5pl + 5.01
dv7plr000 - 1 s2 <= 0;

+ 2.23 dv0p0r000 + 2.23 dv0p2r000 + 6.98 dv2p0r000 + 6.98 dv2p0roo1
+ 6.98 dv2p2r000 + 1.37 dvSp0r000 + 1.37 dv5p0r001 + 1.37 dvSplrooo
+ 1.37 dv5plr001 + 5.01 dv7p0r000 + 5.01 dv7plr000 + 5.01 dv7plrool

1l s3

<= 0;

- 2.23 cvOp0 - 6.98 cv2p0 - 1.37 cvS5pl - 5.01 cv7pl + 6.98 dv2p0rool
+ 1.37 dv5plr001 + 5.01 dv7p0Or000 - 5.01 cv?pl - 1 s5 <= 0;

+ 6.98 dv2p0r000 + 6.98 dv2p0r00l - 6.98 cv2p2 + 1.37 dv5p0rool -
1.37 dv5plr000 + 5.01 dv7plr00l - 1 s6 <=~ 0;

- 2.23 cv0Op2 + 6.98 dv2p0r00l - 6.98 cv2p2 - 1.37 cvS5p0 + 1.37
dv5plr001 + 5.01 dv7plr000 + 5.01 dv7plr001 - 1 s7 <= 0;

+ 6.98 dv2p0r00l1 + 1.37 dvSplr00l - 5.01 cv7’p0 + 5.01 dv7plroog -
5.01 dv7plr00l - 1 s9 <= 0;

+

*

7
7
7
7

.92
.92
.92
.92

cvdp2 +

3.44 dv6p2r00l - 1 sl <= 0;

dv4p2r000 + 3.44 dv6p2r000 - 1 s2 <= 0;

dv4p2r00l « 5.01 dv7p0r000 - 1 s3 <= 0;

cv4p2 +« 7.92 dv4p2r000 + 7.92 dv4p2r001 + 3.44 dv6p2r000 -
3.44 dvép2ro01 + S.01 dv7p0r000 - 1 sS5 <= 0:

+ 7.92 dv4p2r000 + 7.92 dv4p2r001 + 3.44 dvép2r00l - 1 s6 <- 0:

~ 7.92 dv4p2r001 - 3.44 cv6p2 - 1 s7 <= 0;
+ 7.92

wl
sl
w2
s2
w3
s3
wé
s4
wS
s5
w6
s6
w7
s7
w8
s8
w9
s9

Cm
<=
<=
<=
=
-
< -
<=
<=
-
<™
< -
L]
<=
<™
<=
-
C=

dv4p2ro0l - 5.01 cv7p0 - 1 sB <= 0;

34
34

34

34
34
34
34

34

34
34

int cvOop0

.01;
.01;
34.
34.

01;
01;

.01
34.
34 .

01;
01;

.01,
.01;
.01;
.01;
34.
34.
.01;
34.
34.
.01;
.01;

01;
01;

01;
01;

dv0p0r000 cvOpl dvOplr000 dv0plr00l1 dvOplr002 dvOplro03
cvOp2 dv0p2r000 cvlip0 dvlp0r000 dvlp0r001 dvlp0r002 dv1lpOr0o3
cvlipl dvlplr000 dvlplr001l dvlplr002 cvlp2 dvlp2r000 dvlip2ro001
dvlp2r002 cv2p0 dv2p0r000 dv2p0rool cv2pl dv2plr000 dv2plrool



dv2plr002 cv2p2 dv2p2r000 cv3p0 dv3p0r000 dv3p0r001 dv3p0r002
cv3pl dv3plr000 dv3plr001 dv3plr002 cv3p2 dv3p2r000 dv3p2ro001l
Ccv4p0 dv4p0r000 dv4p0r001 dv4p0r002 cv4pl dv4plr000 dv4plro001
cv4p2 dvdp2r000 dv4p2r001 cv5p0 dv5p0r000 dv5p0r001l cvSpl
dvSplr000 dvSplr00l cvSp2 dv5p2r000 dv5p2r001 dv5p2r002 cvé6p0
dvép0r000 dvé6p0r001 dv6p0r002 cvépl dv6plr000 dvéplr001 dvé6plr002
cvép2 dv6p2r000 dv6p2r001 cv7p0 dv7p0ro00 cv7pl dv7plr000
dv7plr001 cv7p2 dv7p2r000 ;

+ Summary of IP-1 formulation size of tested networks

In the following table, the number of variables and constraints used in all tested net-
works.

TABLE 11. IP Formulation Size for All Tested Networks

Network | # of constraints | # of variables
Smallnet 541 1332
Netl 610 738
Net2 2506 3077
Net3 2413 2811
Netd4 3810 4152
Toronto 858 1339
uUs 1051 1994
tiny 60 35




Appendix D: Overload Assessment
Simulation Program

+ Traffic generation module

This module can simulate both the on/off fluid model and AR model using a condi-

tional compile option, IPP and AR respectively.

Makefile: /traffic/makefile

NI = ../../include
NS - ../../1ib

CC = gcc

CFLAGS = -IS(NI) -LS$(NS) -g -wWall
OPT=--03

%.0: %.¢c traffic.h

$(CC) S(CFLAGS) =03 -c S$*.c
ar rcv S(NS)/libns.a S*.0
ranlib S$(NS)/libns.a

all: S(NI)/traffic.h artraffic.o traffic.o

S(NI)/traffic.h: traffic.h
cp traffic.h $(NI)

artraffic.o: traffic.c
$(CC) S(CFLAGS) -DAR -03 -0 $*.0 -c traffic.c
ar rcv S(NS)/libns.a Sv.o
ranlib $(NS)/libns.a

traffic.o: traffic.c
$(CC) S(CFLAGS) -DIPP -03 -0 $*.0 -c traffic.c
ar rcv $(NS)/libns.a S+*.o
ranlib $(NS)/libns.a

clean:
rm -f *.0 core *BAK

indent:
indent -i4 traffic.h
indent -i4 traffic.c

report: * . h *.c Makefile Readme
enscript *.h *.c Makefile Readme
echo >report

Main module: /traffic/traffic.c

#include <stdio.h>
#include <stdlib.h>
tinclude <malloc.h>
tinclude <assert.h>
tinclude <values.h>
tinclude <sys/times.h>
tinclude <sys/time.h>
#include <unistd.h>
#include <math.h>
t$include <string.h>
tinclude “traffic.h”

tdefine LOGFILE"simulation. log”



/* state options */
#define IDLE 0
#tdefine ACTIVE (!IDLE)

tdefine SIMULPERIODS100000.0
tdefine SIMULHISTS500000.0

tdefine FRAMESPERSECOND30.0

tdefine PERIOD (1000.0/FRAMESPERSECOND)

#defineDEFAULT 0.54 /* a little higher than mean
value v/

#define LOWCLR le-5

tdefine HIGHCLR le-9

tdefineMAX(a, b)(((a)>(b))? (a) : {b))
tdefineMIN(a, b)(((a)<(b))? (a) (b))

*define RANDOM( ) (drand48¢())
tdefine upround(x)( (double) ((int) (x * PRECISION + 1)) / PRECISION

)
tdefine downround(x)( (double) ((int) (x * PRECISION)) / PRECISION )
tdefineind(x) ( (( (int) (x * PRECISION) ) > histtop) ?
histtop : ( (int) (x * PRECISION) ) )
tdefine inc(k) ++k:; if (k > histtop) k = histtop:
tdefine dec(k) --k; {f (k < 0) k = 0;

tifdef 1PP
sdef ine PRINTSOURCE({ \
int ind; \

printf (“current %f, until %f, next %d\n”, lasttime, simul-
time, next); \
printf ("active s%d, rate %f, traffic %f\n”, numactive,
rateactive, totalcell); \
for (ind - 0: ind < sourcenum; ind++) (
printf(®s #%d: %s, t Af, p 8f, u 8f, b %f, i ¥f\n", \
ind, (sources[ind).state == IDLE) ? “IDLE * : “ACTIVE",
sources{ind].endtime, \
sources[ind].peak, sources{ind].utilization, \
sources(ind].burst, sources|ind].idleburst); \
I\
if (totalcell != 0.0) \
for (ind - 0:; ind < queuenum; ind++) {
printf(*q #%d: cont %f, lost %f, clr %fss\n", \
ind, queue(ind].bufcontent, queue(ind].totallost, \
| queue(ind].totallost/totalcell*100); \

}
telse /* AR */
tdefinePRINTSOURCE({ \
int ind; \
printf (*\n\n\ncurrent tf, until 3f, next 3d\n”, lastbtime,
simultime, next); \
printf (“active #%d, rate %f, traffic ££\n", numactive,
rateactive, totalcell):; \
for (ind = 0; ind < sourcenum; ind++) { \
printf(*s #%d: t %f, rate %f, a %f, b %f, mean $f\n”", \
ind, sources|[ind].endtime, sources(ind].peak,
sources[ind].a, \
sources[ind].b, sources(ind}].mean); \

b\
if (totalcell != 0.0) \
for (ind = 0; ind < queuenum; ind++) {
printf(*q #%d: cont %f, lost %f, clr $£3%\n", \
ind, queue(ind).bufcontent, queue{ind].totallost, \
} queue(ind].totallost/totalcell*100); \
}

tendif



struct imodel {

int tag;/* keep a tag, as the entries are sorted v/
double peak;/* IPP: peak rate */
/* AR: current */

double utilization;/* IPP: utilization, percentage of
time of active v/

double burst;/* IPP: mean length of active */

double idleburst;/* IPP: mean length of idle */

int state;/* IPP: current state */

double a, b, mean; /* AR: parameters */

double endtime;/* end of simulation time of current
state +/

} *sources;

static char
[

currentdate(void)

struct timeval tp;
struct timezone tzp;

gettimeofday(stp, &tzp);
return (asctime(localtime(s&(tp.tv_sec))));

/* get current time and set as the seed of random list v/
static long

SEEDRANDOM(long seed)

{

struct tms current;
static time_t lastseed;

if (seed == 01) {(
while ((seed = times(scurrent)) == lastseed)
sleep(l);
)
lastseed ~ seed;
srand48(seed) ;
return (seed);

tdefinepoisson(mean) (-1og(RANDOM()) * (mean))

$if 0

static double
poisson(double mean)
{

return (-log(RANDOM()) * mean);
/* the following is the conterpart test in MATLABR +/
/t
* clear m = 80 a = [0.00000001:0.000001:1); b=~ -log(a) * m;
mean(b)

* std(b)
*
v/
/* the following is for the integer poisson variable */
#if 0
int i;
double u, p, f;
i - 0;

f - p - exp(-mean);
u = RANDOM();
while (f <= u) {



p *= (mean / (i + 1.0));
f += p;
i++;

return (i);
tendif
}

tendif

tifdef AR
/* generate the rate of next period */
static double gaussian (double a, double d)

static double t = 0.0;
double x, vl1, v2, r;
if (t == 0.0) {

do {

vl = 2.0 * RANDOM() - 1.
v2 = 2.0 * RANDOM() - 1
r =vl * vl + v2 * v2;
} while (r >= 1.0);
r = sqrt((-2.0 * log(r)) / ry:
t = v2 * r;
return (a + vl * r « dy);
} else {
X - t;
t = 0.0;
return (a + x * d);

}

static double nextspeed(int k) {
double next:;

next - sources(k].a ¢ sources(k].peak + sources{k].b * gauss-
ian(sources(k]).mean, 1.0);
return (next < 0.0) ? 0.0 : next;

sendif /* AR */

static long seed[10] = { 0x712345678%abl, 0x987345abd3011,
0x3102845ba7dfl, 0xab7269e640831,
0x197629ef2a8cl, 0x981234fc83211,
0x9234985178cal, Oxabc837e91f381,
0x1£f87167ea9811, 0x23745798ceafl};

static double *hist;

static {nt histtop:

sifdef 1IPP

void

simul_hist(int trafnum, struct traffic traffic(], double capacity.

int histnum, double histtotall[])

#telse /* AR */

void

ar_hist(int trafnum, struct traffic traffic(], double capacity,
int histnum, double histtotal(])

tendif

{
int seednum;
FILE *fp;
int i, 3

struct queuc queue;



/* open log file */
fp = fopen(LOGFILE, “a+");
assert(fp):

fprintf(fp, “Histogram analysis starts now...\n”");

fclose(fp);

seednum -~ sizeof(seed) / sizeof(seed(0]):;

histtop = histnum;
hist = (double *) malloc ((histtop+1l) + sizeof (hist[0}])):
assert(hist);

for (i = histtop; { >= 0; i--) {
histtotal[i] = 0.0;
}

queue.capacity = capacity;

/* run simulation with each seed +/
for ({ = 0; { < seednum; f++) {
/* simulation, ahha ¢/
sifdef IPP
simul_cap2clr(seed[i), trafnum, traffic, O, &queue) ;
telse /* AR ¢/
ar_cap2clr(seed[i], trafnum, traffic, 0, squeue);
tendif
for (j = histtop:; j >= 0; ?--) {
histtotal[j] += hist(j];

}

fp - fopen(LOGFILE, *a+");
assert(fp):
fprintf(fp, "\n\t Total result is as follows\n”*);
for (j = histtop:; 3 >= 0; j--) {
histtotal{j] /- seednum:
fprintf(fp., =\tsl.2f\tle\n", 1.0*i/PRECISION, histtotal(j]):

free(hist);

fprintf(fp, “Histogram analysis ends now. . .\n\n\n\n");
fclose(fp):

]

sifdef 1PP

float

simul_overload(int trafnum, struct traffic traffic(},
double capahigh, double capaiow, double capastep,
double bufsize)

#else /* AR */

float

ar_overload(int trafnum, struct traffic traffic(],
double capahigh, double capalow, double capastep,
double bufsize)

#endif
{
int seednum;
int queuenum;
struct queue *queue;
double clrlowcapa, clrhighcapa;
double highest =~ 0.0, lowest = 100.0:

float overload;



FILE *fp;
int i, 3

/* open log file */
fp = fopen(LOGFILE, “a+");
assert(fp):

fprintf(fp, “Overload analysis starts now...\n");

’

fclose(fp):

seednum =~ sizeof(seed) / sizeof(seed([0]);

queuenum = (capahigh - capalow) / capastep + 1;
queue = (struct queue *) malloc(queuenum * sizeof(queue(0]));
assert(queue);

for (1 = 0; i < queuenum; i++) (
queue(1i].capacity =« capalow + i * capastep;
queue(i].bufsize = bufsize:;

/* run simulation with each seed */
for (1 = 0, overload = 0.0; i < seednum; i++) {
/* simulation, ahha */
#ifdef IPP
simul_cap2clr(seed(i}, trafnum, traffic, queuenum, queue) ;
#else /* AR v/
ar_cap2clr(seed(i], trafoum, traffic, queuenum, queue);
tendif

fp - fopen(LOGFILE, “a+");
assert(fp);
fprintf(fp, " analysis of last simulation. \n");

if (?ueue[O].clr < LOWCLR) {
printf(fp, ™ FATAL error, capacity low bound is too
big\n"):
fclose(fp):
free(queue);
return (0.0):
} else {
if (queue(queuenum - 1}.clr > HIGHCLR) ({
fprintf(fp, * FATAL error, capacity high bound is too
small\n”");
fclose(fp):
free(queue);
return (0.0);
} else {
/* find the overload treshhold capacities v/
for (j = 0: j < queuenum; j++)
if (queue(j}.clr < LOWCLR)
break,

clrlowcapa - queue(j].capacity;
lowest = MIN(lowest, queue[j - 1] .capacity):

for (. j < queuenum; j++)
if (queue(j].clr < HIGHCLR)
break;

}
clrhighcapa = queue(j].capacity;
highest = MAX(highest, clrhighcapa);

/* get overload factor ¢/
overload += (clrhighcapa / clrlowcapa);

fprintf(fp, * when clr = te, capacity is %1.3f\n",
LOWCLR, clrlowcapa);
fprintf(fp, ™ when clr - te, capacity is %1.3f\n",



HIGHCLR, clrhighcapa);

fprintf(fp, * thus the overload is $1.3f\n\n\n",

clrhighcapa / clrlowcapa);
fclose(fp):

}

overload /= seednum;
free(queue);

fp = fopen(LOGFILE, “a+”");

assert(fp);
fprintf(fp, * final overload is %1.3f\n*, overload);

fprintf(fp, * lowest is %1.3f, highest is $1.3f\n\n\n", lowest,

highest):

fprintf(fp, “Overload analysis ends now...\n\n\n\n");

fclose(fp);

return (overload);

tifdef AR
int srccomp(const void *srcl, const void *src2) {

return ( ((struct imodel *) srcl)->endtime - ((struct imodel

src2)->endtime);

)
tendif

/* record history of queue if queuenum is 0 ¢/

tifdef 1IPP
void

simul_cap2clr(long seed,
int trafnum, struct traffic traffic(}.

int queuenum, struct queue queue(])
telse /* AR v/
void

ar_cap2clr(long seed,
int trafnum, struct traffic traffic(],

int queuenum, struct queue queuef])

sendif

{
int i, 3, m, k, next, g;
int sourcenum, numactive;
double rateactive;
doukle thistotal, t, ratetl, ti, totalceli;
double simultime = 0.0, lasttime, duration:
double current;
FILE *fp;
char hostname(16), domainname([16];
extern getdomainname(char *, int);

/* open log file */
fp = fopen(LOGFILE, “a+”"):
assert(fp):

/* write log file */

gethostname (hostname, 16);

getdomainname(domainname, 16);

fprintf(fp, “\nStarting simulation in %s.%s at %s”,
hostname, domainname, currentdate());

*)



/* plant the seed t/
if (seed == 01)
fprintf(fp, * seed not specified.\n”);
seed = SEEDRANDOM(seed):;
fprintf(fp, * using seed 0x%1x", seed);

/* calculate the number of individule sources */
for (i = 0, sourcenum = 0; i < trafnum; i+4) [
for (j = 0; J < traffic(i].num; j++)
sourcenum += traffic(i]).gqroup(j].num;
}

}

/* set up each source in the simulation context v/

sources = (struct imodel *) malloc(sourcenum * sizeof (struct
imodel)):

assert(sources);

fprintf(fp, *“\n %d source(s) as following:\n”, sourcenum);

/* initialize each traffic +/
for (1 « 0, k - 0, numactive = 0, rateactive = 0.0; i < trafnum;
i++) {
/* try each group ¢/
for (j = 0: § < traffic(i].num; j++) {
/* try each source model ¢/
for (m = 0; m < traffic[i].group{j].num; me=+, k++) {
/* constant parameter */
sources{k].tag = k;
sifdef IPP
sources|k] .peak = traffic[i].qroup[j].model .peak;
sources(k].utilization - traf-
fic(i).group{j).model.utilization:;
sources{k)}).burst = traffic(i).qgroup(j).model.burst;
sources|k].idleburst = (sources(k].utilization ==
0.0) ? MAXDOUBLE :
(sourcesfk] .burst * (1 - sources(k] .utilization)
/ sourceslk].utilization);
{f ((sources(k).utilization != 0.0) s&&
(simultime < sources(k].burst / sources{k].utili-
zation))
simultime - sources(k].burst / sources[k].utili-
zation;
fprintf(fp, “\t¥d: peak %f, util %f, burst %f, idle-
burst $f\n”",
k, sources(k].peak, sources(k].utilization,
sources (k) .burst, sources (k] .idleburst);
/* initial state of variables */
sources{k].state = (RANDOM() < sources{k].utiliza-
tion) ? ACTIVE : IDLE:
sources[k].endtime =~ poisson((sources([k].state ==
ACTIVE) ? sources(k].burst
sources{k].idleburstj;
if (sources(k].state =~ ACTIVE) (
numactive«++;
rateactive += sources(k].peak;

}

telse /* AR +/
sources(k].a = traffic(i].group(j].model.a;
sources (k] .b = traffic{i].group(j].model.b;
sources(k].mean = traffic(i].group(j].model .mean;
fprintf(fp, “\t%d: a %f, b %f, mean Sf\n”",

k., sources(k].a, sources(k].b,
sources (k] .mean);

/* initial state of variables */
sources(k].peak = DEFAULT;
sources(k].peak = nextspeed(k);
sources[k].endtime = (RANDOM() * PERIOD);
rateactive += sources(k].peak;

tendif



}

tifdef IPP

simultime *= (queuenum =~ 0) ? SIMULHIST : SIMULPERIODS;
#telse /* AR */

s%multime = (queuenum == 0) ? PERIOD * 10000 : PERIOD * 50000;
tendi

if (queuenum == 0) {

fprintf(fp, "\n this is to record histogram when capacity is

8f\n", queue(0].capacity);

} else {

fprintf(fp, “\n %d queue(s) as following:\n”, queuenum) ;

for (g = 0; g < queuenum; g++) {

?ueue[g].clr - 0.0;
printf(fp, “\t #%d: capacity %f, size $f\n”,
g. queue(g].capacity, queue(g].bufsize);

}

for (g = 0; g < queuenum; g++) {
queue(g]).totallost = 0.0;
queue(qg]).bufcontent = 0.0;

if (queuenum == 0) (
ueue (0] .bufcontent = 0.0;
or (i = histtop; i >= 0: i--) {
hist(i] = 0;

}
totalcell - 0.0;
lasttime = 0.0;

tifdef AR
/* sort */
gsort(sources, sourcenum, sizeof(sources([0]), srccomp);
next = -1;

tendif

/* start real simulation */
while (1) {

/* find the next event time */
tifdef IPP
for (i = sourcenum - 1, next = 0, current = sources[0].end-
time: { >= 1; i--) {
if (current > sources(i].endtime) (
next = i;
current = sources{next}.cndtime:

}

)
telse /* AR v/
if (++next >= sourcenum) {
next = 0;
}

sendif

/* check simulation end */
if ((lasttime >= simultime) &s& (sources{next].endtime '=
lasttime)) .
break;

/* update buffer content and statistics until current event
v/

duration = sources[next].endtime - lasttime:

thistotal = rateactive * duration;



if (queuenum == 0) {
if (rateactive > queue(0] .capacity) {
/* rate is greater than capacity */
t = (upround(queue(0).bufcontent) - queue(0].bufcon-
tent) /
(rateactive - queue[0].capacity);
k = ind(queue[0]).bufcontent);
if (t >= duration)
hist[k] += thistotal;
totalcell += thistotal;
] else {
hist[k] += t * rateactive;
totalcell += t * rateactive;
inc(k);
tl = 1.0 / PRECISION / (rateactive -
queue(0] .capacity);
ratetl =~ rateactive * tl;
t += t1;
while (t < duration) {
hist[k] += ratetl;
totalcell +~ ratetl;
inc(k):
t += t1;

)

hist(k] += (duration - t + tl) * rateactive;

totalcell += (duration - t + tl) * rateactive;
}

}
if (rateactive == queue(0).capacity) ({
/* rate is equal to capacity */
hist[ind(queue{0).bufcontent)] +=- thistotal;
totalcell +- thistotal;
}
{f (rateactive «< queue[0].capacity) {
/* rate is less than capacity */
t = ( queue[0].bufcontent - downround(queue(0].buf-
content) ) /
(queue (0] .capacity - rateactive );
k = ind(downround(queue(0].bufcontent));
if (t >= duration) {
hist[k] +=- thistotal:
totalcell +- thistotal;
} else {
hist[k] += t * rateactive;
totalcell +=- t * rateactive;
dec(k);
tl = 1.0 / PRECISION / (queue({0].capacity - rate-
active );
ratetl - rateactive * ti1;
t += tl;
while (t < duration) {
hist[k] += ratetl;
totalcell += ratetl;
dec(k):
t += t1;

}
hist(k] += (duration - t + tl) * rateactive;
totalcell += (duration - t + tl) * rateactive:
| }
/* update buffer content */
queue(g].bufcontent -= duration * (queue{g].capacity -
rateactive);

if (queue(g].bufcontent < 0) {
queue([g].bufcontent = 0;

} else {
totalcell += thistotal;
for (g = queuenum - 1; g >= 0; g--)
queue(g].bufcontent -= duration * (queue(g].capacity
- rateactive);



if (queue(g].bufcontent < 0) {
queue(g] .bufcontent = 0;
} else if (queue(g].bufcontent > queue(qg] .bufsize) {
queue(g].totallost += queue([g].bufcontent -
queue(g].bufsize;
queuefg] .bufcontent = queue{qg]).bufsize;

}

}
lasttime = sources|[next].endtime;

/* update the transient traffic +/
$ifdef 1IPP
if (sources|[next].state == ACTIVE) (
numactive--;
rateactive -« sources(next].peak;
sources[next].endtime +~ poisson(sources([next].idle-
burst);
} else {
numactive++;
rateactive += sources(next].peak;
sources[next].endtime += poisson(sources|[next] .burst);
}
sources[next].state = !sources{next].state;
telse /* AR v/
rateactive -= sources|[next].peak;
sources [next].peak =~ nextspeed(next);
rateactive += sources[next].peak;:
sources(next].endtime += PERIOD;
tendif
)

/* gather clr */
if (queuenum != 0) (

fprintf(fp, “\n\t clr in this simulation\n”);

for (g = 0; g < queuenum; g++)

?ueue[g].clr = queue(g].totallost / totalcell;
printf(fp, “\t capacity %1.3f, Se\n”,
queue(g].capacity, queue[g].totallost / total-
cell):

] else {
/* print bufcontent */
fprintf(fp, “\n\t total traffic %f\n”, totalcell);
fprintf(fp, “\n\t buffer content histogram in this simula-
tion\n"):
for (i = 0; 1 <= histtop; i++)
fprintf(fﬁ, "\tsl.2f\tte\t¥f\n", 1.0*i/PRECISION,
hist(ij/totalcell, hist[i]);
hist{i] /~ totalcell;

)
free(sources) ;

fprintf(fp, “\n\nEnding simulation %s\n”, currentdate()):
fclose(fp);

return;



