
Explaining and Improving Formula-Represented
Heuristic Functions in Grid Pathfinding

by

Shuwei Wang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Shuwei Wang, 2024

Abstract

Heuristic functions substantially influence heuristic search performance. Re-

cent work used program synthesis to produce high-performance formula-based

heuristics, offering a promise of human explanability. In this thesis we invest-

igate the promise and present a tool to improve a given heuristic function while

visualizing how each subformula computes heuristic values on video-game-style

maps. The visualization algorithm decomposes a heuristic formula into sub-

formulae and associates each with a region of the map, aiding a human expert

to modify the heuristic formula to improve search performance.

We introduce our approach by applying it in three simple problem in-

stances. To expand upon them, we study the approach in two adversarial

settings. First, a video-game map is fixed but once the heuristic formula is

improved by a human user for a given pathfinding problem, another problem

is selected so that the just improved heuristic provides poor guidance on it.

The cycle repeats, improving a heuristic for various pathfinding problems on

the given map. The second setting generalizes the cycle across video-game

maps by selecting a new map on which the user-improved heuristic provides

poor guidance. The cycle repeats, improving a heuristic for several maps. We

demonstrate from the adversarial case studies that this approach can improve

existing heuristics with respect to both guiding performance and explanability

for actual video-game maps. Furthermore, we demonstrate that our approach

is able to generate an explainable heuristic formula that works well in general

across several actual video-game maps in the adversarial setting.

Note that our visualization is more effective when subformulae are short,

since the user is more likely to readily understand behavior of formulae with

shorter subformulae. Thus we make another contribution by modifying an

ii

existing algorithm for heuristic synthesis to generate formulae with short sub-

formulae. We empirically show that imposing an upper bound on subformula

size does not degrade search performance of synthesized heuristics.

To wrap up, we propose a visualization tool to explain synthesized heuristic

formulae on video-game maps. We show examples of applying the tool to

improve existing heuristic formulae. Furthermore, we show empirical results

of synthesizing heuristic formulae with constrained subformula sizes and show

that the constraints impose less effect on average for problems with varying

goal locations than for problems with a shared goal location, and in general

such constraints do not hurt heuristic’s guiding performance while improving

their explanability.

iii

Preface

Some of the research conducted for this thesis forms part of an international

research collaboration, led by Professor Vadim Bulitko at the University of

Alberta, with Professor William Yeoh being the collaborator at Washington

University in St. Louis. The genetic programming method referred to in

chapter 6 was designed by myself.

Parts of chapters 4, 5 and 6 of this thesis has been published as S. Wang,

V. Bulitko and W. Yeoh, “Explaining Synthesized Pathfinding Heuristics via

Iterative Visualization and Modification,” in Proceedings of the annual IEEE

Conference on Games (CoG), 2024 pp. 1-4. I was responsible for the case

studies and the computational experiments as well as the manuscript com-

position. Vadim Bulitko was the supervisory author and was involved with

concept formation and manuscript composition.

iv

“If you would thoroughly know anything, teach it to others.”

—— Tryon Edwards

v

Acknowledgements

Throughout my degree I have received tremendous support and advice from my

supervisor Professor Vadim Bulitko. He has time and time again proven to be

very knowledgable, patient and generous. I could not have reached where I am

now without Professor Bulitko’s help. He has patiently observed my research

interests and introduced me to numerous connections for the betterment of my

knowledge and research collaboration opportunities. The research shown in

this thesis is the result of collaboration between Professor Bulitko and myself.

The term we is used to reflect this fact.

I would like to thank my mother Shuqiao Wang and my father Dequan

Wang. They have dedicated tremendous efforts supporting my pursue of the

degree and celebrated my every step along the way. They have been the pillars

supporting my life over the decades and where I stand now owes completely

to them.

I appreciate funding from the Natural Sciences and Engineering Research

Council of Canada and the computational resources from the Digital Research

Alliance of Canada.

vi

Contents

1 Introduction 1
1.1 An Illustrative Example . 2
1.2 Thesis Organization . 4

2 Problem Formulation 6
2.1 Background: Pathfinding . 6
2.2 Background: Heuristic Synthesis 7
2.3 Heuristic Improvement and Explainability 8

3 Related Work 10
3.1 Comparing Search Method Selection and Formula Synthesis . 10
3.2 Formula Synthesis for Search 11
3.3 Pretrained Large Language Model for Synthesized Code Ex-

planation . 12
3.4 Symbolic Decomposition for Explanation 12

4 Proposed Approach 14
4.1 Intuition and an Example . 14
4.2 Algorithmic Details . 16

4.2.1 Formula Simplification 16
4.2.2 Replacing min and max with Conditionals 17
4.2.3 Formula Decomposition 18
4.2.4 Visualization . 20

4.3 Explanation-Friendly Formulae 21
4.4 Grammar Extension . 21
4.5 Iterative Heuristic Formula Improvement and Adversarial Prob-

lems Display . 23
4.5.1 Formula Improvement for a Single Problem 23
4.5.2 Formula Improvement for Multiple Problems 25

5 Heuristic Improvement Case Studies 27
5.1 Single-Problem Cases . 27

5.1.1 Case #1: Chebyshev Distance 28
5.1.2 Case #2: The Wall-hugging Heuristic 30
5.1.3 Section Summary . 33

5.2 Iterative Heuristic Formula Improvement based on Adversarial
Problem Selection . 33
5.2.1 Case #1: brc202d . 34
5.2.2 Case #2: den000d . 37
5.2.3 Case #3: den501d . 40
5.2.4 Case #4: lak505d . 43
5.2.5 Case #5: ost000a . 45
5.2.6 Section Summary . 48

vii

5.3 Adversarial Map Selection . 49

6 Synthesizing User Improvement Conducive Heuristics 56
6.1 Synthesis on Problems with Multiple Goal Locations 57
6.2 Synthesis on Problems with a Shared Goal Locations 60
6.3 Chapter Summary and Iterative Improvement of a Constrained

Formula . 62

7 Future Work 65

8 Conclusions 66

References 67

Appendix A Large Language Model Prompts for Explaining Heur-
istic Formulae 70

viii

List of Tables

4.1 Simplification Rules . 17

6.1 Synthesized subformulae for the multi-goal setting for η = 5. . 59
6.2 Synthesized subformulae for the multi-goal setting for η = 3. . 59
6.3 Synthesized subformulae for the multi-goal setting for η = 1. . 59

ix

List of Figures

1.1 The left plot shows the two subformulae, their regions and h
gradient. The right plot shows the closed list with the number
of expansion order marked on top of each state. 3

4.1 Decomposition of heuristic function (min (∆x,∆y) − (−∆x))2
over a simple corner map. White grid cells are impassable
obstacles. The goal state is marked with a diamond and the
start state a star. Starting from the start state we obtain a se-
quence of states expanded by A* forming the closed list. Their
expansion order is indicated with numbers and colors. 15

4.2 Left: decomposing the “wall-hugging” heuristic max (∆x,∆y)2.
Right: expansion sequence starting from S. 22

4.3 ∆x+∆y is incrementally modified into ∆x > ∆y ? ∆x2 : ∆x+∆y. 24
4.4 (min(∆x,∆y)− (−∆x))2 modified to (max(∆x,∆y)− (−∆x))2. 26

5.1 The Chebyshev Distance heuristic max(∆x,∆y) is modified into
max(∆x2,∆y). The white star and diamond denote the start
and goal states. 29

5.2 The wall-hugging heuristic max(∆x,∆y)2 is modified into (∆x)2 >
2(∆y)2 ? (∆x)2 : (∆y)2. The white star and diamond denote
the start and goal states. 31

5.3 The heuristic (∆x)2 > 2(∆y)2 ? (∆x)2 : (∆y)2 is modified into
(∆x)2 > 2(∆y)2 ? 4(∆wx)

2 : (∆y)2. 32

5.4 The synthesized formula max
(√

ygoal
x

∆x,∆y
)4

on the down

sampled map. 34

5.5 max
(√

ygoal
x

∆x,∆y
)4

modified to max
(√

xgoal

x
∆x,∆y

)4

, in-

creasing average speedup on down sampled map from 1.457 to
1.466. 35

5.6 max
(√

xgoal

x
∆x,∆y

)4

incrementally modified to max
(xgoal

x
∆x,∆y

)4
,

increasing average speedup on down sampled map from 1.466
to 1.493. 36

5.7 The synthesized formula max
(√

ygoal
x

∆x,∆y
)4

incrementally

modified to ∆x +max
(xgoal

x
∆x,∆y

)4
, increasing average spee-

dup on down sampled map from 1.493 to 1.509 and average test
speedup from 3.843 to 4.191. 37

5.8 The synthesized formula ∆y+44.9 ·max (∆x,∆y) on the down
sampled map. 38

x

5.9 ∆y+44.9·max (∆x,∆y) modified to ∆y+44.9·max (2 ·∆x,∆y),
decreasing average speedup on down sampled map from 1.736
to 1.734. 38

5.10 ∆y+44.9·max (2 ·∆x,∆y) modified to ∆y2+44.9·max (2 ·∆x,∆y),
increasing average speedup on down sampled map from 1.734
to 1.737. 39

5.11 The synthesized formula ∆y+44.9·max (∆x,∆y) incrementally
modified to ∆y2 + max (2 ·∆x,∆y)2, increasing average spee-
dup on down sampled map from 1.737 to 1.761 but decreasing
average test speedup from 5.268 to 4.073. 40

5.12 The synthesized formula max
(

ygoal
y−8.3

·∆y,∆x
)2

on the down

sampled map. 41

5.13 max
(

ygoal
y−8.3

·∆y,∆x
)2

modified to max
(

ygoal
y−8.3

·∆y, 2 ·∆x
)2

, in-

creasing average speedup on down sampled map from 1.326 to
1.363. 41

5.14 max
(

ygoal
y−8.3

·∆y, 2 ·∆x
)2

modified to max
(

ygoal
y
·∆y, 2 ·∆x

)2

,

decreasing the average speedup on down sampled map from
1.363 to 1.330. 42

5.15 The synthesized formula max
(

ygoal
y−8.3

·∆y, 2 ·∆x
)2

increment-

ally modified to max
(
2 · ygoal

y
·∆y, 2 ·∆x

)2

, increasing average

speedup on down sampled map from 1.330 to 1.386 and the
average test speedup from 3.821 to 3.895. 43

5.16 The synthesized formula max (100,min (ygoal,∆y) + y)2·max (∆x,∆y)
on the down sampled map. 44

5.17 Formula modified to max (100,min (ygoal,∆y) + y)2·max (∆x,∆y)2,
speedup not changed. 44

5.18 The synthesized formula max (100,min (ygoal,∆y) + y)2·max (∆x,∆y)

incrementally modified to max (xgoal,min (ygoal,∆y) + y)2·max (∆x,∆y)2,
increasing average speedup on down sampled map from 1.54 to
1.71 but decreasing average test speedup from 3.894 to 3.232. . 45

5.19 The synthesized formula max(∆y,∆x+min(∆x, xgoal))
2 on the

down sampled map. 46
5.20 max(∆y,∆x + min(∆x, xgoal))

2 modified to max(2 · ∆y,∆x +
min(∆x, xgoal))

2, increasing speedup from 1.67 to 1.87. 47
5.21 max(∆y,∆x+min(∆x, xgoal))

2 incrementally modified to max(2·
∆y,∆x + 1.5 · min(∆x, xgoal))

2, increasing average speedup on
down sampled map from 1.67 to 1.88 and average test speedup
from 3.665 to 3.792. 48

5.22 ∆y+44.9 ·max(∆x,∆y) decomposed on map ost000a with the
problem that causes it to produce the lowest speedup. 50

5.23 The genetic algorithm improved ∆y + 44.9 · max(∆x,∆y) to
∆y+∆x+44.9·max(∆x,∆y) that improved the average speedup
from 1.569 to 1.602. 51

5.24 The genetic algorithm improved ∆y+44.9·max(∆x,∆y) to ∆y+
∆x + 44.9 · max(∆x,∆y)2 that improved the average speedup
above 1.602. 52

xi

5.25 The user modifies ∆y + ∆x + 44.9 · max(∆x,∆y)2 to become
∆y +∆x+max(∆x,∆y)4 increasing the average speedup. . . 53

5.26 Increasing the test speedup from 3.721 to 3.835. 54

6.1 Test speedup for various synthesis configurations. A indic-
ates lack of subformula size restriction. A1 indicates the upper
bound η = 1 and so forth. The boxes show the quantiles and
the whiskers show the min and max values over the four trials. 58

6.2 Speedup comparison under the single-goal setting with subfor-
mula size limit set to (∞, 5). 61

6.3 The decomposed subformulae with the closed list on the down-
sampled map. 63

6.4 Increasing the speedup on downsampled map from from 1.673
to 1.713 and the test speedup from 5.258 to 5.319. Even greater
than 5.268, the test speedup of synthesized formula before. . . 64

xii

Chapter 1

Introduction

Video-game pathfinding is a common testbed for heuristic search (Bulitko 2020,

Wang et al. 2024, Saunders et al. 2024, Bulitko et al. 2011). Performance

of heuristic search substantially depends on quality of the heuristic function

used. Recent work attempted to combine the simplicity, cross-map portab-

ility and human-readability of formula-represented heuristics such as Man-

hattan distance and the high performance of memory-based heuristics (Stur-

tevant et al. 2009). To do so researchers used program synthesis in a space

of formulae defined by a context-free grammar (Bulitko et al. 2022, Wang

et al. 2023, Bulitko 2020, Bulitko et al. 2021, Hernandez and Bulitko 2021).

The resulting formulae were better than weighted Manhattan distance and

still compact. Their readability gave a promise of explainability which was

not, however, studied beyond a single example (the wall-hugging heuristic).

In this thesis we explore explainability of automatically synthesized formula-

represented heuristics.

In doing so we make the following three contributions. First, we propose

a new approach for explaining a heuristic based on an automatic decompos-

ition of a heuristic formula and associating each component with a region of

a video-game map. We present it as a tool that allows a game-AI developer

or a heuristic researcher to iteratively modify formula-based heuristics and

visualize the effects of the modifications. Such a heuristic modification play-

ground allows a human to gain understanding and therefore trust of computer-

synthesized heuristics which can be important for heuristic deployment in a

1

game to ship. Second, we integrate the visualization tool into a human-in-the-

loop procedure to improve a synthesized heuristic formula for search problems

on a video-game map. The procedure selects and visualizes the problem that

causes the current heuristic to guide A* search the poorest compared to the

weighted Manhattan Distance and the human user iteratively makes improve-

ments to the formula to make it more suitable for this adversarial problem.

We demonstrate several case studies with this iterative procedure. As an ex-

tension, we allow the user the option to call a light-weight genetic algorithm

to improve the current heuristic formula in the process thus forming a col-

laboration between the human user and the machine. We identify reasons of

failed iterative improvement cases and propose the mitigation of applying a

constraint on subformulae size of synthesized formulae. Third, we constrain

heuristic synthesis to produce heuristic formulae which are more susceptible

to explain via our approach and empirically show that such a constrain in gen-

eral does not decrease search performance of synthesized formulae. We show

through another case study that formulae with shorter subformulae are more

conducive to the iterative improvement.

1.1 An Illustrative Example

We begin with an example to illustrate how our approach works. Consider the

following heuristic synthesized for a 2D grid-based video-game map (Bulitko

et al. 2022):

h = ∆y + 44.9 ·max(∆x,∆y) (1.1)

where (x, y) is the map cell whose distance to the goal (xgoal, ygoal) is estimated

by the heuristic h(x, y, xgoal, ygoal). Here ∆x = |x− xgoal| and ∆y = |y− ygoal|.
Our approach first converts h into a conditional formula h′ in style of the

C language’s ternary operator:

h′ = ∆y + 44.9 · (∆x > ∆y ? ∆x : ∆y) (1.2)

Then the converted formula h′ is decomposed into two subformulae h1 = ∆y+

44.9 · ∆x and h2 = ∆y + 44.9 · ∆y whose application is controlled by the

2

With the visualization, the user is informed of how the heuristic formula

guides the search and can thus modify it to improve its speedup on the given

search problem. For instance, observe from the figure on the right that many

nodes of the closed list are clustered on the right of the smaller backward

C-shape wall. From the figure on the left, one can observe that the center

of the cluster of the nodes are on top of the blue region governed by the

sub-formula ∆y + 44.9∆x. One way to improve the heuristic formula so that

it causes less nodes expansions is by increasing the heuristic values in that

region to make it less attractive to search: modify h′ to become ∆y + 44.9 ·
(∆x > ∆y ? 2∆x : ∆y).

1.2 Thesis Organization

In Chapter 2 we set up the problem of explaining synthesized heuristic for-

mulae. We first introduce the single-agent pathfinding problem and introduce

A* search. Second we describe the problem of heuristic formula synthesis

problem as an optimization problem with respect to how much better the

synthesized heuristic is compared to the weighted Manhattan Distance. The

aforementioned points were addressed by Bulitko et al. 2022. Finally as a new

contribution of this thesis, we go over the measure of heuristic improvement

and our notion of heuristic explanability.

In Chapter 3 we review the related works. We go over works related to

automatic search algorithm selection and formula synthesis for search and their

attempt to explain the automatically composed formulae. We then survey a

work that utilizes pre-trained large language models to explain written pro-

grams and explain why such method does not fit our requirement for heuristic

formula explanation. Finally we move on to automatic symbolic decomposi-

tion for formula explanation and elaborate on how our method differ from the

previous work.

In Chapter 4 we describe our approach in detail. We start with how to

simplify the formulae and describe in pseudocode how to decompose a given

formula based on the branching operators. The approach is outlined by Wang

4

et al. 2024, but this thesis describes the steps in more details, showing a table

of simplification rules we used and providing pseudocode for the main steps.

We then describe our visualizations and set up the notion of explanation-

conducive formulae. In the end, we describe the idea of extending the current

formula space (a grammar) with the conditional operator as a background for

the experiment in Chapter 6. This is also presented by Wang et al. 2024 but

we detail the two grammars formally in the thesis.

In Chapter 5 we first go through some simple examples explaining how the

iterative heuristic formula improvement works (Wang et al. 2024), then move

on to apply the method to improve previously synthesized heuristics for their

corresponding video-game maps (a new contribution of this thesis). Last but

not least, we extend the method to improve a heuristic to make it work well

across several video-game maps (another new contribution of this thesis) and

show how the human user can collaborate with the synthesizer as an assistant.

We identify possible reasons that causes certain cases to success and others to

fail and propose a mitigation.

In Chapter 6 we answer two research questions: “If a constraint is imposed

on subformulae size, will guiding performance decrease?” and “Under what

circumstance will the extended grammar produce heuristics with better quality

than ones produced by the original grammar?” by comparing synthesized

heuristics’ guiding performance of varied subformula size constraints combined

with the two formula spaces (defined by grammars). The formula synthesis

algorithm was adopted from the work by Wang et al. 2023. The results are

from the published work (Wang et al. 2024). We show through another case

study that formulae synthesized with constraint subformula sizes are more

conducive to iterative improvement.

In Chapter 7 we propose future research directions. In Chapter 8 we con-

clude the thesis by summarizing the contributions and results.

5

Chapter 2

Problem Formulation

In this chapter we formulate the pathfinding problem and describe the A*

search algorithm. We then formulate the heuristic formula synthesis problem

as an optimization problem and then move on to introduce heuristic improve-

ment and the notion of heuristic explanability.

2.1 Background: Pathfinding

We adapt the problem setting by Bulitko et al. 2022 and reproduce it here for

the reader’s convenience.

A pathfinding problem p is defined by a tuple (G, sstart, sgoal) where G =

(S,E, c) is the search graph composed of the set of states S, the set of edges

E and a cost function c : E → R. The states sstart and sgoal are the start

and the goal states respectively. A state si ∈ S is connected to its neighbor

sj ∈ S by the edge (si, sj) ∈ E with a cost c(si, sj) > 0. The neighborhood of

state s is N(s) = {s′ | (s, s′) ∈ E}. A state is expanded by a heuristic search

algorithm when its N(s) is computed. A solution to a graph search problem is

a path (sstart, s1, . . . , sgoal) such that every pair (si, si+1) ∈ E. The sum of all

edge costs on a solution path is the solution cost. We define the solution cost

function C(h, p) that computes the solution cost of running A* on problem p

using heuristic function h. We denote the optimal solution cost (length of the

shortest path from the start state to the goal state) of a given problem p as

C∗(p).

The solution optimality is the ratio of the solution cost to the lowest pos-

6

sible solution cost for a given pathfinding problem p:

α(h, p) =
C(h, p)

C∗(p)
(2.1)

with h a given heuristic function. For instance, α(h, p) = 1 indicates that

an optimal solution was found on problem p with heuristic function h and

α(h, p) = 2 indicates that a solution twice as costly as the optimal was found.

Indeed for any admissible heuristic hadm, we have C(hadm, p) = C∗(p).

However, due to Chen and Sturtevant 2021, we focus on optimizing for search

speed instead of solution cost. Solution optimality is introduced so that we

can make a fair comparison between synthesized heuristics and the weighted

Manhattan Distance with appropriate weights as elaborated in the next sec-

tion.

2.2 Background: Heuristic Synthesis

A heuristic synthesis problem is to find a heuristic formula h from a space of

heuristic formulae H in order to maximize the expansion speedup of a given

search algorithm on a set of problems. Formally, we intend to approximate

the optimal heuristic hmax satisfying the expression below:

hmax = argmax
h∈H

σ(h, P). (2.2)

Here H is a space of heuristic functions, P is a set of pathfinding problems,

and σ is the speedup function (Bulitko and Lawrence 2023). Speedup over the

baseline was used in previous works as the performance measure for synthes-

ized heuristics. The definition of speedup is reproduced below for the reader’s

convenience:

σ(h, P) =
1

|P |

|P |∑

i=1

σ(h, pi), pi ∈ P. (2.3)

Here h is a given heuristic function, P is a set of pathfinding problems and

pi ∈ P is the i ’th problem in the set P . The speedup of h over P is the average

speedup over each problem in P . The speedup of h over a single pathfinding

7

problem is defined as following:

σ(h, p) =
ε(hbaseline, p)

ε(h, p)
, p ∈ P. (2.4)

where ε(h, p) is the number of nodes expanded by A* with the heuristic

function h on the search problem p. In line with previous works (Bulitko

et al. 2022, Bulitko et al. 2021, Hernandez and Bulitko 2021, Bulitko and

Lawrence 2023), we define hbaseline = w(∆x+∆y) where the weight w ∈ W =

{1.0, 1.1, . . . , 1.9, 2.0, 3.0, . . . , 10.0} is chosen such that α(wi(∆x + ∆y), p) ≤
α(h, p) < α(wi+1(∆x+∆y), p) for wi, wi+1 ∈ W with α being the suboptimal-

ity measure defined in the previous section.

2.3 Heuristic Improvement and Explainability

Since this thesis focuses on iterative improvements made by a human user

on a given heuristic formula, we define an improvement to be a reduction in

the number of nodes expanded on a given search problem. When there are

multiple pathfinding problems present, we defined an improvement to be the

amount of increase in average speedups.

Formally, given a heuristic function h and a set of search problems P on

which h is applied. Suppose that later h is modified to become h′ by the user,

we define heuristic improvement as

κ(h, h′, P) =

{
ε(h, p)− ε(h′, p) |P | = 1
1
|P |

∑
p∈P σ(h

′, p)− σ(h, p) otherwise
. (2.5)

When there is a single problem, we talk about the number of state expansions

resulted from the user’s improvement. When multiple problems are used, we

talk about the speedup increase resulted from the user’s improvements. If

κ(h, h′, P) > 0, on average h′ is better than h on the set of search problems

P . Otherwise the improvement fails.

A heuristic function synthesized on problems of a map can be applied to

any set of search problems. Bulitko et al. 2022 showed that the synthesized

heuristics achieve good performance on maps similar to the ones they are syn-

thesized for. Often when a heuristic function is modified so that its quality

8

improves for a single problem, its quality also improves for a series of similar

search problems. Later during the iterative improvement process in case stud-

ies in Chapter 5, for simplicity, a single search problem is shown to the user

to make improvements for the heuristic formula.

While in general explanability of AI is a broad and active research area we

restrict ourselves to the following simple concept. We say that a shorter heur-

istic formula is more explainable than a longer one. Given an AI-generated

heuristic it is important for a game-AI developer or a heuristic search re-

searcher to understand its operation and trust that it will generally guide a

search algorithm better than a baseline heuristic. So we say that a human

user’s understanding of a formula-based heuristic function is evidenced by the

user’s ability to improve it.

9

Chapter 3

Related Work

In this chapter we begin with the application of machine learning for search

and explain the need for . We then move on to the works on formula synthesis.

We then introduce the work that uses pre-trained large language models to

explain written programs and end with the work of explanation by formula

decomposition, on which we drew inspiration from for our heuristic explanation

method.

3.1 Comparing Search Method Selection and

Formula Synthesis

Leveraging deep learning, one can train a model to select suitable search meth-

ods given search problems. Sigurdson et al. 2019 were the first to leveraged

trained neural networks in per-problem search method selection, followed by

Kaduri et al. 2020 whose focus is on selecting from a portfolio of optimal search

algorithms for multi-agent pathfinding.

Ren et al. 2021 added single-agent shortest path instance embeddings to

the model and a more fine-grained representation of agent positions and goal

positions compared to the work by Sigurdson et al. 2019. However Alkazzi et

al. 2022 later proposed a simpler method that results in faster search.

Since the algorithm selectors implemented by the previous works are all

deep learning models, it is unclear the reasoning applied behind the decisions

made by the selectors. Furthermore, the selectors choose from a portfolio of

existing algorithms, but there might be new algorithms more suitable for some

10

problems instances than others. To facilitate human-machine collaboration,

we consider formula synthesizers instead of algorithm selectors because syn-

thesized formula can be better reasoned with than deep-learning networks and

it is possible that machine can invent better algorithms through the synthes-

ized formulae that previously do not exist. Therefore in this thesis we only

consider formula synthesis.

3.2 Formula Synthesis for Search

In the domain of multi-agent pathfinding, Zhang et al. 2022 trained support

vector machines that takes hand-crafted features to compute priority scores for

each agent and then run prioritized planning (Silver 2005) to find a solution.

There were 26 hand-crafted features and a trained support vector machine

attached a learned weight to each of them and returned the sum as an agent’s

priority score. But this makes it hard to analyze the principles behind the

computation of priority scores thus runs counter to our purpose of having

produced results explainable.

On the other hand, Wang et al. 2023 synthesized algebraic formulae to

compute the priority scores. The formula space allows the usage of the same

hand-crafted features from the work by Zhang et al. 2022 and it is shown that

the synthesized formulae out-perform the trained support vector machines un-

der certain conditions while requiring less data. Furthermore, the synthesized

formulae can be decomposed to explain search behaviors induced by the sub-

formulae. However the decomposition was done manually. However in this

thesis we pursue an automatic decomposition of formulae to reduce human

effort.

In the domain of single-agent pathfinding, previous works on synthesizing

heuristic formulae attempted to explain how formulae work. Bulitko et al. 2022

synthesized formulae for A* search on grid maps and Bulitko 2020 synthesized

formulae to compute initial heuristic for agent-centered real-time search. They

both provided visual narrative explanations of a synthesized heuristic. How-

ever we prefer a purely visual-based explanation that captures how heuristic

11

values were computed for each region of the map and we prefer this to be done

automatically.

3.3 Pretrained Large Language Model for Syn-

thesized Code Explanation

Bashir et al. 2023 proposed to employ a pre-trained large language model

to explain synthesized code. A measure is proposed on how explainable a

given code fragment is. Their approach works as follows. The user prompts

the model to give a textual explanation on a given code fragment then the

textual explanation is given to another instance of the large language model

to reconstruct a new code fragment. The original and the new fragments’

behaviors are compared. The more similar their behaviours are, the more

explainable the original code fragment is.

We have applied the method for explaining synthesized heuristic formu-

lae. However, the model either outputs vague statements that applies to any

heuristic function or gives inaccurate statements about the nature of the given

formula. When transporting the generated explanations to another instance

of the language model, the reconstructed formula were almost always slight

variants of the Manhattan Distance or the Chebyshev Distance. The prompts

used are listed in Appendix A. The results compels us to come up with another

way to explain the synthesized heuristic formulae.

3.4 Symbolic Decomposition for Explanation

In the domain of reinforcement learning, Lyu et al. 2019 combined deep neural

networks with symbolic planning for a more data-efficient and faster-converging

interpretable framework for video game domains that includes delayed rewards.

In particular, the deep neural networks were combined with reinforcement

learning to learn low-level actions for subtasks and the rewards were used to

constrain the symbolic planner’s search space for a new set of subtasks. Thus

the symbolic planner and the deep reinforcement learning controller benefit

each other for more efficient learning.

12

Our work is similar in the sense that the heuristic formulae can also be

decomposed into subformulae and the human expert can thus modify the parts

of the heuristics to make it more efficient for search problems at hand. However

the heuristic formulae are generated using program synthesis techniques and

do not need domain specific knowledge as the previous work.

Similarly our automatic decomposition of synthesized formulae is inspired

by decomposing a problem specification in sub-specifications as in the general

field of program synthesis (Nazari et al. 2023). Finally the visualization part of

our approach is inspired by the previous work that visualized agent movement

in multi-agent pathfinding (Almagor and Lahijanian 2020) in the sense that

the start and goal cells are labeled and the search behavior is visualized.

13

Chapter 4

Proposed Approach

In this chapter we describe our approach to explain and to make improvements

upon a given heuristic formula. We first describe it informally with an intuitive

example in Section 4.1 and then describe the algorithm in detail in Section 4.2.

We introduce the notion of explanation-friendly formula in Section 4.3. We

motivate the extended grammar used for synthesis in Section 4.4. In the end,

we present a way to utilize our explanation approach for a user to improve

a given heuristic formula for a set of pathfinding problems with an intuitive

example in Section 4.5.

4.1 Intuition and an Example

We propose to decompose a synthesized formula into subformulae and visually

associate each subformula with a map region. Given a synthesized formula,

our method to explain it proceeds as shown in Algorithm 1. We illustrate the

steps with a simple running example.

Our algorithm simplifies the input synthesized formula ψ using a set of

hand-coded simplification rules (line 1 in Algorithm 1). To illustrate, consider

a synthesized formula ψ(x, y, xg, yg) = (min (∆x,∆y)− (−∆x))2 which estim-

ates the remaining travel cost from the grid cell (x, y) to the goal grid cell

(xgoal, ygoal). Here ∆x = |x − xgoal| and ∆y = |y − ygoal|. The formula ψ is

simplified to an equivalent formula ψ̂ = (min (∆x,∆y) + ∆x)2.

Then the algorithm converts all max and min operators in ψ̂ to the equi-

14

a way that within each region Ri the original heuristic value ψ is computed

solely by the corresponding subformula ψi. The decomposition (Algorithm 3)

proceeds via building a symbolic expression based on the formula ψ’s struc-

ture. First, the algorithm replaces every subformula in ψ̂′ that is not a con-

ditional with a distinct integer. In the running example the formula ψ̂′ =

((∆x < ∆y ? ∆x : ∆y) + ∆x)2 leads to the expression ((∆x < ∆y ? 1 : 2) +

3)2 assuming the integers 1, 2, 3 are used. Then the algorithm replaces every

binary operator that has a conditional in one or both of its child nodes with a

hash function hash that takes two integer inputs and outputs an integer hash

value. The expression ((∆x < ∆y ? 1 : 2) + 3)2 has a single binary operator

(+) with a conditional in in the place of its first argument. It thus becomes

θ = hash((∆x < ∆y ? 1 : 2), 3)2. Depending on the value of ∆x < ∆y the ex-

pression θ evaluates to either hash(1, 3)2 or hash(2, 3)2 which become indecies

of the two map regions shown in Figure 4.1. Within each region the heuristic

value ψ is computed by the subformulae ψ1 = (∆x+∆x)2 and ψ2 = (∆y+∆x)2.

The final step of the algorithm (line 4) visualizes the heuristic gradient of

each subformula ψi in its map region by displaying a color scale. The differ-

ent regions are shown with different background colors and the subformula

corresponding to a region is indicated by a black arrow as shown in Figure 4.1.

4.2 Algorithmic Details

In this section we first detail the simplification rules in Section 4.2.1 and the de-

composition process in Sections 4.2.2 and 4.2.3. Then we discuss constraining

the formula synthesis process to make the resulting formula more susceptible

to our explanation approach. This motivates the extension of the original

grammar with conditionals which we elaborate in Section 4.4.

4.2.1 Formula Simplification

We simplify a synthesized formula to make the decomposition and resulting

subformulae more concise. The full list of simplification rules are shown in

Table 4.1.

16

Table 4.1: Simplification Rules

Before After Before After Before After
√
ϕ2 |ϕ|

√
1 1

√
ϕ2 ϕ

(−ϕ)2 ϕ2 |ϕ|2 ϕ2 |ϕ2| ϕ2

| − ϕ| ϕ ϕ/− 1 −ϕ |√ϕ| √
ϕ

||ϕ|| |ϕ| − − ϕ ϕ −(ϕ1 − ϕ2) ϕ2 − ϕ1

−ϕ1 + ϕ2 ϕ2 − ϕ2 ϕ1 + (−ϕ2) ϕ1 − ϕ2 ϕ1 − (−ϕ2) ϕ1 + ϕ2

ϕ ∗ 1 ϕ ϕ ∗ (−1) −ϕ 1 ∗ ϕ ϕ
−1 ∗ ϕ −ϕ ϕ/1 ϕ

The simplifications rules are hand-coded. When the procedure SIMPLIFY is

called (line 1 of Algorithm 1) on a given formula ψ, it is simplified recursively

by matching patterns under the Before column and rewriting them to be the

ones under the After column.

4.2.2 Replacing min and max with Conditionals

In line 2 of Algorithm 1 we call the function MAXMIN2IF which replaces all

occurrences of max and min with equivalent conditionals by equations 4.1

and 4.2. We want to reduce all operators in the grammar that assign heuristic

subformulae to map regions to become conditional operators. This is done so

that the next step of formula decomposition (e.i., the DECOMPOSE function) can

assume that the input formula does not contain any max or min, simplifying

its implementation.

17

Algorithm 2: MAXMIN2IF(ψ). Convert all max and min in ψ to
conditional operators.

input : ψ

output: If-based formula ψ′

1 if none of max,min appears in ψ then

2 ψ′ ← ψ

3 else

4 χ(e) = ψ

5 for i = 1, . . . , |e| do
6 ei ← MAXMIN2IF(ei)

7 if χ = max then

8 ψ′ ← e1 < e2 ? e2 : e1

9 else if χ = min then

10 ψ′ ← e1 < e2 ? e1 : e2

11 return ψ′

Referring to Algorithm 2, the function takes a formula ψ as argument and

checks if any of max or min appears in it (line 1). If none of them appears

in ψ, no further procedure is needed and the input formula can be returned

directly. Otherwise, ψ is decomposed into χ(e) where χ is the root node of ψ

and e is the vector consisting of every subformula ei of ψ. Each subformula

ei is recursively converted as shown in line 6. Depending on what χ is, ψ is

converted to contain only conditional operators in a similar manner as shown

in equation 4.1 to 4.2 (lines 8 and 10). Notice that we do not reduce | · | even
though it can be converted to conditional form (i.e., |φ| = φ ≥ 0 ? φ : − φ).
This is because it does not create much difficulty to explain and by allowing

it to be part of a subformula we in general reduce the number of regions to

visualize thus formulae become simpler to explain. For the same reason, we

do not convert the terminal nodes ∆x = |x− xg| and ∆y = |y − yg|.

4.2.3 Formula Decomposition

In line 3 of Algorithm 1 we call the function DECOMPOSE detailed in Algorithm 3.

We assume that its input is a formula containing no max or min operators.

The function recursively decomposes the formula ψ and returns an assignment

function θ : (x, y)→ N
+ that maps a location on the map (x, y) to the index of

18

the map region it belongs to and the list of subformulae H of ψ. We use lists

instead of sets to support element ordering and possible repeating elements.

We denote lists by angle brackets ⟨ and ⟩. The union operator ∪ is used

here to concatenate two lists. Line 1 of Algorithm 3 checks for presence of

a conditional in the formula. If there is none then the algorithm returns the

whole formula and a single map region – the map itself.

Algorithm 3: DECOMPOSE(ψ, I)

input : ψ, I
output: θ,H, I

1 if no conditional in ψ then

2 θ ← max (I) + 1
3 I ← I ∪ {θ}
4 H ← ⟨ψ⟩
5 else

6 (χ, e)← parse(ψ)
7 if |e| = 1 then

8 θ,K, I ← DECOMPOSE(e1, I)
9 H ← ⟨(χ, k) | k ∈ K⟩

10 else if |e| = 2 then

11 β,K, I ← DECOMPOSE(e1, I)
12 γ,L, I ← DECOMPOSE(e2, I)
13 θ ← (hash, β, γ)
14 H ← ⟨(χ, k, l) | k ∈ K, l ∈ L⟩
15 else if |e| = 3 then

16 β,K, I ← DECOMPOSE(e2, I)
17 γ,L, I ← DECOMPOSE(e3, I)
18 θ ← (χ, e1, β, γ)
19 H ← K ∪ L

20 return θ, H, I
Otherwise the formula ψ is split into a tuple (χ, e) where χ is the outer-

most operator (referred to as the root node due to its position in a syntax tree

of the formula) of ψ and e is the vector consisting of every subformula ei of ψ

(line 6).

If the number of subformulae of ψ is one (line 7), DECOMPOSE is called

recursively on the only subformula e1 in line 8.

The list of subformulae K returned by the recursive call is modified by

adding χ as the root node to each subformula k ∈ K in the list formed in

line 9. This is needed since χ can also be involved in the computation of

19

heuristic values in any region of the map.

If the number of subformulae of ψ is two (line 10), both subformulae of ψ

are decomposed recursively (lines 11 and 12). The sub-region-index formulae

β and γ are the results of decomposing subformulae e1 and e2. Instead of the

root node χ, we replace it with a hash function hash that takes two integer

arguments and returns an integer as the output and combine the three of

them into a formula with the root node hash and the two subformulae β and

γ (line 13). Now θ has the root node hash with two sub-region-index functions

β and γ. We replace χ with hash because β and γ might contain conditional

operators that evaluates to different integer values, thus for each combination

of the integer values returned by β and γ there needs to be a unique index.

Therefore we compute such an index via a hash function hash.

If the number of subformulae of ψ is three (line 15), the only possible root

node of ψ is conditional. We skip the first subformula e1 of ψ because e1

evaluates to a boolean value thus is not involved in the computation of the

heuristic values on the map. The two subformulae e2 and e3 are recursively

decomposed on line 16 and 17. The region-index function θ is thus constructed

as (χ, e1, β, γ) with the root node χ and the child nodes e1, β and γ respectively.

Here χ is the conditional operator, e1 is the condition and β and γ are the

sub-region-index functions decomposed from e2 and e3 respectively (line 18).

The list of subformulae H is created by joining the lists of subformulae K and

L of e2 and e3 respectively (line 19).

Now we have obtained the region-index function θ and a list of subformulae

H that maps any location of the map to each possible value in the co-domain

of θ.

4.2.4 Visualization

By decomposing the formula ψ, the algorithm computes the region-index func-

tion θ and the list of subformulae H. In line 4 of Algorithm 1 we invoke θ

on each search state (i.e., open grid cell) location. Whereas the heuristic ψ

on a given state returns its estimate of the remaining distance to the goal, θ

returns the index of the region to which the state belongs to. The region index

20

is the subformula index in H. Thus we can associate each map region to a

subformula.

For each state we compute the heuristic value using the original formula ψ

and display a color scale indicating the heuristic gradient.

Finally if the user supplies a start state, the algorithm can automatically

create the expansion sequence and visualize it such as shown in the right plot

of Figure 4.1. We also put numbers and colors on top of each state indicates

the order of expansion of that state.

4.3 Explanation-Friendly Formulae

The user can likely more readily understand a subformula if it is short in size

and thus readable. For instance, a simplified formula which is still long and

contains neither max/min operators nor conditionals is likely to be difficult to

understand since it cannot be decomposed by our algorithm.

We address this issue by constraining the synthesis process to produce

formulae with short subformulae. We implement the constraint by imposing

an upper bound on subformula length. This can be done simply by eliminating

any candidate formula with an excessively long subformulae during synthesis.

Then the constrained synthesis is no longer able to use complex subformulae

inside min, max or conditional operators. The question thus becomes whether

such synthesized formulae will have lower search performance (i.e., a lower

speedup), which we will address in Chapter 6.

4.4 Grammar Extension

Prior work used a context-free grammar to define a space of formulae (Bulitko 2020, Bulitko

et al. 2021, Hernandez and Bulitko 2021, Bulitko et al. 2022, Wang et al. 2023).

While the grammar slightly varied from study to study, a representative ex-

21

grammar with a conditional which we represent in the grammar as X ? S : S.

The extended grammar is shown below:

S → F ||| X ? S : S

X → S > S ||| S < S ||| S ≥ S ||| S ≤ S ||| X ∧X ||| X ∨X

F → T ||| U ||| B

T → x ||| xg ||| y ||| yg ||| ∆x ||| ∆y ||| C

U →
√
S ||| −S ||| S2 ||| |S|

B → S + S ||| S − S ||| S × S ||| S
S
||| max (S, S) ||| min (S, S)

We compare the quality of heuristics synthesized with both grammars and

detail the results in Chapter 6.

4.5 Iterative Heuristic Formula Improvement

and Adversarial Problems Display

Here we describe how our approach is used as a tool for a user to improve a

given heuristic formula with. We demonstrate through two settings. First, we

show how to apply our approach to improve a given heuristic formula for a

single pathfinding problem in Section 4.5.1. Second, we show the application

of it to improve for a set of pathfinding problems in Section 4.5.2.

4.5.1 Formula Improvement for a Single Problem

When we want to improve a heuristic formula for a single pathfinding problem,

we first decompose and visualize the formula to inform the user and the user

makes modifications to the formula to improve it. The modified formula is

decomposed and visualized again and the user modifies it again. The cycle

repeats until the user is satisfied with the result. We show an example of this

approach to improve the Manhattan Distance heuristic ∆x+∆y.

Consider the Manhattan distance heuristic ∆x+∆y. The visualization in

the upper two plots of Figure 4.3 shows that A* expands a number of states

close to the start state. Note that the search problem shown in the figure is

23

A* away from the start state and reduces the closed list (the lower two plots

in the figure). The resulting formula is ∆x > ∆y ? ∆x2 : ∆x + ∆y which

saved κ(h, h′, P) = 208− 169 = 39 state expansions.

4.5.2 Formula Improvement for Multiple Problems

When multiple pathfinding problems are present, to improve a heuristic for-

mula, the goal is to modify it to increase the average speedup of it on the

set of given pathfinding problems. Assuming that there are many pathfinding

problems, visualizing all of them is unfeasible, thus we visualize the problem

that contributes the most negatively towards the average speedup by selecting

the problem with the least speedup when guided by the given heuristic for-

mula. The user then makes modifications to the formula to improve it for that

adversarial problem, and a new adversarial problem selected against the newly

modified formula is visualized. The cycle repeats until the user is satisfied with

the resulting formula.

Consider the formula (min(∆x,∆y) − (−∆x))2 from Section 4.1. Mul-

tiple problems were generated for the map shown in Figure 4.4, and the ad-

versarial problem against the formula is shown in the top two plots. The

average speedup of the formula over the set of problems is 0.8. Now sup-

pose the user modifies the min operator to max thus the formula becomes

(max(∆x,∆y) − (−∆x))2. After re-visualizing, a new adversarial problem is

shown in the bottom two plots with more states expanded. However the aver-

age speedup increased to 1.2. The improvement is a κ(h, h′, P) = 1.2− 0.8 =

0.4 improvement in speedup.

25

67 42 30 40 63

66 41 25 38 60

65 39 20 36 57 79

64 37 16 33 54 77

62 35 13 29 51 76

59 32 11 24 48 75

56 27 9 19 46 73

81 53 22 7 15 44 71

78 49 17 5 4 3 2

80 52 21 6 14 43 70

55 26 8 18 45 72

58 31 10 23 47 74

69 61 34 12 28 50 68 82

83

87 86 85 84

84 65 49 41 33 28 25 20 22 26 29 8 7 6 5 4 3 2

81 62 46 32 27 24 19 16 17 21 10 9 43 59 78 100

80 61 45 31 23 18 15 14 13 12 11 30 44 60 79 101

82 63 47 34 102

83 64 48 35 111110109108107106105104103

85 66 50 36

86 67 51 37

87 68 52 38

88 69 53 39

89 70 54 40

90 71 56 42

91 74 58 55

95 77 73 57

99 94 76 72

98 93 75

97 92

96

Figure 4.4: (min(∆x,∆y)− (−∆x))2 modified to (max(∆x,∆y)− (−∆x))2.

26

Chapter 5

Heuristic Improvement Case

Studies

In this chapter we demonstrate our approach with examples of heuristic visu-

alization and how a user might make improvements to the heuristic formulae.

A synthesized heuristic formula is improved when the modification made by a

user caused it to induce less states expansions during A* search.

We start with preliminary examples to demonstrate some basic principles

on heuristic improvement. Then we show examples of applying our approach

to improve synthesized heuristics on video-game maps from Dragon Age: Ori-

gins (DAO) where we show cases where our approach succeeds in improving

a synthesized heuristic and cases where it fails to make any improvements.

Furthermore, we demonstrate the application of our approach to improve a

heuristic formula for multiple maps. In the end of this chapter, we summarize

and motivate the empirical evaluations.

5.1 Single-Problem Cases

Consider the case of a single pathfinding problem. We show several examples

of applying our method to improve the guiding performance of a heuristic

formula.

27

5.1.1 Case #1: Chebyshev Distance

From the work by Bulitko et al. 2022, the heuristic formulae synthesized appear

often as variants of the wall-hugging heuristic max(∆x,∆y)2. This heuristic

formula is related to the Chebyshev Distance (Deza et al. 2009) max(∆x,∆y).

Suppose the Chebychev Distance is given as the heuristic formula for the user

to make improvements upon, we demonstrate the application of our approach.

Consider the example shown in Figure 5.1. The original Chebyshev Dis-

tance heuristic induces a substantial number of nodes in the closed list. The

user chooses to increase the heuristic values in the region where the start state

lies in the hope to make the region close to the start state unattractive to

search so that A* may escape from the interior of the C-shape wall early on

during the search. The heuristic values of the region where the start state lies

are computed by the subheuristic ∆x, thus the user modifies it to ∆x2.

28

The improvement from h = max(∆x,∆y) to h′ = max(∆x2,∆y) is κ(h, h′, P) =

ϵ(h)− ϵ(h′) = 212− 58 = 154 state expansions.

5.1.2 Case #2: The Wall-hugging Heuristic

Consider the wall-hugging heuristic max(∆x,∆y)2 by the work of Bulitko et

al. 2022. We first convert it to its equivalence: (∆x)2 > (∆y)2 ? (∆x)2 : (∆y)2.

On the map in Figure 5.2 and Figure 5.3, the heuristic imposes two regions

with heuristic values computed by the subformulae (∆x)2 and (∆y)2 (the first

plot in the top row). Visualizing the A* closed list (the second plot in the

top row) tells the user that a number of states inside the C-shape wall are

expanded. The area is covered by the triangle shaped region associated with

the subformula (∆x)2. However, that region is substantially broader than the

C-shape wall so any changes to its subformula may also affect A*’s behaviour

outside of the area. Thus the user chooses to first make the region narrower,

replacing the condition (∆x)2 > (∆y)2 with (∆x)2 > 2(∆y)2, narrowing the

region governed by (∆x)2 (the third plot in the top row).

30

(∆y)2 (the left plot at the top) and realizes that the new A* closed list

is still extensively covering the inside of the C-shape wall (the right plot

at the top). This prompts the user to increase the heuristic values of the

new subformula. The user chooses to add a factor 4 to (∆wx)
2 forming:

4(∆wx)
2. A re-visualization shows a much reduced closed list (the right plot

at the bottom). The formula after the iterative improvement is (∆x)2 >

2(∆y)2 ? 4(∆wx)
2 : (∆y)2, inducing a number of state expansion improvement

of κ(h, h′, P) = 169− 77 = 92 states.

5.1.3 Section Summary

In general when there is a single pathfinding problem, it is easy to modify a

given heuristic formula to guide search efficiently for the given problem. How-

ever in practice, it is costly to optimize a heuristic formula for just one search

problem, instead it is common to optimize a heuristic formula for problems of

a video game map, or for problems of several maps.

In the next section we present a few examples of iterative heuristic formula

improvement for pathfinding problems of particular video-game maps and an

example of it for problems across several maps. We list general principles of

when our approach can work and when it will probably fail.

5.2 Iterative Heuristic Formula Improvement

based on Adversarial Problem Selection

In this section we apply our method to improve synthesized heuristic formulae

on the video maps they were synthesized on. We down sample the video game

maps for better visualization. The heuristic formulae that we start with in

each case study all come from the work by Bulitko et al. 2022.

On each down sampled map, 40×40 problems are randomly generated and

evaluated by A* guided by the given heuristic formula. The search problem

with the largest number of nodes expanded (the worst search problem) is

selected and visualized (the adversarial search problem). The user can either

make a modification to the heuristic function with the intension to make it

33

more efficient for that problem and re-visualize or terminate the process. The

goal is to improve the heuristic for any search problems on the given video

game map in general.

5.2.1 Case #1: brc202d

On the map brc202d, we start with the synthesized heuristic function:

max

(√
ygoal

x
∆x,∆y

)4

The adversarial search problem found is shown in Figure 5.4.

Figure 5.4: The synthesized formula max
(√

ygoal
x

∆x,∆y
)4

on the down

sampled map.

After decomposition, the formula becomes
(√

ygoal
x

∆x
)4

and ∆y4 assigned

to the blue and the green regions (left of figure 5.4). ∆x and ∆y guide search

horizontally and vertically towards the goal, the behavior of the synthesized

component
√

ygoal
x

needs further investigation. Suppose we have a search prob-

lem, its goal location is fixed, then during the search, the value of ygoal remains

the same and the value of x is larger for cells more to the right of the map.

Taken together, the value of
ygoal
x

are smaller for the cells on the right of the

map thus guiding the search rightwards. But since it is multiplied to ∆x, the

34

search is guided to the goal location horizontally with a tendency to expand

rightward.

Figure 5.5: max
(√

ygoal
x

∆x,∆y
)4

modified to max
(√

xgoal

x
∆x,∆y

)4

, increas-

ing average speedup on down sampled map from 1.457 to 1.466.

The user decides that it makes more sense to modify
ygoal
x

to become
xgoal

x

since x and xgoal are more related. This modification has increased the average

speedup on the problems of the map from 1.457 to 1.466. Here on the right

of figure 5.5, the closed list shows the adversarial search problem. The top

left region of the map has heuristic values computed by (
√

xgoal

x
∆x)4 which is

supposed to guide the search rightward into the light blue region yet it still

incurs some state expansions.

Thus the user amplifies the heuristic values of the green region to emphasize

the rightward guidance of the search by modifying
(√

xgoal

x
∆x

)4

to become
(xgoal

x
∆x

)4
. This modification has increased the average speedup from 1.466

to 1.493.

35

Figure 5.6: max
(√

xgoal

x
∆x,∆y

)4

incrementally modified to

max
(xgoal

x
∆x,∆y

)4
, increasing average speedup on down sampled map

from 1.466 to 1.493.

After re-visualizing, we arrive at figure 5.6. The problem shown in the

figure involves two major horizontal oriented hallways. Therefore the user

tries to inform the search to ignore more vertical hallways by adding a ∆x

component to the entire heuristic formula, modifying max
(xgoal

x
∆x,∆y

)4
to

become ∆x + max
(xgoal

x
∆x,∆y

)4
increasing the average speedup from 1.493

to 1.509.

Re-visualization give us figure 5.7. By testing the resulting heuristic ∆x+

max
(xgoal

x
∆x,∆y

)4
on the 200× 200 test problem set on the original map, we

have improved the search performance from 3.843 to 4.191, thus making the

synthesized heuristic formula even better for the map it was synthesized on.

36

Figure 5.7: The synthesized formula max
(√

ygoal
x

∆x,∆y
)4

incrementally

modified to ∆x + max
(xgoal

x
∆x,∆y

)4
, increasing average speedup on down

sampled map from 1.493 to 1.509 and average test speedup from 3.843 to
4.191.

The iterative improvement succeeded with an improvement in speedup of

κ(h, h′, P) = 4.191− 3.843 = 0.348. We speculate several reasons causing the

success. First, the map it self is mostly consistent with long narrow corridors,

causing most generated pathfinding problems to be similar, thus a heuristic

formula that works well for one problem likely works well for most other prob-

lems. Second, the formula we start with decompose to simple subformulae:(√
ygoal
x

∆x
)4

and (∆y)4. They are simple in the sense that they are short

and that they each contain components that only guide search towards the

goal either horizontally or vertically. The user therefore can more conveni-

ently introduce biases into the formula to explore aspects of the adversarial

problem.

5.2.2 Case #2: den000d

For map den000d the synthesizer gave ∆y + 44.9 · max (∆x,∆y). When de-

composed, the sub-formulae ∆y+ 44.9 ·∆x and ∆y+ 44.9 ·∆y are associated

to the blue and green regions (left of figure 5.8). Obverse that the closed list

mostly contains nodes around the peninsula of the map where the goal is.

37

Figure 5.8: The synthesized formula ∆y + 44.9 · max (∆x,∆y) on the down
sampled map.

Observe that if we modify the heuristic formula to make the blue region less

attractive to search, the search will be guided to be most in the green region

thus we reduce the search effort. The user modifies the formula by amplifying

∆x: modifying ∆y+44.9·max (∆x,∆y) to become ∆y+44.9·max (2 ·∆x,∆y).

Figure 5.9: ∆y+44.9 ·max (∆x,∆y) modified to ∆y+44.9 ·max (2 ·∆x,∆y),
decreasing average speedup on down sampled map from 1.736 to 1.734.

Re-visualization gives us figure 5.9 but the average speedup has decreased

from 1.736 to 1.734. Observation of the closed list informs the user that the

38

search has taken the longer route, passing below the peninsula, and on the

way, expanded all nodes contained in the peninsula. Thus the user is prompted

to amplify the ∆y component to guide the search vertically towards the goal

location earlier during the search. Therefore the formula is modified to become

∆y2 + 44.9 · max (2 ·∆x,∆y) to enlarge the values of the ∆y component to

guide the search vertically towards the goal.

Figure 5.10: ∆y + 44.9 · max (2 ·∆x,∆y) modified to ∆y2 + 44.9 ·
max (2 ·∆x,∆y), increasing average speedup on down sampled map from 1.734
to 1.737.

After re-visualizing, we get figure 5.10 with an improvement of speedup

from 1.734 to 1.737. The closed list (right of figure 5.10) has the expanded

nodes mostly around and close to the wall leading to an opening towards the

goal location.

Observe that the multiplier 44.9 in front of the max (2 ·∆x,∆y) compon-

ent. It is a constant chosen by the synthesizer for the original map. In order

to make the formula more concise, it is reasonable to modify such ampli-

fiers to become something such as a multiplication of 2 or a square. The

user thus replaces it with a square operator and we arrive at the formula

∆y2 + max (2 ·∆x,∆y)2 as the result, increasing the average speedup from

1.737 to 1.761.

39

Figure 5.11: The synthesized formula ∆y + 44.9 · max (∆x,∆y) increment-
ally modified to ∆y2+max (2 ·∆x,∆y)2, increasing average speedup on down
sampled map from 1.737 to 1.761 but decreasing average test speedup from
5.268 to 4.073.

However, the average test speedup decreased from 5.268 to 4.073 on the

original map. We suspect several reason that causes the failure. First, the

modified formula might be over-fitting to the down sampled map. Second,

after decomposition the subformula ∆y + 44.9 · ∆x involve components that

guide search both horizontally and vertically towards the goal, thus making it

difficult for the user to come up with effective ways to modify the formula.

5.2.3 Case #3: den501d

Consider the video game map den501d. The synthesizer gave the formula

max
(

ygoal
y−8.3

·∆y,∆x
)2

which is decomposed into
(

ygoal
y−8.3

·∆y
)2

and ∆x2 with

map region assignment shown on the left image of figure 5.12.

40

Figure 5.12: The synthesized formula max
(

ygoal
y−8.3

·∆y,∆x
)2

on the down

sampled map.

The closed list indicates that the blue region (associated with ∆x2) can be

made less attractive to search to reduce the nodes expanded. Thus the user

multiplies ∆x by 2 to induce the behaviour of sticking to the wall on the left.

The formula max
(

ygoal
y−8.3

·∆y,∆x
)2

thus becomes max
(

ygoal
y−8.3

·∆y, 2 ·∆x
)2

,

resulting in a average speedup increase from 1.326 to 1.363.

Figure 5.13: max
(

ygoal
y−8.3

·∆y,∆x
)2

modified to max
(

ygoal
y−8.3

·∆y, 2 ·∆x
)2

, in-

creasing average speedup on down sampled map from 1.326 to 1.363.

41

The new worst problem is selected and the closed list with the start-goal

pair locations shown in the right image of figure 5.13. Now the
ygoal
y−8.3

compon-

ent is similar to the
xgoal

x
component from subsection 5.2.1 and with similar

reasoning, the
ygoal
y−8.3

component enables the search the tendency to expand ver-

tically downward. However, to make the component more archetypal, the user

decides to modify it to become
ygoal
y

thus one may use the same reasoning from

subsection 5.2.1 to directly explain its behaviour. After modifying the for-

mula from max
(

ygoal
y−8.3

·∆y, 2 ·∆x
)2

to max
(

ygoal
y
·∆y, 2 ·∆x

)2

, the average

speedup drops from 1.363 to 1.330 as shown in Figure 5.14.

Figure 5.14: max
(

ygoal
y−8.3

·∆y, 2 ·∆x
)2

modified to max
(

ygoal
y
·∆y, 2 ·∆x

)2

,

decreasing the average speedup on down sampled map from 1.363 to 1.330.

Observation of the closed list in the image on the right of figure 5.14

prompts the user to amplify the heuristic values in the blue region governed

by the sub-formula
(

ygoal
y
·∆y

)2

in order to make the region less attractive to

search. Thus the user modifies the previous formula max
(

ygoal
y
·∆y, 2 ·∆x

)2

to become the formula max
(
2 · ygoal

y
·∆y, 2 ·∆x

)2

, resulting in an increase of

average speedup from 1.330 to 1.386.

42

Figure 5.15: The synthesized formula max
(

ygoal
y−8.3

·∆y, 2 ·∆x
)2

incrementally

modified to max
(
2 · ygoal

y
·∆y, 2 ·∆x

)2

, increasing average speedup on down

sampled map from 1.330 to 1.386 and the average test speedup from 3.821 to
3.895.

The user is satisfied with the result and terminates the heuristic improve-

ment process. The resulting heuristic formula on the test problems yields an

increase of speedup from 3.821 to 3.895.

The improvement process again proves to be successful and we observe that

the subformulae are again simple and the user is thus more capable of intro-

ducing biases into the formula to exploit aspects of the adversarial problem.

5.2.4 Case #4: lak505d

Moving on to the map lak505. Starting from the formula synthesized

max (100,min (ygoal,∆y) + y)2 ·max (∆x,∆y)

which decomposes into four sub-formulae. However, since on the down sample

map, for the search problem shown in Figure 5.16, min (ygoal,∆y) + y is less

than 100 for all cells. Therefore only two sub-formulae are shown: 1002 ·∆x
and 1002 ·∆y.

43

Figure 5.16: The synthesized formula max (100,min (ygoal,∆y) + y)2 ·
max (∆x,∆y) on the down sampled map.

From previous example in section 5.1.1, the Chebyshev Distance does not

lead to efficient search, thus the user decisdes to add a square to it, modifying

the formula into max (100,min (ygoal,∆y) + y)2 ·max (∆x,∆y)2, however, the

average speedup has not changed (figure 5.17).

Figure 5.17: Formula modified to max (100,min (ygoal,∆y) + y)2 ·
max (∆x,∆y)2, speedup not changed.

Observe that the number 100 is produced by the synthesizer for the ori-

44

ginal map and probably does not generalize well onto other maps. Thus in

order to make the formula more portable, the user replaces 100 with xgoal:

max (xgoal,min (ygoal,∆y) + y)2 · max (∆x,∆y)2, increasing the average spee-

dup on the down sampled map from 1.54 to 1.71.

Figure 5.18: The synthesized formula max (100,min (ygoal,∆y) + y)2 ·
max (∆x,∆y) incrementally modified to max (xgoal,min (ygoal,∆y) + y)2 ·
max (∆x,∆y)2, increasing average speedup on down sampled map from 1.54
to 1.71 but decreasing average test speedup from 3.894 to 3.232.

The user is satisfied with resulting formula max (xgoal,min (ygoal,∆y) + y)2 ·
max (∆x,∆y)2 and terminates the improvement process. However the test

speedup on the original map decreases from 3.894 to 3.232.

The improvement failed. Although the subformulae displayed on the map

initially were 1002 ·∆x and 1002 ·∆y, which would be considered simple, the

actual subformulae also consist of (ygoal + y)2 ·∆x and (∆y + y)2 ·∆x which

are not simple. These components made cause the user less able to effectively

introduce bias since parts of subformulae interact with each other.

5.2.5 Case #5: ost000a

The map ost000a is one of the larger maps that even after down sampling

to the tenth of its original size, still appears to be quite large compared to

other maps. The user starts with the formula synthesized: max(∆y,∆x +

45

min(∆x, xgoal))
2, which is decomposed into three sub-formulae: ∆y2, (∆x +

∆x)2 and ∆x+ xgoal.

Figure 5.19: The synthesized formula max(∆y,∆x + min(∆x, xgoal))
2 on the

down sampled map.

As shown by the closed list on the right of figure 5.19, there is a cluster of

nodes in the middle of the map at the region governed by ∆y2. Thus the user

decided to make that region less attractive to search by increasing the heuristic

values in that region, adding a multiplication of two in front of ∆y2, thus the

formula becomes max(2 ·∆y,∆x+min(∆x, xgoal))
2. The average speedup on

the down sampled map improved from 1.67 to 1.87. An adversarial search

problem is selected for the improved formula, shown in Figure 5.20.

46

Figure 5.20: max(∆y,∆x + min(∆x, xgoal))
2 modified to max(2 · ∆y,∆x +

min(∆x, xgoal))
2, increasing speedup from 1.67 to 1.87.

Now a new problem is adversarially selected for the newly improved heur-

istic formula and the expanded nodes in the middle of the map disappeared.

However there are nodes expanded at the top of the map (figure 5.21). The

problematic region is governed by the sub-formula (∆x + ∆x)2 and the user

thus increases its heuristic values by modifying it to become (∆x, 1.5·∆x)2, and
consequentially the formula becomes max(2·∆y,∆x+1.5·min(∆x, xgoal))

2, in-

creasing the average speedup on the down sampled map from 1.67 to 1.88 and

that of the test set on the original map from 3.665 to 3.792 (see figure 5.21).

47

Figure 5.21: max(∆y,∆x+min(∆x, xgoal))
2 incrementally modified to max(2 ·

∆y,∆x+ 1.5 ·min(∆x, xgoal))
2, increasing average speedup on down sampled

map from 1.67 to 1.88 and average test speedup from 3.665 to 3.792.

We again see a case where the subformulae are simple: each subformula

guides search towards the goal either horizontally or vertically. The user was

able to improve the formula’s speedup merely by amplifying the components’

magnitudes (by multiplication of constants).

5.2.6 Section Summary

The case studies show that in general when the given heuristic formula is

composed of simple subformulae, the user can better introduce bias for the ad-

versarial problem and thus improve the formula’s guiding performance. When

the subformulae are complicated, the user is less able to effectively introduce

48

modifications that improve it, because the modifications may affect the for-

mula’s guidance on problems in unexpected ways.

5.3 Adversarial Map Selection

In this section we apply our method to improve a synthesized heuristic formula

for a set of video-game maps. We take the same five maps from DragonAge:Origins

from Section 5.2. Similar to the previous section, we downsample the maps

for better visualizations. On each of the down sampled map, a set of 40× 40

path finding problems were generated. We take the five synthesized heuristic

formulae Bulitko et al. (2022) (one synthesized for each of the five maps) and

take the formula with the highest average speedup over all 5 × 40 × 40 path

finding problems to start our method with.

In the previous section, for each map we selected the problem which causes

the formula to expand the most number of states. However, in this section

we select the problem that causes the formula to produce the lowest speedup

because the sizes of the maps vary thus this way we prevent bias towards

selecting problems from larger maps.

Furthermore, since the human user only perceives the one path finding

problem, the modification made to the formula may not be beneficial to all

problems on average. Therefore we provide the user with the option to run

a light-weight genetic algorithm seeded with the current formula to optimize

the average speedup over all 5 × 40 × 40 pathfinding problems. The genetic

algorithm runs once with a population of 20 and terminates after 3 generations.

The time it takes is about 30 seconds.

The formula ∆y + 44.9 · max(∆x,∆y) was selected among the five with

the highest average speedup over all 5 × 40 × 40 path finding problems. The

problem that causes it to produce the lowest speedup is selected and visualized

in Figure 5.22. This is the same map from Section 5.2.5.

49

Figure 5.22: ∆y + 44.9 ·max(∆x,∆y) decomposed on map ost000a with the
problem that causes it to produce the lowest speedup.

The formula is decomposed into sub-formulae ∆y + 44.9 · ∆x and ∆y +

44.9∆y. As shown in the closed list plot, most states expanded lie in the

region governed by ∆y + 44.9 · ∆y because this sub-formula considers only

the vertical distance between the current state and the goal state. The user

therefore modified the formula to become ∆x + 44.9 ·max(∆x,∆y) however,

after reevaluation, there is a sharp drop in the average speedup. Therefore

the user undid the modification and ran the genetic algorithm which returns

an improve heuristic formula ∆x + ∆y + 44.9 · max(∆x,∆y) visualized in

Figure 5.23.

50

Figure 5.23: The genetic algorithm improved ∆y + 44.9 · max(∆x,∆y) to
∆y+∆x+44.9 ·max(∆x,∆y) that improved the average speedup from 1.569
to 1.602.

Although the problem selected did not change, the average speedup over

all problems increased. The new formula generated by the genetic algorithm

appropriately inserted the ∆x component into the formula which nudges the

search to explore horizontally towards the goal states.

51

Figure 5.24: The genetic algorithm improved ∆y + 44.9 · max(∆x,∆y) to
∆y + ∆x + 44.9 · max(∆x,∆y)2 that improved the average speedup above
1.602.

The user invokes the genetic algorithm again and got the newly improved

formula ∆y + ∆x + 44.9 · max(∆x,∆y)2. The modification proposed by the

genetic algorithm amplifies the max(∆x,∆y) component by applying a square

operator to it. The average speedup has increased.

52

Figure 5.25: The user modifies ∆y + ∆x + 44.9 · max(∆x,∆y)2 to become
∆y +∆x+max(∆x,∆y)4 increasing the average speedup.

Taking inspiration of amplifying the max(∆x,∆y) component, the user re-

placed the multiplication of 44.9 by a square operator in hope of both achieving

the same magnitude amplification effect and making the formula more port-

able (by eliminating the seemingly map-specific multiplier 44.9). Thus the user

modified the formula to become ∆y+∆x+max(∆x,∆y)4 which increased the

average speedup. The user attempted to add another square operator to the

max(∆x,∆y) component in the hope to keep increasing the average speedup,

however the new formula caused a drop in average speedup.

53

Figure 5.26: Increasing the test speedup from 3.721 to 3.835.

The user undid the modification and consulted the genetic algorithm to

improve the formula, however the genetic algorithm returned the same formula:

∆y +∆x+max(∆x,∆y)4

Thus the user terminates the improvement cycle with the resulting formula.

The new formula was evaluated on the held-out 5 × 200 × 200 pathfinding

problems over all original video game maps and has increased the average

speedup from 3.721 to 3.835.

In this case we see that the complicated subformulae ∆y+ 44.9 ·∆x again

caused the user to be unable to make improving modifications. Almost all

attempts made by the user failed to improve the speedup of the formula.

54

Assisted by the genetic algorithm, the user was able to improve the speedup

of the formula by replacing the constant 44.9 with a square operator.

From the case studies it is clear that the user can be more likely to make

improvements to the formula when the initial formula has simple subformulae.

Thus it is beneficial if the synthesiser can be constrained to synthesize formulae

with short subformulae. However if such constraints on subformula size causes

the speedup of synthesized formulae to drop substantially, it is no better to use

formulae with long subformulae and better speedup. To answer the question

“will constraining on subformula size hurt average performance?” requires

empirical work which we present in Chapter 6.

55

Chapter 6

Synthesizing User Improvement

Conducive Heuristics

In the previous chapter we applied our explanation algorithm to some heuristic

formulae synthesized for pathfinding problems on video game maps used in the

work by Bulitko et al. 2022, where they took 24 MovingAI (Sturtevant 2012)

maps from the video games Dragon Age: Origins (DAO) and StarCraft (SC)

split into four sets DAO-A, DAO-B, SC-A and SC-B each containing six maps.

We adopt the same maps as our test bed.

We adopt the genetic programming algorithm from the work of Wang et

al. 2023 as our formula synthesizer. Since our focus is on the effect of restrict-

ing subformulae sizes on A* speedup of the synthesized heuristics, we keep

the synthesizer largely identical to the previously published algorithm (Wang

et al. 2023) with the removal of the limit of consecutive stagnate gener-

ations µ as a termination condition. Thus a trial only terminates if the

budget b (i.e., allowed number of state expansions) runs out. We set our

baseline heuristic, the weighted Manhattan distance, with the set of weights

{1, 1.1, . . . , 1.9, 2, 3, 4, . . . , 9, 10}.
Our empirical evaluation seek to address the following two questions. First,

will constraining on subformula size hurt average performance? Second, will

extending the grammar with a conditional increase speedup of synthesized

formulae?

To address the two questions we run formula synthesis under four settings:

(1) A + Γ: original grammar Γ with no subformula size restriction (this is

56

in line with published work); (2) Aη + Γ: original grammar with an upper

bound on subformula size; (3) A + Γ+: extended grammar and no subformula

size restrictions and (4) Aη + Γ+: extended grammar and an upper bound on

subformula size.

In generating problem sets to be used during synthesis, we consider two set-

tings: different problems with varied goal locations and all problems shareing

a single goal location. Intuitively the latter is easier to synthesize a heuristic

formula for.

A single synthesis trial was run on a quad-core cluster node with 16Gb of

RAM.

6.1 Synthesis on Problems with Multiple Goal

Locations

For each map from each set, we randomly initialize 3 goal locations and 3 start

locations for each goal location (3× 3 = 9 start-goal pairs) as the training set.

We run a total of 16 trials for each map and the synthesis output of each trial

is evaluated on a 100× 100 validation problem set on that map. The formulae

with the highest/best validation speedup out of the 16 outputs is evaluated

on the 200 × 200 test problem set for that map (this is in line with the work

of Bulitko et al. 2022). The speedup of that formula on the test problem set

is referred to as the test speedup. We run synthesis four times and average the

test speedups.

There are two grammars and four values of the upper bound on the sub-

formula size η ∈ {1, 3, 5,∞}. An upper bound of ∞ means no size restriction

is imposed on subformula size during synthesis.

As shown by Figure 6.1, upper bounds of 3 and 5 on subformula size does

not appear to decrease the resulting speedup. Setting the upper bound to

1, however, does have a negative effect as the subformulae are forced to be

one token in length (i.e., too limited). However, synthesis with the extended

grammar does not appear to find better heuristics than that with the original

grammar.

57

Table 6.1: Synthesized subformulae for the multi-goal setting for η = 5.

Map Heuristic subformula

brc202d f1 = xgoal ·∆x, f2 = (y + ygoal) ·∆y
den000d f3 = ∆y4, f4 = ∆x4

den501d f5 = ∆y2, f6 = ∆x2 ·∆x
lak505d f7 = ∆x2, f8 = xgoal · y
orz103d f9 = y ·∆y
brc100d f10 = ∆x8, f11 = (xgoal ·∆y2)2
brc201d f12 = ∆x2 ·

√
∆x

den505d f13 = y4

lak100c f14 = ∆y · xgoal − x, f15 = ∆x2 + ygoal
orz701d f16 = ∆y2 +∆x
orz702d f17 = (ygoal ·∆y)2

ShroudPlatform f18 = xgoal ·∆y
SpaceAtoll f19 = ∆x+∆y2

Triskelion f20 = ∆y · xgoal, f21 = ∆x · xgoal
Archipelago f22 = ∆x2 −∆x
Brushfire f23 = ∆y · (y +∆y)
Caldera f24 =

√
x ·∆x

CatwalkAlley f25 =
√
ygoal ·∆x

Table 6.2: Synthesized subformulae for the multi-goal setting for η = 3.

Map Heuristic subformula

brc202d f26 = ∆x2, f27 = ∆y2

den501d f28 = ∆y · xgoal, f29 = ∆x4

lak505d f30 = ∆x · ygoal
brc100d f31 = xgoal ·∆x, f32 = ∆y · ygoal
brc201d f33 = ∆x · xgoal, f34 = ∆y4

den505d f35 = y2

orz702d f36 = x ·∆x

Table 6.3: Synthesized subformulae for the multi-goal setting for η = 1.

Map Heuristic subformula

brc202d f38 = ∆x, f39 = y, f40 = ∆y, f41 = x, f42 = xgoal
ost000a f43 = ygoal

With upper bound η = 1, a synthesized subformula can only be a terminal

in our grammar which means that the A* search may overemphasize the g

values when computing the priority score f = g + h. With larger upper

59

bounds η = 3 or η = 5, the synthesis can use more complex subformula (e.g.,

∆x + ∆y2) which may prevent the dominance of g values when computing

priority scores.

Our motivation for imposing an upper bound on subformula size was to

achieve an easier connection between a subformula and the direction it guides

the search in a region of the map. To illustrate this with an actually synthes-

ized subformula, consider f1 = xgoal · ∆x. Given a goal coordinate xgoal, the

subformula f1 simply computes a scaled horizontal distance between a state

and the goal. Therefore the search will be guided in the horizontal direction

towards the goal until an obstacle is encountered.

6.2 Synthesis on Problems with a Shared Goal

Locations

For the shared goal location experiments, we pick the goal location at the

center of each map for all problems. If the center location of the map is

not empty we pick the available location closest to the center by Manhattan

distance (with arbitrary tie breaking).

During training, we randomly initialize 9 start locations for each synthesis

trial. We randomly generate 400 and 800 start locations for the validation and

test problem sets respectively on each map.

60

the formula is cut off thus we see a more negative impact on the speedup for

the shared goal setting than the multiple goal setting.

6.3 Chapter Summary and Iterative Improve-

ment of a Constrained Formula

Heuristic formula synthesis constrained by an upper bound on subformula size

does not appear to decrease the resulting A* speedup unless the upper bound

is too low (Figure 6.1) under the multiple goal setting. However, under the

shared goal setting, the restriction on subformula size impact the speedup

more negatively.

Additionally, when pathfinding problems on a map share a goal location,

grammar extended with conditionals allows the synthesizer more flexibility to

compose heuristic formulae with higher speedups than those with the original

grammar (Figure 6.2).

Now we test the iterative improvement approach with a synthesized heur-

istic formula with constraint of 3 on subformula size. We pick the failed case

from Section 5.2.2 of Chapter 5 on the video-game map den000d. Compared

to the formula synthesized without constraints from the work by Bulitko et

al. 2022, the constrained synthesizer generated the formula max (∆x2,∆y2)

with subformulae ∆x2 and ∆y2 each having size no greater than 3.

62

Figure 6.3: The decomposed subformulae with the closed list on the down-
sampled map.

The formula’s average test speedup is 5.258, slightly lower than 5.268,

that of the previous formula. The formula’s average speedup on the 40 × 40

pathfinding problems on the down sampled map is 1.673. Consider the ad-

versarial problem selected against the formula shown in Figure 6.3. Most

needlessly expanded states are to the left of the start state in the region gov-

erned by ∆x2. In order to make that region less attractive to search, the user

multiplies the subformula by a constant 1.5 thus end up with the new formula

max (1.5 ·∆x2,∆y2).
Figure 6.4 shows the newly selected adversarial problem. The closed list

seems substantially reduced and the speedup on the down-sampled map in-

creased from 1.673 to 1.713. The user is satisfied with the result and terminates

the process. After evaluating the new formula on the held-out problem set,

the average test speedup increased from 5.258 to 5.319. The resulting formula

performs even better than the formula synthesized without constraints yet it

is more compact.

63

Figure 6.4: Increasing the speedup on downsampled map from from 1.673 to
1.713 and the test speedup from 5.258 to 5.319. Even greater than 5.268, the
test speedup of synthesized formula before.

To conclude, we have shown that in general synthesis with constrained sub-

formula size does not substantially hurt the guiding performance of produced

heuristic formulae. Furthermore, the synthesized formulae with constrained

subformula size, when applied in the iterative improvement approach afore-

mentioned, can allow the human user to introduce biases more effectively.

Therefore the answer to the first research question is that by constraining sub-

formula size, performance is not hurt substantially. The answer to the second

research question is that by extending the grammar with a conditional, spee-

dup of synthesized formula increase on average under the condition that all

problems on a map share a common goal location.

64

Chapter 7

Future Work

Future work will investigate explaining and improving synthesized heuristics in

other settings such as agent-centered real-time heuristic search (Bulitko 2020)

or multi-agent pathfinding (Wang et al. 2023). For instance, in real-time

heuristic search a formula-based heuristic provides the initial heuristic values

for an agent. However, since the agent modifies its heuristic as it moves about

the map, our explanation method would need to be extended to take the

modifications into account. A related future research direction is to extend

our method to explain reinforcement learning policies.

Future work will also apply formula synthesis in other domains. A prom-

ising direction is to apply the synthesis techniques to generate formulae to

simulate bird songs (Bistel et al. 2022). Traditionally domain experts hand-

craft formulae to simulate bird songs in order to produce more training data

for classifiers. This process is tedious and expensive. By applying the formula

synthesis method one can potentially generate formulae for any bird species

thus expanding training data for species that lack them. Follow-up work will

investigate the explanability of the synthesized formulae.

The method we presented in this thesis relied on visualizations. An al-

ternative is to use a large language model to attempt to generate a natural

language explanation of each subformula’s operation in the spirit of Bashir

et al. 2023. Although large language models are not good at explaining the

entire heuristic formula (as shown in Appendix A), it can be applied to explain

subformulae to facilitate the human user in understanding them.

65

Chapter 8

Conclusions

We presented a novel method for explaining a synthesized heuristic formula

via automatically decomposing it into subformulae and associating each with

a region of the search map. We also presented an application of our approach

for a user to iteratively improve a given formula. We presented case studies

in single-problem, multi-problem and multi-map settings and identified the

main reason behind the failed cases: complicated subformulae, causing useful

modifications more difficult to add by a user.

Therefore the iterative improvement approach will likely work better when

the subformulae are short. Thus we introduced constrained heuristic synthesis

to produce heuristics with short subformulae and tested the iterative improve-

ment on a previously failed case with the newly synthesized constrained for-

mula. The new case study was successful.

We empirically showed that a restriction on subformula size, unless too

restrictive, does not adversely affect heuristic speedup. Finally we showed that

by extending the original grammar with conditionals we allow the synthesizer

to find heuristic formulae with better performance when the problems share a

common goal location.

Furthermore we applied a pre-trained large language model to explain a

synthesized formula but it’s explanations are too general for a reconstructor

to come up with a formula resembling the original. However it is likely that

pre-trained large language models can well explain short subformulae thus

facilitate a user in understanding the entire formula.

66

References

[1] J.-M. Alkazzi, A. Rizk, M. Salomon and A. Makhoul, ‘Mapfaster: A
faster and simpler take on multi-agent path finding algorithm selection,’
in Proceedings of IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems (IROS), 2022.

[2] S. Almagor and M. Lahijanian, ‘Explainable Multi Agent Path Finding,’
in Proceedings of Autonomous Agents and Multiagent Systems conferece
(AAMAS), 2020, pp. 34–42.

[3] Z. Bashir, M. Bowling and L. H. Lelis, ‘Assessing the Interpretability
of Programmatic Policies with Large Language Models,’ arXiv preprint
arXiv:2311.06979, 2023.

[4] R. A. Bistel, A. Martinez and G. B. Mindlin, ‘Neural networks that
locate and identify birds through their songs,’ The European Physical
Journal Special Topics, pp. 185–194, 2022.

[5] V. Bulitko, ‘Evolving Initial Heuristic Functions for Agent-Centered
Heuristic Search,’ in Proceedings of the IEEE Conference on Games
(CoG), 2020, pp. 534–541.

[6] V. Bulitko, Y. Björnsson, N. R. Sturtevant and R. Lawrence, ‘Real-
Time Heuristic Search for Pathfinding in Video Games,’ in Artificial
Intelligence for Computer Games, 2011.

[7] V. Bulitko, S. P. Hernandez and L. H. S. Lelis, ‘Fast Synthesis of Algeb-
raic Heuristic Functions for Video-game Pathfinding,’ in Proceedings of
the IEEE Conference on Games (CoG), 2021, pp. 1–5.

[8] V. Bulitko and R. Lawrence, ‘Game-map Pathfinding with Per-Problem
Selection of Synthesized Heuristics,’ in Proceedings of the IEEE Confer-
ence on Games (CoG), 2023, pp. 1–4.

[9] V. Bulitko, S. Wang, J. Stevens and L. H. Lelis, ‘Portability and Ex-
plainability of Synthesized Formula-based Heuristics,’ in Proceedings of
the International Symposium on Combinatorial Search (SoCS), 2022,
pp. 29–37.

[10] J. Chen and N. R. Sturtevant, ‘Necessary and sufficient conditions for
avoiding reopenings in best first suboptimal search with general bound-
ing functions,’ in Proceedings of the AAAI Conference on Artificial In-
telligence, 2021.

67

[11] E. Deza, M. M. Deza, M. M. Deza and E. Deza, Encyclopedia of dis-
tances. Springer, 2009.

[12] S. P. Hernandez and V. Bulitko, ‘Speeding Up Heuristic Function Gener-
ation via Automatically Extending the Formula Grammar,’ in Proceed-
ings of the Symposium on Combinatorial Search (SoCS), 2021, pp. 233–
235.

[13] O. Kaduri, E. Boyarski and R. Stern, ‘Algorithm selection for optimal
multi-agent pathfinding,’ in Proceedings of the International Conference
on Automated Planning and Scheduling (ICAPS), 2020.

[14] D. Lyu, F. Yang, B. Liu and S. Gustafson, ‘SDRL: interpretable and
data-efficient deep reinforcement learning leveraging symbolic planning,’
in Proceedings of the AAAI Conference on Artificial Intelligence, 2019,
pp. 2970–2977.

[15] A. Nazari, Y. Huang, R. Samanta, A. Radhakrishna and M. Raghothaman,
‘Explainable Program Synthesis by Localizing Specifications,’ in Proceed-
ings of the Association for Computing Machinary (ACM) on Program-
ming Languages, 2023, pp. 2171–2195.

[16] J. Ren, V. Sathiyanarayanan, E. Ewing, B. Senbaslar and N. Ayanian,
‘MAPFAST: A deep algorithm selector for multi agent path finding us-
ing shortest path embeddings,’ in Proceedings of the International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS), F.
Dignum, A. Lomuscio, U. Endriss and A. Nowé, Eds., 2021.

[17] P. Saunders, V. Bulitko, S. Ondrčková and R. Barták, ‘Formula- and
memory-based heuristics in video-game pathfinding,’ in 2024 IEEE Con-
ference on Games (CoG), 2024, pp. 1–4.

[18] D. Sigurdson, V. Bulitko, S. Koenig, C. Hernandez and W. Yeoh, ‘Auto-
matic Algorithm Selection in Multi-Agent Pathfinding,’ arXiv preprint
arXiv:1906.03992, 2019.

[19] D. Silver, ‘Cooperative pathfinding,’ in Proceedings of the AAAI con-
ference on artificial intelligence and interactive digital entertainment
(AIIDE), 2005.

[20] N. R. Sturtevant, ‘Benchmarks for Grid-based Pathfinding,’ IEEE Trans-
actions on Computational Intelligence and AI in Games, no. 2, pp. 144–
148, 2012.

[21] N. R. Sturtevant, A. Felner, M. Barrer, J. Schaeffer and N. Burch,
‘Memory-based Heuristics for Explicit State Spaces,’ in Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI), 2009.

[22] G. Team, R. Anil, S. Borgeaud et al., ‘Gemini: A family of highly capable
multimodal models,’ arXiv preprint arXiv:2312.11805, 2023.

68

[23] S. Wang, V. Bulitko, T. Huang, S. Koenig and R. Stern, ‘Synthesizing
Priority Planning Formulae for Multi-Agent Pathfinding,’ in Proceedings
of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE), 2023, pp. 360–369.

[24] S. Wang, V. Bulitko and W. Yeoh, ‘Explaining Synthesized Pathfinding
Heuristics via Iterative Visualization and Modification,’ in Proceedings
of the anual IEEE Conference on Games (CoG), 2024, pp. 1–4.

[25] S. Zhang, J. Li, T. Huang, S. Koenig and B. Dilkina, ‘Learning a priority
ordering for prioritized planning in multi-agent path finding,’ in Proceed-
ings of the International Symposium on Combinatorial Search (SoCS),
2022.

69

Appendix A

Large Language Model Prompts

for Explaining Heuristic

Formulae

Here we present the prompts we used for the pre-trained large language model

to explain a synthesized heuristic formula. We used Gemini (Team et al. 2023)

for the experiment. We tested the heuristic formula:

max (100,min (ygoal,∆y) + y)2 ·max (∆x,∆y)

from Section 5.2.4 of Chapter 5. Gemini generated a textual explanation with

the prompts shown in Listing A.1. The explanation is shown in Listing A.2.

1 Heuristic functions guide search algorithms and have a

profound impact on their performance. Consider A*

search where the algorithm maintains a search frontier

and the f-score computed by f = h + g determines

which node in the frontier to expand next.

2

3 You are provided with the following preliminaries and

helper functions in C:

4

5 int delta(int a, int b) {

6 return abs(a - b);

7 }

8

9 int sqr(int a) {

10 return a * a;

11 }

12

13 Here , I provide a context free grammar (CFG) of heuristic

functions inside the <CFG ></CFG > tag written bellow:

70

14

15 <CFG >

16 F -> T | U | B

17 T -> x | xg | y | yg | delta(xs, xg) | delta(ys, yg) | C

18 U -> sqrt(F) | |F| | -F | sqr(F)

19 B -> F + F | F - F | F * F | F / F | max(F, F) | min(F, F

)

20 </CFG >

21

22 Here C is a numeric constant. x is the x coordinate of

the current state , xg is the x coordinate of the goal

state , y is the y coordinate of the current state and

yg is the y coordinate of the goal state.

23

24 Now you have the background knowledge you need to know. I

want you to write an explanation for the following

heuristic function written in C that goes with the A*

algorithm by explaining how it guide the search:

25

26 int heuristic(int x, int y, int xg , int yg) {

27 return sqr(max(100, min(yg , delta(y, yg)) + y));

28 }

29

30 Note: the output of the heuristic function will be

rounded to an integer.

31

32 Keep in mind the following about the search map:

33 1. The map’s coordinates starts with (0, 0). There are no

negative coordinates.

34 2. There are only walls and empty spaces in the map.

35 3. The goal position is always reachable from the start

position.

36 4. The values of x, xg , y and yg will ALWAYS be

nonnegative.

37 5. The action selection logic is ALWAYS to selection the

state with the minimum f-score.

38 6. When you explain the heuristic function , explain how

it will guide the search if we use the A* search

algorithm.

39

40 The following 8 are the guidelines for writing an

explanation for this heuristic function:

41 1. Write a high -level explanation and do not describe the

heuristic function term by term.

42 2. Try to understand how this heuristic function guides

search and explain in natural language for someone who

wants to apply this heuristic function for their

71

search.

43 3. DO NOT USE any quotation marks in writing the

explanation.

44 4. You can mention numbers in your explanation.

45 5. There should be no appearance of the heuristic

function anywhere in your explanation.

46 6. Avoid using any adjectives.

47 7. Write the explanation inside the "<explanation ></

explanation >" tag. Your explanation should start with

"<explanation >" and end with "</explanation >".

48 8. Make the explaination simple and be objective.

49

50 So , following the instructions above , provide a high -

level explanation of the provided heuristic function

so that someone can rewrite this program from that

summary.

Listing A.1: Prompts for the explainer.

The explanation is vague and it applies to almost any heuristic that con-

tains the ∆x and ∆y components. After giving the explanation to the re-

constructor instance, Gemini outputs the formula max (∆x, 100), which is not

even close to the original.

1 Heuristic functions guide search algorithms and have a

profound impact on their performance. Consider A*

search where the algorithm maintains a search frontier

and the f-score computed by f = h + g determines

which node in the frontier to expand next.

2

3 You are provided with the following preliminaries and

helper functions in C:

4

5 int delta(int a, int b) {

6 return abs(a - b);

7 }

8

9 int sqr(int a) {

10 return a * a;

11 }

12

13 Here , I provide a context free grammar (CFG) of heuristic

functions inside the <CFG ></CFG > tag written bellow:

14

15 <CFG >

16 F -> T | U | B

17 T -> x | xg | y | yg | delta(xs, xg) | delta(ys, yg) | C

72

18 U -> sqrt(F) | |F| | -F | sqr(F)

19 B -> F + F | F - F | F * F | F / F | max(F, F) | min(F, F

)

20 </CFG >

21

22 Here C is a numeric constant. x is the x coordinate of

the current state , xg is the x coordinate of the goal

state , y is the y coordinate of the current state and

yg is the y coordinate of the goal state.

23

24 Note: the output of the heuristic function will be

rounded to an integer.

25

26 Keep in mind the following about the search map:

27 1. The map’s coordinates starts with (0, 0). There are no

negative coordinates.

28 2. There are only walls and empty spaces in the map.

29 3. The goal position is always reachable from the start

position.

30 4. Because of the nature of the map , x, xg , y, yg will

ALWAYS be nonnegative.

31

32 Now you have the background knowledge you need to know.

33

34 Here is a summary of a heuristic function generated by

Gemini. Let’s call it "LLM Explanation" which was

generated as an explanation of a heuristic function to

compute the heuristic for A* search. The natural

language explanation is between the "<explanation ></

explanation >" tags:

35

36 <explanation >

37 The heuristic function estimates the distance to the goal

based on the current position ’s y-coordinate and the

goal’s y-coordinate. It prioritizes exploration in the

direction of the goal’s y-coordinate while

considering a minimum distance threshold. The function

ensures a minimum estimated distance of 100 units ,

regardless of the actual position. This prevents the

algorithm from prematurely focusing on nearby

positions and encourages exploration in a broader area

.

38 </explanation >

39

40 Your tasks are the following 6:

41 1. Given the instructions on how to write a heuristic

formula and the explanation from Gemini (i.e., the "

73

LLM Explanation ") provided earlier , write down the

formula encoded in the explanation and reconstruct the

program in the language for the heuristic formulae (

you must only use the language provided).

42 2. You must not use any symbols (for example: &&, || etc

.) outside of the given CFG. You have to strictly

follow this CFG while writing the formula.

43 3. Write only the formula inside the "<formula ></formula

>" tag and the heuristic function you write should be

a C++ function.

44 4. Do not write unneccessary symbols of the CFG such as

"->", "|" etc.

45 5. When you encounter parentheses in an expression or

code , their opening and closing positions are crucial

as they indicate the inclusion of some statements

within others.

46 6. Check the formula and ensure that it does not violate

the rules of the CFG or the guidelines of writing the

formula.

47

48 IMPORTANT:

49 For the sake of formula readability , write a shorter

formula instead of a long one.

Listing A.2: Prompts for the reconstructor.

The verifier outputs “no” almost always, which is true most of the time.

1 Heuristic functions guide search algorithms and have a

profound impact on their performance. Consider A*

search where the algorithm maintains a search frontier

and the f-score computed by f = h + g determines

which node in the frontier to expand next.

2

3 Here , I provide a context free grammar (CFG) of heuristic

functions inside the <CFG ></CFG > tag written bellow:

4

5 <CFG >

6 F -> T | U | B

7 T -> x| x_g | y | y_g | \Delta x | \Delta y | C

8 U -> sqrt(F) | |F| | -F | F^2

9 B -> F + F | F - F | F * F | F / F | max(F, F) | min(F, F

)

10 </CFG >

11

12 Here , \Delta x = |x - x_g|, \Delta y = |y - y_g| and C is

a numeric constant. Now you have the background

knowledge you need to know.

13

74

14 I have a heuristic function F written in the language

provided above. It computes heuristic for A* search.

Here is the heuristic function:

15

16 int heuristic(int x, int y, int xg , int yg) {

17 return sqr(max(100, min(yg , delta(y, yg)) + y));

18 }

19

20 Then I asked the first instance of Gemini for a high -

level explanation so that another instance of Gemini

can regenerate the code using that explanation. The

first Gemini gave me this:

21

22 <explanation >

23 The heuristic function estimates the distance to the goal

based on the current position ’s y-coordinate and the

goal’s y-coordinate. It prioritizes exploration in the

direction of the goal’s y-coordinate while

considering a minimum distance threshold. The function

ensures a minimum estimated distance of 100 units ,

regardless of the actual position. This prevents the

algorithm from prematurely focusing on nearby

positions and encourages exploration in a broader area

.

24 </explanation >

25

26 Now I want to know if the explanation provides term by

term description of the heuristic function or an exact

instruction of how to write the heuristic function.

Answer with yes or no first and then explain why.

Listing A.3: Prompts for the verifier.

75

	Introduction
	An Illustrative Example
	Thesis Organization

	Problem Formulation
	Background: Pathfinding
	Background: Heuristic Synthesis
	Heuristic Improvement and Explainability

	Related Work
	Comparing Search Method Selection and Formula Synthesis
	Formula Synthesis for Search
	Pretrained Large Language Model for Synthesized Code Explanation
	Symbolic Decomposition for Explanation

	Proposed Approach
	Intuition and an Example
	Algorithmic Details
	Formula Simplification
	Replacing and with Conditionals
	Formula Decomposition
	Visualization

	Explanation-Friendly Formulae
	Grammar Extension
	Iterative Heuristic Formula Improvement and Adversarial Problems Display
	Formula Improvement for a Single Problem
	Formula Improvement for Multiple Problems

	Heuristic Improvement Case Studies
	Single-Problem Cases
	Case #1: Chebyshev Distance
	Case #2: The Wall-hugging Heuristic
	Section Summary

	Iterative Heuristic Formula Improvement based on Adversarial Problem Selection
	Case #1: brc202d
	Case #2: den000d
	Case #3: den501d
	Case #4: lak505d
	Case #5: ost000a
	Section Summary

	Adversarial Map Selection

	Synthesizing User Improvement Conducive Heuristics
	Synthesis on Problems with Multiple Goal Locations
	Synthesis on Problems with a Shared Goal Locations
	Chapter Summary and Iterative Improvement of a Constrained Formula

	Future Work
	Conclusions
	References
	Appendix Large Language Model Prompts for Explaining Heuristic Formulae

