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Abstract — In this paper, an interface crack between 
piezoelectric and orthotropic half-spaces has been studied in 
detail. By using integral transformation techniques, the present 
mixed boundary value problem was reduced to the solution of 
singular integral equations, which can be further reduced to 
solving a Riemann-Hilbert problem with a closed form 
solution. The crack-tip singularities of the interface crack have 
been investigated for possible combinations of the 
piezoelectric and orthotropic materials; a criterion based on 
the g-parameter of the Riemann-Hilbert problem is introduced 
to study the possible singularity behavior of the interface crack. 
It is shown that there can be either oscillatory or non-
oscillatory singularity for the interface crack depending on the 
particular combinations of the bi-materials. A closed form 
solution for stresses, electric field and electric displacement in 
the cracked bi-materials is given, and of particular interests, 
the analytical expression of the stresses and electric 
displacements along the interface has been obtained. 

Keywords- interface crack; piezoelectric and orthotropic 
materials; singular integral equations; Riemann-Hilbert problem; 
oscillatory or non-oscillatory singularity 

I.  INTRODUCTION 

The problem of interfacial cracks in dissimilar isotropic 
materials has been extensively studied, and the characteristic 
oscillating stress singularity was determined by Williams [1]. 
Investigations of interfacial cracks between dissimilar 
anisotropic media can be found in the works of Clements [2], 
among many others. Interfacial fracture in adhesively bonded 
structures presents an important concern in multilayer devices, 
in which interfacial cracks is often observed. In view of the 
wide application of piezoelectric materials in smart structures, 
interface crack problems in dissimilar piezoelectric materials 
have received considerable attention. Stress singularities for the 
interfacial cracks in bonded piezoelectric half-spaces have been 
investigated by Kuo and Barnett [3]. Suo et al. [4] considered 
impermeable interface cracks between two dissimilar 
anisotropic piezoelectric materials and the solution was found 

in an exact analytical form, which showed that the crack tip 
singularity can be oscillatory and/or non-oscillatory, and the 
non-oscillatory singularity is different from the classical square 
root singularity for cracks in homogeneous materials. Qin and 
Mai [5] established a closed crack-tip model for an interface 
crack between two thermo-piezoelectric materials by using the 
extended Stroh formalism and the method of singular integral 
equations; and the effects of the combined thermal, mechanical 
and electrical loads on the stress intensity factors and size of 
contact zone have been analyzed. 

In many practical applications, piezoelectric materials are 
bonded to non-piezoelectric (conducting or insulating) 
materials. Parton [6] analyzed interfacial cracks between 
piezoelectric and conducting isotropic materials. Liu and Hsia 
[7] studied an interfacial external crack between piezoelectric 
and orthotropic half-spaces using the method of singular 
integral equations and Riemann boundary value problems. Ou 
and Chen [8] have investigated interfacial cracks between 
piezoelectric material and non-piezoelectric isotropic elastic 
materials by employing Stroh formalism and assuming that 
elastic materials have extremely low but non-zero piezoelectric 
and dielectric constants. A hybrid complex-variable solution 
for piezoelectric/isotropic elastic interfacial cracks has been 
obtained by combining the Stroh’s method of piezoelectric 
materials with Muskhelishvili’s method for isotropic elastic 
materials, and a simple explicit condition is given for the 
absence of the oscillating singularity for interfacial cracks by 
Ru [9]. It is noted that the majority of existing works on 
interfacial cracks in piezoelectric materials have been based on 
the Stroh formalism, while when a non-piezoelectric elastic 
material is being treated as a special case of piezoelectric 
materials with vanishing piezoelectric constants, the solution 
becomes complicated due to the appearance of repeated 
eigenvalues [10]. 

In this work, we develop an exact method for a conducting 
interface crack between piezoelectric and orthotropic materials 
by using the method of Integral transforms and singular 
integral equations, and closed-form solutions have been 
obtained by solving the corresponding Riemann-Hilbert 



   

problem. Exact solution of the fields in the cracked bi-materials 
has been obtained, and analytical expression of the stresses and 
electric displacement on the bonded interface is provided, and 
the singularity behavior of the interface crack is analyzed in 
detail. A criterion based on the g-parameter of the Riemann-
Hilbert problem is introduced to study the possible singularity 
behavior of the interface crack, which shows that the interface 
crack can have either oscillatory or non-oscillatory singularities 
depending on the value of the g-parameter. The extend 
Dunders parameter   for the interface crack between 
piezoelectric and orthotropic materials has been obtained and 
the relation between   and the g -parameter was given.   

II. PROBLEM STATEMENT 

We study an interface crack of length c2  between 
piezoelectric and orthotropic half-spaces, with the poling 
direction of the piezoelectric medium perpendicular to the 
crack plane, as shown in Fig. 1. For convenience, a set of 
Cartesian coordinate system ( yx, ) is attached to the crack. 

Assume that a uniform normal stress, 0P , is applied on the 
crack faces.  

 

 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. An interface crack between piezoelectric and 

orthotropic materials. 

Consider a transversely isotropic, linear elastic piezoelectric 
half-space and denote the rectangular coordinates of a point by 

),( yx . In the absence of body forces and electric charge 
density, the equilibrium equations for plane strain 
piezoelectricity can be expressed as [11] 
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where yx uu ,  are components of the displacement vector,   is 

the electric potential, 44331311 ,,, CCCC  are elastic constants, 

333115 ,, eee  are piezoelectric constants, and 3311,  are 
dielectric permittivities. 

The constitutive equations of the piezoelectric media are  
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where ij , ij , iD
 
and iE  ( yxji ,,  ) are components of 

stress, strain, electric displacement and electric field, 
respectively. 

The gradient equations are  

iiijjiij Euu ,,, ),(
2

1      ( yxji ,,  )      (4) 

For an orthotropic elastic half-space under in-plane loading, 
the constitutive equations and the equilibrium equations are  
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where the superscript “E” denotes the quantities of the elastic 
orthotropic half-spaces, and the same definitions are applied 

through the paper. E
xu  and E

yu  are the displacement vectors, 

and EEEE CCCC 44331311 ,,,  are the elastic stiffness constants of 

the orthotropic half-spaces. 

The continuity conditions along the interface between the 
piezoelectric and orthotropic half-spaces at 0y  are  

0)0,(

)0,()0,(

)0,()0,(










x

xx

xx

xyxy

yyyy







         ( 0x )              (7) 

It is noted that the orthotropic half-space is considered an 
ideal conductor that a zero electric potential holds at the 
interface 0y  between the piezoelectric and orthotropic 
materials. The boundary conditions of the mixed boundary 
value problem for the interface crack can be expressed as 



   

0)0,( Pxyy  ,              ( cx  )                (8) 

)0,()0,(   xuxu E
yy ,       ( cx  )               (9) 

0)0,( xxy ,                   ( cx  )              (10) 

)0,()0,(   xuxu E
xx ,       ( cx  )             (11) 

III. METHOD OF SOLUTION 

For the piezoelectric medium, by using the technique of 
integral transform to (1), the displacements and electric 
potential in the piezoelectric half-space can be expressed as 
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where jj ba ,  ( 31j ) are constants related to material 

properties, and the roots j  ( 31j ) are determined from 

the following characteristic equation 
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in which the notation “ ” denotes determinant.  

 For the orthotropic elastic medium, the displacements 
inside the orthotropic half-space may be given as  
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where E
ja  ( 2,1j ) are constants, and the roots E

j  ( 2,1j )  

are defined by the characteristic equation as following 
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Note that the sixth-order characteristic equation (15) has 
six roots which occur in pairs with the same magnitude but 
opposite signs for the real ones, and in conjugate pairs for the 
complex roots. Similarly, the bi-quadratic equation (17) has 
four roots which occur in pair with the same magnitude but 
opposite signs for the real roots and in conjugate pairs for the 
complex roots, respectively. The roots j  

)31( j  with 

0)Re( j  and E
j  

)2,1( j  with 0)Re( E
j  are chosen 

by requiring a positive internal energy for the system to be in a 

steady state, where “Re” denotes the real part of a complex 
number.  

The stress and electric displacement components of the 
piezoelectric medium can be obtained by using the constitutive 
equations (2, 3), and the stresses in the orthotropic elastic half-
space can be obtained from (5). The detailed expression is 
omitted here. 

The application of the continuity condition in (7) leads to 
the result that the unknown functions )(3 A  and 

)(),( 21  EE AA  can be expressed as functions of the 

independent unknowns )2,1()( jA j  . 

Define the following displacement jump across the crack 
face as 
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The satisfaction of the mixed boundary conditions (8-11) 
lead to the following dual integral equations for the unknowns 

)(1 A  and )(2 A : 
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where the constants j  ( 81j ) are related to material 

properties and are omitted here. 

Following the procedure in [6], we can obtain the 
following simultaneous singular integral equations to solve the 
functions )(xu  and )(xw  
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where 0C  is a constant which can be determined by the far-

field boundary conditions, and the real constants jq  

)41( j  are material properties related and are defined as: 
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By introducing the function of a complex variable 
iyxz   as [12]  
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which is analytic in the whole complex plane with a cut along 
the segment cxc   of the real axis, and the boundary 
values of the continuous extension on this segment to the left 
and right are determined by the Sokhotskii-Plemelj formulas 
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where the signs “+” and “-” denote the limiting values of the 
function )(zF  at 0y  from the positive and negative y -axis, 

respectively. It is noted that the function )(tf  in (26) is 
defined as 
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The following Riemann-Hilbert problem can be obtained  
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where the parameter g  is defined as )1()1( qqg  . It will 
be shown later that this parameter is related to the extended 
Dunders parameter   of the interface crack and the singularity 
behavior of the interface crack is dependent on the value of the 
parameter g . 

3.1 when g  is real and negative, i.e., 0g

 The solution of the Riemann-Hilbert problem can be 
obtained as [12] 
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where )(zX  is the particular solution of the homogeneous 
Riemann-Hilbert problem which is bounded near the ends 

cx  , )(tX   is the value of )(zX  on the left boundary of 
the discontinuity, and 
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where  X1tanh  is the inverse hyperbolic tangent of the 
element X ,   is a real constant related to the material 
properties of the piezoelectric and orthotropic elastic materials 
and is known as the oscillatory index of the interface crack 
problem. It is noted that the extended Dundurs parameter   is 
obtained which is a function of the material properties of the 
bi-materials and the roots of the characteristic equations for 
the corresponding bi-materials. The relations between the 
extended Dundurs parameter   and the q -parameter and the 
g -parameter in the Riemann-Hilbert equation (29) is clearly 
shown in Equation (32). 

    Considering that the differences of the displacements w  
and u  vanish at infinity, it requires that 0)( F , which 
results in the condition 
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and by using the methods of evaluating integrals [12], the 
solution of (33) can be obtained as: 
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    The general solution of the Riemann-Hilbert problem (29) 
can be given as 
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    The functions )(xw  and )(xu  can be obtained as 
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and it is obvious that 0)()(  xuxw  for cx   (due to the 
continuity conditions on the bonded interface). 

It can be observed that the dislocation functions )(xw  and 

)(xu  are of oscillating nature and change their sign 

persistently when cx  . Intervals of sign changing of )(xw  

and )(xu  are located within rather small regions of the crack 
tips which is dependent on the value of the oscillatory index  . 

Of particular interest are the stresses and electric 
displacements along the bonded interface between the 
piezoelectric and orthotropic elastic half-spaces, and these 
quantities can be easily obtained. The asymptotic distribution 
of stresses and electric displacements near the crack tip can be 
expressed in terms of the distance from the crack, axr  , 
as 
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where qqqQ 320  , “Im” denotes the imaginary part of a 
complex number, and the mode-I and mode-II stress intensity 
factors (SIFs) 1K  and 2K  are defined respectively as 

cPKcPK  0201 2,                           (42) 

It can be observed from (38-41) that all asymptotic fields 
of the stresses and electric displacements have the square root 

singularity and the oscillating term   irc 2 , which is in 
agreement with the result for interface cracks in dissimilar 
isotropic materials [13]. It is observed that the mode-II stress 
intensity factor 2K  is non-zero when the material-related 
parameter   is not zero. In the special case of a crack in a 
homogeneous material, i.e., 0 , the material dissimilarity 
vanishes, the value of 2K  is zero, and the quasi Mode-I 
degenerate to Mode-I crack problem. 

3.2 when g  is complex and 1g  

In this case, 0q  and q  are imaginary numbers, and the 
solutions of the Riemann-Hilbert problem (29) are  
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where the real constant k  is defined as 
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with  X1tan  being the inverse tangent of the element X . 
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   The functions )(xw  and )(xu  can be obtained as 
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The asymptotic stress field near the right crack tip can be 
obtained as 
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where axr   is the distance from the right crack tip along 
the interface. 

It can be observed that there is no singularity oscillating 
behavior occurs in this case for the interface crack between 
piezoelectric and orthotropic elastic half-spaces. The stress 
fields near the crack-tip have the singularity of order of 

k 21 . These results are in agreement with the results of 
Kuo and Barnett [3] and Suo et al. [4] for interface cracks 
between dissimilar piezoelectric materials. It is noted that this 
type of singularity does not occur in purely elastic solids and 
is believed due to the piezoelectric effect. 

IV. RESULTS AND DISCUSSION 

The solution obtained in the previous section can be used to 
evaluate the distribution of the stresses, electric displacements 
near the interface crack between the piezoelectric and 
orthotropic elastic materials. The material constants of three 
kinds of piezoelectric materials (PZT-4, P-7, PCM-80) and 
three kinds of orthotropic elastic materials (SMC, Beryllium, 
Magnesium) are used in numerical calculation [14].  

 

 

 

 

 

 

 

 

Figure 2. g -parameter for the interface crack between piezoelectric and 

orthotropic materials.  
 

Fig. 2 graphically displays the distribution of the g -
parameter for the interface crack between piezoelectric and 
orthotropic materials. For most material combinations, the 
values of g  are negative and 01  g , and the interface 

crack has oscillatory singularity order i 21 . If 1g , 

the classical singularity order 21  is obtained for the crack 
problem; otherwise if g  is a complex number with the 
magnitude of 1, the singularity order of the corresponding 
interface crack will be k 21 . 
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Figure 3. Normalized stress 0Pyy  around the tip of an interface crack 

between PZT-4 and SMC. 
 

 

 

 

 

 

 

 

 

 

 

Figure 4. Normalized shear stress 0Pxy  around the tip of an interface 

crack between PZT-4 and SMC. 
 

The normalized stress 0Pyy  around the tip of an 

interface crack between PZT-4 and SMC is plotted in Fig. 3, 
and the distribution of normalized shear stress 0Pxy  around 

the tip is plotted in Fig. 4. Singular stresses near crack tip are 
observed and the normal stress is asymmetric about the 
interface due to the mismatch of the piezoelectric and 
orthotropic materials. It is shown that non-zero shear stress 
exist on the interface even though the applied loading is tension, 
which indicates that the mode-II stress intensity factor 2K  is 
non-zero when the oscillatory parameter   is not zero. 

V. CONCLUSIONS  

An interface crack between piezoelectric and orthotropic 
elastic materials under in-plane loading has been studied using 
integral transform method and singular integral equations. The 
mixed boundary value problem for the interface crack was 

reduced to solving singular integral equations, which can be 
further reduced to the solution of a Riemann-Hilbert problem. 
The g-parameter of the Riemann-Hilbert problem is 
introduced to investigate the singularity behavior of the 
interface crack, and it is found that oscillatory and/or non-
oscillatory singularity may exist for the interface crack 
between piezoelectric and orthotropic materials, depending on 
the particular material combinations of the bi-materials. Full-
field solutions for the stresses and electric displacements in the 
cracked bi-materials have been obtained in a closed form, and 
an analytical solution for stresses and electric displacement on 
the interfaces have been provided. The crack tip singularity 
order may be i 21  or k 21 , depending on the 
combination of the piezoelectric and orthotropic materials. 
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