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Abstract

This work develops numerical methods (finite difference methods) for equations
of fluid dynamics and equations of elasticity reformulated in the stress variables
(as opposed to natural variables) and applies them to the Fluid-Structure Interac-
tion (FSI) problem using a new model based on the level set method. Equations
reformulated in stress variables are the stress formulation. Previously some work
has been done on numerical methods for stress formulation for the Navier-Stokes
equation. This work extends this research to the equations of elasticity. Additionally
the current research develops a new model for FSI problems are based on this stress
formulation and the level set method. Using this model and new numerical method
for FSI problems is developed with some constraints. Some benchmark results are
presented.
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Chapter 1

Introduction

The fluid-structure interaction (FSI) problem describes the mechanical interaction

of a fluid and an elastic solid. This problem requires the simultaneous use of

different models to describe the fluid and the elastic structure media as well as

tracking the interface that couples these media and impose appropriate boundary

conditions. This also involves solving equations of the corresponding models in

changing over time domains. The fact that fluid equations are usually formu-

lated the Eulerian framework, while the elasticity problems are considered from

the Lagrangian perspective poses another challenge. This problem has numerous

applications in medicine and engineering, such as blood flow in heart or flexi-

ble blood vessels, flow induced vibrations in various structures and bio-mechanics

[Hou et al. 2012], [Hoffman et al. 2011].

Let us summarize some of the previously successful methods used to solve this

problem.

The simplest approach is called partitioned methods. In this case, fluid and

elasticity solvers are used to solve the fluid and structure problems separately. The

solutions matched using the boundary conditions at the fluid-structure interface
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iteratively. Advantages of this approach are simplicity of the core idea and ability to

reuse fluid and elasticity solvers developed earlier [Hou et al. 2012], [Dunne 2006].

Another approach that has been widely studied is based on the Arbitrary Lagrange-

Eulerian formulation (ALE) [Hron & Turek 2006]. The core idea of the method is

to describe the motion of elastic or fluid medium in a moving reference frame,

which is not necessarily tied to the actual motion of fluid or structure. In ALE

solver for FSI problems, the Lagrange formulation is usually used for structure and

interface motion. This is one of the monolithic descriptions. Fluid and structure are

treated within the same framework. A mapping is introduced between the reference

configuration and the domain configuration at current time. It is natural to use

the initial configuration as the reference configuration in the structure subdomain.

Since structure is described in Lagrange framework, this mapping transforms the

initial configuration of the solid to the configuration at the current time, thus it is

related to the structure displacements. The corresponding mapping in the fluid may

become complicated, so a simpler relation for displacements in the fluid domain is

used to define this mapping. Fluid and structure equations are reformulated using

this mapping. Once the weak formulation is written, the equations are transformed

into the reference configuration and a finite element discretization is derived. Thus,

the complex problem of evolution of fluid-structure interface over time is solved.

The boundary conditions are taken into account naturally, when writing the weak

formulation. The velocity is continuous across the interface, The force balance

condition on the interface is described by the difference of the surface integrals.

By omitting these surface integrals in the resulting formulation, the stress interface

condition is imposed implicitly. The resulting non-linear system is solved using the

Newton method. This idea of representing the fluid and structure as in a unified

medium and solving the problem in the reference configuration is also studied in
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[Le Tallec & Mouro 2001]. Additional attention is given to the discretization of the

problem, solving elastic shell models and general advantages of such approaches.

The ALE treatment of a special phase field function used to distinguish the fluid

and structure media is presented in [Hoffman et al. 2011]. This phase field function

defines the material properties and constitutive laws. However, the equations of

motion are formulated in Euler coordinates.

Another hybrid method (Eulerian-Lagrangian) is presented in [Legay et al. 2006].

In this method there is no need for updating the fluid mesh. Fluid and structure

equations of motion are formulated in Euler frame and combined into a single weak

formulation using a smoothed Heaviside function, zero in one subdomain and one

in the other. A signed distance level set function is used to distinguish the subdo-

mains. Additionally, Lagrange multipliers are introduced to the weak formulation

to explicitly impose the velocity and stress boundary conditions.

A method based on a fully Eulerian formulation for both fluid and elastic struc-

ture has been developed in [Dunne 2006], [Dunne & Rannacher 2006]. After re-

formulation, the weak formulation is considered. In this framework, the boundary

conditions at the fluid-structure interface are treated implicitly: after integration by

parts, the surface integrals are omitted implying the correct boundary conditions

similar to [Hron & Turek 2006]. An additional function which plays the role of a

phase variable is used to distinguish between fluid and structure. An approach anal-

ogous the the level set method is used to transport this function and keep track of the

initial positions of all structure points in the Eulerian perspective. The velocity used

to advect this phase function is the structure velocity in the structure and a harmonic

continuation to the fluid subdomain outside of structure. This is also similar to the

idea in [Hron & Turek 2006]. As a result of this approach, an intermediate step for

the phase function in unnecessary. This also preserves the corners and edges of the
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structure domain.

Another class of methods is immersed methods, that have emerge from the

immersed boundary method first proposed in [Peskin 1977] to describe blood flow

in a heart. The immersed boundary method describes the motion of an elastic fiber in

a fluid. These methods assume that the structure domain is filled with the same fluid.

The fluid-structure interaction forces are computed using the equation of motion for

the structure and applied the fluid in the structure domain. Then, the fluid equations

are solved with this interaction force taken into account. The structure velocity is set

to be the fluid velocity in the structure domain. The location of the fluid-structure

interface is updated using the velocity of the structure [Hou et al. 2012].

Let us describe the mathematical setting for the FSI problems. Domain Ω is

partitioned into two subdomains Ωf and Ωs. The fluid-structure interface is Γ

(Fig. 1.1).

Ωf

Ωs Γ

Figure 1.1: Problem setting.

The motion of the fluid in the fluid domain Ωf is governed by the equation of

motion and incompressibility condition. The formulation is usually given in the
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Euler frame (we assume Einstein summation notation):

∂tvi + vk∂kvi −
∂kσ

f
ik

ρf
=
fi
ρf

;

∂kvk = 0;

σf
ij = µf (∂ivj + ∂jvi)− δijp.

(1.1)

Here vi is the fluid velocity, σf
ik is the fluid stress tensor, fi is the external force,

p is the fluid pressure, parameters µf and ρf are the fluid viscosity and density

respectively.

The motion of the elastic structure inΩs is governed by the equation of motion of

linear elasticity and incompressibility condition. The formulation is usually given

in the Lagrange frame:

dvi
dt

− ∂kσ
s
ik

ρs
=
fi
ρs
;

∂tui = vi;

∂kuk = 0;

σs
ij = µs (∂iuj + ∂jui)− δijp.

(1.2)

Here vi is the structure velocity, σs
ik is the elastic stress tensor, fi is the external force,

p is the structure pressure, parameters µs and ρs are the solid lame parameter (shear

modulus) and density respectively. The shear modulus is connected to the Young

modulus E and the Poisson ratio σ : µ = E
2(1+σ)

. Note the full time derivative dvi
dt

.

We assume linear incompressible elastic stress tensor. We will reformulate these

equations in the Euler frame.

The boundary conditions are imposed on the interface Γ:
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σs
iknk = σf

iknk, Γ;

vi = ∂tui, Γ.

(1.3)

Here, ni is the unit normal vector to Γ. These conditions are formulated in the Euler

frame and higher order terms (in ui, vi) are neglected.

The aim of this research is to reformulate the original equations of motions

into a stress formulation. Using this formulation we will be able to develop a

regularized approximation using the level set method. Finally we will develop a

numerical method to solve the new regularized stress formulation for the fluid-

structure interaction.
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Chapter 2

The Stress Formulation.

In this section we review a numerical study done previously on the stress formulation,

and extend it in order to describe the FSI problem.

2.A Previous Studies.

The formulation of equations of elasticity in terms of stress components (the stress

formulation) has been proposed in [Konovalov 1997]. Further numerical develop-

ment has been carried out in [Minev & Vabishchevich 2018] and a potential appli-

cation of this formulation for the FSI problem is noted. Since the stress formulation

is an important part of this study, let us summarize the development of numerical

schemes for the stress formulation in context of Navier-Stokes equations.

The stress formulation is derived by taking the gradient of the original equations

of motion in terms of velocities and pressure. In [Minev & Vabishchevich 2018]

time dependent Stokes and Navier-Stokes are considered with the gradient-stress

tensor for incompressible flow, instead of the symmetric stress. This results in

4 equations in two dimensional case for all the components of stress. To deal
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with the resulting system a time-splitting scheme is introduced. The off-diagonal

components of stress are split from the diagonal components. The stability of such

time-splitting scheme is studied analytically. Additionally, two different ways of

decoupling and solving discretized diagonal equations are introduced. One way is

to transform the resulting linear system and apply direction splitting. The other way

is to split one diagonal component from the other, using it explicitly in one of the

diagonal equations. Both methods result in tridiagonal linear systems which can

be solved with optimal performance. Thus, all components of the gradient-stress

are computed. To find the velocities, one may use the computed gradient stress in

the original equations of motion in natural variables. The article also extends these

schemes to include the convection terms of the Navier-Stokes equations. These

non-linear terms are included explicitly in the scheme. The possibility of extending

the scheme to the symmetric stress tensor is discussed.

Since this work is based on and extends the results of [Minev & Vabishchevich 2018],

let us summarize a part of the derivation of the numerical scheme performed there.

Starting with the velocity vi and pressure p defined on a time interval [0;T ] and in

open domain Ω we write the equations of motion along with the incompressiblity

condition:

⎧⎪⎨⎪⎩
∂tvi − ∂k (ν∂kvi) + ∂ip = fi;

∂ivi = 0.

(2.1)

Here fi is the external force, ν is the kinematic viscosity (ν = µ
ρ
, µ is viscosity and

ρ is density of the fluid).

To transform this equation into a stress formulation we define the gradient stress
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σij = ν∂jvi − δijp. (2.2)

Taking the gradient of the first equation in 2.1 we get the following system:

∂t

(︂σij
ν

)︂
+ ∂t

(︃
δijp

ν

)︃
= ∂j∂kσik + ∂jfi. (2.3)

From 2.2 we derive a new form of the incompressibility conditions, using the original

incompressibility condition (second equation of 2.1:

p = −1

d
σii, (2.4)

where d is the number of spacial dimensions. Substituting this form of incompress-

ibility condition, we get the following stress formulation:

∂t (Aijlmσlm) = ν (∂j∂kσik + ∂jfi) . (2.5)

Here, Aijlm = δilδjm − 1
d
δijδlm. The boundary conditions for 2.5 on ∂Ω are:

(∂kσik)nj = (∂tvi − fi)nj, (2.6)

with ni being the outward normal to the ∂Ω. Once the equations 2.5 are solved for

σij , the velocity can be computed from the original equations of motion 2.1.

The system 2.5 includes 4 equations for 4 unknowns σij in two dimensions. To

simplify the resulting scheme after discretizing in time, time splitting is used. This

is done so that equations for diagonal components of stress can be solved separately

from the equations for off-diagonal components. For this, the diagonal components

in the off-diagonal equations are taken explicitly. The first order in time version of
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the time-splitting scheme can be formally written:

δ
(︁
Aijlmδσ

n+1
lm

)︁
− ντ

(︁
∂j∂kσ

n+1
ik −D(δσn+1

ik )
)︁
= ντ∂jf

n+1
i , (2.7)

with operator D(δσn+1
ik ) defined as:

D(δσn+1
ik ) =

⎛⎜⎝0 ∂2∂1δσ
n+1
11

∂1∂2δσ
n+1
22 0

⎞⎟⎠ . (2.8)

In components the discretized in time system is written:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

δσn+1
12 − ντ

(︁
∂2∂2σ

n+1
12 + ∂2∂1σ

n
11

)︁
= ντ∂2f

n+1
1

δσn+1
21 − ντ

(︁
∂1∂1σ

n+1
21 + ∂1∂2σ

n
22

)︁
= ντ∂1f

n+1
2

δ (σ11 − σ22)
n+1 − 2ντ

(︁
∂1∂1σ

n+1
11 + ∂1∂2σ

n+1
12

)︁
= ντ∂1f

n+1
1

δ (σ22 − σ11)
n+1 − 2ντ

(︁
∂2∂2σ

n+1
22 + ∂2∂1σ

n+1
21

)︁
= ντ∂2f

n+1
2

(2.9)

This way we can first solve the equations for the off-diagonal components first

and then use this result to solve for diagonal components.

2.B Extension of the Stress Formulation.

2.B.1 Symmetric stress.

In order to better represent the physical fluid and structure equations of motion, one

must consider the symmetric stress instead of the gradient stress. With the linear

stress-strain relation, the stress tensors for fluid σf
ij and structure σs

ij will read:
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σf
ij = µf (∂ivj + ∂jvi)− δijp,

σs
ij = µs (∂iuj + ∂jui)− δijp.

(2.10)

Let us consider the derivation for a fluid model without the convection terms.

∂tvi −
∂kσ

f
ik

ρf
=
fi
ρf
. (2.11)

The derivation for structure equations is similar. Following the derivation of anal-

ogous equations for gradient stress 2.5 in [Minev & Vabishchevich 2018] we take

the gradient of this equation of motion:

∂t∂jvi − ∂j

(︄
∂kσ

f
ik

ρf

)︄
= ∂j

(︃
fi
ρf

)︃
. (2.12)

To obtain the symmetric strain tensor for fluid under the time derivative, we add the

same equation transposed to this equation:

∂t (∂jvi + ∂ivj)− ∂j

(︄
∂kσ

f
ik

ρf

)︄
− ∂i

(︄
∂kσ

f
jk

ρf

)︄
= ∂j

(︃
fi
ρf

)︃
+ ∂i

(︃
fj
ρf

)︃
. (2.13)

Now, the strain tensor (∂jvi + ∂ivj) =
1
µf

(︂
σf
ij + δijp

)︂
is under the time derivative

in the left hand side, and using the incompressibility condition ∂kvk = 0 rewritten

in terms of stress and pressure( 2.4) we can write the stress formulation:

1

µf
∂t

(︂
Aijlmσ

f
lm

)︂
− ∂j

(︄
∂kσ

f
ik

ρf

)︄
− ∂i

(︄
∂kσ

f
jk

ρf

)︄

= ∂j

(︃
fi
ρf

)︃
+ ∂i

(︃
fj
ρf

)︃
.

(2.14)

Here, Aijlm = δijδlm − 1
d
δilδjm. We can apply the same time splitting 2.8 as
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described in [Minev & Vabishchevich 2018], which will result in a first-order time

discretization. Writing the system in components:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δσf,n+1
12 − µfτ (∆22 +∆11)σ

f,n+1
12 − µfτ∆21σ

f,n
11

− µfτ∆12σ
f,n
22 = µfτ∂1

(︃
fn+1
2

ρf

)︃
+ µfτ∂1

(︃
fn+1
2

ρf

)︃
;

δ
(︂
σf,n+1
11 − σf,n+1

22

)︂
− 4µfτ∆11σ

f,n+1
11 − 4µfτ∆12σ

f,n+1
12

= 4µfτ∂1

(︃
fn+1
1

ρf

)︃
;

δ
(︂
σf,n+1
22 − σf,n+1

11

)︂
− 4µfτ∆22σ

f,n+1
22 − 4µfτ∆21σ

f,n+1
21

= 4µfτ∂2

(︃
fn+1
2

ρf

)︃
;

(2.15)

Here, ∆ij = ∂i
1
ρf
∂j .

2.B.2 Structure equations.

The equations for a linear elastic incompressible structure are derived in a similar

way as above. We start with the elasticity equations with linear stress tensor:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ρs∂ttui − ∂kσ

s
ik = fi,

σs
ij = µs (∂iuj + ∂jui)− δijp.

∂kuk = 0.

(2.16)
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Let us note that in general, the incompressibility condition for structure looks more

complicated, but once we omit all except the linear terms (in the framework of

linear elasticity), we get the simple condition mentioned above. Following the same

procedure as in the previous subsection, we derive the structure stress formulation:

1

µs
∂tt (Aijlmσ

s
lm)− ∂j

(︃
∂kσ

s
ik

ρs

)︃
− ∂i

(︃
∂kσ

s
jk

ρs

)︃
= ∂j

(︃
fi
ρs

)︃
+ ∂i

(︃
fj
ρs

)︃
.

(2.17)

These two advancements along with the regularized formulation will be used to

derive a numerical scheme for FSI problems.

2.B.3 Convection terms.

For certain applications, like physiological flows [Sugiyama et al. 2017], it is rea-

sonable to assume that fluid and structure densities are equal. In such case, we can

incorporate the convection terms in the stress tensor:

σ̃f
ij = σf

ij − ρfvivj (2.18)

In this case, the Navier-Stokes equations

∂tvi + vk∂kvi −
∂kσ

f
ik

ρf
=
fi
ρf

(2.19)

can be rewritten using the incompressibility conditions using the new stress tensor:

∂tvi −
∂kσ̃

f
ik

ρf
=
fi
ρf

(2.20)

The structure equations can be reformulated the same way. In the structure the term

vivj will be negligible due to the assumption of linear elasticity.
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The stress formulation is straightforward to derive. We follow the same proce-

dure as for 2.14 except for an additional term under the time derivative. The system

reads:
1

µf
∂t

(︂
Aijlmσ̃

f
lm

)︂
+

1

µf
∂t
(︁
Aijlmρ

fvlvm
)︁

− ∂j

(︄
∂kσ̃

f
ik

ρf

)︄
− ∂i

(︄
∂kσ̃

f
jk

ρf

)︄
= ∂j

(︃
fi
ρf

)︃
+ ∂i

(︃
fj
ρf

)︃
.

(2.21)

Discretization follows the same procedure as for the 2.14, the derivative∂t
(︁
Aijlmρ

fvlvm
)︁

can be approximated explicitly. Due to this new term that depends on velocities, it

becomes necessary to integrate velocities as well.
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Chapter 3

Regularized formulation.

Here we develop the regularized formulations for the equations in terms of stress to

treat the fluid-structure interface in the FSI problem. After a short setup, we will

consider the conservative level set method that will be used in this formulation and

apply it to the stress formulation derived earlier.

3.A Model of the Fluid-Structure interaction.

We assume that the domain of the problem Ω is divided into two subdomains: fluid

Ωf and structure Ωs separated by a fluid-structure interface Γ. The motion of the

fluid is described by the following governing equations:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∂tvi −

∂kσ
f
ik

ρf
=
fi
ρf
,

σf
ij = µf (∂ivj + ∂jvi)− δijp,

∂kvk = 0.

(3.1)

The motion of the structure is described by the following governing equations:
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ρs∂ttui − ∂kσ

s
ik = fi,

σs
ij = µs (∂iuj + ∂jui)− δijp.

∂kuk = 0.

(3.2)

Additionally we have interface boundary conditions on Γ. Here, we will denote the

medium velocity in Ωf as vfi , in Ωs as vsi , vector ni is the normal to Γ outward to

Ωs:

⎧⎪⎨⎪⎩
σs
iknk|Γ = σf

iknk

⃓⃓⃓
Γ
,

vsi |Γ = vfi

⃓⃓⃓
Γ
.

(3.3)

Let us note that vsi = ∂tui in Ωs.

Using the results from the previous chapter, we can reformulate these problems

in terms of stress variables:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

µs
∂tt (Aijlmσ

s
lm)− ∂j

(︃
∂kσ

s
ik

ρs

)︃
− ∂i

(︃
∂kσ

s
jk

ρs

)︃
= ∂j

(︃
fi
ρs

)︃
+ ∂i

(︃
fj
ρs

)︃
, Ωs;

1

µf
∂t

(︂
Aijlmσ

f
lm

)︂
− ∂j

(︄
∂kσ

f
ik

ρf

)︄
− ∂i

(︄
∂kσ

f
jk

ρf

)︄

= ∂j

(︃
fi
ρf

)︃
+ ∂i

(︃
fj
ρf

)︃
, Ωf .

(3.4)

With the convection terms this system will be:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

µs
∂tt (Aijlmσ̃

s
lm) +

1

µs
∂tt (Aijlmρ

svlvm)− ∂j

(︃
∂kσ̃

s
ik

ρs

)︃
− ∂i

(︃
∂kσ̃

s
jk

ρs

)︃
= ∂j

(︃
fi
ρs

)︃
+ ∂i

(︃
fj
ρs

)︃
, Ωs;

1

µf
∂t

(︂
Aijlmσ̃

f
lm

)︂
+

1

µf
∂t
(︁
Aijlmρ

fvlvm
)︁
− ∂j

(︄
∂kσ̃

f
ik

ρf

)︄
− ∂i

(︄
∂kσ̃

f
jk

ρf

)︄

= ∂j

(︃
fi
ρf

)︃
+ ∂i

(︃
fj
ρf

)︃
, Ωf .

(3.5)

Now, using this result and the level set method we will derive a regularized formu-

lation.

3.B The level set method.

The level set method, introduced in [Osher & Sethian 1988] describes the interface

in terms of a smooth level set function. The function is defined on the whole domain,

its 0 or 0.5 level set (depending on the method) defines the interface. Often, the level

set function is initialized to be a distance function. The value of this function at a

point is the distance from that point to the interface. The level set function is updated

by solving corresponding partial differential equations. A special reinitialization

step is used to preserve properties of the level set function. Depending on the value

of the level set function one may determine the subdomain as well as the position

of the interface. The use of a smooth level set function makes it convenient to

compute the normals to the interface and curvature. This is taken advantage of in

two-phase flow problems with a surface tension force depending on the curvature of

the interface [Chang et al. 1996]. This method has found many other applications
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including solidification-melt dynamics, reacting flows [Sethian & Smereka 2003],

computational geometry, modelling deposition of on material on another, modelling

cell membranes, solidification of alloys [Gibou et al. 2018].

The level set method has clear advantages over other interface tracking meth-

ods. The smooth level set function allows to compute geometric quantities easily,

it is easier to extend to higher dimensions, and it handles topological changes eas-

ily [Sethian & Smereka 2003]. The partial differential equations used to update the

level set are conservation laws and have been studied well.

However, there has been a disadvantage of such methods: conservation of

mass. Reinitialization steps, on the one hand and inaccurate numerical methods

on the other, may disturb the mass conservation. This problem has been overcome

in [Olsson & Kreiss 2005]. In this work using a conservative formulation and

appropriate numerical methods along with an intermediate step that does not change

the position of the interface a conservative level set method has been developed.

The method has been further improved in [Olsson et al. 2007]. Instead of the

distance function, a smoothed Heaviside function is used, which is equal to 0 in

one subdomain 1 in the other. The interface is defined as the 0.5 level set and the

level set function rapidly changes from 0 to 1 in a thin transition layer around the

interface. Along with this a new reinitialization step, called the compression step

is used. The compression step involves solving a partial differential equation to

conserve the thickness of the interface layer. To initialize the new level set function,

either an analytic solution of the compression step can be used, alternatively one

may initialize the level set function to 1 in one subdomain and 0 in the other and run

the compression step as proposed in [Olsson et al. 2007]. The method is shown to

be conservative. Some theoretical developments on the properties of the scheme,

like stability in the simplified one-dimensional case and conservation are provided.
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Despite this, the scheme may become unstable in the points away from the interface.

This happens due to the errors in the normal vector in the compression step, which

strongly affect the direction of the unit normal vector in the regions where the

level set function is approximately constant and equal to either 0 or 1. The issue

can be worked around by calculating the normal vectors only near the interface.

This problem has be addressed in more detail in [Zhao et al. 2014], where a second

level set function is used to compute the normal vectors. Separate update and

reinitialization steps are applied to the second level set function. An optimized

approach is proposed in [Shervani-Tabar & Vasilyev 2018]. The compression step

is modified to use a normal vector with norm one near the interface and diminishing

magnitude away from the interface.

We use the method developed in [Olsson & Kreiss 2005] to describe our fluid-

structure interface. It is especially useful since we consider incompressible flows.

In the structure subdomain, the level set function is equal to 0, in fluid it is equal to

1, with a smooth transitional layer in between.

3.C Regularized formulation.

Using this level set method we can write the regularized formulation, from the

equations obtained earlier 3.4 following the same idea as two-fluid interaction. We

take advantage of the fact that both of these equations are formulated in the stress

variables. We represent the fluid and structure subdomains of Ω using the level set

function the following way:

⎧⎪⎨⎪⎩
ϕ >

1

2
, Ωf ;

ϕ <
1

2
, Ωs.

(3.6)
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There will be three characteristic regions: ϕ = 0, ϕ = 1, 0 < ϕ < 1. The latter is

transitional layer. Using the level set function ϕ, we first represent the new variable

parameters regularizing density, viscosity and elasticity:

⎧⎪⎪⎨⎪⎪⎩
1

ρϕ
=

ϕ

ρf
+

1− ϕ

ρs
,

1

µϕ

=
ϕ

µf
+

1− ϕ

µs
.

(3.7)

Unlike interaction of two fluid phases, the problem 3.4 has different time derivatives.

Thus we approximate the differential operators in time as follows (we will denote

the regularized operator as ∂ϕ):

∂ϕ = ϕ∂t + (1− ϕ) ∂tt. (3.8)

With this preparation we can now formulate the regularized version of the problem

in Ω:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

µϕ

∂ϕ (Aijlmσlm)− ∂j

(︃
∂kσik
ρϕ

)︃
− ∂i

(︃
∂kσjk
ρϕ

)︃
= ∂j

(︃
fi
ρϕ

)︃
+ ∂i

(︃
fj
ρϕ

)︃
;

∂tvi −
∂kσik
ρϕ

=
fi
ρϕ
,

(3.9)

and with convection terms:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

µϕ

∂ϕ (Aijlmσ̃lm) +
1

µϕ

∂ϕ (Aijlmρϕvlvm)− ∂j

(︃
∂kσ̃ik

ρϕ

)︃
− ∂i

(︃
∂kσ̃jk

ρϕ

)︃
= ∂j

(︃
fi
ρϕ

)︃
+ ∂i

(︃
fj
ρϕ

)︃
;

∂tvi −
∂kσ̃ik

ρϕ
=
fi
ρϕ
,

(3.10)

These systems must be extended with the level set update equation:
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∂tϕ+ ∂k (ϕvk) = 0. (3.11)

In numerical schemes that are used in practice, an intermediate step for the level set

function ϕ is also used.
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Chapter 4

The numerical scheme and results.

In this chapter we will use the previous results to derive the numerical scheme

and discuss some practical issues. Finally we will present some benchmark results

obtained using this scheme.

4.A Numerical scheme.

In this section, we will consider numerical schemes for systems 3.9 and 3.10. The

numerical scheme for the level set method that is being used in this study is described

in [Olsson & Kreiss 2005].

First we write the scheme discretized in time, using the time splitting proposed

in [Minev & Vabishchevich 2018] and summarized in 2.A:

22



⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

µn+1
ϕ

δϕσ
n+1
12 −

(︁
∆n+1

22 +∆n+1
11

)︁
σn+1
12 −∆n+1

21 σn
11

−∆n+1
12 σn

22 = ∂2

(︄
fn+1
1

ρn+1
ϕ

)︄
+ ∂1

(︄
fn+1
2

ρn+1
ϕ

)︄
;

1

µn+1
ϕ

δϕ
(︁
σn+1
11 − σn+1

22

)︁
− 4∆n+1

11 σn+1
11 − 4∆n+1

12 σn+1
12

= 4∂1

(︄
fn+1
1

ρn+1
ϕ

)︄
;

1

µn+1
ϕ

δϕ
(︁
σn+1
22 − σn+1

11

)︁
− 4∆n+1

22 σn+1
22 − 4∆n+1

21 σn+1
21

= 4∂2

(︄
fn+1
2

ρn+1
ϕ

)︄
;

(4.1)

Here, δϕ = ϕ
τ
δ + 1−ϕ

τ2
δ2 and ∆n+1

ij = ∂i
1

ρn+1∂j .

For spatial discretization, we use the Marker and Cell (MAC) grid. Components

of the velocity vector and external force vector are located on the corresponding faces

of the grid cell. The off-diagonal components of stress are located on the vertex

positions of the grid cell. The diagonal components of stress are located on the

central positions of the grid cell. Suppose that the system is discretized the system

on a uniform two-dimensional grid with step h in both directions, indices of vertex

points are (l,m). We denote Cn+1
ij the discrete counterparts of operators ∆n+1

ij and

F n+1
ij are discrete counterparts of ∂i

(︃
fn+1
j

ρn+1
ϕ

)︃
. For example, for a discretized in space

source term fn
1 which is located on face locations of the mac grid (l,m + 1

2
) we
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have: (︁
F n+1
11

)︁
l+ 1

2
,m+ 1

2

=
fn+1
1,l+1,m+ 1

2

− fn+1
1,l,m+ 1

2

hρn+1
ϕ,l+ 1

2
,m+ 1

2

,

(︁
F n+1
21

)︁
l,m

=
fn+1
1,l,m+ 1

2

− fn+1
1,l,m− 1

2

hρn+1
ϕ,l,m

.

(4.2)

Other quantities F n+1
ij are discretized a similar way. For operators Cn+1

11 , Cn+1
12 and

a quantity ψl,m located on vertices we have:

(︁
Cn+1

11 ψ
)︁
l,m

=
ψl+1,m − ψl,m

h2ρn+1
ϕ,l+ 1

2
,m

− ψl,m − ψl−1,m

h2ρn+1
ϕ,l− 1

2
,m

,

(︁
Cn+1

12 ψ
)︁
l+ 1

2
,m+ 1

2

=
ψl+1,m+1 − ψl+1,m

h2ρn+1
ϕ,l+1,m+ 1

2

− ψl,m+1 − ψl,m

h2ρn+1
ϕ,l,m+ 1

2

.

(4.3)

For the same operators and for a quantity ψl+ 1
2
,m+ 1

2
located on central positions we

have:

(︁
Cn+1

11 ψ
)︁
l+ 1

2
,m+ 1

2

=
ψl+ 3

2
,m+ 1

2
− ψl+ 1

2
,m+ 1

2

h2ρn+1
ϕ,l+1,m+ 1

2

−
ψl+ 1

2
,m+ 1

2
− ψl− 1

2
,m+ 1

2

h2ρn+1
ϕ,l,m+ 1

2

,

(︁
Cn+1

12 ψ
)︁
l,m

=
ψl+ 1

2
,m+ 1

2
− ψl+ 1

2
,m− 1

2

h2ρn+1
ϕ,l+ 1

2
,m

−
ψl− 1

2
,m+ 1

2
− ψl− 1

2
,m− 1

2

h2ρϕ,l− 1
2
,m

.

(4.4)

The rest of the operators Cn+1
ij can be discretized in a similar way.

Once we discretize, the system 4.5 becomes:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

µn+1
ϕ

δϕσ
n+1
12 −

(︁
Cn+1

22 + Cn+1
11

)︁
σn+1
12 − Cn+1

21 σn
11

− Cn+1
12 σn

22 = F n+1
21 + F n+1

12 ;

1

µn+1
ϕ

δϕ
(︁
σn+1
11 − σn+1

22

)︁
− 4Cn+1

11 σn+1
11 − 4Cn+1

12 σn+1
12 = 4F n+1

11 ;

1

µn+1
ϕ

δϕ
(︁
σn+1
22 − σn+1

11

)︁
− 4Cn+1

22 σn+1
22 − 4Cn+1

21 σn+1
21 = 4F n+1

22 ;

(4.5)

Now, expanding a rearranging the terms we get the following system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

µn+1
ϕ τn+1

ϕ

σn+1
12 −

(︁
Cn+1

22 + Cn+1
11

)︁
σn+1
12 = Gn+1

1 ;

1

µn+1
ϕ τn+1

ϕ

(︁
σn+1
11 − σn+1

22

)︁
− 4Cn+1

11 σn+1
11 = Gn+1

2 ;

1

µn+1
ϕ τn+1

ϕ

(︁
σn+1
22 − σn+1

11

)︁
− 4Cn+1

22 σn+1
22 = Gn+1

3 ;

(4.6)

with τn+1
ϕ =

(︂
ϕn+1

τ
+ 1−ϕn+1

τ2

)︂−1

. The right hand sides are defined:

Gn+1
1 =F n+1

21 + F n+1
12 + Cn+1

21 σn
11 + Cn+1

12 σn
22 +

βn+1
ϕ

µn+1
ϕ

σn
12 +

γn+1
ϕ

µn+1
ϕ

σn−1
12 ;

Gn+1
2 =4F n+1

11 + 4Cn+1
12 σn+1

12 +
βn+1
ϕ

µn+1
ϕ

(σn
11 − σn

22) +
γn+1
ϕ

µn+1
ϕ

(︁
σn−1
11 − σn−1

22

)︁
;

Gn+1
3 =4F n+1

22 + 4Cn+1
21 σn+1

21 +
βn+1
ϕ

µn+1
ϕ

(σn
22 − σn

11) +
γn+1
ϕ

µn+1
ϕ

(︁
σn−1
22 − σn−1

11

)︁
;

(4.7)

with βn+1
ϕ = ϕn+1

τ
+ 21−ϕn+1

τ2
and γn+1

ϕ = −1−ϕn+1

τ2
.

The off-diagonal system in 4.6 resembles a heat equation and are solved using

direction splitting. This way one will need to solve only tri-diagonal systems of
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linear equations. The diagonal system in 4.6 are solved together as one linear

system with a left-hand side matrix with the following blocks:

⎛⎜⎜⎜⎜⎝
(︄

1

µn+1
ϕ τn+1

ϕ

I − 4Cn+1
11

)︄
− 1

µn+1
ϕ τn+1

ϕ

I

− 1

µn+1
ϕ τn+1

ϕ

I

(︄
1

µn+1
ϕ τn+1

ϕ

I − 4Cn+1
22

)︄
⎞⎟⎟⎟⎟⎠ , (4.8)

where I represents the identity matrix. This system is solved using an iterative

method with the following preconditioner:

⎛⎜⎜⎜⎜⎝
(︄

1

µn+1
ϕ τn+1

ϕ

I − 4Cn+1
11

)︄
0

− 1

µn+1
ϕ τn+1

ϕ

I

(︄
1

µn+1
ϕ τn+1

ϕ

I − 4Cn+1
22

)︄
⎞⎟⎟⎟⎟⎠ . (4.9)

This preconditioner is easy to invert since one can solve the equations in the first

row and use the result to solve for the second row. These solves involve tridiagonal

matrices only.

In order to include the convection term into the system 4.6 we must modify the

right-hand sides 4.7 adding the derivatives of qij = Aijlmρϕvlvm:

G̃
n+1

1 = Gn+1
1 − 1

µn+1
ϕ

δϕq
n
12;

G̃
n+1

2 = Gn+1
2 − 1

µn+1
ϕ

δϕq
n
11;

G̃
n+1

3 = Gn+1
3 − 1

µn+1
ϕ

δϕq
n
22.

(4.10)
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4.B Benchmark results.

4.B.1 Driven cavity with an elastic wall.

In this benchmark we simulate the lid-driven cavity flow in a 2×2 domainΩwith the

bottom part 2× 0.5 filled with a linear elastic solid Ωs (Fig. 4.1). The setting is the

same as described in [Zhao et al. 2008], [Dunne 2006]. The convection terms are

omitted, we use the scheme 4.6. The fluid and structure constants areµf = µs = 0.2,

ρf = ρs = 1.0. All the boundaries of the cavity have zero boundary condition for

velocity except the top lid. At time 0 the top lid starts moving with the x component

of velocity:

v1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sin2
(︂πx

6

)︂
, x ∈ [0.0, 0.3];

1, x ∈ (0.3, 1.7);

sin2

(︃
π(x− 2)

6

)︃
, x ∈ [1.7, 2.0].

(4.11)

The domain is discretized by a uniform 100 × 100 grid. Initially, all the velocities

are zero. As the cavity flow develops, the elastic bottom is deformed due to fluid-

structure interaction. At time 2.5 the deformed level set is presented in Fig. 4.1,

which is in agreement with the solution obtained in [Zhao et al. 2008].
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Figure 4.1: Lid driven cavity level set functions. Initial state (left) and final state
(right). Black circles represent the solution obtained in [Zhao et al. 2008].

Figure 4.2: Lid driven cavity flow over the elastic solid, final state. The blue curve
is 0.5 contour of the level set function.
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The fluid streamlines are presented in Fig. 4.2.

4.B.2 Oscillating disk in fluid.

This is a modification of the oscillating disk benchmark presented in [Zhao et al. 2008].

An elastic disk with radius 0.1 is placed inside a 1× 1 domain filled with fluid (Fig.

4.3). In the initial state all velocities are zero. Fluid and structure parameters are

Figure 4.3: Oscillating disk, initial level set function.

ρf = ρs = 0.1, µf = 0.01, µs = 0.05. The boundary conditions for velocities are

the following:

v1 =
π

5
c(t)sin(2πx)cos(2πy),

v2 = −π
5
c(t)sin(2πy)cos(2πx).

(4.12)

where c(t) is defined as:

29



c(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
exp

(︃
1− 1

1− (t− 1)2

)︃
, t ∈ [0, 1);

1, t ∈ [1, 1.5);

0, t ∈ [1.5, 3].

(4.13)

The domain is discretized by a 100 × 100 uniform grid. The results are presented

in Fig. 4.4, 4.6, 4.5.

0.0 ∗ 100

2.0 ∗ 10−5

4.0 ∗ 10−5

6.0 ∗ 10−5

8.0 ∗ 10−5

1.0 ∗ 10−4

1.2 ∗ 10−4

0 0.5 1 1.5 2 2.5 3

1 2
||v
||2 L

2
(Ω

s
)

t

Figure 4.4: Oscillating disk. Norm of disk velocity over time.
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Figure 4.5: Streamlines at 0.975 (left) and 1.6 (right). The disk is denoted by the
blue curve.

We start with a round disk and no fluid motion (Fig. 4.6 top left). As the boundary

velocity increases, due to fluid structure interaction, the disk deforms (Fig. 4.6 top

right, Fig. 4.5 left). The fluid friction forces are eventually compensated by forces

of elasticity in the disk and the system comes to a stationary solution at t = 1.5,

see (Fig. 4.4). As soon as the boundary velocity is set to zero at t > 1.5, the fluid

friction is no longer compensated with elastic forces within the deformed disk, so the

disk recoils back (Fig. 4.5 right). Although the original fluid motion continues by

inertia between the disk and boundaries, the disk and fluid in its vicinity comes into

motion. As a result of elastic forces and inertia in the disk, it recoils and deforms

into an opposite extreme position (Fig. 4.6 bottom left.). Eventually, due to stresses

in the disk, it comes into motion again and stops in the final state (Fig. 4.6 bottom

right). Despite the different settings, the results are similar to the ones presented in

[Zhao et al. 2008].
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Figure 4.6: A 0.5 contour of the level set function at 0 (top left), 0.975 (top right),
2.0 (bottom left), 3.0 (bottom right).
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Chapter 5

Conclusion

In this work, we have extended the stress formulation for linear structure and sym-

metric stress. Based on this formulation, we have developed a new method for FSI

problems using the level set method. A numerical method with efficient solving

strategies has been described. We have studied how this method compares to suc-

cessful methods for FSI problems, proposed earlier. In the future, convective terms

for fluid and structure can be included explicitly into the numerical scheme. It is

also possible to extend the stress formulation and, as a consequence, this method to

FSI with a Neo-Hookean non-linear stress tensor.
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