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Abstract

With the advent of IoT and next-generation internet which contains a multitude of

geographically distributed devices (approx. 50 billion devices by 2020 [1]) continu-

ously generating data streams, the centralized cloud computing structure is becoming

inefficient for processing and analyzing an extraordinary volume of data collected from

IoT devices. Therefore, we need new data processing architectures that can handle

the challenges of heterogeneity, distribution, latency, and bandwidth along the IoT-

cloud continuum. Fog computing [2] emerged as a new computing paradigm that

changed the distributed computing landscape by extending the computing power and

data analytics to the proximity of users from the core to the edge of the network.

It is potentially built with various components and resource types distributed across

the IoT-Fog-Cloud continuum.

In this project, we first introduce the notions of cloud computing, Fog Computing,

Edge Computing, and Mist Computing. Then, compare these architectures with

other related computing paradigms. Finally, we conclude the project by addressing

Challenges and future directions.
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1 Introduction

2 Cloud Computing

The key aspects of Cloud Computing were documented in the definition provided by

the National Institute of Standard and Technologies(NIST)[3]: ”Cloud computing is

a model for enabling ubiquitous, convenient, on-demand network access to a shared

pool of configurable computing resources (e.g., networks, servers,storage, applications,

and services) that can be rapidly provisioned and released with minimal management

effort or service provider interaction”. While the principal concept behind cloud com-

puting wasn’t new, In recent years, cloud computing has attracted great attention and

frameworks like Amazon Web Services, Microsoft Azure and Google Cloud Platform

have gained a lot of popularity among cloud consumers.

Large businesses (such as Amazon, Google, Facebook, etc.) have generally adopted

this model for offering services over the Internet, gaining economic and technological

benefits. National Institute of Standards and Technology (NIST) introduced cloud

computing with five essential characteristics: (i) on-demand self-service, (ii) rapid

elasticity or expansion, (iii) broad network access, (iv) resource pooling, and (v)

measured services. Furthermore, cloud computing can be defined as a flexible and

scalable platform to provide virtualized resources to end-users through the Internet.

Figure 1 shows the conventional cloud computing structure. Data producers generate

raw data and transfer it to the cloud.

Figure 1: Cloud computing paradigm [4]
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2.1 Cloud Computing Characteristics

Cloud computing has some essential characteristics that are summarized below:

� On-demand self-service: computer capabilities can be supported automati-

cally when needed without needing any human contact between customers and

service providers.

� Broad network access: Computing capabilities are available across the net-

work and available for a wide variety of client platforms ( e.g. workstations,

laptops and mobile devices) through many mechanisms.

� Resource pooling: To satisfy multiple users, computing resources are pooled,

dynamically allocated, and distributed according to customer demand. Besides,

the services of the provider are independent of location, i.e. the customer has

no knowledge or influence of their exact location.

� Rapid elasticity: It is possible to flexibly have and release computing capabil-

ities to scale in and out according to demand. The user thus has the perception

of limitless, and often necessary, computing capabilities.

� Measured service: It is possible to track and disclose the use of resources

according to the type of service provided. In charge per use, or pay per user,

services, this is especially important because it gives great clarity between the

provider and the customer of the service.

2



Figure 2: Cloud Computing Characteristics and issues [4]

2.2 Cloud Computing Architecture

Figure 3: Different Cloud Service Model [5]
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The architecture of the Cloud can be divided into four layers: datacenter (hard-

ware), infrastructure, platform, and application [13]. Each one can be seen as a

service for the upper layer and as a consumer for the lower layer. In practice, Cloud

services can be categorized into three main services. namely: (a) Infrastructure-as-

a-Service (IaaS), which enables the provision of computing, storage, and networking

elements (e.g. Amazon Elastic Compute Cloud (EC2)), (b) Platform-as-a-Service

(PaaS), which offers an integrated platform to deploy, test and verify custom ap-

plications (e.g. Google App Engine), and (c) Software-as-a-Service (SaaS), which

supports software distribution with specific requirements (e.g. SalesForce). Figure

3depicts the layered organization of the cloud stack from physical infrastructure to

applications. These levels of abstraction can also be seen as layered architecture in

which Higher-level services may be composed of underlying layer services[6]

2.3 Infrastructure as a Service

Facilitate users to manage, storage, networks, process, and other significant com-

puting resources so they can publish and run applications that include operating

systems and/or apps. The user does not manage or operate the cloud infrastructure

for the hardware but has control over operating environments, deployed software, and

storage and select components for networking.[7] Maintaining the IT infrastructure

on-premise is expensive and labor intensive. It also needs large initial investment in

physical hardware, and then you will need to hire external IT contractors to support

the hardware and keep it up to date and running.With IaaS, you can buy what you

need, and buy more as your company grows. Iaas provides flexibility, scalability and

can be replaced if you need them without losing money on your initial investment.

Another advantage of IaaS is that it puts control of the infrastructure back in your

hands. You do not need to trust an external IT contractor, if you wish, you can

access and monitor IaaS platforms yourself and supports companies of all shapes and

sizes as it provides full control of your infrastructure and works on a pay-as-you-use
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model, making it ideal for most budgets.

A good example of IaaS is AWS Elastic Compute Cloud (EC2). It offers the flexible

infrastructure for businesses wishing to host cloud-based content. EC2 users do not

own the physical servers. AWS provides virtual servers, So users only pay for the

server use, saving them the cost (and related ongoing maintenance) of investing in

physical hardware.

2.4 Platform as a service

In addition to infrastructure-oriented clouds that provide raw computing and storage

services, another approach is to offer a higher level of abstraction to make a cloud

easily programmable, known as Platform as a service (PaaS). The provider provides

the virtual environments and application programming interfaces (APIs) framework

that can be used in cloud application development. Of course, the users of this class

are developers who use specific APIs on the cloud platform to create, test, deploy,

and integrate their apps. One example is Google App Engine1, which offers runtime

environments for Python and Java, as well as APIs for applications to communicate

with the runtime environment. Microsoft Azure2can also be considered as a platform

service providing an API and enabling developers to run their application in the

Microsoft Azure environment.

Development of a cloud platform application is somewhat analogous to creating a

software application for the old-fashioned web servers, in the sense that developers

write and deploy codes to a remote server. The result is a web-based application

for end-users. However, the PaaS model is different in that it can include additional

services, such as scalability, monitoring, and load balancing, to simplify application

development, deployment, and execution. The developers may also incorporate other

services offered by the PaaS into their application, such as authentication services,

e-mail services, and user interface components.

1Google App Engine. http://code.google.com/appengine
2Microsoft Azure. http://www.microsoft.com/azure
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The cloud software that is designed for the cloud platform, in turn, usually has a

shorter time to market. Some research initiatives have also emerged to promote a more

detailed understanding of PaaS, such as AppScale[8]. Another aspect that character-

izes PaaS services is the provision of information metering and billing APIs. Metering

and billing help developers to more readily establish a business model focused on usage

through their application. Such support helps to incorporate and maintain relation-

ships between end-users, developers, PaaS, and any lower-level providers, while at the

same time allowing developers and providers to gain economic benefit.

2.5 Software as a Service

The first layer is the cloud application layer which resides on top of the cloud stack.

The cloud application layer is the layer that is most accessible and visible to cloud

end-users. Users typically access the services that this layer provides via the browser

through web portals, and are often expected to pay fees for their use. This model

has recently proved attractive to many users, as it alleviates the burden of software

maintenance for customers and simplifies development and testing for providers[6].

Arguably the cloud application layer has allowed a new class of end-user devices to

develop in the form of ”netbook” computers, which are less costly end-user devices

that rely on network connectivity and functionality cloud applications. Netbook

computers also have limited capacity for processing, with little to no disc drive-based

storage, depending on cloud services to meet both needs.

As for cloud services providers, this model simplifies their working to code updating

and testing while protects their intellectual property. Since a cloud framework is

installed on the computing infrastructure of the provider (instead of on the desktop

computers of the customers), the application developers can roll smaller patches into

the system and add new functionality without disrupting customers with requests

for changes or service packs. In this model, the application development and testing

are potentially less difficult, as the implementation area, i.e. the data center of the
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provider, is limited. Also about profit margin of the company, this model provides a

constant sales flow for the software provider which may be much more efficient in the

long run. This SaaS model holds some beneficial advantages for cloud service users

and provider [9].

2.6 Relationship between Cloud Computing Actors

Figure 4 provides an overview of the reference architecture for NIST cloud comput-

ing, which describes the main actors, their operations, and cloud computing functions.

The diagram represents a high-level generic architecture and is intended to promote

the comprehension of cloud computing specifications, uses, characteristics, and stan-

dards [10].

Figure 4: The Conceptual Reference Model [10]

As shown in Figure 1, five major actors are identified by the NIST cloud computing

reference architecture: cloud consumer, cloud provider, cloud carrier, cloud auditor,

and cloud broker. Each actor is an entity that participates in a transaction or process

and/or performs cloud computing tasks (a person or an organization).
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The actors that are defined in the NIST reference architecture are summarized in

the following.

Actor Definition

Cloud Consumer A person or organization that maintains a business relationship with, and uses service from,
Cloud Providers.

Cloud Provider A person, organization, or entity responsible for making a service available to interested parties.

Cloud Auditor A party that can conduct independent assessment of cloud services, information system oper-
ations, performance and security of the cloud implementation

Cloud Broker An entity that manages the use, performance and delivery of cloud services, and negotiates
relationships between Cloud Providers and Cloud Consumers

Cloud Carrier An intermediary that provides connectivity and transport of cloud services from Cloud
Providers to Cloud Consumers

Table 1: Actors in Cloud Computing [10]

The relationships between the actors are shown in Figure 5. A cloud user can

request cloud services directly or through a cloud broker from a cloud provider. A

cloud auditor carries out independent audits and can contact others to collect the

information needed.

� Example Usage Scenario 1 Instead of contacting a cloud provider directly, a

cloud customer can request service from a cloud broker. By combining multiple

services or by enhancing an existing service, the cloud broker can create a new

service. The real cloud providers are invisible to the cloud user in this case, and

the cloud customer communicates directly with the cloud broker.[10]

� Example Usage Scenario 2 Cloud carriers offer cloud services from cloud

providers to cloud users for networking and transportation. A cloud provider

participates in and arranges two unique service level agreements ( SLAs), one

with a cloud carrier (e.g. SLA2) and one with a cloud customer ( e.g. SLA1),

as shown in Figure 7.
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Figure 5: Interactions between the Actors in Cloud Computing [10]

Figure 6: Usage Scenario for Cloud Brokers [10]

A cloud provider arranges Service Level Agreements ( SLAs) with a cloud carrier

and which request dedicated and encrypted connections to ensure that cloud

services are accessed at a consistent level in compliance with cloud customer

contractual obligations.

In this case, the provider can specify its capacity, flexibility, and functionality

requirements for SLA2 to provide the critical SLA1 requirements.

� Example Usage Scenario 3 For a cloud service, a cloud auditor performs

independent audits of the execution of the cloud service’s operation and security.

Interactions with both the Cloud Customer and the Cloud Provider could be
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Figure 7: Usage Scenario for Cloud Carriers [10]

included in the audit [10].

Figure 8: Usage Scenario for Cloud Auditors [10]

2.7 Cloud Consumer

The main stakeholder for the cloud computing service is the cloud customer. A cloud

customer is an individual or company that maintains a contractual relationship with

a cloud provider and uses the service. A cloud customer browses a cloud provider’s

service catalog, requests the required service, creates service contracts with the cloud

provider, and uses the service. The cloud consumer will be billed for the service pro-

vided and payments must be structured accordingly. To define the technical perfor-

mance requirements fulfilled by a cloud provider, cloud consumers need SLAs. SLAs

may cover terms relating to service quality, protection, performance failure remedies.

A cloud provider can also list a set of commitments not expressly made to customers

in the SLAs, i.e. restrictions and responsibilities that must be agreed upon by cloud

consumers. A cloud user can freely select a better-priced cloud provider with more

favorable terms and conditions. The pricing policy and SLAs of a cloud provider
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are typically non-negotiable unless the customer plans heavy use and may negotiate

better contracts.

Activities and consumption scenarios can be different across cloud users, depend-

ing on the services requested. Some instances of cloud services available to a cloud

customer are presented in Figure 9 [10].

Figure 9: Usage Scenario for Cloud Auditors [10]

� Consumers of SAAS: SaaS applications in the cloud and made available to

SaaS customers through a network. SaaS customers may be organizations that

have access to software applications for their members, end-users who directly

use software applications, or software application administrators who configure

end-user applications. SaaS customers may be billed Based on the number of

end-users, the time of usage, the network bandwidth used, the amount of data

stored, or the length of data stored.

� Consumers of PAAS: The tools and execution services offered by cloud
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providers to build, test, deploy and manage applications hosted in a cloud envi-

ronment can be used by PaaS cloud consumers. Application developers develop-

ing and implementing application software, Pass consumers can be application

testers running and evaluating applications in cloud-based environments, appli-

cation deployers publishing applications in the cloud, and application managers

configuring and tracking the performance of applications on a network. De-

pending on the processing, database storage, and network resources consumed

by the PaaS application, and the length of platform use, PaaS consumers can

be paid.

� Consumers of IaaS: IaaS users have access to virtual machines, network-

accessible storage, components of the network infrastructure, and other essen-

tial computing tools on which they can install and run arbitrary applications.

System developers, system administrators, and IT managers who are involved

in the creation, implementation, management, and monitoring of services for

IT infrastructure operations may be IaaS consumers. Consumers of IaaS are

provided with the ability to access these computing resources and are paid ac-

cording to the amount or length of the resources consumed, such as CPU hours

used by virtual machines, data storage volume, and duration, bandwidth used

by the network, number of IP addresses used for certain intervals [10].

2.8 Cloud Provider

A cloud provider is an individual, an organization; it is the entity responsible for

supplying interested parties with a service. A Cloud Provider acquires and maintains

the computing infrastructure needed to deliver the services, operates the services’

cloud applications, and arranges for Cloud Users to deliver the cloud services through

network access.

� For Software as a Service: The cloud provider deploys, configures, manages,
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and upgrades the operation of software applications on cloud infrastructure

for Software as a Service so that the services are supplied to cloud customers

at the expected service levels. In managing and controlling applications and

infrastructure, the SaaS provider bears most of the obligations, while cloud

consumers have minimal administrative control of the applications.

� For Platform as a Service: For PaaS, the Cloud Provider manages the

platform computing infrastructure and operates the cloud software that pro-

vides the platform components, such as the execution stack of runtime soft-

ware, databases, and other middleware components. Usually, the PaaS Cloud

Provider also supports the PaaS Cloud Consumer’s growth, deployment ,and

management process by offering tools such as integrated development environ-

ments (IDEs), cloud product development versions, software development kits

( SDKs), deployment and management tools. The PaaS Cloud User has power

over the applications and likely some hosting environment settings, but has no

or restricted access to the network, servers, operating systems (OS), or storage

infrastructure underlying the platform.

� For Infrastructure as a Service: The Cloud Provider obtains the physical

computing services that underlie the service for IaaS, including servers, net-

works, storage, and infrastructure hosting. Via a series of service interfaces and

computer resource abstractions, such as virtual machines and virtual network

interfaces, the Cloud Provider runs the cloud software required to make com-

puting services accessible to the IaaS Cloud User. In exchange, the IaaS Cloud

Consumer uses these computing tools, such as a virtual machine, for their basic

computing needs. In contrast with SaaS and PaaS Cloud Users, the IaaS Cloud

Consumer has access to more fundamental types of computing resources and

thus, the more software components in an application stack, like the OS and

network, have more power.
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On the other hand, the IaaS Cloud Provider has control over the physical hard-

ware and cloud software that facilitates the provisioning of these infrastructure

resources, such as physical servers, network equipment, storage devices, host

operating systems and virtualization hypervisors.

As shown in Figure 10, The activities of a cloud provider can be represented

in five key areas. A cloud provider performs its activities in the fields of ser-

vice deployment, service orchestration, cloud service management, security, and

privacy [10].

Figure 10: Cloud Provider - Major Activities [10]

2.9 Cloud Auditor

A cloud auditor is a party that can conduct an independent analysis of controls

on cloud services to express an opinion about them. Audits are performed to verify

conformance to standards through a review of objective evidence. The services offered

by a cloud provider can be evaluated by a cloud auditor in terms of security controls,

privacy effects, performance, etc.

2.10 Cloud Broker

When cloud infrastructure progresses, it can be too difficult for cloud users to handle

the convergence of cloud services. Instead of directly contacting a cloud provider, a
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cloud user can request cloud services from a cloud broker. A cloud broker is an agency

that regulates the use, quality, and delivery of cloud services and negotiates relation-

ships between cloud providers and cloud customers. A cloud broker can typically

provide services in three categories:

� Service Intermediation: By enhancing certain basic features and delivering

value-added services to cloud customers, a cloud broker improves a provided

service. The improvement can be managing access to cloud services, identity

management, performance reporting, enhanced security, etc.

� Service Aggregation: Multiple services are merged and incorporated into one

or more new services by a cloud broker. The broker offers data integration and

guarantees the safe movement of data between the cloud customer and several

cloud providers.

� Service Arbitrage: Service arbitrage, except that the services being aggre-

gated are not set, is similar to service aggregation. Arbitrage of services means

that a broker can pick services from various agencies. For example, a cloud

broker may use a credit rating service to calculate and pick an agency with the

best score.

2.11 Cloud Carrier

A cloud carrier serves as an intermediary that offers cloud services between cloud

users and cloud providers with connectivity and transport. Via networks, telecom-

munications, and other connected devices, cloud carriers provide customers with ac-

cess. Cloud users, for instance, may obtain cloud services, through network access

devices, such as computers, laptops, mobile phones, mobile Internet devices (MIDs),

etc [11] Network and telecommunication carriers or transport agents usually provide

the delivery of cloud services [12]. If a transport agent refers to a business entity that

offers storage media such as high-capacity hard drives to be physically transported.
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Note that with a cloud carrier, a cloud provider can set up SLAs to provide services

consistent with the level of SLAs provided to cloud customers, and may enable the

cloud carrier to provide dedicated and safe links between cloud customers and cloud

providers.

2.12 Scope of Control between Provider and Consumer

In a cloud environment, the Cloud Provider and Cloud Customer share resource con-

trol. As Figure 11 shows, Different service models influence the control of computing

resources by an enterprise and therefore what can be achieved in a cloud environment.

Using a classic software stack notation comprised of the program, middleware, and OS

layers, the figure illustrates these distinctions. This study of the delineation of con-

trols over the application stack helps to understand the roles of the cloud application

management parties involved.

Figure 11: Scope of Controls between Provider and Consumer [10]

� Application Layer: Computer applications aimed at end-users or programs

are included in the application layer. SaaS customers use the software, or PaaS

customers, IaaS customers, and SaaS providers install/manage/maintain them.
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� Middleware layer: The middleware layer includes software building blocks

for the creation of application software in the cloud (e.g. libraries, databases,

and Java virtual machines). PaaS customers, installed/managed/maintained

by IaaS customers or PaaS providers, and hidden from SaaS customers, use the

middleware.

� Operating system Layer: The operating system and drivers are included in

the OS layer and are shielded from SaaS consumers and PaaS consumers. An

IaaS cloud enables one or more virtualized guest OSs to operate on a single

physical host. In general, customers have wide freedom to choose which OS to

host from all the operating systems that the cloud provider can support. IaaS

customers can assume full responsibility for the guest OS, while the host OS is

managed by the IaaS provider.

2.13 Deployment Models

There are four types of cloud deployments: (i) Private cloud, (ii) Public cloud, (iii)

Hybrid cloud, and (iv) Community cloud.

Figure 12: Cloud Computing Deployment Model3
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2.14 Private Cloud

The private cloud is physically situated at the on-site datacenter of your enterprise or

may be hosted by a third-party service provider. But in a private cloud, infrastructure

is still managed on a private network and the hardware and software are dedicated

only to your organization. Private clouds have the following advantages:

� More flexibility: Which means that organizations can customize their cloud

environment based on specific needs.

� High scalability: Private clouds still offer the scalability and efficiency of a

public cloud.

� Improved security: Resources are not shared with anyone so it is possible to

reach higher standards of control and security.

3https://www.webbazar.co.in
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Figure 13: Private Cloud Model4

2.15 Public Cloud

The most popular method of deploying cloud computing is using public clouds. A

third-party cloud service provider manages and maintains the cloud services (such as

servers and storage) and is distributed over the Internet. An example of a public cloud

is Microsoft Azure. For a public cloud, the cloud provider owns and maintains all

hardware, software, and infrastructure. You share the same infrastructure, storage,

and network equipment with other companies or cloud-based ”tenants” in the public

cloud. You access services and manage your account through a web browser. Public

4www.sam-solutions.com
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clouds have the following advantages:

� Lower Cost: There’s no need to buy hardware or software and you just pay

for the service you use.

� Unlimited Scalability: To satisfy your business needs, on-demand resources

are available.

� No Maintenance: Service Providers are responsible for providing mainte-

nance.

Figure 14: Public Cloud Model5

5www.sam-solutions.com
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2.16 Hybrid Cloud

Hybrid clouds are sometimes referred to as ”the best of both worlds”. In other words,

hybrid clouds combine private clouds, with public clouds so organizations can take

advantages of both. Hybrid Cloud offers more flexibility and deployment options

by allowing data and applications to move between private and public clouds. You

can use either private and public cloud-based on your needs. For instance, leverage

public cloud for high-volume, lower security applications such as web-based email,

and for sensitive, business-critical operations like financial reporting use private cloud

approach. Hybrid clouds have the following advantages:

� Flexibility: Which means you can take advantage of the public cloud when

you need more resources.

� Cost-effectiveness: You can scale your resources only when you need and pay

for extra computing power only.

� Control: Your organization can maintain and monitor private infrastructure

for sensitive applications.
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Figure 15: Hybrid Cloud Model6

2.17 Community Cloud

Community clouds are indeed distributed systems that are made up of different cloud

services to address specific requirements of communities, or industries. The users of

a particular community cloud fall into a well-identified community, having the same

interests or needs; they can be government bodies, industries, or even simple users,

but all of them concentrate on the same issues for their interaction with the cloud.

This is different from public clouds, in which multiple users with different services

are covered. Also, Community clouds differs thoroughly from private clouds, in which

services are basically provided for an organization that owns the cloud. To summarize,

Community clouds provide the following advantages:
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Figure 16: Community Cloud Model7

� Graceful Failures: There is no single point of failure since there is no single

service provider in control of infrastructure.

� Convenience and control: There is no conflict between convenience and

control within a community cloud since the cloud is shared and controlled by

the community that makes all the decisions through a collective democratic

process

� Community: Being based on a collective that offers resources and services, the

infrastructure is more scalable because the system can grow simply by expanding

its user base.

7www.sam-solutions.com
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The Comparison of Top Cloud Deployment Models

Top cloud deployment models can be compared as shown in the following table:

Public Private Community Hybrid

Ease of setup and use Easy Requires IT profi-
ciency

Requires IT profi-
ciency

Requires IT profi-
ciency

Data security and privacy Low High Comparatively
high

High

Data control Little to none High Comparatively
high

Comparatively
high

Reliability Low High Comparatively
high

High

Scalability and flexibility High High Fixed capacity High

Cost-effectiveness The cheapest Cost-
intensive,the
most expensive
model

Cost is shared
among commu-
nity members

Cheaper than a
private model but
more costly than
a public one

Table 2: Comparison between Cloud Deployment Models [5]

2.18 Cloud Computing Use Cases

Cloud computing technology is increasingly important in the industry since it has

brought several solutions that make doing business much easier. It has increased

performance, dynamic resource allocation capabilities and provides a convincing op-

portunity for organizations to outsource their IT infrastructure under the pay-per-use

model provided by many public cloud providers. here are several potential use cases

for the cloud that businesses of every size and industry need to consider. We have

mentioned some use cases of cloud computing below that could help any company.

2.19 Disaster Recovery as a Service (DRaaS)

Disaster recovery offers to secure and protect IT resources, ensuring high availability,

and having a plan to return to operations which is critical to every business today. DR
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created to prevent businesses from failure in the event of a disaster. You can easily

provide a backup on the cloud to protect your data, in case your on-premise servers

fail. In this situation, cloud can fully build and manage your required infrastructure

if a fail-over happens. Therefore, disaster recovery offers some beneficial features such

as, flexibility for data recall, Secure data transfer and storage, Ease of deployment,

and Rapid recovery 8.

2.20 Scaling resources

Every business will expand at some point, they need to increase or capably reallocate

your resources. Cloud computing offers scaling resources which makes it easy for users

to scale their resources up or down depending on business needs( season, projects,

growth, and more). By implementing cloud scalability, you can enable resources to

grow as your traffic or organization grows.There are two cloud scaling strategies:

vertically or horizontally. When you scale vertically it means scaling up or down, and

when you scale horizontally, it means scaling out or in 9.

Cloud Vertical Scaling

It refers to adding to an existing server more CPU, memory, I/O resources, or re-

placing one server with a more strong server. Vertical scaling of Amazon Web Ser-

vices(AWS)and vertical scaling of Microsoft Azure can be done by adjusting instance

sizes or by buying a new,more efficient appliance in a data center and discarding the

old one.

Cloud Horizontal Scaling

It refers to the provision of extra servers to meet your needs, often separating work-

loads between servers to reduce the number of requests received by any particular

8https://solutionsreview.com/
9https://rapidscale.net/
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server. This would involve adding additional instances in a cloud-based setting in-

stead of switching to a larger instance size.

2.21 Hosting applications and services

Application Hosting Services refers to providing a place for a company to host its

applications and services for the public, instead of relying on physical distribution.

This is a simple use case that most companies already use, but for any organization

that provides software and service computing platforms that allow the distribution of

software through the Internet, this software as a service (SaaS) use case is important

to consider. Application Hosting Services can provide an operational platform for

virtually any type of software application. Content management applications, web

development applications, database applications, and email management applications

serve as common examples of on-demand software that may be hosted via the Internet.

2.22 Big Data Analytics

Big data analytics use compute-intensive data mining algorithms that need efficient

high-performance processors to produce timely results. Cloud computing infrastruc-

tures can serve as an efficient framework for addressing the needs of big data analytics

applications for both computational and data storage. Advanced data mining tech-

niques and related methods can help extract data from massive, complex datasets

that are helpful in many business and scientific applications, including tax collection,

retail sales, social studies, bio-sciences, and high-energy physics [13].

2.23 Cloud computing basic components

Cloud computing consists of several components. Here, we will address the basic

components on which cloud computing has been deployed. These components consist

of a broad variety of services that we can use all over the internet.
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2.24 Virtualization

It plays an important role in the implementation of the cloud. It is the strategic

aspect of the cloud, which enables multiple users to use physical resources. It produces

the virtual instance of a resource or computer such as an operating system, servers,

network resources, and storage devices where the resources are used in more than one

execution environment in the framework [14].

2.25 Multi-tenancy

Multi-tenant environments may have multiple clients or users who may not see or

exchange information with each other; but may share resources or applications in an

execution environment, even though they do not belong to the same entity. Multi-

tenancy results in the efficient use of hardware and data storage mechanisms [15].

2.26 Cloud storage

It is a component, which maintained, managed, and backed up remotely and it is

made available over the network where the users can access data [16].

2.27 The hypervisor

It enables a single hardware host to run several virtual machines(VMs). It manages

and tracks the different operating systems that run on a shared physical device [17].

2.28 Cloud Network

A typical data center has hundreds or thousands of servers. To efficiently build and

manage the storages the cloud needs a secure network infrastructure which is called

cloud networking. It requires an internet connection and similar to a virtual private

network which allows the user to securely access printers, applications, files, etc [18].
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2.29 Cloud Computing Challenges

Cloud Computing is a disruptive technology with profound implications for the de-

livery of Internet services as well as for the IT sector as a whole. However, several

technical and business-related issues are still the main concerns.

� Security and Privacy:

Security (e.g., data security and integrity, network security), privacy (e.g., data

confidentiality), and service-level agreements are the main concerns in cloud

computing. As resources are all distributed among different cloud regions, data

privacy and security are more prone to get compromised, which makes compa-

nies worried more about data, especially when it comes to sensitive data.

2.30 Privacy

Because the Cloud computing system normally provides services (e.g. DaaS,

SaaS, IPMaaS, PaaS, etc.) to its users on the other side of the Internet, the

confidential information of individual users and companies is stored and handled

By the service providers and thus contribute to privacy issues. In computer

literature, privacy concerns have existed for a long time, and several laws have

been published to protect the individual privacy of users as well as business

secrets. These actions however, are obsolete and inapplicable to new situations

in which a new partnership between consumers and providers (i.e. three parties)

occurs. This section illustrates a few privacy acts which are not applicable in

the new environment.

2.31 Legal Issues

Cloud computing platforms (including applications and services hosted on them)

have important implications for personal information privacy as well as business
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and government information confidentiality. That is because any information,

including email, word processing papers, spreadsheets, videos, health records,

photos, tax or other financial information, business plans, accounting informa-

tion, advertising campaigns, address books, and more are moved from local

computers to Cloud Storage systems in the Cloud Computing era. Besides, all

of a user’s content initially stored on a local computer can be migrated to a sin-

gle cloud provider or even to multiple cloud providers. Whenever information

is exchanged in the cloud by a person, a corporation, a government agency, or

another organization, privacy or confidentiality issues can arise.

Besides, in cloud computing systems, the relationship between users and providers

is more complex than that of other types of web services. Includes three roles:

Cloud provider, XaaS provider/Cloud user, and XaaS user as illustrates in Fig-

ure 17, where X could be D (Data), S (Software), P (Platform), I (Infrastruc-

ture), and so on.

Figure 17: Users and Providers of Cloud Computing [19]

XaaS user is a customer or potential customer of a Cloud Computing service

who can be an individual, business, government agency, or any entity. XaaS

29



provider is the organization that offers the Cloud Computing service and a user

of Cloud Computing system. A Cloud provider is defined as an organization

that provides the Cloud Computing system, it can be an individual, a company,

or other business, a non-profit organization, a government agency or any other

entity. it is worth noticing that a Cloud service provider is one type of the third

party that maintains information about, or on behalf of, another entity.

In this new environment, several privacy acts are not applicable because of

the presence of a third party i.e., cloud service provider/cloud user). Besides,

certain privacy-related acts were released several years ago and originally cov-

ered privacy between only two parties. This means that data stored by a third

party may have less or weaker privacy rights than data kept by the owner of

the data. It could be simpler for other departments and organizations or even

governments to collect information from a third party.

2.32 Multi-Location Issues

The primary job of the Cloud is to offer huge computer resources to users,

including infrastructure, platforms, services (e.g., storage, computing power,

and so on). A company must trust the provider of the Clouds system and store

its private information in the Cloud system Which means that the company’s

data is stored in the machine of someone else. Consequently, if data are stored

in someone else’s devices, many things can go wrong. For example, the Cloud

service provider may go out of business or may decide to hold the data hostage

if there is a dispute. Moreover, large Cloud system vendors have their Cloud

mirror sites in many other countries. For instance, in multi-locations, Amazon

has its EC2, and currently one in The USA and the rest of Europe. Google App

Engine is also based in several different zones, it has 36 data centers worldwide),

such as the USA, China, and so on. A few problems which result in storing
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private data in multi-locations are listed here:

– Multi-location of the private data: It is very risky if the organization

stores its private information in the third Computer of the Party. In this

way, the private data of the corporation resides on someone else’s com-

puter, and in someone else’s facility. Many things, then will go wrong.

Firstly, the provider of cloud services can go out of business. Secondly, if

there is a conflict, the cloud service provider can decide to keep the data

hostage. Third, an organization needs to understand which country It will

be hosting its data. This is because the location of the information specif-

ically influences the option of legislation to be applied to its private data.

For example, if the data resides in China, access to that private data may

be protected by Chinese law.

– Multi-location of the service provider: The Cloud service client (e.g.

business user or private user) also needs to make sure how their declared

services are handled by the Cloud service provider. The Cloud service

client is thus able to maintain a direct link with the provider and to manage

its own private data.

– Data combination and commingling: The Cloud Computing client

(e.g., business user or private user) has to make sure that whether its

private data is stored separately from others or not. If they are combined

or commingled with those of other customer’s data, then it is much more

vulnerable. For instance, viruses might be transmitted from one client to

others. If another client is hacked, the attack might affect the availability or

integrity of the data of other companies located in the same environment.

– Restrictions on techniques and logistics: The Cloud service provider

may find it very difficult or even impossible to ensure the locations where

the data of the Cloud Storage client will be stored. For instance, Amazon
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has data centers across the world, the data of the client is automatically

placed across them unless Amazon uses dedicated servers for specific cus-

tomers or clients. It may also be essential for the Cloud service provider to

tackle logistics. Providers of cloud computing must delegate data storage

or other services to third parties.

� lack of standard APIs:

Standard APIs allow customers to easily extract code and data and transfer it

from one side to the other [20].

� Latency and backhaul overload:

As more customers tend to use services offered by cloud, huge amount of data

should be transferred between the cloud and the endpoints which results in more

bandwidth consumption and adds additional latency to the computations, which

in turn causes congestion in the backhaul infrastructure.

Taking all deficiencies into account, especially with the advent of IoT devices, the

cloud itself is not capable of connecting millions of things that are spread over large

geographically distributed areas. Thus, alternative solutions should be provided.

3 Edge Computing

Edge computing is another paradigm that enhances the management, storage, and

processing power for data that are generated by connected devices. edge computing

is located at the edge of the network close to IoT devices, but not on the IoT devices.

but as close as one hop to them. OpenEdge Computing describes edge computing

as computing performed by small data centers that are close to users at the edge of

the network. The initial vision for edge computing is to have open standards and

ubiquitous ways of computing and storage resources close to the user.
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In the current landscape of IoT devices, edge computing is a crucial computing

paradigm; it integrates IoT devices with the cloud by intelligently filtering, prepro-

cessing, and aggregating IoT data through cloud services deployed near IoT devices.

Privacy, latency, and networking are several problems that edge computing is well

suited to tackle. Because of its user proximity, edge computing latency is usually

lower than in MCC and cloud computing if adequate local computing power is pro-

vided; edge computing latency may be slower than cloud or MCC if the local com-

puting unit is not powerful enough. In edge computing, service availability is also

better because connected devices do not have to wait for a highly centralized net-

work to deliver a service, nor are connected devices restricted by traditional mobile

computing resources. Edge computing has limited data centers as opposed to MACC,

whereas MACC does not fundamentally require data centres. As a consequence, there

is higher service availability for edge computing.

Although fog computing and edge computing paradigms both emphasize on push-

ing computation and storage to the edge of the network and to the proximity of

end-devices, they are not pointing to the same concept. The OpenFog Consortium

states that edge computing is often mistakenly called fog computing; Fog computing

is hierarchical and offers computation, networking, and storage anywhere across the

cloud-to-things continuum; while edge computing paradigm is limited to computing

at the edge.

The two-way computing streams in edge computing are shown in figure 18. In

the concept of edge computing, things not only consume data but also generate data

by taking part in the processing. Apart from requesting services and content, Edge

devices will perform computational tasks from the cloud. An edge node can perform

data storage, computation of the load, processing, and caching. Also, the edge system

can distribute requests and provide users with service on behalf of the cloud. Edge

devices must be well configured to satisfy privacy criteria, reliability measures, and

security issues in such scenarios [21].
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Figure 18: Edge computing paradigm [22]

Where is Edge?

It should be noted that in certain articles, edge computing, cloudlets, fog computing,

and mist computing are used similarly, as they all have ”edge” as a common word.

The term edge used by the telecommunications industry usually refers to 4G/5G base

stations, RANs, and ISP (Internet Service Provider) access/edge networks. However,

the term edge that has recently been used in the IoT landscape refers to the local

network where IoT devices and sensors reside.

In other words, the edge is the immediate first hop, such as WiFi access points or

gateways, from the IoT devices (not the IoT nodes themselves). This computational

paradigm is known as mist computing if the computation is performed on IoT devices
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themselves. General Electric states that fog computing focuses on edge device inter-

actions ( e.g., RANs, base stations, or edge routers), while edge computing focuses

on the wired device technology ( e.g., WiFi access points).

3.1 Why Do We Need Edge Computing

� Push From Cloud Services: As the computational capacity on the cloud

outclasses the strength of the things at the edge, placing all the computing

activities on the cloud is an effective form of data processing. However the

bandwidth of the network has come to a standstill compared to the increasingly

developing processing speed of data. With the rising amount of information

produced at the edge, data transmission speed is becoming the bottleneck for

the cloud-based computing paradigm. For example, a Boeing 787 can produce

about 5 gigabytes of data per second, but the bandwidth between the aircraft

and the ground-based satellite or base station is not wide enough to transmit

data. As another example consider an autonomous vehicle. The car produces

one gigabyte of data every second and needs real-time processing for the vehicle

to make the right decisions. If all of the information needs to be transmitted

for processing to the cloud, the response time will be too long. Not to mention

that its capacity to accommodate a large number of vehicles in one region would

challenge existing network bandwidth and reliability. In this case, for shorter

response time, more effective processing, and lower network burden, the data

needs to be processed at the edge.

� Pull From IoT: Nearly all forms of electrical devices will become part of

the IoT and will play the role of both data manufacturers and users, such as

sensors for air quality, LED bars, streetlights, and even an Internet-connected

microwave oven. It is fair to infer that in a few years the number of items at

the edge of the network will grow to more than billions. This means that most

9https://www.ge.com/ digital/blog/what-edge-computing
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of the IoT-generated information will never be transmitted to the cloud, but

will be consumed at the edge of the network.

� Change From Data Consumer to Producer: In the paradigm of cloud

computing, the end devices at the edge typically play as a consumer of data,

for instance, Watching a YouTube video on your smartphone, people are still

creating data from their mobile devices today. More function placement at the

edge is necessary for the shift from data user to data producer/consumer. For

instance, it is very common for people to take pictures or record videos today

and then share the data through a cloud service such as YouTube, Facebook,

Twitter, or Instagram. Also, YouTube users upload 72 hours of new video

content every single minute; Facebook users share almost 2.5 million pieces of

content; Twitter users tweet almost 300 000 times; Instagram users post nearly

220 000 new photos. The picture or video clip may be very big and it would

take up a lot of bandwidth for uploading. In this case, before uploading to the

cloud, the video clip should be demoted and changed to the required resolution

at the edge.

3.2 Edge Computing Applications

Edge computing has several potential applications which are listed below.

3.3 Cloud Offloading

Most computations on the cloud computing paradigm occur in the cloud side, mean-

ing that data and requests are processed in the centralized cloud. However, Such

a computing model can suffer from longer latencies which weakens the user experi-

ence. Edge computing has some computing capabilities, and this offers an ability to

discharge part of the workload from the cloud. In the conventional content delivery

network, only the data on the edge servers is cached.

This is focused on the fact that data is generated on the Internet by the service
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provider, which has been valid for the past decades. In the IoT, the data is gener-

ated and consumed at the edge. In the edge computing model, therefore, not only

information but also data-applied operations should be cached at the edge. Online

shopping services are one possible application that might benefit from edge comput-

ing. A customer can also manipulate the shopping cart. By default, all these changes

will be made in the cloud on his or her shopping cart, and then the new shopping

cart display will be updated on the computer of the customer.

Depending on network speed and the load level of servers, this phase can take a

long time. Due to the comparatively low capacity of a mobile network, it maybe

even longer for mobile devices. As mobile device shopping is becoming more and

more common, it is important to enhance the user experience, particularly concerning

latency. If the shopping cart update is unloaded from the cloud in such a situation,

The latency would be significantly reduced for servers with edge nodes. As mentioned,

the shopping cart details and related operations of the users ( e.g., add an object,

change an item, remove an item) can both be cached at the edge node. Upon the

user request reaching the edge node, the new shopping cart view can be created

immediately. At the edge node, the data should be synchronized. However, this can

be performed in the background and should be coordinated with the cloud.

3.4 Smart Home

IoT and edge computing have helped the home environment in recent years. Several

devices, such as smart lamps, smart TV and robot vacuum, have been produced and

are available on the market. For smart home, however, simply attaching a Wi-Fi

module to the current electrical unit and linking it to the cloud is not enough. In

addition to the connected device, cheap wireless sensors and controllers should be

deployed to the room, pipe, and even floor and wall in a smart home environment.

These items will report an impressive amount of data and this data should be mainly

consumed in the home for the consideration of data transportation pressure and
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privacy security. This role makes the paradigm of cloud computing unsuitable for a

smart home [22].

Edge computing, however, is considered suitable for creating a smart home: with

an edge gateway running a especialized edge operating system (edgeOS) in the home,

stuff can be easily linked and handled in the home, data can be processed locally to

release the Internet bandwidth burden, and the service can also be installed on the

edgeOS for better management, and distribution.

Figure 19 illustrates the structure in the smart home world of a design of edgeOS.

Via different networking methods, such as Wi-Fi, BlueTooth, ZigBee, or a cellular

network, EdgeOS needs to collect data from mobile devices and all sorts of things. In

the data abstraction layer, data from various sources need to be fused and massaged.

The service management layer is on top of the data abstraction layer. This layer will

be assisted by criteria like separation, extensibility, isolation, and reliability.

Figure 19: Structure of edgeOS in the smart home environment [22]
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3.5 Smart City

From a single home to a neighborhood, or even a city scale, the edge computing model

can be flexibly extended. Edge computing argues that computing can take place as

close to the source of data as possible. A request could be created from the top of

the computing paradigm with this design and be handled at the edge. Considering

the following features, Edge computing may be a perfect tool for smart cities [22].

� Large Data Quantity: It is impractical to create centralized cloud data cen-

tres to control all of the data because the traffic burden will be too high. In

this case, by processing the data at the edge of the network, edge computing

may be an effective solution.

� Low Latency: Edge computing is also an effective paradigm for applications

that require predictable and low latency, such as health emergencies or public

safety, as it can save data processing time and simplify the network Architecture.

Decision and diagnosis may be taken as well as spread from the edge of the

network, which is more effective than central cloud data collection and decision-

making.

� Location Awareness: Edge computing exceeds cloud computing because of

location recognition for geographic-based applications such as transportation

and utility management. Data could be gathered and analyzed based on geo-

graphic position in edge computing without being transported to the cloud.

3.6 Collaborative Edge

Arguably, the cloud has become the de facto computing network for academia and

industry to process big data. A primary promise behind cloud computing is that the

data should already be kept or transmitted to the cloud and finally processed in the

cloud. However, due to privacy issues and the enormous expense of data transmis-

sion, data held by stakeholders is hardly exchanged with each other. Therefore, The
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probability of cooperation between multiple stakeholders is reduced. The Edge may

also be part of the conceptual definition as a physical small data centre that links

cloud and end-users with data processing capabilities.

Connected health is one of the exciting applications shortly, as shown in Figure 20.

Figure 20: Connected Health [22]

The demand for geographically dispersed applications for data processing, i.e.

healthcare, involves data sharing and collaboration between businesses in A mul-

tiplicity of domains. The collaborative edge will fuse geographically dispersed data

by building virtual shared data views to overcome this challenge. The end-user can

leverage shared data by predefined service interface. This public interface helps the

end user to compose complex services. These public services are delivered by collab-

orative edge participants and computation happens only in the data facility of the

participant in such a way that data privacy and integrity can be assured.

Connected health care is a good case to show the possible advantages of collab-

orative edge, for instance, a flu outbreak is a good case study. Patients go to hos-

pitals, and the patients’ electronic medical record (EMR) will be revised. For this
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flu epidemic, the hospital summarises and shares details such as the average cost,

the symptoms, and the population, etc. To get the pills from a pharmacy, a pa-

tient would technically obey the prescription. One possibility is that the treatment

was not followed by a patient. The hospital must then assume responsibility for re-

hospitalization when it can obtain confirmation that the pills were not taken by the

patient. Now the pharmacy is able to provide a patient’s purchasing record to the

hospital through collaborative edge, which greatly enhances healthcare transparency.

The pharmacies can be able to use the collaborative edge which was provided by

the hospital to retrieve the population of an outbreak. An obvious advantage is that

pharmacies have sufficient inventory to make a lot more profits. Behind the purchase

of drugs. The pharmacy would use data supplied by pharmaceutical companies to

collect the locations, prices, and inventories of all drug stores. It also sends the

logistics companies an application for a transport price question. Then by solving

the total cost optimization problem according to retrieved details, the pharmacy may

make an order plan.

Several flu prescription orders from pharmacies are also issued by pharmaceutical

companies. At this point, the production plan can be rescheduled by a pharmaceutical

company and the inventories of the warehouses can be rebalanced. In the meantime

as our government representative in this situation, the centers for disease control and

prevention monitor the flu population growing at a broad pace. As a result, the

range of places will raise a flu warning for the people in the areas involved. Besides,

further measures can be taken to avoid the spread of flu outbreaks. After the flu

epidemic, the insurance companies have to pay the bill depending on the contract for

the patients. The insurance providers will analyze the percentage of people during

the epidemic who have the flu.

To change the policy price for the next year, the proportion and the cost of care

for flu are important factors. Moreover, if the patient wishes to share it the insurance

providers will also have a customized healthcare package based on their EMR. Most
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participants will benefit from the collaborative advantage in terms of reducing oper-

ating costs and improving profitability in this simple example. Some of them may be

pure contributors to the healthcare sector, such as hospitals in this case because they

are the key collector of information in this community.[22]

3.7 Challenges and opportunities of Edge Computing

In this section, some challenges are discussed in more detail and introduced some

potential solutions and opportunities, including programmability, naming, data ab-

straction, service management, privacy and security, and optimization metrics. [22]

3.8 Programmability

Users program their code into cloud computing and deploy it on the cloud. The

cloud provider must determine where the processing in the cloud is conducted. This

is the advantage of cloud computing that makes the infrastructure transparent for the

customer since users have partial knowledge of the operation of the program. Since

the application only runs in the cloud, therefore, the application usually written in

one programming language and compiled for a particular target platform.

However, the edge nodes are most likely heterogeneous platforms then the com-

putation is offloaded from the cloud. The runtime of these nodes varies from each

other in this situation, and the programmer faces considerable difficulties in writing

an application that can be implemented in the framework of edge computing.

To address the programmability of edge computing, it is suggested that the com-

puting stream definition, defined as a set of functions/computing, be applied to the

data along the path of data propagation. The functions/computing may be an appli-

cation’s entire or partial features, and the computing can take place anywhere on the

path as long as the application specifies where the computing should be done. The

computing stream is software-defined computing flow which processed in a distributed

and efficient way on data generating devices, edge nodes, and cloud environment. A
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lot of computing can be done at the edge instead of the centric cloud as described in

edge computing. In this case, the processing stream will assist the user to decide what

functions/computing should be performed and how after the computation occurred

at the edge, the data is propagated.

3.9 Naming

A significant assumption in edge computing is that the number of things is enor-

mously high. There are a lot of applications running at the top of the edge nodes,

and each application has its structure regarding how the service is provided. The

naming scheme in edge computing is very important for programming, addressing,

identification of things, and data communication, like other computer systems. A

proper naming mechanism for the model of edge computing has not yet been de-

signed and standardized. Edge practitioners typically need to learn different contact

and network experiences Protocols to interact with their system’s heterogeneous stuff.

The edge computing naming scheme needs to manage the mobility of things, ex-

tremely dynamic network topology, protection of privacy and security, as well as

scalability targeting the incredibly large amount of unreliable things. Most of the

present networks are very well satisfied by traditional naming mechanisms such as

DNS and uniform resource identifiers. They are not flexible enough, however, to

serve the dynamic edge network, as most of the things at the edge can sometimes be

highly mobile and resource-restricted. Besides, the IP-based naming scheme may be

too strong for some resource-constrained things at the edge of the network to help

considering its complexity and overhead.

For edge computing, new naming structures such as Named Data Networking

(NDN) and Mobility First also be implemented.

� Named Data Networking: NDN gives the content/data-centric network a

hierarchically ordered name, and it is human-friendly for service management

and offers edge scalability. To fit into other communication protocols such
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as BlueTooth or ZigBee, and so on, it would require an extra proxy, though.

Another NDN-related problem is confidentiality, as it is very difficult to separate

hardware information from service providers.

� MobileFirst: To provide better mobility support, Mobile First should distin-

guish the name from the network address, and if extended to edge networks

where things are highly mobile, it will be very useful. Nevertheless, MobileFirst

must be used as a global unique identifier (GUID) for naming, and this is not

needed in the aggregation of related fixed details. At the edge of the network

infrastructure, such as the home environment. The complexity in service man-

agement is another downside of MobileFirst for the edge, as GUID is not human

friendly.

Letting the edgeOS allocate network address to each thing may be a solution for

a relative small and fixed edge such as home environment. Each thing could have

a unique human-friendly name in one system that describes the following informa-

tion: location (where), role (who), and description of data (what), this thing will be

allocated to the edgeOS identifier and network address, as illustrates in Figure 21.
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Figure 21: Naming Mechanism in edgeOS [22]

The human-friendly name is special to each thing and will be used for service man-

agement, diagnosis of things, and replacement of components. This naming system

for the customer and service provider allows simple management. For example, the

user will receive an edgeOS message such as ”Bulb 3 (what) ceiling light (who) failed

in the living room (where)” and then the user will replace the failed bulb directly

without looking for an error code or reconfiguring the new bulb’s network address.

In addition, this naming mechanism gives the service greater programmability.

In the meantime, vendors and service providers are blocked from accessing hard-

ware information to help protect data privacy and security. From a human-friendly

name, unique identifier and network address could be mapped. The Identifier in ed-

geOS will be used to handle items. To help various communication protocols such

as BlueTooth, ZigBee or WiFi, and so on, network addresses such as IP addresses or

MAC addresses will be used.
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3.10 Data Abstraction

By communicating via the air position indicators from the service management layer,

various applications may run on the edgeOS that consumes data or provides service.

In the wireless method, data abstraction was well explored and researched. The

sensor network and the model of cloud computing. In edge computing, this problem

becomes more troublesome. With IoT, the network will have a large number of data

generators, and here is an example of a smart home environment. Nearly all of the

things in a smart home will send details to the edgeOS, not to mention the vast

number of things installed all over the home.

Most of the things at the edge of the network, report sensitive data to the gate-

way periodically. For instance, The temperature might be recorded every minute

by the thermometer, but this data would most likely only be consumed by the ac-

tual consumer several times a day. Based on this evidence, human interaction in edge

computing should be reduced and all data should be consumed/processed by the edge

node and communicate proactively with users. In this case data, such as noise/low-

quality elimination, event detection, and privacy protection, should be preprocessed

at the gateway stage, and so on.

For potential service provisioning, processed data will be sent to the upper layer.

In this phase, there will be many challenges. As illustrates in Figure 22, data comes

from different formats and reported from different things. Raw data should be blinded

from raw data for the benefit of privacy and security applications operating on the

gateway. Besides, from an integrated data table, they can derive the information they

are interested in. The table with id, time, name, data can be easily specified therefore

that the data of any edge thing can be fitted in.

46



Figure 22: Data abstraction issue for edge computing [22]

Second, the degree of data abstraction is often hard to determine. Some software or

utilities may not be able to gain enough information if too much raw data is filtered

out. To retain a big amount of raw data, however, there will be a data storage

problem. Finally, due to the low-precision sensor, danger setting, and poor wireless

communication, data reported by items at the edge may often be unreliable. In this

scenario, the abstraction of useful information from unreliable data sources is still a

problem for developers of IoT applications and systems.

The applicable operations on the things are another problem with data abstraction.

Data collection is to support the application, and to complete those services the user

needs, the application should be able to monitor (e.g. read from and write to the

things). The data abstraction layer, integrating data representation and operations,

will serve as a public interface for all edgeOS-related things. Besides, both data

representation, and permitted operations could differ a lot due to the heterogeneity

of the things, which also raises the barrier of data abstraction.

3.11 Privacy and Security

Usage privacy and data security are the most critical services to be delivered at the

edge of the network. A lot of private data can be learned from the sensed use of data
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if a home is deployed with IoT. For instance, one can easily speculate whether the

house is vacant or not by reading the electricity or water use. In this situation, the

issue is how to help the service without damaging privacy. Before processing, some

of the private information may be removed from the data, such as masking all the

faces in the video. It may be a good way to preserve privacy and data protection by

keeping computing at the edge of the data resource, which means in the home. To

protect the protection of data and the privacy of users at the edge of the network,

some challenges remain accessible.

The first important thing is the awareness of privacy and security to the end-

users. Therefore, all stakeholders such as service providers, system and application

developers, and end-users have to be aware that the privacy of end users would

dangerous without notice at the edge of the network. for instance, health monitors,

Ip cameras, and WiFi toys can be connected by others if there is no proper protection.

Second, the possession of the data gathered at the edge of things. Much as what

happens with mobile apps, on the service provider side, the end-user data gathered

by things will be processed and analyzed. It would however be a safer option for

privacy security to leave the data at the edge where it is processed and let the user

completely own the data. End-user data obtained at the edge of the network should

be processed at the edge, similar to health record data, and the user should be able to

decide whether service providers should use the data. To better preserve user privacy,

extremely private data may also be omitted during the authorization process.

Third, powerful mechanisms to protect data privacy and protection at the edge of

the network are lacking.Some of the products are extremely resource-constrained, so

the existing methods might not be possible to deploy items for security defense, since

they are starving for money. Some frameworks, such as Open mHealth, are proposed

to standardize and store health data for privacy protection, but there are still more

resources lacking to manage different edge computing data attributes. [22]
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4 Internet of Things

Cloud computing has been the prevalent standard for the past decade. Comput-

ing, control, and data storage have been centralized and transferred into the Cloud,

according to this trend. On the other hand, The Internet of Things (IoT) is now be-

coming widespread. There were approximately 20 billion IoT-linked devices in 2017

and this amount will rise to approximately 30 billion in 2020 and more than double

by 2025.[23]. Due to its limitations, the evolving IoT poses many new problems that

cloud computing has a hard time facing.

4.1 IoT Definition

The term ”Internet of Things” was originally coined in 1999 by Kevin Ashton, execu-

tive director of the Auto-ID Center at Massachusetts Institute of Technology (MIT),

and then it has assumed several slightly different meanings.In this work, the defini-

tion is given by the International and Telecommunication Union (ITU) is assumed:

Internet of Things is ”a global infrastructure for the information society, enabling

advanced services by interconnecting (physical and virtual) things based on existing

and evolving interoperable information and communication technologies (ICT)”. In

this context, a thing is intended as ”an object of the physical world (physical things)

or the information world (virtual things), which is capable of being identified and in-

tegrated into communication networks”, while a device is ”a piece of equipment with

the mandatory capabilities of communication and optional capabilities of sensing, ac-

tuation, data capture, data storage, and data processing”. In the other words, the

Internet of Things is a set of Internet-connected computing devices (namely things)

aimed at providing services for all forms of applications, while security requirements

are met [23].
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4.2 IoT Architecture

Many different IoT architectural models can be found, but, the most commonly used

is based on three architectural levels: Perception (or Sensing) layer, Network (or

Transmission) layer,the Application layer. The three-layer IoT architectural reference

model is depicted in Figure 23. Each architectural layer is characterized by the devices

that belong to it and by the functions performed.

Figure 23: Three-layer IoT architectural model [23]

� Perception layer: The purpose of the Perception layer is to acquire environ-

mental data (such as light, temperature, pressure, humidity, etc.) with the aid

of sensors and actuators. Basically, before transmitting it to the network layer,

the main objective of this layer is the identification and collection of information.

� network layer: The network layer is the middle layer and its aims to provide

data routing and transmission functions to the correct destination. Therefore,

the primary objective of this layer is to transmit data effectively within het-

erogeneous networks and without losing information. In this layer, Internet

gateways, switches, routers, and other network devices run.

� Application layer: It is the highest layer that uses the data collected from the

bottom layers to implement various services and applications. Typically, this

layer contains the user interface, data model-related formulas, business logic,

and anything required for the particular IoT service or application.
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4.3 IoT Characteristics

The main features of the Internet of Things are summarized below:

� Interconnectivity: It is possible to interconnect anything in IoT with the

global connectivity and information infrastructure.

� Things-related services: Within the limitations of things, such as security

and semantic compatibility between physical and virtual things, IoT can provide

thing-related services.

� Heterogeneity: IoT equipment may be based on various networks and/or

hardware platforms. Besides, they can connect with various service platforms

and/or Via various networks, devices.

� Constrained resources: IoT typically includes devices with energetic and

computational constraints.

� Dynamic changes and uncontrolled environment: In IoT, the state of

the devices ( e.g., sleeping/awake, connected/disconnected) and context (e.g.,

position, speed) dynamically change. Therefore, IoT devices are part of an

unregulated ecosystem characterized by unstable environments and interactions

between them. Due to both unstable network access and complex system state

shifts, devices are unreliable. Furthermore, the number of devices can change

dynamically.

� Huge scale: The number of devices that need to be handled and that need to

connect is immense and will be much greater in the future. Besides, the propor-

tion of device-triggered communications will continue to rise to the detriment

of human-triggered communications. The management and analysis of data

created by such devices to exchange information with each other will be even

more important [23].
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4.4 IoT Challenges

IoT has brought some challenges which are driving the increasing interest for Edge

and Fog computing, as solutions to such difficulties. some of these challenges are

listed below:

� Low Latency: Low latency and jitter (within a few milliseconds) are often

needed for both industrial control systems and IoT applications. The Cloud

computing model is certainly not within the scope of this criteria.

� High Network Bandwidth: A large amount of data is increasingly produced

by the rising number of connected IoT devices. It takes an extremely large

network to transfer all this information to the cloud. Bandwidth and often

useless or not allowed (e.g. due to concerns about data privacy). Thus, without

involving the cloud, the data generated at the edge of the network often needs

to be stored and processed locally.

� Limited Resources: Several IoT devices have very limited resources (such as

sensors, drones, vehicles, etc.).This implies that they are unable to communicate

directly with the Cloud, as these connexions often involve either complex pro-

tocols or computational intensity. As a result, devices with resource constraints

must depend on an intermediate interface layer to link to the cloud.

� IT and OT Convergence: Industrial networks have recently undergone the

integration of Operational Technology (OT) 10and Information Technology (IT)

11 with the advent of Industry 4.0.This trend brings new goals and organizational

requirements for the business. In modern cyber-physical systems, the incessant

and secure operation is always a priority, because an offline system may cause a

remarkable business loss or an unnecessary client inconvenience. As a result, it is

a challenge to upgrade hardware and software in such systems. The consequence

10Hardware and software systems used to monitor and control physical processe
11Hardware and software systems used to process, transmit, and store business data.
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is the need for a new architecture that, over time, eliminates the need for system

updates.

� Intermittent Connectivity: Some IoT devices have intermittent network

access (e.g., vehicles and drones). As a result of this, it is difficult to provide such

devices with uninterrupted cloud services. To minimize or solve the problem, it

is therefore important to rely on an intermediate layer of devices.

� Geographical Distribution: In wide geographical areas, the large number

of IoT devices needing computer and storage facilities are distributed. It is

therefore difficult to find a place for the cloud infrastructure that enables all IoT

application specifications to be met. To bridge this distance, an intermediate

layer of devices is useful.

� Context Awareness: Many IoT applications, such as vehicular networks and

augmented reality, need local context information ( e.g. user location, network

conditions) to be accessed and processed. Due to the physical distance between

IoT devices and central computing, this provision does not involve a centralized

approach to cloud computing.

� Security and Privacy: Emerging issues in IoT security and privacy are

unique. Today, cybersecurity solutions are aimed at protecting businesses and

consumers through firewalls, intrusion prevention systems (IPSs), and intrusion

detection systems (IDSs) that provide perimeter-based protection. Unfortu-

nately, this paradigm is no longer sufficient to solve the new security problems

raised by the IoT.

It needs fundamental changes to current paradigms to overcome these chal-

lenges. That is where Edge and Fog computing comes in, offering a new tech-

nical trend designed to establish the missing link in the continuum of Cloud-to-

Things.[23]
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5 Mist and other related Computing Paradigms

Computing technology has reached a new era with the advent of cloud computing.

This common computing model is currently nurtured as a utility by many computer

service providers such as Google, Amazon, IBM, Microsoft, etc. They have allowed

cloud-based services such as Infrastructure as a Service (IaaS ), Platform as a Service

(PaaS ), Software as a Service( SaaS), etc. To manage various enterprise and edu-

cational issues simultaneously.Most cloud data centers, however, are geographically

centralized and far from the vicinity of the end devices/users. As a result, requests

for real-time and latency-sensitive computing resources to be addressed by remote

cloud data centres frequently suffer from significant round-trip delays, network con-

gestion, loss of service quality, etc. In addition to centralized cloud computing, a new

paradigm called ”Edge computing” has been proposed to address these issues.[24]

The basic concept of Edge computing is to have computing facilities Closer to the

data source. More specifically, Edge Computing allows edge network data processing.

The edge network consists of end devices ( e.g. cell phones, smart objects, etc.), edge

devices ( e.g. border routers, set-top boxes, bridges, base stations, wireless access

points, etc.), edge servers, etc., and it is possible to equip these components with

the necessary functionality to help edge computing. Edge computing offers quicker

responses to requests for computing resources and most frequently resists the sending

of bulk raw data to the core network. In general, however, Edge computing does not

spontaneously associate IaaS, PaaS, SaaS, and other cloud-based services and focuses

more on the end device side [25]. Several computing paradigms have already been

introduced in computation technology, such as, Cyber Foraging, Cloudlet, Mobile

computing(MC), Mobile Cloud Computing(MCC), Mobile-Edge Computing(MEC),

Edge Computing, Mobile ad hoc cloud computing (MACC), Among them Mobile

Edge Computing (MEC), Mobile Cloud Computing (MCC) are considered as the

potential extensions of Cloud and Edge computing. In the next section the related
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computing paradigms are discussed in the order of their trend and show how some

paradigms resulted in the emergence of others.

Figure 24: Comparison of the infrastructure of fog computing and its related com-
puting paradigms from the networking perspective [25]

5.1 Cyber Foraging

Cyber foraging is one of the first edge computing ideas, although it has now been

replaced by more recent concepts such as cloudlet, MEC, and fog. It was introduced

in 2001 by Satyanarayanan [26] and was further refined in 2002 by Balan et al [27].

In cyber foraging, Resource-limited mobile devices exploit the capacities of nearby

servers, connected to the Internet through high-bandwidth networks. Computing and
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data staging is done by these servers called surrogates. The process of prefetching

distant data to nearby surrogates is data staging. For example, when a mobile device

has to process a compute-intensive part request, such as face recognition, which needs

to access a large amount of data for face matching, it captures raw images and

offloads the complex processing to surrogate. The surrogate performs the processes

of face recognition and matching using For a database. This surrogate may install

the database on its local disc and, on behalf of the mobile device, perform all or

some part of the processing. It then delivers the result to the mobile device with

low latency, because it is close to the device. If the mobile computer fails to locate a

nearby surrogate server, It may provide the end-user with a degraded service due to

its limited capabilities [28].

5.2 Cloudlet

The cloudlet definition was next proposed in 2009 by Satyanarayanan et al.[38]. This

is referred to in [29] as cloudlet-based cyber foraging. Cloudlets reuse modern meth-

ods of cloud computing, such as virtual machine (VM) based-virtualization. They

are resource-rich servers or server clusters located near mobile devices in a single-

hop environment. They run one or more VMs in which mobile devices can offload

components for expensive computation. Back to the application for face recognition,

the face detection and matching processes will be done on VMs rather than actual

machines using cloudlets.

Virtualization allows Cloudlets to dynamically expand and shrink. This ultimately

contributes to scalability about the service demands of mobile users. Besides, the VM

distinguishes the guest software environment from the cloudlet’s host software envi-

ronment, which in turn improves the probability of mobile users finding a compatible

cloudlet anywhere in the world to unload their computer-intensive requests. Using

cloudlets, resource-poor mobile devices offload their intensive computations (e.g., face

recognition) to the cloudlets they use, thereby guaranteeing real-time interactive re-
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sponses. It can link to a distant cloud if the mobile device moves away from the

cloudlet, thereby providing a degraded service. Although cloudlets reflect the middle

level of a three-tier hierarchy (i.e., mobile device-cloudlet-cloud), there is no clear em-

phasis on cloud interactions in the current concept of cloudlets. Cloudlets may also

act on the edge as a complete cloud. Even when they are completely isolated from

the cloud, Since VM provisioning of the cloudlets is done without cloud interference,

it can exist as a standalone environment.

5.3 Mobile Computing

The advancement in fog and cloud computing is affected by the groundwork de-

veloped by mobile computing. mobile computing is done via mobiles, portable de-

vices. computing can be used to create pervasive context-aware applications, such as

location-based reminders. Mobile devices, which can be connected via Bluetooth ,

WiFi, ZigBee, and other cellular protocols, are the only form of hardware that mobile

computing requires. In comparison, fog and cloud computing need virtualization ca-

pabilities of more resource-rich hardware. Security in mobile computing must be done

on the mobile device itself. However, fog and cloud computing, mobile computing

is more resource-constrained, but in recent years, advancements in mobile hardware

and wireless protocols have significantly reduced this gap.

Mobile computing’s strength comes from the distributed architecture. This archi-

tecture benefits from distributed applications since mobile machines do not require a

centralised location to function. However, mobile computing comes with many disad-

vantages, such as weak resource limitations, Communication latency, and the need for

mobile customers to adapt to changing environments effectively. Such disadvantages

also make mobile computing unsuitable for current applications that need low latency

or robustness, or that need to produce, process, and store large volumes of data on

computers.[5]
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5.4 Mobile Cloud Computing

As cloud computing and mobile computing matured, This combination resulted in

mobile cloud computing (MCC), which is defined as a platform that offers unrestricted

features, mobility, and storage via heterogeneous network access. This technology

also provides scalable computing services by following the pay-per-use model. In

mobile cloud computing, resource-contained mobile devices can utilize resource-rich

cloud services.MCC transfers the majority of computation from mobile devices to the

cloud.

MCC provides to run computation-intensive applications and to boost the battery

life of mobile devices.MCC shares a combination of capabilities and characteristics

in cloud computing and mobile computing which leads to the high availability of

computing resources compared to mobile computing. This enables high-computation

technologies, such as mobile augmented reality, to emerge. Also, in MCC, the avail-

ability of cloud-based applications are far greater than that of mobile computing.

MCC depends on the cloud for running high-computation services like cloud com-

puting and fog computing. MCC computing can also be operated by mobile devices.

Security in MCC must be provisioned on both mobile devices and in the cloud, similar

to cloud computing.

MCC also has some limitations like mobile computing. The main advantages and

some related issues are illustrated in figure 25. First, while a centralized MCC archi-

tecture is perfect for sharing a pool of computing resources, this might not be well

suited for applications where the pervasiveness of devices is desired. Secondly, as

both cloud computing and MCC need cloud-based services, and as these services are

linked via the WAN connection, applications running on these platforms need to con-

nect to the Internet at all times. Finally, for delay-sensitive applications, offloading

computation to the cloud allows the latency to be reasonably high [5].

Among other problems facing MCC are bandwidth restriction in wireless access
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networks and QoS support for mission-critical applications. On the security and pri-

vacy side, knowledge of the location and activities of the user by the service provider

could cause problems with privacy. In general, cloud computing security problems,

such as data leakage and data outsourcing issues, still exist [4].

Figure 25: Mobile cloud computing characteristic and issues [4]

5.5 Mobile Edge computing

MEC suggests that computing and storage facilities be co-located at the base stations

of cellular networks. In a remote area, MEC may either be connected or disconnected

to cloud data centers. MEC allows two or three-tier hierarchical application deploy-

ments with end devices. It leverages the MEC server to be deployed near base station

towers to process and store at the edge.

Some participants utilize this computing paradigm, such as, the mobile end users,

network operators,Internet infrastructure provider (InPs), and application service

provider. Mobile end users are the main consumer of the system and request their

service via user equipment(UE). Then, the operation of the base stations, the mobile

core network, and MEC servers are managed and maintained by network operators.

59



Internet access and routers are maintained by InPs. Providers of application services

host the application services in the content delivery network (CDN) or within data

centers. The nearest MEC will be checked for while handling applications from the

UE. The MEC server will process user requests rather than forward them to remote

Internet providers. In a situation where an application can not be processed or com-

pleted at the MEC, The request will be sent to remote CDNs or data centres[30].

MEC is the evolution of mobile base stations, according to [31].

It is collaborative telecommunication and IT networking implementation. This

computing paradigm provides individual end-users and business customers with new

vertical business segments and services. Through this computing model, various ser-

vices could be offered which could not be done with traditional network architecture,

figure 26 including IoT, location services, augmented reality, caching service, video

analytics, and delivery of local content. It can provide low-latency access to local

content in real-time or through caching content from the MEC server. The key draw-

back of this framework, however, is the MEC server installation, which is explicitly

dedicated to MEC services. Scaling is another major problem with the growth in the

demand for services over time.

Figure 26: MCC/MEC computing architectures [4]
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5.6 Mobile ad hoc cloud computing

This computing model is not always ideal for scenarios in which there is a lack of

infrastructure or a centralized cloud, considering the ubiquitous existence of MCC.

An ad hoc mobile network is the most decentralized type of network, consisting of

nodes that form a temporary, dynamic network via routing and transport protocols.

In an ad hoc mobile network, mobile devices form a highly dynamic topology of the

network; the network created by mobile devices is highly dynamic and must handle

devices that connect or leave the network continuously. Clouds that can be used

for networking, storage, and computing can be created by ad hoc mobile devices.

Instances such as disaster relief, group live video streaming, and unmanned vehicular

systems could be used by MACC.

MACC vs cloud computing

Mobile ad hoc cloud computing (MACC) is different from cloud computing, basically

because of the nature of ad hoc resources. MACC involves mobile devices that act as

data providers, storage, and processing devices. Because of the lack of network infras-

tructure, Mobile devices in a mobile ad hoc cloud network are responsible for routing

traffic among themselves.MACC provides relatively high computation by pooling lo-

cal mobile resources to form an ad hoc cloud. In cloud computing, these attributes

vary from target customers, architecture, and accessibility [5].

MACC vs MCC

In hardware, service access process, and distance from users, MACC is also different

from MCC, as computation is performed on mobile devices in MACC, while in MCC

it is far from mobile devices. MACC only requires mobile devices to run, while,

in addition to mobile devices, MCC requires large-scale data centers used for cloud

storage. In MCC, this results in high computing power, but also higher latency.

MACC security must only be given on mobile devices, but maintaining trust in MACC
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can be difficult without a stable framework for collaboration. Finally, in MACC, only

mobile devices that are connected via Bluetooth, WiFi, and other cellular protocols

have access to services [5].

MACC vs Fog

While fog computing can be done across a variety of devices rich in resources and

deficient in resources, mobile ad hoc cloud computing is best suited to highly decen-

tralized, dynamic topologies of networks in which Internet access is not guaranteed.

Compared to fog computing, the connected devices in MACC are more decentralized,

allowing devices to form a more dynamic network at locations of sparely connected

devices or a rapidly changing network. An example of this is an ad hoc peer-to-peer

file-sharing network [5].

5.7 Mist Computing

In recent years, mist computing has been introduced to capture a more extreme edge

of end devices [32]. This computing paradigm describes dispersed computing at the

IoT devices themselves with the horizon of future self-aware and autonomic systems

in mind. Mist computing be can be viewed as the very first computing location in

the IoT-fog-cloud continuum. It can be called informally ”IoT computing” or ”things

computing.” A wearable computer, a mobile device, a smartwatch, or a smart fridge

could be an IoT device. Mist computing spreads computing, storage, and networking

across the things through the fog. In a way, mist computing is a MACC superset;

since the networking does not necessarily be ad hoc in mist, and the devices may not

be mobile devices (more details are provided in Figure 29).

The authors in[33] present the concept of using nearby mobile devices for storage,

caching, and computing purposes as a cloud computing environment. They research

the use of mist computing to decrease the load for video dissemination applications

in traditional WiFi infrastructures. In this research, spectators of a sporting event
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organise themselves into WiFi-Direct groups and, wherever possible, share video re-

plays, bypassing the central server and access points. ”Another example of mist

computing is this report, in which IoT devices not only operate as” thin clients ”but

also as” thin servers. Some other applications of mist computing are to protect the

privacy of user data by local processing, and to deploy virtualized instances efficiently

on single-board computers.

Mist computing’s basic objective is to bring computing, i.e. sensors and actuators,

to the very edge of the network. As in real life, physical systems would not be used

if there is a connectivity failure between the cloud and the IoT device. IoT devices

do not rely on the internet. IoT systems should not be able to use local intelligence

using the guidelines given to act in the event of failure.

5.8 Guiding Principles of Mist Computing

� Network must provide information but not simply data.

� Only information that has been requested should be given by the network and

only when requested.

� A dynamic system should be created base on information requires with inter-

acting end devices using a subscriber provider model.

� Devices must be aware of the situation and adapt to the information needs and

configuration of the network. We should not have rules for static bindings for

devices and data providers. The devices must dynamically discover the data

providers and execute application.

The cloud and fog are aware of the needs of the user and the global situation,

while the mist is aware of the physical environment and local conditions. So the

responsibility is to execute an IoT application together. The global situation must

be communicated to the edge devices in order to do this, and the edge devices must
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be able to grasp what or how they ought to respond in such circumstances. The

IoT application then actually stretches from the very end of the edge network to the

cloud. there are some differences between edge computing and mist computing. In

edge computing, fixed data processing functionality exists at the edge of the network,

application configuration is fixed, while in mist computing, there are functionalities,

dynamic and flexible timings, high-level application-specific rules are possible, new

applications can be assembled at runtime from existing devices [34].

5.9 Routing in the Mist:

For routing in mist computing, conventional wireless routing protocols are not suit-

able. The routing protocols here support communication from device to device. Sub-

optimal routing paths have been found to increase network bandwidth requirements.

Also, any node should be able to connect to any gateway in the mist, reducing re-

liance on a particular gateway. In a huge network, often gateway failures cause a new

gateway to be added, the nodes near that gateway should be able to link dynamically

to such a node and efficiently create a new route between itself and the gateway so

that the information unavailability crisis is resolved within the tolerance span [34].
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Figure 27: Architecture Of Mist Computing [34]

5.10 Mist Architecture

As shown in Figure 27, the mist nodes responsible to process the data to be handed

over to the IoT devices that include sensors and actuators with a physical link between

them. The mist nodes also monitor the quality of link parameters. The functionali-

ties at the gateway level are loading updated application rules and tuning application

parameters, monitoring local node health, computer-intensive service execution. Fi-

nally, new applications can be deployed at the cloud level and applications can be

coordinated along with service quality management and health monitoring of running

applications.

Figure 28 demonstrates the classification of fog-related computing paradigms and

their overlap in terms of their scale. Comparison of fog computing and it’s associated
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computing paradigms are shown in the figure.

Figure 28: A classification of the scope of different computing paradigms [5]

5.11 Paradigms Comparison

All previous discussions about fog computing and related paradigms clearly show the

importance of understanding the characteristics of these platforms in IT landscape.

The strength and weaknesses of these computing paradigms vividly separate them

from each other and make some paradigms more appropriate to particular use cases.
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Figure 29: Comparison of fog computing and all other related computing paradigms
[5]

The characteristics of computing paradigms are differentiated and summarized in

Table 3.

6 Towards Fog Computing

It is estimated that by 2020, the number of connected ”things” (devices, gadgets,

home appliances, phones, computers, etc) will reach 50 billion. From one side, all

these IoT devices are constantly generating data and, from the other side, most often

they need to execute rapid analysis on the data and provide instant results. For

example, consider a scenario in which a latency-sensitive application requires a quick

act on data. In such a case, sending data to the cloud does not seem to be a good

choice, because transferring a huge amount of data consumes a lot of bandwidth and,
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Characteristics CC MC FC EC MCC MACC Mist

users General Mobile General General Mobile Mobile Mobile

Architecture Centralized Distributed Decentralized/
Hierarchi-
cal

Localized/
Distributed

Central
cloud with
distributed
mobile
devices

Distributed Localized/
Distributed

Distance from
user

Far very
close

Relatively
close

Close Far Very close Very close

Operator Cloud
service
providers

Self-
organized

Users
and cloud
service
providers

Network
infras-
tructure
provider-
s/local
businesses

Users
and cloud
service
providers

Self-
organized

Self-
organized/local
business

Service Type Global Local Less global Local Local Local Local

Availability High Low High Average High Low Low

Latency High Moderate Low Low High Moderate Moderate

Power-
Consumption

high — low Low Low on mo-
bile devices

Low Low

Server-
Location

Installed
in large
dedi-
cated
buildings

— Can be
installed
at the
edge or in
dedicated
locations

Near edge
devices

Installed
in large
dedicated
buildings

— —

Table 3: Comparison between Cloud Computing(CC), Mobile Computing (MC), Fog
Computing(FC), Edge Computing(EC), Mobile Cloud Computing (MCC), Mobile
Ad-hoc Computing and Mist Computing(MC) paradigms [35]

at the same time, adds additional latency to computations. Furthermore, Wide Area

Network (WAN) latency adversely impacts energy efficiency and interactive response

between the things and the cloud infrastructure. Taking all limitations into account,

it is concluded that the cloud itself is not capable of connecting millions of things

spread over large geographically distributed areas. Hence, Cisco [36] introduced the

notion of Fog Computing as the extension of the cloud computing paradigm which

moves the computing resources to the proximity of users from the core to the edge of

the network.

Indeed, Fog computing bridges the gap between traditional cloud infrastructure
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and the things, and provides storage, computation, and networking services. It is

considered as complementary to the cloud, addressing emerging IoT applications that

require low latency and/or fast mobility support.

Fog Computing enables organizations to perform an inordinate amount of real-time

and low-latency IoT data locally at the source without consuming the organization’s

network bandwidth to send all the data back and forth to the cloud. Furthermore,

by analyzing and processing data closer to the source, Fog Computing can signifi-

cantly improve the performance of the system in terms of computations and service

execution.

6.1 Definition of Fog Computing

Fog computing is a distributed paradigm of computing in which processing is done

at the edge of the network with seamless integration of the cloud infrastructure. It

provides a computing facility for IoT environments or other applications that are sen-

sitive to latency. Sending data from all connected devices for analysis and processing

on the cloud will require a huge amount of bandwidth and storage. All devices are

not connected to the controller via IP but connected by some other industrial IoT

protocols. Because of this, a process of translation is also required for the process-

ing or storing of IoT device’s information. The Fog computing paradigm offers an

ideal location to immediately analyze most data near the devices that generate and

function on that data. The Fog is placed close to things that are able to process the

produced data and act on it. The devices inside the Fog setting are referred to as

Fog devices. These nodes can be deployed anywhere with network connectivity: At

the power pole, at the factory, next to the road, next to the railway line, in a vehicle,

inside a shopping mall, on an oil rig, etc. A fog device is defined as a device that

has processing,Memory, storage, and network capability. Although the Fog extends

the cloud, technically it is placed between the cloud and IoT devices and provides

processing and storage tasks in close proximity to the user. But the definition of fog
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is debatable. Table 4 illustrates Fog definitions provided by different research works.

Defined by Characteristics

Bonomi et al. Highly virtualized, Reside between IoT devices and cloud, Not exclusively located at the edge

Cisco systems Extend the cloud, Generally used for IoT, Can be deployed anywhere, Fog devices consists of
processing, storage, and network connectivity

Vaquero and Rodero-
Merino

Heterogeneous, ubiquitous and decentralized devices communication, storage and processing
are done without third party invention, run in a sandboxed environment, leasing part of users
devices and provide an incentive

IBM Defined fog and Edge computing as the same notion, Not depends on centralized cloud, Resides
at network ends, Place some resources and at the edge of the cloud

Table 4: Summary of Fog computing definitions [36]

6.2 Differences between cloud and fog computing

Fog computing architectures are based on Fog clusters where many Fog devices par-

ticipate. On the other hand, data centers are the key physical components of clouds

which increase operational costs and energy consumption. By comparison, in the Fog

computing model, energy consumption and operating costs are low.

The Fog is located closer to the user, so one or a few hops may be the distance

between users and Fog devices. This distance leads to having high latency for the

cloud compared to the fog and also the cloud is a more centralized technique, while

the Fog is a more dispersed geographical orchestration-based solution. Due to the

high latency in the cloud, real-time interaction is not feasible for the cloud, but this

issue can be easily overcome by Fog computing.

On the other hand, due to wireless connectivity, decentralized control, and power

failure, the Fog failure rate is high. Since smart gadgets and handheld devices will

participate in Fog systems, most devices in Fog environments will be wirelessly con-

nected. These machines and other maintenance of the network devices are decentral-

ized. When software is not correctly controlled, these devices may fail. Users may
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not be aware of malicious software that may result in the failure of the system. Also,

Fog processing may also fail in other instances, e.g. each Fog system is responsible

for processing its application.

Therefore, the processing of the IoT application on a Fog system often takes a

second priority. If the Fog device is fully utilized by the application of the device

itself, then it will not be able to do any fog processing. The scheduling of apps and

resources in the Fog is even more difficult. Furthermore, the Fog’s failure management

is competitive due to power failure, which is just a concern because the systems

operate on battery power. In all, Table 5 indicates the technical differences between

the cloud and the fog.

Fog Cloud

Participating Nodes Constantly dynamic Variable

Management Distributed/Centralized Centralized

Power Source Battery/Direct Power/Green Energy Direct Power

Power Consumption Low High

Computation Capacity Low High

Storage Capacity Low High

Network Latency Low High

Computation Cost Low High

Number of Intermediate hop One/few Multi

Nature of Failure Highly diverse Predictable

Table 5: Differences between Fog and Cloud [37]

6.3 Fog-Cloud Federation

Cloud and fog computing have obvious differences and trade-offs, it might be con-

fusing which one to choose. Fog and cloud, however, complement each other; the
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need of the other can not be replaced by one. Combining cloud and fog computing

improves the data aggregation, processing, and storage capabilities. For example, the

fog might filter, preprocess, and aggregate traffic streams from source devices in a

stream processing application, while queries could be sent to the cloud with heavy

analytical processing, or archival results. The collaboration between cloud and fog

could be handled by an orchestrator. In particular, a fog orchestrator may provide an

interoperable pool of resources, deploy and schedule application workflow resources,

and monitor QoS. Via the use of SDN, fog service providers would have greater con-

trol over how a large number of fog nodes that transfer data between cloud and IoT

devices are configured for the network [5].

6.4 Architecture of Fog Computing

For market adoption and deployment, Fog computing must have a standard architec-

ture. There is no available standard architecture to date. However, many research

works have presented Fog computing architectures. In this section, firstly the high-

level architecture of Fog computing is discuss. Furthermore, some proposed archi-

tectures for Fog computing are summarized. Finally, a detailed architecture for Fog

computing with a comprehensive description of each component of the architecture

is presented [37].

6.5 High-level Architecture of Fog Computing

The Fog computing paradigm in high-level architecture has three separate layers, as

shown in Figure 30.
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Figure 30: High-level Fog Computing Architecture [37]

There are three layers in this architecture: 1) IoT layer, where the IoT devices and

end-users are located; 2) fog layer, where fog nodes are placed; and 3) cloud layer,

where distributed cloud servers are located. A cloud server can consist of multiple

processing units, such as a physical server rack or a server with multiple processing

cores. Nodes are split into domains in each layer where a single application for IoT-

fog-cloud Implementation is completed.

The fog layer is the most significant layer. This layer consists of all devices for in-

termediate computing. Traditional virtualization technology, similar to the cloud, can
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be used on this plane. However, taking into account the accessibility of services, it is

more fitting to use container-based virtualization. This layer collects sensor-generated

IoT layer data and, after processing, sends an action-related request. The big data

problem tends to be solved by processing generated data at the edge level, with bil-

lions of devices producing big data problems. In reality, the small and medium-scale

processing of big data can be used at this stage.

The bottommost layer is the IoT plane, which consists of all connected devices. The

devices on this plane perform the sensing and actuation process. Processing should

be performed exclusively on the Fog plane for time-sensitive apps, while the cloud

can conduct other processing that is not time-sensitive. The fog layer can, however,

manage what needs to be sent to the cloud and what should not be sent. Based on

their request, users can get services from both the Fog and the cloud. However, the

cloud plane will manage complex processing and storage [37].

For example, Figure 31 shows that a domain of IoT nodes (for example, in a

factory) is shown in dark green and that they interact with a domain of fog nodes

associated with the application.
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Figure 31: General framework for IoT-fog-cloud architecture [38]

IoT domain can include several IoT devices (or sensors) in a factory, in a farm,

or in a smart home where all these sensors in a neighborhood vicinity make a single

domain. All the nodes in one domain are typically located in close proximity to each

other, such as in a neighborhood or at building levels. A collection of cloud servers

for a single domain is associated with each domain of fog nodes.

The following is the basic way in which IoT nodes, fog nodes, and cloud servers

work and communicate.

� IoT nodes can locally process requests, send them to a fog node, or send them

to the cloud.

� Fog nodes can process requests, forward requests to other fog nodes within the

same domain, or transmit requests to the cloud.

� Cloud servers manage requests and return a response to the IoT nodes.
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6.6 Hierarchical Fog Computing Architecture

A hierarchical fog computing architecture is introduced in [39], in each fog node to

provide flexible IoT services while maintaining user privacy. IoT devices for each user

are connected with a proxy VM (located in a fog node), which collects, classifies, and

analyses the raw data streams of the devices, transforms them into metadata, and

transmits the metadata to the respective VMs of the application (which are owned

by IoT service providers). The corresponding metadata from different proxy VMs is

obtained by each application VM and its service is given to users.

Most of the data created by devices from users include personal information, such

as photos/videos taken by cell phones and smart cars, GPS data, wearable device

health information, and sensed smart home status by the sensors deployed in a smart

home. Not only the individual, but even all of society will benefit from analyzing

such humongous results. Analyzing the photos/videos captured by cameras, for ex-

ample, may recognize and monitor a terrorist. In particular, the application provider

sends each fog node a photo of the terrorist, and each fog node locally conducts face

matching to compare the photo of the terrorist with the photos/videos taken by local

devices. If matched, the respective photos/videos will be submitted to the cloud by

the fog node for further processing. Thus, in order to offer such services, it seems

that consumers have to share their personal details. Maintaining user privacy in the

provision of such services is the main challenge.

A hierarchical architecture of fog computing is proposed to tackle this problem.

As shown in Figure 32, each user is associated with a proxy VM, which is considered

to be a user’s private VM that provides versatile computing and storage resources

(located in a nearby fog node).
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Figure 32: The hierarchical fog computing architecture [39]

This offers versatile tools for computation and storage. User-owned IoT devices are

registered to the proxy VM of the user, which collects the raw Data streams created

through a multi-interface BS from its registered devices are categorized into different

groups based on the type of data. By analyzing the corresponding data sources, it

produces the metadata and sends the metadata to the corresponding application VM.

Notice that there is useful information in the metadata produced from the raw data

streams Without compromising user privacy. For example, in the terrorist detection

application, only the locations and timestamps of the matched photos/videos, rather

than the original photos/videos, are uploaded to the application VM. The application

VM, owned by the IoT service provider, provides a semantic model for each proxy VM

to generate the metadata (e.g., the face matching algorithm in the terrorist detection

application), it collects metadata from various proxy VMs and provides users with

services.

For example, by analyzing the metadata from various proxy VMs, all terrorists will

be detected, monitored, and arrested, thus safeguarding our society.

Proxy VM locations can be dynamic: if the registered devices are deployed stati-

cally (e.g. the sensors in the smart home), the proxy VM can be deployed statically

in a nearby fog node, if any of the devices registered are mobile (for example, the

mobile phone and wearable devices of a user travelling from home to work), as shown
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in Figure 33.

Figure 33: The illustration of the proxy VM decomposition and migration process
[39]

The user’s proxy VM can be broken down into two proxy VMs: the static IoT

devices (in the home) continue to support one proxy VM, and as the mobile IoT

devices roam away, the other proxy VM migrates to the other fog nodes.

The aim of migrating the proxy VM is to reduce traffic (i.e. uploading Cellular

core network raw data streams from mobile devices to a proxy VM in the fog node)

and the E2E latency between a user’s mobile IoT devices and their proxy VM.

6.7 OpenFog Architecture

OpenFog is a hierarchical architecture for fog computing introduced by Open Fog

Consortium. Figure 34 illustrates the locations of fog nodes in different deployment

views.
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Figure 34: OpenFog Deployment Scenarios [4]

In multiple hierarchical orders, the fog layer covers all processing facilities between

the endpoints and cloud servers, each of which can be deployed based on the data

processing jobs’ form, size, and latency specifications. Fog nodes can communicate

through wired or wireless channels with each other. In several parameters, such as

processing capacities, networking skills, and node reliability, each tier of fog nodes

differs from other levels. To generate more intelligence, each tier sifts and extracts

meaningful data. Data acquisition/collection and data normalization are done in the

bottom tier of the architectural layer. Data filtering, compression, and transforma-

tion are done in the upper layer. The upper fog layer is close to the cloud which

transforms the gathered data into a knowledge base for permanent storage. As the
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layers are closer to the cloud, overall system intelligence and capability are improved.

Fog nodes at the edge will architecturally need less processing, communication, and

storage than nodes at high levels. However, Input and Output (I/O) accelerators

needed to facilitate sensor data intake at the edge are far larger in aggregate than

I/O accelerators built for higher-level nodes. As fog computing emerges, traditional

centralized cloud computing continues to remain an essential component of computing

systems.

A more detailed view of the OpenFog reference architecture is shown in Figure 35,

in which four perspectives and three views are defined.

Figure 35: OpenFog layered architecture [4]

The perspectives cover the system’s non-functional aspects, which include secu-

rity, management, analytical and control, and fog business. There are Three views,

software, node, and system views. The system view includes one or more node views

coupled with other components to create a platform. The node view covers pieces

and components from the system developer’s point of view, while the system view

deals with the interconnection of components and nodes and output from the point
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of view of the system designer. Fog nodes need to serve many functions from the

point of view of the node, including networking, computing, acceleration, storage,

and managed sensors and actuators. The node requires to implement sufficient secu-

rity mechanisms and management agents.

As with diverse heterogeneity of computing and networking, the abstraction layer

must be implemented to provide standard APIs for connecting to other components

of the framework. To provide additional computation throughput, the fog nodes in-

volved in enhanced analytical need to configure accelerator modules such as graphical

processing units, field-programmable gate arrays, and digital signal processors. Sev-

eral forms of storage are used in fog nodes to meet the system’s required reliability,

stability, and data integrity. Furthermore, fog nodes can be linked to provide load

balancing, stability, fault tolerance, data sharing, and cloud connectivity minimiza-

tion in a mesh topology. The system software consists of three layers: application

service, application support, node management, and software back-plane. Applica-

tion support provides a wide variety of software that many apps (microservices) use

and also share.

A multitude of computing clients or edge devices are used in the OpenFog architec-

ture. This can work in conjunction with related cloud services to perform optimized

storage, computing, networked communication, and related management tasks based

on workload requirements. The following properties stand out in order to illustrate

the difference between the OpenFog architecture and conventional cloud architectures.

In particular, the architecture of OpenFog should be:

� Include lower latency storage at or near the deployment of the end-user and

business.

� To avoid latency, network, and other migration costs (including bandwidth),

perform the necessary computing near the end-user and data.

� Instead of having all communications to be routed and coordinated via the
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backbone network, utilizing low latency communication at or near the end-user.

� Implement management elements at or near the endpoint, like network mea-

surement , control, and configuration, rather than being solely managed by

gateways like those in the LTE Core.

� Enable the results of telemetry and locally computed analytics to be copied to

the backend cloud for further analytics and orchestration in a safe way.

An OpenFog Fabric consists of nodes or layers that can be distributed, centralized,

or a mixture of them. It may rely and be implemented on dedicated hardware, soft-

ware, or both. The common denominator is that this fabric distributes computing,

communication, control, and storage resources and services through available devices,

systems and clouds to achieve the desired purpose while fulfilling all application re-

quirements.

It is not a binary decision to choose between a cloud and OpenFog. They form a

continuum of mutually beneficial, inter-dependent. OpenFog architecture has a lot of

unique advantages listed as follows:

� Cognition: OpenFog architecture brings awareness of client-centric objectives

as an advantage which also provides autonomy.

� Efficiency: OpenFog architecture provides a pool of unused resources from

devices which can be used to improve efficiency.

� Agility: OpenFog architecture provides on-demand scalability and rapid inno-

vation of emerging technologies on the cloud infrastructure.

� Latency: OpenFog architecture provides real-time processing in the fog which

results in lower latency.

Platform as a service (PaaS ) is a cloud computing services category that offers a

platform that allows consumers to create, run, and operate web applications without
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the difficulty of constructing and maintaining the infrastructure usually associated

with an application being built and launched.

The OpenFog architecture aims to define the necessary infrastructure to allow Fog

as a Service (FaaS) to be designed to address certain categories of business challenges.

The building blocks of the infrastructure and architecture in Figure 36 illustrate how

FaaS can be activated and will be extended in the reference architecture.

Figure 36: OpenFog Infrastructure View [40]

� OpenFog Fabric: It consists of building blocks that allow the creation of a

homogeneous computer infrastructure that can provide useful services to the

surrounding ecosystem (e.g. devices, protocol gateways, and other fog nodes).

Generally, the homogeneous infrastructure is based on heterogeneous hardware

and multi-vendor supplied platforms.

� OpenFog Services: These services are built on top of the fabric infrastructure

which may result in network acceleration. There are a lot of these overlay

services such as SDN, NFV, traffic offloading, complex event processing, and

content delivery.

� Devices/Applications: Edge sensors, actuators, and applications that oper-

ate separately, within a fog deployment, or spanning fog deployments are devices
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/ applications. The OpenFog service layer tackles this.

� Cloud Services: For analytical work that needs to run on a broader data

scale or pre-processed edge data to create policies, Cloud Providers may take

advantage of the cloud.

� Security: For OpenFog implementations, security is fundamental. Inside each

architecture layer, discrete functionality units are wrapped with discretionary

access control mechanisms so that the deployment of OpenFog and the sur-

rounding ecosystem operate in a safe and secure environment. The OpenFog

architecture would ensure that all data transfers between the endpoints involved

are safeguarded by state-of-the-art information security practices.

� Devops: Automation allowed by an operationally efficient collection of stan-

dard DevOps processes and frameworks is powered by DevOps. OpenFog’s

DevOps drives the versatility of software updates and patching by continuously

managed integration processes.

6.8 Cisco-Bonomi Reference Architecture

A reference architecture was introduced by Bonomiet et al. [41] which is depicted in

Figure 37. There are five key components of the reference architecture, the hetero-

geneous physical resources layer, the fog abstraction layer, the orchestration layer of

the fog service, IoT services, and the distributed message bus.
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Figure 37: Cisco-Bonomi Reference Architecture [41]

� The heterogeneous physical resources layer: This layer consists of fog

physical resources including servers, edge routers, access points, vehicles, sen-

sors, and mobile phones.

� The fog abstraction layer: To allow smooth resource management and con-

trol through the higher layers, the fog abstraction layer is responsible for hiding

the heterogeneous nature of the fog platform and providing a consistent and

programmable interface. For monitoring, provisioning, and controlling physical

and virtual resources, a collection of generic APIs are specified in this layer.

Furthermore, for different components of the architecture, this layer defines
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stability, privacy, and isolation policies.

� The orchestration layer: It is designed to control a fully distributed environ-

ment for fog computing and provides fog services with policy-based life-cycle

management. This layer includes four key components, namely policy manager,

life-cycle manager, capacity engine, and a distributed database containing busi-

ness policies, state of fog nodes information, hardware and software capabilities

of fog nodes. With a single global view and local implementation, it implements

a distributed policy engine. Foglet is characterized as a software agent that ex-

tends the functionality of orchestration on edge devices. It uses abstraction

layer APIs to track the health and state associated with the physical machine

and its services that can be analyzed locally or globally.

� The distributed message bus: A scalable bus that is deployed to hold control

messages for service orchestration and resource management is the distributed

message bus.

Bonomi et al.[41] suggests that multi-tenancy is assisted by cloud and fog ecosys-

tems. there are subtle differences in the nature of their client-organizations. Hetero-

geneous physical resources in a cloud are most commonly distributed in a central-

ized manner. Fog includes homogeneous resources in its distributed infrastructure-

complements and extends the cloud to the edge and endpoints.

Fog infrastructure includes data centers, the core of the network, the edge of the

network, and endpoints. Fog, as well as the cloud, facilitates the co-existence of appli-

cations from various tenants. Each tenant stipulates its topology and it is assigned a

virtual topology. Three major resource groups are in the fog, namely computing, stor-

age, and networking. In the above areas, the fog needs scalable virtualization that can

be obtained by a Virtual File System, a Virtual Block, and a suitable Network Virtu-

alization infrastructure. The Cloud profits from a policy-based provisioning process.
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Similarly, to automatically control resources, Fog uses a policy-based orchestration

and provisioning framework on top of the resource virtualization layer.

The issue of seamless resource management through a variety of platforms should

be resolved by Fog. Fog platform hosts a various set of applications belonging to

various verticals–smart connected vehicles to smart cities, industrial automation, to

name but a few. The architecture offers data and control APIs that many applications

can use. Data APIs were used to access the fog data store while control APIs were

enabled to decide how to deploy an application.

The infrastructure of the Fog network is heterogeneous, ranging from high-speed

connections between corporate data centers and the core to different wireless con-

nectivity technologies. The fog abstraction layer defines the ability to run multiple

service containers on a physical machine to maximize the usage of resources and pro-

vides policies for stability, privacy, and isolation. The service orchestration layer offers

the ability to use multiple Foglet agents to handle services on a broad volume of Fog

nodes with a wide variety of capabilities. The health and state of physical machines

are tracked by these Foglets’ abstraction APIs. The Bonomi platform enjoys the

messaging bus to hold service orchestration, resource management, and distributed

database control messages that are perfect for increasing the scalability and fault

tolerance of fog.

6.9 Fog architectures for 5G and IoV

Control and data planes are closely connected in legacy networks, protocols running

in switches and routers are immutable once they are installed. The network is now

deeply ossified and can hardly be innovated by the operator. SDN, a modern network

paradigm that allows the separation of control data Operation, provides the controller,

via programmable control plane, with a global view of the network.

Therefore, it leads to the dynamic implementation of networks, agile network man-

agement, quicker innovation of software, and effective use of resources. In this section,
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an SDN-enabled architecture for cloud-fog interoperation is discussed [42].

Figure 38: The SDN enabled cloud-fog interoperation architecture [42]

� Components: As highlighted in Figure 38, mobile users, fog servers, and

the cloud server are included in the proposed architecture, where storage and

processing services beyond the access network are referred to as cloud. On top

of the cloud-RAN (C-RAN) fogs are deployed. C-RAN is a great carrier for

Deploying fog, the role of traditional base stations is split into two parts:

– remote radio head (RRH) for radio signal transceiving.

– baseband unit (BBU) for high-speed baseband processing.

C-RAN can well hold the facilities for fog computing by stacking storage and

computation tools on BBU and RRHs. RRH fogs are widely distributed and

linked via fiber link or millimeter-wave to the centralized BBU fog (20-40 km

away [43]). In addition to the communication unit, a processing unit is fitted for

each RRH fog. The tools for storage and computation are virtualized as isolated

virtual machines ( VMs), which is administered by a local fog controller. The
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functionality of the RRH fog lies in two folds:

– it performs baseband processing after radio signals are received.

– it offers local storage and computing services that can be scheduled dy-

namically by the BBU fog controller.

With more processing units, BBU fog is stacked, making it the most potent fog

inside RAN. In addition to the features of RRH fog, the controller of the BBU

also functions as a master controller (MC) in which all controllers in RRHs

are synchronized. Notice that this configuration is compatible with the legacy

C-RAN, and can therefore be implemented incrementally.

� Interoperation: Local network information is continuously exchanged among

controllers with MC coordination, leading to a logic controller with group in-

telligence.Via either fog-fog interoperation or cloud-fog interoperation, the con-

trollers analyze user requests and respond accordingly.

Interoperation with fog-fog is initiated when user demands are beyond an indi-

vidual fog capacity. The logical controller begins a crowdsourcing process upon

receiving such requests. The MC decomposes the task based on the available

resources on each fog server and distributes them accordingly. Once the de-

composed activities have all been finished, the MC reassembles the findings and

introduces them to mobile users.

When user requirements can not be met only by fog computing, cloud-fog in-

teroperation is enabled. In this regard, the MC abstracts the user requirement

and determines whether fog preprocessing can speed up the provisioning of the

service. Then the MC starts a process of crowdsourcing through fog-fog Inter-

operation or the direct sending of user requests to the cloud.

With interoperation, more user requests can be managed locally, and the utiliza-

tion of fog services is driven to the limit in the meantime. Taking fog caching
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as an instance, it is possible to push frequently requested files to cloud fogs.

Thus, via fog-fog interoperation, mobile users can fetch content from neighbor-

ing servers. Compared to the cloud, as fog storage is limited it is only possible

to archive selected content and to continually erase dated data. Thus, to achieve

a higher local request hit ratio, cloud and fog have to communicate frequently

to maintain the optimality of fog content entry.[42]

6.10 Components of Fog Computing Architecture

The architecture of Fog computing consists of multiple layers. Figure 39 displays

each layer and its components. Based on their functionality, which is described as

the layer, the components are divided into several classes. These features allow IoT

devices to connect with multiple Fog devices, servers, gateways, and the cloud.
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Figure 39: Components of Fog Computing Architecture [37]

6.11 Physical Layer

The different data types emitted by the sensors are the basic data source for Fog

computing. Smart devices, temperature sensors, humidity sensors, smart homes, the

CCTV surveillance system, the traffic monitoring system, self-driving cars, and so

on could produce this data. For example, if we want to introduce a smart traffic

management and monitoring system, from different sensors, roadside devices, and

cameras, we need to get updated traffic conditions for all roads, which will help
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control traffic signals. Future traffic demand must also be forecast by collecting data

from several GPS sensors. The role of virtual sensors is also important in addition to

physical sensors, if a road accident happened, it would not be possible to determine if

the road should be blocked or traffic should continue to go using only a single sensor.

This event can affect the road with one or more lanes, while another lane may allow

the traffic to proceed, because of this incident, however, the traffic handling capacity

will be limited.

In this case, a virtual sensor could help to obtain an immediate decision on road

conditions, multiplexing of traffic, and redirection of traffic. The physical layer is

therefore made up of physical and virtual sensors, where any system for generating

data could fall into any of these classes.[37]

6.12 Fog Device, Server, and Gateway Layer

The Fog device, Fog server, or Fog gateway could be a standalone device or an IoT

device [44]. It is clear, however, that the Fog server should have a higher configuration

As it handles many Fog devices than the Fog system and gateway. Various factors are

involved so that the Fog server can run. These include its function, the configuration

of hardware, networking, the number of devices it can handle, etc. Whether the Fog

server is separate from an IoT device or part of it is specified by its function. The Fog

system will be connected to a group of physical and virtual sensors. Similarly, it will

be connected to a Fog server by a group of Fog devices. Compared to the Fog system,

the Fog server should have higher processing and storage capacity in this case.

A particular cluster of Fog devices that are linked to the same server may be able

to Communicate as needed with each other. In the smart transportation use case,

some application processing might depend on other Fog clusters. The Fog server and

device layer are responsible for managing and maintaining information on hardware

configuration, storage configuration, and connectivity of devices and servers. The

computation specifications requested by different applications are also handled by this
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layer. Requirements for computation depend on the flow of data and The number of

IoT devices that are connected to the Fog system and the total number of Fog devices

that are connected to the Fog server.[37]

6.13 Monitoring Layer

The monitoring layer still monitors the output and resources of the system, facilities,

and responses. Components of device monitoring help select the necessary resources

during service. In smart transportation system scenarios, various apps run. Therefore,

it is evident that when resource availability is negative for computation or storage

on a Fog computer, a situation could occur. It might happen to the Fog server in

a similar situation. To counter those styles The Fog system and servers will request

support from other peers in situations. The device monitoring aspect will therefore

help effectively determine certain items. The portion of resource demand tracks

current demand for resources and can forecast future demand for resources based on

the current usage of resources and user activities. In this way, the device would be

able to cope with any uncomfortable circumstances where there might be a resource

outage [45].

Fog computing performance based on device load and resource availability can

be predicted by performance prediction monitors. In service level agreements, this

portion is necessary to maintain acceptable QoS specifications. If SLA violation

happens often, because of the penalty, the cost of the device for the provider will be

increased. Although performance prediction will not completely remove this problem,

by predicting the performance and use of the system, it will be able to minimize overall

SLA violations.[37]

6.14 Pre and Post-Processing Layer

There are various elements in this layer, which primarily operate on basic and ad-

vanced data analysis. At this level, acquired data and data trimming are analyzed
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and filtered, reconstruction and restoration are often undertaken where appropriate.

After processing the data, the portion of the data flow decides whether the informa-

tion needs to be saved locally or sent to the cloud for long-term storage [46], this

phenomenon is referred to as stream processing.

In the case of the smart transportation system, data from several sensors will be

produced. In order to gain insight into the produced data, the generated data will be

analyzed and filtered in real-time.

Processing data at the edge and minimizing the amount of data that needs to

be stored is the key challenge in Fog computing. There could be no use for all the

generated data. In certain instances, storing all the data generated would not even

be a reasonable idea. For example, if data is produced from a sensor every second,

the mean value of the data can be stored within a minute or an hour, depending on

the sensor on criteria for submission.[37]

6.15 Storage Layer

It is the responsibility of the storage module to store data by storage virtualization.

The component of the data backup ensures data availability and mitigates data loss.

A pool of storage devices linked by a network functions as a single storage device in

the storage virtualization concept, which is easier to manage and maintain.

One of the major advantages of storage virtualization is to use less-expensive stor-

age or commodity hardware to provide enterprise-class features. In order to minimize

the complexity of the storage structure, the storage layer thus enables storage virtu-

alization. During system service, storage in a system can fail at any point. Therefore,

to avoid any unnecessary circumstances, it is necessary to backup essential data. Pe-

riodic or personalized data backup systems take care of the data backup module in

this layer [37].
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6.16 Resource Management Layer

The elements in this layer maintain resource distribution and scheduling and deal

with problems of energy saving. The reliability factor ensures the reliability of the

scheduling of applications and the allocation of resources. Scalability guarantees the

scalability of Fog assets during peak hours when demand for resources is high. The

cloud tackles horizontal scalability, while Fog Computing attempts to have horizontal

and vertical scalability [46].

Many distributed network, processing, and storage device resources are available.

This is a crucial problem for distributed resources using the application processing.

Therefore, in which the resource allocation aspect handles and retains resource allo-

cation related problems, resource allocation, deallocation, and reallocation can occur.

Another critical problem is that several programs can run concurrently in the Fog

computing environment. Therefore, proper scheduling of these apps is needed. The

application planning aspect takes care of these applications based on different goals.

This layer also has components that save energy, which manage resources in an

energy-efficient way. Energy efficiency also has a positive environmental effect and

helps to minimize running costs. Based on different reliability indicators and metrics,

reliability components manage the requirement for a system’s reliability. Fog com-

puting is a dynamic system that requires both IoT devices, Fog devices, and the cloud

to be taken care of. A system or link may therefore fail at any stage, so reliability

management is an essential issue [37].

6.17 Security Layer

The components in this layer, which also protect the privacy of Fog users, will main-

tain all security-related issues such as contact encryption and secure data storage. Fog

computing, like cloud computing, is intended to be implemented as a type of utility

computing. However, the user connects to the cloud in the cloud computing concept,

for services, however, the user will link to the Fog infrastructure for the services in
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the Fog computing concept, while the Fog middleware will handle and maintain cloud

communications.

A consumer who wishes to connect to a service must be approved by the provider.

The authentication component in the security layer processes user authentication

requests so that they can connect to the Fog computing service environment[47].

Maintaining encryption between communications is necessary to maintain security,

so that security breaches by outsiders do not occur. The encryption component

encrypts all IoT device connections from and to Towards the Cloud. Components of

Fog computing are often linked via a wireless network, so security issues are important.

6.18 Application Layer

While Fog was designed to serve IoT applications, Fog computing is also supported

by many other Wireless Sensor Network (WSN) and CDN-based applications. Fog

computing would be able to take advantage of any application that has latency-

aware characteristics. This implies some kind of utility-based service that could fit

into Fog computing by offering a better quality of service and cost-efficiency. For

example, Augmented Reality-based applications should adopt Fog computing be-

cause of its nature. It is obvious that Augmented Reality will change the modern

world in the near future. Fog computing can meet the needs of real-time processing

for Augmented Reality applications, which can maintain continuous enhancement of

Augmented Reality-related services [37].

7 Fog computing Applications

fog computing is applied in different fields and industries. In this section, a compre-

hensive review of fog computing applications is introduced.
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7.1 Healthcare

Leveraging the fast advancements in information and communication technology, elec-

tronic healthcare (e-healthcare) emerged itself as a revolutionary new paradigm. E-

healthcare quickly swaps the means of traditional healthcare after technological im-

provements. IoT plays a key role in redefining e-healthcare as the Internet of Health-

care Things (IoHT) in this ever-changing healthcare scenario, where both individuals

and computers connect, communicate, gather, and share data through the incorpora-

tion of physical objects, hardware, software, and computer devices. Connecting the

digital world to the physical world, IoHT helps healthcare devices (e.g. Fitbits, sen-

sors, Bluetooth, mobile devices, etc.) to capture health-related data with the aid of

widespread and ubiquitous computing and e-healthcare systems (e.g., blood oxygen

saturation, blood pressure, weight, glucose level, respiratory, heart rate, etc).

There are other reported works on IoT-based healthcare include: emergency med-

ical service, smart rehabilitation system, do-it-yourself solution focusing on patient-

oriented infrastructure development, smart hospital system, anomaly detection, body

sensor network-based healthcare system, cardiac arrhythmia management system,

and self-aware early warning system.

However, a large number of heterogeneous, multidimensional, and multimodal data

databases are created by the various players in the e-healthcare ecosystem, which is

a major challenge. In order to process this enormous amount of healthcare data,

systems with enormous storage and processing capacity are required that can analyze

big data, therefore cloud computing was used. IoHT, big data, and cloud computing

needed to converge to build the IoHT ecosystem to form the next generation of e-

healthcare systems.

Nonetheless, due to network overloading, the current number of IoHT devices

causes rising latency, thereby reducing the system suitability for real-time applica-

tions. In order to address this issue, fog computing is used. However, the architecture
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of fog computing may be susceptible to the single point of failure, since it relies more

on the gateway device. Mist computing can be used to build an optimized network

that bridges IoHT devices to the virtual computing environment to further increase

response time by reducing data traffic on fog nodes in local networks, thus reducing

response latency and improving IoHT system efficiency and lifetime.

Different IoHT ecosystem data types and applications need different processing

and response times. Addressing these problems, a heterogeneous five-layer mist, fog,

and cloud-based IoHT architecture are proposed in [48] which is capable of managing

and routing real-time and offline/batch mode data efficiently.

Therefore, the proposed IoHT architecture is capable of choosing suitable data

transfer policies to reduce latency based on disparate data sources.

� Ensuring optimum utilization of resources by delegation and distribution Layer

processes with relatively lower loads.

� Guaranteeing minimum delay in transmission by proper load balancing; As-

suring the most favorable distribution of data-sensitive resources for prioritized

data transmission.

The following sections describe the various components of the framework.

Ecosystem

An ecosystem is made up of different devices and applications that ensures unin-

terrupted data flow. In fact, ecosystem is vital for successful design of an IoHT

framework. In the following, an IoHT ecosystem is illustrated in Figure 40.
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Figure 40: Overview of an IoHT Ecosystem [48]

As the ecosystem diagram shows, different stakeholders in IoHT who reside at The

outer circle (e.g., healthcare organizations and professionals, patients, applications,

and information systems) link to the inner circles aimed at smooth sharing of infor-

mation with their respective counterparts. The outer circle with very few analytical

capabilities is the most interactive and sensitive one. The analytical capabilities,

along with latency and data storage, are growing steadily towards the inner circles.

So, to ensure delay tolerant data transmission of real-time data as well as big data,

the proposed architecture adopts appropriate layer-specific data transmission polices.
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Network Architecture

Figure 41 shows the five layers of the IoHT framework’s architecture. The five layers

are the perception layer, mist layer, fog layer, cloud layer, and application layer.

Figure 41: Architecture of the proposed IoHT framework [48]

Each of these layers was developed with predefined functionalities related to the

data transmission and processing pipeline of the IoHT framework. Figure 42 illus-

trates a block diagram with the functionality of individual layers.
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Figure 42: IoHT Framework [48]

� Perception Layer: The lowest layer of the proposed IoHT framework is the

perception layer. This layer is responsible for distinguishing physical objects

and collecting contextual Data from devices that produce real-time as well as

non-real-time data and healthcare data. The data is primarily calculated by

small sensors, embedded systems, RFID tags and readers from individuals and

their environments, small to large diagnostic and healthcare devices, medical

and clinical imaging devices, and any devices allowed for data acquisition and

transmission.

Big health data [e.g., standardised eHR, electronic medical record (eMR), clin-
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ical/medical imaging data, unstructured clinical reports, etc.] are available in

addition to real-time healthcare data, Requiring separate handling due to their

need for advanced data analytics. In the IOHT framework, both types of health-

care data are transmitted to a specific overlaying layers either mist or fog based

on the data type and their processing requirements.

� Mist Layer: This layer has been introduced To facilitate time-sensitive data

processing. Mist computing locates directly within the network fabric which

functions on the extreme edge of it. The main responsibility of this layer is per-

forming basic processing of the sensor data (e.g., data aggregation, fusion, and

filtering). Mist computing provides optimal resource utilization of the Things.

� Fog Layer: One of the key driving forces behind IoT technology growth is

the need to process ”on the fly” data to detect anomalies, provide real-time

warnings, and automatically trigger appropriate actions which need a system

with high responsiveness and minimal latency. Due to their high latency, using

centralized cloud-based models is inadequate for this objective. In such cases,

it is necessary to decentralize and delegate processing loads to different layers

based on the demand of the application.

A decentralized architectural pattern for getting computing resources and ap-

plication services closer to the edge is formed by the fog layer, thus reducing

the latency of response. The functional components in this layer provides, local

data storage , data filtering, data compression, data fusion, and intermediate

data analytics to minimize cloud disposable load, boost device efficiency and

QoS, and save backbone bandwidth

� Cloud Layer: The cloud layer can connect to the perception layer, fog layer,

and application layer. Aggregated healthcare data from the fog layer are sent to

the cloud layer for advanced analytics and long-term storage of big data. Also,
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data from non-sensor sources, such as eMR, eHR, e-prescription platforms, etc.

are integrated seamlessly. this layer performs various advanced data analytics

including, machine learning, data mining, rule-based processing, and automated

reasoning based algorithms to accomplish extracting meaningful insights from

the heterogeneous healthcare data, However, it can boost device efficiency at

this layer by delegating suitable processing loads to the fog layer and using the

cloud layer for computationally costly operations.

� Application Layer: The top-most layer of IoHT architecture is the application

layer. It offers user interfaces between stakeholders/consumers from the IoHT

and the Framework itself to represent directly the economic and social benefits

generated. Various healthcare applications are distributed to the appropriate

stakeholders through these user interfaces. This layer also offers access rights

and privileges directly to the healthcare application developers and users for

related services from the cloud or fog layer.

7.2 game analytics

With the growing success of Massively Multiplayer Online Gaming (MMOG) and the

rapid growth of mobile gaming, cloud gaming shows great promises over the tradi-

tional MMOG gaming model as it frees players from hardware and game installation

requirements on their local computers. However, as graphics rendering is transferred

to the cloud, the transmission of data between end-users and the cloud significantly

increases the latency of response and restricts device coverage, thereby preventing

cloud gaming from achieving high user quality of service ( QoS).

Previous research has proposed deploying more datacenters to address this issue,

but it comes at a prohibitive cost. A lightweight framework called CloudFog was

introduced which includes ”fog” consisting of supernodes responsible for rendering

and streaming game videos to their nearby players. Fog allows the cloud to only be

responsible for intensive game state computation and transmitting supernode update
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information, which greatly reduces traffic, thus reducing latency and bandwidth us-

age. To further enhance QoS, it is proposed in [49] the reputation-based supernode

selection strategy to allocate a suitable supernode to each player that can provide a

satisfactory game video streaming service, the receiver-driven encoding rate adapta-

tion strategy to increase the continuity of playback, the social network-based server

assignment strategy to prevent contact between servers in data interaction.

The response latency is not seriously affected by uploading from the players to the

cloud and downstream latency is a significant factor for QoS, which is affected by

the video streaming rate of the game. Therefore to reduce the downstream latency

by reducing the traffic transmitted from the cloud it is proposed a new design that

streamed game videos from nearby supernodes to players, instead of from remote

game servers.

Figure 43: Fog-assisted cloud gaming infrastructure [49]

Since MMOG’s computing of a virtual environment has a very high demand for

server capabilities, this role is the responsibility of the cloud. Figure 43 demonstrates

the fog-assisted infrastructure for cloud gaming. The fog consists of supernodes and
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normal nodes that are connecting to their nearby supernodes. The normal nodes that

cannot find nearby supernodes are directly connected to the cloud.

When each supernode is initially deployed, it is pre-installed with the game client.

When a regular acts (e.g. initiating a strike or moving to a new location) during

gameplay, this information is sent to the cloud server. The server gathers action data

from all system players involved and performs the calculation of the virtual world’s

new game state (including the new shape and location of objects and avatar states).

The cloud then sends the updated data to the super-node, which accordingly updates

its virtual world.

Then makes a video of the game based on viewing location and angle. Finally,

encrypt the video of the game and stream it. As a player is close to its network

distance supernode, and cloud traffic is greatly reduced, the delay in game video

transmission is much shorter than that of directly uploading game video from the

cloud than in existing cloud computing systems.

7.3 Video Analytics

Edge computing has shown its ability to reduce response timing, lower bandwidth

usage, and improve energy efficiency along with the trend of moving computation

from the network core to the edge where the most data is produced. At the same time,

video analytics with low latency is becoming increasingly relevant for public safety,

counter-terrorism, self-driving vehicle applications. Since these activities are either

computational or bandwidth-intensive, edge computing suits well with its ability to

use computation and bandwidth from and between each layer flexibly. A framework

(LAVEA) 12 built on top of an edge computing platform is proposed in [50] that

discharges computing between customers and edge nodes, collaborates with nearby

edge nodes to provide video analytics of low latency at locations closer to users.

12Latency-aware Video Analytics on Edge Computing Platform
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LAVEA System Design Goals and Overview

� Latency: One of the basic criteria of edge computing device design is the ability

to provide low latency services.

� Flexibility: Edge computing system should be able to flexibly utilize the hi-

erarchical resources from client nodes, nearby edge nodes, and remote cloud

nodes.

� Edge-First: By edge-first, it means that the edge computing platform is the

first choice of the computation offloading target.

LAVEA is inherently an edge computing platform that supports video processing

with slow latency. Edge computing nodes and edge clients are the key components.

If a client is running tasks and the nearby edge computing node is available, it is

possible to determine whether to run a task locally or remotely. Figure 44 illustrates

the architecture of LAVEA.

Figure 44: The Architecture of Edge Computing platform for LAVEA [50]

� Edge Computing Node: The edge computing node in LAVEA offers edge
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computing services to nearby mobile devices. The edge computing node is

called the edge-front, connected to the same access point or base station as the

clients. it ensures that edge computing services can be as pervasive as Internet

connectivity by installing edge computing nodes with an access point or base

station. Multiple edge computing nodes will function together, and the edge

front still functions as the master and communicates with other edge nodes and

cloud nodes.

As shown in Figure 44, the lightweight virtualization strategy is used to provide

various clients with resource allocation and isolation. Via client APIs, any client

may send tasks to the platform. The framework is responsible for shaping the

workload, controlling queue preferences, and planning tasks. These functions

are implemented via multiple micro-services provided by internal APIs, such as

queueing service, scheduling service, data store service, etc.

� Edge Client: Since most edge clients are either resource-constrained ma-

chines or require requests from a large number of clients to be fulfilled, an

edge client normally performs lightweight data processing tasks locally and dis-

charges heavy tasks to the nearby edge computing node. The edge client in

LAVEA has a thin client architecture to ensure that all customers can run it

without adding too much overhead.

There is only one worker for low-end devices to make progress on the job as-

signed. The profiler and the offloading controller are the most critical part of

the client node architecture, serving as participants in the corresponding pro-

filer service and service offloading. A client may provide offloading information

to the edge-front node with the profiler and offloading controller and fulfill the

received offloading decision
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7.4 Image and face recognition

Recognition and perception-based mobile applications that are time-sensitive, such

as image recognition, are increasing in recent years. These applications recognize

the surroundings of users and augment them with information and media. They are

latency-sensitive. On the one side, the execution is usually offloaded to the cloud

given the compute-intensive nature of the tasks performed by such applications.

On the other hand, network latency is incurred by offloading such applications to

the cloud, which can increase the user-perceived latency. Consequently, to minimize

latency, edge computing has been proposed to allow devices to discharge intensive

tasks to edge servers instead of the cloud. A different model for using edge servers

was proposed For recognition applications such as web caching, Edge Computing,

they used the edge as a specialized cache and formulates the predicted latency for

such a cache. It demonstrates that using an edge server, such as a traditional web

cache, will lead to higher latencies for recognition applications.

It proposes [51] Cachier, a framework that uses the caching model together with

new latency optimizations to reduce latency by adaptively balancing load between

the edge and the cloud, using spatiotemporal locality of requests, using offline ap-

plication analysis, and estimating network conditions online. For image-recognition

applications, it evaluates Cachier and demonstrates that techniques yield 3x speed in

responsiveness and work accurately over a variety of operating conditions.

Mobile Image Recognition

Recognition programs are essentially a kind of information retrieval system, similar to

systems such as the WWW for document retrieval. To retrieve the relevant content,

the code needs to identify the object in the request for which the user requires content

and then use the object’s identifier. As shown in Figure 45, the algorithm operates

in a pipeline manner inside the cloud.
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Figure 45: Typical architecture for mobile image-recognition applications [51]

� Extract features: From the input image, a series of features are extracted.

The characteristics are numerical vectors describing the image. The category of

features that are usually used is called local features, such as corners and edges,

which are extracted from ”interesting” points in the picture.

� Classify and match features: First, using a trained model, these extracted

features are classified. Using previously extracted characteristics from training

images of all possible objects that can be queried have made this model offline.

The more objects one wants to recognize, the bigger this model will be.

� Choose the best match: Once the closest characteristics are identified, the

object with the most characteristics matches the request image and is selected

as the recognized object. A threshold of a minimum number of matches is set

to ensure accuracy. This can be followed by geometric inspection to confirm

that the features are correctly arranged in space in the request image. This also

helps to identify the object in the request image [52].

These stages are usually carried out in the cloud for mobile image-recognition

applications. The image is captured by the mobile device and uploaded over cellular

networks and sent over the Internet to the cloud, as seen in Figure 45. In the cloud,
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the image-recognition methods are then carried out and the response is returned to

the computer. Usually, these responses are in some type of knowledge or material,

such as annotation strings explaining what the consumer sees (e.g. identification

of painting), or media to be overlaid on top of recognized items ( e.g. augmented

reality).

Total latency can be broken down into two key factors in such an architecture, (1)

network latency, and (2) compute time.

� Network latency: Applications experience this latency because, for each

recognition request, they need to upload large quantities of data to the cloud,

over the Internet. If the ”distance” is reduced between the computing entity,

currently the cloud, and the mobile device, this delay can be reduced.

� Compute time: Algorithms for image recognition are compute-intensive. the

key contributor to latency is the classification of request-image attributes Using

the trained model. Besides, the scale of this model has a direct effect on latency,

which is the number of trained items. The processing time for a large number

of objects can lead to high latency and thus a poor user experience.

To tackle these latency issues as mentioned before in [51], the idea of caching at

the edge is introduced which leverages the compute resources available at the edge,

and creates an image-recognition (IR) cache.

7.5 Fog Computing in Connected Vehicles

One of the possible scenarios for fog, such as the integration of fog computing with

traditional vehicle ad hoc networks (VANET) to form the Internet of Vehicles (IoV)

or vehicle fog computing, is vehicle-related applications. An architecture that con-

siders vehicles as smart devices that are mobile and fitted with multiple sensors and

have the capacity to collect user traffic information from computing and communica-

tion is proposed in this article. Both intra-vehicle sensors and the environment will
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collect the data. Fog nodes can be installed at the edge of vehicular networks in this

architecture to make data collection more efficient, along with real-time processing,

organization, and storage of traffic data.

Figure 46 illustrates three main layers namely, the smart vehicles which collect

data, the roadside units/fog nodes as the fog layer, and the cloud servers as the cloud

layer

Figure 46: Fog computing platform for connected vehicle applications [53]

smart vehicles have a critical role as data sources in a vehicular fog computing

system because of their real-time processing, sensing (e.g. cameras, radars, and GPS),

connectivity, and storage capabilities. It has been calculated that the amount of data

generated by the different sensors in a smart vehicle is about 25 GB / h in a single

day. To make real-time decisions, some of these data will be processed by the smart

vehicle, while the rest of the data will be exchanged and uploaded to the fog nodes

for further analysis, such as traffic control planning. In different places in the city can

be deployed by the roadside device as a fog node that allows the platform to process

collected data and send it to cloud servers.

In a vehicular fog computing system, this feature can be extended as a middleware

system that links cloud servers to smart vehicles. These units/nodes will have more

functionality and provide more diverse services for smart vehicles, such as navigation,
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video streaming, and smart traffic lights, as compared to existing vehicle networks.

Cloud servers allow monitoring at the city level, permanent storage of data, and play

a role as a centralized control system. To make globally optimal decisions, these

servers will receive the data from all fog nodes. For example, to achieve optimum

city-level traffic control, they would track, maintain, and control the city’s road traffic

infrastructure [53].

7.6 Security and Privacy Architecture

Networked applications cover a wide variety of privacy-sensitive and mission-critical

use cases, including private information transfer (such as images, medical reports),

routine everyday activities (such as shopping, transportation), and management of

business resources (such as supply chains). Deployment of these applications requires

Security. Therefore, Security in a multi-tier computing environment involves some

challenges that need to be identified and addressed. Several enabling technologies are

used, such as wireless networks, distributed and peer-to-peer systems, and platforms

for virtualization. This diversity of technology involves both the safety of all these

elements and the orchestration of various security measures to preserve the integrity

of the ecosystem.
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Figure 47: A layered security architecture for fog computing [53]

The three-layer model for fog security is illustrated in Figure 47. The flow of

requests and data in the system is illustrated and possible attacks are visualized in

each layer. Fog-access is the point of connection to the end-user devices responsible

for end-device management and access control in the fog ecosystem. Fog-computing

requires all the computing nodes in the fog layer, including access node computing.
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In this layer, vulnerabilities associated with device integrity and availability and data

confidentiality are handled. The fog-cloud interconnection layer addresses possible

threats in the interconnection of both subsystems.

7.7 Access Layer Security

The access layer deals with the authentication, authorization, access control, and data

security of network-connecting edge devices in a widely distributed set-up. This layer

addresses specific issues in a fog ecosystem such as the decentralized and distributed

nature of edge paradigms, interoperability, and mobility support, and location aware-

ness are considered.

7.8 Fog Layer Security

The computing layer includes all the nodes involved in sub-cloud computing. There

may also be access layer functionality for a computing node. Fog nodes, for example,

can be located at the edge of networks and may communicate in a distributed manner

with each other.

8 Challenges and future direction in Fog Comput-

ing

Fog computing is considered to be the promising extension of the Cloud computing

paradigm to deal with IoT-related network edge problems. However, computational

nodes are heterogeneous and distributed in Fog computing. Security assurance is

also predominant in Fog computing. Analyzing the features of Fog computing from

structural, service-oriented and security perspectives, the challenges in this field can

be listed as follows [54]:
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Figure 48: Computation domain of Cloud, Fog, Edge, Mobile Cloud and Mobile Edge
computing [54]

� Structural issues

– Various components can be used as possible Fog computing infrastructure

from both the edge and core network. These modules are usually fitted

with different types of processors, but they are not used for general com-

puting purposes. In addition to their traditional activities, it will be very

difficult to provide the components with general-purpose measurement.

The selection of appropriate nodes, corresponding resource configuration,

and deployment places are also essential in Fog, based on operational re-
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quirements and execution environment.

– In Fog computing, computational nodes are spread around the edge net-

work and can be virtualized or shared. In this situation, it is important to

identify appropriate techniques, metrics, etc. for inter-nodal collaboration

and effective resource provisioning.

� Service-oriented

– The development of large-scale applications in resource-constrained nodes

is not very simple compared to conventional datacentres since all nodes

are not resource enriched.

– It is required to define policies for the distribution of computational tasks

and resources between IoT devices/sensors, Fog, and Cloud infrastructures.

It is also difficult to design data visualization via web-interfaces in Fog

computing.

– The Service Level Agreement ( SLA) in Fog computing is often impacted

by many variables, such as service costs, energy consumption, application

functionality, data flow, network status etc. Therefore, it is quite difficult

to specify the service provisioning metrics and corresponding Service Level

Objectives (SLOs) in a particular scenario. Besides, retaining the basic

QoS of the Fog nodes for which they are designed is highly required.

� Security aspects

– Since Fog Computing is built on traditional components of the network, it

is extremely vulnerable to security attacks.

– In a largely distributed paradigm like Fog computing, authenticated access

to services and privacy maintenance are difficult to ensure.

– Implementation of data-centric integrity security mechanisms can have a

significant effect on the QoS of Fog computing.
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8.1 Fog Security and Privacy

Since fog computing is proposed in the context of the Internet of Things (IoT) and

originates from cloud computing, fog computing inherits cloud security and privacy

concerns. Although some problems can be solved using existing technologies, due to

the distinct characteristics of fog computing, other problems are posing new chal-

lenges, such as heterogeneity in fog nodes and fog networks, mobility support re-

quirements, large geo-distributed nodes, position awareness, and low latency. Several

security and privacy issues in fog computing are discussed in this section [55].

8.2 Trust and Authentication

Data centers are normally operated by cloud service providers for the deployment

of cloud computing. However, due to various implementation options, fog services

providers may be different parties:

� Internet service providers or wireless carriers, who have control of home gate-

ways or cellular base stations, may build fog with their existing infrastructures.

� Fog infrastructure is designed for the situations where cloud providers would

like to extend their services to the edge of the network.

� End-users who own a private local cloud and wish to minimize ownership costs

would like to convert the private local cloud into a fog and lease spare resources

on the private local cloud.

This flexibility complicates the trust situation of fog.

Rogue Fog Node

A rogue fog node would be a fog device or fog instance that pretends to be legitimate

and coaxes end users to connect to it. For instance, a fog administrator may be allowed

to handle fog instances in an insider attack but may instantiate a rogue fog instance

instead of a legitimate one. The feasibility of a man-in-the-middle attack in fog
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computing is demonstrated in this article [56]. The authors show when the gateway

is replaced by a rouge one, the adversary can eavesdrop, collect, and manipulate all

the incoming and outgoing traffic between the cloud and end-users. The presence of

fake fog nodes would jeopardize the security and privacy of user data. Due to many

factors, this issue is difficult to solve in fog computing.

� complex trust situation calls for different trust management schemes.

� Dynamic development, in-stance virtual machine deletion, makes it difficult

to maintain a blacklist of rogue nodes. A measurement-based approach that

allows a client to avoid rogue access point (AP) link has been suggested by Han

et al.[57] Their technique uses the round-trip time between end-users and the

DNS server to detect client-side rogue APs.

Authentication

Authentication is an essential problem for fog computing security since services are

provided by front fog nodes to massive-scale end users. The key security problem

of fog computing has been considered by Stojmenovic et al.[56] as authentication at

various fog node levels. Traditional authentication based on PKI is not successful

and has low scalability. An inexpensive, reliable, and user-friendly solution to the

authentication problem in local ad-hoc wireless networks was proposed by Balfanz et

al.[58], based on physical contact for pre-authentication in a location-limited channel.

In the case of Cloudlet, NFC can also be used to simplify the authentication process.

It will be useful to apply biometric-based authentication in fog computing as biometric

authentication evolves in mobile computing and cloud computing, such as fingerprint

authentication, face authentication, touch-based or keystroke-based authentication,

etc.
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8.3 Network Security

Wireless network security is a major concern for fog networking, due to the predom-

inance of wireless in fog networking such as Jamming attacks, sniffer attacks. Nor-

mally, we have to trust a network administrator’s manually generated configurations

in the network and isolate network management traffic from regular data traffic. Fog

nodes, however, are deployed at the edge of the Internet, definitely putting a heavy

burden on network management, imagining the cost of maintaining massive cloud

servers that are distributed across the edge of the network without easy maintenance

access. In many aspects of fog computing, employing SDN can facilitate implementa-

tion and management, increase network scalability and reduce costs. SDN technique

in fog computing allows fog networking security new challenges and opportunities

which are listed here:

� Network Monitoring and Intrusion Detection System (IDS): Cloud-

Watch [32] can leverage OpenFlow [21] to route traffic for security monitoring

applications or IDS.

� Traffic Isolation and Prioritization: Traffic isolation and prioritization may

be used to avoid network congestion or shared resources such as CPU or disk

I/O from being dominated by an attack.

� SDN leverages VLAN ID(tag) to isolate traffic in the VLAN group and separate

malicious traffic.

� Network Resource Access Control: Klaedtke et al [59] has proposed an

access control scheme on a SDN controller based on OpenFlow,

� Network Sharing: If the network sharing with guests is carefully configured

with security considerations, fog-enhanced routers in the home network may

be opened to guests. This article [60]has suggested OpenWiFi, in which guest
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WiFi authentication is transferred to the cloud to determine guest identity;

guest access is given independently, and accounting is enforced to delegate guest

accountability.

8.4 Secure Data Storage

User data is outsourced in fog computing, and user control over data is transferred

to the fog node, which introduces the same security threats as in cloud computing.

First, because the outsourced data might be lost or wrongly changed, it is difficult

to maintain data integrity. Second, the data uploaded may be exploited for other

interests by unauthorized parties.

An auditable data storage service has been proposed to counter these risks. To

protect data in the context of cloud computing. To provide integrity, confidentiality,

and authentication capability for the cloud storage system, techniques such as ho-

momorphic encryption and searchable encryption are combined to allow a client to

verify the data stored on untrusted servers. Want et al. [61] have suggested public

privacy auditing for cloud-based data relying on a third-party auditor (TPA) using

homomorphic authenticator and random mask technique to safeguard TPA privacy.

Prior storage systems use erasure codes or network coding to deal with data corrup-

tion detection and data repair to ensure data storage reliability, While Cao et al.[62]

has suggested an LT code scheme that offers lower storage costs, much faster retrieval

of data, and comparable communication costs.

There are new problems in fog computing in the design of secure storage systems to

achieve low latency, enable the dynamic operation, and deal with interplay Between

Cloud and Fog.

8.5 Secure and Private Data Computation

Another critical problem in fog computing is to provide security and privacy-preserving

computation outsourced to fog nodes.
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Verifiable Computing

Verifiable 13 computing provides a computing device to offload the functional com-

putation to other perhaps untrusted servers while maintaining verifiable results. The

other servers evaluate the function and return the result with proof that the function

has been correctly computed. In fog computing, the fog user should be able to verify

the correctness of the computation to install confidence in the computation offloaded

to the fog node. Below are some methods to fulfilled verifiable computing.

A verifiable computing protocol has been proposed by Gennaro et al.[13] that

enables the server to return a computer-sound, non-interactive proof that can be

verified by the client. The protocol can provide input and output privacy (at no

additional cost) For the client in such a way that no input and output information is

learned by the server. A framework named Pinocchio has been developed by Parno

and Gentry so that the client can check general server computations while relying

only on cryptographic assumptions. The client produces a public assessment key

with Pinocchio to explain its computation, and the server then tests the computation

and uses the assessment key to produce proof of correctness [64].

Data Search

Sensitive data from end-users must be encrypted before outsourced to the fog node to

protect data privacy, making efficient data utilization services difficult. One of the key

services is a keyword search, i.e., keyword search among encrypted data files. Several

searchable encryption schemes have been developed by researchers that allow a user to

securely search encrypted data via keywords without decryption. In this article [65],

the authors proposed the first encrypted data search scheme ever to include proven

secrecy for encryption, query isolation, managed search, and support of hidden query.

13The term verifiable computing was formalized in [63]
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8.6 Privacy

The deliberate spreading of private information, such as data, location or usage, are

gaining attention when end users are using services like cloud computing, wireless

network, IoT. There are some challenges to address such privacy in fog computing,

since fog nodes are in the vicinity of end-users, and can capture more sensitive data

than the remote cloud lying in the core network.

8.7 Data Privacy

Privacy-preserving algorithms can run between the fog and the cloud in the fog net-

work, although those algorithms are typically resource-prohibited on the end devices.

In general, the fog node at the edge collects sensitive data produced by sensors and

end devices. Techniques such as homomorphic encryption can be used to enable

privacy-preserving aggregation without decryption at local gateways [66].

8.8 Usage Privacy

The usage pattern in which a fog client uses the fog services is another privacy prob-

lem. For instance, In a smart grid, reading the smart meter will reveal a lot of

household information, such as when there is no person at home and when the TV

is turned on which violates the privacy of the user. While privacy-preserving mecha-

nisms have been suggested in smart metering, due to the absence of a trusted third

party (i.e. a smart meter in a smart grid) or no counterpart system such as a battery,

they cannot be directly implemented in fog computing. The fog node can quickly

obtain end-user consumption statistics.

The fog client generates dummy tasks and offloads them to multiple fog nodes,

hiding its real tasks among the dummy ones which is a possible naive solution. This

approach would, however, increase the payment of the fog customer, as well as waste

resources and energy. Another option would be to build a smart way to partition

the framework to make sure that private information is not exposed by the offloaded
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resource usages.

8.9 Location Privacy

In fog computing, the privacy of the location refers to the privacy of the fog clients’

location. The fog node, to which the tasks are offloaded, will assume that the fog

client is closer and farther from other nodes, as a fog client normally offloads its tasks

to the nearest fog node. Besides, if a fog client uses multiple fog services at multiple

locations, assuming the fog nodes collude, it may report its route trajectory to the fog

nodes. The location privacy of the person or the object is at risk as long as such a fog

client is attached to a person or a significant object. If a fog client always selects its

nearest fog server strictly, the fog node will certainly understand that the fog client

that uses its computing resources is nearby. The only way to protect the privacy of

the location is by obfuscating identity so that the fog client does not recognize the

fog client even if the fog node knows that a fog client is nearby.

There are several identity obfuscation techniques; in [67], for example, the authors

use a trusted third party to create fake IDs for each end-user. A fog customer does

not necessarily select the nearest fog node but selects one of the fog nodes that it can

achieve according to certain parameters, such as latency, reputation, load balance,

etc. The fog node can only understand the rough position of the fog client, but can

not do so precisely. Once the fog client uses computing resources from multiple fog

nodes in an area, however, its position can boil down to a small region, as its location

must be at the intersection of the covers of multiple fog nodes.

9 Conclusion

For many sectors, including manufacturing, electricity, transport, smart cities, edu-

cation, retail, healthcare, and government, the Internet of Things (IoT) accelerates

digital transformation and provides a lot of advantages. The number of linked devices

and IoT networks is rapidly growing due to the fundamental benefits of IoT for differ-
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ent businesses and industries. Edge/Fog Computing was introduced as a promising

solution to handle billions of connected devices and big data that are generated by

IoT, which are often security-critical and time-sensitive.

In this project, we discussed cloud computing, Edge and Fog computing, and Mist

computing and how they relate to other computing paradigms, such as cloudlets,

Mobile Edge Computing (MEC), and Mobile Cloud Computing (MCC). Next, we

presented a taxonomy of fog computing research topics and summarized the state-of-

the-art in all these computing paradigms. We posed challenges and future directions

for all paradigms.
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[29] G. A. Lewis, S. Echeverŕıa, S. Simanta, B. Bradshaw, and J. Root, “Cloudlet-
based cyber-foraging for mobile systems in resource-constrained edge environ-
ments,” in Companion Proceedings of the 36th International Conference on Soft-
ware Engineering, 2014, pp. 412–415.

[30] M. T. Beck, M. Werner, S. Feld, and S Schimper, “Mobile edge computing:
A taxonomy,” in Proc. of the Sixth International Conference on Advances in
Future Internet, Citeseer, 2014, pp. 48–55.

[31] G. I. Klas, “Fog computing and mobile edge cloud gain momentum open fog
consortium, etsi mec and cloudlets,” 2015.

[32] P. M. Pinto Silva, J. Rodrigues, J. Silva, R. Martins, L. Lopes, and F. Silva,
“Using edge-clouds to reduce load on traditional wifi infrastructures and im-
prove quality of experience,” in 2017 IEEE 1st International Conference on Fog
and Edge Computing (ICFEC), 2017, pp. 61–67.

[33] P. M. Pinto Silva, J. Rodrigues, J. Silva, R. Martins, L. Lopes, and F. Silva,
“Using edge-clouds to reduce load on traditional wifi infrastructures and im-
prove quality of experience,” in 2017 IEEE 1st International Conference on Fog
and Edge Computing (ICFEC), 2017, pp. 61–67.

[34] M. K. Yogi, K Chandrasekhar, and G. V. Kumar, “Mist computing: Principles,
trends and future direction,” arXiv preprint arXiv:1709.06927, 2017.

[35] M. M. Mosbah, H. Soliman, and M. A. El-Nasr, “Current services in cloud
computing: A survey,” ArXiv, vol. abs/1311.3319, 2013.

[36] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role
in the internet of things,” in Proceedings of the First Edition of the MCC
Workshop on Mobile Cloud Computing, ser. MCC ’12, Helsinki, Finland: As-
sociation for Computing Machinery, 2012, 13–16, isbn: 9781450315197. doi:
10 . 1145 / 2342509 . 2342513. [Online]. Available: https : / / doi . org / 10 . 1145 /
2342509.2342513.

[37] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao, Y. Xiang,
and R. Ranjan, “Fog computing: Survey of trends, architectures, requirements,
and research directions,” IEEE access, vol. 6, pp. 47 980–48 009, 2018.

[38] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing iot service
delay via fog offloading,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 998–
1010, 2018. doi: 10.1109/JIOT.2017.2788802.

127

https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1109/JIOT.2017.2788802


[39] X. Sun and N. Ansari, “Edgeiot: Mobile edge computing for the internet of
things,” IEEE Communications Magazine, vol. 54, no. 12, pp. 22–29, 2016.
doi: 10.1109/MCOM.2016.1600492CM.

[40] O. C. A. W. Group et al., “Openfog architecture overview,” White Paper
OPFWP001, vol. 216, p. 35, 2016.

[41] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A platform for
internet of things and analytics,” in Big data and internet of things: A roadmap
for smart environments, Springer, 2014, pp. 169–186.

[42] P. Yang, N. Zhang, Y. Bi, L. Yu, and X. S. Shen, “Catalyzing cloud-fog inter-
operation in 5g wireless networks: An sdn approach,” IEEE Network, vol. 31,
no. 5, pp. 14–20, 2017.

[43] M. A. Habibi, M. Nasimi, B. Han, and H. D. Schotten, “A comprehensive survey
of ran architectures toward 5g mobile communication system,” IEEE Access,
vol. 7, pp. 70 371–70 421, 2019. doi: 10.1109/ACCESS.2019.2919657.

[44] M. Taneja and A. Davy, “Resource aware placement of data analytics platform
in fog computing,” Procedia Computer Science, vol. 97, pp. 153–156, 2016.

[45] M. Aazam and E.-N. Huh, “Fog computing micro datacenter based dynamic
resource estimation and pricing model for iot,” in 2015 IEEE 29th International
Conference on Advanced Information Networking and Applications, IEEE, 2015,
pp. 687–694.

[46] N. K. Giang, M. Blackstock, R. Lea, and V. C. Leung, “Developing iot appli-
cations in the fog: A distributed dataflow approach,” in 2015 5th International
Conference on the Internet of Things (IOT), IEEE, 2015, pp. 155–162.

[47] H Tom and L. Gao, “Fog computing: Focusing on mobile users at the edge,”
Networking and Internet Architecture, 2016.

[48] M. Asif-Ur-Rahman, F. Afsana, M. Mahmud, M. S. Kaiser, M. R. Ahmed, O.
Kaiwartya, and A. James-Taylor, “Toward a heterogeneous mist, fog, and cloud-
based framework for the internet of healthcare things,” IEEE Internet of Things
Journal, vol. 6, no. 3, pp. 4049–4062, 2019. doi: 10.1109/JIOT.2018.2876088.

[49] Y. Lin and H. Shen, “Cloudfog: Leveraging fog to extend cloud gaming for
thin-client mmog with high quality of service,” IEEE Transactions on Parallel
and Distributed Systems, vol. 28, no. 2, pp. 431–445, 2017. doi: 10.1109/TPDS.
2016.2563428.

[50] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-aware
video analytics on edge computing platform,” in 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), 2017, pp. 2573–2574.
doi: 10.1109/ICDCS.2017.182.

[51] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan, “Cachier: Edge-
caching for recognition applications,” in 2017 IEEE 37th International Con-
ference on Distributed Computing Systems (ICDCS), 2017, pp. 276–286. doi:
10.1109/ICDCS.2017.94.

128

https://doi.org/10.1109/MCOM.2016.1600492CM
https://doi.org/10.1109/ACCESS.2019.2919657
https://doi.org/10.1109/JIOT.2018.2876088
https://doi.org/10.1109/TPDS.2016.2563428
https://doi.org/10.1109/TPDS.2016.2563428
https://doi.org/10.1109/ICDCS.2017.182
https://doi.org/10.1109/ICDCS.2017.94


[52] R. Szeliski, Computer vision: algorithms and applications. Springer Science &
Business Media, 2010.

[53] C. Huang, R. Lu, and K. R. Choo, “Vehicular fog computing: Architecture, use
case, and security and forensic challenges,” IEEE Communications Magazine,
vol. 55, no. 11, pp. 105–111, 2017. doi: 10.1109/MCOM.2017.1700322.

[54] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A taxonomy, survey
and future directions,” in Internet of everything, Springer, 2018, pp. 103–130.

[55] S. Yi, Z. Qin, and Q. Li, “Security and privacy issues of fog computing: A
survey,” in International conference on wireless algorithms, systems, and appli-
cations, Springer, 2015, pp. 685–695.

[56] I. Stojmenovic and S. Wen, “The fog computing paradigm: Scenarios and secu-
rity issues,” in 2014 federated conference on computer science and information
systems, IEEE, 2014, pp. 1–8.

[57] H. Han, B. Sheng, C. C. Tan, Q. Li, and S. Lu, “A measurement based rogue
ap detection scheme,” in IEEE INFOCOM 2009, IEEE, 2009, pp. 1593–1601.

[58] D. Balfanz, D. K. Smetters, P. Stewart, and H. C. Wong, “Talking to strangers:
Authentication in ad-hoc wireless networks.,” in NDSS, Citeseer, 2002.

[59] F. Klaedtke, G. O. Karame, R. Bifulco, and H. Cui, “Access control for sdn
controllers,” in Proceedings of the third workshop on Hot topics in software
defined networking, 2014, pp. 219–220.

[60] K.-K. Yap, Y. Yiakoumis, M. Kobayashi, S. Katti, G. Parulkar, and N. McK-
eown, “Separating authentication, access and accounting: A case study with
openwifi,” Open Networking Foundation, Tech. Rep, 2011.

[61] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public auditing
for data storage security in cloud computing,” in 2010 proceedings ieee infocom,
Ieee, 2010, pp. 1–9.

[62] N. Cao, S. Yu, Z. Yang, W. Lou, and Y. T. Hou, “Lt codes-based secure and
reliable cloud storage service,” in 2012 Proceedings IEEE INFOCOM, IEEE,
2012, pp. 693–701.

[63] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable computing:
Outsourcing computation to untrusted workers,” in Annual Cryptology Confer-
ence, Springer, 2010, pp. 465–482.

[64] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly practical
verifiable computation,” in 2013 IEEE Symposium on Security and Privacy,
IEEE, 2013, pp. 238–252.

[65] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on
encrypted data,” in Proceeding 2000 IEEE Symposium on Security and Privacy.
S&P 2000, IEEE, 2000, pp. 44–55.

129

https://doi.org/10.1109/MCOM.2017.1700322


[66] R. Lu, X. Liang, X. Li, X. Lin, and X. Shen, “Eppa: An efficient and privacy-
preserving aggregation scheme for secure smart grid communications,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no. 9, pp. 1621–
1631, 2012.

[67] W. Wei, F. Xu, and Q. Li, “Mobishare: Flexible privacy-preserving location
sharing in mobile online social networks,” in 2012 Proceedings IEEE INFOCOM,
IEEE, 2012, pp. 2616–2620.

[68] A. Alzahrani, N. Alalwan, and M. Sarrab, “Mobile cloud computing: Advan-
tage, disadvantage and open challenge,” in Proceedings of the 7th Euro Ameri-
can Conference on Telematics and Information Systems, New York, NY, USA:
ACM, 2014.

[69] E. Damiani, D. C. di Vimercati, S. Paraboschi, P. Samarati, and F. Violante,
“A reputation-based approach for choosing reliable resources in peer-to-peer
networks,” in Proceedings of the 9th ACM conference on Computer and com-
munications security, 2002, pp. 207–216.

[70] A. Isidori, Nonlinear Control Systems: An Introduction, 2nd. Springer-Verlag:
Berlin, 1989.

[71] A. J. Krener, “Approximat linearization by state feedback and coordinate change,”
Systems Control Letters, vol. 5, pp. 181–185, 1984.

130


	Introduction
	Cloud Computing
	Cloud Computing Characteristics
	Cloud Computing Architecture
	Infrastructure as a Service
	Platform as a service
	Software as a Service
	Relationship between Cloud Computing Actors
	Cloud Consumer
	Cloud Provider
	Cloud Auditor
	Cloud Broker
	Cloud Carrier
	Scope of Control between Provider and Consumer
	Deployment Models
	Private Cloud
	Public Cloud
	Hybrid Cloud
	Community Cloud
	Cloud Computing Use Cases
	Disaster Recovery as a Service (DRaaS)
	Scaling resources
	Hosting applications and services
	Big Data Analytics 
	Cloud computing basic components
	Virtualization
	Multi-tenancy
	Cloud storage
	The hypervisor
	Cloud Network
	Cloud Computing Challenges
	Privacy
	Legal Issues
	Multi-Location Issues

	Edge Computing
	Why Do We Need Edge Computing
	Edge Computing Applications
	Cloud Offloading
	Smart Home
	Smart City
	Collaborative Edge
	Challenges and opportunities of Edge Computing
	Programmability
	Naming
	Data Abstraction
	Privacy and Security

	Internet of Things
	IoT Definition
	IoT Architecture
	IoT Characteristics
	IoT Challenges

	Mist and other related Computing Paradigms
	Cyber Foraging
	Cloudlet
	Mobile Computing
	Mobile Cloud Computing
	Mobile Edge computing
	Mobile ad hoc cloud computing
	Mist Computing
	Guiding Principles of Mist Computing
	Routing in the Mist:
	Mist Architecture
	Paradigms Comparison

	Towards Fog Computing
	Definition of Fog Computing
	Differences between cloud and fog computing
	Fog-Cloud Federation
	Architecture of Fog Computing
	High-level Architecture of Fog Computing
	Hierarchical Fog Computing Architecture
	OpenFog Architecture
	Cisco-Bonomi Reference Architecture
	Fog architectures for 5G and IoV
	Components of Fog Computing Architecture
	Physical Layer
	Fog Device, Server, and Gateway Layer
	Monitoring Layer
	Pre and Post-Processing Layer
	Storage Layer
	Resource Management Layer
	Security Layer
	Application Layer

	Fog computing Applications
	Healthcare
	game analytics
	Video Analytics
	Image and face recognition
	Fog Computing in Connected Vehicles
	Security and Privacy Architecture
	Access Layer Security
	Fog Layer Security

	Challenges and future direction in Fog Computing
	 Fog Security and Privacy
	Trust and Authentication
	Network Security
	Secure Data Storage
	Secure and Private Data Computation
	Privacy
	Data Privacy
	Usage Privacy
	Location Privacy

	Conclusion

