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Abstract 

This thesis addresses challenges in geostatistical analyses of multivariate geochemical 

data that commonly contain complexities that have a significant influence on geostatistical 

modeling and cluster analysis. 

 

For geostatistical modeling, the effect of the most common despiking methods is 

investigated and their problems documented. It is shown that both local average despiking 

and random despiking lead to bias in the observed variogram and predicted uncertainty. A 

new despiking method is proposed and implemented to improve variography when the 

variable has a significant spike. The developed approach combines a random despiking 

component and a local average despiking component. 

 

Cluster analysis can be applied for mineral exploration purposes. It can be used to find 

large structures in the data and also to detect multivariate anomalous samples. Data 

transformations are shown to have a significant impact on clustering results. Guidance and 

recommendations on appropriate data transformations for improving cluster analysis 

performance are provided.  

 

Three different methods are developed for identifying multivariate anomalies with cluster 

and spatial analysis. The first method uses different combinations of clustering and data 

transformations for finding small anomalous clusters. The second uses different clustering 

outputs for identifying samples that do not clearly belong to any cluster. The third 

recognizes samples that are spatially anomalous. Each of these multivariate methods 

detects anomalies from a different point of view. A combination of these detection 

methods is recommended. The goal is to obtain more stable and reliable results. Its 

application in stream silt samples from the Northwest Territories shows that the proposed 

multivariate anomaly detection methods are capable of identifying several showings 

(known mineral deposits). Some of these showings are not detected from the histograms 

of different elements; this supports and motivates the use of multivariate anomaly 

detection methods for mineral deposit exploration. 
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Chapter 1. Introduction 

1.1. Problems and Motivations 

This thesis addresses challenges in geostatistical analyses of multivariate 

geochemical data (Reimann, Filzmoser, & Garrett, 2002; Templ, Filzmoser, & 

Reimann, 2008). Such data commonly exhibit highly skewed distributions, 

presence of multimodal distributions, univariate and multivariate outliers, and 

many samples with values at below detection limit (large spikes). These 

complexities have a significant influence on geostatistical modeling and cluster 

analysis. 

 

For geostatistical modeling, the use of normal scores transformation alleviates 

most of complexities, including skewness and outliers. However, the method 

selected to transform the spikes to normal scores has an influence in the spatial 

variability, and thus, it has an impact in all geostatistical models based on 

variograms modeled after transforming data to normal scores (Pyrcz & Deutsch, 

2014; G Verly, David, Journel, & Marechal, 1984). Two methods are commonly 

used in geostatistics for despiking: random despiking and local average despiking 

(Rossi & Deutsch, 2013). Random despiking introduces artificial short scale 

variability (noise) by breaking the ties randomly. Verly (1984) proposed local 

average despiking where the constant values are ranked according to their local 

average before being transformed to normal scores. The local average despiking 

method has been recommended as a better alternative than random despiking when 

the spikes are significant, to avoid a too-high nugget effect and unrealistic short 

scale spatial variability (Pyrcz & Deutsch, 2014; Rossi & Deutsch, 2013). 

Nevertheless, local average despiking could introduce too much short scale 

continuity. One goal of this thesis is to understand and document the impact of 

these despiking methods in variography and propose a modified despiking method. 
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Regarding cluster analysis, this multivariate technique plays an important role in 

this thesis because it has different applications for exploration purposes. Cluster 

analysis can be applied to improve metallogenic models, by finding out the 

metallogenetic meaning of the different clusters; it can be used to find locations 

where a particular metallogenic unit related to the target ore deposits is present, 

with the possibility of identifying areas where that geological unit of interest were 

mistakenly assigned to another unit in the geological map; and it can be applied for 

looking for ore deposits focusing on patterns rather than univariate outliers, among 

other possible applications. Cluster analysis has been proposed for geochemical 

data as an exploratory analysis method (Templ et al., 2008) and for multivariate 

anomaly detection (Cohen, Kelley, Anand, & Coker, 2010). Another feature that 

makes cluster analysis suitable for exploration purposes is that it is an 

unsupervised learning method, meaning that it does not require a response variable 

to train the algorithm —in exploration there is limited knowledge of where 

deposits are and are not— but it focuses on finding associations and patterns in 

data (Hastie, Tibshirani, & Friedman, 2009).  

 

However, multivariate methods like cluster analysis have not been widely used for 

exploration purposes (Cohen et al., 2010; Filzmoser, Garrett, & Reimann, 2005). 

One of the concerns about cluster analysis is that it is quite sensitive to different 

data preparation and clustering methods (Templ et al., 2008). This concern is 

understandable considering that data complexities and data transformations have a 

significant impact on clustering results (Massart et al., 2001; Milligan & Cooper, 

1988). Consequently, another aim of this thesis is to provide understanding about 

the impact of different transformations on cluster analysis and guidance on 

clustering for different purposes for mineral exploration. 

 

Finally, a novel method for anomaly detection with multivariate data is proposed 

based on the knowledge gained about clustering. This method takes advantage on 

clustering sensitivity to data transformations, parameters and methods. 
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The methods and concepts developed in this thesis are not restricted to exploration 

data. They can be applied to many different multivariate geostatistical 

applications. 

1.2. Regional Geochemical Data for Case Studies 

Publicly available data provided by the Government of the Northwest Territories 

has been used for the case studies developed in the different chapters of this thesis. 

The geochemical data was collected by the Northwest Territories Geological 

Survey in partnership with the Geological Survey of Canada across the Mackenzie 

Mountains in the Northwest Territories, Canada (Figure 1).  

 

 

Figure 1. Regional geochemical data used in the case studies developed in this thesis, located in the 

Mackenzie Mountains (Northwest Territories, Canada). 

This regional geochemical survey was conducted for the evaluation of mineral 

potential in the area, based on sample collection and analysis protocols developed 

by the Geological Survey of Canada for the National Geochemical Reconnaissance 

program (Falck et al., 2012). Three kinds of samples are available: stream silt 

samples, stream water samples and bulk stream sediment samples (heavy mineral 

concentrates). The stream silt samples are the more widely and densely distributed 

in the area. The case studies are based on the stream silt samples database, which 
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after removing duplicates is composed by 8959 samples. The database contains the 

analysis of several elements by using different measurement techniques, including 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Instrumental Neutron 

Activation Analysis (INAA) and Atomic Absorption Spectroscopy (AAS). The 

case studies are developed based on a subset of 35 ICP-MS variables measured on 

the stream silt sediment samples.  

1.3. Thesis Outline 

In Chapter 2 the impact of spikes and the current despiking methods are evaluated 

and a new despiking method is proposed to improve geostatistical analysis of data 

that contain significant spikes. In Chapter 3 the importance of different data 

transformations on clustering methods are explained and illustrated, providing 

guidance about how to improve cluster analysis when based on data that contains 

different complexities. In Chapter 4 different clustering methods are proposed and 

combined for multivariate anomaly detection. In each of these chapters a case 

study is developed using the stream silt samples from the Mackenzie Mountains, 

Northwest Territories, Canada. Conclusions and recommended future work are 

discussed in Chapter 5. Finally, the software developed for despiking and Python 

scripts used for anomaly detection are shown in the Appendix.  
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Chapter 2. Presentation of Data 

The purpose of this chapter is to introduce the regional geochemical data from the 

Northwest Territories that is going to be used for the different case studies 

developed in this thesis, providing a broader context about some characteristics 

commonly found in regional geochemical exploration data. To this end, an 

exploratory univariate and multivariate analysis is performed. 

2.1. Exploratory Analysis 

A subset of 35 elements analyzed by ICP-MS of the stream silt sediment samples 

is selected for applying the different methods developed in this thesis. This subset 

contains 8959 samples.  A visual inspection of variables allows identifying an 

influence of geological units on the background level of different elements, 

resulting in a general orientation NW-SE for the major continuity axis (Figure 2). 

 

 

Figure 2. Left: Geological map of the Mackenzie Mountains provided by the Northwest Territories Geological 

Survey. Right: stream silt samples Cu spatial distribution (normal scores units). 
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2.1.1. Univariate Analysis 

The stream silt sediment data from the Mackenzie Mountains contain different 

complexities, which makes this dataset suitable for illustration purposes in the 

different chapters of this thesis. A univariate analysis was performed to help 

perceive the characteristics and complexities of the distributions for the different 

variables. Histograms and cumulative probability plots were generated for all 

variables. Looking at the histograms it was observed that all variables are highly 

positive skewed and that some of them —Ca and Mg— present bimodal 

distributions (Figure 3). 

 

 

Figure 3. Histograms illustrating skewness (Ag and Cu) and bimodal distributions (Ca and Mg) in silt 

sediments data. 

As illustrated in Figure 4, using cumulative probability plots it is possible to see 

that most of the variables also show extreme high values (outliers), and further, it 

is common that variables contain a large percentage of values at below detection 

limit (large spikes). The spikes corresponding to values at below detection limits 

for the data analyzed are described in Table 1, where it is shown that 17 elements 
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contain values at below detection limit and that some of them have large spikes (S, 

Te and W). 

 

 

Figure 4. Cumulative probability plots showing two common characteristics observed in the distributions: 

outliers and spikes. 

 

Element Constant Values % Spike 

Ag 3 0.03% 

As 4 0.05% 

Bi 490 5.53% 

Ca 4 0.05% 

Cd 3 0.03% 

Ga 8 0.09% 

Hg 717 8.09% 

K 24 0.27% 

Na 104 1.17% 

S 2234 25.22% 

Se 600 6.77% 

Te 3362 37.95% 

Th 4 0.05% 

Ti 730 8.24% 

Tl 65 0.73% 

V 25 0.28% 

W 7436 83.94% 

 

Table 1. Elements of the stream silt sediments dataset that contain values at below detection limit. The amount 

of constant values in the spike and the percentage of the total number of data that is part of the spike are 

shown. 
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All these data complexities —skewness, multimodality, outliers and spikes— 

represent a challenge for applying different (geo)statistical analyses, and must be 

considered and treated in order to get reasonable results. 

2.1.2. Multivariate Analysis 

Multivariate analysis was performed to understand the relationship and structure 

between the data variables. Original units as well as normal scores units are 

considered. The normal scores transformation considers local average despiking. 

Normal scores transformation alleviates some of the problems produced by 

skewness, outliers and spikes. More reliable multivariate analysis may be found.  

Normal scores transformation is widely used in geostatistics since it is a necessary 

preliminary step for different workflows.  

 

As seen in Figure 5, the correlation matrix for variables in original units is quite 

different to the correlation matrix in normal scores. In order to explain this 

difference, the original distributions were analyzed for some of the variables 

whose correlations vary the most —like Bi, Hg and Sg— and for variables which 

correlations are almost the same in either original units or normal scores —like Ca, 

Sr and Ti. The greatest impact on the difference between them is caused by the 

presence of outliers. Even one extreme value can have a large influence and distort 

the correlation between two variables. This is illustrated in Figure 6 where the 

cumulative probability plot for a variable with similar correlation coefficients in 

both correlation matrices (Ti) and for a variable that has quite different correlation 

coefficients (Bi). Accordingly, the correlation structure obtained for data in normal 

scores is considered more reliable. 
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Figure 5. Correlation matrix for data in original units (top) and in normal scores (bottom). Note that in the 

upper correlation matrix the variables are ordered according to their similarity, which is represented by a 

dendogram. In order to facilitate comparison, the same order was kept for the lower matrix. 

Normal Scores 

Original Units 
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Figure 6. Cumulative probability plot for Bi (left) and Ti (right). Bi correlation coefficient with other 

variables varies considerably measured in original units vs normal scores, since it contains very high extreme 

values (outliers) that distort the correlation measure. On the other hand, Ti maximum value is not so high 

compared to the other values of its distribution, and consequently the correlation coefficient is similar in 

original units vs normal scores. 

 

Finally, the following groups of correlated variables can be observed in the 

correlation matrix (Figure 7) and MDS plot (Figure 8) for data in normal scores: 

1. Ca, Mg, Na and Sr. 

2. Co, Cu and Sc. 

3. Al, Bi, Cr, Fe, Ga, K, La, Mn, and Th. 

4. Ag, As, P, V and Ni.  

5. Hg, Sb, Se and Zn. 

6. Cd, Hg, Mo, Sb, Se, Tl and U. 
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Figure 7. Correlation matrix for data in normal scores. The variables are ordered according to their 

similarity, which is represented by a dendogram. 

 

Figure 8. Multidimensional scaling (MDS) plot. This embedding method represents in three dimensions the 

similarity between variables (the third dimension corresponds to the color). Variables that are closer in the 

plot are more similar (higher correlation). 
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2.2. Conclusion 

An exploratory analysis has been performed for the stream silt sediments data used 

in the cases studies developed in this thesis. This data contains different data 

complexities that make it suitable for testing the different methods proposed 

herein. It has been shown in this chapter that these complexities have an impact 

even in simple multivariate exploratory analysis and that data transformation have 

an important place for geostatistical analysis. 
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Chapter 3. Despiking Methods for 

Geostatistical Modeling 

3.1. Introduction 

Spikes are a common complexity found in regional multivariate geochemical data. 

There are many samples with measurements at below detection limit. Yet, the 

principles and software developed here can be applied to any geostatistical model 

with data containing spikes, which are common in many ore deposits like Au 

epithermal mineral deposits, where spikes can even correspond to 50 or 60% of 

data (Rossi & Deutsch, 2013).  

 

Normal scores transformation is a preliminary requirement for many important 

workflows in geostatistics. When transforming data containing spikes to normal 

scores, it is necessary to previously break the ties in order to perform the quantile-

to-quantile transformation. Two methods for breaking the ties are commonly used 

in geostatistics: random despiking and local average despiking (Pyrcz & Deutsch, 

2014; Rossi & Deutsch, 2013). For performing random despiking, a small random 

number is added to each data in the spike, and then the modified number is used 

for sorting them before performing quantile transformation (Pyrcz & Deutsch, 

2014). For applying local average despiking, the idea introduced by Verly (1984) 

is to calculate the average of data values close to the location of each sample in the 

spike, and then sort them according to that average before preforming the 

transformation.  

 

The local average transformation has been recommended as a better approach for 

despiking, because random despiking can introduce a too-high nugget effect and 

unrealistic short scale variability, while local average avoids introducing artificial 

spatial variability (Pyrcz & Deutsch, 2014; Rossi & Deutsch, 2013; G Verly et al., 

1984). The effect of these two methods has not been documented. Furthermore, 

the impact of local average despiking in the variography and subsequent 
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geostatistical calculations could be important. In principle there could be 

exaggerated short scale continuity producing an error in variogram modeling. 

 

The aim of this chapter is to understand and document the effect of the two 

despiking methods mentioned. A new approach will be proposed to improve 

despiking for improved variogram modeling. 

3.2. Effect of Despiking Methods in Variography 

Two case studies are developed: a synthetic case study with unconditional 

simulation and a case study based on the stream silt sediments data from the 

Northwest Territories. 

3.2.1. Case Study 1: Synthetic Case 

The goal is to understand the influence of spikes and despiking methods on 

measures of spatial continuity. A synthetic case is created using a known 

variogram model and unconditional simulation. For creating reference results 

(Figure 9, left plot) a two dimensional grid of 256x256 points are simulated in a 1 

by 1 resolution. The variogram model has a nugget effect of 20% and a single 

spherical structure with a range of 16. Finally, the simulated realization was 

transformed to normal scores. The experimental variogram considered the “true 

variogram” is shown in Figure 10. 

 

Then, six different cases with varied amount of spikes are created to understand 

the effect of despiking methods for different spike sizes. The percentages of spike 

are: 5%, 10%, 20%, 30%, 40% and 50%. For illustration, the reference realization 

and the 30% spike case is shown in the right plot in Figure 9. The histogram of the 

30% spike case is displayed in Figure 11.  
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Figure 9. Left: “true” realization created through unconditional simulation. Right: an example of case 

generated with 30% spike, where the 30% lowest values are given a constant value, to understand the effect of 

despiking methods in cases with many values at below detection limits. 

 

 

Figure 10. Experimental variogram of the realization considered the “true”, which is the base case for 

generating different cases with different percentages of constant values. 
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Figure 11. Histogram of realization where the 30% of lowest values are considered constant value 

(corresponding to the right plot in Figure 9) 

 

The two despiking methods are applied to each case. Then, the variogram is 

calculated to understand the effect on the spatial continuity. 

 

The effect of different percentages of constant values on the variogram for random 

despiking and local average despiking is shown in Figure 12, where the 

experimental variogram is shown for all cases using both despiking methods. The 

effect of the spike is noticeable on the variogram when the spike is greater than 

10%. In the left plot the random despiking increases the short scale variability. In 

the right plot the local average despiking increases the short scale continuity for 

short distances relative to the true variogram. This result is also summarized in 

Figure 13 for the 30% spike case, where it is possible to see that both methods lead 

to a similar degree of error but in opposite directions, one overestimating the 

spatial variability and the other underestimating it.  
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Figure 12. Effect of random despiking (left) and local average despiking (right) on spatial continuity for 

different percentages of constant values. 

 

 

 

Figure 13. Comparison between true experimental variogram (red) and the ones obtained by applying random 

despiking (green) and local average despiking (blue) for the 30% spike case. 
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3.2.2. Case Study 2: Northwest Territories Data 

In order to observe the despiking method impact on a case study with a real grade 

spatial distribution, the stream silt samples from the Northwest Territories are 

used. The Cu element is selected, since it does not have values at below detection 

limits in the database, so the true variogram can be calculated as a reference. Then, 

its distribution is transformed to normal scores, and the 30% lowest values are 

assigned a constant value equal to the 30
th

 percentile of the original normal scores 

distribution (-0.524530), as shown in Figure 14. 

 

 

Figure 14. Histogram of the Cu normal scores values for the stream silt samples from the Northwest 

Territories. To generate a spike the 30% lowest values were assigned a constant value equal to the 30th 

percentile. 

Then, both despiking methods are applied on the samples with the created spike 

and the result is transformed to normal scores. The experimental variogram 

obtained from both methods are compared to the true variogram. The data is 

plotted in Figure 15 and the experimental variograms are shown in Figure 16. 
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Figure 15. Stream silt samples from the Mackenzie Mountains, Northwest Territories. Top left: True Cu 

normal scores values. Top right: data with 30% spike created. Bottom left: data obtained using random 

despiking. Bottom right: data using local average despiking, 
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Figure 16. Experimental variograms for true Cu data (red) for the 30% spike data using random despiking 

(green) and for the 30% spike data using local average despiking (blue). 

 

Both methods lead to an error in the estimation of the true spatial variability, one 

overestimating the spatial variability and the other overestimating the spatial 

continuity. These errors in the variogram model would lead to underestimation or 

overestimation in local uncertainty. To illustrate this effect on uncertainty, 

simulation is performed using both despiking methods to compare the results. For 

better visualization, the difference between the variances calculated based on both 

despiking methods (in normal scores units) for every cell is shown in Figure 17. 

The difference tends to be positive: the uncertainty estimated using random 

despiking is greater. This result is expected, since the short scale variability is 

overestimated when using this despiking method, leading to more uncertainty.  
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Figure 17. Difference between local variance calculated in normal scores units using random despiking minus 

the one calculated using local average despiking. 

The impact of despiking methods is also seen when back-transforming the 

realizations. As shown in Figure 18, the different variogram models lead to 

differences in the average and variance, particularly near the samples with higher 

Cu values. 
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Figure 18. Left: Difference between averages estimated using random despiking and local average despiking. 

Right: Difference between variances estimated using random despiking and local average despiking. The 

samples are colored by Cu value but the color scale is not shown (reddish colors are higher values and bluish 

colors are lower values). 

The two common despiking methods produce overestimation or underestimation 

of the spatial variability, which has an impact on geostatistical analysis. An 

algorithm to improve the despiking process is proposed. 

3.3. Proposed Despiking Method 

The true variogram is in between the variogram obtained by using random and 

local average despiking. Since the former overestimates the spatial variability and 

the later overestimates the spatial continuity, a despiking method that combines 

both of them is proposed. The idea is to break the spikes by considering the local 

average while adding a random component.  

 

The proposed algorithm is summarized by: 

1. Find the constant values (spikes). The value of the samples in the spike is 

𝑋1 and the next higher value in the distribution is 𝑋2. There are 𝑁 samples 

in the spike. 
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2. Sort the constant values according to their local average. 

3. Calculate a constant increment 𝑑𝑖𝑛𝑐 used in step 4 for the local average 

component: 

𝑑𝑖𝑛𝑐 = (1 − 𝑊1) ∗ ((𝑋2 − 𝑋1) (𝑁 + 1)⁄ ) 

where 𝑊1 is the weight for the random component, and therefore (1 − 𝑊1) 

is the weight for the local average component. 

4. For every of the N data in the spike, calculate the despiked value 𝑣𝑟 

considering a local average component (𝑑𝑣𝑎𝑙) and a random component. 

For this calculation use the following loop: 

    do i = 1, N: 

 𝑑𝑣𝑎𝑙 =  𝑑𝑣𝑎𝑙 +  𝑑𝑖𝑛𝑐 

 𝑣𝑟(𝑖)  =  𝑑𝑣𝑎𝑙 +  𝑟𝑎𝑛𝑑 ∗ (𝑊1 ∗ (𝑋2 − 𝑋1)) 

    end do 

where rand is a random number between 0 and 1. 

 

The performance of this method is tested using the same case studies shown 

above. In both cases the variogram obtained is very close to the real variogram. A 

new version of the despike CCG software was generated for the proposed 

algorithm. The parameter file is explained in the Appendix A.  

 

It is important to keep in mind that this method leads to non-unique results due to 

the random component. A full multiple imputation workflow would have to be 

considered to pass multiple non-unique data through geostatistical modeling. 

Another interesting approach could be using the Gibbs sampler algorithm (Geman 

& Geman, 1984; Silva & Deutsch, 2016) to simulate the values in the spike 

reproducing the correct spatial correlation. However, this solution requires 

knowing the correct variogram, which is circular. One possibility is to average the 

variograms obtained by using random and local average despiking, which was 

tested and also leads to a good approximation of the true variogram in the case 

studies. This variogram could be used for the Gibbs sampler to generate multiple 

realizations, which considers uncertainty in the despiking process. However, the 

proposed method is a simple and practical solution. 



 

 

24 

3.3.1. Case Study 1: Synthetic Case 

The 30% spike synthetic case is used to demonstrate the performance of the 

proposed method. The spike is broken using the new despike program. The result 

is shown in Figure 19, where the true experimental variogram is shown in red, the 

experimental variogram calculated using random despiking (RD) is plotted in 

green, the experimental variogram calculated using local average despiking (LAD) 

is shown in blue, and the experimental variogram calculated using the proposed 

method (RD+LAD) is in black. In this synthetic case, where the spike influence 

was isolated, it is possible to see a very close match to the true variogram. 

 

 

Figure 19. Experimental variograms for the 30% spike synthetic case study. The true experimental variogram  

is shown in red, the experimental variogram obtained using random despiking (RD) is shown in green, the 

experimental variogram obtained local average despiking (LAD) is shown in blue, and the experimental 

variogram using the proposed despiking method (RD+LAV) is shown in black. 

Note that the despike program allows varying the weight assigned to the random 

component and the local average component, by varying the weight W1 in the 

parameter file. A default value of 0.5 is recommended unless additional 

information is available that would indicate more or less randomness. An example 

is shown in Figure 20, where the despike program was used to break the spikes 
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giving more weight to the local average in the left plot (W1 = 0.2) and more to the 

random component in the right plot (W1 = 0.8).  

 

Figure 20. Synthetic case grid colored by normal score value for data despiked using different weightsW1 for 

the random component. It is possible to see an increment of randomness from the left plot to the right plot in 

the low grades zone. 

As expected, the experimental variogram calculated for the left plot in Figure 20 

(W1 = 0.2) is closer to the one calculated using random despiking, while the 

experimental variogram calculated for the right plot in Figure 20 (W1 = 0.8) is 

more similar to the one calculated using local average despiking (Figure 21). 
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Figure 21. Experimental variograms for the 30% spike synthetic case study. Top: variogram in black 

calculated using a random component W1 equal to 0.2, so it is more similar to the one calculated using local 

average despiking (LAD). Bottom: variogram in black calculated using a random component W1 equal to 0.8, 

being more similar to the one calculated using random despiking (RD). 
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3.3.2. Case Study 2: Northwest Territories Data 

The experimental variogram obtained by despiking using the proposed method 

(using W1 equal to 0.5) is shown in black in Figure 22. The proposed method leads 

to a better approximation of the true variogram. 

 

Figure 22. Experimental variograms for stream silt samples Cu values. The true experimental variogram  is 

shown in red, the experimental variogram obtained using random despiking (RD) is shown in green, the 

experimental variogram obtained local average despiking (LAD) is shown in blue, and the experimental 

variogram using the despiking method proposed (RD+LAV) is shown in black. 

3.4. Conclusion 

The effect of the most common despiking methods —random despiking and local 

average despiking— is investigated. It has been shown that local average 

despiking and random despiking lead to bias in the observed variogram and 

predicted uncertainty. A new despiking method is proposed to improve 

variography when the variable has a significant spike, which combines a random 

despiking component and a local average despiking component. This method was 

tested on two different case studies, a synthetic case and one based on the 

Northwest Territories stream silt samples, showing an improvement in the 

estimation of the variogram. A new version of the despike program is documented 

in the Appendix A. 
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Chapter 4. Data Transformation for Cluster 

Analysis  

A critical aspect of clustering is to find groups of samples that are close to each 

other and far from other clusters in the multivariate space. This is done by distance 

calculations or by fitting multivariate kernel distributions, where data 

transformation has a significant impact. The appropriate transformation of the 

original data units for these calculations is investigated in detail in this chapter. A 

normal scores transformation preserving spike (NSS) is proposed for improving 

distance-based cluster analysis. A case study is developed based on stream silt 

samples from the NWT to illustrate the process of selecting an appropriate 

transformation for clustering purposes. 

4.1. Introduction  

4.1.1. Motivation   

Cluster analysis mainly depends on three basic choices: the clustering technique, 

the similarity measure and the magnitude or scale of the different variables 

(Massart et al., 2001). The third point involves the decision of using original units 

or transforming data for the analysis. It has been demonstrated that this decision 

has a significant influence on the clustering performance (Massart et al., 2001; 

Milligan & Cooper, 1988; Templ et al., 2008). Transformation of variables plays 

an especially important role for complex geochemical data, since geochemical data 

is usually highly skewed, multimodal, with presence of spikes —values at below 

detection limit— and outliers (Templ et al., 2008). 

 

In this chapter different transformation methods are reviewed. The pros and cons 

of different alternatives are evaluated according to the data characteristics to 

provide practical recommendations for data transformation depending on the 

complexities of the data.  
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4.1.2. Similarity Measures for Clustering Methods 

Most clustering techniques are based on “distances” in order to measure how 

similar or dissimilar are different samples in the data (Templ et al., 2008). A 

classic way to measure distance is the Euclidean distance. The Euclidean distance 

between sample 𝑖 and sample 𝑗 is defined as: 

 

𝐷𝑖𝑗 = √∑(𝑋𝑖𝑘 − 𝑋𝑗𝑘)
2

𝐾

𝑘=1

  

 

Where 𝑋𝑖𝑘 and 𝑋𝑗𝑘 are the values of sample 𝑖 and 𝑗 respectively for variable 𝑘, and 

𝐾 is the total number of variables. Two popular clustering methods based on 

distances are Hierarchical Clustering and K-Means (Hastie et al., 2009). 

 

As an alternative, there are clustering methods based on models that fit the data 

with multivariate distributions (Reynolds, 2009; Templ et al., 2008).  A Gaussian 

Mixture Model (GMM) is a popular model-based or distribution-based clustering 

method, which is a weighted sum of component Gaussian distributions. A GMM is 

defined by three parameters for all component Gaussian distributions: the mixture 

weights, the mean vectors, and the covariance matrices.  The idea is to find the 

parameters that best match the distribution of the data, which can be achieved 

either by maximum likelihood parameter estimation or maximum a posteriori 

parameter estimation (Reynolds, 2009).  The most common algorithm to fit the 

GMM is maximum likelihood parameter estimation, which iterates between two 

steps in order to find the optimized parameters, given the data and the number of 

clusters —number of components.  This iterative procedure is known the 

expectation-maximization (EM) algorithm, which iterates between computing the 

maximum-likelihood parameter estimates given the conditional expectation of the 

Gaussian component (label) assigned to each data instance (M-Step) and then 
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recalculating  this conditional expectation given the parameter estimates computed 

the M-step (E-Step) (Fraley & Raftery, 1998). 

 

Barnett & Deutsch (2015) provide a description of Hierarchical clustering, K-

means and GMM algorithms. The units of the data and possible transformations of 

the data are important because they change distances and densities; therefore, the 

results of clustering. 

4.2. Data Transformations 

The basic idea when transforming data for cluster analysis is to improve clustering 

performance by affecting the similarity measures, since they are sensitive to the 

magnitude and variability of the input original variables (Milligan & Cooper, 

1988).  The alternative transformations commonly considered are explained 

below. 

4.2.1. Standardization Methods 

Z-scores 

Standardization to z-scores (standard scores) is a common transformation method 

that measures for each a data instance how above or below it is related to the mean 

considering the standard deviation of its distribution. Standardized variables have 

zero mean and unit variance.  The equation for this transformation is: 

 

𝑍1 =
(𝑋 − 𝑚)

𝑠
 

 

where X is the original data value, m is the variable mean and s is the variable 

standard deviation. This standardization method preserves the shape of the 

distribution, translating it to be centered at zero by subtracting the mean, and 

changing the scale or magnitude of the variable by dividing by the standard 

deviation. In other words, standardization equilibrates the magnitude of the 

different variables, while keeping the shape. 
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Rescaling by Range 

Rescaling variable X to a range is performed as follows: 

 

𝑍2 = (𝑋 − 𝑀𝑖𝑛(𝑋))/(𝑀𝑎𝑥(𝑋) − 𝑀𝑖𝑛(𝑋)) 

 

where Min(X) and Max(X) are the minimum and maximum values of variable X. 

This method scales all variables to the range [0, 1], although it is possible to 

rescale to any range. The mean and standard deviation after rescaling are not the 

same for the different variables, and they are respectively calculated as follows: 

 

𝑍2
̅̅ ̅ = (�̅� −  𝑀𝑖𝑛(𝑋))/(𝑀𝑎𝑥(𝑋) − 𝑀𝑖𝑛(𝑋))  

 

𝜎𝑍2

2 = 𝜎𝑋
2/(𝑀𝑎𝑥(𝑋) − 𝑀𝑖𝑛(𝑋))2 

 

These standardization methods are linear transformations that preserve the shape 

of the distribution including outliers and spikes.  Other non-linear transformations 

could also be considered. 

4.2.2. Normal Scores Transformation 

The normal scores transformation is widely used in geostatistics, being a 

preliminary step for different workflows.  The normal scores transformation is a 

quantile transformation that matches the p-quantile of the variable univariate 

distribution to the p-quantile of a standard normal distribution (Pyrcz & Deutsch, 

2014), so the original data distribution is non-linearly transformed to a Gaussian 

distribution with zero mean and unit variance (Figure 23).  
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Figure 23. Procedure for transforming original units to normal scores. The original and transformed 

histograms are show at the top of the figure for core porosity. The cumulative distributions are used for 

transformation. The procedure for transforming any core porosity value (say 0.2) is the following: 1) read the 

cumulative frequency corresponding to the porosity, and 2) read the normal score value (-0.949) 

corresponding to that cumulative frequency on the normal distribution (Pyrcz & Deutsch, 2014). 

 

For distance-based clustering algorithms transforming data to normal scores is 

considered unrealistic for variables with a large spike, because it distributes the 

spike along a range of the Gaussian distribution even though they are almost the 

same value in original units. For illustration, consider a variable with 60% data at 

or below detection limit.  It means that there is 60% data very close to zero in 

original units, and thus their difference is very low.  If we transform to normal 

scores, these values are going to be spread on the left 60% of a standard normal 

distribution. Therefore, while one sample at below detection limit can have a value 

around -3 in normal scores, another value at below detection limit can have a value 

of +0.25 in normal scores. This implies that the distance between two values at 

below detection limit is so distorted after transforming to normal scores that in 

some cases is even larger than the distance between some values at below 

detection limit and the outliers of the distribution. In order to solve this problem, a 

normal scores transformation preserving the spike is proposed. 
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Normal Scores Preserving Spike (NSS) 

NSS transformation is proposed with the aim of solving the problem of unrealistic 

distances between values at below detection limits when transforming to normal 

scores data with large spikes, to improve distance-based clustering performance. 

The idea is to transform data to normal scores, and then to assign to every value at 

below detection limit the highest normal scores value assigned to one of them 

(Figure 24). A lower value could be assigned to the spike. However, nowadays 

detection limits are very low (Thompson, 2012). Thus, the difference between the 

values at below detection limit and the lowest value over detection limit is very 

small, reason why it is preferred to keep this difference small when assigning a 

value to the spike in NSS, even though it leads to a mean not equal to zero and a 

variance not equal to one, which is not a problem for clustering purposes. 

 

 

Figure 24. Normal Scores Preserving Spike transformation (NSS). First, the data is transformed to normal 

scores (top). In this example there is around 50% of data at below detection limit, which is spread in the red 

part of the normal scores distribution shown in the top of the figure. Then, all data at below detection limit is 

assigned to the highest normal scores value assigned to a sample at below detection limit —in this case the 

highest normal score value assigned to a sample on the spike was 0.06 (bottom). 
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The NSS transformation allows solving the problem caused by outliers and can 

reduce the problem caused by skewness, while keeping a more realistic distance 

between samples at below detection limits. 

4.3. Data Complexities for Clustering Analysis 

The purpose of this section is to explain the possible data complexities that impair 

clustering algorithms performances. In order to demonstrate the impact of the 

complexities, some explanatory examples are illustrated. Three elements are used 

for the examples: calcium (Ca) magnesium (Mg) and boron (B). Both Ca and Mg 

present bimodal distributions, while B presents a large spike —around 50% of the 

data at below detection limit — and also outliers (Figure 25). 

 

Figure 25. Univariate and bivariate distributions Ca, Mg and B. The plots in the diagonal are the univariate 

distributions. The plots below the diagonal are bivariate kernel density plots and the plots above the diagonal 

are bivariate scatterplots (the stripes in scatter plots are due to limited precision in the measurement of B). 
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4.3.1. Outliers 

Outliers are anomalous high (or low) values that have a significant effect on the 

performance of clustering methods.  The distance of outliers to the distribution is 

very large compared to the distance between the lower values of the distribution, 

which makes them seem excessively dissimilar for clustering. Accordingly, 

clustering algorithms do not work well in presence of outliers (Barnett & Deutsch, 

2015; Milligan & Cooper, 1988). 

 

Outliers also have an important influence on the effect of some transformations for 

cluster analysis.  Z-scores standardization and rescaling by the range can make low 

values appear very similar, reducing the overall influence of the difference 

between those values —and thus, the influence of the variable— when performing 

distance-based clustering methods, while making outliers seem too dissimilar. This 

effect is illustrated in Figure 26, which shows the Hierarchical clustering 

dendogram based on Ca, Mg and B. In this example, Agglomerative Hierarchical 

clustering method was run in order to determine two clusters (A and B). It is 

possible to see that Boron outliers (variable Z3 in the figure) are comparatively so 

large, that they are assigned to cluster A, while all other samples are assigned to 

cluster B.  
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Figure 26. The upper image corresponds to the Hierarchical clustering dendogram for variables Ca, Mg and 

B (Z1, Z2 and Z3 respectively). The colors on the left of the dendogram represent the values of the three 

elements. The lines on the right represent the distances between all possible clusters. The clustering method 

was used to select two clusters. Cluster A is composed by very few samples: as shown in the bottom image 

they correspond to the variable B outliers. 

Even though both,  z-scores standardization and rescaling by range suffer with the 

presence of outliers, the impact is lower when rescaling by range as shown by G. 

Milligan & Cooper (1988), because the impact of high values is reduced in 

comparison to the influence of other variables. This is illustrated in Figure 27, 

where it is possible to see that even though Hierarchical clustering based on both 

standardizations methods separate outliers in cluster A, the cluster B is better 

separated when rescaling by the range, giving more influence to variables Z1 and 

Z2 (Ca and Mg), while standard scores still gives too much importance to the high 

values of variable Z3 (B). 
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Figure 27. Hierarchical clustering dendograms based on two different transformations: standard scores (left) 

and rescaling by range (right). Cluster B is better separated when recalling by the range, since the separation 

is based on variables Z1 and Z2 (Ca and Mg), while when based on standard scores too much importance is 

given to high values of variable Z3 (B). 

The non-linear normal scores transformations alleviate the problem caused by 

outliers, by reducing the distance of outliers to the distribution, which is useful 

when the purpose is to find large structures (large clusters) on data.  

4.3.2. Skewness 

The main problem of highly skewed distributions is that the distances between 

high values compared to the distance between low values may be 

disproportionately large, while the distance between low values may seem 

exaggeratedly small with the Euclidean distances used in distance-based clustering 

methods. On the other hand, distribution-based clustering methods are also 

affected by highly skewed distributions because the density around low values 

may seem excessively high compared to the density around high values.  The 

normal score transformation solves this problem by eliminating skewness when 

transforming the distribution to standard normal. However, there is the possibility 

that preserving the data distribution could lead to more realistic results, since they 

are based on the real similarity/dissimilarity between data values.  
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4.3.3. Spikes 

Spikes can have a significant impact on distribution-based clustering methods like 

GMM.  Large spikes have high density, and this high density can make the 

variable more important than the other variables used in clustering.  This impact is 

shown in Figure 28, where the difference between GMM clustering results based 

on three elements —Ca, Mg and B— transformed to normal scores (on the left) is 

compared to the clusters assigned when B is transformed to normal scores but its 

spike is preserved (on the right). When B is also transformed to normal scores 

(left) the separation is dominated by the two Ca-Mg visual clusters observed in 

original units (Figure 25), but when B spike is preserved it dominates the 

clustering assignment: there are no red cluster samples outside the spike. In this 

example, the spike in B makes it appear more important than Ca and Mg for the 

cluster assignment, even though Ca and Mg may be more important from a 

geologic point of view. On the other hand, the influence and treatment of spikes is 

different for distance-based clustering methods, where it may be more realistic 

preserving the spike to avoid distorting the Euclidean distance between values at 

below detection limit. 
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Figure 28. Univariate and bivariate distributions colored by the two clusters assigned by GMM based on two 

scenarios: 1) Ca, Mg and B are transformed to normal scores removing variable B spike (on the left), and 2) 

Ca, Mg and B are transformed to normal scores but B spike is preserved (on the right). Note that when the 

spike is preserved its influence is so important for the density-based clustering method, that the spike 

dominates the separation and the two Ca-Mg clusters seen in original units are not separated anymore as 

seen in the dashed circle. 
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4.3.4. Multimodal Distributions 

Geochemical measurements may show multimodal distributions.  For instance, Ca 

and Mg are two important silt sediment variables for differentiating lithologies, 

and they both show bimodal distributions. The normal scores transformation 

transforms a multimodal distribution into a unimodal one (Figure 29).  This may 

hinder the ability of clustering algorithms to separate samples corresponding to 

different populations represented by the different modes. However, it is important 

to consider that even when transforming variables to normal scores the modes may 

be identified in higher dimensions by clustering methods. 

 

Figure 29. Ca-Mg bivariate —bimodal— distribution in original units (left) versus bivariate distribution in 

normal scores (right). 

4.4. Recommendations for Transformation Decisions 

As illustrated above, there is no a single transformation that works well under all 

possible data complexities and all possible clustering methods.  Each of the 

transformations analyzed has pros and cons.  They may alleviate some problems 

and cause concerns in other conditions.  The following summarizes some points to 

consider for choosing the correct transformation under different circumstances. 

The focus here is to find large structures in data. Therefore, some of these concepts 

should be applied differently when the aim is to detect anomalies, as seen in the 

next chapter. 
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Distance-based Clustering Methods:  

 Outliers: transforming data containing outliers to normal scores is an 

effective alternative and it avoids manual outlier management, which is 

time consuming when working with data with many variables.  If cluster 

analysis is performed in original units, outlier management is 

recommended as a preliminary step.  Outlier management is also important 

if data are going to be standardized to z-scores or rescaled by the range 

before clustering, since these transformations do not appear to work well in 

presence of anomalous high values. 

 Skewness: normal scores transformation solves problems caused by 

skewed data by removing it. However, if preserving the distribution shape 

is considered important, rescaling by the range is recommended rather than 

standardization, since the former reduces the influence of high values on 

the multivariate distances while keeping the shape. This is in accordance to 

the conclusions obtained by Milligan & Cooper (1988) when comparing 

different standardization methods for cluster analysis. 

 Spikes: preserving spikes is a realistic choice for distance-based cluster 

analysis. Accordingly, if data is transformed to normal scores it is a good 

option to preserve the spike by considering the NSS transformation 

approach.   

 Multimodal distributions: transforming data to normal scores does not 

seem reasonable in presence of a multimodal distribution. However, if 

normal scores transformation is required to alleviate other complexities, it 

is suggested to proceed with normal scores and to check that the clustering 

method is still recognizing the different modes. 

 

Distribution-based Clustering Methods: 

 Outliers: data outliers appear to cause the GMM algorithm difficulty in 

finding the optimal Gaussian components that fit the multivariate 

distribution. Accordingly, if data is transformed to normal scores, the 

higher variability introduced by outliers does not have to be explained by 
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the Gaussian components, and thus, the clustering method can focus on 

understanding the multivariate relations of data without giving excessive 

importance to the anomalous values.  

 Skewness: in presence of skewness the Gaussian components fitted by the 

GMM algorithm are affected; ideally, the algorithm should use a limited 

number of Gaussian components to explain the multivariate variability.  

Consequently, in presence of highly skewed data the normal scores 

transformation should be considered, which will help equalize the weight 

of each variable in the choice of optimal components, means and 

covariance matrices. 

 Spikes: spikes influence the choice of Gaussian components for GMM, 

since the algorithm can give too much weight to the variable with a spike 

in the fitting process. Therefore, transforming to normal scores can be a 

good idea despite of the fact that it is introducing artificial distances 

between data.  

 Multimodal distributions: in order to make easier for the distribution-based 

algorithm to recognize the zones with more density in the multivariate 

space, it is a good idea to keep the original shapes of multimodal 

distributions. However, consider that even though normal scores 

transformation removes multiple modes in the univariate space, it is 

possible that they are still recognizable in the multivariate space, which 

could be partially checked using scatter plots. 

 

A multivariate dataset will contain a combination of the complexities discussed 

above, and therefore the decision about the optimal transformation for every data 

requires balancing its pros and cons according to the different complexities 

observed. Finally, a sensitivity analysis performing a combination of 

transformations could be a good alternative, for instance transforming data to 

normal scores in case of highly skewed data, but just rescaling by the range [-4,4] 

the multimodal variables. 
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4.5. Case Study 

In this case study the aim is to use clustering for separating data into geochemical 

populations related to geological units identified in the Mackenzie Mountains 

stream sediment samples. Different lithologies and alterations contain different 

distributions of elements. The expected Cu value in a plutonic felsic rock is not the 

same as in a mafic volcanic rock, and accordingly, what is considered an outlier in 

the former may not be an outlier in the latter. For this and other reasons —like 

defining stationary domains for geostatistics— it is often required to separate 

different geological populations into geochemically similar groups. 

 

GMM and Hierarchical clustering were applied in order to separate the silt 

sediment samples into similar geochemical populations. Given the complexities 

observed in this data, which contain outliers, highly skewed distributions, spikes 

and multimodal distributions, a normal scores transformation was applied  as a 

preliminary step since it solves most of them. For applying GMM the data was 

despiked and transformed to normal scores. For applying Hierarchical clustering it 

was transformed to NSS to get a more correct distance calculation between 

samples at below detection limits. It was also tested for GMM rescaling by the 

range [-3.5, 3.5] the multimodal variables (to keep the modes in those univariate 

distributions) and transforming the other variables to normal scores, but it did not 

improve the result, since in this case the modes were still recognized by GMM in 

the multivariate space when transforming to normal scores. 

 

The next step was to select the number of populations or clusters, since it is a 

required input for most clustering methods. This is a challenging task when 

performing clustering, because there is no single measure that indicates 

unambiguously the number of clusters for all types of data, requiring 

experimentation and critical review of the results. Besides, a different number of 

clusters can be used for different purposes: if the purpose is to find anomalies, then 

a large number of clusters may need to be specified. The purpose here is to 

separate data into relatively few large scale populations, similar to the 8 large scale 



 

 

44 

geological units mapped in the area (Ootes et al., 2013): Proterozoic Epicratonic 

Basin (Mackenzie Mountains Supergroup), Neoproterozoic Extension and Rift-

related Successions (Windermere Supergroup), Lower Paleozoic Mackenzie 

Platform, Lower Paleozoic Selwyn Basin, Upper Paleozoic Siliciclastic Basin, 

Upper Paleozoic Siliciclastic/Carbonate Shelf, Cretaceous Intrusions and 

Mesozoic Foreland Basin. 

 

There are some methods and measurements that can give an idea of the number of 

clusters contained in the data. Some measurements evaluate clustering 

performance without requiring that the ground truth classes are known, like the 

Silhouette Coefficient (Rousseeuw, 1987) that can be used for orientating the 

clustering method to find better defined clusters. The embedding method t-SNE 

can also be useful in such circumstances, which has been applied effectively for a 

variety of datasets as a tool to visualize the data structures and to observe the 

natural amount of clusters on data (L. Van Der Maaten, 2009; L. J. P. Van Der 

Maaten & Hinton, 2008). When the ground true class is known for each sample, 

some evaluations are used to measure the similarity between two assignments, like 

the Rand Index or Adjusted Rand Index (Hubert & Arabie, 1985). The 

Hierarchical clustering dendogram is another useful tool for understanding the 

natural clusters in data, which is based on Euclidean distances. In this graph, each 

row is a sample and each column is a variable. The color that varies from blue to 

red represents the values of every sample for every variable. On the right it has a 

dendogram (tree) that shows how similar are groups of data to each other. The 

longer the distance between a split point to the next one, the larger the Euclidean 

distance between the clusters. Figure 30 shows the dendogram for the stream silt 

data. It is possible to see that from the red dashed line to the right —8 clusters or 

less— the data is separated into fairly different clusters. But if we move the dashed 

line to the left to more than 8 clusters, the clusters become similar in the 

multivariate space. 
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Some of these methods were considered together with the general understanding 

of the geological units of the area in order to select a range of possible number of 

clusters, and the final decision was made according to the result that provided the 

best match with the geologic map. This leads to a result that is a good compromise 

between mathematics-computer science and professional judgement to find 

patterns and group natural processes. It was considered reasonable to try between 

4 to 10 large scale clusters. 

 

 

Figure 30. Hierarchical clustering dendogram based on NSS transformation of data. The red dashed line 

seems to separate data into fairly different clusters. If we move the line to the right the clusters become more 

different from each other. On the contrary, if we move the dashed line to the left (more clusters) the clusters 

become too similar to each other in the multivariate space. 

Consequently, GMM and Hierarchical clustering are applied on the stream silt 

sediments data considering 4 to 10 clusters. Other clustering methods like K-

means could also be considered. Given that in this case study the goal is separating 
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data into geochemical populations related to geological units identified in the area, 

GMM applied on data transformed to normal scores and assigning 8 clusters is 

visually considered to give the best match between clustering and the geologic 

map. The result is shown in Figure 31, where a geologic map of the Mackenzie 

Mountains is shown with the samples plotted and colored according to the 

different clusters assigned.  It is possible to see a good match between the 

geological units and the clusters. One possible application of this result is to 

identify areas where there are differences between the map and the clustering 

output in order to check the geological mapping and the data values, for example 

see some highlighted in Figure 32.  

 

 

Figure 31. Geologic map of the Mackenzie Mountains (provided by the Northwest Territories Geological 

Survey) with the silt sediments samples plotted and colored by clusters assigned by GMM method on data 

transformed to normal scores. 
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Figure 32. Geologic map of the Mackenzie Mountains with the silt sediments samples colored by cluster, 

highlighting areas where there are major differences between the map and the clustering result. 

4.6. Conclusion 

Data transformations have a significant impact on clustering results. Accordingly, 

an understanding of the impact that different transformations have on clustering is 

essential for its correct application. Some common data transformations have been 

reviewed, explaining their effects on clustering and pointing out the data 

complexities they alleviate for improving clustering performance. This chapter 

provides guidance for finding large structure in data and for detecting anomalous 

multivariate data instances, which is developed in the next chapter. 
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Chapter 5. Spatial Anomaly Detection with 

Multivariate Data 

Three methods for multivariate anomaly detection are proposed in order to identify 

multivariate samples that are anomalous in the multivariate space for mineral 

deposit exploration. The first method uses different combinations of clustering and 

data transformations for finding small anomalous clusters; the second uses 

different clustering outputs for identifying samples that do not belong clearly to 

any cluster; the third recognizes samples that are spatially anomalous, that are 

surrounded by samples assigned to a different cluster. The method is applied to 

stream sediment samples from the Northwest Territories for illustration. The 

multivariate methods are capable of recognizing deposits that are not identified in 

the univariate space. 

5.1. Introduction  

Anomaly detection has played an important role in many different areas like fraud 

detection, cyber-security, health care, military surveillance, finance and law 

enforcement (Akoglu, Tong, & Koutra, 2015; Chandola, Banerjee, & Kumar, 

2009). Anomaly detection can be defined as the identification of data instances or 

samples with a patterns that do not conform to expected behavior (Chandola et al., 

2009). A natural application in geoscience is for exploration purposes: to find the 

locations where there are anomalous concentrations of ore minerals on the earth.  

 

The goal is to develop new methods to detect multivariate anomalies, going 

beyond the anomalies recognizable from individual measurements. For this 

purpose, different algorithms are combined to identify multivariate anomalous 

samples that provide guidance to define interesting locations for exploration, 

detecting anomalies in multivariate space.  
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The method for multivariate anomaly detection proposed here is based on data 

transformations and clustering techniques, discussed in the previous chapter. Three 

methods for multivariate anomaly detection are combined: 

 Small anomalous cluster detection: using the appropriate transformations 

and clustering methods for finding small clusters that correspond to an 

anomalous group of samples with similar patterns. 

 Lack of Uniform Clustering Classification (LUCC): using different 

clustering techniques and parameters for detecting samples that are far 

from clusters centroids in the multivariate space. The idea is that since 

anomalous samples are far from the cluster centroids, they are not clearly 

part of a cluster, and therefore, there is disagreement between different 

clustering methods applied on different data transformations.  

 Spatial anomalies: identifying samples that are different from the 

surrounding samples in the geographic space. 

 

These methods are explained below and a case study is shown based on stream 

sediment samples from the Canadian North West Territories. 

5.2. Multivariate Techniques for Anomaly Detection 

5.2.1. Small Anomalous Clusters 

The idea of using cluster analysis for finding small anomalous clusters for 

exploration purposes is not new (Cohen et al., 2010; Garrett & Grunsky, 2001). 

The contribution here is to provide some guidance and propose a way to use 

different data transformations and clustering methods to identify multivariate 

anomalies from different point of views. 

 

Three decisions have a major impact when performing clustering for anomaly 

detection: data transformation, the clustering technique and the number of clusters 

to be identified. Others parameters, such as the linkage calculation, also have some 

impact and can be varied for sensitivity analysis. For detecting anomalies it is 
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necessary to find the combination of parameters that lead to the identification of 

small clusters with unique patterns. The basic idea is that samples related to ore 

deposits have some similar patterns that make them different —far in multivariate 

space— from the common patterns, so they can be detected as a different cluster. 

This is illustrated in Figure 33, where the green cluster represents a small 

anomalous cluster. 

 

Figure 33. Synthetic bivariate case for illustrating the idea of identifying small anomalous clusters like the 

one symbolized with green stars. X1 and X2 represents two pathfinder elements.  

As shown in the previous chapter, data transformations that keep the shape of the 

distribution —like standardizing or rescaling by the range— can make low values 

seem closer, while outliers seem very far in the multivariate space, influencing the 

clustering methods to separate small anomalous clusters containing samples with 

the highest distances to the clusters centroids. On the other hand, transforming the 

shape of the data distribution to normal scores is also recommended, because it 

adds another point of view for detecting anomalies, based more on multivariate 

position. Normal scores transformation can potentially detect different anomalies 

because it reduces the influence of those samples that are very far from cluster 

centroids to separate them into different groups, allowing clustering methods 

focusing more in the patterns of samples for dividing data into clusters. 

 

Different clustering methods allow observing data and looking for anomalies from 

different perspectives, since they are based on different algorithms and similarity 

measurements. Additionally, different target numbers of clusters should be tried, 
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because a small number of clusters may only lead to the identification of large 

structures in data, which is inevitably subjective and requires experimentation. 

 

Finally, once different anomalous samples have been detected by trying different 

combinations of data transformations, clustering techniques and number of 

clusters, they can be filtered by computing the mean of pathfinder elements for 

each small anomalous cluster, discarding the samples corresponding to clusters 

that do not match candidate geochemical signatures.   

5.2.2. Lack of Uniform Clustering Classification (LUCC) Anomalies 

Multivariate anomalous samples are likely far from cluster centroids in 

multivariate space. Consequently, applying different clustering configurations on 

different data transformations will probably lead to disagreement when assigning 

these samples to clusters. There will be more agreement between different 

clustering methods/data transformation combinations for samples that are very 

close together in the multivariate space. Based on this concept, a novel algorithm 

is proposed for finding anomalous. The idea is to compute a lack of uniform 

clustering classification (LUCC) measure for each sample, and then identify the 

outliers of the LUCC distribution as anomalous samples. The algorithm proceeds 

as follows: 

 

1. Use different clustering techniques, linkage calculations, target numbers of 

clusters and other reasonable variations of clustering parameters for obtaining 

multiple clustering outputs. The target numbers of clusters should be kept 

relatively small to identify the samples that are not clearly part of large 

clusters.  

 

The following notation is considered: 

- 𝑛𝑑: number of data 

- 𝑛𝑐(𝑘): target number of clusters for clustering output k. 

- 𝐾: total number of clustering outputs (number of clustering results). 
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- 𝐿(𝑖, 𝑘): cluster label assigned to data instance i by clustering output k.  

 

2. For each combination of clustering outputs, calculate a clustering persistence 

matrix that measures the agreement between clusters for each possible pair of 

clustering outputs. In those matrices the number of rows and columns 

correspond to the number of clusters for each clustering output respectively. 

For instance, if the cluster output 1 considers 5 clusters and the second 8 

clusters, the matrix dimension is going to be 5x8, and for each cell [i, j] of the 

matrix, count the number of samples that fall in cluster i for clustering output 

1 and in cluster j for clustering output 2. The algorithm is the following 

(comments start with hash character #): 

#for each matrix 

for a=1, K:  

    for b=a+1, K: 

        #for each cell of the matrix 

        for x=1, nc(a): 

            for y=1, nc(b): 

𝑀𝑎𝑏[𝑥, 𝑦] =  ∑ 𝐼𝑎𝑏[𝑥, 𝑦](𝑖)

𝑛𝑑

𝑖=1

 

                   where: 

𝐼𝑎𝑏[𝑥, 𝑦](𝑖) =  {
1     ; 𝑖𝑓 (𝐿(𝑖, 𝑎) = 𝑥) 𝑎𝑛𝑑 (𝐿(𝑖, 𝑏) = 𝑦) 
0     ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

 

 

3. Standardize the matrices by dividing every cell by the total number of data: 

#for each matrix 

for a=1, K: 

    for b=a+1, K: 

           # for each cell of the matrix 

        for x=1, nc(a): 

            for y=1, nc(b): 
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𝑆𝑎𝑏[𝑥, 𝑦] =  
𝑀𝑎𝑏[𝑥, 𝑦]

𝑛𝑑
 

 

4. Store for each data instance its corresponding cell value in each matrix: 

#for each matrix 

for a=1, K: 

    for b=a+1, K: 

 #for each cell of the matrix 

        for x=1, nc(a): 

            for y=1, nc(b): 

                   #for each data instance i 

                for i=1, nd: 

                        if ( (𝐿(𝑖, 𝑎) = 𝑥) & (𝐿(𝑖, 𝑏) = 𝑦) ): 

                                          𝑃𝑎𝑏(𝑖) = 𝑆𝑎𝑏[𝑥, 𝑦] 

 

5. Compute the LUCC value for each data instance, which is a measure of how 

unlikely the sample falls into consistent clusters considering the different 

clustering outputs: 

𝐿𝑈𝐶𝐶(𝑖) =  − ∑ ∑ log(𝑃𝑎𝑏(𝑖))

𝐾

𝑏=𝑎+1

𝐾

𝑎=1

             ∀𝑖 = 1, … , 𝑛𝑑 

 

Note that natural logarithm is applied in order to highlight low values, so the 

samples with higher LUCC values are considered anomalies.  

 

6. Plot the LUCC value in a cumulative probability plot and select the 

anomalous high values of the distribution (outliers). 

 

In order to visually illustrate how this method works, consider the bivariate case 

shown in Figure 34, where there are two clusters (blue circles and red squares) and 

one anomalous sample (star shape). If different clustering configurations are 

applied to assign 2 clusters, there will likely be agreement that the circles are part 
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of a cluster and the squares correspond to another cluster. On the other hand, there 

is likely to be disagreement about the cluster to which the anomalous sample 

belongs. Thus, that sample is going to be an outlier in the LUCC distribution, and 

consequently, it will be considered as a LUCC anomaly.   

 

 

Figure 34. Example bivariate case for illustrating the LUCC method. Consider 2 clustering outputs for finding 

2 clusters (blue and red). The clustering 1 assigns the anomalous sample to cluster blue while the clustering 2 

assigns it to cluster red. 

5.2.3. Spatial Anomalies 

The first step is to apply a clustering technique aimed at large structures in the 

multivariate data. Then, the distance 𝑑 to the closest sample assigned to the same 

cluster is calculated (Figure 35) as well as the number of samples assigned to a 

different cluster before reaching 𝑑 (called n_before). Finally, a cumulative 

probability plot of the n_before value is generated and the outliers of the 

distribution are considered as multivariate spatial anomalies. 
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Figure 35. Illustration of n_before value calculation for detecting spatial anomalies. This value is calculated 

for each sample. For the sample in the middle of the circle there are 9 blue samples closer than d (distance of 

the closest sample assigned to the same cluster). 

5.3. Case Study 

The stream silt sediment samples from the Mackenzie Mountains are used to 

illustrate the method. Some elements deemed pathfinder elements for Sedimentary 

Hosted Copper/Base Metals deposits (Ootes et al., 2013) are selected for the 

analysis: Ag, Cd, Cu, Ga, Mo, Pb and Zn. The group of elements to use for 

applying the method is important. They should be selected in accordance to the 

type of exploration target. Univariate anomalies are considered as well as the 

multivariate methods described above. They are easy to use and are useful for 

comparison purposes

5.3.1. Univariate Anomalies 

Univariate anomalies (outliers) are selected based on the cumulative probability 

plots as show in Figure 36. Other methods for finding anomalies in the univariate 

space have been developed (Deutsch & Deutsch, 2010), yet the focus of this study 

is on multivariate methods for anomaly detection. Thus, graph-based visual 

univariate outlier detection is considered adequate. 
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Figure 36. Cumulative probability plot for Ag. The dashed red circle shows the samples considered outliers of 

the distribution. 

The selected thresholds for defining univariate anomalous values are: Ag ≥ 2020, 

Cd ≥ 44, Cu ≥ 355, Ga ≥ 10, Mo ≥ 63, Pb ≥ 350 and Zn ≥ 3900.  

5.3.2. Multivariate Anomalies - Small Anomalous Clusters 

The basic idea of this approach is to find small anomalous clusters by using 

different clustering techniques and data transformations considering different 

numbers of clusters as output. In this case, three different data transformations 

(standard scores, standardized by the range and normal scores transformation) and 

two clustering techniques (Hierarchical clustering and GMM) are used for 

identifying small anomalous clusters. Hierarchical clustering is performed using 

the average and Ward’s method for linkage calculation. More transformations 

and/or clustering techniques —like K-means— could be added to the process. 

 

For each combination of data transformation and clustering technique, the number 

of clusters was varied with the aim of identifying small groups of samples with 

anomalous concentrations of pathfinder elements. As an example, when 

standardizing by the range and using hierarchical clustering, if the data was 

grouped in only two clusters, the smallest contains 840 samples, which is fairly 

large. When selecting three clusters, one of them contains 54 samples with 

relatively high mean of Ag, Cd, Cu, Mo and Zn (Figure 37 and Figure 38), which 
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could be an interesting cluster for mineral exploration. Following this process, 

different small anomalous clusters are selected for each combination of 

transformation-clustering technique. Finally, the mean for each element in those 

small clusters is explored, in order to select only those with relatively high content 

of some pathfinder elements. This step requires experimentation and basic 

statistical analysis of the small clusters detected. 

 

 

Figure 37. Number of samples for each cluster considering: 2 clusters (left) and 3 clusters (right). Using 

hierarchical clustering with Ward’s linkage calculation on data rescaled by the range. 

 

 

Figure 38. Box plot showing the relatively high mean of Cu and Zn of cluster 2, based on data standardized by 

the range and using hierarchical clustering with Ward’s linkage 

To illustrate the impact of the data transformation for finding small anomalous 

clusters, the results obtained by rescalinging by the range versus normal scores 

transformation are compared. Using Hierarchical method (Ward’s linkage) for 

separating data into four clusters, when applied on data standardized by the range 
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leaded to the recognition of one relatively small cluster containing 54 samples 

(Cluster 2 in the left plot in Figure 39). On the other hand, when performing the 

same clustering method but on data transformed to normal scores, all four clusters 

contain more than 1500 samples (right plot in Figure 39).  

 

Finally, the impact of the clustering method used for identifying small clusters is 

illustrated. When applying GMM on the data transformed to normal scores, even 

when asking it to assign 20 clusters, all of them were relatively large containing 

not less than 200 samples. But when using Hierarchical clustering with average 

linkage, even selecting 4 clusters recognized three small clusters containing 35, 1 

and 1 samples. In the cases studies developed in this study is noted that GMM 

tends to be less affected by high values, which allows it to find the large structures 

in the data. On the other hand, Hierarchical clustering tends to give more 

importance to separate those groups of samples that are far from the large clusters 

centroids than GMM. This confirms the high sensitivity of distance-based 

clustering methods to skewness and outliers. In line with this, the average linkage 

calculation is more prone to highlight the more distant samples than Ward’s 

linkage calculation.  

 

 

Figure 39. Bar plots illustrating the impact of the standardization method on the clustering output. The same 

clustering technique and parameters is used in both cases, but on the left the data was standardized by the 

range while on the left it was transformed to normal scores. 
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After exploring basic statistics of the different small clusters, the ones with 

relatively high mean of pathfinder elements are selected. The following small 

clusters are selected, which are shown in red in Figure 42: 

- Normal scores:  

 Hierarchical clustering – average linkage: 

 4 clusters: clusters selected 0, 2 and 4 

 16 clusters: clusters selected 1, 6, 7, 8, 9, 12, 13 and 15. 

 20 clusters: clusters selected 0, 6, 8, 10, 12, 13, 15, 16, 

17 and 19. 

- Standard Scores: 

 Hierarchical clustering – average linkage: 

 10 clusters: clusters selected 0, 1, 3, 4, 5, 6 and 7. 

 Hierarchical clustering – Ward’s linkage: 

 6 clusters: cluster selected 0. 

- Standardized by range: 

 Hierarchical clustering – average linkage: 

 12 clusters: clusters selected 1, 2, 3, 4, 7, 8, 9, 10 and 

11. 

 Hierarchical clustering – Ward’s linkage: 

 3 clusters: cluster selected 2. 

 

Almost all univariate anomalous data are included as small cluster anomalies, but 

there are also many small cluster anomalies that are not univariate outliers, as seen 

in Figure 42. 
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5.3.3. Multivariate Anomalies – LUCC Anomalies 

The LUCC value measures how a sample falls into different clusters. This method 

should work better if the clustering is set up to find large structures in the data. 

Therefore, clustering techniques based on data transformations and numbers of 

clusters that lead to small clusters are not used. Ward’s linkage is used instead of 

average linkage. Other clustering methods like K-means can be used as well. 

 

Accordingly, the following clustering methods, data transformations and numbers 

of clusters are used for identifying the LUCC anomalies:  

- Normal scores:  

 GMM: 2, 3 and 4 clusters 

- Standard scores:  

 Hierarchical clustering – Ward’s linkage: 2 clusters. 

 GMM: 2 clusters. 

- Standardized by range:  

 Hierarchical clustering – Ward’s linkage: 2 clusters. 

 GMM: 2 clusters.  

 

The second step is to calculate the clustering persistence matrix for each pair of 

clustering outputs. Twenty one matrices are generated. One of the matrices is 

shown in Table 2 as an example, in which the 2 clustering outputs are generated 

using hierarchical clustering with Ward’s linkage assigning two clusters, but they 

are based on different data transformations. Note that both assign almost 90% of 

data to one cluster and 10% to the other, but there is disagreement in some 

samples: there are 56 samples assigned to the smaller cluster for data transformed 

to standard scores that are considered part of the larger cluster when standardizing 

dividing by range. That means that they are not clearly part of a particular group of 

samples in the multivariate space. They could be anomalous. The approach 

highlights the samples with the greatest inconsistency between different clustering 

classifications. 
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Dividing by Range 

 0 1 

 Standard 

Scores 

0 784 56 840 

1 158 7895 8053 

  

942 7951 8893 

 

Table 2. One of the twenty one matrices generated combining the seven clustering outputs performed. In this 

matrix the rows correspond to hierarchical clustering on data transformed to standard scores and the 

columns to hierarchical clustering on data standardized dividing by the range. 

 

Then these matrices were standardized by dividing each cell by the total number of 

samples (8893) obtaining the 𝑆𝑎𝑏[𝑥, 𝑦] values, as shown in Table 3. 

 

 

Dividing by Range 

 0 1 

 Standard 

Scores 

0 0.088 0.006 0.094456 

1 0.018 0.888 0.905544 

  

0.106 0.894 1 

 

Table 3. An example of a matrix standardized by the total number of samples. 

 

Finally the LUCC measure was calculated for each sample.  Outliers of the LUCC 

distribution are visually selected using a cumulative probability plot (Figure 40). 

The samples with LUCC values greater than 50 are considered anomalies. 
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Figure 40. Cumulative probability plot of the LUCC value computed for the stream silt samples from the 

NWT. The samples with LUCC greater than 50 were considered LUCC anomalies. 

Note that not all samples that this method highlights are anomalous because of 

their high values. Some of them have a high LUCC because the clusters are not 

clearly separated but they are transitional. The goal here is ore deposit exploration 

so all samples selected as LUCC anomalies with normal scores values lower than 

2.0 for every element are discarded. The LUCC anomalies are shown in light blue 

in Figure 42.  

5.3.4. Multivariate Anomalies – Spatial anomalies 

The n_before value is calculated considering the clustering output shown in the 

case study developed in the previous chapter, which is based on 35 elements and 

performed with the aim of separating the geological background into large scale 

stationary domains. Then, a cumulative probability plot was generated (Figure 41). 

Based on this plot, a threshold of n_before equal to 250 was chosen to select the 

spatial anomalies (the n_before outliers). Seventeen samples are selected as spatial 

anomalies which are shown in green in Figure 42. 
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Figure 41. Cumulative probability plot for n_before value, which measures how different is a sample in the 

geographic area in which it is located. The threshold used for considering a sample spatial anomaly is shown 

in red dashed line. 

5.4. Anomaly Detection Results 

5.4.1. Visual Analysis 

The anomalies identified by the different methods are summarized in Figure 42, 

where the pie charts symbolize with colors the corresponding methods that 

consider a sample to be anomalous. Yellow symbolizes univariate anomalies, red 

corresponds to small cluster anomalies, light blue represents LUCC anomalies and 

green symbolizes spatial anomalies. The more methods that consider a sample to 

be anomalous the greater the size of the pie charts. First of all, it can be noticed 

that anomalies are not randomly distributed in the sampled area (small grey dots 

are not anomalous samples), but they tend to be concentrated in some zones of the 

Mackenzie Mountains, which can be used for defining interesting areas for further 

investigation. 
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Another observation from this plot is that almost all univariate anomalies are 

considered multivariate anomalies, but on the other hand, there are many 

multivariate anomalies that are not identified as anomalies in the univariate space. 

 

 

Figure 42. Stream silt samples anomalies plotted as pie charts on Google Physical image of the Mackenzie 

Mountains. The color in the pie charts symbolizes the type of anomaly. The more methods for finding 

anomalies agree, the more colors in the pie chart and the larger the area of the circle. Samples not considered 

anomalies are plotted as small grey dots 
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5.5. Validation  

It is not straightforward to validate the performance of anomaly detection methods 

for mineral deposits exploration purposes, given that an intrinsic characteristic of 

exploration is that we do not know for every location whether there is a deposit 

nearby or not. This motivates unsupervised learning methods like clustering rather 

than supervised learning methods.   

 

However, it is possible to see if the method is capable of detecting the known 

deposits in the area of study. A database with the showings (known ore deposits) 

that have been recognized in the area is provided by the Northwest Territories 

Geological Survey. The showings not related to the pathfinders selected in the case 

study were discarded and deposits that have been or are in production or advanced 

exploration are considered. The following filter was considered:  

 Dev_label: 'Drilled' , 'Advanced Exploration' , 'Minor Past Producer' , 

'Producer' , 'Past Producer'  or  'Minor Producer'. 

 Deposit_type:  'Carbonate-hosted Zn-Pb' , 'SEDEX'  or 'Intrusion-related' . 

 

The showing and anomalies are shown together in Figure 43 where the black dots 

symbolize the deposits of the area. Visually it is possible to observe that many 

areas with showings match areas with anomalies. It can be also noticed that many 

anomalies do not have showings next to them, which is not a problem but an 

opportunity.  

 

To validate using numbers, for each showing the distance to the nearest anomaly is 

computed. This measure does not indicate if the deposits were detected by an 

anomaly downstream, but it is an indication of the capacity to identify interesting 

areas for exploration. A boxplot of the distance to the nearest anomaly for every 

showing is shown in Figure 44, in which it is possible to see that most of the 

showings are closer than 2.5 km to an anomaly.  
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Figure 43. Showings (black dots) and anomalies (pie charts) on Google physical image of the Mackenzie 

Mountains. The color in the pie charts symbolizes the type of anomaly. The more methods for finding 

anomalies agree, the larger the area of the circle. Samples not considered anomalies are plotted as small grey 

dots. 
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Figure 44. Boxplot of the distance to the nearest anomaly identified. The y axis is the distance of the closest 

anomaly to the showing. The black dots correspond to the 44 showings, which are spread in the x-axis just for 

visualization purposes. 

To better understand this result it is necessary to consider the data spacing. In 

order to provide an idea about the data spacing for the stream silt samples, the 

average distance of the five nearest neighbors for each sample is calculated, which 

cumulative distribution is shown in Figure 45. The result supports the good 

performance of the method for detecting areas with presence of showings.  

 

Figure 45. Cumulative probability plot of the average distance of the five nearest neighbors for each stream 

silt sample, to provide an idea of the data spacing. 

Multivariate anomaly detection outperforms the univariate method for identifying 

anomalies related to showings in the area. Several deposits are detected just by 

using the multivariate methods proposed. The deposits identified as multivariate 

anomalies but not as univariate anomalies are highlighted with red circles in 

Figure 46. Some of these cases are also shown in Figure 47 in more detail, where it 
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is possible to observe that the multivariate anomaly detection methods not only 

give a general idea of interesting areas for exploration, but many of the anomalies 

correspond to the nearest sample downstream (Figure 47). 

 

 

Figure 46. Red circles highlighting some of the cases in which the showings were just identified by the 

multivariate methods proposed. Showings (black dots) and anomalies (pie charts) on Google Physical image 

of the Mackenzie Mountains. The color in the pie charts symbolizes the type of anomaly. The more methods 

for finding anomalies agree, the larger the area of the circle. Samples not considered anomalies are plotted as 

small grey dots. 
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   Showing 

   Univariate Anomaly 

   Multivariate Anomaly - Small Cluster Anomaly 

   Multivariate Anomaly - LUCC Anomaly 

   Multivariate Anomaly  - Spatial Anomaly 
 

Figure 47. Some examples of showings detected just by using the multivariate methods proposed. 

 

Another interesting observation is that different deposits were detected when 

different clustering techniques were applied on different data transformations. This 

supports the recommended approach of using different multivariate methods and 

varied combinations of clustering methods and transformations to identify 

anomalies from different perspectives. For example, the showing highlighted with 

a red circle in Figure 48 was just detected when transforming data to normal scores 

and applying hierarchical clustering with average method. In Figure 48 is also 

shown the position of these identified anomalies in the univariate cumulative 

distribution of the most important pathfinders. It is possible to see that they are not 

extremely high values of these univariate distributions. In fact, the pathfinder 

element with highest relative values is Pb and even for this element these 

multivariate anomalies are not univariate outliers. 

Map data @2017 Google 
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Figure 48. Left: red circle highlighting showing just detected using clustering to find a small anomalous 

cluster on normal scores data. Right top: cumulative probability plots of pathfinder elements in normal 

scores. Right bottom: Pb cumulative probability plot in original units. The multivariate anomalies are not 

univariate anomalies. 

The amount of anomalies identified using each method is not a factor that was 

considered when performing the different methods. There are 73 univariate 

anomalies detected, 128 small cluster anomalies, 117 LUCC anomalies and 18 

spatial anomalies. The fact that univariate anomalies are less than small cluster 

anomalies and LUCC anomalies is in line with the observation that almost all 

univariate anomalies are detected by the multivariate methods and several 

anomalies are just identified in multivariate space. It is possible that the threshold 

used to define outliers of the n_before distribution to define spatial anomalies is 

too high, but the results were not modified after the database of showings was 

provided. However, to understand this point a lower threshold were tried and it 

was possible to see that some more showings in the area are detected by the spatial 

anomaly method. Regarding the amount of anomalies for each method, it is 

important to note that frequently a deposit is detected by several anomalies of the 

same method around it. Therefore, dividing the amount of showings identified by 
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the number of anomalies detected for each method is not an accurate measure of 

their performance. 

 

To understand the performance of the different methods developed regarding to 

their capacity to detect a deposit upstream by the closest samples downstream, a 

visual inspection around each of the 47 showings is performed. 25 deposits are 

detected by the nearest sample(s) downstream by the LUCC method, 22 by the 

small anomalous clusters method, 17 by the univariate method and 1 deposit is 

detected by the spatial anomaly method. From this point of view, the LUCC 

method outperformed the other methods. 

 

It is important to consider that due to the low mobility of zinc under neutral to 

alkaline conditions, zinc deposits are difficult to detect using stream silt samples in 

carbonate-dominated regions like the Mackenzie Mountains, reason why the 

Northwest Territories Geological Survey decided to collect bulk stream samples 

for heavy mineral concentrate analysis (Falck et al., 2012). It is possible that some 

of the deposits not identified could be detected by applying the proposed methods 

on another type of data. 

5.5.1. Comparing Performance with Other Multivariate Methods 

The aim of this study is to develop novel multivariate methods for anomaly 

detection. One of the ideas is to use diverse techniques to find anomalies from 

different point of view. The focus is not to directly compare with existing 

multivariate methods that have already been proposed for exploration, like 

principal component analysis (PCA), factor analysis and weighted sums, among 

others (Cheng, Agterberg, & Bonham-Carter, 1996; Cohen et al., 2010; Garrett & 

Grunsky, 2001; Jimenez-Espinosa, Sousa, & Chica-Olmo, 1993; Zuo, 2011). 

 

Nevertheless, comparison to the common method of PCA is of interest. PCA is 

used to identify anomalies for the case study, to see if the methods proposed here 

are capable to identify anomalies not detected by PCA. For this purpose data was 
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firstly transformed to normal scores, since PCA is sensitive to outliers, and then 

the principal components 1 and 2 (PC1 and PC2) were used to find anomalous 

samples. For defining the anomalies, an elliptic envelope was fitted to the central 

data points and then the samples with largest Mahalanobis distance to the center of 

the fitted envelope were considered outliers. Finally, just the anomalies with low 

PC2 values were selected, since they correspond to high values of the pathfinder 

elements, as seen in Figure 49. 

 

Figure 49. Scatter plots of principal component 1 (PC1) versus principal component 2 (PC2) colored different 

ways. Top-left: PCA anomalies selected in red color. Top-right: colored by Ag content. Bottom-left: colored 

by Cu content. Bottom-right: colored by Zn content. 

The PCA anomalies were finally plotted together with the showings and anomalies 

detected previously (Figure 50), were it is possible to observe that: 1) some of the 

deposits in the area are detected by PCA method; 2) PCA did not detect new 

showings that had not been identified by the other anomalies; and 3) there are still 

several showings just detected by the multivariate methods developed in this 

study. 
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Figure 50. Showings (black dots) and anomalies (pie charts) on Google Physical image of the Mackenzie 

Mountains. PCA anomalies shown in purple. The color in the pie charts symbolizes the type of anomaly. The 

more methods for finding anomalies agree, the larger the area of the circle. Samples not considered 

anomalies are plotted as small grey dots. 

5.6. Conclusion 

Different ways for finding anomalies that go beyond univariate anomaly 

identification have been proposed and implemented for exploration purposes. The 

method allows detecting anomalous values from different points of view —

varying the multivariate method, the clustering technique and the data 

transformation— with the idea of increasing the number of deposits that can be 

identified. This is supported by the case study. In this example, it is possible to 
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observe that the multivariate methods are capable of identifying several deposits 

that are not detected by univariate anomalies.  

 

Many of the showings in the area were recognized, demonstrating the capacity of 

the method to detect anomalous samples related to ore deposits. The results 

suggest that the multivariate anomaly detection methods can lead to the 

identification of new ore deposits. 
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Chapter 6. Conclusions and Future Work 

This thesis addresses challenges commonly faced when working with multivariate 

geochemical data. The goal is to provide guidance and methods to improve 

geostatistical analysis and cluster analysis for mineral deposit exploration. The 

main issue covered for geostatistical analysis is the effect of spikes and the 

selected despiking method in variography. For cluster analysis, the influence of 

different complexities and the appropriate data transformation are investigated. 

Finally, based on the knowledge gained about data transformations and clustering, 

a novel multivariate anomaly detection method is proposed. 

6.1. Contributions 

The effect of spikes in variography is addressed in Chapter 3, where problems with 

the commonly used despiking methods are documented. It is shown that local 

average despiking produces a similar error in variogram modelling compared to 

random despiking, but in the opposite direction: it leads to an overestimation of 

spatial continuity. The impact of the common despiking methods in the variogram 

model and uncertainty estimation is documented. A modified despiking method is 

proposed to improve variography. The proposed method combines a random 

despiking component and a local average despiking component, balancing both 

methods in order to avoid an excessive overestimation or underestimation of the 

spatial variability. The proposed despiking method is applied to two case studies, a 

synthetic case and a case based on the Northwest Territories stream silt samples, 

showing an improvement in the estimation of the variogram. 

 

In Chapter 4 it is shown that data transformations have a significant impact on 

clustering results. The effects of outliers, skewness, multimodality and spikes on 

cluster analysis methods are reviewed, as well as the way that different data 

transformations alleviate the problems caused by these complexities. Finally, some 

guidance and recommendations are provided for improving cluster analysis 

performance. This chapter is oriented to find large clusters that could be used as 
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geochemical domains for improving the metallogenic model or for checking the 

geologic map, among other applications. A normal scores transformation 

preserving the spike (NSS) is proposed for improving distance-based clustering 

methods. 

 

The principles developed in Chapter 4 are also that could be used as applied to 

identify multivariate anomalous samples. In Chapter 5, three different methods for 

identifying multivariate anomalies are developed. The first method uses different 

combinations of clustering and data transformations for finding small anomalous 

clusters. The second uses different clustering outputs for identifying samples that 

do not clearly belong to any cluster. The third recognizes samples that are spatially 

anomalous. Each of these multivariate methods detects anomalies from a different 

point of view. A combination of these detection methods is recommended. The 

goal is to obtain more stable and reliable results. If different anomaly detection 

methods agree that there are anomalies in a particular geographic area, that zone 

could be ranked with higher priority for mineral exploration. Finally, in the case 

study developed in Chapter 5 it is shown that the multivariate anomaly detection 

methods are capable of identifying several showings, that is, known mineral 

deposits in advanced exploration or production stage. Some of these showings are 

not detected from the histograms of different elements; this supports and motivates 

the use of multivariate anomaly detection methods for mineral deposit exploration. 

 

On the whole, this thesis is a contribution to the mineral deposit exploration in the 

Northwest Territories, Canada. A report, high quality graphs and images, as well 

as the location of the detected anomalies have been delivered to the Government 

of the Northwest Territories. 
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6.2. Future Work 

Another algorithm could be developed for despiking that considers uncertainty in 

the imputation of the values in the spike. Perhaps the Gibbs sample algorithm 

(Silva & Deutsch, 2016) could be used to simulate the values for the samples in 

the spike while considering the spatial correlation between samples. The input 

variogram model could be calculated using the despike algorithm developed in this 

thesis. 

 

Data transformations and clustering techniques have been used in this thesis in 

combination either for the identification of large structures in data or for anomaly 

detection. It is not clear if some of the multivariate anomaly detection methods 

proposed would work better if they are applied separately for different domains. 

Additional research is required to provide more definitive guidance on different 

transformation methods. 

 

Regarding the multivariate anomaly detection methods proposed, the interesting 

performance of the LUCC method motivates further investigation. It is probable 

that if the same clustering configurations used for the small anomalous clusters 

method are included as input for the LUCC method, the small anomalous cluster 

anomalies are identified as LUCC anomalies. It would be interesting to investigate 

if this method can be used in a more automatized way, using a default set of 

clustering algorithms, data transformations and amount of clusters, to address 

some concerns about the inevitable subjectivity to select the clustering 

configurations to find small anomalous clusters. The spatial anomalies method 

also requires more research. The method could be improved to consider 

anisotropy. It could also be improved to identify anomalies in cases where there is 

not just one spatial anomalous sample, but two or three samples are anomalous in 

a neighborhood. Finally, the decision of the threshold for defining spatial 

anomalies based on the n_before distribution could also be enhanced. 
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An intrinsic characteristic of exploration data is that there is limited knowledge of 

where deposits are located. That is a reason why unsupervised learning methods 

like clustering are useful for exploration purposes; they do not require a label for 

each sample for training the algorithm. However, it would be interesting to find a 

way to use some supervised learning algorithms to detect anomalies. One 

possibility could be using one-class classification (Martinus & Tax, 2001) which 

only requires samples from one class to train the algorithm. 

 

Another possible future work for anomaly detection is performing sensitivity 

analysis to find the most influential variables for a target, since the selection of the 

group of elements to which apply the anomaly detection method proposed has an 

important impact on the results.  
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Appendix 

 Appendix A: Despike program 

The CCG despike program was modified to break the spikes by considering a local 

average component and a random component. The weight used for combining both 

components can be tuned in the parameter file, although the default weight W1 

equal to 0.5 is recommended.  

 

Despike_2000 Parameter File 

The required parameters for the despike program version 2.0 are: 

- Line 4: the start point to read the parameter file. It must be present. 

- Line 5: the data file in GeoEAS file format. 

- Line 6: columns for coordinates, the variable to despike and the rock type. 

- Line 7: number of valid rock types and their integer codes. 

- Line 8: trimming limits for variable. 

- Line 9: number of nearest neighbors to consider for computing the local 

average. 

- Line 10: weight W1 assigned to the random component. The weight (1- 

W1) is given to the local average component. The default value W1=0.5 is 

recommended. 

- Line 11: seed number used for the random component. 

- Line 12: name output file. 
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 Appendix B: Anomaly Detection Method Scripts 

1. Lack of Uniform Cluster Classification (LUCC) script: 

The first step for calculating the LUCC value for each sample is performing 

different cluster analyses. For that purpose the Python package scikit-learn 

(Pedregosa et al., 2011) was used, which is recommended for data mining and data 

analysis. For illustration purposes consider a dataset with 2 coordinates and 7 

clustering outputs: 

 

 

Then, the following Python code for calculating the clustering persistence matrix 

for each pair of clustering outputs: 

 

 

The matrices are standardized: 
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Finally the following code is used for assigning to each sample the corresponding 

value for each matrix (in this case 21 matrices). The LUCC value is calculated for 

each sample as the negative value of the sum of the logarithm of the different 

matrices values: 

 

 

 

The outliers of the LUCC distribution are considered LUCC anomalies. 
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2. Spatial Anomalies Script: 

A Python script used for calculating spatial anomalies is described below. There 

are not many samples in the case study developed, so the code works in a 

reasonable time even though it uses pandas dataframes. However, if more speed is 

required it is recommended using numpy arrays. Consider a pandas dataframe 

called datafl with coordinates and the clustering output: 

 

 

A function was generated to compute for each sample the distance for the closest 

n_samples. It creates a pandas dataframe storing those n_samples distances 

followed by the corresponding n_samples cluster labels assigned by the clustering 

method. 

 

 

Then the function is run indicating as input the dataframe (datafl) and the number 

of closest n_samples to consider. A dataframe called df_dist with the closest 1800 

samples distances and cluster labels is obtained as follows: 
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To calculate how many samples assigned to a different cluster are closer than the 

closest sample with the same cluster label the following code is used:  

 

 

Finally, the original dataframe information can be concatenated with the distance 

of the closest sample with the same label and the n_before value: 

 

 

The outliers of the n_before distribution are considered spatial anomalies. 


