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ABSTRACT 

Underground mining operations are inherently dangerous due to a variety of factors present 

in a mining environment. Firstly, the confined spaces and limited ventilation, the use of heavy 

machinery, explosives, and drilling equipment poses significant risks to the safety of workers. 

Moreover, underground mines are susceptible to geological hazards such as rockfalls, collapses, 

and seismic events. 

Collapsed and caving openings in underground mining are particularly hazardous due to 

the potential for catastrophic events. When openings collapse or cave in, they can trap workers 

underground, leading to injuries, fatalities, and the disruption of rescue operations. Furthermore, 

collapses can destabilize the surrounding rock mass, leading to further collapses. 

Observing and assessing the stability of underground openings is important for several 

reasons. Firstly, it ensures the safety of workers by identifying potential hazards before accidents 

occur. By monitoring the stability of openings, mining companies can implement preventative 

measures such as reinforcement and support systems. Additionally, assessing the stability of 

underground openings allows for informed decision-making regarding mining operations, 

ensuring the sustainability and efficiency of production while minimizing risks to personnel and 

equipment. 

Machine learning methods offer promising solutions to the stability assessment problem in 

underground mining. Through various techniques such as classification and feature importance 

analysis, machine learning algorithms can effectively predict and evaluate the stability of 

underground openings. Classification models can classify openings as stable, unstable, or caved 

based on input features such as geological characteristics and historical stability data. Feature 
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importance analysis helps identify critical factors influencing stability, enabling targeted 

interventions.  

This research study presents a comprehensive investigation of various machine learning 

models applications, aimed to predict the stability of underground mining openings, particularly 

stopes. Open stopes are integral to underground mining operations, where they serve as excavated 

voids created during the extraction of mineral resources from underground deposits.   

Chapter 1 of this thesis presents the groundwork by providing a comprehensive overview 

of the research topic, outlining its primary objectives, the methodology employed, and the structure 

of the thesis.  

Chapter 2 of this study provides a comprehensive engineering background and overview 

of open stopes mining operations. The chapter begins with an explanation of the terminology 

associated with mining methods. Moreover, the chapter elaborates on the most popular methods 

used for rock mass classification.  

In Chapter 3, an extensive literature review of contemporary methods for assessing the 

stability of open stopes is presented. This review presents a diverse range of approaches, including 

empirical methods, statistical analyses, and applications of machine learning techniques, which 

have been proposed by various researchers to address the challenge of evaluating stope stability.  

Chapters 4, 5, and 6 present the results of various machine learning models, that were 

developed to predict the stability of open stopes. Chapter 4 utilizes a Potvin database, where 

stability number N’ and shape factor HR of each historical case were used, and each case had a 

stability assessment assigned. Random Forest (RF) and Logistic Regression models were 

employed, evaluated, and compared to achieve the most accurate predictions. In Chapter 5 an 
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extensive analysis of the Potvin database was performed and used to develop the most effective 

Artificial Neural Network (ANN) model. In this study all the parameters that combine into the 

stability number N’ were employed and treated as a separate input features for the model. Various 

ANN model configurations were utilized and evaluated to find the most effective network 

configuration. The feature importance analysis was then performed to find the parameters that 

have the highest influence on the stability of an open stope. A final chapter 6, presents an analysis 

of a larger database obtained from literature, followed by a comparison of several machine learning 

models. The models’ results were then analyzed and the most important features for each model 

were determined.  

In essence, this thesis systematically integrates machine learning techniques to predict the 

stability of open stopes in underground mining. Through this approach, feature importance 

analysis was conducted to determine the parameters exerting the greatest influence on stope 

stability. By evaluating the dataset and identifying key influencing factors, the study enables better 

control over stope stability, it allows for a more precise understanding of the conditions that lead 

to failure, enhancing safety and operational efficiency in underground mining environment. 
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Chapter 1 Introduction 

CHAPTER 1: INTRODUCTION 

 

 

 

This chapter is an overview of this thesis, which provides the research background, 

research objectives, and methodologies. The organization of this thesis is also outlined at the end 

of this chapter. 
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Chapter 1 Introduction 

1.1. General background of this research 

Underground mining operations present inherent risks to worker safety due to various 

environmental factors existing in its surroundings. Confined spaces and limited ventilation amplify 

the potential for accidents and exposure to many hazards. Moreover, the use of heavy machinery, 

explosives, and drilling equipment further heightens the safety risks faced by workers. 

Additionally, underground mines are vulnerable to geological threats such as rockfalls, collapses, 

and seismic events, which can occur suddenly and without warning. 

Among the most dangerous scenarios in underground mining are collapsed and caving 

openings, which create significant risks of catastrophic events. Such incidents can lead to workers 

being trapped underground, resulting in injuries, fatalities, and disruptions to rescue efforts. 

Furthermore, collapses have the potential to destabilize the surrounding rock mass, leading to 

subsequent collapses and ongoing risks to both workers and mine infrastructure.  

To prevent these catastrophes, assessment of the stability of underground openings is critical, 

for ensuring worker safety. By identifying and addressing potential hazards proactively, mining 

companies can minimize the risk of accidents before they occur. Implementing reinforcement and 

support systems based on stability assessments helps mitigate the risk of collapses. Additionally, 

evaluating the stability of underground openings allows for informed decision-making in mining 

operations, balancing production efficiency with safety considerations.  

 

1.2.Research objectives and methodology  

The primary objective of this research study is to assess the stability of open stopes in 

underground mining using various machine learning models and feature importance evaluations. 

By applying machine learning techniques, including Random Forest, Logistic Regression, and 

Artificial Neural Networks, I aim to develop predictive models capable of accurately determining 

the stability of open stopes based on input features such as stability number and shape factor. 

Additionally, I seek to identify the features that have the most significant impact on the final 

stability predictions, providing insights into the key factors influencing stope stability. Through 
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this analysis, I aim to contribute to the advancement of predictive capabilities in underground 

mining stability assessment, ultimately enhancing safety and efficiency in mining operations. 

While previous attempts by researchers to utilize machine learning in the prediction of stope 

stability were limited and lacked a systematic approach, this thesis takes a comprehensive and 

structured approach to address this challenge. Unlike isolated and unsystematic trials in the past, 

this research incorporates various facets of machine learning, including data preprocessing, 

supervised learning, and model performance evaluation, and feature importance analysis. 

Moreover, state-of-the-art machine learning platforms and toolkits such as TensorFlow, Keras, and 

Scikit-Learn were employed to ensure successful modeling. Consequently, this thesis can be 

considered a systematic exploration of data-driven strategies for stope stability prediction, 

demonstrating an accomplished effort to integrate machine learning techniques into traditional 

engineering domains such as mining and mineral engineering. Through this comprehensive 

approach, the thesis aims to bridge the gap between conventional engineering practices and 

emerging data-driven methodologies, introducing the way for more accurate and reliable stability 

predictions in underground mining operations. 

To achieve the objectives of this research, the following tasks have been fulfilled.  

1. An extensive literature review was implemented for this research, which mainly included 

aspects such as: 

• empirical methodologies used for stope stability assessment, 

•  numerical and statistical methodologies used for stope stability assessment,  

• previous achievements and applications of machine learning methods for stope stability 

assessment.  

2. A thorough data collection from public publications with stope features and stability conditions 

was conducted. First database utilized consisted of 176 cases, followed by a second more 

detailed one that consisted of 225 cases.  

3. Different machine learning models were developed in this study to predict the stability of open 

stopes. For each model, the mathematic mechanism was adhered to exhibit the model’s 

practicability. The model’s prediction results were evaluated with various metrics to ensure 
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their predictive accuracy and avoid undesirable behavior of the model, such as underfitting and 

overfitting. 

4. In the conclusive phase, a comprehensive examination of feature importance was conducted to 

identify the key parameters exhibiting the most significant influence on both the model 

predictions and the stability of the underground openings. This detailed analysis aimed to 

provide insights into the critical factors driving the predictive capabilities of the models and 

their implications. 

 

1.3.Organization of this thesis  

This thesis is comprised of seven chapters in total. All of the chapters are titled as follows: 

Chapter 1 (Introduction); Chapter 2 (Engineering background on open stope mining operations 

and rock mass classification systems); Chapter 3 (Literature review on stope stability assessment 

methods); Chapter 4 (Predicting the stability of open stopes using Machine Learning); Chapter 5 

(Enhancing underground excavations stability in mining engineering: optimal configuration of an 

artificial neural network model); Chapter 6 (Exploring machine learning techniques for open stope 

stability prediction: a comparative study and feature importance analysis); Chapter 7 (Summary, 

conclusion, and prospects).  

Chapter 1 serves as an introductory foundation for the thesis, presenting the broader context 

and risks associated with unstable openings in mining environments. It explains the rationale 

behind the research, highlighting the essential need to address the hazards posed by collapsing and 

unstable openings. Furthermore, Chapter 1 provides the objectives and methodologies adopted for 

conducting the study. 

Chapter 2 of this thesis presents an extensive exploration of the engineering fundamentals 

and operational methods where open stopes are utilized. It delves into the traditional and widely 

recognized approaches developed for classification of the rock masses. The chapter begins by 

explaining the terminology essential to these mining techniques, ensuring a coherent 

understanding of the fundamental principles important for evaluating stope stability. Furthermore, 

it provides in-depth insights into the diverse methods and parameters developed to classify and 

assess the quality of the rock mass. This comprehensive analysis in Chapter 2 serves as a 
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fundamental framework for subsequent examinations and discussions referring to methodologies 

for assessing stope stability. 

Chapter 3 presents a thorough examination of recent approaches in assessing the stability 

of open stopes presented in literature. This review demonstrates various methods, including 

empirical techniques, statistical analyses, and the utilization of machine learning algorithms, 

proposed by researchers to address the challenge of evaluating stope stability. Through a detailed 

exploration of each method and outcomes, the chapter offers insights into their strengths, 

limitations, and potential applications within the field of mining engineering. By integrating the 

latest research findings and advancements in stope stability assessment methods, Chapter 3 serves 

as a valuable reference for understanding the current state-of-the-art methods and identifying paths 

for further research and development in this area of study. 

Chapter 4 of the thesis focuses on implementing machine learning models for predicting 

the stability of open stopes. In this study, two widely used machine learning algorithms, Logistic 

Regression and Random Forest, were employed. The analysis investigated the Potvin database, 

consisting of 176 case studies, where two key variables, stability number (N) and shape factor 

(HR), were considered alongside their respective stability conditions: stable, unstable, or caved. 

Excessive performance evaluations were conducted, and hyperparameters were fine-tuned to 

optimize model performance and address issues like overfitting. By utilizing these machine 

learning techniques and adjusting the models, the study aimed to enhance the accuracy and 

reliability of stope stability predictions. 

Chapter 5 presents a comprehensive analysis of the Potvin database to construct an 

optimized Artificial Neural Network (ANN) model. The study incorporates five parameters 

contributing to the stability number N for a thorough examination. Various configurations of ANN 

models were explored and assessed to determine the optimal network structure adjusted to the 

Potvin database. Furthermore, feature importance analysis was conducted to identify the key 

parameters exerting the greatest influence on the stability of open stopes. By employing ANN 

models and analyzing feature importance, the chapter aims to refine stope stability predictions and 

enhance overall model performance. 
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In the chapter 5, an exhaustive analysis is conducted on a substantial database acquired 

from the literature, offering a robust foundation for the subsequent evaluation. This analysis 

encompasses a detailed comparison of various machine learning models, including Random Forest 

(RF), Support Vector Machine (SVM), AdaBoost, LightGBM, XGBoost, and Artificial Neural 

Network (ANN). These models are specifically developed to predict the stability conditions of 

open stopes, leveraging a comprehensive set of seven features combining into shape factor and 

stability number N. Following the implementation of these models, their outcomes are thoroughly 

analyzed to determine the most influential features driving their predictive accuracy. This detailed 

examination explains the complex relationships between input variables and stability outcomes, 

ultimately informing strategies for optimizing predictive performance and enhancing the 

applicability of stope stability assessment models. 

In the final Chapter 6, I summarize the insights gathered from the previous chapters, 

explain the essence of our research, while presenting the course for future exploration. With a 

careful examination of the datasets and a systematic evaluation of various machine learning models, 

I have aimed to discover the predictive potential inherent in stope stability assessments. This final 

chapter presents future prospects of this field of study, highlighting the escalating significance of 

machine learning models in predicting stope stability. As technological advancements continue to 

evolve, the integration of machine learning algorithms could revolutionize the way we approach, 

and address risks associated with underground mining operations.  
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CHAPTER 2: ENGINEERING BACKGROUND ON OPEN 

STOPES MINING OPERATIONS AND ROCK MASS 

CLASSIFICATION SYSTEMS 

 

The chapter provides an engineering background on open stope mining operations, 

presenting various methods employed in this mining technique. It outlines the challenges in open 

stope mining and discusses the basic systems and applications used to overcome these challenges. 

Additionally, the chapter presents the most popular and widely employed rock mass classification 

systems in open stope mining, emphasizing their role in assessing the stability of underground 

openings. The chapter presents insights into the complexities of open stope mining operations by 

covering the operational methods and geomechanical considerations. 
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2.1 Open stope mining operations 

Open stope mining involves extracting a large ore block through drilling and blasting 

techniques from pre-existing access drives within an underground ore deposit. This method is a 

widely adopted approach for bulk underground mining operations. Open stoping is categorized as 

a non-entry method, meaning that once production has begun, miners are not required to physically 

enter the stope. This characteristic contributes to the method's reputation for safety, as workers 

conduct their activities exclusively along the periphery of the stope, away from the potentially 

hazardous production face. In contrast, entry mining methods such as cut and fill, longwall, room 

and pillar, and shrinkage stoping involve miners entering the excavation area for various tasks. 

The stopes are also designed to be stable, which means that there shouldn’t be any large releases 

of energy caused by a sudden change in the opening geometry caused by caving (Potvin and 

Hudyma 1989). 

The use of heavy machinery to remove the blasted material results in an open void or stope, 

which can be the size of a large house, surrounded by rock walls, the basic geometry of a stope is 

shown in Figure 2.1. These voids are then backfilled with various materials, to allow the extraction 

of the adjacent ore with secondary stopes. The orientation of the walls around the stope varies 

based on local geological conditions and limitations imposed by mining equipment. An inclined 

wall that hangs over the stope is commonly known as the hangingwall (HW). Due to its orientation 

and geometry relative to the open void, the hangingwall of a stope tends to be less stable compared 

to other stope walls (Pakalnis 1986).  
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Figure 2.1. A basic open stope geometry (Modified from Heidarzadeh et al. 2019) 

 

Open stope mining demonstrates efficiency under specific orebody and geological 

conditions. This method relies on the natural gravity flow of ore material toward the stope bottom. 

Therefore, the inclination of the stope should exceed the angle of repose of the fragmented ore 

material, typically greater than 50° to 55. While open stope mining is more compatible with steeply 

dipping orebodies, it can still be successfully used in shallow dipping orebody (typically less than 

30°). In such cases, the stopes must be oriented in a sub-vertical manner, and the orebody should 

have a minimum thickness of 15 to 20 meters. The orebody contour should have a relatively 

consistent shape since open stoping is not highly selective. Furthermore, a minimum width of 

approximately 3 meters is typically required to avoid the risk of excessive dilution coming from 

damage to the walls caused by blasting vibrations or deviations in drillhole. Open stoping typically 

employs large opening dimensions. As no significant support system like backfill or pillars is 
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present inside the stope during mining operations, it is necessary for a rock mass to have a strength 

ranging from "fair" to "good" for the stope back and walls to provide self-support. Enhanced 

strength in the rock mass enables the creation of larger stopes which improves stoping efficiency 

(Potvin and Hudyma 1989) 

The approach to open stope mining can vary significantly based on factors such as the 

direction of access to the orebody, the relationship between orebody geometry and the stability of 

the hangingwall, as well as economic and safety considerations within the mine. Different methods 

may be employed to accommodate these varying conditions and requirements. Typically, access 

to the orebody is established through stope crosscuts from a footwall drive offset from the deposit. 

The stopes are excavated at vertical intervals of either 30 or 60 meters, with careful consideration 

given to the quality of the local rock mass and its relationship with stope geometry. The excavation 

of stopes involves the use of drill and blast techniques, and they are categorized as either primary 

or secondary stopes based on their position within the mining sequence. Primary stopes are 

excavated as the first phase of mining operations and subsequently filled with a variety of filling 

materials. Following this, secondary stopes are typically excavated once the neighboring primary 

stopes have been mined to a level that is one sublevel higher than the elevation of the secondary 

stope. Additionally, there is a waiting period of 28 days after filling the primary stopes to allow 

the filling material to gain adequate strength, which enables it to function effectively as a sidewall 

during the extraction process. The typical horizontal dimensions - strike spans of the stopes 

generally range from 10 to 20 meters, with variations based on factors such as local rock mass 

characteristics, stope geometry, constraints related to filling material, and various other 

considerations that influence the specific design of each stope and the overall stability of the area. 

Overbreak, which refers to the unintended displacement of rock beyond the intended stope design, 

can potentially occur from any of the stope walls. However, the hangingwall typically plays a 

significant role in contributing to overbreak due to its particular orientation and shape relative to 

the void created by mining activities. Figure 2.2 (redrawn from Potvin and Hudyma 2000) illustrates 

a typical cross-section of a single lift stoping operation, with the resultant flat-bottom stopes. 



 

11 

 

Chapter 2 Engineering Background 

 

Figure 2.2. A typical cross-section of a single lift open stoping mine (Modified from Potvin and 
Hudyma 2000) 

 

2.2. Classification of open stope mining methods 

Open stope mining methods involve a variety of elements, resulting in unique applications 

developed for specific conditions. Consequently, no two open stoping scenarios are identical. 

These methods can be classified based on three main specifications: 

• Mining direction (longitudinal or transverse), 

• Use of pillars and backfill  

• Drillhole diameter (longhole or blasthole) 

These classifications determine the level of development and stope preparation needed, the retreat 

method, as well as the mining sequence. 
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In longitudinal mining (Figure 2.3), the extraction process progresses along the 

direction of the orebody's strike, meaning that exploitation advances parallel to the orientation 

of the mineral deposit. This method is often favored when the orebody is relatively narrow 

and elongated, as it requires less development work to establish the mining operation. 

Engineers can access the orebody more quickly and begin extraction sooner, leading to faster 

production and reduced costs associated with preparatory work. However, a key consideration 

in longitudinal mining is the stability of the stope backs. If the orebody width exceeds a certain 

threshold, the stope backs may struggle to maintain stability, posing safety risks and 

complicating the mining process. 

On the other hand, transverse mining (Figure 2.4) involves extracting ore 

perpendicular to the strike of the orebody. This method is typically employed when the 

orebody is wider and more expansive, requiring a different approach to extraction. 

Transverse mining needs greater development work upfront to establish access and 

infrastructure within the wider orebody. However, once operational, transverse mining can 

efficiently extract ore from larger areas, leading to higher production rates. A minimum 

orebody width of around 15 meters is often considered necessary for transverse mining to be 

economically viable and operationally efficient. This method allows for effective utilization 

of the orebody's width, optimizing the extraction process while ensuring the stability of the 

stope backs (Potvin and Hudyma 1989). 
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Figure 2.3. Longitudinal open stope mining, or sublevel retreat (Modified from Potvin and 
Hudyma 2000) 

 

Figure 2.4. Transverse blasthole open stoping (Modified from Potvin and Hudyma 2000) 
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The most simple and cost-effective method of open stope mining is full lens extraction, 

characterized by the absence of backfill and pillars. This method is particularly suitable for small 

orebodies or isolated lenses, provided that the quality of the rock mass allows for self-supporting 

stope surfaces, including walls and backs. However, in cases where the value of the ore doesn't 

warrant backfill usage but the orebody is too extensive to be mined in a single stope, permanent 

pillars are left in place. These pillars are minimized to maximize orebody recovery but must remain 

stable to ensure overall mine stability and safe access to the stope. When backfill is incorporated, 

the sequencing of stope extraction becomes integral to an overall strategy aimed at optimizing the 

recovery of secondary and tertiary stopes. Primary stopes are typically mined against rock walls, 

while secondary stopes are often mined against one or more cemented backfill walls. Tertiary 

stopes, surrounded by backfilled stopes, typically utilize uncemented fill. Consequently, primary 

and secondary stopes often require cemented backfill, whereas tertiary stopes can be filled with 

uncemented material, highlighting the importance of strategic planning and sequencing in open 

stope mining operations. 

Longhole stoping, shown in Figure 2.5, represents a variation of sublevel open stoping that 

employs longer blast holes with larger diameters ranging from 140 to 165 mm, typically drilled 

using the in-the-hole (ITH) technique, with depths of up to 100 m. This method requires miners to 

initially create a vertical slot at one end of the stope and subsequently working in sublevels to drill 

a radial pattern of drill holes. Following the loading of these holes, blocks of ore body are blasted 

to open the stope. In longitudinal longhole stoping, stopes may be retreated in the direction of 

cross-cuts using either a top-down or bottom-up sequence. Transverse longhole stoping is adopted 

when the rock mass quality of the hanging wall constrains the length of the open mining span, 

offering greater flexibility in sequencing and scheduling due to independent access for each stope. 

Stope sequencing in transverse longhole stoping can effectively mitigate the effects of mining-

induced stress by creating an active stress shadow, thereby sheltering existing and future 

excavations. Many open stope mines employ transverse longhole stoping and sequence their stopes 

based on the high-stress conditions encountered in underground mining (Kumar et al. 2014). 

 

 



 

15 

 

Chapter 2 Engineering Background 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Long - hole blasting stoping (Modified from Harraz 2010) 

 

Shrinkage stopping, illustrated in Figure 2.6, is employed in steeply dipping ores due to its 

reliance on gravity to channel ore into chutes resembling inverted truncated cones. The orebody 

should have a regular shape, aside from its dip, which is crucial to prevent the lodging of loose ore. 

Typically, the orebody is divided into blocks and mined in slices to facilitate progressive mining 

between levels, thereby enhancing safety by ensuring miners always remain below the stope’s top. 

These overhand stopes utilize broken ore both as a working platform and to support the stope walls. 

Given the increased volume of broken rocks compared to solid ones, partial muck removal is 

necessary as the stope advances, hence the term 'shrinkage.' Mining in shrinkage stoping 

progresses from bottom to top, similarly, to cut and fill mining, with broken ore left in place. 

Depending on rock conditions, the stope may be backfilled or left empty. The process continues 

until reaching the next level or a predetermined elevation, leaving horizontal crown pillars at the 

stope's top.  
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Figure 2.6. Shrinkage stoping (Modified from Hamrin 1997) 

 

2.3. Dillution and Hangingwall overbreak  

Dilution (Figure 2.7) refers to the excess material extracted from the stope by heavy 

machinery, which then enters the ore processing stream. Overbreak refers to the quantity of 

unstable rock that collapses into the stope from beyond the intended design boundary of a specific 

wall. This phenomenon occurs when rock masses outside the planned excavation shape become 

detached and intrude into the stope area. Overbreak can pose significant challenges in mining 

operations, leading to safety concerns, increased operational costs, and potential delays in 

production schedules. Hangingwall overbreak and dilution are often closely linked, particularly 

when the majority of overbreak from stope walls originates from non-economic material in the 

hangingwall. Unplanned HW dilution poses a significant expense for many open stope mining 

operations. Additionally, due to orebody boundary, waste material outside the orebody may be 

mined as planned dilution due to constraints in drilling and blasting operations. The impact of 

unplanned dilution on the mining cycle encompasses both direct and indirect costs. Direct costs 
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pertain to the physical handling of materials, while indirect costs are associated with downstream 

effects of instability (Pakalnis et al. 1996).  

 

 

Figure 2.7. Planned and unplanned dilution (Modified from Scoble and Moss 1994) 

 

2.4. Rock mass characteristics  

Information regarding the rock mass is typically obtained from core samples extracted from 

drill holes and observations made during underground and surface mapping. This data commonly 

includes details about the rock type, mineral composition, and characteristics of discontinuities or 

joints present in the rock mass. These discontinuities play a significant role in determining the 

overall strength of the rock mass. While the rock type and mineralogy can provide insights into 

the strength of individual components within the mass, understanding the properties of these 

discontinuities is crucial for assessing the mass's overall strength. Although there are laboratory 

tests available to estimate various strength parameters such as intact tensile and compressive 
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strength, as well as the shear strength of individual joints, it is often challenging or impossible to 

conduct tests on representative sized samples of heavily jointed rock masses commonly 

encountered in underground mines. This limitation contributes to a lack of understanding regarding 

how certain rock masses respond to loading conditions (Goodman 1989). A comparison of rock 

mass characteristics, testing methods, and theoretical understanding is presented in Table 2.1. 

Table 2.1. Summary of rock mass characteristics (From Hoek et al. 2000) 

 
Description 

Strength 
characteristics 

Strength testing 
Theoretical 

considerations 

 

Intact rock 

Brittle, elastic 
and 

generally 
isotropic 
behavior 

Triaxial testing 
of 

core specimens 
relatively 

simple and 
inexpensive and 

results 
are usually 

reliable 

Behavior of 
elastic 

isotropic rock is 
adequately 

understood for 
most practical 
applications 

 

 
Intact rock with 

a 
single inclined 
discontinuity 

Highly 
anisotropic, 

depending on 
shear 

strength and 
inclination 

of discontinuity 

Triaxial tests 
difficult 

and expensive. 
Direct 

shear tests 
preferred. 
Careful 

interpretation 
of results 
required 

Behavior of 
discontinuities 

adequately 
understood for 

most 
practical 

applications 

 

Massive rock 
with a 

few sets of 
discontinuities 

Anisotropic, 
depending 
on number, 
orientation 
and shear 
strength of 

discontinuities 

Laboratory 
testing 

very difficult 
because 

of sample 
disturbance 

and equipment 
size 

limitations 

Behavior of 
complex 

block 
interaction in 

sparsely jointed 
rock 

masses poorly 
understood 
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Heavily jointed 
rock 

masses 

Reasonably 
isotropic, 

highly dilatant at 
low 

stress levels with 
particle breakage 

at 
high stress levels 

Triaxial testing 
of 

representative 
samples 

extremely 
difficult 

because of 
sample 

disturbance 

Behavior of 
interlocking 

angular pieces 
poorly 

understood 

 

Compacted 
rockfill or 

weakly 
cemented 

conglomerates 

Reasonably 
isotropic, 

less dilatant and 
lower 

strength than in 
situ 

rock due to 
destruction 

of fabric 

Triaxial testing 
simple 

but expensive 
due 

to large 
equipment 
required to 

accommodate 
samples 

Behavior 
reasonably 

well understood 
from 

soil mechanics 
studies 

on granular 
materials 

 

Loose waste 
rock or 
gravel 

Poor compaction 
and 

grading allow 
particle 

movement 
resulting in 

mobility and low 
strength 

Triaxial or direct 
shear testing 

simple 
but expensive 

due to 
large size of 
equipment 

Behavior of 
loosely 

compacted 
waste rock 
and gravel 
adequately 

understood for 
most 

applications 

 

2.5. Rock mass classification systems  

During the early stages of project feasibility and preliminary design, when detailed 

information about the rock mass and its stress and hydrological characteristics is limited, 

employing a rock mass classification system is highly beneficial. This may involve using the 

classification system as a checklist to ensure all relevant information has been considered or 

utilizing one or more classification systems to develop an understanding of the rock mass 

composition and properties. This helps in making initial estimations of support requirements, as 

well as the strength and deformation properties of the rock mass. It is important to note that while 

rock mass classification schemes are valuable tools, they do not replace more elaborate design 
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procedures that require detailed information on in situ stresses, rock mass properties, and planned 

excavation sequences. However, since such detailed information may not be available in the early 

project stages, rock mass classification schemes should be regularly updated and used alongside 

site-specific analyses as more information becomes accessible. 

Various classification systems have been developed over more than 100 years, since Ritter 

(1879) attempted to formalize an empirical approach to tunnel design for determining support 

requirements. These systems were developed to characterize rock masses, serving as input data for 

assessing the stability of underground openings. These systems offer a systematic, quantitative, 

and repeatable method to evaluate the conditions of the rock mass for design purposes. Each 

classification system assigns weights to different parameters and may consider factors such as 

block size, joint strength, stress, and groundwater. These parameters are quantified as an index, 

which can be empirically correlated with engineering design needs like excavation span and 

ground support requirements. 

Among the various classification systems developed, the "Rock Mass Rating" (RMR) 

introduced by Bieniawski (1978) and the "Tunnelling Quality Index" (Q) developed by Barton et 

al. (1974a), or their derivatives, have become most widely adopted in recent years. Both systems 

rely on the Rock Quality Designation (RQD), developed by Deere (1963) as a key parameter. A Q 

system and its variations were integrated into the Mathews stability graph method (Mathews et al. 

1980) and Modified Stability Graph Method (Potvin 1988a), a commonly used approach for open 

stope design. Additionally, the RMR is applied for assessing back stability using the Span Graph 

Method (Lang et al. 1991) and for estimating hanging wall dilution in stopes (Pakalnis 1986). 

2.5.1. Rock Quality Designation (RQD) 

RQD, or Rock Quality Designation, serves as a straightforward tool for classifying rock 

masses and was originally developed by Deere (1963) to evaluate the quality of 54 mm diamond 

drill core samples. It plays an important role in various classification systems used in the field. 

RQD is computed by summing the length of intact core pieces exceeding 10 cm in length and 

dividing it by the total length of the drilled core within a specified interval (Figure 2.8). The 

resulting value, expressed as a percentage ranging from 0 to 100%, offers insights into the 

competence of the rock mass. Higher RQD values typically indicate better rock quality and greater 
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resistance to fracturing and fragmentation, whereas lower values suggest poorer quality and 

increased likelihood of instability. 

 

Figure 2.8. RQD procedure and measurement (Modified from Potvin and Nedin 2003) 

 

 

The RQD value is calculated as:  

 𝑅𝑅𝑅𝑅𝑅𝑅 (%) = 100 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝐿𝐿𝑝𝑝 𝑝𝑝𝐿𝐿 𝑝𝑝𝑜𝑜𝑐𝑐𝐿𝐿 >100 𝑚𝑚𝑚𝑚𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑝𝑝𝑜𝑜𝑐𝑐𝐿𝐿             (2.1) 

 

    𝑅𝑅𝑅𝑅𝑅𝑅 (%) = 100 ∙ 𝐿𝐿1+𝐿𝐿2+𝐿𝐿3+𝐿𝐿4+𝐿𝐿5+𝐿𝐿6𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑝𝑝𝑜𝑜𝑐𝑐𝐿𝐿 = (%)              (2.2) 
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2.5.2. Rock mass characteristics (Q value) 

Q value was first presented Barton et al. (1974a) of the Norwegian Geotechnical Institute 

(NGI) to evaluate the characteristics of rock mass and ground conditions. The purpose of 

calculating the Q value was to determine the requirement of support in mining excavations, tunnels 

and rock caverns. The NGI rock mass classification system is a function of six independent 

variables defining a constant, with each quotient in the equation representing a specific physical 

characteristic of the rock mass. 

                 𝑅𝑅 =  
𝑅𝑅𝑅𝑅𝑅𝑅𝐽𝐽𝑛𝑛 ∙ 𝐽𝐽𝑟𝑟𝐽𝐽𝑎𝑎 ∙ 𝐽𝐽𝑤𝑤𝑆𝑆𝑅𝑅𝑆𝑆                            (2.3) 

Where: 

RQD – Rock Quality Designation 

   𝐽𝐽𝐿𝐿  - Joint set number  

   𝐽𝐽𝑐𝑐  - Joint roughness number  

   𝐽𝐽𝑎𝑎  - Joint alteration number  

   𝐽𝐽𝑤𝑤  - Joint water reduction number  

SRF – Stress Reduction Factor 

A description of all the Q parameters is shown in Table 2.2. Table 2.3 is illustrating the 

range of values along with subjective definitions used for assessment purposes. The system has 

been modified for input into stope stability assessment methods and is referred to as modified Q’, 

which is similar to original Q value, but it assumes that the joint water reduction factor   ( 𝐽𝐽𝑤𝑤)  and 

the stress reduction factor (SRF) are equal to one. The formula is as follows: 

                               𝑅𝑅′ =  
𝑅𝑅𝑅𝑅𝑅𝑅𝐽𝐽𝑛𝑛 ∙ 𝐽𝐽𝑟𝑟𝐽𝐽𝑎𝑎                         (2.4) 

 The first quotient (
𝑅𝑅𝑅𝑅𝑅𝑅𝐽𝐽𝑛𝑛 ) represents the structure of the rock mass, and the latter one (

𝐽𝐽𝑟𝑟𝐽𝐽𝑎𝑎) is 

representing roughness and frictional properties of the joint wall or filling material. 
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Table 2.2. Classification of all parameters used in the NGI Q classification system (From Hoek 
and Brown, 1996) 

Description Value Note 

1. ROCK QUALITY DESIGNATION (RQD) 

A. Very poor 0 – 25 
1. Where RQD is reported or measured as
≤ 10 (including 0), a nominal value of 10 
is used to evaluate Q. 

B. Poor 25 – 50 

C. Fair 50 – 75 

D. Good 75 – 90 2. RQD intervals of 5, i.e. 100, 95, 90 etc 
are sufficiently accurate E. Excellent 90 – 100 

2. JOINT SET NUMBER (Jn) 

A. Massive, no or few joints 0.5 – 1.0  

B. One joint set 2  

C. One joint set plus random 3  

D. Two joint sets 4 1. For intersections use (3.0 × Jn) 

E. Two joint sets plus random 6  

F. Three joint sets 9 2. For portals use (2.0 × Jn) 

G. Three joint set plus random 12  

H. Four or more joint sets, random, 
     heavily jointed ‘sugar cube’, etc 

15 
 

J. Crushed rock, earthlike 20  

3. JOINT ROUGHNESS NUMBER (Jr) 

     a. Rock wall contact and 

     b. Rock wall contact before 10 cms shear          

 

A. Discontinuous joints 4  

B. Rough and irregular, undulating 3 Add 1.0 if the mean spacing of the 
relevant joint set is greater than 3m. C. Smooth, undulating 2 

D. Slickensided, undulating 1.5  

E. Rough or irregular, planar 1.5  

F. Smooth, planar 1.0 Jr = 0.5 can be used for planar,     
slickensided joints having lineations, 
provided the lineations are orientated for 
minimum strength. 

G. Slickensided, planar 0.5 

     c. No rock contact when sheared  
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H. Zone containing clay minerals 
     thick enough to prevent rock 
     wall contact   
          

1.0 

 

J. Sandy gravelly or crushed zone 
thick enough to prevent rock   
wall contact            

1.0 
 

4.  JOINT ALTERATION NUMBER (Ja) φr (Approx.)  

      a. Rock wall contact    

 
A. Tightly healed, hard,  
     non-softening, impermeable   
            

0.75 - 

 

B. Unaltered joint walls, surface  
     staining only 
 

1.0 (25° - 35°) 
1. Values of φr, the 
residual friction angle, 
are intended as an 
approximate guide to the 
mineralogical properties 
of the alteration products, 
if present. 

C. Slightly altered joint walls  
     non-softening mineral coatings,  
     sandy particles, clay-free   
     disintegrated rock, etc    
           

2.0 (25° - 30°) 

D. Silty-, or sandy-clay coatings,  
     small clay fraction  
     (non- softening) 
 

3.0 (20° - 25°) 

E. Softening or low friction clay 
mineral coatings, i.e. kaolinite,  
mica. Also chlorite, talc, gypsum 
and graphite etc., and small  
quantities of swelling clays.  
(Discontinuous coatings, 1-2mm  
or less in thickness) 
 

4.0 (8° - 16°) 

 

b. Rock wall contact before cms shear. 

 
 

 

F. Sandy particles, clay-free  
disintegrated rock etc. 
 

4.0 (25° - 30°) 
 

G. Strongly over-consolidated,  
     non-softening clay mineral   
     fillings (continuous, < 5mm  
     thick) 
 
 
 

6.0 (16° - 24°) 
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H. Medium or low over  
     consolidation, softening, clay  
     mineral fillings, (continuous, 
     < 5mm thick) 
 

8.0 (12° - 16°) 

 

J. Swelling clay fillings, i.e.  
   Montmorillonite (continuous,  
   <5mm thick). Values of Ja   
   depend on percent of swelling  
   clay-size particles, and access to   
   water 
 

8.0 – 12.0 (6° - 12°) 

 

c. No rock wall contact when sheared. 

 

  

K. Zones or bands of disintegrated 
 

6.0  
 

L. or crushed rock and clay (see 
 

8.0  
 

M. G,H and J for clay conditions) 
 8.0 – 12.0 (6° - 24°) 

 

N. Zones or bands of silty or sandy  
     clay, small clay fraction, (non- 
     softening) 
 

5.0  

 

Q. Thick, continuous zones or 

10.0 – 13.0 

  

P. bands of clay (see G, H and 

13.0 – 20.0 
(6° - 24°) 

 

R. J for clay conditions) 
 

   

5. JOINT WATER REDUCTION FACTOR 

(Jw) 

Approx. water 
pressure 

(kgf/cm2) 

 

A. Dry excavations or minor inflow,  
     i.e. < 5 lit/min, locally 
 

1.0 <1.0 
1. Factors C to F are crude 
estimates. Increase Jw if 
drainage measures are 
installed. 
 
2. Special problems 
caused by ice formation 
are not considered. 

B. Medium inflow or pressure,  
     occasional outwash of joint  
     fillings 
 

0.66 1.0 - 2.5 

C. Large inflow or high pressure in  
     competent rock with unfilled  
     joints 
 

0.5 2.5 – 10.0 
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D. Large inflow or high pressure,  
     considerable outwash of fillings 
 

0.33 2.5 – 10.0 
 

E. Exceptionally high inflow or  
pressure at blasting, decaying  
with time 
 

0.2 – 0.1 >10 

 

F. Exceptionally high inflow or  
pressure continuing without  
decay 
 

0.1 – 0.05 >10 

 

6. STRESS REDUCTION FACTOR                      (SRF) 

a. Weakness zones intersecting excavation, which may cause loosening of rock mass when tunnel  

is excavated. 

 

A. Multiple occurrences of weakness zones containing clay or  
     chemically disintegrated rock, very loose surrounding rock (any  
     depth) 

 

  10.0 

B. Single weakness zones containing clay, or chemically disintegrated  
     rock (excavation depth < 50m) 

 
  5.0 

C. Single weakness zones containing clay, or chemically disintegrated  
     rock (excavation depth > 50m) 

 
  2.5 

D. Multiple shear zones in competent rock (clay free), loose  
     surrounding rock (any depth) 

 
  7.5 

E. Single shear zones in competent rock (clay free), (depth of  
     excavation < 50m) 

 
  5.0 

F. Single shear zones in competent rock (clay free), (depth of  
    excavation > 50m) 

 
  2.5 

G. Loose open joints, heavily jointed or 'sugar cube' (any depth) 
 

  5.0 

    b. Competent rock, rock stress problems  

 σc/σ1 σt/σ1  

H. Low stress, near surface 
 

>200 >13   2.5 

J. Medium stress 
 
 
 

200 - 10 13-0.66   1.0 
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K. High stress, very tight structure  
 (usually favorable to stability,   
 may be unfavorable for wall  
 stability) 
 

10-5 0.66-0.33   0.5-2 

L. Mild rock burst (massive rock) 5-2.5 0.33-0.16   5-10 

M. Heavy rock burst (massive rock) <2.5 <0.16   10-20 

     c. Squeezing rock, plastic flow of incompetent rock under the influence of high rock pressure 

N. Mild squeezing rock pressure     5-10 

O. Heavy squeezing rock pressure     10-20 

     d. Swelling rock, chemical swelling activity depending upon presence of water 

P. Mild swelling rock pressure     5-10 

R. Heavy swelling rock pressure     10-20 

 

 

Table 2.3. Classifications of rock mass quality based on Q (From Barton et al. 1974a) 

Quality Index Q Rock Mass Description 

0.001 – 0.01 Exceptionally Poor 

0.01 – 0.1 Extremely Poor 

0.1 – 1 Very Poor 

1 – 4 Poor 

4 – 10 Fair 

10 – 40 Good 

40 – 100 Very Good 

100 – 400 Extremely Good 

400 – 1000 Exceptionally Good 
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2.5.3. Rock Mass Rating (RMR) 

The Geomechanics Classification, also known as the Rock Mass Rating (RMR) system, 

was developed by Bieniawski (1976) primarily to assess the support requirements in civil 

engineering tunneling projects. The RMR index is determined by summing up five parameters 

within a range of 0 to 100, with an additional adjustment factor to accommodate joint orientation 

considerations. These parameters encompass the strength of intact materials, Rock Quality 

Designation (RQD), spacing and condition of joints, and groundwater. Bieniawski later refined the 

system (Bienawski 1989), assigning greater weight to joint condition values while reducing the 

significance of joint spacing values compared to the original model. Table 2.4 provides a 

breakdown of values associated with each variable from the 1976 classification system.  

Table 2.4. RMR inputs (From Bienawski 1976) 

Rock Strength (R1)  Groundwater (R5) 

Description MPA Rating  Description Inflow Rating 

Very low 1-25 0 - 2  Dry 0 10 

Low 25-50 4  Moist >25L/min 7 

Medium 50-100 7  
under moderate 
water pressure 

25-
125L/min 

4 

High 100-200 12  
sever water 
problems 

>125L/min 0 

Very high >200 15     

 

Joint Density (R2) 

 
 

Joint Spacing (R3) 

RQD Joints/m3 Rating  Description Distance Rating 

90-100% 0-8 20  very wide >3m 30 

75-90% 8-12 17  wide 1-3m 25 

50-75% 12-20 13  moderately close .3-1m 20 

25-50% 20-27 8 
 

close .05-.3m 10 

<25% >27 3  very close <.05m 5 
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Joint Condition (R4) 

Description 

 

Rating 

Very Rough, not continuous, no separation, hard joint wall rock 25 

Slightly rough surfaces, separation <1mm, hard joint wall rock 20 

Slightly rough surfaces, separation < 1mm, soft joint wall rock 12 

Slickensided or gouge, <5mm thick or Joints open 1 – 5mm 6 

Soft gouge > 5mm thick or Joints open > 5mm 0 

 

2.6. Summary 

Dividing rock masses into zones with similar characteristics and utilizing rock mass 

classification systems is a valuable technique for characterizing the behavior of rock mass which 

can be challenging to describe. Initial steps involve gathering data on intact rock properties and 

joint conditions to establish geomechanical domains. This foundational information is used to 

describe rock mass domains based on factors like rock type, mineralogy, and joint characteristics. 

Rock mass classification systems build upon this data define critical parameters such as block size 

and shear strength, which play crucial roles in assessing rock mass stability. When integrated with 

considerations of opening geometry and stress conditions, these classification systems provide 

essential inputs for evaluating the stability of underground excavations. 
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CHAPTER 3: LITERATURE REVIEW ON STOPE 

STABILITY ASSESSMENT METHODS  

The evaluation of open stope stability requires a comprehensive approach that combines data from 

various sources, including rock mass classification, numerical modeling, on-site observations, and 

historical case studies. Given the challenge of explicitly defining rock masses, underground 

observations of rock mass behavior are correlated with parameters believed to influence stability. 

These parameters are essential to both analytical and empirical assessment techniques. Analytical 

methods rely on theoretical frameworks to identify parameters affecting opening stability, while 

empirical methods, such as rock mass classification, are based on parameters known to define the 

explicit factors influencing stability. Through the compilation of extensive case histories, 

confidence is established in the correlation between empirical parameters and opening stability. 

In this chapter, the various popular design methodologies available for HW design in open stopes 

are presented.  
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3.1. Analytical Methods 

Analytical design methodologies involve the evaluation of stress-induced (non-dynamic) 

failure, gravity-induced failure, or a combination of both. A thorough understanding of the 

relationship between stress conditions and rock properties create a significant aspect of the design 

process. When analyzing gravity-wedge failures, important considerations include the shear 

strength along joints in relation to the normal stress clamping the wedge, as well as the orientations 

of the joints. Whereas, when assessing the behavior of intact rock subjected to varying load 

conditions, understanding the magnitude and orientation of principal stresses acting on the rock, 

alongside its strength, becomes necessary. However, it is worth noting that certain assumptions 

associated with analytical methods may limit their applicability in practice. 

During underground excavation, stress is relieved from the exposed rock face, leading to 

the relaxation of the surrounding rock near the opening. Depending on factors such as the local 

stress environment, rock mass classification, and orientation of bedding and structures relative to 

the opening, various gravity-induced failures of the rock may occur. Analyses of gravity-driven 

failures include Kinematic Wedge Failure, Beam and Plate Buckling Analysis, and Voussoir Beam 

Analysis. Moreover, excavation leads to stress concentration in certain areas around the opening. 

Stress-driven failure analyses employ criteria such as Mohr-Coulomb and Hoek-Brown to assess 

the relationship between rock mass strength and induced stress conditions.  

 

3.1.1 Kinematic, Beam Failure, and Plate Buckling Analysis 

The analysis of kinematic failures relies on structural mapping to identify probable wedge 

geometries that could develop within an excavation. Such failures typically occur where the 

intersection of joints creates conditions favorable for a block of material to detach from a stope 

wall, primarily when the force of gravity exceeds the resisting forces, including joint cohesion and 

frictional strength. Major faults often cause a larger-scale failures within stope walls, whereas joint 

intersections may create smaller failures. When data is accessible for a stope wall, wedge failure 

analysis is employed in open stope design. 
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Beam failure and plate buckling analysis, explained by Obert and Duval (1967), have 

historically been utilized to assess the stability of tunnel roofs in laminated rock formations. 

However, the method's reliance on assumptions of continuous, homogeneous, isotropic, and linear 

elastic conditions makes it challenging to apply in underground mining, where discontinuities 

significantly influence stability of the opening. Despite equations available to estimate plate 

stability based on parameters like gravity loading, thickness, length, width, and elastic deformation 

coefficients, the assumption that the plate can mobilize tensile stresses makes this approach 

unsuitable for jointed rock masses. In scenarios where joints are perpendicular to the bedding, the 

rock mass cannot develop tensile strength, thus limiting the applicability of plate analysis in open 

stope excavation designs. 

 

3.1.2. Voussoir Beam Analysis 

The Voussoir beam model represents an advancement from plate and beam analyses, 

particularly in situations where joints are nearly perpendicular to laminations. Evans (1941) 

introduced a model to address the stability of a jointed beam, which considers the transfer of 

vertical gravity loading to a nearly horizontal thrust across individual blocks and onto the opening 

abutment. The method was later modified by several authors (Beer and Meck 1982; Sofianos 1996; 

Diederichs and Kaiser 1999; Brady et al. 2006).  

The Voussoir beam theory is a technique for evaluating the stability of a layered roof by 

leveraging the arching mechanism, as shown in Figure 3.1. This theory has found extensive 

application in both the design and stability assessment of underground excavations. It operates on 

the principle of distributing loads across successive blocks or "voussoirs," mimicking the structural 

behavior of an arch. By considering the interaction between the individual layers and their ability 

to support the overlying weight, the Voussoir beam theory provides insights into the overall 

stability of the roof structure in underground opening.  

Design graphs have been derived from the theory to analyze the stability of plates and 

beams. However, the method has some limitations mentioned by Diederichs and Kaiser (1999). 

When considering open stope design for poor quality rock masses, certain constraints need to be 

acknowledged. For instance, it may not be suitable for rock masses with more than three joint sets 
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and less than 50% Rock Quality Designation (RQD). Additionally, the validity of design charts 

may be compromised in the presence of low to mid-angle jointing. Moreover, the method only 

accounts for the first lamination, which may not fully represent the complexities of the rock mass. 

 

 

Figure 3.1. Compression arch in a deflecting beam (From Diederichs and Kaiser 1999) 
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3.1.3. Mohr - Coulomb Criterion 

The Mohr-Coulomb failure criterion is a well-known, straightforward, and widely 

employed criteria for rock failure analysis. It considers how the strength of rock increases with 

increasing confinement, and that failure happens at specific combinations of the maximum and 

minimum principal stresses, disregarding the influence of the intermediate principal stress on 

failure. Additionally, it establishes failure criteria solely based on the stress state, neglecting any 

insights into strain or deformation mechanisms leading to failure. This criterion is widely adaptable 

to various geomechanical modeling challenges and frequently employed for problems involving 

polyaxial loading, particularly when information regarding the behavior of specific rocks under 

such stress conditions is not established (Hackston and Rutter 2016). Illustrated in Figure 3.2 with 

a cutoff for tensile stress, this criterion outlines failure in terms of the maximum principal stress, 

σ1, which can be expressed as:  

 

                                        𝜎𝜎1 = 𝜎𝜎𝑈𝑈𝑈𝑈𝑆𝑆 +  𝜎𝜎3 tan(45 + 
ϕ2)                             (3.1) 

 

Where:  𝜎𝜎𝑈𝑈𝑈𝑈𝑆𝑆  - Unconfined compressive strength Φ      - Angle of internal friction 

 

At exceedingly high confinements, the maximum stress at failure becomes unrealistic due 

to the formation of a linear failure surface. The Hoek and Brown  (1980a) failure criterion aims to 

address this issue by flattening the failure surface and considering the jointed characteristics of the 

rock mass.  
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Figure 3.2. Mohr Coulomb failure criterion (From Goodman 1989) 

 

3.1.4. Hoek and Brown failure criterion 

Hoek and Brown established an empirical correlation for the maximum failure stress across 

various levels of confinement. This criterion incorporates two parameters, denoted as m and s, and 

is also based on the unconfined compressive strength (UCS) of the rock to characterize its strength 

properties. The values of m and s are determined based on the properties or classification of the 

rock mass, as well as its type. The equation formulated to calculate the maximum load at failure is 

expressed as: 

 

                                        𝜎𝜎1 = 𝜎𝜎3 + (𝑚𝑚𝜎𝜎3𝜎𝜎𝑈𝑈𝑈𝑈𝑆𝑆 + s𝜎𝜎𝑈𝑈𝑈𝑈𝑆𝑆 
2 )

12                  (3.2) 

 

Where the parameters m and s represent constants that vary according to the type of rock 

and the classification of the rock mass. An advantage of this failure criterion lies in its correlation 

with rock classification values such as RMR and Q, which consider the jointed characteristics of 

the rock mass. 



 

42 

 

Chapter 3 Literature review 

3.2. Empirical Methods for open stope design 

Considerable effort has been dedicated to the advancement and utilization of empirical 

design techniques for open stope design (Mathews et al. 1980; Pakalnis 1986; Potvin 1988; 

Nickson 1992; Clark 1998). These methods utilize key features identified through observations as 

essential for design, incorporating data from rock mass characterization and opening geometry to 

analyze and compare previous outcomes. Essential inputs for these methods include gravity, stress, 

rock strength, rock mass classification, and joint orientation. Empirical methods play a crucial role 

in rock mechanics due to the complexity of rock masses, which lack predetermined properties for 

standard theoretical analysis. While individual blocks and joints can be evaluated in laboratories, 

assessing their interaction on a wide mining scale is highly challenging. Empirical methods in open 

stope design can be categorized into stability methods, focusing on qualitative assessments, and 

dilution methods, which quantify the extent of dilution. 

 

3.2.1. Design tools for open stope  

Over the course of the last decades, a range of empirical design graphs has emerged as 

practical tools for design applications in mining industry. These design graphs establish a 

correlation between the geometry of the opening, the quality of the rock mass, and the prevailing 

loading conditions to assess the stability of stope walls. 

The Mathews stability graph design method was specifically established for open stope 

surfaces in deep underground mining excavations. It was developed and presented for the first time 

in 1980 (Mathews et al. 1980). This widely used method, relates two calculated factors:  shape 

factor (SF) or hydraulic radius (HR) and stability number (N), determining zones of stability. The 

major principal theory that stands behind the Mathews stability graph, is that the dimensions of an 

excavation surface can be associated with the rock mass conditions and indicate either instability 

or stability of the opening.  

This approach gained increased acceptance following Potvin's (1988) collection of a more 

extensive database and the refinement of input factors, leading to the development of a modified 
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stability number (N'). This modification effectively reduced the substantial transition zone between 

stable and unstable behavior, further enhancing the method's applicability.  

  Stability Number N’ was developed specifically for designing span dimensions and support, 

and it yields the physical conditions of the stopes. To calculate Stability Number certain rating 

systems are being applied. N’ is defined as follows:  

 

                     𝑁𝑁′ = 𝑅𝑅′ ∙ 𝐴𝐴 ∙ 𝐵𝐵 ∙ 𝐶𝐶                            (3.3)                                                      

Where:  

Q’ – Modified Q value  

A – Rock stress factor 

B – Joint orientation adjustment factor 

C – Surface orientation factor  

 

3.2.1.1. Rock Stress Factor A 

The Stress Reduction Factor (SRF) that was proposed in the Norwegian Geotechnical Institute 

(NGI) classification is being replaced by Factor A, which quantifies more accurately the effect of 

stresses that are acting on the open stopes exposed surface. This factor is a function represented 

by a ratio of the intact rock strength, determined by Uniaxial Compressive Strength (USC) test, 

and the induced stress, which is a maximum tangential stress that is acting parallel to the exposed 

surface at the boundary of a stope.  

To determine Uniaxial Compressive Strength (UCS) laboratory tests need to be conducted 

while the induced stress should be estimated by numerical modeling to obtain best results. 

Mathews has developed two graphs (Figures 3.3. and 3.4.) that are describing the approximate 

stresses inducing in the walls and roof of mining openings. Then factor A is being determined 

based on the third graph (figure 3.5). 
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Figure 3.3. Graph of the stresses induced on the major surface of a stope vs. the ratio of opening 
dimensions. (Modified from Potvin, 1988) 

Where:  

σ 1 – Induced stress  

σ V – Vertical virgin stress 

σ H1 – Horizontal virgin stress on strike  

σ H2 – Horizontal virgin stress normal to strike  

 Horizontal plane: K = σ H2 / σ H1 
}         

σnormal to the surfaceσparallel to the surface 
 Vertical plane: K = σ H2 / σ V 
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Figure 3.4. Graph of the stresses induced on the minor surface of a stope vs. the ratio of opening 
dimensions. (Modified from Potvin, 1988) 

 

Where:  

σ 1 – Induced stress 

σ V – Vertical virgin stress 

σ H1 – Horizontal virgin stress on strike  



 

46 

 

Chapter 3 Literature review 

σ H2 – Horizontal virgin stress normal to strike  

 Horizontal plane: K = σ H2 / σ H1 
}         

σparallel to the surfaceσnormal to the surface  

 Vertical plane: K = σ H2 / σ V 

 

 

Figure 3.5. Graph for the estimation of Rock Stress Factor A. (Modified from Potvin, 1988) 

 

3.2.1.2. Joint orientation adjustment Factor B 

Factor B accounts for the orientation of the geological structures (joint sets) with respect to the 

plane that is investigated. It is determined by the angle of intersection between the surface that was 

exposed and the structure that is mostly predominant, shown on Figure 3.6. Factor B can be also 

determined using the graph on Figure 3.7. 

In many cases a rock mass has multiple joint sets, in that situation Factor B should be 

determined for each joint set and then the lowest value should be used to calculate the stability 

number N.  
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Figure 3.6. Sketch for the determination of B factor. (Modified from Mathews et al, 1980) 
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 Figure 3.7. Graph for the determination of Rock Stress Factor B.  (Modified from 
Hutchinson and Diederichs 1996) 

 

3.2.1.3. Surface orientation factor 

Factor C is the factor describing the influence of surface inclination. Stope backs create 

greater stability challenges compared to walls caused by the effect of gravity. Barton (1974) 

suggested that the rock quality within a tunnel wall could theoretically be enhanced up to five 

times when compared to a horizontally oriented roof. Mathews et al. (1980) proposed that a vertical 

open stope wall is eight times the stability of a horizontal roof, considering the tolerable level of 

minor instability in non-entry mining scenarios. Figures 3.8 and 3.9 are used in determining factor 

C, which quantifies the escalating risk of instability with a surface becoming more horizontal 

(Potvin 1988). 
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Figure 3.8. Determination of Stability Factor C Gravity Fall & Slabbing. (Modified from 
Hutchinson and Diederichs 1996) 
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Figure 3.9. Determination of Stability Factor C Sliding. (Modified from Hutchinson and 
Diederichs 1996) 

 

 

 

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90

G
ra

vi
ty

 A
d

ju
st

m
e

n
t 

F
a

ct
o

r,
 C

Dip of Critical joint

Factor C Sliding



 

51 

 

Chapter 3 Literature review 

 

3.2.1.4. Shape Factor (Hydraulic Radius HR)  

The crucial factor for the successful assessment of opening stability in underground mining 

is the shape factor, which relates the dimensions of the opening and is commonly referred to as the 

hydraulic radius (HR). The hydraulic radius is a critical geometric parameter that characterizes the 

shape of the opening and is essential in determining its stability. 

The term hydraulic radius is commonly understood as the ratio of the area of exposure of 

the hanging wall to its perimeter. In the context of inclined stopes, where the stope is not in a 

vertical position, the most critical aspect for calculating the HR is the exposure of the hanging wall 

(Figure 3.10). The calculation of HR takes into account the spans of the stopes along the dip (h) 

and along the strike (w) (Tishkov 2018).  

 

 

Figure 3.10. Determination of Hydraulic Radius 
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3.2.2. Stability graphs  

Several authors have approached the stability graph method presented by Matthews (Figure 

3.11) and Potvin (3.12), proposing various adjustments and refinements to enhance its applicability 

and accuracy.  

Nickson (1992) introduced an additional zone in the stability graph method, delineating 

stable spans achievable with the implementation of pattern cable bolting (Figure 3.13). Nickson 

was first in statistically determining the boundaries' positions. He employed discriminant analysis 

on the three-dimensional multivariate stability database and utilized Mahalanobis' distance to 

partition the data into two distinct groups. Nickson established a linear separation between stable 

and caved unsupported histories through a logarithmic transformation. 

Stewart and Forsyth (1993) deliberated on various rock mass classification systems 

applicable in mining, noting the limitations of each method. They critiqued Potvin's approach for 

its perceived precision, particularly its division into only two stability zones separated by a 

transition zone. Drawing from their practical experience, they proposed a qualitative redefinition 

of the stability graph, with four stability zones, correlating them with percentage dilution estimates, 

as illustrated in Figure 3.14. Hadjigeorgiou et al. (1995) made adjustments to the graph to enhance 

its accuracy in representing the design considerations for large hanging walls in high-quality rock 

conditions. 

Hutchinson and Diederichs (1996) identified several limitations of the Modified Stability 

Graph as a design approach. Firstly, the method assumes that the wall under consideration is fully 

bounded, making it unsuitable for situations where adjacent stopes are not tightly filled or for 

intersections. Secondly, discrete wedges, shears, and delamination zones are not considered, and 

these are better assessed using analytical methods. Lastly, corners or bulges in the stope wall are 

not factored into the hydraulic radius calculation and can significantly impact stope stability. 

Villaescusa (1996) developed a bench stability method tailored for the strongly laminated stope 

hanging walls. This method shares a similar design principle with the Modified Stability Graph, 

where a stability parameter is compared to a shape factor. However, the input data for this rating 

was customized to suit particular conditions. The input primarily relies on factors such as the 
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number of bedding plane breaks per meter, the presence and continuity of joint sets, with minor 

considerations given to stress normal to the orebody and blasting practices. 

 

 

 

Figure 3.11. Mathews Stability Graph (After Mathews et al., 1981, From Capes 2009) 
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Figure 3.12. Modified Stability Graph (After Potvin, 1988, From Capes 2009) 
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Figure 3.13. Modified Stability Graph (After Nickson, 1992, From Capes 2009) 
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Figure 3.14. Modified Stability Graph (After Stewart and Forsyth, 1993, From Capes 2009) 
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Figure 3.15. Modified Stability Graph (After Hadjigeorgiou et al. 1995, From Capes 2009) 

 

The development of various graphs aimed to enhance accuracy in predicting hanging wall 

(HW) stability by considering influential factors specific to each database. However, these 

methods have limitations. Applicability outside the particular conditions and data used to develop 

the empirical system may lead to inaccuracies. Additionally, limited databases from weak rock 

masses may result in less reliable predictions. These methods may overlook factors in mining such 

as undercutting, stress, faulting, blasting effects, time-dependent behavior, and other 

considerations. Assessing irregular opening shape also creates challenges. Furthermore, the graphs 
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are usually developed for a specific rock type conditions and may not incorporate adjustments for 

rock contacts and structural complexities (Capes 2009). 

 

3.3. Statistical analysis and numerical modeling 

Suorineni et al. (2001) introduced the Bayesian likelihood method as a powerful tool for 

statistically interpreting the stability graph. They employed an extended database based on the 

Potvin-calibrated stability graph factors to illustrate the method's advantages. The Bayesian 

likelihood discrimination proved to be an optimal approach for statistically interpreting the 

stability graph due to its capability to reveal substantial overlap among the defined stability graph 

zones (stable, unstable, and caving). It also allowed for error rate estimation in the stability graph, 

delineated general transition boundaries between stable, unstable and caved stopes, estimated 

inherent predictive errors in stability graphs, evaluated the risk associated with using the stability 

graph for predictions, and introduced a multiple design curves stability graph based on the 

probability. The Bayesian likelihood discrimination's ability has been harnessed to provide deeper 

significance to the class boundaries in the stability graph and individual stope walls plotted within 

each class. 

Numerical modeling stands as another widely adopted approach that has proven effective 

in addressing stope stability concerns. Henning and Mitri (2007), for instance, crafted a series of 

three-dimensional numerical models to explore the impacts of field stress, mining depth, stope 

configuration, and orientation on stope wall overbreak. Similarly, Purwanto et al. (2013) harnessed 

numerical modeling to establish the correlation between stope design and the stability of hanging 

wall. Hu and Cao (2009), by employing visual numerical simulation software, simulated and 

computed stress distribution and displacement variations within stopes during mining operations. 

They conducted an analysis of the stability of stope roofs and adjacent rock, as well as the 

alterations in sound emission associated with the mining process. 
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3.4. Machine learning methods  

While classical stability assessment methods have been effective in many cases, the 

emergence of machine learning techniques has opened up new possibilities for enhancing their 

accuracy and efficiency. Machine learning algorithms can analyze large volumes of mining data, 

including shape of the opening, the properties of surrounding rock mass, underground conditions 

and historical stability records, to identify patterns and correlations that may not be easily 

discernible through traditional methods. By training machine learning models on a dataset of 

known stability outcomes, engineers can develop predictive models that can assess the stability of 

new stopes.  

Several studies have explored the integration of machine learning models for the prediction 

of stope stability. Erdogan Erten et al. (2021) introduced a hybrid artificial neural network (ANN) 

approach optimized through grid search. This method was compared with conventional techniques 

including Naive Bayes (NB), Decision Tree (DT), k-Nearest Neighbors (kNN), Support Vector 

Machine (SVM), as well as the traditional stability graph method. The findings of this study 

revealed that the performance of the stability graph method falls short of the capabilities exhibited 

by machine learning algorithms. Notably, the ANN model with hyper-parameters tuned using the 

grid search technique showcased superior performance in terms of accuracy, precision, recall, f-

measure, and g-mean compared to other machine learning algorithms. Saadaari et al. (2020) 

investigated the viability of employing Ensemble Learning methods to categorize and predict the 

stability condition of stope surfaces. They introduced and evaluated four techniques - Random 

Forest (RF), Gradient Boosting (GB), Bootstrap Aggregating Classifier (BAC), and Adaptive 

Boosting (AB) - using widely accepted and effective assessment metrics. Upon analyzing the 

performance outcomes, it was evident that among the four machine learning models, Gradient 

Boosting (GB) and Bootstrap Aggregating Classifier (BAC) demonstrated the highest efficacy in 

accurately classifying and predicting the stability state of stopes, encompassing categories of caved, 

stable, or unstable. In a comparative investigation conducted by Qi et al. (2018b), five distinct 

artificial intelligence strategies based on machine learning and metaheuristic algorithms were 

explored for their potential in predicting the stability of open stope hangingwalls (HW). The 

assessed algorithms encompassed logistic regression (LR), multilayer perceptron neural networks 

(MLPNN), decision tree (DT), gradient boosting machine (GBM), and support vector machine 
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(SVM). The optimization of hyper-parameters was facilitated using the Firefly algorithm (FA), 

which yielded successful results for this purpose. Across the testing phase, the most favorable 

performance was exhibited by the optimized GBM model, closely followed by the SVM model 

and the optimized LR model. The study highlighted the remarkable predictive capabilities of these 

three machine learning models in forecasting HW stability. Several researchers have directed their 

efforts toward the refinement and customization of specific machine learning models for assessing 

stope stability. Qi et al. (2018a), in their study, concentrated on optimizing the Random Forest 

model for enhanced efficiency, while Santos et al. (2020) shifted their attention toward the 

utilization of Artificial Neural Networks.  

 

3.5 Summary 

Numerous methods have been proposed for evaluating the stability of underground 

openings. Analytical design tools offer a range of options, provided that simplifications in 

geometry and rock mass properties, as well as assumptions about failure modes, are made. These 

tools enable the estimation of rock mass stability, offering valuable insights into the potential 

challenges and risks associated with underground excavations. 

Continuing research in the field of stope stability in underground mining is crucial due to 

ongoing advancements in mining engineering aimed at maximizing exploitation and optimizing 

operations. The industry trend towards larger openings to increase extraction and profits may 

compromise stope stability. While this approach enhances efficiency and profitability, it also 

heightens the risk of caving. Exceeding maximum dimensions can lead to stope instability, 

increasing the likelihood of shifting towards unstable conditions or even catastrophic failure. 

Therefore, ongoing research is essential to develop strategies for maintaining stope stability while 

accommodating larger openings for mining operations. 
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CHAPTER 4: PREDICTING THE STABILITY OF OPEN 

STOPES USING MACHINE LEARNING 

 

 

The chapter examines how Machine Learning (ML) models can be employed to  predict open stope 

stability in underground mining. It starts by outlining challenges in traditional stability assessment 

methods. Highlighting the limitations of conventional approaches, it emphasizes the potential of 

ML algorithms in stope stability prediction. Machine Learning models such as Logistic Regression 

and Random Forest were employed to learn from a Potvin database and make accurate predictions. 

Analyzing the results, it discusses the implications for mining safety and productivity, suggesting 

ML integration into existing practices for improved outcomes in underground mining. This 

Chapter is based on paper Szmigiel A, Apel DB. Predicting the stability of open stopes using 

Machine Learning. J Sustain Min. 2022 Nov 22;21(3):241–8. 
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4.1 Introduction 

The stability of underground excavations in open stope methods is one of the mining 

industry’s major concerns. Three essential aspects need to be considered while designing open 

stopes. The first one concerns the properties of the rock mass and its mineral components that 

directly impact the behavior of the surrounding rocks. The second aspect is how stress fields are 

impacting the rock mass. Those stresses might develop zones of relaxation or increased 

compressive stresses in stope walls. The last aspect is the underground openings’ geometry, size 

and orientation. Those three crucial features interact together and directly impact the complexity 

of underground stopes design (Potvin 1988).  

The effectiveness of open stope mining methods depends on safety and high productivity. 

Usage of very large and non-entry excavations and mechanized mining equipment is necessary. 

However, the development of each stope is associated with large investment costs, which is the 

main reason for industries to reduce the number of stopes by increasing their dimensions. The 

significant difficulty facing that approach is that the consequences may be catastrophic when 

stopes are exceeded to their maximum dimensions. Another challenge for industries is that dilution 

in rock mass needs to be considered when designing open stopes. In addition, the dimensions need 

to be specifically adjusted to geotechnical conditions. 

Original stability graphs developed by Matthews were based only on 50 history cases. That 

number was later extended to 176 cases by Potvin. In addition, Matthews’s graph took three 

distinct separated by transition zones: stable, unstable and caved. Potvin (1988) modified that, and 

the number of zones was reduced to stable and caved, separated by transition.  

The beginnings of the Artificial Intelligence and Machine Learning concepts date back to 

the mid-20th century. In 1943 the first mathematical model of a neural network was presented by 

Warren McCulloch and Walter Pitts, where the concepts of the neurophysiology of brain cells and 

calculus were combined (McCulloch and Pitts 1943). This research was a foundation that triggered 

the interest of scientists in further investigation. The first Artificial Intelligence model in the 

modern sense has its origin in the research presented by psychologist Frank Rosenblatt. He created 

a machine to recognize letters which became a prototype of an Artificial Neural Network known 

today (Rosenblatt 1957). Although, in the beginning, Machine Learning was used as a training 
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program for Artificial Intelligence, in the late 1970s, research focused on using knowledge-based 

and logical methods, which caused the separation of AI and ML (Carbonell et al. 1983). From that 

point, computer programs, and more precisely Machine Learning, started to be more present, 

expanded and applied in various tasks.  

Using Machine Learning might be considered a new approach to determine the stability of 

open stopes. In previous research, ML models presented promising effectiveness in various 

research disciplines in mining engineering. For example, those algorithms were applied in mineral 

processing to predict the outcome values recovered from various beneficiation processes, such as 

flotation (Pu et al. 2020). In addition, the classification algorithms have been successfully applied 

in areas of mining engineering such as rockburst liability prediction (Pu et al. 2018) or an image 

recognition of coal (Pu et al. 2019). 

Researchers have approached the problem of open stopes stability assessment with 

computing sciences methods. Most popular include numerical modelling, presented by Vallejos 

and Diaz (2020), which applies a new criterion for numerical modelling to evaluate a hangingwall 

overbreak.  

Some of the Machine Learning and Artificial Intelligence models were employed to predict 

the stability of open stopes, such as Random Forest (Qi et al. 2018)  and Artificial Neural Network 

(Santos et al. 2020). Both of those studies presented promising capabilities of those models. 

However, a smaller database was investigated (115 and 35 examples, respectively). Extending that 

databases could have a crucial impact on predicting the capabilities of those models. 

The Potvin database was passed to two ML algorithms in this research – Logistic 

Regression and Random Forest. Both showed satisfying predicting capability, with an average 

accuracy of 0.68 for LR and 0.71 for RF. However, the latter performed better, especially with 

predicting unstable zone, which was the most challenging for both algorithms to predict because 

of similar values to other classes. 
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4.2. Open stope mining method 

An open stope mining method extracts an enormous block of material using the drill or 

blast method. Then, tunnels are mined underground to access that orebody. After the material is 

removed by heavy machinery, the open void or stope is created. Later, it’s usually backfilled, 

which allows for the extraction of adjacent deposits by opening new stopes. The walls of rock 

mass surrounding the stopes are called hanging walls (HW), and their properties vary depending 

on the geology and mining constraints. The appearance of a hanging wall causes the stope to be 

less stable (Capes 2009).  

 

4.2.1. Matthew stability graph method review 

The Mathews stability graph design method was established explicitly for deep 

underground mining excavations open stope surfaces. It was developed and presented for the first 

time in 1981.  

This widely used method relates two calculated factors: shape factor (S) or hydraulic radius 

(HR) and stability number (N’). The primary principle theory behind the Mathews stability graph 

is that the dimensions of an excavation surface can be associated with the rock mass conditions 

and indicate either instability or stability of the opening (1981).  

Stability Number N’ is explicitly developed for designing span dimensions and support, 

and it yields the physical conditions of the stopes. To calculate Stability Number specific rating 

systems are being applied. N’ is defined as follows:  𝑁𝑁’ = 𝑅𝑅′ ∙ 𝐴𝐴 ∙ 𝐵𝐵 ∙ 𝐶𝐶                             (4.1) 

Where:  

Q' – Modified Q value  

A – Rock stress factor  

B – Joint orientation adjustment factor  

C – Surface orientation factor  
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Q’ value was first presented in 1974 by Barton et al. of the Norwegian Geotechnical 

Institute (NGI) to evaluate  rock mass characteristics and ground condition (Barton et al. 1974). 

The purpose of calculating the Q’ value was to determine the support required in mining 

excavations, tunnels and rock caverns. The formula is as follows:  

 𝑅𝑅′= 𝑅𝑅𝑅𝑅𝑅𝑅𝐽𝐽𝐿𝐿  ∙ 𝐽𝐽𝑐𝑐𝐽𝐽𝑎𝑎                                    (4.2) 

The first quotient (
𝑅𝑅𝑅𝑅𝑅𝑅𝐽𝐽𝐿𝐿 ) represents the structure of the rock mass, and the latter one (

𝐽𝐽𝑐𝑐𝐽𝐽𝑎𝑎) 

represents the roughness and frictional properties of the joint wall or filling material.  

Rock Quality Designation (RQD) is a system developed by Deere (1963). It is widely used 

as a factor in classification systems and as a primary parameter for tunnel support selection. It 

quantifies the competence of a drill core, and it is defined as a ratio between the total lengths of 

entire pieces (larger than 10 cm) and the total length of a core. The values of Jn, Jr, and Ja are 

determined using NGI Classification Charts presented in Hoek and Brown (Hoek and Brown 1980).  

Values of A, B and C factors are determined by graphs developed by Matthews and can be 

found in Matthews et al. (1981) and Potvin (1988). Factor A is a function represented by a ratio of 

the intact rock strength, determined by the Uniaxial Compressive Strength (USC) test, and the 

induced stress, maximum tangential stress acting parallel to the exposed surface at the boundary 

of a stope. Factor B accounts for the orientation of the geological structures (joint sets) concerning 

the investigated plane. It is determined by the angle of intersection between the exposed surface 

and the most predominant structure. Finally, factor C stands for surface inclination, assuming that 

stopes backs are naturally less stable than walls. The reason for that is the impact of gravity. 
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4.2.2 Database 

Potvin’s database was collected from 34 mines using the open-stoping method between 1986 and 

1987. The provided data includes the characteristics of the rock mass and the physical and stress 

conditions. In some situations, circumstances did not allow to estimate all the necessary conditions 

confidently caused by lack of access to the site or missing background information. Consequently, 

the entire database was divided into the main database that contained accurate and complementary 

data that was less accurate. The main data consisted of 84 cases, and the remaining 92 cases were 

complementary data created using the same parameters and principles as the main data. Potvin’s 

database consists of several parameters regarding each open stope investigated. These parameters 

include: block size factor (RQD/Jn), stress conditions, the difference in the dip between the 

designed stope surface and the critical joint, the relative difference in the strike, the indication of 

anisotropy of the rock mass, the shear strength of the critical joint (Jr/Ja) and effect of the gravity. 

These features were used to calculate the input parameters necessary for the analysis – stability 

number and hydraulic radius (shape factor) (Potvin 1988). The distribution of the data is shown in 

Figure 4.1. The green dots are examples of stable cases, the blue ones unstable, and the red ones 

caved. Table 4.1 shows the entire Potvin database. 
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Figure 4.1. Distribution of the Potvin database. 

 

 

Table 4.1. Complete Database from Potvin, 1988 

 BLOCK 

SIZE 

STRESS 

FACTOR 

JOINT 

ORIENTATION 

FACTOR 

EFFECT OF GRAVITY (C)    

 RQD/Jn (A) 
CRITICAL 

JOINT (B) 
Jr/Ja SLIDING FREEFALL/SLABBING 

HYD. 

RADIUS 
N ASSES. 

1 18 1 0.64 3 6.5   5 228 STABLE 

2 6 0.2 0.25 1 2.5   8.9 0.7 UNSTABLE 

3 6 0.1 0.2 1 2.5   7.7 0.3 CAVE 

4 7 1 0.2 1.5   3.7 7.1 7.8 UNSTABLE 

5 40 1 1 1   8 14 320 STABLE 

6 40 1 1 1   8 11 320 STABLE 

7 40 1 1 1   6.5 5.2 260 STABLE 

8 6 1 0.4 1.5 5   8.5 18 STABLE 

10 4 0.3 0.2 0.8 3.5   4.7 0.7 UNSTABLE 
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12 7 1 0.2 0.6   6.5 9.1 5.5 UNSTABLE 

13 15 1 0.2 2   7 8.3 42 STABLE 

16 25 0.1 0.85 0.25   2 5.8 1.1 CAVE 

17 25 0.1 0.85 0.25   2 4.2 1.1 STABLE 

18 30 1 0.6 1   8 8.8 144 STABLE 

19 30 0.1 0.4 1   2 3.5 2.4 UNSTABLE 

20 11 1 0.2 1.5   2 1.8 6.6 STABLE 

21 11 1 0.2 1.5   4.5 4.7 15 STABLE 

22 11 1 0.2 1.5   4.5 8.8 15 STABLE 

23 11 1 0.2 1.5   2 2.1 6.6 STABLE 

24 17 1 0.2 2   2 10.5 14 CAVE 

25 17 1 0.2 2   2 11.3 14 CAVE 

26 17 1 0.2 2   2 12.2 14 CAVE 

27 17 1 0.2 2   2 4.1 14 STABLE 

28 8 1 0.3 1.5   2 7.6 6.9 STABLE 

29 17 1 0.2 2 3   7.6 20 STABLE 

30 17 1 0.2 2   5 9 34 STABLE 

31 90 1 1 1   8 16.6 720 STABLE 

32 90 0.1 1 1   2 4 18 STABLE 

33 90 1 1 1   8 23 720 STABLE 

34 90 0.4 1 1   2 10.7 72 STABLE 

35 6 0.6 0.3 1.5   2.3 10.5 3.9 CAVE 

36 6 0.9 0.3 1.5   5 9 13 STABLE 

53 29 0.5 0.2 1.5   2 2.4 8.8 STABLE 

54 29 0.5 0.2 1.5   2 6.8 8.8 CAVE 

55 29 0.5 0.2 1.5   2 8 8.8 CAVE 

56 4 1 0.3 0.5   8 19 5.2 CAVE 

57 29 0.2 0.2 1.5   2 3.7 3.5 STABLE 

58 29 1 1 1.5   8 8.4 352 STABLE 

59 4 1 0.3 0.5   8 4.5 5.2 STABLE 

61 17 1 0.3 1.5   6 7.5 45 STABLE 

62 17 1 0.3 1.5   4 7.5 30 STABLE 

132 6 1 0.2 1   8 5.6 10 STABLE 
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133 6 1 0.2 1   8 6.7 9.4 STABLE 

134 5 0.1 0.2 1   2 1.9 0.2 STABLE 

135 13 0.6 0.6 2   2 2.1 19 STABLE 

136 13 0.5 0.6 2   2 2.4 16 STABLE 

137 13 0.4 0.6 2   2 2.9 13 STABLE 

138 13 0.4 0.6 2   2 3.1 13 STABLE 

139 13 0.3 0.6 2   2 3 10 STABLE 

140 8 1 0.3 1   6 7.5 15 STABLE 

141 8 1 0.3 1   6 8.1 15 UNSTABLE 

142 8 1 0.2 1   5.5 5.3 9.2 STABLE 

143 8 1 0.2 1   5.5 5.7 9.2 STABLE 

144 8 0.1 0.2 1   2 1.9 0.3 STABLE 

145 8 0.3 0.2 1   2 1.8 1 STABLE 

146 8 0.1 0.2 1   2 2.1 0.3 UNSTABLE 

147 8 0.1 0.2 1   2 2.3 0.3 UNSTABLE 

148 11 0.7 0.2 2   2 5 5.9 STABLE 

149 5 1 0.2 0.1   6 9 0.8 CAVE 

150 5 1 0.2 0.1   6 11.3 0.8 CAVE 

151 15 0.4 0.2 2   2 10 4.8 CAVE 

152 15 1 0.2 2   2 6.7 12 STABLE 

153 15 1 0.5 2   8 18 120 STABLE 

155 16 1 0.2 2 3   9.7 19 STABLE 

156 16 0.1 1 2 3   5.6 10 STABLE 

157 9 1 0.2 1.8   8 8.4 26 STABLE 

158 10 0.1 0.2 2.5   2 3.4 1 STABLE 

159 8 0.1 0.2 2   2 7.6 0.6 CAVE 

161 3 1 0.2 1   8 20 4.8 CAVE 

164 14 0.1 0.8 1.5   2 8.6 3.3 CAVE 

165 14 1 0.2 1.5   8 9.9 33 STABLE 

166 9 1 0.2 1.5 3   9.9 8.3 UNSTABLE 

170 18 1 0.8 1.5   2.8 12.5 60 CAVE 

171 18 1 0.8 1.5   2.8 15 60 CAVE 

172 18 1 0.8 1.5   2.8 15.9 60 CAVE 
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173 18 1 0.8 1.5   2.8 7.7 60 STABLE 

174 18 1 0.8 1.5   2.8 5.4 60 STABLE 

175 18 0.5 0.3 1.5   8 11.6 32 UNSTABLE 

176 18 0.5 0.85 1.5   2.5 7.3 29 STABLE 

177 18 0.5 0.85 1.5   2.5 9.9 29 STABLE 

178 18 0.5 0.85 1.5   2.5 11.1 29 UNSTABLE 

180 6 1 0.3 1   5 6.9 10 UNSTABLE 

183 16 0.1 0.3 1.5   8 4.9 5.8 STABLE 

184 6 1 0.3 1   7 6.7 12 STABLE 

64 4 1 0.3 1.5   5.5 6 10 STABLE 

65 4 1 0.3 1.5   5.5 12 10 CAVE 

66 3 1 0.3 0.8   7 3 5 STABLE 

67 3 1 0.3 0.8   7 9 5 UNSTABLE 

68 3 1 0.3 0.8   7 12 5 CAVE 

69 18 1 0.3 3   4.5 16 73 UNSTABLE 

70 6 1 0.3 0.8   8 5 12 UNSTABLE 

71 6 1 0.3 0.8   8 8 12 CAVE 

72 1 1 0.3 0.25   6.5 16 0.5 CAVE 

73 16 1 0.3 3   8 7 115 STABLE 

74 8 1 0.3 1.5   4.5 2 16 STABLE 

75 8 1 0.3 1.5   4.5 11 16 STABLE 

76 18 1 0.3 3   5 5 81 STABLE 

77 3 1 0.3 0.25   8 14 1.8 CAVE 

78 3 1 0.3 0.25   7 6 1.6 CAVE 

79 3 1 0.3 0.25   7 10 1.6 CAVE 

80 1 1 0.3 0.25   6.5 11 0.5 CAVE 

81 18 1 0.3 3   5 9 81 STABLE 

82 3 1 0.3 0.8   5.5 6 4 UNSTABLE 

83 1.5 1 0.3 1.5   5 13 3.4 CAVE 

84 18 1 0.3 3   4.5 10 73 STABLE 

85 7 1 0.3 3   5.5 4 35 STABLE 

86 20 1 0.3 3 4.5   1 81 STABLE 

87 20 1 0.3 3 4.5   12 81 UNSTABLE 
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88 20 1 0.3 0.8   8 4 38 STABLE 

89 20 1 0.3 0.8   8 11 38 STABLE 

90 3 1 0.3 0.25   4 3 0.9 STABLE 

91 3 1 0.3 0.25   4 11 0.9 CAVE 

92 3 1 0.3 0.25   5.5 2 1.2 STABLE 

93 3 1 0.3 0.25   5.5 7 1.2 CAVE 

94 3 1 0.3 0.25   5.5 9 1.2 CAVE 

95 3 1 0.3 0.25   5.5 16 1.2 CAVE 

96 1 1 0.3 0.25   7 8 0.5 CAVE 

97 1 1 0.3 0.25   8 3 0.6 UNSTABLE 

98 1 1 0.3 0.25   8 5 0.6 CAVE 

99 8 1 0.3 2   5.5 3 26 STABLE 

100 3 1 0.3 1   5 3 4.5 STABLE 

101 3 1 0.3 1   5 6 4.5 UNSTABLE 

102 3 1 0.3 1   5 14 4.5 CAVE 

103 6 1 0.3 0.25   5.5 3 2.5 STABLE 

104 6 1 0.3 0.25   5.5 8 2.5 UNSTABLE 

105 6 1 0.3 0.25   5.5 13 2.5 CAVE 

106 15 1 0.3 2   6 10 54 STABLE 

107 2 1 0.3 0.8   7 4 3.4 CAVE 

108 2 1 0.3 0.8   7 10 3.4 CAVE 

109 3 1 0.3 1   5 6 4.5 UNSTABLE 

110 3 1 0.3 1   5 12 4.5 CAVE 

111 2 1 0.3 0.5   6 3 1.8 STABLE 

112 2 1 0.3 0.5   6 8 1.8 UNSTABLE 

113 2 1 0.3 0.5   6 14 1.8 CAVE 

114 3 1 0.3 0.8   5.5 2 4 STABLE 

115 3 1 0.3 0.8   5.5 8 4 UNSTABLE 

116 3 1 0.3 0.8   5.5 10 4 UNSTABLE 

117 4 1 0.3 1.5   5.5 10 10 STABLE 

118 1 1 0.3 0.25   6.5 6 0.5 UNSTABLE 

119 1 1 0.3 0.25   6.5 9 0.5 CAVE 

120 1 1 0.3 0.25   5 1 0.4 STABLE 
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121 1 1 0.3 0.25   5 2 0.4 UNSTABLE 

122 1 1 0.3 0.25   5 13 0.4 CAVE 

123 1 1 0.3 0.25   5.5 6 0.4 UNSTABLE 

124 1 1 0.3 0.25   5.5 10 0.4 CAVE 

125 1 1 0.3 0.25   6 1 0.5 STABLE 

126 1 1 0.3 0.25   6 2 0.5 UNSTABLE 

127 1 1 0.3 0.25   6 13 0.5 CAVE 

128 12 1 0.3 0.25 4.5   7 13 STABLE 

129 6 1 0.3 0.25   5.5 12 2.5 UNSTABLE 

130 1 1 0.3 0.25   5 4 0.4 UNSTABLE 

131 1 1 0.3 0.25   5.5 3 0.4 UNSTABLE 

9 12 0.3 0.2 2   8 4.7 12 STABLE 

11 5 1 0.2 0.6   7 7.9 4.2 STABLE 

14 9 1 0.2 0.5   6 8.8 5.4 CAVE 

15 9 1 0.3 0.5   7 8.8 9.5 CAVE 

154 16 0.1 0.3 2   2 5.2 1.9 UNSTABLE 

167 9 1 0.2 1.5   8 7.8 22 STABLE 

168 15 1 0.2 1.5   8 6 36 STABLE 

169 15 0.3 0.3 1.5   2 5 4.1 STABLE 

179 15 0.1 0.85 1.5   2 4.1 3.8 STABLE 

181 15 0.1 0.85 1.5   2 4 3.8 STABLE 

182 15 1 0.3 1.5   8 4.9 54 STABLE 

37 45 0.4 1 2.7   2 2.7 97 STABLE 

38 45 0.4 1 2.7   2 6.1 97 UNSTABLE 

39 45 0.6 1 2.7   2 7.6 146 UNSTABLE 

40 30 0.6 1 1.3   2 8.8 47 UNSTABLE 

41 15 0.6 1 2.6   2 13.4 47 UNSTABLE 

42 14 0.5 0.3 1.3   2 6.1 5.5 UNSTABLE 

43 14 0.5 0.3 1.3   2 15.2 5.5 CAVE 

44 14 0.3 0.3 1.3   2 6.4 3.3 UNSTABLE 

46 30 1 0.3 1.3   8 13.1 94 STABLE 

47 9 0.3 1 2   2 7.3 11 CAVE 

48 9 0.1 1 2   2 5 3.6 UNSTABLE 
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49 9 1 1 2   2 9.9 36 CAVE 

50 9 0.4 1 2   2 6.8 14 CAVE 

 

4.3. Model development, evaluation, and results 

The two most popular Machine Learning algorithms were investigated in this research and 

applied to Potvin’s database. In order to achieve the most satisfying performance of the model, a 

few evaluation methods were applied to maximize efficiency and obtain the highest accuracy. 

These methods were also beneficial for eliminating the risk of overfitting, a common problem for 

ML algorithms applied for data with few training examples.  

 

4.3.1. K-fold Cross-Validation  

The k-fold Cross Validation is sometimes called also rotation estimation. It is a powerful 

tool to measure the success rate of our models used for classification (Marcot and Hanea 2021). 

The dataset is randomly split into a chosen number (k) of mutually exclusive sets (the folds) 

approximately equal in size. The main advantage of using CV is that each observation can be tested, 

which means that in every run, the testing set consists of different cases from the provided data set. 

In k-fold CV, we iterate over our data set k-times. In every round, our data is split into k sets, one 

part is being used for validation, and the remaining k–1 sets are merged into a training set (Kohavi 

1995). Figure 4.2 presents the process of cross-validation where k = 5. That approach results in 5 

different models fitted on partially overlapping training sets and tested on a non-overlapping 

validation fold. For every run, accuracy is established, and then the model performance is 

calculated as the arithmetic mean of all the accuracies. 
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Figure 4.2. The process of k-fold Cross-Validation. 

 

 

4.3.2. Confusion Matrix and ROC AUC score  

A Confusion Matrix is one of the methods to evaluate the model’s performance. It is a 

valuable tool to visualize how our model classifies the testing set. A Confusion Matrix is a size n 

× n where the predicted class and actual class are compared Visa et al. (2011). Table 4.2 shows a 

Confusion Matrix where n = 2 and entries have the meaning as follows:  

 

TN – True Negative, the number of correct negative predictions  

TP – True Positive, the number of correct positive predictions  

FN – False Negative, the number of incorrect negative predictions  

FP – False Positive, the number of incorrect positive predictions  

 

Based on the confusion matrix, important metrics can be derived that are useful to evaluate 

the model’s performance. The Recall (Sensitivity/True Positive Rate) shows the proportion of the 
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positive class that was correctly classified. False Negative Rate (FNR) is the proportion of the 

positive class that the model classified incorrectly. Specificity (True Negative Rate) indicated the 

proportion of correctly classified negative class and False Positive Rate (FPR), which shows the 

proportion of incorrectly classified negative class.  

 

Table 4.2. The Confusion Matrix. 

 Predicted Negative Predicted Positive 

Actual Negative TN FP 

Actual Positive FN TP 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝑆𝑆𝐹𝐹 ,                           (4.3) 

                                                 𝐹𝐹𝑁𝑁𝑅𝑅 = 
𝑆𝑆𝐹𝐹𝑇𝑇𝑇𝑇+𝑆𝑆𝐹𝐹  ,                                                       (4.4) 

                                   Specificity = 
𝑇𝑇𝐹𝐹𝑇𝑇𝐹𝐹+𝑆𝑆𝑇𝑇 ,                           (4.5) 

                                                   𝐹𝐹𝐹𝐹𝑅𝑅 = 
𝑆𝑆𝑇𝑇𝑇𝑇𝐹𝐹+𝑆𝑆𝑇𝑇 ,                           (4.6) 

 

The ROC (Receiver Operator Characteristic) curve is a probability measurement tool that 

plots TPR vs FPR. AUC (Area Under the Curve) is a measure of the model’s performance for 

classification problems, it shows the capability of the model to distinguish differences between 

classes, and it is defined as the summary of the ROC curve (Bradley 1997). The higher the AUC 

score, the better the performance. An excellent model should have AUC close to 1, indicating 

satisfying separability (Janitza et al. 2013). According to Hosmer et al. (2013), a model with an 
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outstanding performance would achieve an AUC score above 0.9. Values between 0.8–0.9 would 

be considered excellent, and 0.7–0.8 indicate acceptable classification. 

 

4.3.3 Logistic Regression  

Logistic Regression is one of the most popular machine learning algorithms used for 

classification problems. It is a predictive algorithm based on the concept of probability, which uses 

a cost function defined as the Sigmoid function.  

 

4.3.3.1 Development of the model  

As the input parameters to the logistic regression algorithm, the stability number (N’) and 

shape factor (HR) were used. In this case, a multiclass classification problem was considered. The 

model predicted if the stope would be classified as Stable, Unstable, or Caved based on input 

parameters.  

The data were randomly split into training and test sets, 80 and 20%, respectively. After that, a 

built-in sklearn library Standard Scaler was used to scale our data, so the distribution has a mean 

equal to 0 and a standard deviation equal to 1. The purpose of that is to standardize our futures in 

cases when some of them have a larger magnitude and might dominate the estimation function, 

causing it to be unable to learn the features as correctly as we would expect (Pedregosa et al. 2011).  

 

4.3.3.2 Results  

The Logistic Regression algorithm from the sklearn library was fitted to our model. Figure 

4.3 shows the decision boundary fitted to our data separating the unstable, stable and caved zone. 

It is noticeable that the model had the most problems with plotting decision boundaries for unstable 

cases. This is because these cases have similar values to either stable or caved ones and are hard 

to separate.  

A confusion matrix was plotted to evaluate our model more carefully (Figure 4.4). Stable cases 

were mapped as 0, unstable as 1 and Cave as 2. We can see that Logistic Regression did a very 
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satisfying prediction performance for stable and caved cases. Unfortunately, it did not perform 

well for unstable zones, which supports the results obtained by plotting decision boundaries. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Decision boundaries for Logistic Regression. 

 

 

 

 

 

 

 

 

Figure 4.4. Confusion Matrix for Logistic Regression. 
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The Area under the ROC Curve was also calculated for the training and testing set. The 

obtained values were 0.81 and 0.78, respectively, which according to Hosmer et al. (2013), would 

be considered excellent for the training set and acceptable for the test set.  

Cross-Validation was performed to determine the average accuracy of our model. The number of 

folds for our data was set to be equal to 5, which means five different accuracies were calculated 

for five different validation sets. The number of folds is determined by the size and characteristics 

of the datasets. It needed to be ensured that the training set and validation set are taken from the 

same distribution and that both sets include acceptable variation. For our dataset, the number of 

folds equal to 5 is sufficient, and it means that in every run the model was validated on 20% of the 

data (Marcot and Hanea 2021). The accuracies for our data were: 0.68, 0.64, 0.71, 0.71, 0.64. The 

average is 0.68, with a standard deviation of 0.03. 

 

4.3.4. Random forest  

A Random Forest is a powerful meta-estimator that can be applied to solve classification 

problems. The RF algorithm was presented by Breiman (2001) and has been successfully applied 

in many fields by researchers. The RF algorithm consists of a group of decision trees operating as 

a committee. The output is the value predicted by a larger number of decision trees. An example 

of Random Forest architecture is shown in Figure 4.5. The n represents the number of estimators 

(decision trees) that create the RF, and k1, k2, …, kn are the results obtained by each decision tree 

(Qi et al. 2018).  

The Random Forest algorithm allows us to regulate some of the parameters that directly 

impact the model’s performance and are helping to control the overfitting or underfitting of the 

model. For example, we can change one of the parameters to control the algorithm’s performance 

in several decision trees. The higher the number of decision trees, the better the chance for the 

model to properly learn the data. However, including too many estimators may slow down the 

process and increase the risk of overfitting.  
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Another parameter that helps to improve our model is the maximum depth of each tree in 

the forest. Developing deeper trees means that each tree would have more splits to better capture 

information about the data. However, if the decision trees are too deep for provided data, it might 

cause the same problems as too many estimators, slow processing time and overfitting of the data 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. The architecture of Random Forest algorithm (Modified from Qi et al., 2018) 

 

4.3.4.1 Development of the model 

Potvin’s database was passed to the Random Forest algorithm using the sklearn library in 

Python language. The input parameters were stability number (N’) and shape factor – hydraulic 

radius (HR). The output was the range of stabilities labeled to each stope – either stable, unstable, 

or caved. The data was separated into training sets – used to train the data, and the test set – used 

to test the algorithm’s performance. The size of the test set was equal to 36 examples, representing 

20% of the whole data set.  



 

83 

 

Chapter 4 Predicting the stability  

4.3.4.2 Hyper-parameters tuning 

In order to achieve the best performance of the RF model, the optimum number of 

estimators and the depth of each tree need to be established. These Hyper-parameters are necessary 

because the different values have special predictive performances. The AUC (Area Under the ROC 

Curve) score was used as the evaluation metric to find the optimum values. For the multiclass 

classification problem, the value of the AUC score was calculated using the One-vs-Rest scheme, 

and the macro average was reported.  

 AUC score was calculated for several estimators to find the most favorable number of 

decision trees for our data. Figure 4.6 shows the AUC score vs the number of estimators for the 

training and test sets. We can notice that the model achieves the best performance for the number 

of estimators, around 15. The performance decreases for more decision trees, and our model 

overfits the training data. The number of estimators was set to 15.  

The same method was used to choose the optimum depth of each decision tree. The AUC score vs 

max depth was plotted for several values. In Figure 4.7, we can see that the model’s performance 

decreases for depths higher than 4. We can also see that it overfits for large depth values. It predicts 

training data perfectly. However, it fails to generalize the findings for the test set. For our data, the 

tree depth was set to 4. 

 

 

 

 

 

 

 

Figure 4.6. The AUC score for several numbers of decision trees 
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 Figure 4.7. The AUC score for different values of decision trees depth. 

 

4.3.4.3 Results 

Random forest showed a favorable classification capability on Potvin’s database. After 

choosing the number of decision trees and the depth of each tree, the model predicted the stability 

of stopes with satisfying accuracy results. At first, the data were randomly separated into training 

and testing sets. The accuracy for training data was 0.84, and for the test set, 0.75. The Confusion 

Matrix (Figure 4.8) was plotted to illustrate the model’s performance. The label Stable was mapped 

as 0, Unstable as 1 and Cave as 2. It is noticeable that the model primarily has the most difficulties 

assigning the Unstable class. As shown in Figure 4.3, the plot of the distribution of our data, 

Stability Number vs Hydraulic Radius, the examples marked as Unstable are challenging to 

distinguish, and it’s challenging for Machine Learning models to assign that class correctly similar 

values to either stable or Cave condition. The model shows the best performance for the Stable 

class; 17 out of 19 cases were predicted correctly. 

In the next step, Cross-Validation was performed. The number of folds was chosen to be 

5, and the obtained output was five accuracy values for five different training and validating sets. 

The values for each set were: 0.61, 0.75, 0.71, 0.78, 0.68. The average accuracy equals 0.71 with 

the standard deviation of +/–0.06.  
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Then the Area Under the ROC Curve score for 15 decision trees with depth equal to 4 was 

calculated. For training data, the AUC score was 0.96 and 0.83 for test data. According to Hosmer 

et al. (2013), that score can be considered excellent for the test set and outstanding for the training 

set. 

 

 

 

 

 

 

 

 

 

 Figure 4.8. Confusion Matrix for Random Forest multiclass classification. 

 

4.4 Summary and conclusions  

The two most popular Machine Learning algorithms, Logistic Regression and Random 

Forest, were presented in this research to predict open stopes’ stability. The total number of 176 

history cases investigated was collected from Potvin (1988). Two variables from the data were 

selected, Stability Number (N’) and the shape factor (HR), all of them with condition (label) 

assigned: stable, unstable or Cave.  

Both models were evaluated using k-fold Cross-Validation, Confusion Matrix and ROC – 

AUC score to obtain the most satisfying results. Random Forest performed slightly better than 

Logistic Regression, mainly predicting the unstable class. The reason for that is that an unstable 

class has values of N and HR similar to other classes, and it is hard to separate them with a line.  
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In Radom Forest, hyper-parameter turning was performed to develop our model and 

achieve the best performance. First, the Area under the ROC curve was calculated for several 

estimators (decision trees) and different values of tree depth. Then the AUC vs number of 

estimators/tree depth were plotted to find the most optimum values for our model.  

Confusion Matrix was plotted for both algorithms. It helped conclude that the model has 

the most difficulties predicting unstable classes. All three classes were investigated in the original 

Matthew stability graph method, but Potvin later reduced the number of classes to stable and Cave 

separated by a transition zone. That approach might be good for future investigation to increase 

the model’s accuracy and achieve better performance since the unstable class is most difficult for 

ML models to predict.  

In general, both algorithms showed satisfying capabilities and could be used in further 

investigation and have great potential in predicting the stabilities of open stopes. In future research, 

the data could be expanded to more historical cases to obtain even better results, as well as other 

ML or AI algorithms might be investigated. 
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CHAPTER 5: ENHANCING UNDERGROUND 

EXCAVATIONS STABILITY PREDICTION IN MINING 

ENGINEERING: OPTIMAL CONFIGURATION OF AN 

ARTIFICIAL NEURAL NETWORK MODEL 

This chapter focuses on advancing the accuracy of underground excavations stability predictions 

in mining engineering by optimizing an artificial neural network model. Analyzing Potvin's 

database, which consists of 175 historical cases, I explored the impact of different ANN model 

configurations; it was discovered that normalizing the data with Standard Scaler and 

implementing Swish as the activation function in all layers produced the most accurate predictions 

for this specific case. Furthermore, employing the SHAP (Shapley Additive exPlanations) tool 

allowed us to analyze the importance of the features and determine the factors with the highest 

influence. My findings reveal that the shape factor has the most significant impact on the stability 

of the underground openings, followed closely by the Q value. This research contributes to the 

optimization of predictive models for underground mining excavations stability and reveals the 

critical role played by specific parameters impacting the stability of open stopes.  
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5.1 Introduction  

Mining engineering plays a crucial role in extracting valuable resources from the Earth's 

surface. Underground excavations, such as drifts and stopes, are vital components of mining 

operations. However, ensuring the stability of these excavations is essential to prevent accidents 

and maintain productivity and the well-being of workers. Traditionally, stability assessment in 

underground mining heavily relied on empirical approaches and engineering expertise. However, 

with the development of advanced computational techniques and the rise of machine learning, 

there is an opportunity to enhance the accuracy and efficiency of excavation stability predictions. 

This study explores the application of machine learning, specifically Artificial Neural Networks 

(ANNs), in predicting underground excavations stability in mining engineering. 

Recent literature has shown a growing interest in employing machine learning and artificial 

intelligence for stope design and excavation stability assessment in underground mining. While 

previous studies such as Adoko et al. (2022), Santos et al. (2020) have focused on specific 

parameters, mostly stability number (N’) and shape factor (HR), my research expands upon this 

by incorporating different factors contributing into stability assessment. By considering 

parameters like block size factor, shear strength of the critical joint, and others as separate model 

inputs, I aim to provide a more comprehensive analysis of their individual impact on stability 

predictions, marking an advancement in stope stability assessment. 

The study focuses on Potvin's database consisting of 175 real-life cases, each with various 

features describing the characteristics of the surrounding rock mass, geological conditions, and the 

dimensions ratio of the opening. I selected the Potvin (1988) database for its capacity, thorough 

documentation, and completeness, making it a reliable resource for my study. With its collection 

of case histories, the Potvin database offers comprehensive insights into stope stability assessments, 

thereby providing a solid foundation for my research. Additionally, its open access availability 

ensures transparency and accessibility, aligning with my commitment to scientific accuracy and 

reproducibility. The dataset encompasses a range of stability outcomes: stable, unstable, and caved. 

By training an ANN model on this dataset, we can exploit the power of machine learning to 

discover complex relationships and patterns that may not be apparent through traditional methods. 

I will explore different model architectures, activation functions, and optimization algorithms to 

identify the optimal configuration that yields the highest accuracy and reliability. The primary 
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objective of this study is to investigate the impact of different factors on the stability of 

underground excavations. This research will contribute to the growing body of knowledge in 

applying machine learning techniques to mining engineering, offering insights into how those 

approaches can improve decision-making and safety in mining operations.  

 

5.2 Engineering background and literature review 

In underground mining operations, the stability of excavations is influenced by a variety of 

geological and mining factors, each contributing to the overall integrity and safety of the 

workspace. While open stope mining offers the advantage of increased productivity with reduced 

exposure to unsafe conditions, the potential for significant overbreak exists, influenced by the 

characteristics of the hangingwalls. Overbreak refers to the unintended displacement of unstable 

rock beyond the intended stope design, often caused by sloughing (Capes 2009). Such occurrences 

result in substantial operational expenses, production disruptions, and most significantly, create 

safety hazards. Therefore, it becomes crucial for mining operations to thoroughly evaluate the 

stability of stope walls to facilitate effective production planning and scheduling. Several 

important factors control and influence the overall stability in underground mining operations. 

This includes stress relaxation, which significantly influences mining excavation by affecting rock 

mass behavior (Diederichs and Kaiser 1999), mining technique and extraction rate, the mechanical 

and geological properties of surrounding rock and dimensions of the stopes (Stewart and Trueman 

2004). Significant incidents in mining operations are faults, which refer to fractures or zones of 

discontinuity within the Earth's crust where there has been movement along the plane of the 

fracture. These movements can occur in various directions, including vertical, horizontal, or 

diagonal, and can result in displacement of the rock layers on either side of the fault. Faults are 

classified based on the direction of movement, the angle of the fault plane, and the type of stress 

responsible for the movement (Zhou et al. 2022). Faults are commonly present, especially in 

metalliferous mines, and have been recognized as the cause of instability for both mining and civil 

underground excavations (Suorineni 1998a). In open stope mining, critical issue is the method of 

liquidation of post-mining space, which involves managing the voids left underground after mining 

activities cease. This process may include backfilling voids with various materials or leaving them 

unfilled, with each approach presenting unique challenges and considerations. Additionally, the 
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impact of neighboring workings, such as adjacent stopes, must be carefully assessed to control 

risks related to stability and stress changes induced by nearby mining activities. Furthermore, 

managing mining edges—the boundaries of active excavation areas—is essential to prevent 

overbreak and maintain precise stope dimensions. Techniques such as controlled blasting and the 

installation of support systems play a crucial role in minimizing overbreak and ensuring worker 

safety. 

 

5.2.1 Stability Parameters 

The artificial neural network model was fitted to the Potvin database gathered between 

1986 and 1987 from mining operation sites that were extracting material using the open stoping 

method. The parameters of the surrounding rock mass of each stope investigated were determined 

by the Mathews empirical method. These parameters included:  

• Block size factor (RQD/Jn), 

• The shear strength of the critical joint (Jr/Ja) 

• Rock stress factor (factor A) 

• Joint orientation adjustment factor (factor B) 

• Effect of the gravity (factor C) 

• Shape Factor (Hydraulic Radius) HR 

The RQD (Rock Quality Designation) system was developed by Deere in 1964. It is widely 

used not only as a factor in classification systems but also as a basic parameter for tunnel support 

selection. It quantifies the competence of a drill core and is defined as a ratio between total lengths 

of an intact piece (larger than 10 cm) and the total length of a core (Deere 1963). 

The Jn, Jr and Ja values represent the joint set number, joint roughness number and joint 

alteration number, respectively. Those values are determined using NGI (Norwegian Geotechnical 

Institute) Classification Chart, that can be found in Grimstad and Barton, (1980). 

Factor A quantifies the effect of stresses acting on the open stopes exposed surface. This 

factor is a function represented by a ratio of the intact rock strength, determined by the Uniaxial 

Compressive Strength (UCS) test, and the induced stress, maximum tangential stress acting 
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parallel to the exposed surface at the boundary of a stope. Factor B accounts for the orientation of 

the geological structures (joint sets) concerning the investigated plane. It is determined by the 

angle of intersection between the exposed surface and the most predominant structure. The last 

factor, C, considers gravity's effects on stope stability, such as sliding, falling, and slabbing. The 

details about that classification procedure can be found in Potvin et al. (1988). 

All these parameters are used to calculate stability number N, which is specifically developed 

for designing span dimensions and support. It yields the physical conditions of the stopes. N is 

calculated as follows:  

 

                                                 𝑁𝑁′ = 𝑅𝑅′ ∙ 𝐴𝐴 ∙ 𝐵𝐵 ∙ 𝐶𝐶                        (5.1)                                                              

 

Q value was first presented in 1974 by Barton et al. of the Norwegian Geotechnical Institute 

(NGI) to evaluate rock mass characteristics. The Q value was calculated to determine the support 

requirement in mining excavations, tunnels and rock caverns (Barton et al. 1974).  

Originally, six parameters were used to calculate the Q value. However, the Mathew 

stability graph method utilized that number with four parameters. The formula is as follows:  

 

         𝑅𝑅′ =  
𝑅𝑅𝑅𝑅𝑅𝑅𝐽𝐽𝑛𝑛 ∙ 𝐽𝐽𝑟𝑟𝐽𝐽𝑎𝑎                                (5.2) 

Another key element for effectively assessing the stability of underground mining openings 

is the shape factor, also known as the hydraulic radius (HR). The hydraulic radius, a crucial 

geometric parameter, defines the opening's shape and plays an important role in determining its 

stability. The term hydraulic radius is commonly defined as the ratio of the wall exposed area to 

its perimeter. In the case of inclined stopes, where the stope deviates from a vertical position, the 

most crucial factor for HR calculation is the hanging wall's exposure. The HR calculation considers 

the spans of the stopes along the dip (h) and along the strike (w), as illustrated in Figure 5.1 and 

equation 5.3. 
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                               𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑅𝑅𝐻𝐻𝑅𝑅𝐻𝐻𝑅𝑅 𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻𝐻𝐻𝑅𝑅 (𝐻𝐻𝑅𝑅) =
𝑊𝑊 ∙ ℎ2𝑊𝑊+2ℎ               (5.3) 

 

 

 

 

 

 

 

 

Figure 5.1 Open stope basic geometry. 

 

The Matthew stability graph method was developed specifically for evaluating the stability of 

open stope surfaces in underground mining excavations. This popular and widely used method 

relates two factors, the stability number N’, and shape factor HR. The stability of the opening is 

then determined from a graph that plots stability number N vs. shape factor HR. 

 

5.2.2 Literature review 

The Matthews stability graph is an empirical method designed in 1980 to assess the stability 

of open stopes at depths exceeding 1000 m (Mathews et al., 1980). That research was followed by 

several authors who have collected new data, extended that method, and verified its effectiveness. 

Most of those adaptations and developments are focused on expanding the database of more cases 

and adjusting the position and total number of the stability zones employed. Empirical methods 

became widely used as a simple approach to generating guidelines for designing open stopes. The 

original Matthews database, consisted of 26 case studies from three mines, and 29 historical cases 
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from literature. Later the database was expanded by Potvin in 1988 to 175 cases, followed by 

Mawdesley et al. (2001) increasing the database to 485 cases.  

Several studies have focused on adjusting and modifying the values of A, B, and C, resulting 

in different stability numbers of N’ values and zones. Those modified factors were proposed by 

Diederichs and Kaiser (1999) and Mitri et al. (2011), Stewart and Trueman (2004) proposed an 

adjustment for the stress factor A. Some authors have considered the time effect in the excavations 

as a factor to calculate stability number N (Pakalnis 1986) or the impact of faults (Suorineni 1998b). 

However, there have been no general applications of those proposed factors.   

Much research has focused on evaluating the influence of dimensions of the stope on its 

stability. Henning (2007) presented that increasing the height of a stope causes an increase in the 

overbreak of the stope walls. Hughes (2011) investigated the stope's dimensions and showed that 

larger strike lengths also increase the overbreak. The hydraulic radius, which defines the size and 

shape of the hanging wall, was also examined by Wang et al. (2007). That study showed a high 

correlation between the increasing value of HR and decreasing the stability of the stope.  

The cavity monitoring system (CMS) allowed the creation of a three-dimensional analysis of 

the stope, which allowed the development of a tool to estimate the dilution of an opening. The 

concept of equivalent linear overbreak/slough (ELOS) presented by Clark (1998) was applied by 

several authors in the stability graph method (Papaioanou and Suorineni, 2016, Suorineni et al. 

2015). Numerical modelling also significantly influenced the stope stability assessment presented 

by Idris et al. (2011). The study showed that the probabilistic approach might better capture the 

spatial variability of the surrounding rock mass properties than the classic empirical method. 

Numerical modelling was also applied by Heidarzadeh et al. (2019) to evaluate the effect of the 

geometrical parameters on the stope stability, and it showed that the hydraulic radius, stope span 

width and hangingwall dip have a significant influence on the stability of the stope. Henning and 

Mitri (2007,2008) presented a parametric numerical modeling study followed by a case study, to 

evaluate the influence of variety of factors on hangingwall ore dilution.  Mitri et al. (2010) 

investigated the issue of unplanned ore dilution and its significant economic implications for 

mining operations. By analyzing surveyed stope profiles and utilizing numerical modeling, the 

study reveals that unplanned ore dilution is linked to stope design and construction, orebody 

geometry, and rock mass characteristics. 
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Some authors have approached the stope design with applications of machine learning and 

artificial intelligence techniques. The literature shows a variety of applications of ML and AI 

models that focus on designing open stopes and assessing the stability of underground excavations. 

In previous studies by Santos et al. (2020) and Adoko et al. (2022), the application of artificial 

neural network models to assess the stability of open stopes was investigated. Szmigiel and Apel 

(2022) compared random forest and logistic regression models. However, these studies were 

focusing only on stability number (N’) and shape factor (HR) as input parameters. Erdogan Erten 

et al. (2021) considered a broader range of input parameters including stope surface, strike length, 

exposed height, ore width, HR, N’, and depth of excavation. A hybrid grid search-based ANN 

model was employed in this study, followed by comparison with k-nearest neighbour (kNN), naive 

bayes (NB), support vector machine (SVM) and Decision tree (DT) machine learning models.  

Wang et al. (2002) also evaluated the application of a neural network, where rock-mass rating 

(RMR) and spans of the openings were utilized as input parameters. Adoko et al. (2019) considered 

parameters such as hydraulic radius (HR), rock quality designation (RQD), joint set number (Jn), 

joint roughness number (Jr), joint alteration number (Ja), stress factor (A), joint orientation 

adjustment factor (B), gravity factor (C), design code, stress category, undercut area, ELOS 

(Equivalent Linear Overbreak\Slough) and maximum failure depth (FDmax). This study evaluated 

a mine stope performance in unfavorable rock mass conditions, by employing artificial neural 

network. However, the database for this investigation consisted only of 115 cases of hangingwall 

stability. In response to this, my study takes a step forward by considering all the parameters that 

combine into stability number (N’) as distinct model inputs. These parameters are block size factor, 

the shear strength of the critical joint, rock stress factor (factor A), joint orientation adjustment 

factor (factor B), and effect of gravity (factor C), alongside shape factor (HR). This approach will 

allow us to examine the individual influence of each parameter on the predictive capabilities of the 

model and stability conditions. 

 

5.3 Artificial Neural Network Model Overview 

There is no one specific artificial neural network model that would be suitable for each problem 

and data. All published research papers and books come from various fields, such as engineering, 

psychology, social studies, mathematics, health sciences etc. Before approaching the problem we 
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would like to solve with ANN model, an evaluation of the dataset is necessary to determine the 

proper structure of the algorithm.   

 The database investigated in this research consists of 175 historical case studies of open 

stopes with information about the properties of the surrounding rock mass (factors Q', A, B, C), 

the dimensions of the opening (HR) and the stability evaluation. The snapshot of the data set and 

its structure is presented in Table 5.1. The first 15 examples are shown, with factors Q', A, B, C 

and HR determined, and the last column presents the assessment of each open stope: stable, 

unstable or caved. The number of stable cases in the dataset is equal to 88, the unstable cases are 

equal to 39, and the remaining 49 examples are classified as caved. 

 The pair plot (Figure 5.2) was used to investigate the data further to evaluate the correlation 

between all attributes in the data set. A pair plot (also called a scatterplot matrix) is a great tool 

that allows us to see the distribution of a single variable and the relationship between two variables. 

It is a popular method to establish trends for the analysis (Ahsan et al. 2021). The pairs plot 

function has built two basic figures, the scatter plots and histograms. The histograms on the 

diagonal show the distribution of one variable, and the scatter plots around allow us to see the 

relationship between the variables. It can be noticed in the data that only Q' value and HR are 

slightly correlated, whereas the rest of the features do not show any significant correlation with 

each other. The lack of linear correlation between the features indicates that an artificial neural 

network is the appropriate choice for the data since these models are particularly suited for 

handling non-linear relationships and complex patterns. Unlike traditional statistical methods, 

ANN models can capture complicated interactions and dependencies among input variables 

without requiring assumptions about the underlying data distribution. This flexibility enables ANN 

models to effectively learn from diverse and unstructured datasets, enhancing their performance 

in predictive tasks. Research by Hagan et al. (2014) and Bishop (1995) underscores the 

effectiveness of ANN models in handling non-linear relationships and noisy data, making them a 

preferred choice for analyzing not-correlated databases. ANN is also appropriate for this problem 

because those models have proved to be powerful in classification tasks. 
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Table 5.1 Potvin's data set investigated – first 15 examples (complete database can be found in 
Chapter 4) 

 

Figure 5.2 Pairs plot visualization of Potvin database. 

CASE 

NUMBER 
Q’ A B C HR 

STABILITY 

ASSESSMENT 

1 54 1 0.64 6.5 5  
2 6 0.2 0.25 2.5 8.9 UNSTABLE 
3 6 0.1 0.2 2.5 7.7 CAVE 
4 10.5 1 0.2 3.7 7.1 UNSTABLE 
5 40 1 1 8 14 STABLE 
6 40 1 1 8 11 STABLE 
7 40 1 1 6.5 5.2 STABLE 
8 9 1 0.4 5 8.5 STABLE 
9 3.2 0.3 0.2 3.5 4.7 UNSTABLE 

10 4.2 1 0.2 6.5 9.1 UNSTABLE 
11 30 1 0.2 7 8.3 STABLE 
12 6.25 0.1 0.85 2 5.8 CAVE 
13 6.25 0.1 0.85 2 4.2 STABLE 
14 30 1 0.6 8 8.8 STABLE 
15 30 0.1 0.4 2 3.5 UNSTABLE 
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5.3.1 Preprocessing the data 

The accelerating development of data science has provided great opportunities for expanding 

and applying data-driven solutions for challenges in engineering. Data preprocessing is a 

significant foundation for proper and valid data analysis. It refers to a set of techniques for 

increasing the quality of the investigated raw data and has been generally acknowledged as an 

essential task and may account for even 80% of the total model development effort (Fan et al. 

2021).  In practice, it is almost always advantageous to employ preprocessing techniques on the 

input data before it is presented to a model (Bishop 1995, Nawi et al. 2013).  

The first preprocessing technique that was applied to the data was feature scaling 

(standardization). There are several data scaling techniques. In the present study, two scaling 

methods were investigated to compare their influence on the model and to employ the most 

effective one. The artificial neural network is a model that learns the mapping from input variables 

to output variables. The input variables of the data have different ranges, which causes each 

variable to have a different scale, and those differences across the dataset may significantly 

increase the complications in proper model development. The pairs plot presented before can also 

help to visualize the necessity of applying standardization methods. It can be noticed that different 

features have different value ranges. Factors A and B have the same range from 0 to 1, and factor 

C is between 2 and 8. However, the Q' value is higher than 60 for most cases. Scale generally 

refers to the change in the range of the values and not the distribution shape. The two most popular 

approaches, MinMaxScaler and StandardScaler, were applied to the input data as scaling 

techniques.  

MinMaxScaler is one of the most popular and widely recognized methods to standardize 

the dataset variables. For each element, the base estimation of that component is replaced with 0, 

the most extreme value (maximum value) is changed into 1, and then each other element is 

replaced with a decimal value from 0 to 1 (Patro and Sahu, 2015). MinMaxScaler preserves the 

original shape of the data distribution, and it doesn't modify the information embedded in the 

dataset. The formula for MinMaxScaler is as follows:  
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                                                 𝑋𝑋𝑝𝑝𝑝𝑝𝑎𝑎𝑠𝑠𝐿𝐿𝑠𝑠 =  
𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑛𝑛𝑋𝑋𝑚𝑚𝑎𝑎𝑚𝑚−𝑋𝑋𝑚𝑚𝑚𝑚𝑛𝑛                   (5.4) 

Where:  𝑋𝑋𝑚𝑚𝑎𝑎𝑚𝑚 –  maximum value  𝑋𝑋𝑚𝑚𝑝𝑝𝐿𝐿 – minimum value 

StandardScaler is another data standardization tool widely applied to several datasets. 

StandardScaler follows standard normal distribution; therefore, it expects the information to be 

ordinarily appropriated inside of each element and then scales those values to such an extent that 

the distribution revolves around 0 with a standard deviation of 1 (Raju et al. 2020). The values for 

StandardScaler are on a similar scale as MinMaxScaler, but the range of values is more significant. 

For each element, the mean and standard deviation are determined, and then the scaled feature is 

calculated as follows:  

 

                                                𝑋𝑋𝑝𝑝𝑝𝑝𝑎𝑎𝑠𝑠𝐿𝐿𝑠𝑠 =  
𝑋𝑋− µ𝜎𝜎                                (5.5) 

Where: 

 µ - mean, 𝜎𝜎 – standard deviation 

 

Artificial Neural Network is a powerful algorithm that requires input and output variables 

to be numbered, which means that categorical data should be encoded to numbers before training 

and fitting the model. The Potvin database is a multiclassification problem. The labels for each 

observation are the stability assessment: stable, unstable, or caved. To ensure the labels are 

properly adjusted for the model expectations, a common and determined method called one-hot 

encoding was applied, which is a common and determined method that transforms categorical 

values into vectors, requiring minimal processing. It is expressed as follows: let x be a categorical 

random variable with n distinct values x1, x2,…xn. The one-hot encoding of that value xi is a vector 

where every element equals 0, except the ith component, which is equal to 1 (Hancock and 

Khoshgoftaar 2020). In the Potvin database, a one-hot encoding technique was applied on stability 

categories: S = {stable, unstable, caved}, let x1 = stable, x2 = unstable and x3 = caved, a one-hot 
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encoding for the variable x is: (1, 0, 0), (0, 1, 0), and (0, 0, 1). Previous research has shown that 

one-hot encoding on categorical variables is sufficient to design an artificial neural network that 

outperforms other machine learning models (Duan 2019).  

The next step to be implemented is splitting data into training, validation, and testing sets 

to evaluate and adjust the model to maximize the performance properly. Figure 5.3 shows the data 

splitting process, which allows a proper model adjustment. The size of each set should be adapted 

to the size of the database investigated and the model that will be employed. 

 

 

Figure 5.3 The steps of dividing the database into subsets 

 

The decision to utilize the Potvin database consisting of 175 cases, is driven by considerations 

of computational efficiency, while ensuring access to a reliable and well-described dataset. 

Furthermore, the Potvin database, known for its completeness and availability, has not yet been 

explored using artificial neural network models. Previous research has demonstrated the 

effectiveness of employing relatively small datasets when evaluating stope stability (Qi et al. 2018; 

Adoko et al. 2019; Santos et al. 2020; Szmigiel and Apel 2022). This suggests that even with a 

limited number of cases, meaningful conclusions can still be drawn regarding the stability of 

underground mining excavations. 
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To ensure that my model has enough data to be properly trained on, I decided to split it into a 

10% testing set and a 10% validation set, and the remaining 80% was used to train the ANN model. 

The first validation steps helped tune the model to increase the performance by choosing the best 

preprocessing technique and overall structure after the successful model adjustments were 

evaluated on an unseen testing set to confirm the results.   

 

5.3.2 ANN model structure 

Recent research interest in ANN has proved this is a powerful tool for capturing and classifying 

patterns in challenging data.  

An Artificial Neural Network is a mathematical model that reflects human reasoning, can learn 

from previous experience and can cope with complex and non-linear characteristics of a certain 

problem. It is also specifically suited to reflect particular behavioural patterns where the relation 

between input and output features is difficult or impossible to define by other mathematical 

methods (Zhang et al. 1998). ANN was originally developed to resemble the human brain's 

structure– composed of interconnected neuron nodes. Each node has its own input, receiving 

information from another node or environment, and output, communicating and sending the 

information to another node/environment. Every node has a particular function that transforms the 

input into output. Figure 5.4 shows a diagram of a single processing element containing a neuron 

with weighted dendrites and axons. Dendrites are thin processes designed to receive information 

from another cell; axons are part of neurons that carry information away from the cell (Chavlis 

and Poirazi 2021). 

 

Figure 5.4 Diagram of one single processing element 
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The accuracy of an Artificial neural network model is defined by three fundamental 

elements: the architecture of the network (pattern and relationship between neurons), learning 

methods (determining weights) and activation functions (Arifin et al. 2019). ANN is built of three 

main layers: input, hidden and output. The input layer receives information from outside of the 

model. All neurons in the input layer are connected with the hidden layer, which consists of several 

neurons defined by the user. Hidden layers have an essential influence on the performance of the 

ANN model, and if the hidden layers were not implemented, the model would have limited 

capabilities, resulting in insufficient performance and poor predictions. Depending on the data 

structure and its complexity, the user defines the number of hidden layers and can vary from one 

to any number justified by a satisfying performance. The same rule applies to the number of 

neurons in each hidden layer. There is no definitive rule about what number of hidden layers or 

neurons in each layer should be applied. Every problem and every database are different and 

require careful investigation.  

The shape of the investigated database directly determines the input layer, and it brings the 

data into the whole system for further processing by following layers. The input layer does not 

take any information from previous layers, making it the first initial step in the entire workflow 

for the model. The number of neurons in the input layer equals the number of features in the 

database. For my case, Potvin's database consists of five features, Q’, A, B, C and HR, that are 

intended to assess the overall stability of each open stope, which means that my model would start 

with an input layer with five neurons.  

One of the most significant and complex challenges in developing an ANN model is 

properly determining the number of hidden layers and neurons in each hidden layer. The literature 

and previous research activities don't clearly state one uniform and optimal solution for choosing 

the number of hidden layers and nodes. Traditional and one of the most popular methods is based 

on trial and error, which allows us to try different approaches to yield the most accurate results. 

The other methods that help to determine the number of layers and nodes include heuristic search, 

where we can gain knowledge from previous similar experiments where a close-to-optimal method 

might exist, and exhaustive search, which includes all possible topologies. Both of those methods 

include many alternatives, and it is very time-consuming to evaluate each of them. Those 
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techniques are commonly used as a starting point for consecutive searches by trial and error 

(Stathakis 2009). 

 In order to achieve the most satisfying results, the neural network requires an application 

of proper activation functions to perform various computations between hidden and output layers. 

The most common challenge for a Learning network is how the gradient flows within it, and some 

tend to be sharp in some directions and then slow or even equal to zero in others, creating an issue 

for an optimal selection. The gradient is the cause of the main problems of activation functions, 

such as exploding or vanishing gradients (Pascanu et al. 2012). Activation functions, referred to 

as transfer functions in some literature, are functions applied in neural networks to compute the 

weights of input variables and then decide whether the neuron can be activated. Activation 

functions can be linear or non-linear; the main purpose is to control the outputs of the network, 

and it has been proven that applying a proper function significantly improves the results of neural 

networks (Karlik and Olğaç 2011). In the classic linear model, the affine transformation usually 

gives the mapping performed from an input to the final prediction for each case. The formula for 

input vectors x transformation is given as: 

 

                                                   𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑇𝑇 + 𝑏𝑏                                  (5.6) 

Where: 

x = input 

w = weights  

b = biases  

 

The neural network produces results from linear equation (5.7), necessitating activation 

functions to convert those linear outputs to non–linear and to learn patterns within the data. The 

following formula defines the outputs for those linear models:  

 

                  𝐻𝐻 = (𝑤𝑤1 𝑥𝑥1 +  𝑤𝑤2 𝑥𝑥2+ . . + 𝑤𝑤𝐿𝐿 𝑥𝑥𝐿𝐿 + 𝑏𝑏)              (5.7) 
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These outputs from one layer are fed to the following layer until the final output is 

determined. However, since those outputs are linear by default, the non-linear activation functions 

should be implemented as transfer functions. The formula for non-linear output produced with an 

activation function is as follows:  

 

           𝐻𝐻 = 𝛼𝛼(𝑤𝑤1 𝑥𝑥1 +  𝑤𝑤2 𝑥𝑥2+ . . + 𝑤𝑤𝐿𝐿 𝑥𝑥𝐿𝐿 + 𝑏𝑏)                (5.8) 

 

Where 𝛼𝛼 is the implemented activation function, the position of each AF in the model 

structure depends on its function; located after hidden layers, it transforms outputs from linear to 

non-linear, while in the last output layer, the activation function produces final predictions 

(Goodfellow et al. 2016). Deeper networks usually generate better performance of the models, 

although the deeper it is, the higher the risk of common issues such as vanishing or exploding 

gradients. With each multiplication, the values of the derivative terms that are less than one become 

smaller and tend to zero, causing the gradient to vanish. On the other hand, the values greater than 

one tend to increase with each multiplication, causing the gradient to explode. Hence, the 

activation functions maintain those gradients to specific and controlled limits (Elliott 1993).  

 

5.3.3 Model evaluation 

For every developed model, an evaluation of performance is a significant step to measure and 

determine the efficiency and accuracy of the proposed method. For this classification problem, I 

considered a few popular and widely applied methods to assess model predictions.  

In the first place, I considered two evaluation metrics: accuracy and loss. Accuracy is a popular 

method for classification models, and it is a count of correct predictions usually expressed as a 

percentage. Accuracy is a significant tool for monitoring the model during training, allowing us to 

adjust some parameters to improve performance. On the other hand, loss is a cost function and a 

more challenging metric to interpret. Loss considers the probability and uncertainty of the 

prediction depending on how much the predicted value varies from the actual value. Loss 

summarizes the model's errors for each example in the training and validation sets data. Similar to 
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accuracy, it is mostly useful during model training to help adjust the algorithm's parameters. For 

accuracy, a higher score indicates better performance, whereas for loss, the goal is to minimize its 

value. It is common to observe a decrease in loss when accuracy increases, but this is not always 

true. Those metrics have different definitions and measure different characteristics; they may 

appear correlated, but there is no mathematical relationship between them. Both metrics give 

information about the model performance and help assess the risk of the most common issue in 

ANN models: overfitting and underfitting.  

For multiclass classification problems, the confusion matrix proved to be one of the best and 

most popular methods to evaluate the performance and analyze the model's behavior by tuning 

some of the parameters (Szmigiel and Apel 2022). The confusion matrix compares predicted and 

actual classes and allows us to determine precision, recall and F1-score metrics. Precision indicates 

the proportion of examples classified as positive by the model and actual positives within the 

database. It measures how much we can trust the model and its positive predictions. Precision is 

defined as follows:  

 

                              𝐹𝐹𝐻𝐻𝑅𝑅𝑅𝑅𝐻𝐻𝑅𝑅𝐻𝐻𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝑆𝑆𝑇𝑇                              (5.9) 

 

Where TP is a true positive rate (correct positive predictions), and FP is false positive 

(examples incorrectly classified as positive).  

Recall is a metric that measures the predictive accuracy for the positive class of the proposed 

model; in other words, it determines the ability of the algorithm to find all the positive features in 

the database. Recall is defined as:        

 

                               𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝑆𝑆𝐹𝐹                                (5.10) 

FN means a false negative rate, representing all the positive values incorrectly classified as 

negative. 
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Another important metric that needs to be established is the F1 score, which combines 

precision and recall under the concept of harmonic mean. The formula can be interpreted as a 

weighted average between recall and precision; and the best value for the F1 score is 1, and the 

worst is 0.  

 

                            𝐹𝐹1 − 𝑅𝑅𝑅𝑅𝑃𝑃𝐻𝐻𝑅𝑅 =  
2𝑝𝑝𝑐𝑐𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝐿𝐿−1+ 𝑐𝑐𝐿𝐿𝑝𝑝𝑎𝑎𝑠𝑠𝑠𝑠−1 = 2 ∙ �𝑝𝑝𝑐𝑐𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝐿𝐿 ∙ 𝑐𝑐𝐿𝐿𝑝𝑝𝑎𝑎𝑠𝑠𝑠𝑠𝑝𝑝𝑐𝑐𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝐿𝐿+𝑐𝑐𝐿𝐿𝑝𝑝𝑎𝑎𝑠𝑠𝑠𝑠�          (5.11) 

 

The F1- score could refer to both binary and multiclass classification problems and is 

significantly useful for finding the best trade-off between precision and recall (Grandini et al. 

2020). Determining those values should help us better understand the model's performance and 

what improvements should be considered to increase prediction accuracy.  

 

5.4 Model development and results 

The results of artificial neural network predictions performed on data from underground 

mining excavations to assess the stability of openings are presented below. The Potvin database 

was passed to the model developed in Python, and the results were evaluated using several methods 

that have proved to be mostly effective. The database cases from real-life mines were collected to 

assess their stability, and the condition was indicated using the classic graph method developed by 

Matthews (1980). The data consisted of 88 cases classified as stable, 39 cases as unstable, and 49 

as caved cases (Figure 5.5). Those stability assessments were passed to the algorithm as labels for 

the multiclass classification model. The data was preprocessed to maximize the performance and 

eliminate common issues such as unstable predictions, high bias or variance, low accuracy, and 

increased loss. The prepared database was then divided into separate sets: training, validation and 

testing, where the proportion of each set was 80%, 10% and 10%, respectively. The ANN model 

structure was then designed specifically for the provided database, considering the characteristics 

of the cases, the labels, the size, the complexity of the data, and the correlation between features. 

The model ought to learn, memorize and understand the data from 141 examples passed as a 

training set. 
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Figure 5.5 Bar plot of stability assessment count 

 

The lack of significant correlation between the features generated the need for a more 

complex structure; the created feedforward ANN architecture is composed of four layers, with 

decreasing nodes in each hidden layer. The first input layer, constructed of 5 nodes, is directly 

established by the number of features defined in the data set. The second layer, and the first hidden 

layer within the model, comprises 20 nodes directly connected with an input layer and following 

the second hidden layer. Careful investigation of the prepared data, literature, trial and error runs, 

and scientific judgment allowed us to decide on the best activation functions for the problem. The 

activation function employed for the first hidden layer is Rectified Linear Units (RELU). 

Introduced in 2011, RELU was specifically designed to enhance the performance of deep neural 

networks, and it works by thresholding values at 0, defined as f(x) = max(0,x). In simpler terms, 

when x < 0, the model outputs 0, and when x ≥ 0, the model outputs a linear function (Figure 5.6). 

ReLU became a well-known and widely applied activation function for classification problems, 

and it proved to be more computationally efficient than other standard functions. Because it does 

not saturate nor cause the vanishing gradient problem, it accelerates the convergence of gradient 

descent towards the global minimum (Agarap 2018). The simplicity and reliability that ReLU 

represents made it excessively popular and often favored by researchers and practitioners. 

However, ReLU does bear some issues because it is not zero-centred. It can suffer from a "dying 

ReLU" when all outputs for negative values are equal to zero. This causes some nodes to 
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completely disappear and not learn any patterns. Simultaneously, another problem is exploding 

activations, since there is no specific limit for ReLU it can reach infinity, which causes unstable 

nodes. 

 

 

 

Figure 5.6 ReLU and Swish activation functions 

 

Those issues prompted us to consider different activation functions for the training 

examples that were scaled using a standard scaler. Since the distribution of the standard scaler 

values revolves around 0 with a standard deviation of 1, causing some of the features to be less 

than 0, I have decided to apply swish as an activation function for that data. Presented for the first 

time by Ramachanran et al. (2017), the Swish activation function demonstrated better results on 

various deep learning models developed for challenging datasets. The formula for Swish is as 

follows: 

 

                                        𝑓𝑓(𝑥𝑥) = 𝑥𝑥 ∙ 𝑅𝑅𝐻𝐻𝑠𝑠𝑚𝑚𝑃𝑃𝐻𝐻𝐻𝐻(𝛽𝛽𝑥𝑥)                         (5.7)  

 

Where  𝑅𝑅𝐻𝐻𝑠𝑠𝑚𝑚𝑃𝑃𝐻𝐻𝐻𝐻(𝑥𝑥) =  
11+ 𝐿𝐿−𝑚𝑚  

   and 𝛽𝛽 is a trainable parameter. As shown in Figure 6.6, 

Swish has some noticeable properties that can make it a better solution for certain data. Most 
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importantly, Swish allows a small number of negative values to be propagated to the next layer, 

unlike ReLU, where those values are directly changed to zero. Another advantage of the swish 

function is the trainable parameter 𝛽𝛽, which allows tuning the function to boost its information 

propagation and smooth the gradients. Softmax is the last activation function applied to the last 

layer for both data (scaled with StandardScaler and MinMaxScaler) in my model. Softmax 

activation function, also called multinomial logistic regression, takes in a vector of raw outputs 

from a neural network and transforms them into decimal probabilities where the values are between 

0 and 1. It is a generalization of the sigmoid function that can be applied to multiclass classification 

problems when classes are mutually exclusive (Ren et al. 2017). Since softmax converts and scales 

real output values into a normalized probability distribution, it is mostly implemented in the neural 

network in the last layer just before the output layer and must consist of the same number of nodes 

as the number of classes/output layer. Softmax is defined as follows: 

 

                                      𝜎𝜎(𝑧𝑧)𝑝𝑝 =
𝐿𝐿𝑧𝑧𝑚𝑚∑ 𝐿𝐿𝑧𝑧𝑗𝑗𝐾𝐾𝑗𝑗=1                                       (5.8) 

 

Where all the zi values are input vector elements that take any real value, the bottom of the 

formula is the normalization term that takes those real values and changes them into decimal 

probability distribution values that sum to 1, and K is the number of classes in a multiclass 

classifier.  

 In the next step, the proper optimizer needed to be implemented to adjust each epoch's 

weight and reduce the loss of the algorithm. Choosing the proper weights for the model is a 

challenging task, hence the necessity of choosing a proper optimizer, which is a function that 

adjusts the attributes of neural networks like weights and learning rates to improve the overall 

accuracy and minimize loss. The Adam algorithm was applied, followed by cross–entropy as a 

loss function. Adam was presented for the first time by Diederik P. Kingma and Jimmy Lei Ba 

(2014). It is an efficient stochastic gradient-based optimization algorithm that is widely 

recognizable and applied. It calculates the individual learning rates for every parameter from 

estimates of the first and second moments of the gradient. Cross–entropy loss is a common and 
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widely used loss function in machine learning, especially is classification tasks; it measures the 

difference between the predicted and actual probability distribution of the classes. For multiclass 

classification problems, the cross-entropy loss is defined as:  

 

                                                        𝐿𝐿(𝐻𝐻�,𝐻𝐻) = −  ∑ 𝐻𝐻(𝑘𝑘)𝐾𝐾𝑘𝑘 𝑅𝑅𝑃𝑃𝑠𝑠𝐻𝐻�(𝑘𝑘)                        (5.9) 

 

Where y is a one–hot encoded vector of the true label and 𝐻𝐻�  is a vector of predicted 

probabilities for all the classes (Bishop 2006; Goodfellow et al. 2016).  

 The final model structure was designed based on the size of the database and the number 

of features and classes in this classification problem. The specific number of nodes in hidden layers 

and the number of epochs were determined through experimentation, literature review and 

validation on a separate validation set. Figure 5.7 presents the model that generated the best results 

on the investigated database, where three hidden layers were developed, with 20, 10 and 5 nodes 

accordingly.  

 

Figure 5.7 Final ANN model structure 
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The number of epochs was set to 100, which refers to the number of times a model was 

trained on the training set. Each epoch consists of one forward and one backward pass of all 

training examples through the model. The model makes predictions on the entire training set, 

calculates the loss between the predicted output and the real value, and then updates the model's 

parameters through backpropagation. Increasing the number of epochs can result in better model 

performance since the model has more opportunities to learn from the training data. However, 

increasing epochs beyond a certain point can lead to overfitting, where the model becomes too 

specialized to the training data and performs poorly on unseen sets. Therefore, determining the 

optimal number of epochs is a crucial hyperparameter tuning step in machine learning. 

 

5.4.1 Model results 

The model was trained on 80% of the database, equal to 141 data points. 10% of the data 

was then used for validation and tuning the model. The model was tested on an unseen set of 18 

examples in the final step. In the first run, two scaling methods were compared: Standard Scaler 

and Min max scaler and two different activation functions: ReLu and Swish. The accuracy vs 

epochs and loss vs epochs for all the configurations that have generated the best performances are 

shown in Figures 5.8 – 5.15. These graphs were then used to establish the configuration that 

achieved the most satisfying results.  

 

Figures 5.8 and 5.9 Accuracy and loss score vs epochs, for a data scaled with MinMaxScaler 
ReLu activation function 
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Figures 5.10 and 5.11 Accuracy and loss score vs epochs, for a data scaled with MinMaxScaler  
Swish activation function 

  

 

 

Figures 5.12 and 5.13 Accuracy and loss score vs epochs, for a data scaled with StandardScaler 
Swish and ReLu activation functions 
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Figures 5.14 and 5.15 Accuracy and loss score vs epochs, for a data scaled with StandardScaler 
Swish activation function 

 

The trade-off between accuracy and loss is important in machine learning models. 

Accuracy measures the overall correctness of predictions, while loss quantifies the error between 

predicted and actual values. While achieving high accuracy is desirable, solely focusing on 

accuracy may not always be optimal. In certain scenarios, a model with high accuracy may still 

exhibit noticeable loss, indicating poor prediction quality, hence the significance of balancing 

these two metrics. For instance, by increasing model complexity or allowing for more flexible 

decision boundaries, the model may achieve lower loss but become more prone to overfitting the 

training data, thus reducing accuracy on unseen cases. Taking this trade-off into account helps us 

decide on appropriate regularization techniques, model architecture, and hyperparameter tuning 

strategies, which allows us to reach the most appropriate balance between capturing complex 

patterns and preventing overfitting (Brownlee, 2016; Raschka and Mirjalili, 2019).  

Plotting accuracy and loss versus the number of epochs has provided valuable insights into 

the performance of different configurations in my study. I could conclude the model's optimal 

preprocessing techniques and activation functions by examining the plots. Specifically, I found 

that scaling the data with StandardScaler and using Swish as the activation function for all hidden 

layers yielded the best performance. Although a configuration using MinMaxScaler with ReLU 

activation achieved high accuracy for the validation set (as shown in Figure 5.8), it is important to 

consider the corresponding loss (Figure 5.9). The high loss indicates that the model might overfit 
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the training data, leading to poor generalization and potentially inaccurate predictions of unseen 

data. I observed a drop in accuracy upon replacing ReLU with the Swish activation function (as 

depicted in Figures 5.10 and 5.11). Therefore, I concluded that the MinMaxScaler preprocessing 

option is not optimal for Potvin's stope stability database. When testing the configuration of 

StandardScaler and using the Swish activation function in the first hidden layer, followed by ReLU 

in the second and third hidden layers, I observed significant overfitting of the model. The accuracy 

of the training set was noticeably higher than that of the validation set (Figure 5.12). 

Additionally, while the loss decreased for the training set, it remained high for the 

validation set (Figure 5.12). This discrepancy between the performance on the training and 

validation sets led us to conclude that the combination of Swish and ReLU activations for this 

database causes overfitting. As can be noticed in Figures 5.14 and 5.15, the combination of 

StandardScaler for data scaling and the Swish activation function for all the hidden layers 

demonstrated superior performance, reaching a better balance between accuracy and loss.   

After tuning the hyperparameters, evaluating the model on the validation set, and deciding 

on the most satisfying configuration, testing the final model on an independent testing set is crucial. 

The testing set is an unbiased measure of the model's performance and provides a reliable estimate 

of its ability to generalize to unseen data. The model was fitted to an unseen testing set that 

consisted of 18 examples that were not used for training or validation. The performance parameters, 

such as the classification report and confusion matrix, were established.  

The classification report is an important evaluation tool in machine learning, particularly 

for classification tasks. It provides a comprehensive summary of evaluation metrics for each class, 

offering valuable insights into the model's performance. Interpreting the classification report 

allowed us to assess the model's precision, recall, and F1 score for individual classes and overall 

accuracy. The classification report is presented in Table 5.2, and the confusion matrix in Figure 

5.16. The model's overall accuracy is equal to 0.83, and an accuracy of this magnitude indicates 

that the model correctly predicts the proper class for approximately 83% of the instances in the 

testing set. This level of accuracy suggests that the model has learned meaningful patterns and 

relationships within the data, allowing it to make reasonably accurate predictions. While an 

accuracy of 100% is often desired, achieving such perfection is not always realistic or feasible, 

especially in complex real-world problems such as mining engineering. Therefore, an accuracy of 
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83% signifies a substantial level of success in capturing and understanding the underlying patterns 

in the stope stability database. High precision values for stable and cave classes indicate fewer 

false positives, while high recall indicates fewer false negatives predictions. The F1 score is a 

metric that combines precision and recall into a single value, providing a comprehensive 

evaluation of a model's performance. A higher F1 score is generally desirable because it indicates 

a better trade-off between these two metrics, it considers both false positives and false negatives, 

making it suitable for situations where misclassification of either positive or negative instances is 

equally important. The F1 score achieved by my model suggests that it can classify testing 

examples correctly while minimizing misclassifications, especially for Stable and Unstable classes.  

 

Table 5.2 Classification report for testing set 

 

The confusion matrix presented in Figure 5.16 provides a visual representation of the 

model's predictions and facilitates a deeper understanding of its strengths and weaknesses, and it 

presents a summary of the model's performance across different classes. 

By examining the graphical representation of the confusion matrix, we can see that my 

model showed promising performance in classifying test data. Seven of the nine examples of the 

stable class were correctly classified, demonstrating the model's ability to identify stable instances 

accurately. However, one stable example was misclassified as unstable and another as caved, 

suggesting room for improvement. Both unstable examples were correctly classified, and six were 

correctly classified among the seven examples representing the caved class. However, one caved 

example was incorrectly classified as unstable. Overall, the model's performance in classifying 

examples into stable, unstable, and caved classes shows promise, with scope for fine-tuning to 

enhance accuracy and minimize misclassifications.  

 Precision Recall F1 - score 

Stable  1.0 0.78 0.88 
Unstable  0.5 1.0 0.67 

Cave  0.86 0.86 0.86 
 

Accuracy 0.83 
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Figure 5.16 Confusion Matrix of the prediction performance on the testing set 

 

In the last step of visualizing the model's predictive capabilities, we plotted the stability 

Number (N) versus Hydraulic Radius (HR) for real data points and the ones predicted by the 

constructed ANN model. In the development process, we considered all the parameters that 

combine into stability number N separately to improve the performance and investigate the 

parameters' influence. After achieving the satisfying results, we determined the stability number 

N for the predicted cases to present the results and compare them visually with the real data points. 

Figures 5.17 and 5.18 illustrate the stability graph N vs HR for real and predicted cases, 

respectively.  
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Figure 5.17 N vs HR plot for actual classes 

 

 

 

  

 

 

 

 

 

Figure 5.18 N vs HR plot for predicted classes 
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Plotting those graphs confirmed that using models such as ANN allows to capture more 

complex relationships in data, which are difficult or impossible to classify with a classic Matthew 

Stability Graph method properly. ANN was able to correctly categorize points overlapping 

significantly, which would create a considerable challenge for classic methods based on linearly 

separating classes. This showcases the strength of ANN in handling complicated data structures 

where linear separation methods might fail. Artificial neural networks provide a more adjustable 

and accurate approach to classification tasks in scenarios like stability prediction in mining 

engineering. 

Overall, the model's performance in classifying cases into the stable, unstable, and caved 

classes is highly promising, indicating the model's ability to make accurate predictions. This 

assertion is supported by the comprehensive evaluation of the classification report, the confusion 

matrix and stability plots N vs HR. These combined results affirm that the model exhibits 

promising predictive capabilities and performs exceptionally well in accurately categorizing 

instances into the appropriate classes. 

 

5.4.2 Exploring feature importance with SHAP 

Investigating the impact of each feature in a dataset on the final output is a crucial step in model 

interpretation and understanding, particularly in mining engineering, where these features can 

substantially influence underground stability. One powerful tool for this analysis is SHAP 

(Shapley Additive exPlanations) values. SHAP values comprehensively explain the importance of 

features and their contribution to the model's predictions. They are based on the game-theoretic 

concept of Shapley values, which ensure fairness and consistency in assigning feature importance. 

Lundberg and Lee (2017) introduced the concept of SHAP values, which has gained significant 

attention in machine learning interpretability. The SHAP values tool allows us to visualize and 

quantify the contribution of each feature, enabling an understanding of how different variables 

influence the model's output. By utilizing SHAP values in kernel analysis, we can derive valuable 

insights about feature effects, identify influential factors, and make informed decisions for model 

improvement and feature engineering. The features are arranged in descending order based on their 

importance in a SHAP summary plot. The stability estimation using the SHAP method took 
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approximately 20 seconds of computational time, reflecting the efficiency of the analysis attributed 

to the relatively small size of the dataset. The length of each bar represents the magnitude of the 

feature's effect. 

The SHAP summary plot for the database showed that HR (Hydraulic Radius) followed by Q 

value has the most considerable influence on the model performance. The SHAP summary plot in 

Figure 5.19 revealed insightful findings regarding the importance of features in the investigated 

database. It indicated that the Hydraulic Radius (HR) feature, followed by the Q value, 

substantially influences the model's performance. The HR, representing the ratio of the 

underground opening dimensions, emerged as the most influential factor, highlighting its 

significant impact on the stability assessment of underground excavation. Variations in HR can 

significantly impact stress distribution within the rock mass, potentially leading to localized stress 

concentrations and increased susceptibility to failure.  

The SHAP plot also provides valuable insights into the influence of input parameters on model 

predictions across different classes. Notably, the analysis reveals that the HR parameter has the 

greatest impact on both stable and caved classes. This suggests that the shape factor plays a 

significant role in determining the overall stability of excavations, regardless of their stability 

status. However, when examining the unstable class, the Q value emerges as the most influential 

factor. The observed differences in parameter importance across different stability classes 

highlight the nuanced interactions between various factors and the complex nature of stability 

predictions in underground mining operations. 
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Figure 5.19 SHAP Summary Plot: Feature Importance Analysis 

 

To conduct a more comprehensive analysis of the results, I employed plots (Figure 5.20 

and 5.21) to visualize the distribution of HR and Q values across different stability classes for all 

cases in the database. These plots provided us with a clear representation of the frequency 

distribution of cases within specific ranges of HR and Q values. This approach enabled us to 

identify any distinct trends or patterns in the distribution of HR and Q values across different 

stability classes, thereby enhancing the understanding of the relationship between these parameters 

and SHAP plot results. 
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Figures 5.20 and 5.21 Distribution of HR and Q values across stability classes 

 

Comparing the insights derived from the distribution plots of HR values with the SHAP 

analysis results provides a deeper understanding of the relationship between HR and stope stability. 

The plots reveal that a significant proportion of stable cases are concentrated in smaller HR value 

ranges, with approximately 75% of stable cases having HR values below 9. As HR values increase, 

there is a notable rise in the number of caved cases, suggesting a correlation between higher HR 

values and increased instability. The SHAP analysis highlights HR as the parameter with the 

highest impact on model predictions, particularly for stable and caved classes, which aligns with 

the observation from the distribution plots which show that values for these two classes are more 

consistent. Additionally, the unstable class exhibits a more uniform distribution across all HR 

ranges, and the SHAP plot indicates that this class has the lowest impact on model predictions. 

Contrary to HR, the distribution plots reveal that higher values of Q are associated with a better 

stope stability. Specifically, the absence of caved cases with Q values exceeding 50 suggests that 

higher Q values correspond to a lower likelihood of a stope collapse. The SHAP analysis indicates 

also that Q has a higher predictive impact on the unstable class compared to HR. Interestingly, the 

figure 5.21 illustrates a more uniform distribution of the unstable class across Q values, implying 

that variations in Q contribute significantly to the model's predictions for unstable cases. These 

contrasting trends between HR and Q underscore the complex relationship between geological, 

mechanical and shape parameters in influencing stope stability. The observed highest impact of 
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HR and Q on the stable class can be also attributed to the distribution of cases within the dataset. 

With approximately half of all cases classified as stable, the model is exposed to a significant 

proportion of instances representing this particular class. As a result, the model is better equipped 

to learn the characteristics associated with the stable class, leading to a higher influence. This 

shows the importance of data balance and quantity in training machine learning models.  

These findings underscore the critical role of HR and Q value in accurately predicting and 

assessing the stability of underground excavations, emphasizing the need for careful consideration 

and detailed analysis of these features in mining engineering. This suggests that optimizing the 

dimensions of the mining openings can substantially impact the stability of stopes in underground 

excavations. On the other hand, the Q value, representing the characteristics of the rock mass, is a 

factor over which engineers have limited control. It serves as a reminder that while we can 

influence certain aspects of the mining design, the properties of the rock mass itself have 

challenges that may be more difficult to avoid. Therefore, understanding the influence of both HR 

and the Q value is essential for mining engineers to make informed decisions and seek a balance 

between design adjustments and the characteristics of the rock mass to ensure the stability and 

safety of underground openings.  

 

5.5. Summary  

My study focused on developing an Artificial Neural Network (ANN) model for predicting 

underground excavations stability in mining engineering. I investigated the impact of various 

factors, particularly the Hydraulic Radius (HR), on the model's performance. By conducting 

evaluations, I obtained significant insights into the criticality of HR and the optimal configuration 

of the ANN model. 

My results demonstrated that shape factor (HR), representing the ratio of mining opening 

dimensions, played a crucial role in determining stability outcomes. I found that adjusting HR 

values directly influenced the accuracy of stability predictions. Leveraging the predictive power 

of the ANN, engineers can now utilize the model to assess the impact of different HR values on 

stability. This knowledge empowers them to make informed decisions regarding the dimensions 

of mining openings, ultimately improving underground stability. 
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Additionally, I identified that a specific model configuration, incorporating the 

StandardScaler for data preprocessing and the Swish activation function for all hidden layers, 

yielded the best-predicting results. The StandardScaler normalized the feature values, reducing the 

impact of varying scales and enhancing the ANN's ability to capture underlying patterns. The 

Swish activation function, known for its non-linearity and smoothness, facilitated the model in 

capturing complex relationships between input features and stability outcomes. In this model 

configuration, the average difference in accuracy between the training and validation sets across 

all epochs was approximately 7%. Moreover, the average percentage difference for loss between 

the training and validation sets was only 5% throughout all the epochs. These findings underscore 

the consistency and efficiency of my model's performance across various stages of the training 

process and indicate that the undesired problem of model overfitting was avoided. My study 

highlights the importance of investigating the impact of individual features, such as HR, on the 

final model output, which enables professionals to identify critical variables, leading to improved 

risk management and operational efficiency in underground mining. By incorporating such 

insights into the ANN, mining engineers can optimize HR values to improve stability. These 

findings underline the potential of machine learning techniques in assisting engineers to make 

data-driven decisions and enhance underground excavation design. 

In conclusion, my study contributes to the field of mining engineering by showcasing the 

significance of the dimensions of the openings and providing an optimized ANN model 

configuration. By leveraging the model's predictive capabilities, engineers can better understand 

the relationship between HR and stability, leading to more informed design decisions and 

improved underground stability in mining operations. 
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CHAPTER 6: EXPLORING MACHINE LEARNING 

TECHNIQUES FOR OPEN STOPE STABILITY 

PREDICTION: A COMPARATIVE STUDY AND FEATURE 

IMPORTANCE ANALYSIS  

 

 

Study presented in this chapter investigates and compares several machine learning algorithms. 

By analyzing a dataset comprising stope dimensions and geomechanical properties, I explore the 

potential of machine learning models such as Random Forest, Support Vector Machine, AdaBoost, 

XGBoost, LightGBM, and Artificial Neural Network in predicting stope stability. Evaluation 

metrics including accuracy, precision, recall, and F1 score are employed to assess model 

performance, with the Artificial Neural Network emerging as the most effective. Furthermore, 

SHapley Additive exPlanations (SHAP) analysis enhances interpretability by explaining the 

contribution of individual features to model predictions. 
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6.1 Introduction  

Understanding the stability of underground excavations is important for ensuring the safety, 

durability, and longevity of mining operations. Over the years, classical stability assessment 

methods have played a crucial role in evaluating the stability of stopes in underground mining. 

These methods, rooted in well-established principles and empirical formulas derived from 

extensive field observations and laboratory tests, have provided valuable insights into rock mass 

behavior. Among the various empirical approaches utilized in assessing stope stability, stability 

graphs, as proposed by Matthew et al. (1980), have emerged as particularly popular. These graphs 

are built upon rock mass classification systems such as the Q value system by Barton et al. (1974) 

and the rock mass rating (RMR) introduced by Bieniawski (1973). By integrating factors like the 

rock stress factor (A), joint orientation adjustment factor (B), and surface orientation factor (C), 

stability graphs facilitate the calculation of the stability number N, a crucial parameter for 

designing stope dimensions and support. 

However, in addition to these classical methods, modern advancements in machine learning 

have opened up new solutions for stope stability assessment. Research conducted by Adoko et al. 

(2022) demonstrates the feasibility of utilizing feed forward neural network classifiers to predict 

stope stability. This study, based on a database obtained from Adoko et al. (2022), comprising of 

225 cases from three mines in Ghana, West Africa, highlights the potential of machine learning in 

enhancing predictive capabilities and understanding complex relationships among various 

parameters influencing stope stability. 

In my study, I analyze this dataset, by exploring and comparing several machine learning 

algorithms to further improve predictive accuracy. By incorporating parameters such as shape 

dimensions and rock mechanical properties, I aim to gain a comprehensive understanding of the 

factors influencing stope stability. The comparative analysis includes machine learning models 

like Random Forest, Support Vector Machine (SVM), AdaBoost, XGBoost, LightGBM, and 

Artificial Neural Network (ANN). Through evaluation and examination of metrics such as 

accuracy, precision, recall, and F1 score, I identify the strengths and weaknesses of each model in 

predicting stope stability. Furthermore, I employ SHapley Additive exPlanations (SHAP) analysis 

to gain interpretability into the predictions of each model. By analyzing the contribution of 

individual features to the model's predictions, SHAP analysis enhances transparency and reliability, 
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facilitating improvements in stope design strategies and engineering efforts aimed at ensuring 

mining safety and efficiency. 

6.2 Background of stope stability assessment  

Understanding the factors that influence stability is crucial for ensuring the safety, durability, 

and longevity of underground excavations. Classical stability assessment methods have long been 

employed to evaluate the stability of stopes in mining operations. These methods are based on 

well-established principles and empirical formulas derived from extensive field observations and 

laboratory tests.  

Stability graphs, initially proposed by Matthew et al., (1980) represent one of the most popular 

empirical approaches utilized in assessing the stability of stopes in underground mining 

excavations. The method was developed based on popular and widely used rock mass 

classification systems such as Q value system presented by Barton et al. (1974) and rock mass 

rating (RMR) proposed by Bieniawski (1973). Matthew stability graph method revolves around 

determining crucial factors that influence the stability of the rock mass by utilizing specifically 

developed graphs that relate various characteristics and properties of the rock. These graphs 

facilitate factors such as the rock stress factor (A), joint orientation adjustment factor (B), and 

surface orientation factor (C). These factors are then combined to calculate stability number N, 

which is critical parameter developed for designing stope dimensions and support in underground 

mining openings. It serves as a quantitative indicator of the physical conditions and stability of the 

stopes and it is calculated as follows: 

 

                                      𝑁𝑁′ = 𝑅𝑅′ ∙ 𝐴𝐴 ∙ 𝐵𝐵 ∙ 𝐶𝐶                                (6.1) 

 

The crucial factor for the successful assessment of opening stability in underground mining 

is the shape factor, which relates the dimensions of the opening and is commonly referred to as the 

hydraulic radius (HR). The hydraulic radius is a critical geometric parameter that characterizes the 

shape of the opening and is essential in determining its stability. 
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The term hydraulic radius is commonly understood as the ratio of the area of exposure of 

the hanging wall to its perimeter. In the context of inclined stopes, where the stope is not in a 

vertical position, the most critical aspect for calculating the HR is the exposure of the hanging wall 

(Figure 6.1). The calculation of HR takes into account the spans of the stopes along the dip (h) and 

along the strike (w) (Tishkov 2018), as shown in Figure 6.1.   

The final graph developed by Matthew for stope assessment plots the stability number N 

against the hydraulic radius HR. Each case in the dataset has been categorized as either stable, 

unstable, or caved based on previous evaluations of real cases. As a result, the graph is divided 

into three distinct zones, representing the stability assessments for the stopes. 

This graph serves as a valuable tool for classifying new stopes into one of these three 

stability categories. When a new stope is to be assessed, its corresponding values of N and HR can 

be plotted on the graph. By examining the location of these values on the graph, it can easily be 

determined whether the new stope falls into the stable, unstable, or caved zone. This classification 

aids in understanding the potential stability conditions of the new stope and guides the selection 

of appropriate support measures to ensure its safety and structural integrity (Suorineni et al. 2001). 

 

Figure 6.1. Calculation of Hydraulic radius 
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Visual separation of zones in stability assessment graphs can pose challenges related to 

subjectivity and reproducibility. Human judgment may introduce variations in categorizing stopes 

into stable, unstable, or caved zones, leading to discrepancies in the analysis. Additionally, the 

inherent risk associated with potential errors in categorization raises concerns about the reliability 

of the assessments. Empirical design methods have the potential to continuously improve and 

evolve over time as more data becomes available and engineers gain increased experience with the 

method. The nature of empirical design allows for flexibility and adaptability, enabling engineers 

to refine and update the approach based on new observations and findings. 

Since 1980, significant research in mining engineering have contributed to enhancing the 

reliability and effectiveness of stability graphs for assessing underground mining excavations. 

These developments have been crucial in refining the stability graph method and making it a more 

robust and trusted tool in mining practice. In 1988, Potvin's approach introduced a refinement to 

the stability graph, departing from the traditional three-zone classification system proposed by 

Mathews et al. Instead, Potvin proposed the stability graph with two main zones, stable and caved. 

However, he also incorporated an additional transition zone, representing a critical boundary 

between the stable and caved regions (Potvin 1988). Potvin acknowledged that the stability graph 

can be affected by human bias and unknown inherent errors when visually defining its zones and 

suggested utilizing statistical tools for zone definition instead. 

Nickson (1992) was a pioneer in attempting to establish the boundary positions through 

statistical methods. He employed discriminant analysis on the multivariate stability database, a 

three-dimensional dataset and used Mahalanobis' distance to divide the data into distinct groups. 

He achieved this by deriving a linear separation between stable and caved unsupported scenarios, 

utilizing a logarithmic transformation. Notably, his analysis excluded unstable cases, and he did 

not determine separation lines for zones involving unstable or caving situations. Nickson also 

compared his statistically determined boundary, which separates stable and caved conditions, with 

Potvin's proposed transition zone. Based on his findings, Nickson recommended that Potvin's 

transition zone should be employed for designing unsupported stope surfaces. Hadjigeorgiou et al. 

(1995) gathered additional stability data and conducted a repeat analysis using discriminant 

methods, yielding comparable outcomes. Suorineni et al. (2001) introduced the Bayesian 

likelihood method as a powerful tool for statistically interpreting the stability graph. They 
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employed an extended database based on the Potvin-calibrated stability graph factors to illustrate 

the method's advantages. The Bayesian likelihood discrimination proved to be an optimal approach 

for statistically interpreting the stability graph due to its capability to reveal substantial overlap 

among the defined stability graph zones (stable, unstable, and caving). It also allowed for error 

rate estimation in the stability graph, delineated general transition boundaries between stable, 

unstable and caved stopes, estimated inherent predictive errors in stability graphs, evaluated the 

risk associated with using the stability graph for predictions, and introduced a multiple design 

curves stability graph based on the probability. The Bayesian likelihood discrimination's ability 

has been harnessed to provide deeper significance to the class boundaries in the stability graph and 

individual stope walls plotted within each class. 

Numerical modeling stands as another widely adopted approach that has proven effective 

in addressing stope stability concerns. Henning and Mitri (2007), for instance, crafted a series of 

three-dimensional  numerical models to explore the impacts of field stress, mining depth, stope 

configuration, and orientation on stope wall overbreak. Similarly, Purwanto et al. (2013) harnessed 

numerical modeling to establish the correlation between stope design and the stability of hanging 

wall. Hu and Cao (2009), by employing visual numerical simulation software, simulated and 

computed stress distribution and displacement variations within stopes during mining operations. 

They conducted an analysis of the stability of stope roofs and adjacent rock, as well as the 

alterations in sound emission associated with the mining process. 

While classical stability assessment methods have been effective in many cases, the 

emergence of machine learning techniques has opened up new possibilities for enhancing their 

accuracy and efficiency. Machine learning algorithms can analyze large volumes of mining data, 

including shape of the opening, the properties of surrounding rock mass, underground conditions 

and historical stability records, to identify patterns and correlations that may not be easily 

discernible through traditional methods. By training machine learning models on a dataset of 

known stability outcomes, engineers can develop predictive models that can assess the stability of 

new stopes.  

Several studies have explored the integration of machine learning models for the prediction 

of stope stability. Erdogan Erten et al. (2021) introduced a hybrid artificial neural network (ANN) 

approach optimized through grid search. This method was compared with conventional techniques 
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including Naive Bayes (NB), Decision Tree (DT), k-Nearest Neighbors (kNN), Support Vector 

Machine (SVM), as well as the traditional stability graph method. The findings of this study 

revealed that the performance of the stability graph method falls short of the capabilities exhibited 

by machine learning algorithms. Notably, the ANN model with hyper-parameters tuned using the 

grid search technique showcased superior performance in terms of accuracy, precision, recall, f-

measure, and g-mean compared to other machine learning algorithms. Saadaari et al. (2020) 

investigated the viability of employing Ensemble Learning methods to categorize and predict the 

stability condition of stope surfaces. They introduced and evaluated four techniques - Random 

Forest (RF), Gradient Boosting (GB), Bootstrap Aggregating Classifier (BAC), and Adaptive 

Boosting (AB) - using widely accepted and effective assessment metrics. Upon analyzing the 

performance outcomes, it was evident that among the four machine learning models, Gradient 

Boosting (GB) and Bootstrap Aggregating Classifier (BAC) demonstrated the highest efficacy in 

accurately classifying and predicting the stability state of stopes, encompassing categories of caved, 

stable, or unstable. In a comparative investigation conducted by Qi et al. (2018b), five distinct 

artificial intelligence strategies based on machine learning and metaheuristic algorithms were 

explored for their potential in predicting the stability of open stope hangingwalls (HW). The 

assessed algorithms encompassed logistic regression (LR), multilayer perceptron neural networks 

(MLPNN), decision tree (DT), gradient boosting machine (GBM), and support vector machine 

(SVM). The optimization of hyperparameters was facilitated using the Firefly algorithm (FA), 

which yielded successful results for this purpose. Across the testing phase, the most favorable 

performance was exhibited by the optimized GBM model, closely followed by the SVM model 

and the optimized LR model. The study highlighted the remarkable predictive capabilities of these 

three machine learning models in forecasting HW stability. Several researchers have directed their 

efforts toward the refinement and customization of specific machine learning models for assessing 

stope stability. Qi et al. (2018a), in their study, concentrated on optimizing the Random Forest 

model for enhanced efficiency, while Santos et al. (2020) shifted their attention toward the 

utilization of Artificial Neural Networks.  

It is significant to continue research in the area of stope stability in underground mining. 

The development of mining engineering is constantly moving towards increased exploitation and 

most favorable optimization, this is causing the industry to decide on larger sized opening thus 
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reducing the quantity of the stopes. This approach, even though mostly efficient for rapid 

extraction and profit growth, could have a negative impact on the stability of the opening. When 

dimensions are exceeded to their maximum, the stability of the stopes is reduced causing them to 

shift toward unstable condition or even catastrophic failure.  

At the stage of mine planning and stopes design, it is crucial to consider and evaluate all 

the parameters that have direct or non-direct influence on the stability condition. The integration 

of machine learning with classical stability assessment methods offers several advantages in that 

matter. It allows for more comprehensive and data-driven evaluations, considering a wider range 

of variables and their interactions, that might have crucial impact on the stability of each open 

stope. Machine learning models can also help identify complex relationships between shape factor, 

rock properties, and stability outcomes that may not be apparent using traditional approaches. 

Hence the necessity to investigate the stope stability data further, in order to determine which 

parameter has the most significant impact on the stability of a stope and how to use that knowledge 

to increase safety in mining environment.  

 

6.3 Database analysis and pre-processing  

Analyzing a database and proper preprocessing is a crucial step in the machine learning process 

and have significant impact on the success of any machine learning model. It is important to assess 

the quality and characteristics of the database before employing any predictive model. Real-world 

data often contains missing values, outliers, duplicates, and inaccuracies that have negative impact 

on the model performance. Analyzing the database helps identify and address these issues, 

ensuring that the data used especially for training is reliable and accurate. Proper assessment 

provides insights into characteristics of the database and its features, it allows us to determine the 

type of each attribute, whether they are numerical or categorical, and understand the distribution 

of values. This understanding is crucial for choosing preprocessing techniques followed by 

implementation of appropriate machine learning algorithms. Different machine learning models 

create different assumptions about the database, analysis allows us to ensure that the chosen 

algorithm aligns with the characteristics and complexity of the data. Presented by Crone et al. 

(2006) investigation, have shown a strong evidence that preprocessing techniques have critical 
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impact on the predictive performance of the models. The results presented encourage to implement 

analysis of the database and preprocessing in order to produce valid and accurate outcomes of the 

classification algorithms.   

The database investigated, comes from research conducted by Adoko A. C., Saadari F., 

Mireku-Gyimah D., and Imashev A., tiled “A Feasibility Study on The Implementation of Neural 

Network Classifiers for Open Stope Design” published in 2022. The study utilized a feed forward 

neural network classifier to predict the stability of open stopes in underground mining obtaining 

an average accuracy of 91%. The general misclassification of the model (less than 10%) showed 

that FFNN outperformed the classic stability graph methods, which yielded the misclassification 

of almost 40%.  

Database consist of 225 cases and was collected from three different mines in Ghana, West 

Africa, in the period of over three months. It includes information such as height, span and length 

of each stope, as well as geomechanical properties: Q’ value, rock stress factor (A), joint 

orientation adjustment factor (B) and surface orientation factor (C). The features that were passed 

to the algorithm were modified stability number N’ and hydraulic radius HR determined from the 

database. Figure 6.2 illustrates the distribution of cases. A plot of stability number N versus 

hydraulic radius was created, where different colors were employed to signify whether a specific 

case was classified as stable, unstable, or caved. It provided us with a visual representation of how 

the data is spread across different classes. Analysis of the plot revealed that cases with grater 

hydraulic radius tend to exhibit a higher tendency for instability and caving. As for the stability 

number, its influence on stability is somewhat less pronounced. However, instances with 

exceptionally low stability number values were predominantly categorized as caved. This 

observation also provided us with valuable insight into the relationship between weak rock 

conditions and low stability number values. In such scenarios, decreasing the dimensions of the 

opening can have a notably favorable effect on stability. 

Adoko et al. (2022) investigated the Feed Forward Neural Network algorithm, where the input 

parameters were stability number N and shape factor HR. While the outcomes of this investigation 

yielded satisfactory accuracy in predicting stope stability, there is still potential to delve deeper 

into the dataset. This further exploration could help in enhancing the predictive capabilities of the 

model. Additionally, it offers an opportunity to conduct a comprehensive examination of all the 
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constituent features that contribute to the computation of the shape factor HR and the stability 

number N. This extended analysis can provide a more in-depth understanding of the complex 

relationship among these features and their collective influence on stope stability. Therefore, in 

this study I investigated and compared several machine learning algorithms where the input data 

were all the parameters that combine into stability number N and HR. These parameters were: 

shape parameters - height of the stope (H), Span (S), Length (L) and Rock mechanical properties 

- Q’ value, rock stress factor (A), joint orientation adjustment factor (B) and surface orientation 

factor (C). All the cases had a stability assessment determined: stable, unstable, caved. The 

complete database from Adoko et al. (2020) with all the parameters is shown in the Table 6.1.  

 

 

 

 

 

 

 

 

 

 

 Figure 6.2 Distribution of cases in database. Green – stable cases, blue – unstable and red 
– caved.  
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Table 6.1 Complete Adoko et al. (2022) Database 

Case  

number 

Height 

(H) 

Span 

(S) 

Length 

 (L) 
Q’ A B C 

Stability 

Asses. 

1 30 11.9 30 4.7 1 1 8 STABLE 
2 30 30 43 1.5 1 0.5 8 CAVED 
3 30 11.9 20 4.7 1 1 1 UNSTABLE 
4 30 20 30 1.5 1 0.5 8 UNSTABLE 
5 30 20 30 4.7 1 0.8 8 STABLE 
6 30 22.3 43 4.7 1 1 1 UNSTABLE 
7 30 22.3 30 4.7 1 1 8 STABLE 
8 30 30 43 4.7 1 0.8 8 UNSTABLE 
9 30 10 20 4.7 1 1 4.7 STABLE 
10 30 10 30 4.7 1 1 8 STABLE 
11 30 20 30 1.5 1 0.5 8 UNSTABLE 
12 30 20 30 4.7 1 0.8 8 STABLE 
13 30 27 26 4.7 1 1 1 UNSTABLE 
14 30 27 30 4.7 1 1 8 STABLE 
15 30 26 30 1.5 1 0.5 8 UNSTABLE 
16 30 26 30 4.7 1 0.8 8 STABLE 
17 30 9.2 20 4.7 1 1 1 STABLE 
18 30 9.2 30 4.7 1 1 8 STABLE 
19 30 20 30 1.5 1 0.5 8 UNSTABLE 
20 30 20 30 4.7 1 0.8 8 STABLE 
21 30 6.4 43 4.7 1 1 1 STABLE 
22 30 6.4 30 4.7 1 1 8 STABLE 
23 30 30 43 1.5 1 0.5 8 CAVED 
24 30 30 43 4.7 1 0.8 8 UNSTABLE 
25 30 5.2 38 4.7 1 1 1 STABLE 
26 30 5.2 30 4.7 1 1 8 STABLE 
27 30 30 38 0.2 1 0.5 8 CAVED 
28 30 30 38 4.7 1 0.8 8 UNSTABLE 
29 30 6 85 4.7 1 1 1 STABLE 
30 30 6 30 4.7 1 1 8 STABLE 
31 30 30 85 0.1 1 0.5 8 CAVED 
32 30 30 85 4.7 1 0.8 8 UNSTABLE 
33 30 6.2 30.2 4.7 1 1 1 STABLE 
34 30 6.2 22 4.7 1 1 8 STABLE 
35 30 22 30.2 1.5 1 0.5 8 UNSTABLE 
36 30 22 30.2 4.7 1 0.8 8 STABLE 
37 30 6.6 20 4.7 1 1 1 STABLE 
38 30 6.6 30 4.7 1 1 8 STABLE 
39 30 20 30 2.7 1 0.5 8 UNSTABLE 
40 30 20 30 4.7 1 0.8 8 STABLE 
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41 30 13 10 4.7 1 1 1 STABLE 
42 30 13 30 4.7 1 1 8 STABLE 
43 30 10 30 2.7 1 0.5 8 STABLE 
44 30 10 30 4.7 1 0.8 8 STABLE 
45 30 19 46 4.7 1 1 1 UNSTABLE 
46 30 19 30 4.7 1 1 8 STABLE 
47 30 30 46 2.7 1 0.5 8 UNSTABLE 
48 30 30 46 4.7 1 0.8 8 UNSTABLE 
49 60 7.2 60 4.7 1 1 1 STABLE 
50 60 7.2 61 4.7 1 1 8 STABLE 
51 60 61 35 1.5 1 0.5 8 CAVED 
52 60 61 35 2.7 1 0.8 8 CAVED 
53 60 8.1 43 4.7 1 1 1 STABLE 
54 60 8.1 60 4.7 1 1 8 STABLE 
55 60 61 43 1.5 1 0.5 8 CAVED 
56 60 61 43 2.7 1 0.8 8 CAVED 
57 60 7 83 4.7 1 1 1 UNSTABLE 
58 60 7 60 4.7 1 1 8 STABLE 
59 60 61 83 1.5 1 0.5 8 CAVED 
60 60 61 83 2.7 1 0.8 8 CAVED 
61 30 9.5 30 4.7 1 1 1 STABLE 
62 30 9.5 30 4.7 1 1 8 STABLE 
63 30 30 20 1.5 1 0.5 8 UNSTABLE 
64 30 30 20 2.7 1 0.8 8 STABLE 
65 30 6.6 20 4.7 1 1 1 STABLE 
66 30 6.6 30 4.7 1 1 8 STABLE 
67 30 30 20 2.7 1 0.5 8 UNSTABLE 
68 30 30 20 4.7 1 0.8 8 STABLE 
69 30 5.6 30 4.7 1 1 1 STABLE 
70 30 5.6 30 4.7 1 1 8 STABLE 
71 30 30 30 2.7 1 0.5 8 UNSTABLE 
72 30 30 30 4.7 1 0.8 8 STABLE 
73 30 9.3 43 4.7 1 1 1 STABLE 
74 30 9.3 30 4.7 1 1 8 STABLE 
75 30 30 43 2.7 1 0.5 8 UNSTABLE 
76 30 30 43 4.7 1 0.8 8 UNSTABLE 
77 30 12 35 4.7 1 1 1 UNSTABLE 
78 30 12 30 4.7 1 1 8 STABLE 
79 30 30 35 1.5 1 0.5 8 CAVED 
80 30 30 35 4.7 1 0.8 8 UNSTABLE 
81 30 18 60 71.3 1 1 1 STABLE 
82 30 18 30 71.3 1 1 8 STABLE 
83 30 30.5 60 8.1 1 0.5 8 UNSTABLE 



 

142 

 

Chapter 6 Comparative study 

84 30 30.5 60 4.7 1 0.8 8 UNSTABLE 
85 30 17 60 71.3 1 1 1 STABLE 
86 30 17 30 71.3 1 1 8 STABLE 
87 30 31 60 8 1 0.5 8 UNSTABLE 
88 30 31 60 4.5 1 0.8 8 UNSTABLE 
89 30 18 60 71.2 1 1 1 STABLE 
90 30 18 30 71.2 1 1 8 STABLE 
91 30 33 60 7.9 1 0.5 8 UNSTABLE 
92 30 33 60 4.7 1 0.8 8 STABLE 
93 30 17 65 71.3 1 1 1 STABLE 
94 30 17 30 71.3 0.8 1 8 UNSTABLE 
95 30 30.5 65 6 1 0.8 6.8 UNSTABLE 
96 30 30.5 65 13 1 0.5 8 STABLE 
97 30 6.6 52 3 1 1 1 STABLE 
98 30 6.6 30 3 1 1 8 STABLE 
99 30 30 52 6 0.5 0.5 6.8 STABLE 

100 30 30 52 13 0.5 0.5 8 STABLE 
101 30 8.1 52 4.7 1 1 8 STABLE 
102 30 8.1 30 4.7 1 1 8 STABLE 
103 30 30 52 2.7 1 0.5 8 CAVED 
104 30 30 52 4.7 1 0.8 8 UNSTABLE 
105 30 13 50 4.7 1 1 1 UNSTABLE 
106 30 13 30 8.3 1 1 8 STABLE 
107 30 30 50 0.1 1 0.5 8 CAVED 
108 30 30 50 4.7 1 0.8 8 UNSTABLE 
109 30 13 50 4.7 1 1 1 UNSTABLE 
110 30 13 30 8.3 1 1 8 STABLE 
111 30 30 50 0.1 1 0.5 8 CAVED 
112 30 30 50 4.7 1 0.8 8 UNSTABLE 
113 107 15 60 2.7 1 1 8 STABLE 
114 107 15 105 2.7 1 1 8 STABLE 
115 107 107 60 8.3 1 0.5 8 CAVED 
116 107 107 60 4.7 1 0.8 8 CAVED 
117 30 7.1 65 2.7 1 1 1 UNSTABLE 
118 30 7.1 30 2.7 1 1 8 STABLE 
119 30 30 65 1.5 1 0.5 8 UNSTABLE 
120 30 30 65 4.7 1 0.8 8 CAVED 
121 30 9.2 55 8.3 1 1 1 STABLE 
122 30 9.2 30 8.3 1 1 8 STABLE 
123 30 30 55 2.7 1 0.5 8 UNSTABLE 
124 30 30 55 8.3 1 0.8 8 UNSTABLE 
125 30 12.5 40 8.3 1 1 1 STABLE 
126 30 12.5 30 8.3 1 1 8 STABLE 
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127 30 30 40 2.7 1 0.5 8 UNSTABLE 
128 30 30 40 8.3 1 0.8 8 STABLE 
129 30 12.2 40 8.3 1 1 1 STABLE 
130 30 12.2 30 8.3 1 1 8 STABLE 
131 30 30 40 4.7 1 0.5 8 UNSTABLE 
132 30 30 40 2.7 1 0.8 8 UNSTABLE 
133 24 24 34 14.9 0.4 0.3 4.8 CAVED 
134 26 26 33 17.1 0.5 0.3 4.5 UNSTABLE 
135 27 27 38 25.4 0.6 0.3 2.7 UNSTABLE 
136 26 26 30 14.4 0.8 0.2 7.7 UNSTABLE 
137 25 25 34 29.8 1 0.3 6.7 STABLE 
138 26 26 22 17 0.6 0.3 6.2 STABLE 
139 31 31 27 36.6 0.3 0.3 4.6 UNSTABLE 
140 32 32 35 17.1 0.4 0.3 4.8 CAVED 
141 23 23 38 18 0.6 0.2 5.4 UNSTABLE 
142 25 25 30 13.4 0.5 0.3 3.1 UNSTABLE 
143 26 26 38 8.9 0.6 0.3 4.4 CAVED 
144 26 26 34 11.7 0.4 0.2 7.4 UNSTABLE 
145 27 27 35 18.5 0.3 0.3 5.1 UNSTABLE 
146 27 27 32 24.7 0.6 0.3 5.7 STABLE 
147 29 29 41 18.3 0.4 0.3 5.5 UNSTABLE 
148 25 25 40 21.4 0.8 0.2 3.9 UNSTABLE 
149 26 26 34 27.9 0.8 0.2 5.9 STABLE 
150 26 26 31 13.1 0.8 0.3 3.5 UNSTABLE 
151 30 30 30 8.7 0.8 0.2 4.4 UNSTABLE 
152 32 32 28 36.4 0.8 0.2 5.2 STABLE 
153 24 24 34 5.4 0.7 0.3 4.8 CAVED 
154 26 26 33 6.4 0.6 0.3 5.5 CAVED 
155 27 27 38 3.8 0.6 0.3 7.1 CAVED 
156 26 26 30 6.8 1 0.2 3.5 CAVED 
157 25 25 34 6.5 0.8 0.3 3.3 CAVED 
158 26 26 22 11.6 0.5 0.3 3.6 UNSTABLE 
159 31 31 27 34.7 0.7 0.3 5.5 STABLE 
160 32 32 35 34.1 0.5 0.3 5 UNSTABLE 
161 23 23 38 9.8 0.6 0.2 3.5 CAVED 
162 25 25 30 7.4 0.6 0.3 7 UNSTABLE 
163 26 26 38 5.3 0.6 0.3 5.6 CAVED 
164 26 26 34 17.8 0.4 0.2 4.7 UNSTABLE 
165 27 27 35 10.1 0.5 0.3 5 UNSTABLE 
166 27 27 32 22.8 0.4 0.3 4.4 UNSTABLE 
167 29 29 41 7.7 0.5 0.3 4.5 CAVED 
168 25 25 40 9.9 0.7 0.2 3.9 CAVED 
169 26 26 34 8.7 0.3 0.2 6.4 CAVED 
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170 26 26 31 11.1 0.7 0.3 3.5 UNSTABLE 
171 30 30 30 12.4 0.7 0.2 5.1 UNSTABLE 
172 32 32 28 15.4 0.7 0.2 3.7 UNSTABLE 
173 25 25 30 46 0.6 0.2 3.5 UNSTABLE 
174 25 25 30 32 0.6 0.2 3.5 UNSTABLE 
175 25 25 30 44 0.8 0.2 4.4 STABLE 
176 25 25 30 25 0.8 0.2 4.4 UNSTABLE 
177 25 25 20 38 1 0.3 3.1 STABLE 
178 25 25 20 25.6 1 0.3 3.1 STABLE 
179 24 24 51 39 0.8 0.3 6.8 STABLE 
180 24 24 51 29 0.8 0.3 6.8 UNSTABLE 
181 29 29 30 32 0.3 0.2 6.2 UNSTABLE 
182 29 29 30 18 0.3 0.2 6.2 UNSTABLE 
183 25 25 51 14.9 0.6 0.2 7.4 CAVED 
184 25 25 51 21.1 0.6 0.2 7.4 UNSTABLE 
185 28 28 55 27.3 0.8 0.2 3.9 UNSTABLE 
186 28 28 55 12.1 0.9 0.2 3.9 CAVED 
187 26 26 41.5 12 0.6 0.2 4.7 CAVED 
188 26 26 41.5 3.4 0.6 0.2 4.7 CAVED 
189 25 25 35 20 1 0.3 5 STABLE 
190 25 25 35 12 1 0.3 5 UNSTABLE 
191 25 25 30 31 0.3 0.3 2.9 UNSTABLE 
192 25 25 30 9 0.3 0.3 2.9 CAVED 
193 25 25 35 10 0.9 0.2 6.4 UNSTABLE 
194 25 25 35 7 0.9 0.2 6.4 CAVED 
195 25 25 55 17.4 0.5 0.3 6.7 UNSTABLE 
196 25 25 55 19.7 0.6 0.3 6.7 UNSTABLE 
197 25 25 31 25 0.2 0.2 7.2 UNSTABLE 
198 25 25 31 9 0.2 0.2 7.2 CAVED 
199 26 26 30 20 0.5 0.2 3.1 UNSTABLE 
200 26 26 30 12 0.5 0.2 3.1 CAVED 
201 25 25 35 14 0.3 0.3 7.2 UNSTABLE 
202 25 25 35 28 0.3 0.3 7.2 UNSTABLE 
203 15 15 55 12 0.6 0.3 7.3 STABLE 
204 15 15 55 13 0.6 0.3 7.3 STABLE 
205 39 39 45 17.4 1 0.3 7.7 UNSTABLE 
206 39 39 45 16.9 1 0.3 7.7 UNSTABLE 
207 24.5 24.5 35 16 0.5 0.2 7.4 UNSTABLE 
208 24.5 24.5 35 19 0.5 0.2 7.4 UNSTABLE 
209 60 6.9 60 0.9 1 0.2 6.1 STABLE 
210 60 7 58 1.5 1 0.2 8 STABLE 
211 23 6.2 31 2 1 0.3 8 STABLE 
212 23.4 6.1 31 2 1 0.3 8 STABLE 
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213 14 9.7 40 1.5 1 0.2 8 STABLE 
214 13.9 10 32.2 2 1 0.3 8 STABLE 
215 14 9.9 32.2 2.9 1 0.3 8 STABLE 
216 23 19 15 20 1 0.2 8 STABLE 
217 30 6.6 30 8.8 1 0.2 7.5 STABLE 
218 30 6.6 30 3.5 1 0.2 7.5 STABLE 
219 11 5.8 36 20 1 0.2 2 STABLE 
220 17.3 11.3 85 8.8 1 0.2 7.5 STABLE 
221 20.3 16.8 41 3.5 1 0.2 7.5 STABLE 
222 20.8 7.6 48 15 1 0.2 2 STABLE 
223 23 19 15 8 1 0.3 5.6 STABLE 
224 14.4 26.9 15 1.6 1 0.3 5.6 STABLE 
225 14.4 26.4 15 3 1 0.3 3.8 STABLE 

 

6.3.1 Database analysis  

Before proceeding with data pre-processing the investigation of data investigation is a 

reasonable to step to ensure data quality and to help in making informed decisions about 

preprocessing technique and set the foundation for building effective and accurate machine 

learning models.  

To identify the distribution of the data points the histograms of each feature were plotted 

(Figure 6.3). Histograms provide a visual representation of the distribution of data across different 

values. This helps in understanding how the data is spread and whether it follows a normal 

distribution, skewed distribution, or has other patterns. 

From the histograms we can notice that shape parameters are mostly concentrated around 

similar values. For the height it is especially prominent that most of the cases are clustered around 

30 m, there are only a few instances where the height deviates significantly from this value. Similar 

tendency can be noticed in rock mechanics parameters, especially for Q’ values, factor A and C. 

Addressing this issue might involve considering strategies such as standardization and/or rescaling 

the data to provide the model with a more varied and informative set of input features. Plotting 

histograms assisted us in understanding the distribution of these parameters, which is crucial for 

making informed decisions during the preprocessing stage and optimizing the model's 

performance.  
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Figure 6.3 Histograms of the parameters 

 

For further investigation the boxplots, also known as box-and-whisker plots were created 

(Figure 6.4). A boxplot is a graphical representation that displays the distribution and spread of a 

dataset. It provides a visual summary of the central tendency, spread, and potential outliers in the 

data. Boxplots offer a concise and informative determination of key statistical measures, making 

them a valuable tool in the exploratory data analysis phase before applying machine learning 

algorithms. 

Box plots describe a sample by utilizing the 25th, 50th, and 75th percentiles—referred to 

as the lower quartile (Q1), median (m or Q2), and upper quartile (Q3)—along with the interquartile 

range (IQR = Q3 − Q1), encompassing the central 50% of the data. Quartiles demonstrate 

resilience to outliers and keep information about both the center and spread. As a result, they are 

favored over the mean and standard deviation for database with asymmetry or irregular shapes and 

for samples containing extreme outliers (Krzywinski and Altman 2014). The median is defined by 

a line separating the box, marking the midpoint of the dataset. This line indicates that 50% of the 
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data is surpassing the median. The top of the box plot represents the upper quartile (Q3), which 

means that 25% of the data exceeds this value, while the lower quartile (Q1) is represented at the 

bottom of the box, where 25% of the data is less than this value. The top "whisker" illustrates 

values higher than the median, and outliers are represented by dots above the top "whisker." A 

similar interpretation applies to the bottom "whisker" and outliers. Box plots can also show the 

skewness in the dataset, with the position of the median on the box indicating how much data falls 

above or below it.  

 

 

 

Figure 6.4. Box – plots of the parameters 

 

Creating individual box plots for each stability assessment category—stable, unstable, and 

caved - offers an extensive visual representation of how the features are distributed within specific 

classes. This approach enables a detailed analysis of the tendencies and variations in each feature 

relative to the different stability conditions. Boxplots with extended lengths indicate a greater 

dispersion of data. Upon closer examination, it becomes evident that factors A, B, and C exhibit a 

more scattered distribution compared to the shape values and factor Q'. However, an exception is 

observed in the case of Factor A for stable cases, where a substantial number of instances cluster 

around similar values, contributing to a distinct pattern within this stability category. This 

observation shows that, for these specific factors, the data tends to vary widely, especially in 
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unstable and caved scenarios, with an exemption for stable cases of factor A, where a more 

concentrated distribution is apparent. A limited number of outliers are evident, particularly related 

to shape parameters, within all stability classes. These outliers show instances that noticeably 

deviate from the range of the central parts of the data. In the dataset, an intentional choice was 

made to keep these outliers, as they capture natural variations within the dataset. This decision 

acknowledges that these outliers contribute valuable information and reflect diversity in the data, 

rather than being treated as anomalies or errors. 

The final step in analyzing the database involved the generation of a correlation heatmap 

(Figure 6.5), a graphical representation that shows the interconnections between all the features. 

The heatmap provides a comprehensive overview of how each feature relates to every other feature 

in the dataset. The color in the heatmap signifies the strength and direction of the correlation: red 

shades denote stronger positive correlations, while darker blue shades indicate weaker or negative 

correlations.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5. Correlation heatmap of all parameters 
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A higher correlation between features implies a statistical relationship where changes in 

one feature are associated with changes in another. In some cases, this can lead to redundant 

information, where one feature might provide similar insights as another. In machine learning, 

dealing with highly correlated features can be crucial because it may introduce bias into predictive 

models (Srivastava, 2023). However, in this specific dataset, I observed that the features do not 

exhibit a strong correlation. This lack of interconnection is a positive sign for the performance of 

machine learning models. When features are not highly correlated, it suggests that each feature 

contributes unique information and insights to the model. In such cases, the model is less likely to 

be influenced by unnecessary or overlapping information, which can lead to more accurate and 

unbiased predictions. 

 The presented analysis of the data allowed us to fully understand its structure, complexity, 

and potential. The fact that the database has three distinct classes: stable, unstable, and caved, 

implies that I had to specifically look for machine learning models that have ability to manage 

multiclass classification problems. Another factor to consider is the size of the database, which 

consists of 225 cases. Small databases often contain a limited range of examples, which may not 

fully represent the diversity of the real-world scenarios the model is meant to handle. This limited 

size was one of the reasons I decided not to remove the outliers in the data, as they can provide 

valuable information and show diversity. The lack of correlation between the features signifies 

that the model might be less prone to overfitting in the training data and could generalize better to 

new, unseen data. In order to effectively handle the complexities and challenges posed by the 

dataset, I made a decision to employ and compare several Machine Learning models. The objective 

was to assess the performance of each model and determine which one could achieve the highest 

accuracy and most correct predictions, while being suitable solution for my specific problem. The 

Machine Learning models investigated are: Random Forest, Support Vector Machine (SVM), 

AdaBoost, XGBoost, LightGBM, and Artificial Neural Network (ANN).  
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6.3.2 Database pre-processing 

To prepare the data to be passed to machine learning models, I have undergone a series of 

processing steps. This data preparation process involves stages aimed at optimizing the dataset's 

format and structure to ensure compatibility with machine learning algorithms. The goal is to 

enhance the models' effectiveness by providing them with a well-organized and informative input, 

enabling them to learn and generalize patterns effectively during the training phase. Pre-processing 

involves employing various techniques and is widely recognized as a crucial task, establishing a 

significant portion, potentially up to 80%, of the overall model development effort (Fan et al. 2021). 

In practical terms, it is almost always beneficial to apply pre-processing techniques to input data 

before presenting it to a model (Nawi et al. 2013). 

The initial pre-processing technique applied to the data involved feature scaling, also 

known as standardization. This was specifically necessary because the input variables in the 

dataset exhibit varying ranges, leading to each feature having a different scale. Such differences 

across the dataset can pose challenges in developing an accurate model. This need for 

standardization becomes evident after examining histograms and boxplots, showcasing the diverse 

value ranges of different features. For instance, Factors A and B share a range from 0 to 1, while 

Factor C spans from 2 to 8, the Q' value extends to 70, and shape parameters reach even up to 100. 

It's essential to note that scale relates to the variation in the value ranges, not the distribution shape. 

Standardization is essential for ensuring uniformity in scale across features, crucial in the proper 

development of the model. 

For the database I decided to employ StandardScaler tool as a standardization method, 

which follows standard normal distribution. StandardScaler operates by expecting the data to be 

normally distributed within each feature and subsequently scales these values to center the 

distribution around 0, with a standard deviation of 1 (Raju et al. 2020). The process involves 

determining the mean and standard deviation for each variable. Subsequently, the scaled feature is 

calculated by adjusting each value based on these statistics. This standardized approach ensures 

that the features have consistent scales, facilitating a more uniform and effective analysis of the 

data during the modeling process.  



 

151 

 

Chapter 6 Comparative study 

The Machine Learning models under consideration required numerical values for all input 

variables. However, the feature labels in the database were categorical, classified as stable, 

unstable, and caved. To ensure optimal Machine Learning performance and obtain reliable outputs, 

a crucial step involved converting these categorical labels into numerical values. This 

transformation was executed as follows: stable was assigned the numerical value 1, unstable was 

assigned 2, and caved was assigned 0. This categorization enables the models to effectively process 

and interpret the labels during the learning process, ensuring compatibility with the numerical 

expectations of the machine learning algorithms. 

Another important step in the stage of data preparation is splitting it into training, testing 

and validation sets. In machine learning it is a routine practice is to split the data before passing it 

to the predictive models. The primary reason for splitting the database is for evaluation of the 

performance of the model and it is especially important in supervised learning machine learning 

tasks (Hastie et al. 2017). The training set is used to train the machine learning algorithm, the 

primary purpose of it is to allow the model to learn the underlying patterns, relationships, and 

structures within the data so that it can make accurate predictions and classifications when 

presented with new, unseen data. The model adjusts its internal parameters during the training 

process to minimize the difference between its predicted outputs and the actual target values in the 

training set (Birba 2020). The validation set is an independent part of the dataset used to fine-tune 

the model during the training phase and make decisions about its architecture and hyperparameters. 

This allows researchers to experiment with different model configurations and select the 

combination that optimizes the model's performance. This is also crucial for avoiding overfitting 

to the training data and ensuring the chosen model is effective in unseen scenarios. The validation 

set provides an unbiased evaluation which helps to detect and reduce overfitting (Xu and Goodacre 

2018).  Finally, the testing set, which the model has not seen during training or validation, serves 

as an independent subset of the dataset to assess how well the model generalizes to new, unseen 

data. The testing set is used to calculate various performance metrics, such as accuracy, precision 

etc. depending on the nature of the machine learning task. These metrics provide informative 

measures of the model's effectiveness in making predictions (Jain et al. 2022).  

For my specific problem, I decided to randomly split the dataset into those mentioned 

before three subsets, where 80% of the samples was allocated as training, 10% as validation and 
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10% as testing set. I applied the same splitting for all the evaluated machine learning models to 

maintain consistency and ensure fairness in the comparative analysis of the models.  

All these pre-processing techniques allowed us to understand the database further, and 

properly prepare it to be passed to several machine learning models that I want to compare in this 

study. Figure 6.6 presents all the pre-processing steps for machine learning workflow.  

 

 

Figure 6.6 Pre-processing workflow for the database preparation 

 

 

6.4 Comparative study overview 

In the scope of my study, the objective was to explore and compare a selection of the most 

widely adopted machine learning models that have demonstrated effectiveness in addressing 

problems similar to ours. I specifically looked for models with established success in handling 

multi-class classification tasks, aligning with the nature of the problem where instances needed to 

be categorized into one of three classes (stable, unstable, caved). An important consideration was 
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the suitability of the chosen models for problems without significant correlation between the 

features. I wanted to ensure that they could effectively capture diverse relationships. The decision-

making process also involved taking into account the number of instances in the dataset, which 

consists of 225 cases. Additionally, given the supervised nature of my problem, where each case 

is labeled with a known class, I focused on machine learning models designed for supervised 

learning. 

Conducting a comparative study and examining different machine learning models offers 

several advantages and insights that contribute to the effectiveness of the overall analysis. 

Different models have unique strengths and weaknesses. A comparative study allows for an 

evaluation of their performances, helping to identify which models are more suitable and effective 

for the given problem. Some problems may be inherently complex, and certain models may handle 

it better than others. Comparative studies assist in determining which models are better equipped 

to deal with such relationships and patterns within the data. Different models may also emphasize 

different features in making predictions. Comparing different ML algorithms can shed light on 

which features are considered most important across various models, providing valuable insights 

into the factors influencing the predictions. Relying on a single model may create risks, especially 

if that model is not well-suited to the specific characteristics of the data. A comparative study 

addresses this risk by exploring a range of models and offering a more comprehensive 

understanding of their performance.  

 

6.4.1 Investigated Machine Learning models 

To conduct this comparative study the following machine learning models were 

investigated: Random Forest, Support Vector Machine (SVM), AdaBoost, XGBoost, LightGBM 

and Artificial Neural Network (ANN). The inclusion of these diverse models ensures a thorough 

examination, offering insights into their respective strengths and weaknesses in the context of my 

study. 
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6.4.1.1 Random Forest 

Random Forest is a powerful and versatile machine learning model known for its satisfactory 

performance across a wide range of tasks. It belongs to the ensemble learning family, where 

multiple decision trees are combined to form a more flexible and accurate model. The strength of 

Random Forest lies in its ability to reduce overfitting, handle complex relationships in data, and 

provide insightful feature importance rankings. Breiman's innovative work on Random Forests 

laid the foundation for this machine learning technique, and subsequent research and practical 

applications have endorsed its significance in the machine learning field (Breiman 2001). 

By combining the predictions from number of individual trees, each trained on a random part 

of the data, the model achieves a higher degree of accuracy and generalizes well. Random Forest 

has demonstrated excellence in both classification and regression problems, making it a popular 

choice in many research fields, including mining engineering. Several researchers have 

successfully applied RF in their study focused around area of stoping mining methods and stability 

predictions. Qi et al. conducted a study to predict the stability of hanging wall with random forest 

(2018a), Szmigiel and Apel investigated the feasibility of employing random forest to asses the 

stability of open stopes (2022), and Jorquera et al. applied random forest to predict the dilution in 

sublevel stoping mining method (2023). Random forest have been also successfully applied in 

related mining engineering disciplines, such as predicting mining induced stresses in underground 

openings (Vinay et al. 2023), rock pillar stability (Zhou et al. 2015) or ground settlement 

predictions (Zhou et al. 2017).  

These successful applications have built my confidence in including random forest model in 

my study, to observe its performance on the specific data compared with other models, as well as 

determine the effects of particular features on its predictions.  

 

6.4.1.2 Support Vector Machine 

The Support Vector Machine (SVM) is a powerful machine learning model known for its 

efficacy in classification tasks, particularly excelling in scenarios with high-dimensional data. 

Developed by Cortes and  Vapnik, SVM constructs an optimal hyperplane that efficiently separates 
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different classes in the feature space, maximizing the margin between them (Cortes and Vapnik 

1995).  

SVM's has an ability to handle complex decision boundaries, making it well-suited for non-

linear classification tasks. It is possible due to the use of kernel functions that transform input data 

into higher-dimensional spaces. This is especially advantageous attribute, that should effectively 

handle the database which exhibits a low correlation index between the features. Importantly, SVM 

proved to be effective in multi-class classification problems by employing strategies like one-vs-

one or one-vs-all, demonstrating adaptability and satisfying performance across diverse 

applications (Evgeniou and Pontil 2001). Some applications of SVM model in the area of mining 

engineering focus on open stopes, Jorquera et al. study about predicting dilution in sublevel stoping 

evaluates SVM along with other models (Jorquera et al. 2023), similarly few comparative open 

stope  stability studies conducted ( Erdogan Erten et al. 2021), (Qi et al. 2018b). However most of 

the research with SVM models focuses around different mining engineering challenges, such as 

predicting the stability of hard coal pillars (Li et al. 2023), slope stability analysis (Samui 2008), 

modeling displacement time series of geomaterials (Feng et al. 2004), or predictions of mining 

subsidence (Li et al. 2011). All these mentioned advantages of SVM model, as well as not that 

many applications in the area of stope stability, convinced us in evaluating this particular machine 

learning technique along others.  

 

6.4.1.3 Adaptive Boosting - AdaBoost 

Adaptive Boosting, is an ensemble learning algorithm introduced by Yoav Freund and 

Robert Schapire (1996). This effective method operates by combining the predictions of weak 

learners, typically decision trees, to form a powerful and accurate classifier. AdaBoost assigns 

higher weights to misclassified examples, forcing following weak learners to focus on these 

challenging cases. The final prediction is then determined through a weighted majority vote of the 

individual weak learners. AdaBoost's adaptability and capability to handle complex relationships 

in data, and its emphasis on learning from misclassifications and continuously elevating its 

prediction, make it particularly suitable for multiclass classification problems and uncorrelated 

features (Wang 2012). Numerous application of AdaBoost algorithm can be found in the area of 
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rockbursts predictions in mining engineering (Ahmad et al. 2022), (Wang et al. 2023), (Li et al. 

2022), but not many applications of this particular model can be found in the area of stope stability 

assessment, except Saadaari et al. (2020). Given that this particular model isn't popular in mining 

stoping method applications, although it has demonstrated efficiency in addressing similar 

challenges in engineering, I made a decision to incorporate and assess its performance in my study. 

 

6.4.1.4 Extreme Gradient Boosting - XGBoost 

Extreme Gradient Boosting, is another powerful and efficient machine learning algorithm 

introduced by Chen and Guestrin (2016). In comparison to AdaBoost, XGBoost stands out for its 

scalability, fast processing, and ability to handle extensive datasets. While both are an ensemble 

learning methods that combine weak learners to create a successful model, XGBoost employs a 

more advanced optimization approach, incorporating regularization terms and parallel processing 

to improve performance. XGBoost is well-suited for multiclass classification, it implements a one-

vs-all strategy, creating individual classifiers for each class and then combining their outputs. The 

algorithm's ability to capture complex relationships between the features and effectively manage 

them, makes it an excellent candidate to include in my study. Some mining engineering 

applications of XGBoost can be found in literature, including subsidence predictions (Gu et al. 

2022), rock fragmentation and ground vibration predictions in blasting operations (Chandrahas et 

al. 2022) or hard rock pillar and underground entry-type excavations stability predictions (Liang 

et al. 2020), (Zhou et al. 2023).  

 

6.4.1.5 LightGBM 

LightGBM, model developed by Microsoft, is a gradient boosting framework designed for 

distributed and efficient training on large datasets.  Compared to other gradient boosting 

algorithms like AdaBoost and XGBoost, LightGBM employs a histogram-based approach, 

accumulating data points to accelerate the training process. Its leaf-wise growth strategy focuses 

on minimizing loss, resulting in a more accurate and adaptive model. LightGBM stands out for its 

ability to handle categorical features efficiently and it is suitable for multiclass classification 
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problems, employing, similarly to other models, a one-vs-all strategy (Ke et al. 2017).  The area 

of mining engineering research doesn’t show many LightGBM model applications, except study 

on predicting hard rock pillar stability (Liang et al. 2020) and mineral grade estimation (Kaplan et 

al. 2021).  

Given its ability to handle complex relationships in data, LightGBM is a compelling choice 

for my study, where predicting the stability of open stopes involves dealing with diverse and 

complex patterns within the dataset. 

 

6.4.1.6 Artificial Neural Network  

The last model that I have decided to employ in my study is a popular widely used artificial 

neural network. This effective machine learning model is inspired by the structure and functioning 

of the human brain and it’s built of interconnected nodes organized into layers. Unlike ensemble 

methods such as presented before Radom Forest, AdaBoost, XGBoost, and LightGBM, ANN 

operates on a fundamentally distinct architecture, leveraging connected neurons to capture 

complex, non-linear patterns within the input data. While boosting models excel in combining 

weak learners to form a strong classifier, ANN stands out for its capacity to automatically learn 

hierarchical representations of features. Unlike decision tree-based models, ANN does not rely on 

predetermined splits but dynamically adjust weights during training, making them well-suited for 

capturing challenging relationships. Including ANN in my comparative study offers a 

comprehensive exploration of diverse modeling approaches, ensuring a thorough understanding of 

how different models handle the challenge of predicting the stability of open stopes. There is 

numerous research focusing on ANN applications in mining engineering, with stability of stopes 

included. These include Wang's (2002) application of an ANN model for designing underground 

excavation spans and Adoko's (2022) feasibility study on implementing ANN classifiers for open 

stope design. 
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6.5 Evaluation and results 

Evaluating machine learning models is essential for ensuring their effectiveness and 

reliability in real-world applications. By assessing performance metrics such as accuracy, precision, 

recall, and F1 score, we can determine how well a model performs on a given task and identify 

areas for improvement. This process helps in selecting the most suitable model for the problem 

and supports decision-making processes.  

6.5.1 Training and evaluation 

The first model subjected to training and testing on the dataset was the Random Forest 

(RF). RF offers an adaptable framework by allowing the adjustment of hyperparameters to 

optimize model performance and address overfitting concerns. Two crucial hyperparameters in RF 

are the number of estimators (decision trees), and the maximum depth of each individual tree. 

Calculating accuracy for validation and training set allowed us to notice and address any 

overfitting problems displayed by the RF model by adjusting those parameters. When the accuracy 

for training set is much higher compared to validation, the model is learning too well from the 

training set and struggles to properly generalize for new unseen data. When the number of decision 

trees and the depth of each tree were set to higher values, the accuracy for training set was reaching 

close to 100%, while the validation accuracy was dropping significantly. Thus, the optimal number 

of decision trees was set to 100, with the depth of each tree equal to 5. This hyperparameter setting 

achieved the accuracy of training and validation set equal to 88% and 90% respectively.  

Second model that was trained was Support Vector Machine. The SVM model has two 

parameters, C and Gamma that serve as adjustable hyperparameters. The C parameter, often 

referred to as the regularization parameter, impacts the trade-off between achieving a smoother 

decision boundary and correctly classifying training points. A smaller C value results in a softer 

margin, allowing for more points to be classified correctly but potentially leading to overfitting, 

while a larger C value enforces a stricter margin, prioritizing a simpler separation between classes 

but potentially sacrificing the correct classification of some training points. The gamma parameter 

is associated with the radial basis function (RBF) kernel, a common choice in SVMs models for 

handling non-linear relationships in data. A smaller gamma value results in a wider Gaussian 

kernel, leading to smoother decision boundaries and potentially underfitting the training data. In 
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contrast, a larger gamma value narrows the Gaussian kernel, allowing the model to capture more 

complex patterns in the data but possibly leading to overfitting (Liu et al. 2006). Grid search 

approach was performed to find the optimal combination of C and gamma values for a SVM model. 

Grid search is an optimization technique that systematically searches through a predefined set of 

hyperparameter values for a model. It involves evaluating the effectiveness for each combination 

of C and gamma values using a cross-validation, in order to to find the ones that result in the best 

performance without overfitting.  

The same grid search method was uniformly employed across all ensemble learning 

algorithms—AdaBoost, XGBoost, and LightGBM—during the training phase to tune their 

hyperparameters. Specifically, the parameters under investigation were the number of estimators 

(representing weak learners or trees) and the learning rate, which controls the contribution of each 

weak learner to the final combined model. Cross-validation was performed to find the most 

efficient values of those parameters, ensuring the most accurate results while avoiding overfitting. 

In the final step of the modeling process, an Artificial Neural Network (ANN) was built 

and tailored to the dataset. The exploration of various ANN model structures was performed, with 

an evaluation on the validation set. The finalized architecture consists of four layers: an input layer, 

two hidden layers, and an output layer. The input layer's configuration aligns directly with the 

number of features in the dataset. Subsequently, the first and second hidden layers consist of 32 

and 16 neurons, respectively and the output layer's structure is determined by the number of classes 

within the dataset. Activation functions played a crucial role in shaping the model, with the first 

three layers employing the swish activation function, known for its non-linearity and smoothness. 

The output layer, responsible for producing the final predictions, employed the softmax function 

to ensure appropriate class probabilities. The optimization of weights during each epoch and the 

minimization of the algorithm's loss were facilitated by the Adam optimizer. Categorical cross-

entropy was adopted as the loss function, aligning with the multi-class nature of the problem, 

contributing to the model's ability to determine and classify instances accurately.  
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6.5.2 Results 

All the investigated Machine Learning models were assessed with the same evaluation 

metrics, to demonstrate a clear contrast between their results and conduct a proper comparative 

analysis. The most popular and basic metric is the accuracy score, which can be calculated for both 

validation and testing sets (Figure 6.7). Upon the examination of the model performance, it 

becomes clear that the Artificial Neural Network (ANN) stands out as the leading performer, 

achieving a great accuracy score of 91% on the testing set. Following closely is the Random Forest 

model, demonstrating an accuracy score of 86%. Notably, both the Support Vector Machine and 

LightGBM classifiers showed identical accuracy scores for both the validation and testing sets. 

However, it is crucial to highlight that, at this point of evaluation, the Adaptive Boosting classifier 

appeared as the least effective, displaying the lowest accuracy among all the models assessed. 

In the next step of my analysis the averaged classification report metrics such as precision, 

recall and F-1 score were determined and compared (Figure 6.8). This provides aggregated 

performance evaluation across all classes, presents summary of how well the model performs on 

average. These metrics provide a single numerical value that represents the overall performance, 

simplifying the interpretation of results. Precision measures the accuracy of positive predictions. 

It calculates the ratio of true positive predictions to the total predicted positives, high precision 

values indicate fewer false positives predictions. Recall measures calculates the ratio of true 

positive predictions to the total actual positives, higher recall values indicate fewer false negatives 

predictions. The F1  is a harmonic mean of precision and recall that combines them into a single 

value, higher F1 score is generally desirable because it indicates a better trade-off between these 

two metrics. Similarly as with accuracy, the ANN model achieved the highest score for all three 

metrics, while RF’s results declined for recall and F-1 score. Among all the models, AdaBoost is 

again showing the lowest results, therefore it exhibits poor predicting capabilities for stope stability 

data.   
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Figure 6.7 Accuracy score for all the Machine Learning models  

 

 

Figure 6.8 Classification report for all the Machine Learning models 
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In the context of stope stability predictions, precision appears as a crucial metric, especially 

in the case of stable class, as it directly addresses the accuracy of positive predictions, holding 

particular significance when the cost associated with false positives is high. These false positive 

predictions could potentially lead to significant safety concerns. When an unstable or caved 

condition is incorrectly classified as stable, it creates a major risk to the safety and integrity of the 

mining environment. Precision in this context becomes the crucial metric because it emphasizes 

the correctness of the model in identifying actual conditions. The precision scores across all classes 

are shown on Figure 6.9. The recall score on the other hand (figure 6.10), has a significant 

importance in the case of caved predictions. When the recall score for caved class declines, it 

means that there are instances that are incorrectly classified as stable or unstable. This 

mispredictions are also dangerous as they are causing some potentially dangerous conditions to be 

presented as either unstable or stable.  

When analyzing the precision and recall graphs, a crucial realization was evident, 

emphasizing the limitations of the Random Forest model despite its apparent efficiency based on 

overall accuracy. While accuracy is a comprehensive metric, a more careful examination exposed 

a critical concern related to the recall score for the caved class. The recall value of 0.33, indicated 

a notable deficiency in the RF model's ability to accurately identify instances of caved conditions. 

This score showed that a substantial portion of the actual caved cases were being misclassified as 

either stable or unstable. Such misclassifications create a significant risk to mine safety, as they 

imply that potentially hazardous conditions associated with caved areas are not being properly 

identified.  

The Artificial Neural Network once again demonstrated its exceptional capability in 

producing the best classification results across all classes, standing out in comparison to all other 

models evaluated in this study. The ANN achieved a perfect recall score of 1 for both stable and 

unstable cases, indicating that none of these cases were incorrectly assigned to a different class. 

However, a challenge appears in the classification of unstable cases, which represent conditions 

that are between stable and caved, posing potential risks in a mining environment. The precision 

score of 0.82 for caved class and 0.91 for stable class, means that some of those unstable cases 

were assigned to one of those two classes. However, the lower precision for the caved class 

indicates that a larger proportion of these unstable cases was classified as caved. This aligns with 
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a safer approach, as misclassifying unstable conditions as caved is a more reasonable and careful 

choice in terms of mine safety. 

 

Figure 6.9 Precision scores for all Machine Learning models 

 

 

Figure 6.10 Recall scores for all Machine Learning models 
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6.5.3 Feature importance analysis with SHAP 

In the context of my study on open stope stability, conducting feature importance analysis 

is important for a comprehensive understanding of the factors influencing stability outcomes. 

Feature importance analysis allows us to determine the relative contribution of each parameter to 

the predictive performance of the machine learning models. By identifying the most influential 

features, we gain insights into the key determinants of stope stability, enabling engineers to 

prioritize and focus their attention on critical factors during the design and planning stages. This 

knowledge not only enhances the interpretability of the model but also assists in making informed 

decision-making in real-world mining scenarios. Additionally, feature importance analysis helps 

in the optimization of data collection efforts, guiding engineers to gather more detailed information 

on crucial parameters. Ultimately, this process regulates the machine learning model with domain-

specific knowledge, ensuring that the predictions are not only accurate but also reflect the nuances 

of open stope stability and safety assessments. 

 To perform this feature analysis a SHapley Additive exPlanations (SHAP)  analysis was 

performed for all machine learning models investigated in this study.  SHAP is a framework for 

explaining the output of machine learning models outcomes. It assigns a value (Shapley value) to 

each feature, indicating its contribution to the model's prediction (Lundberg and Lee 2017). In the 

context of my study on open stope stability assessment, performing SHAP analysis is crucial for 

several reasons. It provides interpretability to complex machine learning models, helping us 

understand how each input feature influences the stability predictions. This interpretability is 

essential for gaining insights into the driving factors behind stability conditions. The information 

from SHAP analysis is invaluable for improving stope design strategies and focusing engineering 

efforts on the aspects that have the greatest influence on stability. Moreover, SHAP analysis aids 

in the validation and verification of the model's predictions. By understanding the rationale behind 

each prediction, engineers can assess the model's reliability and identify potential areas of 

improvement in both the model and the underlying data. SHAP analysis enhances the transparency, 

interpretability, and reliability of the machine learning model, making it an essential step in 

ensuring the practical applicability of the model's predictions in real-world mining scenarios.  

SHAP value summary plots for RF, SVM, AdaBoost, XGBoost, LightGBM and ANN are shown 

on Figures from 6.11 to 6.16. The chart's horizontal axis represents SHAP values, while the vertical 
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axis displays all the features in the data, with the most influential one being on top. Each point on 

the chart corresponds to a SHAP value for a prediction and a feature. Red indicates a higher feature 

value, while blue indicates a lower one. By observing the distribution of the red and blue dots, we 

can gain a general understanding of the impact of feature directionality. The positive SHAP values 

are indicating more positive impact on the model, in this case those positive values mean that there 

is higher probability of predicting that case into stable or unstable class.   

 

 

 

Figure 6.11 Random Forest - SHAP value summary plot 
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Figure 6.12. SVM - SHAP value summary plot 

 

 

Figure 6.13 AdaBoost- SHAP value summary plot 

 

 

‘ 

‘ 



 

167 

 

Chapter 6 Comparative study 

 

Figure 6.14 XGBoost- SHAP value summary plot 

 

 

Figure 6.15 LightGBM- SHAP value summary plot 
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Figure 6.16 ANN model - SVM - SHAP value summary plot 

 

In the case of a RF model, the Q’ value has the most influence on the final prediction, 

followed by a shape value S which is the span of the opening and then L (length). The higher value 

of the Q factor, the higher probability that the stope will have a stable condition, similar trend can 

be noticed with the S factor. In case of the SVM model, it can be noticed that Q value is also the 

most influential, with the higher values having more positive impact on the stability of the stope. 

Surprisingly for the SVM model, the B factor has a second highest impact, whereas in other models 

its influence is less significant. For other models, the shape parameters, especially span, have the 

most significant impact. These results are good for a mine designing stage, as it is usually more 

feasible to adjust the size of the opening (such as a stope length or span) than to change the overall 

surrounding rock conditions. Engineers have greater control over the dimensions of the opening 

and can adapt them to suit specific requirements, such as equipment accommodation and stability 

considerations. Therefore, mine design prioritizes optimizing the size and shape of openings while 

working within the limitations of the surrounding rock conditions. However models such as 

AdaBoost, XGBoost and LightGBM,  that have prioritized the shape of the opening in their 

predictions, are also models that exhibited less accurate overall performances. These models also 
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have a lack of consistency when it comes to the value of the feature impacting the predictions, 

with some having higher values influencing the model positively and others doing the opposite.  

The Artificial Neural Network (ANN) model exhibited the best performance in terms of 

predictive capabilities, consistently delivering high classification scores across all stability classes. 

Upon closer examination of the feature importance analysis, it became apparent that the span factor 

(S) exhibited a high degree of influence on the model's predictions. Despite being the most 

influential factor, there was a notable lack of consistency in the impact of higher span values on 

stability predictions. While higher span values generally appeared to have a positive influence on 

stability predictions, there were instances where this trend was not maintained. In fact, there was 

one case where a high span value resulted in a significantly negative impact on stability. This 

inconsistency in the influence of span highlights the complexity of the relationship between this 

factor and stope stability. 

Since the variability observed in the influence of span on stability predictions is not 

consistent, it is advisable to prioritize the second most influential factor, which is the rock quality 

factor (Q’). The analysis revealed a clearer trend with Q’, where lower values consistently 

exhibited either highly negative or neutral influences on stability predictions. This reliability in the 

relationship between Q’ and stability suggests that it may be a more dependable factor to consider 

when making predictions. Additionally, the length factor (L) was observed to have a more 

consistently negative impact on stability predictions for larger values. Although not as influential 

as factors S or Q’, the consistent trend with length reinforces its importance in stope stability 

assessment. 

 

6.6 Summary 

In this study, I explored the application of various machine learning models to predict the 

stability of open stopes in underground mining operations. The investigation aimed to compare the 

performance of different models and provide insights into their effectiveness in addressing the 

complex problem of stope stability assessment. 
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Upon evaluating the performance of the investigated machine learning models, several key 

findings emerged. The Artificial Neural Network (ANN) demonstrated exceptional predictive 

capabilities, outperforming all other models with an accuracy score of 91% on the testing set. This 

result underscores the effectiveness of ANN in accurately categorizing instances into stable, 

unstable, or caved classes. Following closely behind, the Random Forest model exhibited 

promising performance, achieving an accuracy score of 86%. Despite its lower accuracy compared 

to ANN, Random Forest demonstrated competitive results, highlighting its potential as a reliable 

predictive tool for stope stability assessment. In contrast, the Support Vector Machine (SVM), 

LightGBM, and AdaBoost classifiers displayed comparable accuracy scores, although lower than 

ANN and Random Forest. Notably, the Adaptive Boosting classifier exhibited the least effective 

performance, demonstrating the lowest accuracy among all models assessed. 

Precision and recall metrics provided further insights into the performance of the models 

in the context of stope stability predictions. Precision, which measures the accuracy of positive 

predictions, emerged as a crucial metric, especially for the stable class. The ANN model 

demonstrated high precision scores across all classes, indicating its capability to accurately identify 

stable conditions with minimal false positives. The recall score for the caved class emerged as a 

significant concern, particularly for the Random Forest model. Despite its high overall accuracy, 

Random Forest exhibited a notable deficiency in accurately identifying instances of caved 

conditions. This limitation poses significant safety risks in mining environments. 

The SHapley Additive exPlanations (SHAP) analysis provided valuable insights into the 

factors influencing the stability predictions of each machine learning model. For instance, the Q’ 

value emerged as the most influential factor in the predictions of the Random Forest and SVM 

models, emphasizing the importance of rock mass quality in determining stope stability. 

Interestingly, models such as AdaBoost, XGBoost, and LightGBM prioritized the shape 

parameters, particularly span, in their predictions. While this prioritization aligns with mine design 

principles, these models exhibited less accurate overall performances. The ANN model exhibited 

factor S as the most influential on the model predictions. However, in that case, there is also lack 

of consistency for the higher values, which seem to have rather positive influence on the stability 

except few cases. In the case of ANN it is better to look at the second most influential factor which 

is Q’, where it is more clear that lower values have either highly negative or neutral influence on 
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the stability predictions. It is also worth noticing that the factor L, has clearly more negative impact 

for the larger values. Due to the inconsistency of factor S, the analysis suggests relying on the 

second most influential factor Q’, for more accurate stability predictions. 

Despite the promising results obtained in this study, several paths for future research and 

improvement exist. Further exploration of the dataset and refinement of the feature selection 

process could enhance the predictive capabilities of the models. Additionally, investigating 

ensemble methods and hybrid approaches combining machine learning with classical stability 

assessment methods may yield even more accurate predictive models. 

In conclusion, this study explores the potential of machine learning techniques in 

addressing the complex problem of stope stability assessment. By leveraging advanced algorithms 

and extensive data analysis, mining engineers can make informed decisions to enhance safety and 

optimize the design of underground excavations. 
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CHAPTER 7: SUMMARY, CONCLUSION AND 

RECOMMENDATIONS 

 

This chapter, drawing from previous chapters, provides a summary of the whole thesis as 

well as the conclusion. In addition, this chapter also tells the research prospects about using 

machine learning methods in predicting the stability of open stopes in underground mining 

operations.  
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7.1 Summary of the research  

This thesis addresses the critical need to assess the stability of open stopes in mining 

operations, highlighting the importance of ensuring safety and longevity in underground 

excavations. Despite the existence of classical stability assessment methods, there remains a 

demand for improvement in predicting stope stability.  

Evaluating the possibility and applicability of various machine learning approaches was a 

primary objective of this research, driven by the recognition of the potential for these techniques 

to enhance stope stability assessment in mining operations. By systematically comparing and 

evaluating different machine learning models, I aimed to identify the most effective approaches 

for predicting stability conditions. This process involved exploring a diverse range of algorithms, 

considering factors such as model performance, interpretability, and computational efficiency. 

Through rigorous evaluation, I aimed to uncover insights into the strengths and limitations of each 

approach, enabling us to make informed decisions about their suitability for practical 

implementation. By conducting this comprehensive analysis, I aimed to advance the field of stope 

stability assessment and contribute to the development of effective and reliable predictive models 

that can support decision-making in mining engineering.  

Chapter 2 delves into the engineering background of open stope mining operations, 

presenting the terminology and classification methods essential for understanding mining 

techniques. It offers insights into rock mass classification, laying the groundwork for subsequent 

stability assessments. In Chapter 3, a comprehensive literature review examines contemporary 

methods for stope stability assessment, including empirical approaches, statistical analyses, and 

machine learning techniques. This review critically evaluates existing methodologies, highlighting 

their strengths, limitations, and potential applications in mining engineering. 

Chapters 4, 5, and 6 focus on developing and evaluating machine learning models to predict 

stope stability. Chapter 4 utilizes the Potvin database to compare Random Forest and Logistic 

Regression models, while Chapter 5 conducts an in-depth analysis to develop an effective 

Artificial Neural Network (ANN) model. Both chapters explore feature importance to identify 

parameters influencing stope stability. Finally, Chapter 6 expands on these findings by analyzing 

a larger database from the literature and comparing multiple machine learning models. This 
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chapter provides insights into the effectiveness of various models in predicting stability conditions, 

emphasizing the importance of feature selection and model evaluation. 

 

7.2 Conclusions of this research 

Throughout this research, a comprehensive methodology has been developed to employ 

machine learning techniques for predicting the stability of open stopes in underground mining 

operations. This methodology included the development and application of machine learning 

models using database obtained from prior publications and publicly available datasets. The 

process involved data collection, preprocessing, feature engineering, and model evaluation to 

ensure effectiveness and reliability. As a result, several key conclusions have emerged from this 

study. These conclusions will be presented chapter by chapter, presenting the insights gained from 

each of them.  

The introductory Chapter 1 presents the foundation for understanding the critical 

importance of assessing the stability of underground openings in mining operations. Several tasks 

that were to be accomplished in this research are presented, including an extensive literature review, 

a thorough data collection, development of machine learning models and feature importance 

analysis. All listed research objectives were achieved in this study. 

Chapter 2 provides a comprehensive overview of open stope mining methods employed, 

where the operations are conducted by extracting substantial ore blocks using drilling and blasting 

techniques within underground ore deposits. The chapter presents the classification of open stope 

mining methods, explaining various factors influencing their categorization. Factors such as 

mining direction (longitudinal or transverse), the use of pillars and backfill, and drillhole diameter 

(longhole or blasthole) are discussed, highlighting the different approaches required for different 

mining scenarios. Moreover, the chapter explores popular rock mass classification methods 

developed over the years, emphasizing their significance in assessing the stability of openings. 

These classification systems offer systematic approaches to evaluate rock mass conditions, 

incorporating various parameters to quantify its behavior. By presenting these methods, Chapter 2 

sets the stage for subsequent discussions on stability assessments and predictive modeling.  
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Chapter 3 delves into various methodologies developed for evaluating the stability of open 

stope mining. The chapter begins by discussing analytical methods used to assess stress-induced 

and gravity-induced failures, including kinematic, beam failure, and plate buckling analyses. 

Empirical methods, such as stability graphs, are also explored, emphasizing their importance, 

followed by the review of statistical and numerical modeling methods employed and presented in 

literature over the years. 

One of the highlights of Chapter 3 is the review of machine learning methods for predicting 

stope stability. Several studies are discussed, showcasing the effectiveness of machine learning 

algorithms in analyzing data to identify patterns and correlations related to stope stability. Erdogan 

Erten et al. (2021) introduced a hybrid artificial neural network approach, while Saadaari et al. 

(2020) investigated the viability of ensemble learning methods. Qi et al. (2018b) explored various 

artificial intelligence strategies for predicting stope stability, highlighting the remarkable 

predictive capabilities of these machine learning models. Overall, the chapter emphasizes the 

importance of ongoing research in stope stability assessment, particularly in the context of 

advancing mining engineering practices.  

Chapter 4 explores the application of Machine Learning (ML) models to predict open stope 

stability in underground mining, addressing the limitations of traditional stability assessment 

methods. Using the Potvin database, Logistic Regression and Random Forest algorithms were 

employed, achieving promising results. Logistic Regression demonstrated an average accuracy of 

0.68, while Random Forest performed slightly better with an average accuracy of 0.71, especially 

in predicting unstable zones. The Potvin database, comprising data from 34 mines, provided 

essential parameters related to rock mass characteristics, stress conditions, and other factors 

influencing stope stability. Machine learning models were trained and evaluated using various 

methods such as k-fold Cross-Validation, Confusion Matrix, and ROC-AUC score. Logistic 

Regression, based on stability number (N) and shape factor (HR), struggled with correctly 

predicting unstable zones due to similar values to other classes. Despite this, its AUC score was 

0.81 for the training set and 0.78 for the test set, which are considered excellent and acceptable, 

respectively. Cross-Validation yielded an average accuracy of 0.68. 
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Random Forest, after hyper-parameter tuning, achieved an accuracy of 0.84 for the training set and 

0.75 for the test set. The AUC score was 0.96 for training and 0.83 for testing, indicating excellent 

and outstanding performance. Cross-Validation resulted in an average accuracy of 0.71. Both 

algorithms showed satisfactory performance, with Random Forest outperforming Logistic 

Regression, particularly in predicting unstable zones.  

Chapter 5 of the study focuses on the development and optimization of an artificial neural 

network (ANN) model. The study again utilized Potvin's database, consisting of cases of open 

stopes, each characterized by various features describing the surrounding rock mass properties, 

geological conditions, and opening dimensions. In this study, more parameters were used as input 

parameters for the model In previous study presented in Chapter 4, stability number N and 

hydraulic radius (HR) were considered, however in this research, parameters such as Q value, rock 

stress factor (A), joint orientation adjustment factor (B), effect of the gravity (C) and hydraulic 

radius (HR) were passed as separate inputs for the model.  

Before constructing the ANN model, the extensive preprocessing of the data was conducted. 

This involved techniques such as feature scaling (using both MinMaxScaler and StandardScaler 

methods), encoding categorical data, and splitting the dataset into training, validation, and testing 

sets. The ANN model's architecture was carefully designed to suit the characteristics of the dataset. 

The input layer consisted of five neurons, corresponding to the five input features in Potvin's 

database. Subsequent hidden layers were developed based on experimentation, literature review, 

and validation on a separate validation set. During model development, various configurations 

were tested and evaluated using metrics such as accuracy, loss, confusion matrix, and classification 

report. The objective was to find a balance between accuracy and generalization, ensuring that the 

model could make accurate predictions on unseen data without overfitting to the training set. 

Through careful adjustments and fine-tuning of hyperparameters, the optimal configuration with 

the best results was identified: using StandardScaler for data scaling and Swish activation function 

for all hidden layers. The performance of the final ANN model was assessed on an independent 

testing set, consisting of 18 examples not used for training or validation. The model achieved an 

overall accuracy of 83%, indicating its ability to correctly predict the stability class for the majority 

of instances. Furthermore, the precision, recall, and F1 score metrics provided insights into the 

model's performance across different stability classes, highlighting its ability to minimize 
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misclassifications. In addition to evaluating the model's predictive capabilities, the analysis of the 

importance of features using the SHAP (Shapley Additive exPlanations) tool was performed. This 

analysis revealed that the Hydraulic Radius (HR) and Q value had the most significant influence 

on stability predictions. 

Chapter 6 of my study focuses on the development, optimization, and comparison of 

various machine learning model, followed by thorough feature importance analysis. In this study 

I considered even more factors as input parameters, particularly hydraulic radius (HR), which in 

this case was separated into Height (H), Span (S) and Length (L). This allowed us to evaluate each 

dimension of the stopes separately, rather than one shape parameter (HR) representing a ratio of 

those dimensions.  

I started by analyzing the Adoko (2022) dataset, which contains stope dimensions and 

geomechanical properties from three mines in Ghana. The objective in this study was to explore 

and compare various machine learning algorithms, including Random Forest, Support Vector 

Machine (SVM), AdaBoost, XGBoost, LightGBM, and Artificial Neural Network (ANN), to 

determine their effectiveness in predicting stope stability. 

After preprocessing the data, which includes feature scaling, encoding categorical variables, 

and splitting the dataset into training, validation, and testing sets, I trained each model and 

evaluated their performance using metrics such as accuracy, precision, recall, and F1 score. I find 

that ANN consistently outperforms the other models, achieving an accuracy score of 91% on the 

testing set. To gain insights into the factors influencing stability predictions, I conduct SHapley 

Additive exPlanations (SHAP) analysis. This analysis reveals that the Q value, representing rock 

mass quality, is the most influential factor in models like Random Forest and SVM. In contrast, 

models like AdaBoost, XGBoost, and LightGBM prioritize shape parameters, particularly span. 

However, despite their focus on shape parameters, these models exhibit less accurate overall 

performances. The ANN model identifies span (S) as the most influential factor, but due to its 

inconsistency, I recommend relying on the second most influential factor, Q, for more accurate 

stability predictions. 

This research presents a novel approach in assessing the stability of open stopes. Unlike 

traditional graph-based methods, which typically allow for stability assessment using only two 



 

183 

 

Chapter 7 Summary 

parameters, the ML techniques employed in this study enabled the incorporation of a wider range 

of parameters into the stability evaluation process. This comprehensive inclusion of multiple 

factors facilitated the discovery of more complex patterns and relationships that were previously 

undetectable with conventional methods. 

In summary, this study establishes a framework for integrating machine learning 

techniques into the prediction of stope stability. The findings demonstrate the viability of data-

driven approaches in traditional mining engineering practices, indicating their potential to 

complement existing experience-based and mechanism-based methods while offering a new 

perspective on challenges like stability prediction. Although the adoption of data-driven methods 

in mining has been limited so far, the success of these applications suggests a growing confidence 

in applying machine learning within mining engineering disciplines. 

7.3 The prospects of future research  

Looking ahead, the future prospects in the field of employing machine learning techniques 

for stope stability predictions appear promising, with several prospects for advancement and 

exploration. As technology continues to evolve and computational power increases, there is vast 

potential for the refinement and optimization of machine learning models to enhance their 

predictive accuracy and reliability. Additionally, the integration of advanced sensing technologies 

and real-time monitoring systems within mining operations can provide a continuous stream of 

data, enabling more dynamic and responsive stability assessments. Furthermore, the development 

of hybrid models that combine machine learning with physics-based modeling approaches have a 

great potential for improving predictive capabilities while incorporating domain-specific 

knowledge and principles.  

However, it is essential to acknowledge the limitations of current research efforts, such as 

the reliance on relatively small databases, which may restrict the generalizability and applicability 

of machine learning models. Addressing this challenge will require concerted efforts to collect 

larger and more diverse datasets, potentially through collaboration among industry. Future studies 

could explore the potential benefits of combining the two databases that were investigated in this 

research. This integrated approach could improve the predictive accuracy and reliability of the 

models. Additionally, the collection of databases from different world regions could also enhance 
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the applicability of the models. By incorporating data from a diverse range of geological conditions, 

the models can be trained on more varied and representative data. This would allow for the 

development of machine learning models with improved generalizability, capable of providing 

accurate stability predictions across different mining environments globally. Moreover, ongoing 

research should focus on refining feature selection methods, improving model interpretability, and 

addressing issues related to data quality. By addressing these challenges and focusing on 

improving technologies and methodologies, the field of machine learning-based stope stability 

predictions is capable to make significant advancements, ultimately contributing to safer and more 

efficient mining practices in the future. 
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