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Abstract

Operated under changing wind speed and harsh environment conditions, the

rotating parts in wind turbine gearboxes, such as gears and bearings, will

deteriorate and become faulty over time. By conducting real-time and accurate

fault detection and diagnosis before significant failures occur, we can reduce

the operation and maintenance costs of wind turbines. This is vital for the

economic viability and stability of wind energy.

Vibration analysis based on deep learning technologies has emerged as a

promising solution for fault diagnosis. Well-trained deep learning models can

process large amounts of sensor data in real time and classify raw vibration

signals into labels indicating different fault types, locations, and severity levels.

However, these models typically require large amounts of labeled training data

and may not generalize well to different working conditions or new fault modes.

This limitation arises because these models are developed using the traditional

supervised learning paradigm, which assumes a large and complete training

dataset.

Other learning paradigms using the idea of transfer learning can be ex-

plored to address these limitations by leveraging knowledge gained from one

diagnostic task or working environment to improve performance on another re-

lated task or environment. Models trained using transfer learning techniques

show promise in 1) recognizing different fault classes under variable rotat-

ing speeds and load levels with high accuracy, 2) learning fault-discriminative

knowledge with size-limited or incomplete dataset, and 3) providing improved
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interpretability and trustworthiness in the diagnosis process.

This thesis includes three topics. Topic #1 focuses on the learning paradigm

of domain adaptation. A weighted domain adaptation network is proposed to

adapt the diagnostic knowledge from multiple labeled datasets to an unlabeled

dataset which is collected under a different working condition than those la-

beled datasets. Domain adversarial training and transfer learning using Maxi-

mum Mean Discrepancy are applied to align the learned features from different

datasets. Topic #2 studies the open-set recognition (or open-set fault diag-

nosis) setting and proposes an evidential abstaining classifier that can classify

both known faults that are seen in the training dataset and unknown faults

which are not included in the training set. Synthetic auxiliary training sam-

ples are used to form better features and classification boundaries. Evidential

learning is used to better quantify the prediction uncertainty of the model.

Topic #3 explores the continual learning paradigm considering the accumu-

lation of data and fault classes through time. A continual learning model

is fine-tuned through a sequence of diagnostic tasks each features a different

fault class and a different working condition. A task balanced sampling scheme

is proposed to select training samples to represent previously learned tasks,

and a multi-way domain adaption is conducted to adapt to different working

conditions in different tasks.

The novelties explored in this research advance the development of intel-

ligent diagnostic systems for various industrial applications, including wind

turbines. The learning paradigms studied in this thesis are useful for build-

ing diagnostic systems across multiple life stages of a machine, from the early

stages with only a few fault classes to the later stages with many faults to

remember. Future research could explore other learning paradigms and ad-

vanced models, such as few-shot learning and the Transformer model.
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Chapter 1

Introduction

In the era of the 4th Industrial Revolution (Industry 4.0), the field of machine

fault diagnosis takes on a pivotal role. This chapter provides an overview of

the fundamentals, significance, and challenges inherent to this domain. Fur-

thermore, it emphasizes the need for intelligent diagnostic tools, enabled by

recent advancements in sensing and data-driven technologies, to unlock the

full potential of future cyber-physical systems.

In this opening chapter, Section 1.1 introduces foundational concepts in

machine fault diagnosis, wind turbine gearboxes, and deep learning. Follow-

ing this, Section 1.2 identifies current research gaps and elucidates the moti-

vations driving the research in this thesis. Transitioning to Section 1.3, the

research contributions of this thesis are outlined. Finally, Section 1.4 provides

an overview of the structure and content of the upcoming chapters.

1.1 Background

1.1.1 Fault Diagnosis

Machines play a vital role in providing us with a comfortable and safe environ-

ment, from smooth transportation to dependable energy supplies. However, as

machines age, their mechanical components will wear down, leading to faults.

In our daily lives, mechanical faults may manifest as jerking transmissions,
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unusual noises, oil leakages, etc. Some seemingly minor issues like gear tooth

chirp or bearing abrasions may not trigger immediate shutdowns. If left un-

addressed, a minor fault can evolve into a malfunction and eventually lead to

system failure [1]. To name a catastrophic incident, in 2016, a helicopter car-

rying 13 personnel crashed due to an undetected fatigue fracture in its main

rotor gearbox [2].

Prognostics and Health Management (PHM) is a field focusing on anomaly

detection, fault diagnosis, and degradation prognosis for machines and equip-

ment [3]. The goals of PHM include enhancing reliability, reducing main-

tenance costs, maximizing production availability, and avoiding catastrophic

failures [4]. Its significance is especially pronounced in industries such as man-

ufacturing, power generation, and mining, where the smooth operation of ma-

chinery is crucial to safety and productivity. Unplanned downtime can cost

up to $250,000 per hour in the process manufacturing industry [5] and cost

around $647 billion per year for industrial manufacturers across all industry

segments [6].

A good maintenance planning strategy is the key to reducing unplanned

downtime. Ideally, an industrial asset should be maintained just before it fails

to perform its designated functions to maximize availability while minimiz-

ing costs. Maintenance planning strategies can be classified into these three

categories: run-to-failure maintenance, scheduled maintenance, and condition-

based maintenance (CBM) [7], [8]. Figure 1.1 illustrates how the three different

strategies work and the potential costs and failures they are exposed to.

Run-to-failure maintenance, also known as breakdown maintenance, is a

strategy where the machine is allowed to run until it fails. This approach is

only suitable when the costs associated with breakdowns are low. Scheduled

maintenance, often referred to as preventive or time-based maintenance in the

literature [9], involves regular maintenance activities based on the expected
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Scheduled maintenance

𝑇ଵ 𝑇ଶ
Pre-determined intervals

potential failure
maintenance maintenance

Run-to-failure maintenance
failure

unavailable

replace

Condition-based maintenance
fault diagnosis maintenance

!

Figure 1.1: Three different maintenance planning strategies.

time between failures, which is calculated using historical failure data or simu-

lation models. Scheduling maintenance too frequently can lead to wasted time

and resources, while a loose maintenance schedule increases the risk of failures

occurring between maintenance events.

To reduce unnecessary maintenance activities and avoid failure, PHM tech-

niques can be applied to facilitate CBM strategies. A CBM strategy is to plan

maintenance based on the health conditions of machines. Maintenance ac-

tivities can be executed after a fault is detected or, preferably, classified and

accessed with a severity level. Fault prognosis methods may also be used to

predict the remaining useful life (RUL) [10] before faults occur. These tech-

niques help operators determine the urgency of maintenance and prepare for

upcoming activities, thereby reducing maintenance costs.

Fault diagnosis is an indispensable step to the success of CBM. It is the

process of identifying the specific fault that has occurred and determining

the underlying root causes of undesirable operating status. An effective fault

diagnosis system is expected to reduce 50% to 80% of the maintenance cost

and increase 20% to 30% of the total production [11]. The key to achieving

these benefits lies in accurately detecting and identifying warning signs as
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early as possible. Three fundamental requirements should be imposed on fault

diagnostic tools:

1. Sensitive detection: the ability to detect faults at their early stages. For

example, detect root cracks in gear teeth before the whole transmission

train fails.

2. Multi-class inclusion: the ability to recognize multiple fault types, and

isolate fault locations. For example, both bearing abrasions and gear

tooth cracks located at either stage of a two-stage gearbox should be

detected and classified.

3. Accurate recognition: the ability to report all fault occurrences and avoid

false alarms. Failing to report a fault may lead to system failure while

false alarms waste maintenance work.

The most basic form of fault diagnosis involves field inspections conducted

by skilled operators and technicians who rely on their observations, experi-

ence, and manual examinations of machines to make diagnoses. However,

as machines become increasingly widespread around the world, industries are

seeking automated and remote solutions.

In recent decades, various technological advancements have computerized

fault diagnosis. On one hand, digital measuring instruments and sensors, such

as accelerometers and acoustic emission sensors, are widely deployed in the

field to collect firsthand data. On the other hand, various computer programs,

including computer-aided models and digital signal processing algorithms, are

increasingly being utilized for fault diagnosis. In this modern context, fault

diagnosis can be viewed as the process of mapping the sensor’s measurements

to the fault space [12]. Generally, a fault diagnosis program comprises three

essential steps, as illustrated in Figure 1.2).
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Data Acquisition

Data Processing

Diagnostic Decision

Figure 1.2: Three steps in fault diagnosis.

Data acquisition encompasses the installation of sensors and the collection

of condition monitoring data from the machines of interest. It also involves the

storage and transfer of this data. A diverse range of measurements, including

vibrations, acoustic emissions, currents, flow, speed, pressure, temperature,

and more, can be employed to monitor the health condition of these machines.

These data can be collected either continuously or intermittently, respectively

resulting in permanent or intermittent monitoring methods. The former gen-

erates much more data to be processed but can react quickly to sudden faults.

In either case, the collected data will be time series.

The most popular measurement used in the field of fault diagnosis is vi-

bration signals [13]. A healthy machine operates with a certain vibration

signature. As faults develop, this signature undergoes changes that can be

correlated with the fault [9]. Figure 1.3 shows how vibration analysis can

serve as one of the earliest tools to detect the degradation of a mechanical

component during the process of mechanical failure development [14]. Vibra-

tion sensors also offer the advantage of conducting online monitoring without

the need for production shutdowns.

In addition to vibration sensors, acoustic emission sensors also possess the

capability for online monitoring and demonstrate sensitivity to early faults.

However, they require complex mounting involving slip rings and necessitate

high sampling frequencies, resulting in much larger datasets to handle when
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Figure 1.3: Typical development of a mechanical failure [14].

compared to vibration sensors [9]. Oil analysis is another popular method

that accesses mechanical wear based on analyzing the content of elements

and the viscosity of the oil. However, an oil analysis process typically takes

a few hours or even days, making it unsuitable for online monitoring. It is

also challenged in isolation of different fault types as multiple components

may have the same chemical composition. For rotating machines such as

gearboxes, to track their working conditions and to aid in extracting fault-

indicative information, tachometers and torque sensors are also commonly used

to monitor the rotating speeds and load levels. The research works in this

thesis are based on commonly accessible measurements including vibration,

rotating speed, and load level.

In many research studies, laboratory data collected from experimental test

rigs are often used to study the behaviors of machines and to test diagnostic

methods. For example, the Case Western Reserve University (CWRU) bear-

ing dataset has been widely used in many research studies including refs. [15],

[16]. To obtain experimental datasets, electrical discharge machining is often
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employed to create artificial faulty components, such as bearings with pitted

outer races and gears with cracked teeth. The goal is to mimic the natural

faults and to recreate mechanical behaviors such as meshing stiffness changes

[17]. However, these artificial faults may fail to capture some details, such as

the crack closure phenomenon, due to the limitation of machining precision.

The machined faulty component is then installed into the test rig to simulate

specific health conditions of the machine. This approach allows for the col-

lection of data representing different machine health conditions under various

working conditions by design. Experiment datasets presented in Chapters 3,

4, and 5 are all collected using seeded artificial faults.

Data processing is the main research question in the field of fault diag-

nosis. Decoding complex patterns of sensor data and mining fault-related

information out of machines’ noisy working environments can be challeng-

ing. It often involves signal processing, feature extraction and selection, and

machine learning techniques. They are also usually categorized into physics-

based, data-driven, and hybrid methods. A review of existing data processing

methods for vibration-based fault diagnosis will be presented as Section 2.1 in

Chapter 2.

1.1.2 Wind turbine gearboxes

In recent years, the world has seen significant advancements in response to

climate change and global greenhouse gas emission reduction policies. Wind

turbines (WTs) are being installed all over the globe to harness the kinetic

energy of the wind and convert it into electricity. As of 2022, wind energy

accounted for 10.2% of the electricity generated in the United States, and

more turbines and wind farms are being constructed to increase this percentage

[18]. In Canada, wind energy capacity grew by 7.1% in the same year [19], and

according to the Canada Energy Regulator, it is expected to increase nine-fold
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from its current levels in the Global Net-zero Scenario [20].

A turbine is a complex electro-mechanical system consisting of rotor blades,

a hub, a tower, and a nacelle that encloses its drive train. As shown in Figure

1.4, the drive-train typically consists of the rotor, main bearing, main shaft,

gearbox, and generator.

Figure 1.4: A typical drive-train and its components in a wind turbine [21].

The gearbox plays a crucial role in wind turbines by converting the low-

speed, high-torque rotation of the rotor into high-speed rotation to drive the

generator. Multi-stage gear transmissions, including both fixed-axis gearboxes

and planetary gearing (also known as epicyclic gearing), are commonly used to

achieve high gear ratios, resulting in complex and compact gearbox structures

[22]. These gearboxes are subjected to all the stresses and vibrations gener-

ated by the wind, turbine-side components, and fluctuations in generator load.

Moreover, wind turbine gearboxes must adapt to variable working conditions

based on changes in wind speed and electricity demand. As a result, the gear-

box is often the weakest link of the WT drive train and typically fails within 5

years, significantly shorter than the design lifetime of a WT, which is usually

around 20 years [23]. To make it worse, the downtime and maintenance costs

associated with gearbox failure are substantial [24]. Therefore, monitoring the
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health of WT gearboxes is crucial for the efficient operation of wind farms.

Figure 1.5: Example faulty gear with a broken tooth in Halkirk wind farm,
Alberta, Canada. Photo taken by the author in 2019.

Bearings and gears are the two of the most common elements to develop

faults in a gearbox. In 2014, the U.S. National Renewable Energy Labora-

tory reported that about 70% of the WT gearbox failures are cause by the

bearings and 26% are caused by gears [25]. Fatigue cracking, macropitting,

micropitting, corrosion, and scuffing are the typical failure modes for bearings

and gears [26]. Figure 1.5 shows an example faulty gear that has a broken

tooth due to bending fatigue in Halkirk wind farm, Alberta, Canada.

Many studies have been conducted to detect early faults, such as gear

tooth crack [27] and bearing race defects [28]. Faults are often classified based

their location and size. For example, the CWRU bearing dataset is commonly

described as having nine different fault classes for the drive end bearing, in-

cluding three sizes of defects at the outer race, three sizes of defects at the

inner race, and three sizes of defects at the roller.

Detecting incipient faults, such as cracking in a gear tooth and pitting in

bearing races, within complex mechanical systems, particularly (WT) gear-

boxes, presents a significant challenge due to several factors:
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1. Weak vibration signatures: The vibrations produced by early faults are

often very faint compared to other signal components, such as those

generated by gear meshing, making their detection challenging.

2. Non-stationary vibration signals: Vibration signals from WT gearboxes

exhibit non-stationary behavior, complicating their modeling and anal-

ysis [29]. This complexity is made worse by the time-varying working

conditions of the gearboxes.

3. Complicated signal transmission path: Fault-induced vibrations undergo

damping and modulation as they travel through the signal transmission

path from the location of the fault to the sensor. In the case of WT

gearboxes, which typically involve multi-stage and planetary gearing,

the transmission path is intricate and time-varying [22], [30].

4. Sensor-related challenges: Sensors, including accelerometers used inWind

Turbines, are susceptible to various sources of noise. This noise can arise

from electromagnetic interference, temperature variations, and the im-

pact of raindrops.

These factors collectively contribute to a low signal-to-noise ratio, making

the early detection of faults in WT gearboxes a complex and intricate task that

requires specialized techniques and methodologies. Many research advances

have been made revolving around the diagnostic problem of WT gearboxes,

including the development of dynamic modeling [17], signal models [31], signal

processing [22], feature extraction and selection [32], machine learning [33], and

deep learning [34]. A detailed review will be presented in Section 2.1, Chapter

2.
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1.1.3 Deep learning

The aspiration to create intelligent machines has been a longstanding dream

for inventors. It traces back to Alan Turing’s seminal question in 1950, ‘Can

machines think?’ [35]. Artificial Intelligence (AI) has undergone transforma-

tive developments since then. Particularly in the last decade, there has been

a significant surge in AI advancements driven by deep learning research [36].

Deep learning has found extensive applications in our daily lives, including

autonomous driving [37], image recognition [38], and interactive chatbot [39].

Intelligent Fault Diagnosis (IFD) is the application of artificial intelligence

to fault detection and diagnosis [40]. In the era of Industry 4.0, marked by

the increased deployment and connectivity of sensors through the Industrial

Internet of Things (IIoT), the popularity of IFD is on the rise.

Typically, IFD systems follow a common approach. Initially, these systems

extract features from high-dimensional raw vibration signals. Subsequently,

the dimensionality of the feature space is further reduced by selecting features

that are particularly discriminative for faults. Finally, diagnostic decisions are

made based on the analysis of the selected features. This process involves a

systematic extraction and refinement of relevant information from the initial

vibration signals to enhance the accuracy and efficiency of fault diagnosis.

In the realm of IFD, the term ‘knowledge’ is often employed to encapsulate

the computational processes and rules involved in translating raw data into the

fault space [41]. The expert system illustrated in Figure 1.6a, as an approach

to IFD, aims to emulate human diagnosticians based on specific rules set by

experts [42]. As the machines to diagnose become more and more complicated,

it becomes cumbersome to exhaust and implement all the rules required. How-

ever, as the complexity of the machines to be diagnosed increases, it becomes

challenging to exhaustively define and implement all the necessary rules. In

11



contrast, Machine Learning (ML) shown in Figure1.6b leverages algorithms to

learn diagnostic rules and knowledge directly from data, reducing the reliance

on explicit expert knowledge [43].

Expert system Diagnosis
Knowledge

Data

(a) Expert system.

Machine learning Knowledge
Answer

Data

(b) Machine learning.

Figure 1.6: Comparison of expert system and machine learning in fault diag-
nosis.

ML models undergo training, validation, and testing stages before deploy-

ment for real applications. The available data are typically divided into a

training set, a validation set, and a testing set. During the training stage, an

optimization algorithm, such as Stochastic Gradient Descent (SGD) or Adam

[44], will minimize a predefined cost function (e.g., cross-entropy loss [45])

by adjusting model parameters (e.g. weights and biases in ANNs). Multi-

ple models are often trained to find the optimal model design and training

setting. Hyperparameters, variables related to model design and training set-

tings, play a crucial role. They are tuned to maximize accuracy or minimize

the loss function on the validation set. Tuning can be conducted based on ex-

perience, theoretical analysis, or algorithms like grid search or Bayesian search

[46]. Once the hyperparameters are tuned, and the model parameters trained,

the model proceeds to the testing stage, where its performance (typically test

accuracy) is evaluated.

For ML models, there are different learning paradigms (or learning set-

tings) given different availabilities of data and answers (labels). If both the
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data and labels are available during the training stage, the model undergoes

supervised learning. This is one of the easiest and most commonly studied

learning settings, and the resulting models are often reliable. If the labels

are not available, learning must be conducted in the more challenging unsu-

pervised setting, leading to less reliable models. If the training set is partly

labeled, the learning goes semi-supervised. Most existing IFD studies are fo-

cused on supervised learning and semi-supervised learning but few success has

been found using unsupervised learning for fault diagnosis. A more detailed

discussion of learning paradigms will be presented in Section 2.2.1.

Regression and classification are fundamental tasks in the field of ML.

Regression focuses on predicting continuous numerical outputs, while classifi-

cation involves assigning discrete labels or categories to input data. For fault

prognosis or RUL prediction, regression is often used. In the context of fault

diagnosis, the typical formulation is a classification problem. The objective is

to detect and identify which fault has occurred. Detecting the presence of a

fault or anomaly constitutes a binary classification problem, while identifying

different fault classes involves multi-class classification.

Various classification models including K-Nearest Neighbors (KNN) [47],

Support Vector Machines [48], and Artificial Neural Networks (ANN) [16] have

been used for fault diagnosis. Most ML models still rely on human experts

to design and select relevant features as their input. In fault diagnosis, nu-

merous research studies have focused on signal processing techniques, feature

extraction, and selection methods [22], [32]. Various mathematical and com-

putational models have been developed to help us understand the behavior

of faulty machines and assist in the design of features [17], [31]. Models that

use manually crafted features as input are commonly called shallow models in

the literature [16]. Dealing with high-dimensional data, such as raw vibration

signals, poses a challenge for these shallow models.
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CHAPTER 1. INTRODUCTION

Visible layer

(input pixels)

1st hidden layer

(edges)

2nd hidden layer

(corners and

contours)

3rd hidden layer

(object parts)

CAR PERSON ANIMAL
Output

(object identity)

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the , so named because it contains the variables that wevisible layer
are able to observe. Then a series of extracts increasingly abstract featureshidden layers
from the image. These layers are called “hidden” because their values are not given in
the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus 2014( ).

6

Figure 1.7: Illustration of a deep learning model [45].

Deep learning (DL), as a subset of ML, has emerged as a promising tool

for handling high-dimensional data. Its initial success was observed in the

field of image recognition, where deep Convolutional Neural Networks (CNN)

surpassed human performance in classifying images into different categories

[38]. DL models are essentially multi-layer ANNs and are also referred to as

deep neural networks (DNNs) in the literature [36]. The term ‘deep’ is used

to describe the high number of layers. The first (lowest) layer is the input

layer, and the subsequent hidden layers form representations of the inputs,

also known as features. Typically, as illustrated in Figure 1.7, lower layers

extract simpler representations such as edges in images [45]. The higher layers

build more complex concepts, such as car wheels, by combining the simpler

representations formed in the lower layers. With such a hierarchical structure

and representations, DL models can extract features from high-dimensional

raw inputs without human intervention, enabling end-to-end solutions that

directly map raw data to the label space.
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Figure 1.8: Convolutional kernels learned by CNN displayed in frequency do-
main [51].

In recent years, DL has shown great potential in the fault diagnosis of

various industrial assets including gearboxes, induction motors, and electric

power transformers [34]. Deep autoencoders (DAE) have reported near-perfect

diagnostic accuracy in many standard datasets including the CWRU bearing

dataset [16] and the gearbox fault dataset released by the Prognostics and

Health Management Society in 2009 [49]. CNNs are proven to be able to

learn effective filters, as shown in Figure 1.8, to extract fault-related frequency

components from vibration signals. A long short-term memory (LSTM) model

was developed to extract rotating speed and diagnose faults in engines, rotors,

and gearboxes [50].

1.2 Research motivations

Successful DL models for fault diagnosis typically rely on two key conditions:

(1) access to a large amount of labeled training data and (2) powerful com-

puting resources for running the training algorithm. However, meeting these

conditions can be challenging in many fault diagnosis applications.

In fault diagnosis applications, a crucial aspect to consider is the presence
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of time-varying working conditions and health conditions. Firstly, changes

in working conditions, such as variations in rotating speed and load levels,

present additional challenges. DL models are often trained with the assump-

tion that the training and testing data have the same data distribution. How-

ever, changes in working conditions can induce different modes of mechanical

vibrations, leading to a shift in the data distribution to be tested. These shifts

in data distribution present the challenge of domain adaptation (DA) in devel-

oping IFD models [49]. Secondly, the training set may initially contain only a

limited number of fault classes, with more types of faults emerging gradually

as machines age. On the one hand, the model needs to recognize new fault

classes that are unseen in the training stage. This is termed open-set recog-

nition (OSR) [52] or open-set fault diagnosis (OSFD) [53] in the literature.

On the other hand, as more training data become available, the model needs

continual learning (CL) ability to update its diagnostic knowledge [54].

Acquiring large amounts of labeled data may be difficult and expensive.

Fault-related data can be obtained from field operations or experimental test

runs. In real-world scenarios, data becomes faulty when a fault occurs, but

it remains unlabeled until the fault is detected and diagnosed. Determining

the exact time of fault occurrence and label all the collected data is often

challenging. Most existing deep learning models in fault diagnosis are based

on on supervised learning and require fully labeled training data. Utilizing

unlabeled data presents an opportunity for more efficient solutions and the

development of more powerful models in real-world fault diagnosis applications

[43].

Training DL models also requires data collected under different faulty con-

ditions. Waiting for different faults to naturally occur for data collection is

inefficient. An alternative approach is to create a training dataset in experi-

mental settings, where faults of interest are simulated using experimental test
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rigs. Faulty components can be obtained through accelerated life testing or

electrical discharge machining. Various working conditions can be tested by

controlling rotating speed and load levels. However, it can be expensive to set

up experiments that cover all possible faults and working conditions. Models

built using test rig data may not perform well when applied to real machines

in service due to differences in machine structures, sensor installations, and

working conditions [55]. Adaptation towards different machines and working

conditions is a critical step in DL-based fault diagnosis.

DL models also face significant challenges when tested with fault types not

included in the training set. These challenges manifest in the model failing to

accurately recognize the true fault class and potentially providing misleading

high-confidence predictions for unseen classes [56]. Misclassification, especially

in failing to detect an existing fault, can lead to substantial operation costs.

Rather than treating fault diagnosis as a close-set problem, where models are

only trained to recognize a fixed set of fault classes, it is essential to explore

OSR solutions [52]. In the context of fault diagnosis, this approach is often

referred to as OSFD [53]. OSFD requires the model to recognize both the

classes seen in the training dataset and indicate the presence of data from

other unseen classes. This enables the detection of newly occurring faults.

DL-based methods are known to be computationally intensive. Large mem-

ory processing units are usually required to run the training algorithm and

large storage space is needed to host the training dataset. To monitor the

health condition of machines in remote areas, the system often needs to op-

erate in an edge computing fashion, where computing speed and storage are

limited [57]. In common practices, DL models are trained offline with powerful

computers and then deployed on the microcomputers in the field. However,

to adapt to new fault classes and working conditions unseen in the previous

training stage(s), the deployed model must be continuously improved. A DL
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model may undergo multiple training stages to assimilate advancements from

new data while retaining knowledge acquired from previous training data [58].

As the size of the training dataset grows larger, the computation cost of im-

plementing multiple training stages to keep the model up-to-date can become

overwhelming.

In the CL process, the stability-plasticity dilemma poses a significant chal-

lenge [59]. The plasticity of a model allows it to form new knowledge efficiently,

while stability plays a crucial role in maintaining previously learned knowledge.

DNNs, however, are susceptible to the ‘catastrophic forgetting’ (CF) problem

during multi-stage training [60]. They forget the knowledge learned from pre-

vious tasks while allocating neurons to learn new knowledge for new tasks.

Storing all the historical training data may prevent CF but comes at the cost

of substantial data storage and cumbersome model training. An efficient solu-

tion for preserving diagnostic knowledge across multiple training stages is to

be studied.

Overall, the limited and time-varying availability of training data empha-

sizes the importance of the designs of training algorithms for DL-based fault di-

agnosis. Essentially, IFD models are to be developed in many non-conventional

settings including semi-supervised learning, DA, OSR, and CL.

Transfer learning (TL) is the core concept revolving around these topics.

As shown in Figure 1.9, unlike traditional Machine Learning, which builds sep-

arate learning systems for different domains, TL leverages knowledge acquired

in source domains to enhance the learning system in a target domain [61].

This concept has been extensively explored in computer vision [62], natural

language processing [63], and fault diagnosis [55]. In fault diagnosis, the do-

mains to transfer across may involve different working conditions, various fault

types, and more. The target domain is where the diagnostic task is executed,

while the source domains contribute relevant knowledge about the task. TL
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Figure 1.9: Comparison between traditional machine learning and transfer
learning.

becomes indispensable when the target domain has a small dataset, lacks data

for some classes, or only produces unlabelled data.

1.3 Research topics and contributions

The overall objective of this thesis is to develop accurate classification models

for identifying component faults in WT gearboxes, with a focus on designing

learning algorithms to address the challenges posed by time-varying working

conditions and time-varying health conditions of the machine. The research

works are structured around three distinct topics, each introducing a novel

TL algorithm to aid model learning under specific problem settings in fault

diagnosis. These three stated research topics stem from real-world engineering

applications in deploying next-generation PHM systems in the era of Industry

4.0. The primary focuses of each topic are outlined as follows:

Topic #1 addresses the challenge of learning from multiple labeled datasets

and a single unlabeled dataset obtained under different working conditions.

The model will be tested under target working conditions that produce unla-

beled data. This mirrors the real-world scenarios where machines operate in

varying conditions and obtaining labeled data for every possible working con-
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dition is impractical. The primary focus is on developing diagnostic knowledge

that can be efficiently applied in a target working condition where only un-

labeled data is accessible. This research aims to enhance the adaptability of

fault diagnosis models to the dynamic nature of working conditions in practical

industrial settings.

Topic #2 centers on the challenge of recognizing new faults without access

to their training data. The training dataset exclusively comprises data from

known fault types, while the testing set introduces a novel fault class previously

unseen by the model during training. The goal is to develop models capable of

utilizing a training dataset with a limited set of fault types to extrapolate and

identify unknown or previously unseen faults. This research scenario simulates

real-world situations where novel faults may emerge, requiring the model to

generalize its understanding and accurately diagnose both the seen and unseen

fault types. The focus is on enhancing the model’s ability to handle unforeseen

faults in practical fault diagnosis applications.

Topic #3 presents the model with the challenge of addressing a sequence

of diagnostic tasks involving new fault classes and changing working conditions.

A multi-stage training scheme is considered, aiming to update the model each

time training data for a new fault type becomes available. This progressive

training strategy empowers the model to accumulate and retain diagnostic

knowledge, enabling it to recognize new fault classes and adapt to evolving

working conditions over time. With such an ability, the model can progres-

sively accumulate and preserve diagnostic knowledge as the fault history of

the machine of interest evolves.

Table 1.1 summarizes the differences and connections among the three

studied topics. All the topics involve transfer learning across different domains.

Topic #1 focuses on adapting to different working conditions, while Topics

#2 and #3 deal with variations in fault classes alongside changes in working
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Table 1.1: Summary of the three research topics in this thesis.

Topic #1 Topic #2 Topic #3

Source data Labeled Labeled Labeled

Target data Unlabeled Not available Labeled

Domain differences Working conditions
Fault classes &

working conditions
Fault classes &

working conditions

Testing domain(s) Target Target Source & Target

conditions. In Topics #1 and #2, data from the target domain is unlabeled

and not available, respectively. For these two topics, the model will only be

tested with data from the target domain(s). For Topic #3, although both

the source and the target can produce labeled training data, the model must

be tested in both the source and target domains. The problem settings of

these three topics are termed unsupervised DA, OSR (or OSFD), and CL,

respectively.

In general, this thesis aims to contribute to the development of advanced

ML algorithms for machine fault diagnosis. By taking a progressive view of the

life stages of machines and phases of data availability, multiple novel TL al-

gorithms will be proposed to learn fault diagnostic knowledge more effectively

and efficiently. The proposed algorithms will be optimized to make the best

use of available data, whether labeled or unlabeled, and data collected from

multiple machines and working conditions. They will also be designed to mit-

igate the influence of changes in working conditions, missing fault categories,

and incremental training data.

This research also aims to advance machine learning methods in the PHM

context. By investigating transfer learning in relation to working conditions,

fault types, and fault levels, the research seeks to uncover meaningful insights

into the generalization capabilities of ANNs. Additionaly, considering the

physical context of these factors, the study may reveal significant interpreta-
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tions regarding the transferability of neural networks.

The expected contributions of the three research topics are as follows:

In topic #1, multi-source DA algorithms will be developed to leverage un-

labeled data, addressing the challenges posed by variable working conditions.

This research will focus on investigating the appropriate methods for assigning

different weights to various source domains during model training. The ex-

pected contributions include (1) investigating and proposing effective methods

for assigning weights to different source domains during model training and

(2) applying statistical metrics, such as Maximum Mean Discrepancy (MMD),

to quantify discrepancies between different domains. This metric will facilitate

the balanced assignment of weights to diverse source domains and help prevent

negative transfer.

Topic #2 aims to enhance OSFD methodologies by developing advanced

DL models capable of identifying fault classes not encountered during train-

ing. The research focuses on designing effective auxiliary training samples to

establish fault-discriminative features and optimized decision boundaries, im-

proving OSFD performance. Additionally, the study addresses uncertainties

in diagnostic models by tuning the loss function during DL model training,

enhancing the accuracy of classification uncertainty estimation. This research

contributes to more robust OSFD methodologies, advancing fault diagnosis

under varying working conditions.

In topic #3, the anticipated contributions involve the development of CL

algorithms for DL models to manage sequential diagnostic tasks with evolving

fault classes and working conditions (domains). Multi-stage training approach

will be considered with the goal of systematically enhancing the model’s capa-

bilities as it encounters new fault types. This research is expected to contribute

efficient CL algorithms that enable the model to assimilate knowledge from

new data while retaining knowledge gained from prior training stages. The
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result is a more adaptive and efficient fault diagnosis approach that accommo-

dates changes in machine conditions over time.

1.4 Thesis Structure

The thesis adheres to the dissertation requirements outlined by the Faculty of

Graduate Studies and Research (FGSR) at the University of Alberta. Orga-

nized into six chapters, the thesis is structured as follows:

Chapter 2 of the thesis reviews related works, encompassing both a cate-

gorical review of fault diagnostic methods and an overview of deep learning

methods. This comprehensive review aims to provide a detailed exploration

of the existing literature and methodologies in the field of machine fault di-

agnosis, particularly in the context of vibration analysis and deep learning

techniques.

Chapters 3, 4, and 5 of the thesis focus on three different research topics.

These chapters meticulously unfold the methodologies, experimental setups,

and findings associated with each research topic, namely unsupervised domain

adaptation (Topic #1), open-set fault diagnosis (Topic #2), and continual

learning (Topic #3). The detailed exploration within these chapters offers a

comprehensive understanding of the unique challenges addressed, the method-

ologies employed, and the valuable contributions made within each research

topic. Chapter 3 has been published as a journal paper in Mechanical Systems

and Signal Processing. Chapter 4 has been submitted to IEEE Transactions

on Industrial Cyber-Physical Systems for possible publication, and Chapter

5 has been accepted for publication by the Proceedings of the Institution of

Mechanical Engineers, Part O: Journal of Risk and Reliability.

Chapter 6 concludes the thesis by summarizing key findings and contri-

butions from the previous chapters. It provides a holistic overview of ad-

vancements in fault diagnosis through proposed methodologies. The conclu-
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sions emphasize the research’s significance, addressing real-world challenges

and contributing to transfer learning, open-set fault diagnosis, and continual

learning in industrial applications. The chapter closes by outlining potential

avenues for future research and highlighting the broader impact on machine

learning in industrial settings.
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Chapter 2

Related works

This chapter starts with a review of fault diagnostic methods including physics-

based methods, data-driven methods, and hybrid methods. Then, deep learn-

ing technologies including different learning paradigms, models, and training

algorithms will be introduced with example applications in the field of machine

fault diagnosis.

2.1 Fault diagnosis methods

Three primary categories of fault diagnostic methods are commonly recog-

nized: physics-based, data-driven, and hybrid methods [64], [65].

2.1.1 Physics-based methods

Physics-based fault diagnosis methods are sometimes referred to as model-

based methods [3]. It involves the use of mathematical modeling or computer

simulation to replicate the physical behavior of the machine under investiga-

tion. Diagnosis is then carried out by comparing the actual system behavior

with the expected model behavior. In the case of WT gearboxes, the vibra-

tion responses from gear meshing are commonly analyzed [24], [31]. Expert

knowledge of gear dynamics and signal modulation is involved in physics-based

methods. Some simplifications are generally applied to focus on key compo-

nents and/or emphasize fault symptoms.

The rotating and meshing motions of the gear, on one hand, follow certain

rules of dynamics, and on the other hand, result in the amplitude, frequency,
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and phase modulation characteristics of its vibration responses. Dynamics-

based models essentially decompose the gearbox into many mass-spring-damper

systems, while modulation-based models describe the modulation characteris-

tics in the vibration responses [17].

In dynamic modeling, a gearbox system can be either simulated as a lumped

mass model (LMM) or a finite element modeling (FEM) [27]. A LMM divides

the structure into discrete points, known as lumped masses. The connections

between these masses are modeled using springs and dampers, representing the

stiffness and damping characteristics of the structure. These characteristics

are known to change due to faults, enabling potential diagnoses. For example,

ref. [66] proposed a simple one-stage gearbox model and showed that two

broken teeth can have a significant impact on the dynamics of the gearbox.

Essentially, the broken tooth will cause changes in the meshing stiffness of the

gear pair and lead to abnormal vibrations. Based on this model, ref. [67] used

statistical indicators and the discrete wavelet transform to identify possible

gear tooth crack propagation levels. To deal with more complicated gearboxes

and to get more accurate models, ref. [68] proposed a 6-degree-of-freedom

(DoF) model that considers four angular rotations and two translations for

one-stage gearboxes. Ref. [69] constructed a 26-DoF model for a gearbox with

two pairs of gears in mesh, and ref. [70] developed a 21-DoF model for a

planetary gearbox. Considering the complex structures of gearboxes, however,

all the reported LMMs should be considered over-simplified.

FEM, on the other hand, divides a structure into numerous small elements

and considers the dynamic behavior of each element. FEM can deal with com-

plex mechanical structures and can provide more detailed information about

stress, strain, and deformation. Ref. [71] developed two FEMs of spur gears

to study their non-linear dynamic response. Ref. [72] extended this work to

model planetary gear systems. Using FEM techniques, ref. [73] investigated

possible crack propagation paths along the root of the tooth. However, FEMs

are known to be computationally intensive, especially when modeling com-

plex systems with high mesh density. Considering faults including localised

spalling and crack damage, ref. [69] developed FEMs to calculate the torsional
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stiffness and tooth load sharing ratio of the gears and integrate these results

into a 26-DoF LLM. By using lumped masses to represent the main structures

of the system and finite element analysis to determine the detailed changes

induced by faults, the dynamic responses of the system can be simulated more

efficiently.

Modulation-based modeling is to reconstruct the vibration responses us-

ing the understanding of the frequency components of the measured signal.

Amplitude, frequency, and phase modulations caused by the meshing of faulty

gears can be observed and used to diagnose the fault [69]. Ref. [74], as one

of the early works on this topic, pointed out that local gear faults can give

rise to frequency components over a very wide range while distributed faults

mainly raise the sidebands around the tooth-meshing harmonics. Ref. [75]

studied the modulation effects in planetary gearboxes and pointed out that

the mounting of the vibration transducers may also have an impact on the

frequency component of the measured signals. The relative motions of the sun

gear and the planet gears will further complicate this issue [30], [31]. Changes

in rotating speed will also introduce amplitude and frequency modulations to

vibration signals [76].

Advanced signal processing methods such as time synchronous averaging

(TSA) [77], frequency analysis [30], and signal decomposition [68] are often

employed to extract key signatures from the vibration signals, facilitating a

more interpretative comparison between actual and expected behaviors.

2.1.2 Data-driven methods

Unlike physics-based methods that require expert knowledge of the structure

and mechanism of machines, data-driven methods leverage the inherent pat-

terns and information present in the data collected from machines. Few do-

main knowledge about machines and their faults is needed. These methods

use statistical and machine learning techniques to learn patterns directly from

historical data. Data-driven methods are also referred to as Intelligent fault

diagnosis (IFD) in the literature [43].

Traditionally, a data-driven method includes the steps of signal processing,
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feature extraction, feature selection, and, finally, classification/clustering. At

first, the vibration signals are typically treated with signal processing tech-

niques such as filtering [77], decomposition [68], auto-correlation [78], and so

on, to remove noise and highlight possible fault-related signal components.

Then, feature extraction and feature selection are carried out to convert these

useful signal components into a low-dimensional feature vector with the key

features to identify possible faults [32]. Finally, a clustering or classification

model will be constructed to map the selected features into the fault space.

For example, ref. [79] proposed a data-driven method to detect and identify

different levels of gear cracks. Firstly, the raw vibration signals are decomposed

using wavelet packet transform. Then statistical features such as mean, stan-

dard deviation, and kurtosis of the decomposed signals are extracted. Principal

Component Analysis (PCA) is used to reduce the number of features to seven.

The K-nearest neighbors (KNN) model is finally used to classify the signals

into different crack levels based on these seven features.

Other commonly used classification models include Support Vector Ma-

chines (SVMs) [48] and Artificial Neural Networks (ANNs) [80]. These models

fall under the category of shallow models, relying significantly on hand-crafted

features. The selection of features for shallow models typically demands prior

knowledge of signal processing and diagnostics. Moreover, different diagnostic

tasks may necessitate distinct features, introducing inefficiencies for diverse

diagnostic applications.

Recently, more and more studies have adopted deep learning (DL) mod-

els to integrate the feature extraction and selection steps with classification,

achieving end-to-end fault diagnosis [34], [81]. DL models usually take raw

vibration signals or their frequency spectrum as input, and they extract fault-

discriminative features automatically during the learning process. Ref. [16]

demonstrated the effectiveness of deep autoencoders (DAE) in diagnosing

rolling element bearings and planetary gearboxes. Ref. [82] applied convo-

lutional neural networks (CNNs) for bearing and gearboxes diagnosis. Ref.

[50] proposed a modified recurrent neural network (RNN) to extract rotating

speed and diagnose faults of gearboxes. Several reviews [28], [34], [40], [43],
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[81] have been published on DL-based fault diagnosis.

Despite the successes in research, DL-based methods are facing two main

challenges in real applications: (1) commonly used supervised training of DL

models requires, impractically, a large amount of labeled data, and (2) DL

models lack generalization abilities toward new fault classes and domain shift

caused by changes in working conditions [49]. In other words, most existing

DL models need to be trained with a large labeled dataset that covers all the

fault classes and working conditions of interest. In real applications, however,

collecting such a complete training dataset can be prohibitively expensive.

Training data for some fault classes may only become available after the ma-

chine runs into those faulty conditions. To make DL-based fault diagnosis

more practical, the following should be considered:

1. Make use of unlabeled data;

2. Identify and recognize testing data that is out-of-distribution (OOD) of

the training dataset;

3. Develop an initial model then upgrade it once given new training data.

To deal with the issues related to data availability and changes in working

conditions, different learning paradigms such as transfer learning (TL) [83],

unsupervised domain adaptation (UDA) [55], and open-set recognition (OSR)

[53] have been explored. In Section 2.2.1, a systematic discussion of different

learning paradigms in fault diagnosis applications will be presented.

2.1.3 Hybrid methods

Hybrid fault diagnostic methods combine elements of both physics-based and

data-driven approaches to harness the advantages of each. They may integrate

expert knowledge, mathematical models, and data to achieve fault diagnosis

and condition monitoring. By fusing the strengths of both approaches, hybrid

methods aim to improve diagnostic accuracy, especially in situations where

either pure physics-based or data-driven methods might face challenges.
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One of the common ways is to use expert knowledge to guide the feature

extraction process for data-driven models. For example, ref. [84] uses expert

knowledge to construct a set of residual generators and a fault signature matrix

for different fault types of internal combustion engines. Then, data-driven

models, i.e. Support Vector Data Description (SVDD) models, are used to

evaluate the residual outputs and rank possible fault modes. Similarly, refs.

[65], [85] uses Bayesian Network (BN) to provide statistical reasoning based

on residual outputs for different fault types. For planetary gearboxes, ref. [86]

identifies the fault characteristic frequencies based on their structure. Then it

uses Machine Learning (ML) algorithms to determine an optimal bandwidth

to capture information near those fault characteristic frequencies, which can

be used to diagnose different gear faults including tooth cracks, surface wear,

and tooth missing.

Another form of the hybrid method involves using both domain knowl-

edge and data to develop ML models. For bearing fault diagnosis, ref. [87]

proposed a physics-based convolutional layer based on spectral kurtosis and

envelope analysis to remove the carrier frequencies and only keep the diagnos-

tic information. A bearing fault simulation model described in ref. [88] was

used to design the kernels of the physics-based convolutional layer. Similarly,

ref. [89] uses both thresholding according to sub-bands of fault characteristic

frequencies and CNN models to diagnose bearing faults. Ref. [90] proposed a

modal-property-dominant-generated layer and domain-conversion layer based

on various signal processing methods including computed order tracking and

cepstrum analysis. These studies use both domain knowledge and ML to con-

struct the fault feature extraction part in ML models. The main purpose of

applying domain knowledge is still to guide the feature extraction process.

Recently, Physics-Informed Neural Network (PINN) [91] has become a pop-

ular hybrid solution for many problems including fluid mechanics [92] and heat

transfer [93]. For wind turbine fault prognosis, refs. [94], [95] use PINNs to

track the fatigue damage accumulation of main bearings. PINNs are employed

to solve and analyze differential equations including the standardized bearing

life formula described in ISO 281 [95]. With grease data such as viscosity,
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humidity penetration, and foreign particle contamination, PINNs show bet-

ter prognostic results than pure data-driven methods. However, PINN has

not found its applications in fault diagnosis problems as it can be difficult to

define differential equations for every fault mode. Fault diagnosis studies dis-

cussed in the previous paragraph titled “physics-informed” [89], [90] are not

using PINNs.

Simulation-driven machine learning [96] is another type of hybrid method

for fault diagnosis, in which simulation signals from dynamic models are used

to train ML models. For example, ref. [97] used a bearing signal model to

generate training data for SVMs and demonstrated that the trained SVM can

successfully classify signals from both the Case Western Reserve University

(CWRU) bearing test rig1 and industrial machines. Ref. [96] adopted a 3

DOF model to generate bearing vibration signals with possible outer or inner

race defects. Various ML models including SVM and CNN were trained using

the generated signals and then tested with two experiment datasets and data

from a 2 MW industrial wind turbine. In ref. [98], a signal model is used to

generate training data for a combination of hidden Markov model and gated

recurrent unit. Instead of using only simulation data to train ML models, ref.

[99] uses both real and simulated data, considering the case that real data for

most but a few fault types are available. A bearing model is used to simulate

those missing fault types to provide supplementary training data. Ref. [100]

examined a hybrid TL setting where simulation and real data constitute the

source and target domains respectively. Ref. [101], proposed a TL method

where simulated signals with coarse fault labels are used as source domain

data while real data with fine labels are used as target domain data. In this

work, simulated fault types such as outer race defect and rolling element fault

are coarse labels while fine fault labels may include information on defect sizes

and damage distribution. It is interesting to note that all the simulation-

driven works focus on bearing defects, given that they are easier to simulate

compared to other components such as gears.

One of the main benefits of hybrid methods is that they can make more

1https://engineering.case.edu/bearingdatacenter
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accurate diagnoses given limited data.This shows that domain knowledge can

help ML models to learn much more efficiently. This is essential for many

fault diagnosis applications as it is difficult or even impossible to obtain large

training datasets with all the fault types included [43].

2.2 Deep learning

In recent years, deep learning has been extensively studied in the field of

fault diagnosis, and it shows great potential for many industrial applications

[28], [34], [43]. The key problems in developing DL models for fault diagnosis

include selecting proper learning paradigms based on available training data,

designing suitable model structures, and devising efficient training algorithms.

Studies related to these three topics will be reviewed in Section 2.2.1, Section

2.2.2, and Section 2.2.3 respectively.

2.2.1 Deep learning paradigms

Supervised learning, unsupervised learning, and reinforcement learning (RL)

are the three major ML paradigms [102]. RL is where the models learn to make

sequential decisions based on external feedback. In either supervised or unsu-

pervised learning, the ML models are trained to give correct answers (labels)

based on input data. Supervised learning is where the ML models learn from

fully labeled data, while unsupervised learning is to ask models to find patterns

in unlabeled data. There are also many other learning paradigms depending

on the problem and available training data. Different learning paradigms can

also be blended into new ones, such as UDA, OSR, and continual learning

(CL).

Supervised learning is the most studied learning paradigm for fault diag-

nosis. For reviews of related studies, we refer to refs. [28], [33], [34], [40], [43],

[48].

RL is not commonly used to solve classification problems including fault

diagnosis. It is typical applications include game playing, robotics, and rec-

ommendation systems [103]. For fault diagnosis, ref. [104] converted fault
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diagnosis as a game in which the model gets rewarded when it makes a correct

diagnosis. With deep RL, the model can learn to recognize bearing faults.

However, the true fault labels are still required, and the proposed RL model

did not show a significant advantage over supervised deep learning models.

RL can also be used to aid the supervised learning of fault diagnostic models.

For example, ref. [105] used RL to select training samples from imbalanced

training sets. Ref. [106] used RL to search for optimal network structures for

fault diagnostic tasks.

Unsupervised learning is one of the approaches to utilize unlabeled data.

However, the diagnostic accuracy of unsupervised models is often challenged,

especially in complex working conditions. For example, ref. [107], proposed

a clustering algorithm named Weighted Euclidean Affinity Propagation (WE-

AP) to map the features extracted using an unsupervised deep learning net-

work. When tested with the CWRU bearing dataset, although beating other

compared unsupervised methods, its accuracy cannot reach 99% without con-

sidering changes in working conditions. Supervised learning methods such as

ref. [51], however, can easily reach 99.92% with more fault classes considered.

Ref. [108] used a self-organized map (SOM) to cluster test samples based on

selected features. Their success, however, largely depends on the design of

features with the use of physical knowledge of bearing faults. Some works,

although titled ‘unsupervised learning’, still use fault labels for training. For

example, in ref. [109] and ref. [110], although the feature extraction process

is unsupervised, the classifiers still need to be trained using fault labels. The

supervision of labels is the key to learning fault-discriminative features.

Many researchers have considered semi-supervised learning which makes

use of both labeled and unlabeled data to develop DL models [111], [112].

Unlabeled data can not only boost the size of the training dataset but also may

include information from other domains. A typical setting in fault diagnosis

is to learn from both labeled data from a source machine or working condition

(known as the source domain) and unlabeled data from a target machine or

working condition (known as the target domain). The term UDA is used to

describe such a process [113]. This also helps to address the issue of OOD
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test data, meaning that DL models can be generalized toward more working

conditions. Example works of UDA-based fault diagnosis include refs. [49],

[114]–[118].

Dealing with new fault classes unseen during training is also a major chal-

lenge for DL models. The term OSR describes the problem setting or learning

paradigm when there are more classes in the testing set than in the train-

ing set [119]. In fault diagnosis, a derivative term, Open-Set Fault Diagnosis

(OSFD), has gained popularity [53]. In OSFD, the training dataset is labeled

but missing one or a few fault classes. At the same time, the model needs to

classify the samples of the labeled classes and recognize if a sample belongs to

the unseen classes. Example works of OSFD include ref. [52], [56], [120]–[123].

CL or Lifelong Learning is to learn a sequence of tasks with different data

distributions and label sets [124]. Essentially, CL is to efficiently upgrade the

model towards new tasks given new training data. A core challenge in CL

is mitigating catastrophic forgetting, which describes the unwanted behavior

of DL models forgetting knowledge learned from old data when learning from

new data [59], [60]. The model is trained in CL to perform both old and new

tasks. For fault diagnostic applications, the task will change given either new

working conditions, new machines, or new fault types. For turbofan engine

prognosis, ref. [125] deployed DL models with elastic weight consolidation

(EWC) to learn from a sequence of datasets collected under different working

conditions. EWC was also used to learn from datasets of different machines

[126]. To learn new fault classes, ref. [41] proposed an adaptive knowledge

transfer method to help DL models diagnose bearing faults with only a few

training samples. The final models of the three example studies are on all the

tasks before and after working condition changes, across different machines,

or additions of new fault classes, respectively.

TL as a learning paradigm is to first pre-train a model with a general

dataset and then fine-tune the same model using a more specific task [61],

[127]. As surveyed in refs. [43], [128], [129], TL-based fault diagnosis has been

a heated topic in recent years. Ideally, the model can form a useful and ro-

bust feature extractor for the downstream task during the pre-training stage so
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that fine-tuning for a related task can be successful with less training time and

training data. As a more general ML term, TL transfers knowledge obtained

in a source domain to a target domain [61]. Many learning paradigms includ-

ing UDA, OSR, and CL can be described as some form of TL with different

source and target domains. In fault diagnosis, each working condition or set

of fault labels can be defined as one domain and TL is a general idea to help

ML models generalize better in real fault diagnosis applications. In UDA, the

target domain features a different working condition than the source domain

and only contains unlabeled data. For OSR, the label set of the target domain

is larger than that of the source domain. As for CL, the model undergoes mul-

tiple fine-tuning stages as the target domain continuously expands to include

new fault classes and working conditions.

UDA, OSFD, and CL are the three major paradigms studied in this thesis.

Many other learning paradigms, such as multitask learning, meta-learning,

and curriculum learning, could also be useful for fault diagnostic applications.

A short introduction to these paradigms is provided below.

Multi-task learning [130] focuses on learning multiple related tasks at one

time. For example, [131] developed a multitask CNN that learns bearing fault

diagnosis and localization together. Multi-task learning can be applied only

when simultaneous access to training data of different tasks is available.

Meta-learning (or learning to learn) [132] was designed to learn new tasks

with only a few samples available (few-shot learning). It trains a meta-model

on multiple tasks so that this meta-model can be easily adapted as a specific

model for a new related task. Preservation of all the knowledge of the meta-

model is not considered when training those specific models.

Curriculum learning [133] is to arrange a guided learning process by using

a designed order of tasks for the model. In FDI applications, the arriving order

of data is determined by the task itself, and the freedom to arrange a guided

training process may not be feasible.
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Figure 2.1: A deep learning model consists of a feature extractor and a classifier
for fault diagnosis.

2.2.2 Deep learning models

DL models are essentially ANNs in which many artificial neurons with com-

putation capabilities are organized in hierarchical structures with one layer of

neurons connecting to the next layer. Technically, an ANN with 3 or more

layers can be called a DNN or a DL model [45]. Simple patterns will be ex-

tracted from the input data in the lower layers and then fed into higher layers

to build more complex and abstract concepts.

To map input vibration signals to target fault labels, DL models automati-

cally learn features indicative of the health state of machines and then derive a

classification result based on the learned features. In this regard, a DL model

can be split into a feature extractor followed by a classifier as demonstrated

in Figure 2.1. In this example, the DL model has five layers, and the outputs

of the third layer are regarded as the learned features.

Different types of DL models feature different computational operations

and arrangements to extract features from inputs. For example, CNNs are

characterized by the convolutional operations between their convolution layers

and their input, and RNNs are known for using neurons recursively connected

to themselves to accommodate temporal signals. For fault diagnosis applica-

tions, determining the structure or architecture of the DL model is vital for

accuracy and efficiency. In the following, four types of commonly used DL
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Figure 2.2: An example multilayer perceptron with 3 hidden layers.

models will be introduced and their applications in the field of fault diagnosis

will be surveyed.

2.2.2.1 Multilayer perceptron

Multilayer perception (MLP) is the most fundamental ANN structure and has

been widely used for fault diagnosis before the popularity of deep learning. As

the example shown in Figure 2.2, an MLP may consist of one or more hidden

layers (columns) of neurons in between an input layer and an output layer.

MLPs are called fully connected neural networks (FCNN) as each neuron is

always connected to and affected by all the neurons in its previous layer. For

example, in Figure 2.2, the neuron denoted a[2]1 in the second hidden layer is

connected to all the neurons of the first hidden layer denoted a[1]i, i ∈ {1 . . . n}.

Each hidden neuron will first execute a weighted summation based on the

outputs of its previous layer and the weights connecting to it. Then a non-

linear activation function will be applied to the weighted sum. This is, the

output of the ith hidden neuron in the (j + 1)th hidden layer

a[j+1]
i = fna(

n∑
k=1

a[j]kw
[j]

ki + bj) (2.1)

where n is the number of neurons in the jth hidden layer for j ∈ {1, 2, . . . , L}

(L is the number of hidden layers), or the number of input features |x| when
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j = 0. w[j]
ki denotes the weight of the connection between the kth neuron in

the jth layer and the ith neuron in the (j + 1)th layer. bj is the bias for the j

the layer. All the weights and biases will be automatically optimized during

the training process. fna is a non-linear activation function and the commonly

used ones are sigmoid, tanh, and ReLU which writes Eqn. 2.2, Eqn. 2.3, and

Eqn. 2.4 respectively.

sigmoid(x) =
1

1 + e−x
(2.2)

tanh(x) =
ex − e−x

ex + e−x
(2.3)

ReLU(x) = max(0, x) (2.4)

The output layer is usually a softmax layer that executes Eqn. 2.5.

softmax(zi) =
ezi∑K
j=1 e

zj
for i = 1, 2, . . . , K (2.5)

where K is the number of target classes. The inputs zis are called ‘logits’ and

the outputs can be interpreted as the probability of the input signal belonging

to the ith class. The class corresponding to the highest will be regarded as

the predicted one shown as Ŷ in Figure 2.2.

MLPs can model complex non-linear relationships between input and out-

put variables as stated by the universal approximation theorem [134]. They

can scale to large datasets and complex architectures, allowing them to handle

high-dimensional data and complex tasks. Generally, larger MLPs with more

layers and neurons may perform better for complex tasks than smaller net-

works. However, large models have more parameters to tune and may cause

the following problems:

1. expensive computation: large MLPs are neither memory nor time effi-

cient, as the number of weights and calculations needed will grow expo-

nentially as the number of neurons grows.

2. overfitting: large models prone to capture noise and random fluctuations

rather than the underlying patterns of the training dataset, resulting in

poor generalization to test data. The larger the model is, the more

training samples it needs to avoid overfitting.
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3. hard to interpret: a large MLP can be regarded as a complex high-

dimensional function with numerous parameters. It is difficult to under-

stand how each parameter contributes to the final prediction.

For the above reasons, most fault diagnosis studies do not apply MLP

as an ‘end-to-end’ learning model. Instead of using raw vibration signals as

the inputs for MLPs, many studies used designed features extracted from

the signals, treating the model as other shallow models such as SVMs. For

example, to detect gear tooth wear, ref. [135] used the standard deviation of

16 wavelet packet coefficients of preprocessed vibration signals as the input

features for an MLP with a single hidden layer with 20 hidden neurons. To

identify rotor cracks, ref. [136] used wavelet packet decomposition (WPD) and

empirical mode decomposition (EMD) to extract features as the inputs of a

three-layer MLP.

In these studies, the feature extraction processes, not the MLP models, play

a central role in identifying faults. In recent review papers including refs. [34],

[40], [43], MLP is classified as a traditional machine learning model rather than

a DL model. Essentially, MLPs still heavily rely on manual feature extraction

and do not provide ‘end-to-end’ fault diagnostic solutions that automatically

map raw or lightly processed vibration signals to target fault classes.

2.2.2.2 Auto-Encoder

An Auto-Encoder (AE) is a neural network with its target output set as its

input [137]. As shown in Figure 2.3, an AE contains an encoder that transforms

the input into a feature vector and a decoder that reconstructs the input

based on the features. The structures of the encoder and the decoder are

usually symmetrical and the number of features is usually smaller than the

number of dimensions of the input. AEs are trained in an unsupervised or

self-supervised fashion by minimizing the difference between the original input

and the reconstructed output. In this way, a low-dimensional representation

of the input data can be obtained without fault labels.

Moreover, AEs can be stacked together to constitute a Stacked AE (SAE)

[138] in which the output of an encoder (extracted features) is used as the input
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Figure 2.3: An Auto-Encoder with a 3-layer encoder and a 3-layer decoder.
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Figure 2.4: A Stacked Auto-Encoder with 3 Auto-Encoders stacked.

of another AE as shown in Figure 2.4. The training of an SAE is executed

one AE at a time to mitigate overfitting. Then, after the training of AEs

is completed, all the encoders can be stacked together to form a multi-layer

feature extractor. Finally, an additional classification layer can be trained to

map the extracted features into target class labels.

SAEs with such a layered feature extraction scheme provide the following

benefits:

1. Features or representations of input can be learned without labels.

2. Training one AE at a time requires less memory than training large

networks with multiple layers.

3. The dimensionality of the input data can be gradually reduced with

minimal loss of information.
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Many studies have been reported using AE or SAE to diagnose machine

faults. Ref. [109] used AE to learn sparse filters for vibration signals. Those

learned filters were demonstrated to be useful for bearing fault diagnosis and

can be well interpreted in the frequency spectrum. Ref. [16] used SAE to

extract features from the frequency spectrum of raw vibration signals. After

fine-tuning with labeled data, SAEs are proven effective for diagnosing bearing

and planetary gear faults. AEs and SAEs can also take 2-dimensional inputs.

Ref. [139] built a two-layer SAE to extract features from the spectrograms of

vibration signals to diagnose faults in tidal turbines.

However, AEs use fully connected layers to deal with their inputs and

do not consider temporal information of the vibration signals from machines.

Fully connected layers also do not support the extraction of multi-scale infor-

mation which is important for interpreting time series. Converting vibration

signals into frequency spectrum as did in ref. [16] or time-frequency spec-

trograms (ref. [139]) may help the model learn knowledge from vibration

frequency, but these methods are subject to limited frequency resolutions and

may fail to capture long-term dependencies.

2.2.2.3 Convolutional Neural Network

CNNs are specially designed to process structure grid data such as signals and

images. A CNN consists of three main types of layers including convolutional,

pooling, and fully connected layers.

Convolutional layers are designed to extract local information from inputs

using convolution operations between the inputs and a set of learnable con-

volutional kernels (also known as filters). For fault diagnosis, the inputs are

usually signal segments from one or more sensor channels. For example, signals

from vibration sensors mounted for the vertical, horizontal, and axis directions.

Each input x will have the dimension of L × C with L standing for the fixed

length of each signal segment and C for the number of channels. Correspond-

ingly, each convolutional kernel will have the dimension of C × N where N

represents the size of the kernel. Given K different convolutional kernels, the

output will have K different feature maps corresponding to different kernels.
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The jth element of the ith feature map can be calculated as

z[i, j] =
C∑

m=1

N∑
n=1

ki[m,n]x[m,S(j − 1) + n] + bi (2.6)

where ki ∈ RK×N is the ith convolutional kernel, S stands for the stride size

of the convolutional kernel, and bi is the ith bias parameter. The length of the

output Loutput can be calculated as

Loutput =
Lpadded −N

S
+ 1 (2.7)

Note the input x may need to be padded with zeros at the beginning and the

end to the size Lpadded, which ensures Loutput to be an integer.

Pooling layers are used to downsize feature maps. Given input feature map

zin, the ith element of the output of a pooling layer can be calculated as

zout[i] = fpool(zin[(i− 1)R : (i− 1)R + F )]) (2.8)

where F is the pooling window size, R is the pooling stride, and zin[a : b] stands

for the segment of zin from the ath to the bth element. The pooling function

fpool is either the max function for max pooling layers or the average function

for average pooling layers. Pooling layers do not have learnable parameters.

A convolutional layer, ReLu activation, and a pooling layer are often se-

quentially connected to form a convolutional block. A CNN may include mul-

tiple convolutional blocks as its feature extractor and a few fully connected

layers as its classifier. For example, Figure 2.5 is the first reported CNN struc-

ture named LeNet-5 [140]. There are two convolutional layers, two pooling

layers, and two fully connected layers in LeNet-5 as noted using the text in

the lower part of Figure 2.5.

The design of convolutional filters allows CNNs to focus on local regions

and extract temporal patterns of the input. With multiple convolutional

blocks stacked together, the high-layer neurons can access the whole input

signal/image and learn useful features for the target task. Compared to fully

connected layers, convolutional layers have much less amount of parameters.

As seen in the example LeNet-5, an image sized 32×32 can be downsized to
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Figure 2.5: A CNN structure named LeNet-5 designed for image classification
[140].

5×5 after two convolutional blocks. This will significantly reduce the num-

ber of parameters needed in the fully connected layers which not only helps

prevent overfitting but also increase computation efficiency.

As CNNs are more often used and well-studied for image recognition, many

fault diagnostic studies opted to convert vibration signals into images and

apply 2-dimensional CNN (2DCNN). For bearing fault diagnosis, ref. [141]

used wavelet package transformation to convert acoustic emission signals into

2D time-frequency representations before applying a LeNet-5 inspired 2DCNN.

Ref. [142] used continuous wavelet transform scalogram (CWTS) of vibration

signals to diagnose rotor faults in large rotating machines. However, these

advanced signal-processing technologies may require experts to calibrate and

excessive computation resources. Ref. [143] simply stacked short segments of

vibration signals into a 2D matrix as the input for their CNN which reported

accurate diagnostic results for rotor faults.

For 1-dimensional input including vibration signals, 1-dimensional CNN

(1DCNN) with 1-dimensional convolutional kernels and pooling windows can

be directly applied. For example, ref. [144] used a 1DCNN with 3 convolutional

layers to detect motor faults based on down-sampled current signals. Ref. [145]

used a 1DCNN to extract features from vibration signals and then an SVM

to diagnose faults including rotor unbalance and bearing defects. Ref. [146]

developed a 1DCNN with a wide first convolutional layer for bearing diagnosis.

The wide first convolutional layer was visualized and showed abilities to extract

certain frequency bands of the input vibration signals. 1DCNN may be more

suitable for vibration-based fault diagnosis.
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Regardless of 1D or 2D, CNNs can only take inputs with a fixed size. For

high-speed rotating components, a short signal segment may include multi-

ple cycles of their rotation, providing ample fault-related information. How-

ever, the segment size needed to capture a full revolution will be larger for

low-speed mechanical components. This makes CNN challenged for diagnosis

under varying speed conditions. CNNs also have limited capabilities to deal

with long-term dependencies in longer vibration signals.

2.2.2.4 Recurrent Neural Network

Recurrent neural networks (RNNs) are a family of neural networks specially

designed to process time-series data [147]. They store information from past

data points and maintain a state to influence the processing of current data

points. Figure 2.6 shows a typical RNN and how it unfolds to multiple time

steps. Both the input x, the hidden state a, and the output y are multivariate

time series. Symbols with superscript t, i.e. xt, at, and yt, are used to represent

their values at the tth time step. The weight matrices Wax, Wya, and Waa are

learnable parameters respectively for converting input to hidden state, hidden

state to output, and for updating the hidden state. In original RNNs, at and

yt can be calculated using Eqn. 2.9 and Eqn. 2.10 respectively.

at = tanh(Waaa
t−1 +Waxx

t) (2.9)

yt = Wyaa
t (2.10)

The number of time steps for input and output in an RNN-family model

can be designed to adapt to different applications. For classification tasks

such as fault diagnosis [148] and news article classification [149], the inputs

have many time steps while the outputs only need one value, suggesting a

many-to-one RNN structure. One-to-many RNNs can be useful for image

captioning [150] and many-to-many structures have their found applications in

machine translation [151]. Ref. [50] designed a many-to-many RNN to extract

rotating speed from vibration signal to help diagnose gear and bearing faults
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Figure 2.6: A typical recurrent neural network and how it unfolds for multiple
time steps.

under varying working conditions. Note that a one-to-one RNN is effectively

a traditional MLP.

Original RNNs are challenged to extract long-term relationships from time

series and are often bugged by vanishing or exploding gradient problems dur-

ing training. Long short-term memory (LSTM) units were later introduced to

allow RNNs to learn an additional forget gate to provide short-term memo-

ries that last thousands of time steps [152]. LSTM also partially solved the

gradient vanishing problem. In recent years, ref. [153] proposed a gradient

truncation scheme to tackle the gradient exploding problem, and ref. [154]

introduced Gated Recurrent Unit (GRU) which is similar to LSTM but uses

fewer parameters to reduce overfitting. To learn a hierarchy of time-scales

and allow RNNs to model more complex time series, ref. [155] designed a deep

RNN structure that contains multiple hidden layers. Bi-directional RNNs were

proposed in ref. [156] to incorporate information from future time steps for

current predictions.

However, RNN-family models including LSTM, GRU, and Bi-directional

RNNs still have difficulties capturing very long-term dependencies [157]. They

are also prone to overfitting and require massive amounts of training data.

Even provided with a large training dataset, the sequential nature of RNN-

family models makes them computationally intensive and incompatible with
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Figure 2.7: The flowchart for DL model training and hyperparameter tuning.

modern advanced parallel computing techniques.

2.2.3 Deep learning algorithms

Training a DL model often involves optimizing two sets of parameters: 1)

hyperparameters such as the number of kernels in a convolutional layer and

learning rate, and 2) the weights and biases in that DL model. Figure 2.7

shows the general flowchart of how a DL model is trained, validated, and

tested.
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2.2.3.1 Loss functions

A loss function measures the disparity between the predicted output of a DL

model and the actual labels in the training data. Minimizing the loss function

is the goal of updating parameters (weights and biases) in DL models. For

regression tasks, common loss functions for DL models include Mean Absolute

Error (MAE) and Mean Squared Error (MSE) write Eqn. 2.11 and Eqn. 2.12

respectively.

LMAE =
1

N

N∑
i=1

|xi − yi| (2.11)

LMSE =
1

N

N∑
i=1

(xi − yi)
2 (2.12)

where x and y are both N -dimensional vectors and xi denotes the value on the

ith dimension of x. For classification tasks, Cross Entropy (CE) loss writes

Eqn. 2.13 is often used.

LCE = −
K∑
c=1

yo,c log(po,c) (2.13)

where K is the number of classes, yo,c is a binary indicator (0 or 1) if class

label c is the correct classification for observation o, and po,c is the predicted

probability observation o is of class c. Softmax function (Eqn. 2.5) is often

used to calculate the predicted probabilities.

Apart from minimizing the discrepancies between the model predictions

and the ground truth, regularization or penalty terms are often used to en-

force certain desirable characteristics of the model. Besides, two or more loss

functions may be imposed on a model, representing multiple objectives of that

model. L1 or Lasso regularization (Eqn. 2.14) can be used to reduce over-

fitting and promote sparsity in models. Similarly, L2 or Ridge regularization

(Eqn. 2.15) helps prevent large weights from dominating the learning process

to boost generalization ability.

L1 =
∑
i

|wi| (2.14)
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L2 =
∑
i

w2
i (2.15)

where wis are learnable weights in the model.

Maximum Mean Discrepancy (MMD) as written in Eqn. 2.16 is another

popular loss or penalty term in DL, especially TL [158], [159]. It computes

the difference in mean embeddings of two distributions in a reproducing kernel

Hilbert space (RKHS) and can guide the alignment of feature distributions

across source and target domains.

MMD2[F ,G] = Ex,x′∼F [k(x, x
′)]+Ey,y′∼G[k(y, y

′)]− 2Ex∼F ,y∼G[k(x, y)] (2.16)

where F and G are probability distributions, E denotes the expectation oper-

ator, and k is a selected kernel function such as polynomial kernel and radial

basis function kernel.

Kullback–Leibler divergence (KL-divergence) write Eqn. 2.17 is another

popular term for measuring the difference between two probability distribu-

tions. It has found application in training various types of DL models including

variational autoencoders [160] and Bayesian neural networks [161].

DKL(P ∥ Q) =
∑
x∈X

P (x) log
Q(x)

P (x)
(2.17)

where P (x) and Q(x) represent the two probability distributions and X de-

notes the sample space where x lives in.

Finally, the loss function or the training objective of a DL model can be

written as a weighted summation of loss terms. The weighting coefficients are

often regarded as hyperparameters to be selected and optimized as shown in

Figure 2.7. Notably, all the terms in the loss function should be differentiable

to suit the use of gradient-based optimization methods (see Section 2.2.3.3).

2.2.3.2 Evaluation metrics

To evaluate the performance of DL models, different metrics can be used. For

Regression problems, the MAE and MSE loss terms (see Eqn. 2.11 and Eqn.

2.12) can also be used as evaluation metrics. For classification tasks, however,

the commonly used Cross Entropy loss term does not have a clear physical
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Predicted Positive Predicted Negative
Actual Positive TP FN
Actual Negative FP TN

Table 2.1: Confusion matrix for binary classification.

meaning, and other metrics are often used. Accuracy is the most commonly

used metric for classification tasks and it is simply the proportion of correctly

classified samples out of the total tested samples as writes Eqn. 2.18.

Accuracy =
number of correct prediction

number of tested samples
(2.18)

For a binary classification problem, a prediction can be either true positive

(TP), false positive (FP), false negative (FN), or true negative (TN) as shown

in Table 2.1. When dealing with imbalanced datasets with different numbers

of positive and negative samples, precision, recall, and F1 score write Eqns.

2.19, 2.20, and 2.21 are often used. Precision is the proportion of true positive

predictions among all positive predictions, indicating the model’s ability to

avoid false positives. Recall or sensitivity is the proportion of true positive

predictions among all actual positive instances, indicating the model’s ability

to capture all positive instances. F1 score is the harmonic mean of precision

and recall, providing a balanced view of the two metrics.

Precision =
TP

TP + FP
(2.19)

Precision =
TP

TP + FN
(2.20)

F1 Score = 2× Precision× Recall

Precision + Recall
(2.21)

2.2.3.3 Optimization methods and stopping criteria

Gradient-based methods are usually used to optimize the parameters (weights

and biases) in DL models. Essentially, these algorithms (also known as op-

timizers) iteratively update the parameters in the direction of the negative

gradient of the loss function with respect to the parameters being optimized.

This will guide the model towards parameters that produce lower and lower

loss values.
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The most fundamental gradient-based optimizer is stochastic gradient de-

scent (SGD) and its parameter updating scheme can be written as Eqn. 2.22.

θt+1 = θt − η∇θL(θ;xi, yi) (2.22)

where θt is the parameter at iteration t, η is the learning rate, and∇θL(θ;xi, yi)

is the gradient of the loss function L with respect to the parameter θ evalu-

ated on a mini-batch of training examples (xi, yi). However, DL models often

present complex optimization landscapes with many local minima, plateaus,

or saddle points, challenging the performance of the vanilla SGD method.

To accelerate the convergence of SGD, a momentum term considering the

previous update step can be used as shown in Eqn. 2.23.

θt+1 = θt − η∇L(θt) + µ∆θt−1 (2.23)

where µ is the momentum coefficient and ∆θt−1 is the update vector from the

previous time step.

Another reasonable and more popular optimizer is Adam which utilizes

both momentum, adaptive learning rate, and scaling [44]. Its calculation can

be described using Eqn. 2.24

θt+1 = θt −
η√

v̂t + ϵ
m̂t (2.24)

with

mt = β1mt−1 + (1− β1)gt,

vt = β2vt−1 + (1− β2)g
2
t ,

m̂t =
mt

1− βt
1

,

v̂t =
vt

1− βt
2

where η is the learning rate, ϵ is a small constant added to prevent division

by zero, mt and vt are exponentially decaying moving averages of the first

moment (the mean) and the second moment (the uncentered variance) of the

gradients, respectively. gt is the gradient at time step t. m̂t and v̂t are bias-

corrected estimates of the first and second moments, respectively. β1 and β2
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are the decay rates for the moving averages of the gradients and the squared

gradients, respectively.

For a new DL model, its parameters are often randomly initialized before

training. Proper initial parameters can prevent vanishing or exploding gra-

dients. Among many initialization methods, Kaiming initialization [38] has

become a widely accepted default option. In Kaiming initialization, weights

are randomly sampled out of a Gaussian distribution with a mean of zero and

a standard deviation of
√

2/din, where din is the dimensionality of the input,

and biases are initialized as zeros.

However, training a new model from scratch is rare in many applications

including image recognition and natural language processing. Instead of ini-

tializing a model with random numbers, the parameters of a pre-trained model

can be copied. It is also common to freeze a part of the parameters (typically

the ones in lower layers) and only allow the rest to be updated for the target

task. For example, ref. [162] pre-trained CNN models with the CWRU bearing

dataset, freeze a portion of parameters, and then fine-tune the rest with data

from their target testbed. This will allow transfer learning from one dataset to

the target one. Using pre-trained models as start points and then fine-tuning

them for downstream tasks is more efficient and may lead to better accuracy

[163]. For example, the well-known AI chatbots OpenAI ChatGPT2 based on

generative pre-trained transformers (GPT) [164].

The stop or end of the parameter updating can be decided using one or

a few stopping criteria. Applying thresholds on validation loss or validation

accuracy are two typical stopping methods. A maximum number of epochs

or training time can also be enforced. Before the thresholds above, train-

ing can also be stopped when the training or validation loss fails to decrease

for a specified number of consecutive epochs, suggesting that the model has

converged. This is called early stopping in the literature and it can effectively

reduce overfitting [45]. As demonstrated in Figure 2.8, lower training error can

be achieved using longer training time but this does not improve the model’s

performance on the validation set [165]. This indicates that the model may

2https://openai.com/index/chatgpt/
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Figure 2.8: Idealized training and validation error curves [165].

be overfitting the training data and early stopping techniques can resolve this

issue.

Hyperparameter selection plays a vital role in training successful DL mod-

els. As shown in Figure 2.7, the goodness of hyperparameters is determined

based on the model’s performance on the validation set. The goal is to en-

sure the trained model generalizes well for testing data. If not, the process in

Figure 2.7 should be iterated with refined hyperparameter search space. Nu-

merous variables including the number of kernels in a convolutional layer, the

learning rate for the optimizers, and the coefficients of different loss terms can

be regarded as hyperparameters. It takes expert knowledge and experience

to design a thorough but efficient search space. Usually, the complexity of

the model, the learning rate, the batch size, and the coefficients of different

loss terms are among the top priorities during searching. Advanced searching

methods such as Bayesian optimization [166] and Hyperband [167] can also be

considered.

2.2.3.4 Other techniques

The success story of DL is not complete without mentioning some other tech-

niques.

Batch normalization (BatchNorm) is a technique commonly used for dif-

ferent types of DL models [168]. A BatchNorm layer introduces two learnable

parameters (scale and shift) to normalize its inputs across a data mini-batch.

This will reduce the internal covariate shift problem by ensuring consistent in-
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Figure 2.9: An MLP with dropout neurons.

puts to its subsequent layers, leading to improved training stability and faster

convergence.

Dropout is a technique to reduce overfitting [169]. It is simply to randomly

set the output values of a fraction of neurons to zero during training. Figure

2.9 demonstrates how dropout works in an MLP, where the dropout neurons

are marked grey to indicate their zero output value. The edges (weights)

connected to the dropout neurons are marked dash lines as they become idle.

This will encourage the model to develop a more diverse set of features that

generalize better to new data. It also forces neurons to be more independent

and reduces the chances of overfitting.

Data augmentation is to generate additional training data by applying

transformations to existing data. This is essential in combating overfitting.

For images, scaling, flipping, and so on can be applied [170]. For signals,

segmentation with overlapped windows can create more training samples [146].

Learning rate is one of the most important hyperparameters in DL. Instead

of using a fixed learning rate throughout the whole learning process, a schedule

to change the learning rate can be applied. In practice, it is common to

gradually decrease the learning rate over time to allow faster convergence [45].

Gradient clipping is to limit the magnitude of gradients during training

so that the optimization does not diverge and oscillate. It can be useful for

training RNNs or models with complicated regularization terms such as MMD

[158].
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Chapter 3

Weighted domain adaptation
networks for machinery fault
diagnosis

3.1 Introduction

Fault diagnosis of rotating machines is of vital importance in modern industry.

A reliable early fault diagnosis system is key to reduce maintenance costs and

can help preventing major failures [171]. Nowadays, intelligent fault diagnosis

has received much research interests as it can work for real-time diagnostic

applications and its performance grows with data volume [43], [172]. Three

intelligent fault diagnostic frameworks are often studied: conventional, deep

learning (DL) based, and transfer learning framework [115].

Conventional intelligent fault diagnosis mainly involves signal processing,

feature extraction, feature selection, and fault classification [34], [40]. This

conventional framework heavily relies on expert knowledge as the above tech-

nologies need to be tailored for different machines and different working con-

ditions (different combinations of load and rotating speed) [29], [173]. DL

based diagnosis framework incorporates signal processing, feature extraction,

and fault classification into one step [34], [81]. DL framework has been suc-

cessfully applied for the diagnosis of various mechanical components, such as
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bearings [16], [174], [175], gears [49], [173], and rotors [176], [177]. However,

neither the conventional nor the DL based framework is intelligent enough

[178] as they may not perform well under the environments of (1) lack of

labeled data and (2) variable working conditions.

The above two frameworks are based on supervised learning, which will

learn only from labeled data. In many fault diagnosis cases, labeled data are

expensive or even prohibitive. In addition, the two frameworks have limitations

in coping with the influence of working condition changes. That is, a trained

fault classifier may not perform well under different rotating speeds or load

levels [49], [179], [180]. The key is to extract fault-discriminative but working-

condition-invariant features from raw data.

To this end, a recent developed technique, domain adaptation [113], [179],

[181], can support a more intelligent transfer learning framework [61] for fault

diagnosis. In a fault diagnosis context, a working condition can constitute a

domain. The domains with labeled data available are called source domains

while those with unlabeled data are called target domains. Domain adaptation

is to train a model using both source-labeled data and target-unlabeled data,

so that the trained model can perform well in the target working condition. In

mechanical fault diagnosis, domain adaptation has been developed and applied

to combat rotating speed changes [49], [115], [116], load level changes [49],

[114], [117], and cross-machine diagnosis [55]. However, these existing studies

are limited to single source domain adaptation. In practice, fault data may be

collected from two or more working conditions, constituting a multiple source

domain adaptation problem. Methods for multiple source domain adaptation

have not been adequately investigated for machinery fault diagnosis.

For natural language processing and computer vision applications, many

multiple source domain adaptation methods have been developed. The key is

to efficiently learn and combine knowledge from multiple sources. Refs. [182]–
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[185] construct different source-specific predictors for each source domain and

then combine, with possibly different weights, their predictions on the target

data. The idea of learning from multiple sources is to be utilized in this study

for machinery fault diagnosis.

For machinery fault diagnosis, the number of source working conditions

can be arbitrarily large and constructing that many source-specific predictors

is computationally inefficient. Ref. [63] train a single target domain predictor

utilizing multiple source domains. This is a good idea for fault diagnosis

which can largely reduce computational costs. However, when training that

target predictor, ref. [63] uses equal weighting on different sources. Ref. [186]

demonstrated that non-uniform weighting on different source could give better

results but did not discuss how to determine the weights. The weighting

schemes in [183]–[185] for natural language processing and computer vision

applications are all based on multiple source-specific predictors and cannot

be applied to single predictor methods [63]. The necessity of weighing the

source domains differently, we believe, depends on where the differences of the

domains are from. In natural language processing studies, the differences are

likely to come from novel samples of one domain to the others [187]. In such

applications, treating each domain equally is a good choice. However, for fault

diagnosis, we can have clear physical meanings of domains differences and we

have prior knowledge that the samples within each domain should be similar.

With the above considerations, we believe that it is important to propose a

good domain weighting scheme for fault diagnosis applications.

Apart from its positive effects, domain adaptation has the risk of causing

negative transfer [188], in which training with both the source and the target

data leads to a worse performance than only with the source data. To allevi-

ate such risk, refs. [189], [190] reported to use thresholds to filter out negative

data during adaptation, ref. [188] studied when to cease the adaptation. Es-
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sentially, we need to know where not to adapt. If the risk of negative transfer

is high, switching back to traditional supervised training with source data only

is needed.

In this study, we are going to develop a multiple source domain adaptation

method with different weights applied to different source domains (working

conditions) for machinery fault classification. Our motivations are (1) Multi-

ple source domains characterized by different working conditions can help the

diagnosis on a different target working condition and (2) The contributions of

different sources should be different given that their working condition devi-

ations from the target working condition are different. We follow ref. [63] to

construct a single target domain classifier for all the domains, but we assign

non-uniform weights to different sources. Different schemes of weight assigning

will be investigated. To avoid negative transfer for good classification accu-

racy, we propose to determine whether to use domain adaptation or traditional

supervised learning first before commencing the training. Domain adaptation

might not help when the source and the target working conditions are too

close. Two case studies on two different experiment test rigs are performed,

and both speed change and load level change will be studied. The effectiveness

of our proposed multiple source domain adaptation will be demonstrated, and

the soundness of our weighting scheme will be examined. In summary, the

main novelty of this paper are:

1. We treat each working condition as a domain and learn from multiple

source-labeled and one target-unlabeled domains;

2. We weigh different source domains differently to scale the contributions

of different source working conditions;

3. We assess the necessity of domain adaptation first before training to

avoid negative transfer.

57



In the following parts, Section 3.2 discusses the preliminary knowledge,

Section 3.3 explain our proposed method and the reported methods to be

compared with, Section 3.4 presents two case studies to demonstrate the pro-

posed method, and then Section 3.5 concludes this paper.

3.2 Preliminaries

3.2.1 Domain adaptation

When the training and testing data are drawn from different distributions, tra-

ditional machine learning algorithms do not perform well. Domain adaptation

become useful in this situation [61].

A domain consists of a data space X and a probability distribution P (X)

on its samples X ∈ X . Domain adaptation means to adapt useful knowl-

edge from source-labeled domain S to be applied to target-unlabeled domain

T . Specifically, we are given a source-labeled dataset (XS, YS) = {(x1
S, y

1
S) ,

(x2
S, y

2
S) , . . . , (x

m
S , y

m
S )} and a target-unlabeled dataset XT = {x1

T , x
2
T , . . . , x

n
T}

for model training. The trained model is expected to have good classification

or regression performance on unseen target domain samples.

The following two assumptions are made for domain adaptation in ref.

[61]. 1) The data distributions of the source and the target domains should

be different but similar, i.e. PS (XS) ̸= PT (XT ) but PS (XS) ≈ PT (XT ), so

that the knowledge learned from the source can be adapted to the target. 2)

The data space and label space Y should be the same across the source and

the target domains, i.e. XS = XT and YS = YT , so that neither new format

nor new class of data will come in when testing. In this study, we follow these

definitions and focus on scenarios meeting these assumptions.
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3.2.2 Domain adversarial training

In domain adversarial training, a neural network can be viewed as consist-

ing of three parts [113]: feature extractor F , label classifier C, and domain

discriminator D. The feature extractor transforms the input data x into a

feature vector f , i.e. f = F (x; θf ). With f , the label classifier C calculates

a vector of class scores c = C (f ; θc) for each class while D produces a vector

of domain scores d = D (f ; θd) for source or target domain. That is, the label

classifier predicts the label of an input and the domain discriminator tries to

tell if the input is from the source or the target domain. The indices of the

highest score are regarded as the class/domain predictions.

The key of domain adversarial training is to put C andD against each other

as two players in a minimax game. The label classifier C plays to minimize

its labeling error while D is set to maximize “domain confusion” [62]. A Nash

equilibrium can be achieved if the feature extractor F is trained to produce

label-discriminative yet domain-invariant features. More formally, considering

the function Ẽ (X, Y ; θf , θc, θd) = LC (X, Y ; θf , θc) − LD (X; θf , θd), it is to

search for parameters
(
θ̂f , θ̂c, θ̂d

)
= minθf ,θc maxθd Ẽ that deliver a saddle

point at maximum domain confusion LD yet minimum labeling error LC [113].

Further, by inserting a Gradient Reversal Layer (GRL) between F and D,

this parameter searching can be implemented as a simple minimization via

backpropagation [113]:

min
θf ,θc,θd

E = LC (X, Y ) + LD (X) . (3.1)

The GRL simply copies f into D during the forward feeding, while reverses

the sign of the gradient that backpropagates from it. This reversed gradient

will move F towards the negative direction of minimizing the LD term, so that

the domains can be maximally confused. For the loss functions LC and LD,
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standard Cross Entropy Loss [45] will be used our study:

LC (X, Y ) = − 1

m

∑
(x,y)∈(XS ,YS)

log
exp (c [y])∑
i exp (c [i])

, (3.2)

LD (X) = − 1

m

∑
x∈XS

log
exp (d [1])∑
i exp (d [i])

− 1

n

∑
x∈XT

log
exp (d [2])∑
i exp (d [i])

, (3.3)

where (XS, YS) is the source-labeled dataset with m samples, XT is the target-

unlabeled dataset with n samples, x denotes a data sample, y is its correspond-

ing label, and c [i] and d [i] are respectively the ith element of the class score

vector and the domain score vector which were explained in the first paragraph

of Section 3.2.2.

3.2.3 Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) measures the difference between two

distributions on the basis of samples drawn from the two distributions [191].

Given samples X = {x1, x2, . . . , xm} and Z = {z1, z2, . . . , zn}, using a kernel

K (·, ·), it can be estimated using Eq. 3.4:

MMD (X,Z) =
[ 1

m2

m∑
i,j=1

K (xi, xj)−
2

mn

m,n∑
i,j=1

K (xi, zi) +
1

n2

n∑
i,j=1

K (zi, zj)
] 1

2 .

(3.4)

The MMD value is expected to be a small quantity if the distributions of X and

Z are similar. The choice of kernel is critical to the power of this discrepancy

measurement. A typical choice is Radial Basis Function (RBF) kernel, i.e.

K (x, z) = exp(−∥x− z∥2/b), where b is the bandwidth of the RBF kernel.

Ref. [192] further discussed that a linear combination of multiple kernels can

render a good kernel. MMD using a combined kernel is often called Multi-

Kernel MMD, or MK-MMD [117], [193]. In addition, squared formulation of

MMD, or MMD2, is used and aliased with MMD in refs. [117], [193]. For

simplicity, we will use MMD to denote the squared MK-MMD in the following

parts of this paper.
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Most MMD based domain adaptation methods will not apply MMD on the

input data. Instead, MMDs of extracted features are usually measured [49],

[117], [172], [193]. This fits the goal of learning domain-invariant features. In

practise, considering computational constraints and efficiency, the inputs of

Eq. 3.4 are mostly mini batches (small partitions of a whole dataset).

3.3 The proposed method

As discussed in Section 3.1, we study domain adaptation to combat the impact

of working condition changes on machinery fault diagnosis. To efficiently learn

knowledge from multiple source working conditions, a good weighting scheme

is needed. In addition, to avoid negative transfer, a criterion of determining

whether to perform domain adaptation is to be adopted.

In this paper, a Weighted Domain Adaptation neural Network (WDAN) is

proposed. Unlike ref. [179] which merges multiple labeled working conditions

as one source domain and build only one domain discriminator (see Section

3.2.2), we treat each working condition as a separate domain, and follow ref.

[63], which has been successfully applied to natural language processing and

computer vision, to build multiple source-specific domain discriminators. On

top of ref. [63], we insert a weighting block so that different weights can be

assigned on different source domains. The weights will be assigned based on

the MMD measure explained in Section 3.2.3. The measured MMD values will

also be used to determine whether to perform domain adaptation or traditional

supervised learning, so that negative transfer can be avoided.

In the following part of this section, Section 3.3.1 presents the architecture

of the proposed WDAN, and Section 3.3.2 explains the training procedure of

WDAN. All the compared methods will be summarized in Section 3.3.3.
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3.3.1 WDAN architecture

As shown in Figure 3.1, WDAN has a feature extractor F , a classifier C,

multiple domain discriminators Ds, and a domain weighting block. Each D

has the same structure but is associated with a specific source domain, so

that multiple source working conditions can be accommodated. Note that

ref. [179] has only one domain discriminator and ref. [63] dose not have the

domain weighting block which will be explained in Section 3.3.2.

Domain 
tags

Labels 𝑦

Data 𝑋

Features 𝑓

Domain 
weights 𝛼𝑘

SNS2S1 T

Classifier 𝐶

Feature 
extractor 𝐹

… …

𝐷𝑁
SN T

𝐷2
S2 T

𝐷1
S1 T

Domain 
discriminators

… …

Loss function

… …

… …

… …

Figure 3.1: Schematic diagram of WDAN.

The structures of F , C, and D are respectively shown in the upper, left

lower, and right lower boxes of Figure 3.2. The 3-d blocks annotated with

Conv, FC, and BN in Figure 3.2 are 1-d convolution layers, fully connected

layers, and batch normalization layers, respectively. The three comma sepa-

rated digits listed under a Conv layer in Figure 3.2 are its number of input

channels, number of output channels, and kernel size; the numbers pointed by

an arrow under the FC layers are their output dimensions. All three types of

layers have learnable parameters that will be updated during training. The

empty V-shaped arrows are layers (or operations) without learnable parame-

ters. As annotated at the top of Figure 3.2, they are (max) pooling layers with

a down sampling ratio of 0.25, ReLU activation layers, dropout layers with a
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drop rate of 0.5, a flatten layer to reshape high order tensors into the 1st order

vectors, and a GRL that was explained in Section 3.2.2.
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Figure 3.2: Network structures used in this paper.

From Figure 3.2, we can see that the design of the feature extractor is a

one-dimensional version of the very first reported convolutional neural network

[140]. The kernel size of the Conv layers and the downsampling ratio of the

pooling layers follow the original design. The use of ReLU activation [194] is

standard for deep neural networks. We select the output dimension of FC1

from {500, 1000, 2000}, the output dimension of FC2 from {128, 256, 512},

the use of dropout operation, and the use of BN layer based on the average of

testing accuracies on the source datasets of ST-1 in Table 3.2 (to be explained

later) of source-only method (to be explained in Section 3.3.3). The classifier

and domain discriminators are both standard two-layer perceptrons [45]. The

size of FC4 equals the number of machine’s fault classes while FC6 has only

2 neurons respectively for the source and the target. The output dimension

of FC3 was pre-determined. We select the output dimension of FC5 from

{16, 32, 64} based on the testing accuracy on the target dataset of ST-1 of

equal-weighting method (to be explained in Section 3.3.3).
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After the training is completed, only the F and C will be saved for testing

while the Ds will be discarded. The saved F and C are expected to have good

performance on the target domain. We use a held-out labeled dataset from

the target domain to test the classification accuracy of the trained networks.

All the input data samples are raw vibration signal segments, and their corre-

sponding labels are machine’s fault classes. Before being sent into WDAN, a

normalization step is completed in which a data sample will be subtracted and

divided respectively by the element-wise mean and the standard deviation of

its original dataset. The held-out test set will use its own mean and standard

deviation.

3.3.2 Training procedure

We train the WDAN with two objectives: (1). minimal classification error

on each source domain; (2). maximum “domain confusion” between each

source and the target. If there is only a single source domain, vanilla domain

adversarial training (Eq. 3.1 in Section 3.2.2) can be applied. When there

are multiple source domains, we need to combine their loss terms properly. A

log-sum-exp operation is used in ref. [63] but every source is equally weighted.

We propose to assign different weights to different sources and formulate the

training of WDAN as:

min log
N∑
k=1

expNαk (LCk + LDk
), (3.5)

where N is the number of source domains, LCk = LC (XSk
, YSk

) is the labeling

error term on the kth source dataset, LDk
= LDk

({XSk
, XT}) is the domain

confusion term of the kth domain discriminator, and they are calculated using

Eq. 3.2 and Eq. 3.3 in Section 3.2.2, respectively, and αk is the weight for

domain k with two constraints
∑

k αk = 1 and αk ≥ 0, which is proposed to

replace the original uniform weighting of sources in ref. [63].

64



Generally, higher weights should be assigned to sources more similar to

the target. Refs. [183], [184] measure distributional similarities between the

sources and the target, and then divide the measured similarities by their sum.

In such a way, all the sources were assigned with different and non-zero weights.

In this paper, we propose to use the distribution metric MMD explained in

Section 3.2.3 as the (negative) domain similarity measure. Then, we apply

softmax function to the measured MMD values so that the two constraints

listed at the end of the previous paragraph on weights can be met. Formally,

for a source domain Sk, we assign

αk =
exp (−βvk)∑
i exp (−βvi)

, (3.6)

where vk is the measured MMD between the Sk and the target T . Following

[49], [117], [172], [193], the MMD are measured based on Eq. 3.4 with the

extracted features f of mini-batch data as its input. Average MMD of all the

mini-batches will be used. The coefficient β ≥ 0 controls the “hardness” of

weight assigning. Smaller β is softer as it gives close weight values for all

sources. When β = 0, our method is relaxed to ref. [63] with equal weights;

when β → ∞, our weighting scheme becomes “hard max” as only the best

source(s) will be assigned with non-zero weight(s). We believe that generally

speaking, allowing a positive β which gives non-uniform weights to multiple

sources is the best practice.

Apart from weight assigning, the measured MMD values will also be used

to assess the risk of negative transfer. If the MMD values are all below a certain

threshold, the source and the target domains are already well matched. In such

a case, rather than risking testing performance with target-unlabeled data, we

perform traditional supervised learning with source-labeled data only. That

is, we merge all the source domains as one (N = 1) and deactivate the domain

discriminators (LDk
= 0). The pseudo code of our proposed WDAN training
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procedure is described in Algorithm 1.

Algorithm 1 Training procedure of WDAN.
Input:

– Datasets {(XSk
, YSk

)}Nk=1 =
{{(

xi
Sk
, yiSk

)}mk

i=1

}N

k=1
and XT = {xi

T}
n

i=1,
– Initial WDAN {F,C,D},
– Hardness parameter β,
– Mini-batch size p,
– MMD kernel K,
– Transfer threshold τ .

Output: trained WDAN {F,C}
1: # calculate average MMDs: vks (initial vk = 0)
2: for k from 1 to N do
3: # randomly split into mini-batches of p samples

4:
{(

X i
Sk
, Y i

Sk

)}⌊mk/p⌋
i=1

← split (XSk
, YSk

)

5: {X i
T}

⌊n/p⌋
i=1 ← split (XT )

6: for j from 1 to ⌊n/p⌋ do
7: if j > size{(X i

Sk
, Y i

Sk
)} then

8:
{(

X i
Sk
, Y i

Sk

)}
← duplicate

({(
X i

Sk
, Y i

Sk

)})
# use Sk repeatedly

9: end if
10: vk ← νk +MMD

(
F
(
Xj

Sk

)
, F

(
Xj

T

)
;K

)
/ ⌊n/p⌋

11: end for
12: end for
13: # apply threshold to avoid negative transfer
14: if ∀vk < τ then
15: min

∑N
k=1 LCk

# source-only training
16: else
17: for k from 1 to N do
18: αk ← exp (−βvk)∑

i exp (−βvi)
# assign weights using Eq. 3.6

19: end for
20: min log

∑N
k=1 expNαk (LCk + LDk

) # adaptive training (Eq. 3.5)
21: end if

3.3.3 Compared methods

We compare our proposed WDAN with the following methods: source-only

using Eq. 3.5 with N = 1 and LDk
= 0; best-single which applies sin-

gle source domain adaptation [113] on every single source domain (N = 1)

and then report the best possible result; merge-as-one [179] and then ap-

ply single source domain adaptation with N = 1; and ref. [63] that apply

66



equal-weighting on sources by setting β = 0. We use WDAN-β to denote

our proposed method with a “hardness” coefficient of β. Note that WDAN-0

is identical to ref. [63]. We are going to explore the impact of different real

positive values of β.

To put all the above methods on equal footing, all will use the same network

structures in Figure 3.2. We use standard mini-batch Stochastic Gradient

Descend (SGD) with momentum [195] to solve their corresponding training

objective functions. Note that refs. [179] and [113] both used SGD with

momentum. Refs. [196] and [197] also support that SGD generalizes better

than adaptive gradient methods including Adam. Empirically, the momentum

is set to be 0.9, the mini-batch size is set to be 100, and the best learning rate

for each method will be grid-searched from {0.1, 0.01, 0.001}. For efficiency

and ease of implementation, the mini-batch size for calculating the average

MMD values is also set to be 100.

3.4 Experiments

We present two case studies on two different test rigs located at Tsinghua Uni-

versity (THU) and University of Alberta (UofA). Computational experiments

are run on a computer with a single Intel i7-6700 CPU and a single Nvidia

GTX-1060 GPU. All the tested methods are implemented using Pytorch1.

3.4.1 Case study I

3.4.1.1 THU planetary gearbox test rig

The HS-200 single-stage planetary gearbox2, located at Tsinghua University,

was used to conduct experiments and collect data in year 2019 by one of the co-

authors. During the physical experiment, the gearbox was driven by a motor

1https://pytorch.org/
2http://www.sh-wxjd.net/product/qdq/49.html
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and the output rotating speed of the motor was set at 26 different constant

levels, ranging from 15Hz to 40Hz with an interval of 1Hz. No external load

was applied by the load motor. Two accelerometers were installed in horizontal

and vertical directions the of gearbox casing. By seeding artificial damages in

the sun gear or one of the planetary gears, 9 different fault classes are created

and tested. The 9 tested fault classes are described in Table 3.1. Figure 3.3

shows the structure of the planetary gearbox and 4 example damaged gears.

The seeded gear tooth cracks span the whole width of space of the tooth and

the cut is 0.1 mm wide.

Table 3.1: Tested fault classes of the THU planetary gearbox.

Classes Types Levels

H Health -
SC1 Sun tooth crack Crack depth: 1/8 dedendum
SC2 Sun tooth crack Crack depth: 1/4 dedendum
SC3 Sun tooth crack Crack depth: 1/2 dedendum
SB Sun tooth broken Break position: 1/3 tooth depth
PC1 Planet tooth crack Crack depth: 1/8 dedendum
PC2 Planet tooth crack Crack depth: 1/4 dedendum
PC3 Planet tooth crack Crack depth: 1/2 dedendum
PB Planet tooth broken Break position: 1/3 tooth depth

Figure 3.3: Structure of the HS-200 planetary gearbox and 4 example damaged
gears.
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Table 3.2: Adaptation tasks on THU dataset.

Adaptation task Source domains Target domain

ST-1 40Hz, 34Hz, 28Hz 16Hz
ST-2 16Hz, 40Hz 28Hz
ST-3 16Hz, 22Hz, 28Hz 40Hz

3.4.1.2 Data description

We regard each rotating speed as a domain. Three different source-target

adaptation tasks listed in Table 3.2 are studied. The physical implications of

the three tasks are ST-1: adapt to a lower speed; ST-2: adapt to a speed in

the middle; ST-3: adapt to a higher speed.

For each rotating speed and each health condition, the vibration data mea-

sured in the horizontal direction at a sampling frequency of 20kHz, for a con-

secutive 256 seconds are used. The first 204.8s are used for training and the

rest 51.2s are held out for testing. We slice the vibration signals into 2048

sized input samples for our neural networks. That is, there will be 2000 and

500 samples per domain per class respectively for training and testing.

3.4.1.3 Results and discussions

We apply all the five methods discussed in Section 3.3.3 and compare their

performances (average over 10 repeat runs) on ST-1 to ST-3. For all the

methods, the number of training epochs is 10. For the choice of β, we tested

4 different values, 5, 10, 25, and 100 on ST-1 and found that β = 10 provided

the best accuracy on ST-1 (see Figure 3.4). In this study, β = 10 is used as the

default choice for other tasks. We follow ref. [117] to calculate MMD values

with 5 RBF kernels with bandwidths of 1, 2, 4, 8, and 16.

We first test the source-only method on the source domain data. The

source test accuracies are 99.993%, 99.966%, and 99.993% respectively for ST-

1, ST-2, and ST-3. These accuracies show that, when the testing and training
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data are from the same set of domains, our designed feature extractor and

classifier (Section 3.3.1) can have very good performances. Then, we test all 5

methods on the target domains and show the target test accuracies in Table

3.3.

Table 3.3: Target domain test accuracies and training time costs on THU
dataset.

Method ST-1 (%) ST-2 (%) ST-3 (%)
Training time (seconds)

ST-1 or ST-3 ST-2

source-only 79.489±2.082 94.382±3.276 69.836±4.396 85.16±0.35 57.83±0.14
merge-as-one [179] 83.476±4.942 97.816±1.506 85.647±11.18 58.94±0.16 59.27±0.25
best-single [113] 89.962±3.365 94.924±4.909 90.102±7.154 171.06±0.31 115.13±0.38

eqaul-weigthing [63] 85.322±4.006 99.042±0.469 90.382±6.279 107.94±0.24 83.86±0.33
WDAN-10 (proposed) 91.102±1.369 99.158±0.253 94.380±4.063 113.69±0.27 88.22±0.33

From the left-hand side of Table 3.3, we can see that, when tested un-

der a different working condition, the accuracies of source-only models drop

20.504%, 5.584%, and 30.457%, respectively for the three tasks, comparing

to their source test accuracies. These numbers show how much the rotating

speed gaps affect the traditional source-only learning method. Our proposed

WDAN reduced the three previous listed accuracy drops to 8.891%, 0.808%,

and 5.613%, by gaining 11.613%, 4.776%, 24.544% of accuracies comparing to

source-only. It achieves the best performance among all the compared meth-

ods, which demonstrates the effectiveness of multiple domain discriminators

and our proposed weighting scheme. Other three domain adaptation methods,

i.e. merge-as-one, best-single, and equal-weighting, can also gain accuracies on

top of the baseline source-only approach. With no negative transfer observed,

domain adaptation should be applied for all the three tasks in this case study.

The criterion for switching back to source-only will be investigated with the

next case study in Section 3.4.2.

It is also observed that the weights assigned using MMDs well agrees the

physical meanings of the working conditions. A source with smaller speed

70



gap to the target will be assigned with higher weight. For the ST-2 where

the two sources have the same speed gap to the target, the source of higher

speed conditions will be assigned with higher weight. The ranking of sources

reported by the best-single method also agrees with the ranking of weights

assigned by MMDs. The best sources are both 28Hz for ST-1 and ST-3, and

the best-single source for ST-2 is 40Hz. Although, all the best-single’s testing

accuracies are lower than the WDAN’s. It can be said that adapting from

multiple sources can be better than from only from one.

Among the three tasks, the task of adapting to a middle speed (ST-2)

is the easiest as its accuracy of source-only drops the least across domains.

The adaptation gains of applying domain adaptation methods are also less

significant comparing to the other two tasks. For example, adaptation gains

of the best-single method are 10.47% and 20.27% respectively for ST-1 and

ST-3, but only 0.54% for ST-2. That said, domain adaptation is more useful

when the target speed condition is out of the range covered by the known

speeds.

The influence of the “hardness” coefficient β is shown in Figure 3.4. Task

ST-1 with a target domain of 16Hz is used for demonstration. In Figure

3.4, α1, α2 and α3 are the weights assigned to the three source domains 40Hz,

34Hz, and 28Hz respectively. The solid line with markers shows the target test

accuracies for each chosen β values. It shows equal-weighting (β = 0) gives the

lowest accuracy and WDAN-10 is the best for ST-1. Gradient Norms (GNs)

of the FC5 layers of D1, D2, and D3 (see Section 3.3.1) are shown as the

three dash lines. GN means the 2nd norm of the back-propagated gradients

and here we use average GN across all learning steps. These gradients will

be reverse by the GRL and backpropagate into the feature extractor F . The

average GN from a Dk can describe how fast and how much the F changes in

order to confuse its corresponded Sk and the T . We can see (GN1 and GN2

71



are overlapped) that GNs are positively correlated with the assigned weights.

This proves that the sources assigned with higher weights are playing more

important roles during learning.

85.511% 88.400% 91.778% 90.311% 87.111%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 25 100

G
ra

d
ie

n
t 

N
o

rm

W
ei

gh
ts

 &
 A

cc
u

ra
cy

"Hardness" coefficent β

α3 α2 α1 Accuracy GN3 GN2 GN1

Figure 3.4: Influence of β on ST-1. Rotating speeds of S1: 40Hz, S2: 34Hz,
S3: 28Hz, T : 16Hz.

For the case of β = 100, only the domain of 28Hz is assigned with non-

zero weight, making our WDAN approaches the best-single method. However,

WDAN has more parameters to learn as it has three domain discriminators

while best-single only has one. This makes the WDAN-100 more likely to

overfit and achieve lower accuracy. A “soft” β will put WDAN in between

pay equal attentions to every source (equal-weighting) and learn only from

the best-single source.

To visualize the classification performance for each different category, Fig-

ure 3.5 shows the confusion matrices of the source-only method and our pro-

posed WDAN on ST-3. The notations of the fault classes are explained in

Table 3.1. We can see that the source-only method performs poorly on clas-

sifying certain fault classes. For example, the accuracy is 0% for SC3 and

9% for PC3. This implies that, due to rotating speed difference, the target

samples of a certain class may be wrongly aligned with the source samples of
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other classes. In contrast, domain adaptation (WDAN) can better align the

source and target samples of each classes and produces much better classifica-

tion performance. Its accuracies are 84% and 91% higher, for SC3 and PC3

respectively, than those of source-only.
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Figure 3.5: Confusion matrices on ST-3. Left: source-only; Right: WDAN-10
(proposed).

The trade-offs behind adaptation gains include extra computational time

and memory for training. As shown in the right-hand side of Table 3.3, for

a 3-source-1-target task (ST-1 or ST-3), WDAN spends about 5.75 seconds

to compute the weights. In addition, source-only needs about 85.16s for 10

epochs of training while WDAN takes about 113.69s. Memory cost is also

higher for WDAN as more data and more learnable parameters will be used

than it is in source-only. Nonetheless, all the five listed methods have the same

speed and memory usage during testing stage.

3.4.2 case study II

For the 2nd case study, a gearbox test rig at the University of Alberta [50],

[198] was used to collect the data in year 2018. The data is used directly in

this case study. Six fault classes are considered including five different levels
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of gear tooth crack and one healthy state.

3.4.2.1 Data description

During the physical experiment, the rotating speed was set at 10Hz and the

machine was run at three different load levels: 3% (low), 8% (middle), and

13% (high) of the load motor’s rated capacity (100klb-in). We regard the

three load levels as domains and enumerate all three possible 2-source-1-target

adaptation tasks. They are ST-4: the 8% and 13% loadings are sources while

the 3% loading is the target; ST-5: the 3% and 13% loadings are sources while

the 8% loading is the target; and ST-6: the 3% and 8% loadings are sources

while the 13% loading is the target.

The vibration data provided by the accelerometer on its bearing cap (Sen-

sor #2 in ref. [198]), with a sampling frequency of 25.6kHz is to be used in this

case study. For each load level and each fault class, four repeats of 30-second

runs were conducted during the experiments. The first three runs are used

for training and the last one is held out for testing. We slice the vibration

signals into 2048 sized input samples for our neural networks. That is, there

will be 1125 and 375 samples per domain per class respectively for training

and testing.

3.4.2.2 Results and discussions

Following the first case study, we show the average performances over 10 repeat

runs on ST-4 to ST-6. For WDAN, we keep β = 10 and the MMD kernels are

also the same as in case study I. For all the methods, the number of training

epochs is increased to 25 (from 10 in case study I). Under such setting, the

number of training steps will be similar for the two case studies, given that

the THU dataset is 2.667 times larger.

When tested by the source domain data, source-only models give accura-
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Table 3.4: Target domain test accuracies and training time costs on UofA
dataset.

Method ST-4 (%) ST-5 (%) ST-6 (%)
Training time
(seconds)

source-only 83.689±4.643 91.138±2.460 83.929±6.583 50.58±0.21
merge-as-one [179] 81.831±5.708 85.084±9.803 78.031±9.031 52.63±0.22
best-single [113] 83.360±6.127 88.196±2.038 87.244±3.104 103.82±0.59

eqaul-weigthing [63] 83.996±3.649 89.964±2.867 86.476±4.296 79.32±0.26
WDAN-10 (proposed*) 85.591±2.696 90.382±3.475 87.316±6.837 81.64±0.23
* Applied regardless of the MMD-based threshold for avoiding negative transfer

cies of 96.667%, 95.482%, and 94.169% respectively for ST-4, ST-5, and ST-6.

This is a solid performance for crack level classification. The target test ac-

curacies are shown in the left-hand side of Table 3.4. Same as in case study

I, WDAN shows adaptation gains, over source-only, of 1.902% and 3.387%

respectively on tasks ST-4 and ST-6, achieving the best accuracies among all

the compared methods. However, negative transfer [199] is observed in this

case study. Utilizing both the source and target data may result lower accu-

racy than source-only. Under such a case, our proposed MMD-based criterion

comes into use.

Based on our observation, the measured MMDs in this case study is signif-

icantly lower than those in case study I. With the distributions of the sources

and the target are already similar, performing domain adaptation become less

beneficial. While the risk of false alignment of different categories becomes

prominent. This explains why negative transfer occurs in this case study. Us-

ing our proposed MMD-based criterion, WDAN’s negative transfer on ST-5

could be avoid. A critical issue is to select a proper threshold. If we use a

threshold value of 0.07, source-only method will be executed only for ST-5,

eliminating the negative transfer for our WDAN method. For other datasets,

the optimal choice of the threshold value may be different.

We select ST-6 to study the influence of β in this case study and plot the

weights, accuracies and GNs in Figure 3.6. We can see that the best β is
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Figure 3.6: Influence of β on ST-6. Load levels of S1: 3%, S2: 8%, T : 13%.

100, among 0, 10, 100, and 1000. This is different to ST-1 where WDAN-10

produces the highest accuracy and WDAN-100 may assign zero weight values.

For ST-6, the difference between domains in terms of their MMDs is smaller

than it for ST-1. This explains why domain adaptation can gain less accuracies

on the UofA dataset than on the THU dataset.

Confusion matrices of the source-only method and WDAN on ST-4 are

shown in Figure 3.7. The class labels “H” stands for healthy and “C1” to

“C5” denote crack level 1 to level 5. Comparing the two matrices, we can see

that the efficacy of domain adaption (WDAN) is divided for different classes.

WDAN performs better than source-only on “H”, “C1”, and “C4” while loses

accuracy on “C2” and “C5”. This indicates that WDAN may correctly or

falsely align the source and target samples for different classes. In ST-4, the

benefit of applying WDAN outweighs the risk of false alignment as a higher

overall accuracy can be obtained.

As shown in the right-hand side of Table 3.4, for the three tasks in this

case study, WDAN spends about 2.32 seconds more than equal-weighting does

to compute the weights. In addition, source-only needs about 50.58s for 25

epochs of training while WDAN takes about 81.64s.
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Figure 3.7: Confusion matrices on ST-4. Left: source-only; Right: WDAN-10
(proposed).

3.5 Summary and Conclusion

The main contributions of this work are summarized as follows: 1) A multiple

source domain adaptation method is presented for mechanical fault diagnosis

tasks. Compared with other related domain adaptation methods, the proposed

is more suitable and powerful for industrial applications; 2) Different weights

on different source domains are assigned during model training. A balance

weighting between uniform weighting and emphasizing on a single source is

optimal. The assigned weights by MMD are demonstrated to be in accordance

with physical meanings (speed and load level) of the domains; 3) MMD values

can also help us avoid negative transfer.

Beyond combating working condition changes, a wider scope of applications

can be considered, such as adaptation across different machines. To success-

fully avoid negative transfer, we need a good method to set proper threshold

for our proposed MMD-based criterion. On the probability metric, this study

limits to MMD, while other metric such as KL-divergence and K-S statistic,

can be considered. Better and task-specific neural network structures may be
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searched to further boost fault classification accuracy.
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Chapter 4

Open-set fault diagnosis for
industrial rotating machines
based on trustworthy deep
learning

4.1 Introduction

In the era of industrial 4.0, Artificial Intelligence (AI) powered Prognostics and

Health Management (PHM) is crucial to ensure the reliability and resilience

of Industrial Cyber-Physical Systems (ICPS) such as wind turbines, airplanes,

and manufacturing machines [200]. Real-time fault detection and diagnosis

of the rotating mechanical components such as gears, bearings, and rotors

are crucial to ensure safe operation, avoid downtime, and reduce maintenance

costs [8], [201]. Using Deep Learning (DL) models and vibration sensors, infant

mechanical faults, such as gear cracks [30] and bearing defects [202], can be

diagnosed within a matter of seconds. DL-based fault diagnosis is gaining

increasing interest for real-time diagnosis and health management of ICPS

[203], [204].

Most existing DL-based diagnostic methods are developed to solve close-

set recognition problems, where the target fault classes and working conditions

(e.g., rotating speed and load level) are known and fixed. The testing data
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in a close-set setting are said to be in-distribution (ID) as they share the

same sample and label distribution with the training data [205]. In real-world

applications, however, constructing a labeled training dataset and covering all

target fault classes and working conditions of interest can be cost-prohibitive.

Out-of-distribution (OOD) testing samples must be considered and adapted

given new fault classes and new working conditions. For this reason, fault

diagnosis of complex ICPS should be regarded as an Open-Set Fault Diagnosis

(OSFD) [53] (as known as Open-set recognition (OSR) [206]) problem. In other

words, the model needs to (1) classify those ‘known’ fault classes included

in the training set, (2) detect whether an input is OOD or belongs to an

‘unknown’ class, and (3) report how uncertain it is when making a prediction.

Solving these problems can make fault diagnosis rely less on historical data

and are more robust to constant changes in various industrial applications.

Models with OSFD capabilities are trustworthy for ICPS as they “know when

it doesn’t know” and can report their uncertainties to request possible human

intervention [123], [205].

Early OSR approaches often relied on shallow models, such as Support

Vector Machines [52], [207] and Gaussian Mixture Models [120]. However,

crafting class-discriminative features for shallow models is challenging, and

the presence of potential ‘unknown’ classes further complicates matters. DL

models like Convolutional Neural Networks (CNNs) offer the advantage of au-

tomatically extracting discriminative features, but they still face challenges in

generalizing to OOD samples [208]. To compound this issue, conventional deep

learning models based on the softmax function often exhibit ‘over-confidence’

by assigning high probabilities to incorrect classes or adversarial samples [56].

To address this issue, a better Uncertainty Quantification (UQ) metric [209]

for DL models is to be developed. Many works on UQ-based fault diagnosis

methods can be found in the literature [120], [123], [210]–[215] and Section
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4.2.1 presents a deep discussion on existing UQ methods.

Apart from UQ, Abstaining Classifier (AC) [216] is another effective ap-

proach to identify ‘unknown’ samples. Besides all the known classes, an AC

learns an additional abstention option to reject ‘unknown’ samples. While

UQ matrices are often developed in unsupervised fashions, ACs utilize the su-

pervision of labels from each known class thus being more prudent. The key

challenge is to construct an auxiliary set that represents the abstention class

and does not lead to confusion with the known classes. For vibration-based

fault diagnosis, the physical meanings and characteristics of mechanical vibra-

tions can be utilized. Ref. [201] used simulation models to generate auxiliary

training data for bearing fault diagnosis. This requires expert knowledge of

the machine of interest and extra steps to adapt the model for both real and

simulated signals. Refs. [121] and [122] generate auxiliary training data based

on signals from known classes. They used Autoencoders to extract features

from existing vibration signals, subsequently applying statistical perturbations

to these features. However, such feature-level perturbations may not fully cap-

ture the unique characteristics of faulty signals. In this chapter, we consider

signal-level perturbations that align with the physical characteristics of faulty

mechanical signals. In this way, the auxiliary training set can be constructed

without involving detailed knowledge of the target machine and capture much

information from the known training sample.

In this chapter, we propose two signal perturbation operations, namely su-

perposition and noise injection, to generate auxiliary training samples based on

known training data. These auxiliary training samples represent possible OOD

data and help DL models recognize unknown classes. Additionally, we lever-

age Evidential Deep Learning (EDL) [217] to obtain better fault-discriminative

features and enhance the UQ capabilities of DL models. Ultimately, we inte-

grate AC with UQ and introduce the Evidential Abstaining Classifier (EAC)
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for OSFD of rotating machines. The overall goal of EAC is to accurately recog-

nize both ‘known’ fault classes with labeled training data and ‘unknown’ faults

without training data under variable working conditions. This will reduce the

reliance of data-driven diagnostics on historical data and the developed UQ

metric can provide better transparency to the diagnostic procedure. The in-

novations in this chapter can be summarized as follows:

1. Auxiliary training: We generate auxiliary samples based on physics and

existing training data to represent the abstention class, thereby enhanc-

ing the system’s capability to recognize previously unseen fault classes.

2. Enhanced UQ: We improve existing EDL by introducing an L1 (also

known as Lasso) regularization term, which improves the distinguisha-

bility of uncertainty measurements between ‘known’ and ‘unknown’ sam-

ples.

3. AC and UQ Integration: We combine AC with thresholding on UQ met-

rics to facilitate trustworthy OSFD and demonstrate its efficacy in diag-

nosing gear and bearing faults.

This chapter is structured as follows: Section 5.2 provides a review of

relevant literature on UQ and AC. In Section 5.3, we introduce our proposed

EAC for fault classification. Section 4.4 contains the experimental setups,

results, and in-depth analysis. Finally, in Section 5.6, we conclude this chapter

and summarize the key findings.

4.2 Related studies

The proposed EAC leverages both UQ and AC to achieve OSFD. In the fol-

lowing, studies related to UQ and AC will be reviewed in Section 4.2.1 and

Section 4.2.2, respectively.
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4.2.1 Uncertainty quantification

Conventionally, neural networks infer their classification results by ranking the

softmax probabilities for each class using Eqn. 4.1.

pi =
ezi∑K
j=1 e

zj
for i = 1, . . . , K (4.1)

where pi is the softmax probability, zi = f i
θ (x) is the output (logit) of the

network for class i, and K is the total number of fault classes. fθ (·) is the

network’s function, θ denotes the learned parameters, and x is the input sam-

ple. Traditionally, a high pi value means that the model has high confidence

in assigning the input as class i. However, softmax probability provides only

a point estimate for the class probabilities of a sample and thus may not be a

good uncertainty index. In fact, softmax probabilities are often over-confident

when dealing with OOD samples [123], [217].

Alternatively, uncertainties in a sample can be quantified based on its dis-

tance or novelty concerning the ID training samples. For instance, in ref. [212],

a novelty score was proposed using the Euclidean distance between trans-

formed training and testing samples. Similarly, refs. [210] and [213] calculated

their metrics based on Kullback-Leibler (KL) divergence and Mahalanobis dis-

tance, respectively. However, selecting the proper distance metric is challeng-

ing, and its effectiveness for unknown samples is often uncertain. Some other

approaches involve constructing multiple one-class models for each fault class,

as seen in refs. [120] and [211], and using statistical fitness to indicate if the

input is novel compared to all the known classes. Yet, finding a probabilistic

model that fits all fault types, especially the unknown ones, can be difficult.

DL models can also be utilized or modified to produce uncertainty mea-

surements. In ref. [208], an ensemble of CNNs was used, and the entropy of

their potentially different predictions on a single input was employed as a UQ

metric. However, ensemble models are known to be computationally expensive
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and prone to overfitting [218]. Bayesian neural networks, where parameters

are treated as random variables rather than deterministic values, have been

studied for fault diagnosis with UQ [123]. These models often entail long

training and testing times due to the need for multiple forward passes. Impor-

tantly, many of these methods cannot distinguish between different types of

uncertainties, such as model uncertainty, data uncertainty, and distributional

uncertainty [219].

Recently, Evidential Deep Learning (EDL) [217] has gained considerable

research attention for its unique ability to estimate all three different types

of uncertainties. EDL requires minimal modifications to common neural net-

work structures and operates efficiently in a single-pass manner. Notably,

researchers like Zhou et al. [214], [215] have successfully applied EDL in bear-

ing fault diagnosis. In this chapter, we extend the application of EDL to

gearbox fault diagnosis. Additionally, we modify the loss function of EDL by

incorporating an L1 regularization term. This modification promotes sparse

model outputs and results in improved UQ outcomes.

4.2.2 Abstaining classification

AC is known as ‘classification with rejection’ [207] or ‘extended classifiers’ [121]

in the literature. In existing studies, various approaches have been employed to

represent the abstention class, including the use of different yet related datasets

[205], forged samples [220], perturbed samples [221], and more. However,

these studies often deal with general input types such as images and natural

language.

In fault diagnosis literature, the implementation of an abstention option

can vary. For instance, one study [120] constructs multiple one-versus-set bi-

nary classifiers, abstaining if all binary classifiers report a negative prediction

on an input sample. However, this approach, similar to model ensemble, can be
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cumbersome and slow. In contrast, another study [222] develops a standalone

binary classifier and trains it together with the original classification mod-

ule. Ref. [223] combines both classifier extension and standalone classifiers.

Such standalone modules introduce additional complexity to the model and

necessitate well-coordinated training efforts. Notably, both refs. [222] and

[223] utilize samples from unknown classes in training, which deviates from

the OSFD setting. For single-pass models, a different approach [121] simply

extends the original classifier to incorporate the abstention option. This min-

imal change renders it compatible with a wide range of network structures,

including CNNs.

With only samples of known classes, training ACs to learn discriminative

features and effective decision boundaries for unseen classes is challenging. It

is essential to construct auxiliary samples that contrast with seen samples and

represent potential unseen classes, ensuring the supervised learning of ACs.

The creation of auxiliary samples for fault diagnosis can be approached in

various ways. Options include sourcing samples from a different but related

dataset [205], generating them via adversarial learning [220], or introducing

alterations to ID training samples through perturbations [121], [122]. In fault

diagnosis applications, obtaining another related dataset may not always be

feasible. In the meantime, interpreting signals obtained through adversarial

generation can be challenging, particularly in the context of vibration-based

fault diagnosis. For bearing fault diagnosis, ref. [201] created a digital twin of

the bearing system and used simulated data to assist training. However, such

a simulation model needs expert knowledge of the bearing system and does not

adapt well to general machine systems. In this chapter, we explore the option

of generating auxiliaries by applying interpretable and general perturbations

on the ID vibration signal from the training set.

In a prior study on fault diagnosis [121], a statistical perturbation named
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Soft Brownian Offset was employed on ID samples to generate OOD samples as

auxiliaries. However, these generated samples lack physically meaningfulness.

Simpler yet interpretable perturbations like noise injection and input mix-up

[224] should be considered as potential alternatives.

4.3 Proposed method

In this chapter, we propose a novel OSFD method based on vibration signals

named EAC. It combines uncertainty measurements with abstaining options

to determine whether an input sample falls into the OOD category.

4.3.1 EAC framework

The proposed EAC method consists of the following steps:

1. Data acquisition: Vibration signals are collected to construct a training

and a testing dataset. The training dataset is collected when the machine

is healthy and under some known faulty conditions, while the testing

dataset will include one or more novel fault conditions unseen in the

training dataset. The testing dataset may be collected under a different

working condition than that of the training data.

2. Model training: Auxiliary training samples are generated based on the

training dataset, and then the proposed EAC model (shown in Figure

4.1) is trained using both the training dataset and the auxiliary dataset.

3. Model inference: the trained EAC model is used to classify and report

uncertainties for all the testing data.

4. Diagnosis: A final diagnosis is made based on the corresponding classi-

fication result and reported uncertainty for each test sample. A sample
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will be recognized as ‘unknown’ if the reported uncertainty exceeds a

pre-set threshold.

Conv1 

Max pooling 

Input signals

Convolutional 
backbone

Auxiliary signals

Perturbations
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Logit layer Pignistic layer

Exp (K+1)*softmax

Evidence Pignistic counts
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A
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Figure 4.1: Structure of the proposed EAC with a two-layer convolutional
backbone.

The structure of the proposed EAC model is illustrated in Figure 4.1, where

the input vibration signals enter from the bottom and the output evidence and

pignistic counts are displayed on the top. The convolution backbone, circled

in dash lines, follows the structure of a standard LeNet-like CNN [140]. It

has two convolutional layers (Conv1 and Conv2) and two fully connected (FC)

layers to extract useful features from the input signals. The logit layer and the

pignistic layer are both fully connected layers and they are designed to convert

the features into evidence and pignistic counts (see Section 4.3.2), respectively.

The letter ‘A’ attached on the right-hand side of the logit and pignistic layers

indicates that these layers have an additional neuron to host the abstention

option for unknown classes. Note that the steps to generate auxiliary signals
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and pignistic counts are only used in model training but omitted during model

inference.

Details about the perturbation operations for generating auxiliary signals

will be presented in Section 4.3.3. The discussion of hyperparameters, includ-

ing the kernel sizes of the convolutional layers, FC layer sizes, dropout rate,

and a comparison with other methods, will be covered in Section 4.3.4.

4.3.2 EDL and L1 regularization

In the context of EDL, the neural network outputs (logits) serve to represent

the weights of evidence that a sample carries for various categories [217]. These

evidence values are subsequently employed as density parameters to create a

Dirichlet distribution across categorical probabilities. In other words, rather

than conventional models providing single-point estimates for the probability

of each class, EDL offers a distribution encompassing a range of potential

outcomes.

Following ref. [217], given K possible categories, the weight of evidence for

the ith category is calculated as ci = ezi , where zi is the ith logit. A Dirichlet

distribution D (p|α) with parameters α = [c1 + 1, c2 + 2, . . . , cK + 1] will be

the output of the EDL model. The probability of the input sample belonging to

category i can be estimated as Eqn. 4.2 and the uncertainty of an EDL model

can be quantified using the entropy of the predicted categorical probabilities

as shown in Eqn. 4.3.

pi =
αi∑K
j=1 αj

for i = 1, . . . , K (4.2)

H [y|p] = −
K∑
i=1

pi log pi (4.3)

To train EDL models, ref. [217] proposed to minimize the Mean Square

Error (MSE) writes Eqn. 4.4 and the KL divergence writes Eqn. 4.5.
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LMSE =
K∑
i=1

(yi − p̂i)
2 +

p̂i(1− p̂i)

1 +
∑K

j=0 αj

(4.4)

LKL = KL{D(p|α̃) ||D(p|[1, 1, . . . , 1])} (4.5)

where p̂i is the estimated probability on class i, yi is the ith element of the

one-hot label vector y, and α̃ = y + (1− y)⊙ α only include evidence for the

wrong classes. Ref. [225] later introduced an additional pignistic risk term:

Lrisk =
K∑
i=1

Ryi(ci + di) (4.6)

where R is a K ×K risk matrix with element Ryi indicating the risk of mis-

classifying a sample of class y to the class i, and d = K ∗ softmax (s) with s

standing for the output of an additional pignistic layer in parallel to the logit

layer. By default, all diagonal elements Rii are 0 and others are 1.

Ideally, the evidence produced by the logit layer should be sparse and con-

centrated in one or a few categories. In the original EDL [225], although the

KL-divergence term suppresses evidence on the wrong classes and forces evi-

dence to be concentrated on the correct class, it may shrink the total evidence

values. This may increase the overall loss and make the entropy-based UQ less

sensitive. To address this, we propose to add L1 regularization (see Eqn. 4.7)

to the logit layer, facilitating the achievement of such sparsity.

L1 =
∑
|θlogit| (4.7)

Unlike conventional L1 regularizations that are applied throughout the en-

tire network, we specifically penalize the weights for the logit layer, denoted

as θlogit. The pignistic layer is free from the constraints of both KL-divergence

and L1 penalty to better focus on the misclassification risks. With L1 regu-

larization and KL divergence included in the loss function, both concentration
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and sparsity of evidence can be enforced. Better and more reliable estimates

for evidence and uncertainty values can then be achieved. The final loss func-

tional of our modified EDL becomes:

Ltotal = LMSE + λtLKL + βLrisk + γL1 (4.8)

where λt, β, γ are coefficients for the three regularization terms respectively.

λt = min
(
1, t

10

)
is an annealing coefficient based on the number of epochs

trained t, while β and γ are preset.

It is important to select proper β and γ to ensure that the pignistic risk term

and the L1 regularization term have similar or smaller magnitudes compared

with the MSE term. Otherwise, they will over-power the other terms and

lead to a high classification error. The KL divergence term will automatically

approach zero with its coefficient λt decreases after each training epoch.

4.3.3 AC and auxiliary samples

Integrating the concept of AC into EDL provides a dual-screening mechanism

to recognize OOD samples. In the case that an OOD sample was falsely

reported with low uncertainty, an AC can still recognize and separate it from

other ‘known’ classes. More importantly, gathering and allocating evidence

to the abstention class allows the model to learn more effective fault-related

features. Note that the pignistic layer is also equipped with the abstention

option, enabling the fine-tuning of the trade-off between abstaining and the

possibility of misclassification.

To train ACs effectively, it is crucial to design an auxiliary dataset that

accurately represents the abstention class in contrast to the known classes.

Due to the complex mechanical structure and varying working conditions of

rotation machines, their vibration signals are often noisy, and non-stationary

[30]. It takes expert knowledge and advanced signal processing to analyze and
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simulate signals with a certain fault condition. However, in OSFD settings,

we can utilize both the physical characteristics and the ‘known’ training data.

Training samples collected under a healthy condition can be used as a back-

ground to inject fault-indicative signal components, while samples of faulty

classes can be used to provide fault-related information. In this chapter, given

a training dataset with signals of the healthy class and two or more faulty

classes, we propose two input-level operations for creating auxiliary signals:

1. Superposition of Signals (SOS): The SOS operation, as demonstrated in

Figure 4.2a, involves combining two signals from different known fault

classes to create a new auxiliary signal. This combination is performed

via element-wise addition (denoted as ⊕ in Figure 4.2). This approach is

inspired by the image mix-up method [224], which generates augmented

samples lying between two classes. By applying SOS, we create a pool

of signals that fall in between two fault classes, and these are labeled as

the abstention class.

2. Noise Injection (NIN): The NIN operation is designed to produce aux-

iliary signals that are distinct from all known classes. It includes the

following steps:

• Generate a random series where each element is drawn from a uni-

form distribution in the range [0, 1].

• Set the elements of the generated random series with values between

0 and 0.9 to 0.

• Add the normalized random series to a healthy sample element-

wise.

Figure 4.2b illustrates the NIN operation, providing an example of a noise

signal generated through the three aforementioned steps, along with its im-
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(b) NIN operation.

Figure 4.2: Demonstration of the two proposed auxiliary signal generation
operations.

pact on the original signal. The idea of injecting impulse into healthy signals

is inspired by other simulation-driven methods including ref. [201]. The in-

jected noise is characterized by random spikes, effectively emulating the im-

pulsive patterns typically found in vibration signals caused by faults [226].

This approach enables the efficient generation of auxiliary samples that ac-

curately represent the ‘not healthy’ state without the need for complex and

time-consuming simulation models.

All the samples in the training dataset will be used to generate auxiliary

training samples and a fixed number of auxiliary samples will be randomly

selected for training. For simplicity, in this chapter, the number of samples

from each ‘known’ class and auxiliary samples used are the same. The auxiliary

dataset will be half SOS samples and half NIN samples. Before merging, each

type of auxiliary sample is normalized to have a zero mean and a unit standard

deviation. This normalization ensures consistency and comparability in the

dataset.

Although simple to operate, the SOS and NIN operations can generate

effective auxiliary training samples, equipping ACs with the ability to make
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informed decisions when confronted with unknown fault classes.

4.3.4 Compared methods and hyperparameters

The proposed EAC method is primarily based on studies of EDL and AC,

and these should be compared to demonstrate the effectiveness of our pro-

posed innovations. To start, a baseline using a standard CNN with a softmax

layer is established. Then, the EDL algorithm described in Section 4.3.2 is

implemented following ref. [225]. An EDL variant with L1 regularization

on the logit layer, denoted as EDL-L1, is also included in the comparison.

In addition, to demonstrate the effectiveness of our designed auxiliary data,

these data were incorporated into the training of the three methods mentioned

above. The resulting augmented methods are denoted as CNN+, EDL+, and

EAC. Lastly, the effectiveness of our designed auxiliary data is examined in

comparison to real data from another dataset, as presented in ref. [205]. By

using healthy signals from another machine as the auxiliaries, EAC is mutated

into EAC-R, completing the 7-way comparison. All the models are extended

with the abstention option to suit OSFD tasks, and the entropy of output

probabilities serves as their UQ metric.

To ensure that the compared methods are on equal footing, we employ

the same CNN backbone described earlier in Section 5.3 for all methods. The

choice of a small network for the backbone is intentional to prevent overfitting

and ensure that it does not overpower the studied learning algorithms. The

Adam [44] algorithm is used to optimize the learnable parameters in the neural

network. The shared hyperparameters for the backbone structure and the

optimizer are detailed in Table 4.1. For the coefficients of the loss terms in

Eqn. 4.8, we use β = 0.001 and γ = 0.0001 based on our trial and error with

the later-presented experiment data to make sure that all the loss terms in

Eqn. 4.8 are at a similar magnitude.
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Table 4.1: Selected hyperparameters for all the compared methods.

Hyperparameter names Value
Length of input signals 2048
Conv1 & Conv2 kernel size 25
No. channels (Conv1) 64
No. channels (Conv2) 128
Max pooling kernel size 4
No. output neurons (FC1) 128
No. output neurons (FC1) 16
Dropout rate 0.5
Learning rate 0.0001
Batch size 50
No. training epochs 100

In all the methods, a threshold on their UQ metric (entropy values calcu-

lated using Eqn. 4.3) must be determined. Samples with entropy values lower

than this threshold will be classified into known classes, while those exceeding

the threshold will be abstained. Typically, this threshold is determined based

on the statistical quantiles of an entire testing set, as in ref. [215]. However,

for practicality in this chapter, the authors opt to avoid using additional test-

ing samples and instead set the threshold at 80% of the maximum possible

entropy, which is ln(K + 1). For ease of interpretation, entropy values are

normalized by dividing them by ln(K + 1), ensuring that uncertainty values

fall within the range [0,1], and the threshold becomes 0.8.

4.4 Experiment

In this study, vibration data collected from two distinct test rigs are utilized to

validate the proposed methods. Various fault diagnostic tasks are examined,

encompassing the challenges of diagnosing both gear and bearing faults, recog-

nizing both known and unknown fault classes, and conducting diagnosis under

varying machine rotating speeds and load levels. The implementation of all

methods is carried out using PyTorch and executed on a computer equipped
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with an AMD Ryzen 7 5700G CPU and an Nvidia RTX 3060 GPU.

4.4.1 Datasets and tasks

The THU-EPE dataset, collected in 2019 at the Department of Energy and

Power Engineering, Tsinghua University [118], comprises five distinct fault

classes: healthy (H1), sun gear tooth crack (SC), sun gear tooth broken (SB),

planet gear tooth crack (PC), and sun gear tooth crack (PB). Each class con-

sists of 2000 training samples and 500 testing samples. On the other hand,

the THU-ME dataset, collected in 2021 at the Department of Mechanical En-

gineering, Tsinghua University [227], focuses on bearing faults in a planetary

gearbox. It includes IB-IRF, IB-ORF, PB-IRF, and PB-ORF, where IB and

PB represent input shaft and planet bearing, and ORF and IRF stand for

outer and inner race faults, respectively. The healthy class in the THU-ME

dataset is denoted as H2. In this dataset, each class comprises 1764 train-

ing samples and 588 testing samples. For both datasets, vibration signals are

measured using accelerometers mounted vertically on the top of the gearbox

cases. Each sample consists of 2048 sample points, and the sampling rate is

20,000 Hz.

Table 4.2: Description of tested tasks.

Task Training classes Unseen class Speed/Load (RPM/Nm)
Training Testing

T1 H1, SB, PC, PB SC 1500/0 1500/0
T2 H1, SC, PC, PB SB
T3 H1, SC, SB, PB PC
T4 H1, SC, SB, PC PB
T5 H2, IB-ORF, PB-IRF, PB-ORF IB-IRF 1200/-0.61 1200/-0.61
T6 H2, IB-IRF, PB-IRF, PB-ORF IB-ORF
T7 H2, IB-IRF, IB-ORF, PB-ORF PB-IRF
T8 H2, IB-IRF, IB-ORF, PB-IRF PB-ORF
T9 H1, SB, PC, PB SC 1500/0 1200/0
T10 H2, IB-IRF, IB-ORF, PB-IRF PB-ORF 1200/-0.61 1200/-1.65

The study encompasses a total of 10 testing tasks, each outlined in Table
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Table 4.3: Test classification accuracies on each task by compared methods.

Task CNN CNN+ EDL EDL+ EDL-L1 EAC-R EAC
T1 0.8516 0.8084 0.8856 0.9079 0.8535 0.8541 0.9402
T2 0.9206 0.9208 0.8949 0.9548 0.8935 0.8297 0.9241
T3 0.8400 0.9138 0.6223 0.8982 0.6863 0.7548 0.9656
T4 0.8570 0.9012 0.7363 0.8967 0.7918 0.8488 0.8942
T5 0.8085 0.8083 0.7349 0.8801 0.7651 0.8862 0.8874
T6 0.5764 0.5143 0.4731 0.4848 0.4609 0.4752 0.5317
T7 0.8803 0.9181 0.7803 0.8717 0.8171 0.8298 0.9511
T8 0.8041 0.7990 0.8396 0.8799 0.8342 0.8343 0.8848
T9 0.7463 0.7994 0.7380 0.7904 0.7234 0.7833 0.8743
T10 0.8091 0.7979 0.7946 0.8064 0.7816 0.7994 0.8325
Ave. 0.8094 0.8181 0.7500 0.8371 0.7607 0.7896 0.8686

4.2. In tasks T1 to T4, the four fault classes in the THU-EPE dataset are

alternately designated as the unseen class during testing. Similarly, in T5 to

T8, this approach is employed using the THU-ME dataset. For T1 to T8, both

the training and testing data are acquired under identical working conditions.

The remaining two tasks introduce changes in working conditions between the

training and testing data. T9 involves adaptations in two different rotating

speeds, while T10 transitions from one load level to another. In the case of

the EAC-R method, auxiliary data for T1-T4 and T9 are derived from class

H2, collected under 1500 RPM and 0 load from the load motor. On the other

hand, auxiliary data for T5-T8 and T10 are obtained from class H1, collected

under 1200 RPM and 0 load.

4.4.2 Results and analysis

Classification accuracies for different methods are presented in Table 4.3, with

each column representing a different method, and each row corresponding to

a tested task. The reported accuracy values for T1 to T10 are the averages of

10 repeated runs, while the ‘Ave.’ row provides the average accuracy across

all tasks.

In Table 4.3, it is shown that the average accuracy of EAC surpasses the
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baseline CNN by 5.92% and the state-of-the-art EDL model by 11.86%. No-

tably, the introduction of L1 regularization on the logit layer in the EDL-L1

model results in an improvement of 1.08% when compared to the EDL model.

Furthermore, when comparing EDL+ and EAC, the addition of L1 regular-

ization enhances the accuracy by 3.15%, highlighting the effectiveness of L1

regularization.

The advantages of utilizing designed auxiliary data are also evident in Ta-

ble 4.3, leading to improvements of 0.87%, 8.71%, and 10.79% in the case of

the CNN, EDL, and EDL-L1 models, respectively. EAC-R, which employs real

signals from another dataset, achieves a 2.89% higher accuracy than EDL-L1.

Nonetheless, EAC, which utilizes synthetic signals, consistently outperforms

EAC-R across all tasks. EAC excels in accuracy in 7 out of 10 tested tasks, in-

cluding T9 and T10, where the working conditions differ between training and

testing data. Notably, in T2 and T4, although EAC does not report the best

accuracy, the top-performing methods both utilized our designed auxiliary sig-

nals. T6 stands as an anomaly where none of the tested methods achieve a

classification accuracy of 60%. Overall, the proposed auxiliary training data al-

lows our model to outperform the original EDL model [225] and model trained

using other datasets as auxiliary as reported in ref. [205].

To illustrate the functionality of the UQ metric and threshold, Figure 4.3

displays the classification outcomes and uncertainty values for task T7 as re-

ported by the proposed EAC methods. In Figure 4.3a, a strip plot is used

to represent all test samples, with their true fault classes on the horizontal

axis and uncertainty values on the vertical axis. Samples that were classified

correctly are denoted by dots, while those with false predictions are marked

with ‘x’. The plot reveals that samples from the training classes exhibit sig-

nificantly lower uncertainty values compared to the unknown class PB-IRF.

By applying the uncertainty threshold of 0.8, samples with higher uncertainty
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values can be accurately identified as belonging to the unseen fault class. Fig-

ure 4.4 presents the results on T7 by EAC without applying the threshold.

When comparing the two confusion matrices in Figure 4.3b and Figure 4.4b,

it becomes evident that applying the threshold leads to a 37.92% increase

in the number of correctly classified PB-IRF samples, resulting in an overall

classification accuracy improvement of 7.55%.
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(a) Strip plot.

Table 3 – Test classification accuracies on each task by compared methods

Methods T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Average

CNN 0.8516 0.9206 0.8400 0.8570 0.8085 0.5764 0.8803 0.8041 0.7463 0.8091 0.8094

CNN+ 0.8084 0.9208 0.9138 0.9012 0.8083 0.5143 0.9181 0.7990 0.7994 0.7979 0.8181

EDL [39] 0.8856 0.8949 0.6223 0.7363 0.7349 0.4731 0.7803 0.8396 0.7380 0.7946 0.7500

EDL+ 0.9079 0.9548 0.8982 0.8967 0.8801 0.4848 0.8717 0.8799 0.7904 0.8064 0.8371

EDL-L1 0.8535 0.8935 0.6863 0.7918 0.7651 0.4609 0.8171 0.8342 0.7234 0.7816 0.7607

EAC-R [10] 0.8541 0.8297 0.7548 0.8488 0.8862 0.4752 0.8298 0.8343 0.7833 0.7994 0.7896

EAC 0.9402 0.9241 0.9656 0.8942 0.8874 0.5317 0.9511 0.8848 0.8743 0.8325 0.8686

To illustrate the functionality of the UQ metric and threshold, Figure 3 displays the classification
outcomes and uncertainty values for task T7 as reported by the proposed EAC methods. In Figure 3(a), a
strip plot is used to represent all test samples, with their true fault classes on the horizontal axis and
uncertainty values on the vertical axis. Samples that were classified correctly are denoted by dots, while
those with false predictions are marked with ‘x’. The plot reveals that samples from the training classes
exhibit significantly lower uncertainty values compared to the unknown class PB-IRF. By applying the
uncertainty threshold of 0.8, samples with higher uncertainty values can be accurately identified as
belonging to the unseen fault class.

T
ru

e 
la

be
l 

H2 1 0 0 0 0 

IB- 
IRF 

0 1 0 0 0 

IB- 
ORF 

0 0 0.9983 0 0.0017 

PB-
ORF 

0 0 0 1 0 

PB- 
IRF 

0.2177 0 0 0 0.7823 

H2 
IB- 
IRF 

IB- 
ORF 

PB-
ORF 

PB- 
IRF 

Predicted 

(a). Strip plot (b). Confusion matrix (accuracy=0.9561)

Figure 3 – fault classification and uncertainty quantification for T7 by EAC

Figure 4 presents the results without applying the threshold. When comparing the two confusion matrices
in Figure 3(b) and Figure 4(b), it becomes evident that applying the threshold leads to a 37.92% increase
in the number of correctly classified PB-IRF samples, resulting in an overall classification accuracy
improvement of 7.55%.

(b) Confusion matrix.

Figure 4.3: fault classification and uncertainty quantification for T7 by EAC.
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Figure 4 – fault classification and uncertainty quantification for T7 by EAC without thresholding

To highlight the effectiveness of our proposed L1 regularization, Figure 5 displays the strip plot and
confusion matrix for task T7 as obtained by the EDL+ model. Comparing Figure 5(a) to Figure 3(a), it
becomes evident that without L1 regularization, samples from the training classes tend to exhibit higher
uncertainty values, making it more challenging to distinguish them from the unseen PB-IRF class based
on uncertainty. In other words, the EAC model is capable of collecting correct and well-concentrated
evidence from samples of the training classes, while the EDL+ model may produce non-sparse evidence
distributed across different classes. As depicted in Figure 5(b), even though 98.13% of the PB-IRF
samples are correctly recognized by the EDL+ model, the presence of false classifications within the
training classes reduces the overall accuracy to 88.95%, which is 6.66% lower than the accuracy achieved
with L1 regularization.
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Figure 5 – fault classification and uncertainty quantification for T7 by EDL+

The EAC method's abstention classifier itself contributes significantly to recognizing unseen fault classes.
As demonstrated in Figure 6(a), EAC can already identify 74.75% of the testing samples from the unseen
class PC without applying the uncertainty threshold. With the threshold in place, only 4 misclassifications
are observed out of the 400 test samples from the unseen class, as shown in Figure 6(b).
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Figure 4.4: fault classification and uncertainty quantification for T7 by EAC
without thresholding.

To highlight the effectiveness of our proposed L1 regularization, Figure 4.5

displays the strip plot and confusion matrix for task T7 as obtained by the

EDL+ model. As shown in Figure 4.5a, the EDL+ model [225] may assign
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Figure 4 – fault classification and uncertainty quantification for T7 by EAC without thresholding

To highlight the effectiveness of our proposed L1 regularization, Figure 5 displays the strip plot and
confusion matrix for task T7 as obtained by the EDL+ model. Comparing Figure 5(a) to Figure 3(a), it
becomes evident that without L1 regularization, samples from the training classes tend to exhibit higher
uncertainty values, making it more challenging to distinguish them from the unseen PB-IRF class based
on uncertainty. In other words, the EAC model is capable of collecting correct and well-concentrated
evidence from samples of the training classes, while the EDL+ model may produce non-sparse evidence
distributed across different classes. As depicted in Figure 5(b), even though 98.13% of the PB-IRF
samples are correctly recognized by the EDL+ model, the presence of false classifications within the
training classes reduces the overall accuracy to 88.95%, which is 6.66% lower than the accuracy achieved
with L1 regularization.
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Figure 5 – fault classification and uncertainty quantification for T7 by EDL+

The EAC method's abstention classifier itself contributes significantly to recognizing unseen fault classes.
As demonstrated in Figure 6(a), EAC can already identify 74.75% of the testing samples from the unseen
class PC without applying the uncertainty threshold. With the threshold in place, only 4 misclassifications
are observed out of the 400 test samples from the unseen class, as shown in Figure 6(b).
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Figure 4.5: fault classification and uncertainty quantification for T7 by EDL+.

high uncertainty values for samples from both known and unknown training

classes. This makes it hard to recognize the unseen PB-IRF class based on

uncertainty. On the other hand, as shown in Figure 4.3a, the proposed EAC

model is capable of generating well-concentrated and low uncertainties for

the known classes, while assigning higher uncertainties for the unseen class

PB-IRF. As depicted in Figure 4.5b, even though the EDL+ model correctly

recognizes 98.13% of the PB-IRF samples, the presence of false classifications

within the training classes reduces the overall accuracy to 88.95%, which is

6.66% lower than the accuracy achieved with L1 regularization.

The EAC method’s abstention classifier itself contributes significantly to

recognizing unseen fault classes. As demonstrated in Figure 4.6a, EAC can

already identify 74.75% of the testing samples from the unseen class PC with-

out applying the uncertainty threshold. With the threshold in place, only 4

misclassifications are observed out of the 400 test samples from the unseen

class, as shown in Figure 4.6b.

To analyze the mechanism behind the successful recognition of the unseen

class states, t-SNE visualization [228] of features formed by CNN, EDL-L1,

and EAC are compared in Figure 4.7. Each t-SNE plot also displays decision

boundaries generated using the k-NN algorithm [47]. The features used for
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(b) Uncertainty threshold at 0.8.

Figure 4.6: visualizations of uncertainty values and thresholding for test sam-
ples in T3.

visualization are based on the output of the convolutional backbone (as seen

in Figure 4.1).

Upon examining the four t-SNE plots, a few key observations can be made:

1. Comparing CNN in Figure 4.7a to the other three methods in Figures

4.7b, 4.7c, and 4.7d, the latter three plots reveal clearer separations

between the seen class SC (‘x’ markers) and the unseen class PC (‘+’

markers). This indicates that better fault-discriminative features are

formed using evidential learning, and these features are also applicable

to the unseen fault type PC.

2. The inclusion of designed auxiliary samples enables EAC to create more

sophisticated decision boundaries in Figure 4.7d, effectively grouping

many of the PC samples with them. This is how the EAC model correctly

recognizes these samples from the unseen class.

3. In Figure 4.7c, the features and decision boundaries are formed using

class H2 as an auxiliary. However, the H2 samples and the PC samples

are well separated, making it impossible to recognize them as one OOD

class together.
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Figure 4.7: t-SNE plots of features formed in T3 by CNN, EDL-L1, and EAC
(best view in color).

These observations highlight the advantages of our devised auxiliary train-

ing. It enables the development of better fault-discriminative features and

decision boundaries through the use of auxiliary samples, which, in turn, aids

in the effective recognition of unseen fault classes.

Setting a proper uncertainty threshold is crucial for the accuracy of the

EAC models. Figure 4.8 shows how the diagnostic accuracies for tasks T3 and

T7 change given different pre-set uncertainty thresholds. As shown by the

two call-out boxes, the highest test accuracies are obtained using thresholds

of 0.58 and 0.86, achieving accuracies of 99.18% and 98.7% respectively for

T3 and T7. That is, different datasets and tasks may have different optimal
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Figure 4.8: test accuracy vs. uncertainty threshold by EAC for T3 and T7.

thresholds. For T7, as shown in Figure 4.3a, a lower threshold may help to

recognize more samples of unseen classes. However, successful classifications of

the samples from the known classes might be wrongly overturned. For T3, as

shown in Figure 4.6b, a higher threshold may induce fewer misclassifications

for the PB, SC, and SB classes. If testing samples from different classes are

available, good thresholds can be selected using existing methods such as ref.

[215]. With a threshold of 0.8 set in this chapter, EAC achieves accuracies

of 98.5% and 95.61% for T3 (Figure 4.6b) and T7 (Figure 4.3a), respectively.

Although not optimal, these test accuracies are higher than those not using

thresholds by 3.6% and 7.55%.

4.5 Conclusion

In this study, we present a novel OSFD method named EAC for diagnosing

bearing and gear faults. Our approach, including its innovations, has proven

effective in recognizing previously unseen fault classes and accurately quanti-

fying classification uncertainties. The devised auxiliary training samples are

readily obtainable and significantly contribute to enabling deep learning mod-

els to establish fault-discriminative features and efficient decision boundaries
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for OSFD tasks. Additionally, the proposed L1 regularization enhances the

model’s capability to estimate classification uncertainty. The collaborative in-

tegration of AC and uncertainty thresholding demonstrates its effectiveness in

achieving accurate OSFD results.

In future works, the applicability of EAC can be extended to other types of

sensor data beyond vibration signals, such as acoustic and eddy current signals.

More sophisticated auxiliary signals can be designed to aid the training of EAC

models. Better approaches to selecting uncertainty thresholds are needed to

ensure the effectiveness of UQ-based OSFD methods.
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Chapter 5

Continual learning for fault
diagnosis considering variable
working conditions

5.1 Introduction

Machine learning techniques, especially Neural Networks (NNs), have found

extensive application in vibration-based machine fault detection and isolation

(FDI) [34]. With a short segment of measured vibration signal, a well-trained

NN can identify machine faults such as gear tooth crack [50] and bearing

defects [229], [230] in a matter of milliseconds. This automation can reduce

the need for human labor in FDI, enabling condition-based maintenance [8]

on a larger scale.

When developing NNs for FDI problems, it is critical to consider both the

training data and the training method. However, existing training methods

are typically developed with two assumptions that may not hold in real-world

FDI applications [54], [115]: (1) they assume that training data for all classes

of interest are available, and (2) they assume that training and testing data

are drawn from the same distribution. In real-world scenarios, machines such

as gearboxes may develop different types of faults and go through variable

working conditions, making these assumptions unreliable.
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To overcome these challenges, Continual Learning (CL) [58], [231] can en-

able us to build FDI models with a few classes and data distributions and

then continuously improve the model with more data. This approach allows

us to incorporate new fault classes and adapt to changes in working conditions,

making it a more effective solution for real-world FDI applications.

For assumption (1), new classes of training data should be considered once

an unseen fault type occurs. Typically, only one or a few types of faults can

be detected within one maintenance cycle [232]. In a series of maintenance

cycles, different types of faults may occur. This kind of CL setting is termed

class-incremental learning (Class-IL) [233]. NNs need to adapt to new classes

and remember all the old classes. A trivial solution is to use both old and

new data to re-train a model from scratch for every newly discovered fault

type. However, in many FDI applications, this is not possible due to privacy,

legal, and technical reasons [126], [234]. Re-training is also computation and

storage intensive which make it not suitable for real-time FDI applications

[235]. A more viable and efficient approach is to first train a single model

using currently available data (pre-train) and then fine-tune [236] this model

when a new class of data is collected. Fine-tuning a pre-trained model can

provide two advantages: (1) it is faster than training from scratch, and (2) less

storage of training data is needed. Existing works including [237]–[239] have

studied Class-IL for FDI applications. However, these works did not discuss

the impact of variable working conditions.

For assumption (2), shifts of data distributions should be considered in

most FDI applications. Essentially, the distributions of testing data will be

different than that of the training data due to working conditions changes, in-

cluding rotating speed change [86], [240] and load level change [15]. In CL, this

is called a domain-incremental learning (Domain-IL) setting [233]. Traditional

machine learning based FDI methods, for instance, ref. [82] did not consider
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distribution differences between the training and the testing data, thus may

perform poorly under variable working conditions. Specialized signal process-

ing methods such as [241], [242] may be applied to reduce the impacts of

working condition changes, but they usually require calibrations for different

patterns of working condition changes. To avoid such expert-dependent and

laborious calibrations, domain adaptation (DA) methods [61] may be devel-

oped to train NNs that are robust to working condition changes. By treating

different working conditions as different distribution domains and applying DA

methods, NNs can adapt to different rotating speeds [115], different load levels

[10], or even different machines [55]. However, current works on DA-aided FDI

methods did not consider the Class-IL problem discussed earlier. They assume

all the fault types are readily available for training and no new fault types will

show up.

To relax the two assumptions mentioned earlier and address the challenges

posed by both the Class-IL and Domain-IL problems in many FDI applications,

it is important to consider the Task-IL setting [233] in CL. In this work, using

the Task-IL approach, we build an NN-based FDI system that can deal with

both fault class increments and working condition changes. The key challenge

is to simultaneously maintain the model’s knowledge obtained from old data

while being able to quickly adapt to new data and new tasks. This challenge

is known as the stability-plasticity dilemma for both artificial and biological

NNs [59]. In CL, stability enables the model to remember what has been

learned while plasticity allows the model to learn new tasks. In existing FDI

research works, using the plasticity of NNs, Xing et al. [41] showed that CL

can enable the diagnosis of a new type of bearing fault using only a few new

training samples. Zhang and Gao [234] developed a CL algorithm that can

quickly recognize new faults in a wind turbine system. However, they did not

investigate the stability of NNs or the Catastrophic Forgetting (CF) problem
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[60]. That is, NNs may perform poorly on historical fault types upon training

on new ones. Maschler et al. [125] studied the CF problem for remaining

useful life prediction. However, only a single type of fault (wear) is considered

in this work. Li et al. [54] proposed a DCTL-DWA framework to address

the Class-IL and domain and domain adaptation problem. Their approach is

to solve the Class-IL problem given a single fixed source and a fixed target

distribution to adapt. In real applications, however, the changes in working

conditions may occur multiple times.

This chapter presents a novel CL-based FDI method that incorporates DA

within the CL paradigm to tackle both the problems of fault class incrementa-

tion (Task-IL) and changes in machine working (Domain-IL). A Task-Balanced

Sampling (TBS) method is designed to help CL models to better remember

diagnostic tasks with different fault classes. A multi-way DA is introduced to

adapt different working conditions among tasks using only healthy data. We

name the proposed method TBS-DA to highlight our novelties. The method is

suitable for use with various types of machines, and we test it on experiment

datasets for both gear faults and bearing faults. We examine changes in fault

location, fault type, rotating speed, and load level to evaluate the effective-

ness of the method. The contributions of this chapter can be summarized as

follows:

1. We propose a novel CL-based FDI method named TBS-DA that ad-

dresses both fault class incrementation and changes in machine working

conditions.

2. We introduce a task-balanced replay mechanism for training data to aid

the model in remembering all diagnostic tasks.

3. We apply multi-way DA to healthy data from different tasks to improve

diagnostic accuracy under variable working conditions.
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The remaining parts of this chapter are structured as: Section 5.2 reviews

existing CL methods; Section 5.3 describes baseline and proposed methods;

Sections 5.4 and 5.5 present two experimental case studies; and Section 5.6

concludes this chapter.

5.2 Review on CL methods

CL is also referred to as Lifelong Learning in the literature [58]. In CL, a

sequence of learning tasks is deployed for the model to learn. The goodness

of the model will be judged based on its performance on all the learned tasks.

This is aligned with most FDI applications - different mechanical faults are

likely to come in a sequential manner and the order of learning must go with

the order of fault occurrences.

There are mainly three categories of CL methods [231], including regularization-

based, parameter isolation, and replay methods. Regularization-based meth-

ods [243], [244] use penalty functions to constrain the change of models’ param-

eters when learning new tasks. Parameter [245], [246] isolation is to allocate

parts of the NN or subsets of the model parameters to specific tasks. These

two types of methods enforce a strict ban on accessing training data of prior

tasks. However, they may require storage for prior or task-specific model pa-

rameters and extra computation to get parameter importance. In this chapter,

we focus on replay methods that utilize training data from prior tasks. They

are simple, efficient, and can be used together with the other two types of

methods.

Considering possible storage constraints, replay methods either store only a

subset of representative samples for each task in a memory buffer (rehearsal)

[247] or maintain generative models to produce pseudo samples that mimic

past data (pseudo-rehearsal) [248]. Those stored or generated representative

samples are often termed as exemplars in the literature. Rehearsal methods
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are typically more straightforward compared to pseudo-rehearsal. Maintain-

ing generative models for pseudo-rehearsal methods in a continual fashion can

be cumbersome [249]. Rehearsal methods that directly replay stored data or

representations of data may be more efficient. Experience Replay (ER) [247],

[250] is the plainest version of all rehearsal methods, which adds a batch of

stored data of past tasks to each batch of new data from the current task. In

this way, the model is jointly trained by both the past tasks and the current

tasks to have good global performance. Since the stored past data are con-

strained to be a small size, it is crucial to tackle overfitting problems in replay

methods. To address overfitting, ref. [251] proposed to select samples from the

memory buffer based on gradient, and ref. [252] is based on samples’ difficulty,

as opposed to random sampling in refs. [247]. Besides, strategies on how to

choose samples to store are also studied [253]. Last but not least, efficient

utilization of saved samples is key to successful CL. Refs. [254] use gradi-

ents of stored samples to constraint the learning of the model and avoid CF.

Ref. [255] classifies samples into their nearest-mean-of-exemplars so that the

classifier is robust against changes in the feature representation. These above

replay methods are all developed for image recognition, text classification, and

reinforcement learning.

In this study, we focus on replay methods and propose to enhance tra-

ditional ER methods to improve fault classification performance. Note that

replay methods can be used together with the other two types of methods.

5.3 Methodology

5.3.1 Notations

To formalize the problems and the CL settings in this study, we adopt notations

from ref. [61]. A domain D = {X , PX} in which X is a feature space and PX
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is a marginal probability distribution of dataset X = {x1, x2, . . . , xn} with

X ∈ X . A task T = {D,Y , f (·)}whereY is a label space and f (·) is an

objective predictive function. This function f (·) : X → Y is not observed but

to be learned from training data triplets (xi, yi, ti), where xi ∈ X, yi ∈ Y , and

ti denotes which task does this triplet belongs to.

In Task-IL, the goal is to learn a sequence of tasks T1, T2, . . . , TL throughout

Nt learning phases, and a task Tl requires a predictive function that maps

its unique Xl in domain t to Yl. We denote the learned predictive function

after training phase l as fl and its corresponding parameters as θl. Given

a sequence of datasets X1, X2, . . . , XNt , which are respectively drawn from

domains D1, D2, . . . , DNt , fl should only be trained using datasets from X1

to Xl, but not data from Xl+1 to XNt . Furthermore, during the lth training

phase, access to previous datasets (from X1 to Xl−1) is very limited in CL

settings.

For FDI, a task Tl is to learn a fl that can identify fault classes in label

space Yl under a certain working condition characterized by a domain Dl. For

this domain Dl, a training dataset Xl = {x1, x2, . . . , xnl
} which contains nl

vibration signal segments will be collected from the machine of interest. With

fault class label yi and task ID ti corresponding to each data sample xi, models

can learn an objective f under the CL paradigm.

5.3.2 Neural network structure

In this work, one dimensional Convolutional Neural Networks (1DCNNs) [144]

will be used across all different compared CL methods. CNN models are used

in this chapter considering their strong feature learning abilities. They are

suitable for signal processing and can form meaningful signal filters to extract

fault discriminative features for fault diagnosis purposes as demonstrated in

refs. [16], [144], [238]. For the structure of the 1DCNN, we refer to the very first
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Figure 5.1: General structure of the used 1DCNN.

designed CNN [140] and use 2 convolutional (Conv) layers, 2 (max) pooling

layers, and 3 fully connected (FC) layers. Such a simple structure can help

us better focus on the learning algorithms. The general structure of the used

1DCNN is shown in Figure 5.1. Standard Rectified Linear Units (ReLUs) [194]

are appended to each pooling layer, FC1, and FC2 to induce non-linearity in

the network. The output from the FC3 layer will either be used to calculate

Cross Entropy (CE) Loss [256] in the training stage or to generate predictions

in the testing stage. Note that the input data will flow from the left-hand side

of Figure 5.1 to the right-hand side.

There are several structural parameters to select in 1DCNN. For a Conv

layer, a kernel size and the number of input and output channels are needed.

For a max pooling layer, its kernel size and stride should be set reasonably to

reduce the number of features by a certain ratio. For an FC layer, the numbers

of input and output are required. Note that the number of input channels of

Conv2 will be equal to the number of output channels of Conv1, and the input

of an FC layer should be equal to the output of its previous layer. The number

of input channels is determined by the number of input signal channels and the

output of FC3 is determined by the total number of fault classes of interest.

Parameter selection for this chapter will be presented in Section 5.4.2.
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5.3.3 Baseline methods

Solving classification problems in machine learning is to train a model that

can classify samples x to one class y out of others. This is usually done via

minimizing a loss term:

Loss =
1

n

∑
x∈X

L(y, fθ(x)) (5.1)

where n is the number of samples in dataset X, L (·) stands for a loss function

such as the Cross-Entropy Loss [256], fθ (·) is the predictive function for the

model to learn, and θ stands for the parameters of f .

The plainest CL approach is to train the model to fine-tune the model for

each task. Given a sequence of Nt tasks and datasets X1, X2, . . . , XNt , fine-

tune is to minimize Eqn. 5.1 for Nt times for each task. When fine-tuning for

the lth task, only the new dataset Xl will be used. This is prone to cause CF

of the previous tasks and the diagnostic accuracy of some learned fault classes

may become very low.

ER leverages limited access to X1, X2, . . . , Xl−1 during the lth training

phase. A set of exemplars Xe are randomly drawn from X1, X2, . . . , Xl−1 and

saved for replay training, and the corresponding minimization term becomes:

LossER =
1

nl

∑
x∈Xl

L(y, fθ(x)) +
1

ne

∑
x∈Xe

L(y, fθ(x)) (5.2)

where ne is the number of stored exemplars. The exemplar set Xe (or buffer

set) has an upper limit for the number of stored exemplars (buffer size B).

A larger buffer size will lead to higher memory costs but will be more helpful

in combating CF. Different buffer sizes will be tested in the experiment study

(see Section 5.4 and 5.5). It is also critical to establish a reasonable mechanism

to update the exemplar set. This will be discussed in Section 5.3.4.1. In this

chapter, Reservoir sampling [257] and Balanced Reservoir Sampling (BRS)

[252] will be compared as two baselines.

112



Oracle method is possible only when we can fully store and access all the

datasets X1, X2, . . . , XNt . It re-trains a brand-new model once a task comes

in. Formally, it is to run Eqn. 5.1 with X = {X1, X2, . . . , XNt}. Note that

the Oracle method operates beyond the constraints of CL. It mainly provides

an upper bound for other CL methods in this study.

To measure the performance of all the tested methods, after the model

is trained over all the Nt tasks, we calculate Average Accuracy (ACC) [258]

over all the learned tasks. Testing accuracies on individual tasks at different

training phases will also be examined. A high ACC or testing accuracy from

a model indicates that the model can give accurate fault classification. Model

training time and memory usage of these methods will also be compared.

5.3.4 Proposed improvements

Given a limited buffer size, it is critical to (1) choose a set of exemplars that

can properly represent all the training samples from past tasks and (2) make

efficient use of the stored exemplars. Considering these two points, we pro-

posed two improvements to the existing ER method respectively.

5.3.4.1 Task balanced reservoir

Standard ER uses Reservoir sampling [257] (see Figure 5.2a) to randomly

replace exemplars when the exemplar set is full. With Reservoir sampling,

as shown in Figure 5.2a, any of the exemplars may be dropped out through

the valve. This may cause class imbalance or even leave some classes out

of the exemplar set. CF of those minority classes will damage the model’s

accuracy. BRS [252] tracks which class has the greatest number of exemplars,

and only the exemplars of that class will be replaced by the new ones (see

Figure 5.2b). However, in fault diagnosis, every task will have its own healthy-

class signals that may be collected under different working conditions. In fact,
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Figure 5.2: Comparison of Reservoir sampling [257], BRS [252], and the pro-
posed TBS.

in limited training steps, an exemplar set maintained by the BRS scheme will

have more healthy-class exemplars. The BRS will constantly replace healthy-

class exemplars with samples from new tasks, making the exemplar set both

task-imbalanced and class-imbalanced. This is detrimental to the model’s

performance.

In this chapter, for FDI applications, we propose a TBS scheme to select

exemplars for ER-based CL models. A graphic illustration on the differences

between Reservoir sampling [257], BRS [252], and the proposed TBS is shown

in Figure 5.2. Different shapes of markers stand for exemplars of different

fault classes, and they may come from different tasks. Instead of balancing on

different classes, TBS balances on different tasks assuming each task charac-

terizes a unique working condition. As shown in Figure 5.2c, we track which

task does an exemplar is from and the number of exemplars from each task.

When updating the exemplar set, only those from the tasks that contain more

exemplars than average will be dropped. The detailed flowchart of how TBS

updates the exemplar set is shown in Figure 5.3.

The procedure shown in Figure 5.3 is run every time a sample is used to

train the model. In each run, it will first determine whether to update the

exemplar set or not. If the exemplar set is not full, the input sample goes
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Figure 5.3: Flowchart of the proposed TBS updates its exemplar set.
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straight in until it is filled. After the exemplar set is filled, one existing exem-

plar must be removed to accept a new exemplar. A sample will be randomly

chosen from all the seen training samples, and it will be replaced by the in-

put sample under two conditions: (1) the chosen sample is in the exemplar

set, and (2) the chosen sample is of a class that has more exemplar than the

average of all seen classes. As more training samples are seen, the probability

and frequency of updates become lower. By tracking the task label and only

replacing exemplars of larger tasks, TBS enforces that every task will have

about the same number of exemplars. After training on Nt tasks, every task

will have about B/Nt stored exemplars. This would not only help preserve

all fault classes from different tasks but also ensure that all the seen working

conditions of different tasks are included in the exemplar set. Although TBS

does not produce class-balanced exemplar sets, further treatments such as co-

sine normalization [54] may be applied on top of TBS. Note that BRS may

not be class-balanced as discussed above. In this chapter, the proposed TBS

focuses on balancing different tasks to help the model better adapt to variable

working conditions and achieve higher fault classification accuracy.

5.3.4.2 Working condition adaptation

Considering different working conditions, the healthy data from different tasks

will have different distributions. If the model can learn from such differences,

it may adapt to different working conditions better.

In this chapter, we propose to conduct DA during each fine-tuning stage

of CL models. A DA loss term is added to the standard ER loss (Eqn. 5.2).

The standard ER loss will only maintain fault-discriminative abilities, while

the additional DA loss can constrain the distribution discrepancy of learned

features between health data of different tasks. With DA, the model may learn

to match the distributions of healthy data collected under different working

116



conditions. Formally, the proposed new learning algorithm is to minimize the

following loss function:

Lossl =
1

nl

∑
x∈Xl

L(y, fθ(x)) +
1

ne

∑
x∈Xe

L(y, fθ(x)) + αLDA (5.3)

where LDA is the DA loss and α is the weight of the DA loss. Note that

the DA loss term will be calculated using only healthy data from all the seen

tasks. In ref. [54] adversarial loss is applied. However, this is more suitable for

one-way DA with a single source and a single target. In this work, we consider

multiple source and target domains and need to conduct multi-way DA. We

use Maximum Mean Discrepancy (MMD) [259] to measure the distribution

discrepancy between each domain and combine all the discrepancies as the

multi-way DA loss term. That is,

LDA =
1

l − 1

l−1∑
t=0

MMD
(
xy=0
l , xy=0

t

)
(5.4)

where l is the number of seen tasks (or the index of the task that the model is

currently being trained on), and x with a superscript y = 0 stands for healthy

data.

The proposed multi-way DA is different from existing DA methods such as

refs. [10], [55] mainly on these two aspects:

1. Traditional DA only applies to two different working conditions, while

the proposed is a multi-way adaptation among the current task and

multiple previous tasks.

2. Traditional DA usually operates on domains with the same classes, while

the proposed is more general as it only based on healthy samples.

Using the proposed Eqn. 5.3, the CL model is set to learn to deal with variable

working conditions and give more accurate fault classification.
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5.4 Case study I

To validate the effectiveness of the proposed method, we conducted two case

studies using two different experiment datasets. The first case study uses a

dataset collected at the Department of Energy and Power Engineering, Ts-

inghua University (THU-EPE) in 2019. All computational experiments were

carried out on a computer with an Intel i7-6700 CPU and an Nvidia GTX-1060

GPU. All the tested methods are implemented using Pytorch on the Windows

10 operation system.

5.4.1 Data description

The dataset collected at the THU-EPE is studied here. It has also been used

in ref. [118]. Four different types of gear faults in a planetary gearbox and

four different rotating speeds are considered in this case study. Four different

tasks listed in Table 5.1 are considered and they will be sequentially used to

train the proposed CL model. In each task, for each machine health condition,

there are 2000 training samples and 500 testing samples. Both the training and

testing samples are collected with a sampling frequency of 20 kHz and each

sample has 2048 sample points. Example signals of each task and machine

health condition are shown in Figure 5.4. The text shown on the left-hand

side of each subplot is the task ID and the corresponding health condition of

that signal. The raw signals vary upon changes in health conditions or working

conditions. It is critical that the model can be both class-discriminative and

adaptive to different working conditions.

5.4.2 Hyper-parameters

For the structural parameters of 1DCNN discussed in Section 5.3.3, we use a

fixed kernel size of 25 for the two Conv layers and the number of input channels

for Conv1 is 1. The max pooling layers are with a kernel size of 4 and a stride of
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Table 5.1: Four different tasks in the THU-EPE gearbox case study.

Task IDs Machine health conditions Rotating speeds
T1 Healthy (H), sun gear crack (SC) 30Hz
T2 H, sun gear broken (SB) 35Hz
T3 H, planet gear crack (PC) 25Hz
T4 H, planet gear broken (PB) 20Hz

Figure 5.4: Example raw signals from the THU-EPE dataset.
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Table 5.2: Candidate ‘Out’ values of 1DCNN.

Parameter name Candidate values
Conv1 - No. of out channels 10, 20, 30
Conv2 - No. of out channels 30, 50, 70

FC1 - No. of outputs 100, 300, 900
FC2 - No. of outputs 10, 30, 90

4 to reduce the number of features to 1/4 each time. A grid search among the

candidate values listed in Table 5.2 is run using the experiment data presented

in Case Study I. The learning rate and the batch size are also grid-searched

among [0.1, 0.01, 0.001] and [50, 100, 200], respectively.

The standard ER with Reservoir sampling method is applied and the

Stochastic Gradient Descent (SGD) method is used as the optimizer to train

each task for 30 epochs. The hyper-parameters that give the highest ACC are

regarded as the best. The best hyper-parameters will be used throughout the

two case studies in Section 5.4 and 5.5.

For the THU-EPE dataset, with a learning rate of 0.01, a batch size of 50,

and the best network structure configurations listed and marked bold in Table

5.2, the standard ER with Reservoir sampling method produced its highest

ACC of 93.051%.

5.4.3 Performance comparison

With the network structure fixed, we implement 6 methods, i.e., fine-tune, ER,

BRS, TBS, Oracle, and our proposed TBS-DA method discussed in Section

5.3.3. Their performances are shown in Table 5.3. For each method, 10 repeat

runs were executed and the mean ACC and standard deviation are shown in

the ACC column. Training data size and total training time are measured with

a buffer size of 100 samples, a batch size of 50, and the number of training

epochs is 30. For the TBS-DA method, the weight of DA loss α is fixed to be

0.1.
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Table 5.3: Comparison of different methods on the THU-EPE gearbox dataset.

Method Average Training memory Training
accuracy (Mega bytes) time (s)

Fine-tune 62.490% 32.800 81.733
ER 93.051% 33.620 179.975
BRS [252] 89.761% 33.620 181.297
TBS 94.571% 33.621 179.884
TBS-DA 97.971% 33.621 263.326
Oracle 99.998% 131.072 60.108

From Table 5.3, we can see that the fine-tune method which does not

include CL capability performs the worst with an ACC of 62.49%. In fact, the

model achieved almost 100% accuracy for the final task but only about 50%

accuracy for the previously learned three tasks. This is the most servere level of

CF displayed. The Oracle method, which uses all the data from all the training

phases, can give an almost perfect accuracy (99.998%) for all four tasks. No

forgetting behavior is shown by the Oracle method. Utilizing an exemplar set,

ER with Reservoir sampling achieved an ACC of 93.051% over the four tasks,

30.561% higher than the fine-tune method. TBS without domain adaptation

performed 1.52% better than Reservoir, showing the benefit of maintaining a

task-balanced exemplar set. The proposed TBS-DA method further improved

the ACC to 97.971%, beating the TBS method by 3.4%. This shows that

conducting DA can further reduce CF and boost classification accuracy. TBS-

DA shows only 2.207% lower accuracy than the Oracle method while using only

25.65% of the memory size used by Oracle during training. More importantly,

the TBS-DA model can be deployed right after every training phase while

the Oracle model will only be available after the final training phase. The

total training time needed by TBS-DA is higher as additional computations

are needed for (1) updating the exemplar set (98.151 seconds), and (2) MMD-

based working condition adaptation (94.911 seconds) compared to the fine-

tune method.
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The BRS method showed the lowest ACC (89.761%) among all the com-

pared CL methods. The main reason is that it failed to enforce a class-balanced

exemplar in this FDI setting. In a typical run of BRS, after all the training

phases, the number of exemplars of the 5 classes is 50, 7, 5, 13, and 25 for H,

SC, SB, PC, and PB respectively. It also gives a task-imbalanced exemplar

set as tasks T1 to T4 have 52, 13, 16, and 19 exemplars respectively. Using

TBS, however, the numbers of exemplars for the 4 tasks are balanced (26, 25,

25, and 24) respectively. Although TBS is still class-imbalanced, it covers all

the seen working conditions better. A 4.81% ACC gain is achieved compared

to BRS.

5.4.4 Analysis of key parameters

The performances of ER (with Reservoir sampling) and TBS-DA are largely

dependent on the size of the exemplar set. Figure 5.5 shows how the size of

the exemplar set affects the performances of the ER and the TBS-DA meth-

ods. The bars in two different colors indicate the mean accuracies of the two

methods respectively, and the error bars on top of each colored bar show the

standard deviation of the corresponding mean accuracies out of 10 repeated

runs.

From Figure 5.5 we can see that the performance of both ER and TBS-

DA (α = 0.1) methods increases as the set buffer size increases. When the

buffer size is set to 200, ER and TBS-DA give the same mean accuracies of

98.60%. When the buffer size is 50, ER is down to 84.62%, 11.69% lower

than the proposed TBS-DA. This implies that the BRS-managed exemplar

set failed to preserve enough samples of different tasks and caused forgetting

of seen working conditions. The proposed TBS balances samples of all the

tasks to avoid forgetting. Together with DA, TBS-DA showed an advantage

under variable working conditions. Besides, the standard deviations (0.043%,
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Figure 5.6: Mean accuracies of TBS-DA versus different α values on the THU-
EPE dataset.

0.023%, 0.069%, 0.019% for TBS-DA and 0.570%, 0.616%, 0.657%, 0.202% for

ER given buffer sizes of 50, 100, 150, and 200 respectively) in Figure 5.5 shows

that the TBS-DA method is more stable than standard ER.

The value of α in Eqn. 5.3 determines the weight of the proposed DA term

(Eqn. 5.4) in the loss function and should be selected properly so that both

classification error and domain discrepancy can be jointly minimized. Figure

5.6 shows different mean accuracies of the TBS-DA method when using α

values of 0.025, 0.05, 0.1, 0.15, and 0.2. Note that the buffer size is fixed as

100 to generate Figure 5.6.
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Table 5.4: Four different tasks in the THU-ME gearbox case study.

Task IDs Machine health conditions Rotating speeds Load levels
T1 H, PB-ORF 10Hz 0.13Nm
T2 H, IB-IRF 25Hz -1.7Nm
T3 H, IB-ORF 20Hz -1.65Nm
T4 H, PB-IRF 25hz -0.657Nm

Figure 5.6 shows that the choice of α values is critical for the performance

of the TBS-DA method. When α is set between 0.05 and 0.2, the performance

of TBS-DA is much better than TBS without DA, and α = 0.1 gives the

best ACC among the 5 values shown in Figure 5.6. When α is 0.025, the

performance of TBS-DA is lower than TBS but still much higher than the

Fine-tune method which does not have CL capability.

5.5 Case study II

5.5.1 Data description

Case study II is about bearing faults in planetary gearboxes. In addition,

both the rotating speed and the load level may change. We use the test rig

presented in ref. [227], [260] and the dataset was collected at the Department

of Mechanical Engineering, Tsinghua University (THU-ME), in 2021. Four

different tasks listed in Table 5.4 are considered. Note that in the Machine

health conditions column, H stands for healthy, PB for planet bearing, IB for

input bearing, ORF for outer race fault, and IRF for inner race fault.

In each task, samples for each machine health condition, there are 1764

training samples and 588 testing samples. The sample frequency and the

length of segments are the same as in case study I (20 kHz and 2048 respec-

tively). Example signals of each task and each machine health condition are

shown in Figure 5.7.
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Figure 5.7: Example raw signals from the THU-ME dataset.

5.5.2 Performance comparison

In case study II, we continue to use the best network structure (shown in Table

5.2), learning rate (0.01), and batch size (50) selected using the THU-EPE

dataset. With such a setting, the model trained using the Fine-tune method

only gets an ACC of 50.48% on the 4 tasks in the THU-ME dataset. The

accuracies on the 4 tasks are 6.26% ,45.91%, 49.97%, and 99.77% respectively.

This shows that the model forgot T2 and T3 and completely failed on T4 during

the process of learning other tasks. The Oracle method, using all the data from

all 4 tasks, not surprisingly, gives an almost perfect ACC of 99.63%.

To demonstrate the efficacies of both the proposed TBS and multi-way

DA, the 4 studied CL methods i.e., ER with Reservoir, BRS, TBS, and the

proposed TBS-DA, are compared. In Figure 5.8, testing accuracies for each

task before and after the training phase T4 are shown. Each subfigure shows

testing accuracies on a task reported by the 4 CL methods. Each pair of over-

lapped bars shows the difference in testing accuracy before and after training
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Figure 5.8: Comparison of accuracies on different tasks before and after train-
ing on T4.

the model on a new task T4. The shown results are average numbers across 10

runs with different random seeds.

Different degrees of forgetting phenomenon shown by all the 4 methods are

observed in Figure 5.8. These degrees of forgetting can be measured by the

drops of accuracies before and after training on T4. Our proposed TBS-DA

reported the least degrees of forgetting, dropping only 3.2%, 0.58%, and 3.38%

of accuracies on T1, T2, and T3 respectively. The worst degrees of forgetting on

the 3 tasks are reported by BRS (31.38%), BRS (3%), and TBS (15.66%) re-

spectively. Averaging across the 3 tasks, BRS, ER, TBS, and TBS-DA dropped

12.92%, 10.56%, 9.37%, and 2.39% of accuracies respectively. These numbers

prove that the proposed TBS-DA has the best performance in preventing CF

among the 4 studied CL methods.
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Figure 5.9: Mean accuracies of ER and TBS-DA with different buffer sizes on
the THU-ME dataset.

5.5.3 Analysis of key parameters

Figure 5.9 shows a comparison of results between the ER and the proposed

TBS-DA (α=0.1) methods given different buffer sizes. It is seen that TBS-DA

beats the ER method by 6.18%, 2.9%, 0.63%, and 4.05% at buffer sizes of

50, 100, 150, and 200 respectively. TBS-DA is also consistently increasing its

accuracy from 92.06% to 97.98% as we enlarge the buffer size from 50 to 200.

The ER method, however, does not give higher accuracy when the buffer size

increases from 150 to 200. The proposed DA term in the TBS-DA method

was able to better utilize those additional data and beat ER by 4.05%. When

the buffer size is only 50, the ER is only 85.88% accurate (6.18% lower than

TBS-DA) and unstable (standard deviation is 1.686%). This indicates that

BRS brought unstable coverage of all the working conditions. While TBS-DA

with TBS is balanced over working conditions and showed better performance.

Figure 5.10 shows the impact of α value (see Eqn. 5.3) on the ACC of the

TBS-DA method on the THU-ME dataset. Note that the buffer size is fixed

as 100 to generate Figure 5.10. It is seen that all the tested α values can give

higher mean accuracies than the ER method (α=0). The highest accuracy

(95.07%) on the THU-ME dataset is achieved when α is 0.15. The best α for
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the THU-EPE dataset (0.1) can also give solid results (93.33% accuracy) on

the THU-ME dataset. Meanwhile, the best α for the THU-ME dataset (0.15)

also works well for the THU-EPE dataset, achieving an ACC of 97.97%. Any

α between (and including) 0.05 and 0.2 can make TBS-DA outperform the ER

method on both the THU-EPE and the THU-ME datasets.

5.6 Conclusion

This chapter presents a novel CL-based fault classification method, TBS-DA,

which considers both fault class incrementation and changes in machine work-

ing conditions. Firstly, the exemplar set, managed by the TBS replaying

mechanism, preserves samples from all tasks to facilitate learning. Secondly,

the proposed DA loss term enables the model to better adapt to varying work-

ing conditions. As a result, the TBS-DA method mitigates forgetting of both

fault classes and working conditions, resulting in higher diagnostic accura-

cies. Although only tested for gearboxes, TBS-DA has the potential to be

a valuable FDI method for many modern industries such as wind farms and

manufacturing factories.

Future studies in this field could explore the application of CL for remain-

ing useful life prediction, where the boundaries between tasks are ambiguous.
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Additionally, it is important to first build a fault detection model using only

healthy data before constructing and refining classification models with faulty

data. Lastly, other advanced models and feature extraction methods can be

explored to amend the limitations of 1DCNN not being able to quantify pre-

diction uncertainty and to deal with low frequency signals.
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Chapter 6

Summary and future directions

This chapter summarizes the work of this thesis and suggests future research

directions.

6.1 Summary

This thesis developed three new deep transfer learning algorithms for fault

diagnosis of wind turbine gearboxes including gear faults and bearing faults.

Considering the complexity and low signal-to-noise ratio of the vibration sig-

nals of wind turbine gearboxes, deep learning models (mainly convolutional

neural networks) are use to automatically extract fault-discriminative fea-

tures from raw vibration signals collected using accelerometers mounted on

the casing of the gearboxes. Instead of developing deep models using tradi-

tional supervised learning, different deep learning paradigms including domain

adaptation, open-set recognition (or open-set fault diagnosis), and continual

learning are explored to suit for different diagnostic tasks and available train-

ing datasets. Knowledge transfer or transfer learning across different diagnosis

tasks with unlabeled training dataset and variable fault label sets, and adapta-

tion across different working conditions (rotating speed and load levels) are the

main novelties throughout the three presented research topics. Major works

of this thesis are summarized as follows.
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1) Weighted domain adaptation networks for machinery fault diagnosis: in

supervised learning, the training and testing data are drawn from the same

domain, and the training data are labeled. In this work, we treat different

working condition as distinct domains and proposed a weighted source do-

main adaptation method to utilize labeled data collected under other working

conditions to help the diagnosis under a working condition with only unlabeled

data. While a convolutional neural network was used to automatically extract

features from raw vibration signals, multiple fully connected neural networks

were used as domain discriminators to force the model learn features that

apply to both the labeled source domains and the unlabeled target domain.

Besides, distributional differences measured using maximum mean discrepancy

were used to weigh the importance of different source domains. Finally, the

trained model can recognize faults under the target working condition with-

out labeled data. The proposed method was tested in two case studies using

data from two different experiment test rigs. The results show that compare

to traditional supervised learning which does not learn from unlabeled target

data, the proposed weighted source domain adaptation can boost the diagnos-

tic accuracy up to 30.457%. It also outperforms other single source domain

adaptation methods and equally weighted multiple source domain adaption. It

is also found that distributional differences between the target and the source

domains can also be used to determine if domain adaptation can boost diag-

nostic accuracy or will cause negative transfer.

2) Open-set fault diagnosis for industrial rotating machines based on trust-

worthy deep learning: in real applications, it is common to encounter new fault

classes that are not included in the training dataset. Conventional deep learn-

ing models, however, do not have the abilities to deal with unseen classes and

will report over-confident predictions for samples from unseen classes or un-

seen working conditions. In this work, we extended conventional models with
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an abstention option to contain unseen classes. An auxiliary dataset consist

of superposition of faulty signals and noised injected healthy signals is used

to represent the ‘abstention’ class. Evidential deep learning, which formulates

learning as an evidence acquisition process, is adopted and enhanced to learn

a sparse evidential distribution from training data, providing a better model-

ing of classification probabilities. We name the proposed method as evidential

abstaining classifier and tested it with two datasets collected from two differ-

ent experiment test beds. One for gear faults and another for bearing faults.

The results show that our designed auxiliary training samples can help deep

learning models to establish fault-discriminative features and efficient decision

boundaries for unseen fault classes. Our enhanced evidential deep learning

with L1 regularization can assign high classification uncertainties for samples

from unseen classes and low for classes included in the training set with higher

contrast compared to the original evidential deep learning. Our proposed ev-

idential abstaining classifier are trustworthy as it has the abilities to report

classification uncertainty and recognize new fault classes.

3) Continual learning for fault diagnosis considering variable working condi-

tions: Traditional methods only focus on developing a new model from scratch

using a complete training dataset including all the fault classes. However, the

training dataset may never be complete in fault diagnosis applications and deep

learning models need to be continuously upgraded in considering changes in

working conditions and occurrence of new faults. In this work, we proposed

a multi-staged continual learning algorithm that learns a sequence of diagnos-

tic tasks featuring different fault classes and working conditions. Using the

parameters pre-trained on previous tasks, the model can learn quicker com-

pared to randomly initialized models. A multi-way domain adaptation is also

conducted to adapt the model for all the different working conditions featured

in different tasks. To overcome the catastrophic forgetting behavior of neural
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networks without storing a cumbersome meta dataset, a small exemplar set

including samples from all previous tasks is maintained for the use of the next

training stage. A task-balance sampling scheme is proposed to make sure each

task is well represented in the exemplar set so that the model can remember all

the fault classes and adapt to all the previous working conditions. The same

two datasets used in our open-set fault diagnosis work is used again to verify

the efficacy of the proposed continual learning method. The results show that

the proposed method can achieve an average accuracy of 97.97% across all the

learned tasks with limited access to historical training data. This shows that

catastrophic forgetting has been successfully mitigated.

6.2 Future directions

There are still many challenges in building artificial intelligence for fault diag-

nostic applications. Here are three possible research topics for the near future.

1) Holistic diagnosis based on multi-modal inputs. Mechanical vibration

is the sole input for deep learning models used in this thesis. The monitoring

system of modern wind turbines may provide other information such as pitch

angle, historical weather, and thermal imagery, presenting multi-modal inputs

including scalars, 1-dimensional signals, 2-dimensional images etc. Advanced

deep learning models can be trained to deal with these multi-modal inputs.

For example, automatic image captioning can be achieved by using convolu-

tional neural networks to deal with images and recurrent neural networks to

learn and produce text. With an organized training dataset, these two parts

can be synchronized and jointly trained. Multi-modal inputs in fault diagnosis

may also provide information on different time-scales that are useful for diag-

nostic decisions. For example, vibration and thermal imagery can be jointly

used to locate faults. If a component shows irregular vibration patterns and

had a recent temperature surge, there might be a fault has occurred in this
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component. This will require the model to be able to process short vibration

patterns lasting about seconds and monitor the temperature changes within a

few minutes.

2) Edge computing and federated learning. Wind turbine and wind farms

are spread across the world and operated by different owner/operators. Edge

computing is to process data and update models locally on edge devices rather

than relying solely on centralized cloud servers. This is vital for real-time

fault diagnosis. On the other hand, federated learning enables collabora-

tive model training across distributed edge devices without accessing to pri-

vate data. By combining edge computing with federated learning, wind farm

owner/operators can build stronger fault diagnosis systems that leverage real-

time data analytics while preserving data privacy and security. This will also

allow deep learning models to learn knowledge from diverse wind turbines de-

ployed across different locations and environments, leading to more adaptive

and robust fault diagnosis results.

3) Explainable artificial intelligence (XAI) for physical understanding and

maintenance decision making. As discussed in Chapter 4, transparency of deep

learning models is vital for decision makers to trust the models’ results. XAI

can also help us understand the mechanism of mechanical degradation and

faults. Existing interpretability methods such as saliency maps [261] can high-

light the features that contribute most to the model’s predictions. For complex

deep models, Local Interpretable Model-agnostic Explanations (LIME) [262]

can provide explanations by approximating the model’s behavior using simpler

and more interpretable models. These techniques may facilitate physical un-

derstanding of deep models by revealing relationships between learned features

and the predicted fault. The underlying causes of failures might also be better

understood to help owner/operators make better operation and maintenance

decisions.
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