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Abstract  

An analytical model is presented to study dynamic behaviors of rigid sphere-reinforced random 

metacomposites. The model is based on the concept that the deviation of the displacement field of 

embedded rigid spheres from the displacement field of the composite is responsible for novel 

dynamic behaviors of stiff sphere-reinforced metacomposites. Compared to the existing models, 

the present model offers a simple general method to analyze dynamic problems of rigid sphere-

reinforced random metacomposites, and its validity and efficiency are demonstrated by comparing 

the predicted results for bandgap with known experimental or numerical data on several typical 

steel/glass/lead-polymer metacomposites. Several basic dynamic problems of rigid sphere-

reinforced metacomposite beams and rods are investigated, and some novel dynamic phenomena 

(such as vibration isolation, localized buckling, and natural frequency within the bandgap caused 

by an attached concentrated mass) are demonstrated. The main results include: 1). natural 

frequencies of a rigid sphere-reinforced metacomposite beam or rod always stay outside of the 

bandgap, independent of all other material and geometrical parameters, while a concentrated mass 

attached to the free end of a rod may cause a natural frequency within the bandgap. 2). a rigid 

sphere-reinforced metacomposite beam or rod can exhibit vibration isolation phenomena so that 

the forced vibration is highly localized near the site of the applied external periodic excitation and 

vanishing small in all other parts of the beam or rod when the external excitation frequency falls 

within the bandgap, while the forced vibration does spread into the entire beam or rod when the 

excitation frequency is out of the bandgap. 3). a hinged rigid sphere-reinforced metacomposite 

beam under a constant compressive load can exhibit localized buckling at the critical buckling 

state when the mass ratio of the rigid-sphere phase to the matrix phase is vanishingly small.  
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Chapter 1 

Introduction 

1.1 Literature review 

Elastic metamaterials are a new kind of elastic composites which exhibit exceptional dynamic 

properties not discovered in nature or traditional materials. Metamaterials were initially introduced 

for electromagnetic wave [1]. Veselago [1] theoretically proposed the materials with negative 

characteristic parameters that affected the electromagnetic wave propagation. Later, the 

investigation of metamaterials has been extended to the field of mechanical and acoustic waves. 

Many researches on vibrational wave propagation and dynamic behaviors in metamaterials 

emerged over the past years [2-22]. It was found that the man-made artificial microstructure of 

metamaterials can truly make a difference to the vibrational modes at some frequencies that 

constitute a spectral range of frequencies called “bandgap” within which vibration and wave 

propagation are largely attenuated or forbidden.   

1.1.1 Locally resonant metamaterials  

One of the important causes of bandgap is “locally resonant” microstructure that can make 

“negative effective mass (density)”, which gives birth to a type of metamaterials called “locally 

resonant metamaterials”. However, negative effective mass (density) is not an actually existing 

property in real materials, but a concept introduced for determining the frequency range of bandgap. 

The common interpretation for the formation of negative effective mass is put forward through a 

simple mass-in-mass structure with a spring connecting the masses [2-4]. Effective mass becomes 

negative because the internal spring force between the masses is larger than the external force 

applied to the mass-in-mass system (see e.g., fig.2(a) in [2] or [3]).  

The locally resonant metamaterials have stimulated many researchers’ interests in recent years [2-

11] due to its interesting vibration attenuation performance with the negative effective mass 

(density). Firstly, Liu et al. [5] proposed a type of phononic crystals constructed of lead balls coated 

with silicone rubber (acting as a spring) in an epoxy matrix. The relevant bandgap phenomena due 

to the locally resonant microstructure were captured by observing the sound transmission in 
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phononic crystals. Moreover, it was indicated that the local resonance bandgap can suppress the 

vibration at wavelengths two orders larger than the interparticle distance (called “lattice constant”). 

So, the local resonance bandgap is usually applied to the low-frequency vibration attenuation/ 

isolation. Further, Sigalas et al. [6] wrote a review about the estimation of bandgaps from 

vibrational modes of various phononic crystals. In his section 15.5 [6], he also mentioned that the 

local resonance can be generated in phononic crystals by coating the scatterers with some elastic 

soft materials. Also, Calius et al. [7] showed some experimental and numerical results of the 

frequency response and transmission loss for the similar microstructures which exhibited 

significant local resonance bandgap behaviors.  

In addition to phononic crystals, some locally resonant metamaterial models were developed for 

the broadband vibration suppression/ isolation owing to the narrow width of the local resonance 

bandgap [8, 9]. For example, the uniform beam with numerous spring-mass-damper subsystems 

was devised by Sun et al. [2] based on the idea of the locally resonant microstructure. The spring-

mass-damper subsystems acting as local resonators achieved the vibration isolation through 

generating the negative effective mass. Further, Pai et al. [3] added one more mass to the original 

spring-mass-damper subsystems in [2] to improve the vibration attenuation performance via 

creating two bandgaps. Apart from the vibration isolation within either of bandgaps, the vibration 

can be suppressed when the excitation frequency was out of but between the two bandgaps. Besides, 

a chiral metamaterial beam [10] was proposed for the broadband low-frequency vibration 

suppression, where local resonators consisted of metal cylinders coated with rubber and embedded 

in the hexagonal chiral lattice. Moreover, Schiavone & Wang [11] developed a new continuous 

model for a sort of metamaterials characterized by local rotations coupling with macro-translations 

from a rigid disk-spring discrete system. And a wider bandgap may be achieved through their 

continuum model with double negative properties [11].  

1.1.2 Existing models for particle-reinforced metamaterials  

An important class of metamaterials is stiff sphere-reinforced metacomposites [12-28] in which 

the elastic modulus of the embedded spheres is much higher than that of the compliant elastic 

matrix, such as steel or glass sphere-reinforced polymer composites. There are some early models 

established for studying dynamic behaviors of this type of metacomposites. Moon and Mow [12] 

initially attempted to derive a one-dimensional dynamic model for the wave propagation in a rigid 
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sphere-reinforced random metacomposite with a small volume fraction of spheres. However, 

finally, their derivation stopped at the governing equations of motion for both sphere and matrix 

through the Lagrange’s equation combined with Lagrangian and dissipation functions. Later, their 

model was validated by Kinra and Li [14] via comparing to the experimentally measured resonance 

frequency for a lead/epoxy composite. Some new micromechanical models [15] were developed 

for mechanical behaviors of particle-reinforced composites based on a modified Mori-Tanaka 

method with considering the mutual interaction of particles. Besides, Kinra et al. [17] 

experimentally measured the transmission of a plane longitudinal wave through a layer of lead 

spheres in a polyester matrix. Then, Maslov and Kinra [18] measured the same wave through a 

periodic layer of rigid spheres at wavelengths comparable to the characteristic length of the 

composite. Finally, an approximate low-frequency model was developed and validated for a plane 

longitudinal wave normally incident on a periodic layer of rigid spheres in an elastic matrix with 

the multiple-scattering effect. Furthermore, Cheng et al. [21] put forward a method via 

incorporating experiments, numerical simulations and theoretical analysis to study the 

high‑frequency attenuation mechanism of polyurea‑matrix particulate composites. And 

Rahimzadeh [22] applied the Sabina-Willis model to analyzing effective dynamic properties for 

the propagation of P and S waves in particulate composites.  

Additionally, some models were employed for the evaluation of elastic properties of particle-

reinforced metamaterials, for instance, 3D representative volume element (RVE) model [23, 24]. 

Segurado & Llorca [23] and Kari et al. [24] calculated elastic constants with RVE respectively by 

the common finite element method (FEM) and a numerical homogenization technique based on 

FEM. Other than RVE, a theoretical cube-within-cube formation [25], isotropized Voigt-Reuss 

model [26] and microstructure-free finite element modeling (MF-FEM) [27] were also the existing 

tools to estimate the elastic moduli. The Voigt-Reuss model [26] is applicable to the composite 

with either large or small contrast of phase properties while MF-FEM [27] had a good performance 

only with small contrast of phase properties. Besides, the axial stiffness of the springs connecting 

cells was computed by a lattice model [28] especially in the composites with a large volume 

fraction of particles. 
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1.2 Objectives of this research 

In most cases, complicated numerical calculations and experiments are required to analyze 

dynamics of such stiff sphere-reinforced metacomposites. And also, the majority of existing 

researches have been limited to periodic composites [12-28]. Indeed, it is of great interest to 

develop simpler analytical models for dynamics of stiff sphere-reinforced random metacomposites.    

The present work aims to propose a new and simple, though approximate, analytical model to 

analyze dynamic behaviors of stiff sphere-reinforced random metacomposites. The proposed 

model is based on the concept that the deviation of the displacement field of embedded stiff spheres 

from the displacement field of the composite is responsible for novel dynamic behaviors of the 

composites. Unlike some existing models [12-28] which were based on rather complex 

mathematical formulation and numerical calculation, our model is mathematically simple. 

Actually, as shown in this thesis, the present model gives classical elastodynamic equations 

combined with a simple differential relation between the displacement field of the mass centre of 

representative unit cell and the displacement field of composite. Our model ignores the 

complicated microstructure of the composite and treats the composite as a homogeneous isotropic 

effective elastic body defined by the two effective elastic constants. Therefore, the proposed model 

should be limited to the cases when the characteristic wavelength of the displacement field is larger 

than the diameter of embedded rigid spheres. Besides, it could offer a general simple model to 

study dynamics of stiff sphere-reinforced metacomposites.  

Specifically, the thesis includes:  

 

(1) In Chapter 2, the governing equations of the proposed model are derived for dynamics of 

rigid sphere-reinforced random metacomposites. 

(2) In Chapter 3, the effective mass density and the bandgap are determined based on the 

equations derived in Chapter 2 for a rigid sphere-reinforced metacomposite, and the 

proposed model is validated by comparing its predicted bandgap frequencies to known 

experimental and numerical data.  

(3) In Chapters 4 and 5, the proposed model is used to study several basic dynamic problems 

of rigid sphere-reinforced metacomposite beams and rods, respectively. In Chapter 4, 

firstly, the free vibration and corresponding natural frequencies are studied for a rigid 
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sphere-reinforced metacomposite hinged or cantilever beam, and dynamic buckling is 

discussed for the hinged beam. Next, the equations of motion are derived for the forced 

vibrations of both hinged and cantilever beams driven by vibrating ends and the hinged 

beam under an external force, and the relevant vibration isolation phenomena are discussed. 

In Chapter 5, the free vibration and vibration isolation under a periodic axial displacement 

are demonstrated for a rigid sphere-reinforced metacomposite rod, and the free vibration 

of a rod with an attached mass at its free end is analyzed as well. 

(4) In Chapter 6, major conclusions are summarized and future work is recommended.  



6 
 

Chapter 2 

Dynamic equations for rigid sphere-reinforced random 

metacomposites 

In this chapter, we will develop a rigid sphere-spring composite model with one of important 

assumptions—— “rigid spheres” which means the elastic moduli of embedded spheres are much 

larger than that of the soft matrix phase.  

First of all, let us consider an isotropic rigid sphere-reinforced metacomposite comprised of a 

compliant isotropic elastic matrix phase, of Young’s modulus Em and Poisson ratio νm, and 

reinforced by randomly distributed rigid spheres of radius R. It is now widely recognized [12-20] 

that the deviation of the displacement field of embedded stiff spheres from the displacement field 

of the composite is responsible for novel dynamic behaviors of stiff sphere-reinforced 

metacomposites. Thus, let us consider two displacement fields: the displacement field u(x,t) of the 

composite and the displacement field us(x,t) of the embedded rigid spheres.  

And the equations of motion of the metacomposite in the absence of body forces are of the form 

𝜌
𝜕2𝑢𝑚𝑎𝑠𝑠

𝜕𝑡2
=

𝜕𝜎11

𝜕𝑥
+

𝜕𝜎12

𝜕𝑦
+

𝜕𝜎13

𝜕𝑧
 ,                                                                                                    

𝜌
𝜕2𝑣𝑚𝑎𝑠𝑠

𝜕𝑡2
=

𝜕𝜎12

𝜕𝑥
+

𝜕𝜎22

𝜕𝑦
+

𝜕𝜎23

𝜕𝑧
 ,                                                                                                      (2.1) 

𝜌
𝜕2𝑤𝑚𝑎𝑠𝑠

𝜕𝑡2
=

𝜕𝜎13

𝜕𝑥
+

𝜕𝜎23

𝜕𝑦
+

𝜕𝜎33

𝜕𝑧
 ,                                                                                                    

where umass(x,t)=(umass, vmass, wmass) is the displacement field of the mass center of the 

representative unit cell which contains numerous embedded rigid spheres, ρ is the mass density of 

the composite and σij (i, j=1, 2, 3) is the stresses.  

Alternatively, we can rewrite the RHS of eqs.(2.1) in terms of the strains εij (i, j=1, 2, 3) through 

the isotropic linear Hookean law based on the effective elastic constants. Then, the (overall) strain 

ε of the composite is calculated by the displacement-strain relations of linear elasticity based on 

the displacement field u(x,t) of the composite. Finally, the stresses σij (i, j=1, 2, 3) on RHS of 

eqs.(2.1) can be given in terms of the composite’s displacement field u(x,t)=(u1, u2, u3) as  
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𝜌
𝜕2𝑢𝑚𝑎𝑠𝑠

𝜕𝑡2
= (𝜆 + 𝜇)

𝜕𝑒

𝜕𝑥1
+ 𝜇∇2𝑢1 ,                                                                                                   

𝜌
𝜕2𝑣𝑚𝑎𝑠𝑠

𝜕𝑡2
= (𝜆 + 𝜇)

𝜕𝑒

𝜕𝑥2
+ 𝜇∇2𝑢2 ,                                                                                                     (2.2) 

𝜌
𝜕2𝑤𝑚𝑎𝑠𝑠

𝜕𝑡2
= (𝜆 + 𝜇)

𝜕𝑒

𝜕𝑥3
+ 𝜇∇2𝑢3 ,       

𝑒 = 𝜀𝑘𝑘 =
𝜕𝑢1

𝜕𝑥1
+

𝜕𝑢2

𝜕𝑥2
+

𝜕𝑢3

𝜕𝑥3
 ,                                                                                           

where (λ, μ) are the effective Lame’s elastic constants of the isotropic composite.  

In eqs.(2.2), the displacement of the composite u(x,t) is also considered as the displacement of the 

geometrical center of the representative unit cell. So, u(x,t) is applied to determining the strain ε 

caused by the geometrical deformation, while the mass center displacement umass(x,t) is used on 

LHS of eqs.(2.1) or (2.2) according to the physical concept of the acceleration based on the center 

of mass of the body.  

In the traditional elastic composite theory, the mass center displacement umass(x,t) is identical to 

the geometrical center displacement u(x,t), because there is no difference between the 

displacement field us(x,t) of embedded rigid spheres and the displacement field u(x,t) of the 

composite. Then, the single displacement field u(x,t) is governed by eqs.(2.1) or (2.2) with 

umass(x,t)=u(x,t). However, for a stiff sphere-reinforced metacomposite characterized by heavy and 

stiff spheres and soft matrix phase, umass(x,t) is distinct from u(x,t) owing to the deviation (u-us). 

It is known [12-20] that the deviation (u-us) of the displacement of embedded stiff spheres from 

the displacement of the composite is responsible for novel dynamic behaviors of the 

metacomposite. In such case, a key problem is how to get a simple relation between the mass 

center displacement umass(x,t) of the representative unit cell and the displacement u(x,t) of the 

composite.        

2.1 Relation between umass(x,t) and u(x,t)  

For this purpose, firstly, let ρm be the mass density of the matrix phase and ρs be the mass density 

of the rigid spheres, thus the mass density ρ (per unit volume) of the composite is defined by 
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𝜌 = 𝜌𝑚 + (𝜌𝑠 − 𝜌𝑚)𝛿 = (1 − 𝛿)𝜌𝑚 + 𝜌𝑠𝛿, 0 < 𝛿 < 1,                                                                (2.3)                                                                         

where δ is the volume fraction of the embedded rigid spheres.  

Then, assume that the average displacement field of the matrix phase is given by the displacement 

of the composite. And according to the principle of conservation of linear momentum, the mass 

center displacement umass(x,t) can be determined by 

𝜌𝒖𝑚𝑎𝑠𝑠 = 𝜌𝑚(1 − 𝛿)𝒖 + 𝜌𝑠𝛿𝒖𝑠 .                                                                                                         (2.4)        

 

Fig. 2.1 Rigid sphere-spring composite model  

(where ρm is the mass density of the matrix phase, ρs is the mass density of the rigid spheres, u is 

the displacement field of the composite, us is the displacement field of the embedded rigid 

spheres and β is the spring constant per unit volume of the composite) 

Next, consider a representative unit cell containing many randomly distributed identical rigid 

spheres. Assume that the motion of each rigid sphere can be determined by the interaction (spring) 

force between the rigid sphere and the surrounding composite [29] which is linearly related to the 

relative displacement (u-us). So far, our sphere-spring model has been specifically presented (see 

Fig. 2.1), which is composed of rigid spheres interacting with the surrounding elastic medium 

through an internal spring force like a spring-mass system in [2]. Let the spring constant for a 

single rigid sphere embedded within an infinite elastic medium be β0 (to be specified below, see 

eq.(2.8)). Then, the equation of motion for the rigid sphere surrounded by the infinite effective 

medium is governed by the spring constant β>0 (per unit volume of the composite) defined as  

𝛽(𝒖 − 𝒖𝑠) = 𝜌𝑠

𝜕2𝒖𝑠

𝜕𝑡2
, 𝛽 =

𝛽0

𝑉𝑠𝑝ℎ𝑒𝑟𝑒
> 0,                                                                                             (2.5) 

where Vsphere is the volume of a single rigid sphere. Eliminating us from eqs.(2.4, 2.5), a relation 
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between the mass center displacement umass(x,t) and the geometrical center displacement u(x,t) 

can be derived as 

𝒖𝑚𝑎𝑠𝑠 = 𝒖 −
𝜌𝑠

𝛽
(

𝜕2𝒖𝑚𝑎𝑠𝑠

𝜕𝑡2
−

𝜌𝑚

𝜌
(1 − 𝛿)

𝜕2𝒖

𝜕𝑡2
 ) .                                                                             (2.6) 

Therefore, the motion of the rigid sphere-reinforced metacomposite is governed by the well-known 

classical equations (2.1) or (2.2) coupled with the umass-u relation (2.6). For instance, an expression 

for umass in terms of u can be obtained by substituting (2.1) or (2.2) into the RHS of (2.6). 

Alternatively, it follows from the relation (2.6) that 

𝜕2𝒖𝑚𝑎𝑠𝑠

𝜕𝑡2
=

𝜕2𝒖

𝜕𝑡2
−

𝜌𝑠

𝛽
(

𝜕4𝒖𝑚𝑎𝑠𝑠

𝜕𝑡4
−

𝜌𝑚

𝜌
(1 − 𝛿)

𝜕4𝒖

𝜕𝑡4
 ) .                                                                   (2.7) 

Thus the decoupled governing equations for the displacement field u(x,t) of the composite can be 

obtained by substituting (umass)tt expressed by eqs.(2.1) or (2.2) into both sides of the relation (2.7). 

2.2 An expression for the spring constant β 

Now we need a specific formula of the spring constant β defined for our rigid sphere-spring 

composite model. For a rigid sphere of radius R embedded in an infinite isotropic linearly elastic 

medium of (effective) shear modulus (μ) and Poisson ratio (ν), the force F requested for a relative 

translational displacement Δ of the rigid sphere with respect to the surrounding elastic medium is 

given by [30, 31]  

𝐹 =
24𝜋𝛥𝑅𝜇(1 − 𝜈)

(5 − 6𝜈)
=

12𝜋𝛥𝑅𝜇

(𝑞2 + 2)
 , 𝑞 = √

1 − 2𝜈

2(1 − 𝜈)
=

𝑐2

𝑐1
 ,                                                             (2.8) 

where c1 and c2 are the longitudinal and transverse wave speeds of the surrounding (effective) 

elastic medium, respectively. Thus, because rotation of embedded stiff spheres usually plays a 

minor role, an expression for the spring constant β defined in eq.(2.5) can be obtained as 

𝛽0 =
24𝜋𝑅𝜇(1 − 𝜈)

(5 − 6𝜈)
 ,

𝛽

𝜌𝑠
=

18𝜇(1 − 𝜈)

(5 − 6𝜈)𝜌𝑠(𝑅2)
 ,                                                                                   (2.9) 

where (μ, ν) are the effective elastic constants of the isotropic composite, and R is the radius of the 

embedded rigid spheres.  
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It is noted that the above eqs. (2.5, 2.8) essentially depend on the assumption of “rigid spheres”. If 

there is no significant difference between the moduli of embedded spheres and matrix, our sphere-

spring model would not hold but umass(x,t)=u(x,t) in eqs.(2.1) or (2.2) without the deviation (u-us). 
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Chapter 3 

Effective mass density and the bandgap 

In this chapter, we begin with the derivation of effective mass density and bandgap formulas based 

on our rigid sphere-spring composite model. We will show that rigid spheres embedded in a soft 

elastic matrix can behave like local resonators, and a rigid sphere-reinforced metacomposite can 

demonstrate negative effective mass density within a certain range of frequencies. Then, we will 

apply the derived bandgap formula to several real stiff spherical inclusion reinforced composites 

and compare our predictions with known data.  

3.1 Effective mass density and the bandgap 

To define the effective mass density of a rigid sphere-reinforced metacomposite, let us consider a 

harmonic motion defined by umass(x,t)~sinωt and u(x,t)~sinωt, where ω is the (circular) frequency. 

It follows from the above relation (2.6) that 

𝒖𝑚𝑎𝑠𝑠 =
(1 −

𝜌𝑠

𝛽
𝜌𝑚

𝜌
(1 − 𝛿)𝜔2)

(1 −
𝜌𝑠

𝛽
𝜔2)

𝒖 .                                                                                                     (3.1) 

Substitute (3.1) into the eqs. (2.2), and we may obtain 

𝜌
(1 −

𝜌𝑠

𝛽
𝜌𝑚

𝜌
(1 − 𝛿)𝜔2)

(1 −
𝜌𝑠

𝛽
𝜔2)

𝜕2𝒖

𝜕𝑡2
= (𝜆 + 𝜇)𝛁𝑒 + +𝜇∇2𝒖 , 𝛁 = (

𝜕

𝜕𝑥1
,

𝜕

𝜕𝑥2
,

𝜕

𝜕𝑥3
),                       (3.2) 

where the displacement of the composite u=(u1, u2, u3). 

According to the general definition of the effective mass density based on the Newton’s 2nd law,  

𝜌𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒(𝜔)
𝜕2𝒖

𝜕𝑡2
= 𝑭𝑟 ,                                                                                                                         (3.3) 

where Fr is the resultant force (per unit volume) acting on the representative unit cell, the effective 

mass density of a rigid sphere-reinforced metacomposite is given by 
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𝜌𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = 𝜌
(1 −

𝜌𝑠

𝛽
𝜌𝑚

𝜌
(1 − 𝛿)𝜔2)

(1 −
𝜌𝑠

𝛽
𝜔2)

 .                                                                                              (3.4) 

The range of frequency ω within which the effective mass density (3.4) becomes negative, called 

“bandgap” [ω0, ωu], is given by 

𝜔0
2 < 𝜔2 < 𝜔𝑢

2 , 𝜔0
2 =

𝛽

𝜌𝑠
 , 𝜔𝑢

2 =
𝛽

𝜌𝑠
(

𝜌

𝜌𝑚(1 − 𝛿)
) .                                                                          (3.5) 

Actually, in view of the expression (2.9) for the spring constant β, we have  

𝜔0
2 =

𝛽

𝜌𝑠
=

18𝜇(1 − 𝜈)

(5 − 6𝜈)𝜌𝑠(𝑅2)
=

9𝜌𝑐1
2

𝜌𝑠(2𝑞−2 + 1)𝑅2
 ,                                                                             (3.6) 

where (μ, ν) are the effective elastic constants of the isotropic composite, and R is the radius of the 

embedded rigid spheres. It is seen from (3.4) that the effective mass density tends to negative 

infinity when the frequency ω approaches the lower cut-off frequency ω0 from inside the bandgap. 

In particular, it is seen from (3.6) that for given effective elastic constants of the composite, the 

lower cut-off frequency ω0 is inversely proportional to the radius R of the rigid spheres, which 

means that the lower cut-off frequency ω0 approaches infinity when the radius R becomes 

vanishingly small. Here, it is noted that the above formulas (3.6) for (ω0
2) and (3.5) for (ωu

2) reduce 

to eqs.(2) and (3) of Kinra & Li [14] for dilute inclusion distribution (with the volume fraction 

δ<<1) when ρ≈ρm and (c1)=(c1)m and (cs)=(cs)m.  

Here it should be stated that since periodic composites are a special kind of random composites, it 

is known (see e.g. [17]) that the local resonance at the lower cut-off frequency ω0, as given by the 

present model (3.6), dominates for both random and periodic composites and causes similar 

bandgap with the otherwise identical volume fraction of embedded stiff spheres. For a periodic 

composite, depending on the mass density ratio and the volume fraction of embedded spheres, the 

local resonance bandgap can be (most likely) lower than or close to, or (rarely) higher than the 

lowest Bragg bandgap. And an overlapped bandgap has a more drastic effect on wave propagation 

as the local resonance bandgap is coincident with or very close to the lowest Bragg bandgap (see 

e.g. [19]). 

In addition, the present effective medium model is limited to the cases when the characteristic 
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wavelength of the composite’s displacement field is much larger than the diameter 2R of the 

embedded rigid spheres in the random composite. Clearly, for free and forced vibration of a rigid 

sphere-reinforced metacomposite of finite dimensions (as discussed in sections 4 & 5), this “long 

wavelength” condition can usually be met almost without any meaningful restrictions, because the 

characteristic wavelength of the displacement field is largely determined by the dimensions of the 

composite which are usually a few orders of magnitude larger than the diameter of embedded rigid 

spheres (or the lattice constant of periodic composites), e.g., see Chapters 4 & 5. For transient 

wave propagation in an infinite composite, because the local resonance frequency ω0 given by (3.6) 

plays the key role in locally resonant metamaterials, this “long-wavelength” condition requests 

(2πc/ω0)>>(2R), where c is the effective sound speed of the composite. Under the present 

conditions q≤1/2 and ρs>>ρm, it is seen from (3.6) that (2πc/ω0) can be a few times larger than (2R) 

at the local resonance frequency ω0. Therefore, the “long-wavelength” assumption for the present 

model can be satisfied at the local resonance frequency ω0, and the formulas (3.5, 3.6) could be 

applicable with reasonable accuracy. For example, the experiments [13] for lead-epoxy random 

composites (ρs/ρm≈9.5, with the volume fraction δ=0.05 or 0.1 and different radii of lead spheres, 

R=0.25mm or 0.66mm) showed that the observed wave propagation is attenuated drastically due 

to the local resonance around (ωR/cs)≈1, which is very close to the value of ω0 given by the present 

model (3.6) with about 10% relative errors. In what follows, let us make more detailed comparison 

of the bandgap frequencies predicted by the present model (3.5, 3.6) with known data for several 

typical stiff sphere-reinforced polymer composites.     

3.2 Comparison to known data 

The present model is characterized by the general 3D umass-u relation (2.6) and the spring constant 

formula (2.9). Therefore, for validating the present model, it is relevant to demonstrate the validity 

and accuracy of the relation (2.6) and the formula (2.9), or eqs.(3.5, 3.6) as their consequences. To 

demonstrate the validity and accuracy of the present formulas (3.5, 3.6), let us compare their 

predicted results with some known experimental data and numerical simulations for stiff sphere-

reinforced metacomposites.  

The effective elastic constants (e.g., the effective Young’s and shear moduli E and μ) in our 

formulas can be determined by the theory of isotropic elastic composites [23, 32-34]. It is indicated 
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in most literatures [23-27, 32-34] that the effective elastic constants of the stiff sphere-reinforced 

metacomposite are mainly dependent on the volume fraction of the embedded rigid spheres. And 

the size and specific distribution of the rigid spheres have slight, or even ignorable, influence on 

the effective elastic moduli of the composite [33, 34]. So, for the simplicity, let us employ the 

refined Einstein formula (for more detailed discussion, see e.g. [23, 32, 34]) for the effective elastic 

moduli of rigid sphere-reinforced random metacomposites 

𝐸

𝐸𝑚
=

𝜇

𝜇𝑚
= 1 + 2.5𝛿 + 5𝛿2 ,                                                                                                                (3.7) 

where Em and μm are the Young’s and shear moduli of the matrix phase, respectively, and δ is the 

volume fraction of the rigid spheres. The formulas (3.7) for effective moduli of stiff sphere-

reinforced metacomposites are reasonably accurate for the cases when the elastic moduli of 

embedded spheres are much larger than that of the soft matrix phase and the volume fraction of 

the embedded spheres is not too high (for instance, not higher than 0.5). From this perspective, 

eqs.(3.7) are much applicable to our model with the assumption of “rigid spheres”. In addition, 

eqs.(3.7) assumes that the influence of the embedded rigid spheres on the Poisson ratio of the 

composite can be ignored and the effective Poisson ratio of the composite can be approximated by 

the Poisson ratio of the matrix phase [23, 32].  

a). Steel sphere-reinforced polyester: As the first example, let us consider the steel sphere-

reinforced polyester studied by Sainidou et al. [20]. For instance, it is seen from fig.1 of [20] (for 

face-centered cubic lattice, with δ=0.184 and R≈0.22a0) that the simulation values of the 

(dimensionless) bandgap are 2.32<ωa0/(cl)m<3.23, where a0 is the lattice constant, and (cl)m is the 

longitudinal wave speed of the polyester matrix. With the mass densities ρs=7800 kg/m3 for steel 

and ρm=1220 kg/m3 for polyester, and the transverse and longitudinal wave speeds for the polyester 

matrix, (cs)m=1180 m/s and (cl)m=2490 m/s, respectively, the present formulas (3.5, 3.6) give the 

bandgap 2.17 <ωa0/(cl)m< 3.38, in good agreement with the bandgap (2.32 to 3.23) given in [20] 

with relative errors less than 10%. 

b). Glass sphere-reinforced polyester: As the second example, let us consider the glass sphere-

reinforced polyester studied by Maslov & Kinra [18].With the glass mass densities ρs=2490 kg/m3, 

a comparison between the bandgap predicted by the present model (3.5, 3.6) and the experimental 

data given in Maslov & Kinra [18] based on the transmission and reflection coefficients (see their 
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figs.10 and 12, where a≈0.56mm is the radius of glass spheres, and d is the lattice constant) is 

shown in Table 3.1, where kp is the longitudinal wave number (=ω/(cl)m) and ks the transverse 

wave number (=ω/(cs)m) of the matrix, and Ω = ksd/(2π) = ωd/(2π(cs)m). It is seen from Table 3.1 

that the results predicted by the present model are in reasonable agreement with the experimental 

data of Maslov & Kinra [18] with typical relative errors less than 10% and the maximum relative 

errors around 25-30%. The most possible immediate cause of the larger errors is the use of area 

fractions of glass spheres, instead of volume fractions, to compute bandgaps. What is more, the 

glass sphere-reinforced polyester with only one layer of embedded spheres in [18] cannot be 

treated as a homogeneous elastic body, which is not equivalent to our model. However, the present 

model can still provide a reasonably accurate estimation of bandgap even for this composite with 

stiff spheres merely gathering in a small region within the matrix.   

In addition, it is verified from Table 3.1 that the bandgap frequencies for this glass sphere-

reinforced polyester composite are within the range of MHz with the radius of spheres R≈0.56mm. 

Table 3.1 Comparison between the present results and the experimental data for a glass sphere 

polyester composite [18] 

Specimens Present results by Eqs 

(3.5, 3.6) 

Experiments [18] 

(a)  R/d=0.21, δ=0.14 0.80 < kp R < 0.93 

1.28 < Ω < 1.48 

0.63 < kp R < 0.90 

1.00 < Ω < 1.41 

(b)  R/d=0.3,   

δ=0.28 

0.97 < kp R < 1.29  

1.08 < Ω < 1.45 

0.90 < kp R < 1.27 

1.00 < Ω < 1.41 

c). Lead sphere-reinforced epoxy: As the third example, let us consider the lead sphere-

reinforced epoxy studied by Kafesaki et al. [16] characterized by the modulus ratio (of sphere-to-

matrix) about 5. For instance, it is seen from fig.1 of [16] (where R is the radius of the lead spheres, 

with δ=0.262) that the bandgap is 1.5<ωR/(cs)m<2.0. With the mass densities ρs=11357 kg/m3 for 

lead and ρm=1180 kg/m3 for epoxy, and the transverse and longitudinal wave speeds for the epoxy 

matrix, (cs)m=1160 m/s and (cl)m=2540 m/s, respectively, the present formulas (3.5, 3.6) give the 

bandgap 0.92<ωR/(cs)m<1.93. For the same case, alternatively, fig.2 of [16] (with R=0.25d, where 

d is still the lattice constant) gives the bandgap 6.2<(ωd/(cs)m)<7.9, and our formulas give 
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3.68<ωd/(cs)m<7.73. Therefore, even for the moderately stiff lead spheres embedded in an epoxy 

matrix (with the modulus ratio around 5), the present model still gives useful results with 

acceptable relative errors, consistent with a basic conclusion of several previous works [14, 19]. 

These comparisons confirm the reasonable accuracy of the present simple model for stiff sphere-

reinforced random composites provided that the modulus ratio (of sphere-to-matrix) is much larger 

than unity.   
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Chapter 4 

Vibration and buckling of a rigid sphere-reinforced metacomposite 

beam 

Now let us apply the present model to study vibration and dynamic buckling of a rigid sphere-

reinforced metacomposite beam, with an emphasis on the consequences of the negative effective 

mass density and the bandgap on non-classical dynamic behavior of the composite beam. 

The equations (2.2) for the transverse deflection w(x,t) of a rigid sphere-reinforced metacomposite 

(Euler-Bernoulli) beam is of the form 

𝜌𝐴
𝜕2𝑤𝑚𝑎𝑠𝑠

𝜕𝑡2
= −𝑃

𝜕2𝑤

𝜕𝑥2
− 𝐸𝐼

𝜕4𝑤

𝜕𝑥4
 ,                                                                                                     (4.1) 

where wmass is the deflection of the mass center of the representative unit cell, while w is the 

deflection of the composite beam, ρ is the mass density (per unit volume) of the composite, E is 

the effective Young’s modulus of the composite beam, A and I are the cross-sectional area and the 

moment of cross-section of the composite beam, and P is the external axial compressive force 

applied to the beam. Here, it is stated that higher-order beam models have been used in existing 

literature on dynamics of composite beams, see e.g. a recent work [35] for an analysis of a 

Timoshenko beam with periodically distributed spring-mass resonators.  

Substituting (4.1) into the relation (2.7) gives the wmass(x,t)-w(x,t) relation   

𝑤𝑚𝑎𝑠𝑠 = 𝑤 +
𝜌𝑠

𝛽
(

1

𝜌𝐴
(𝑃

𝜕2𝑤

𝜕𝑥2
+ 𝐸𝐼

𝜕4𝑤

𝜕𝑥4
) +

𝜌𝑚

𝜌
(1 − 𝛿)

𝜕2𝑤

𝜕𝑡2
) .                                                  (4.2) 

Thus, the governing equation for the deflection w(x,t) of the metacomposite beam is given by 

𝑃 (1 +
𝜌𝑠

𝛽

𝜕2

𝜕𝑡2
)

𝜕2𝑤

𝜕𝑥2
+ 𝐸𝐼 (1 +

𝜌𝑠

𝛽

𝜕2

𝜕𝑡2
)

𝜕4𝑤

𝜕𝑥4
+ 𝜌𝐴 (1 +

𝜌𝑠

𝛽

𝜌𝑚

𝜌
(1 − 𝛿)

𝜕2

𝜕𝑡2
)

𝜕2𝑤

𝜕𝑡2
= 0 ,       (4.3) 

which can reduce to the classical elastic composite beam equation when β=∞. 

4.1 Free vibration of a hinged or cantilever beam 

For the free vibration of a hinged beam of length L with P=0, the boundary conditions are 𝑤|𝑥=0 =
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𝑤|𝑥=𝐿 = 𝑤′′|𝑥=0 = 𝑤′′|𝑥=𝐿 = 0. Let us consider the deflection of the form w(x,t)=sin(mπx/L)eiωt 

(m=1, 2…), where ω is the natural frequency and the integer m is the mode number. Then the 

above eq.(4.3) gives                          

𝐸𝐼 (1 −
𝜌𝑠

𝛽
𝜔2) (

𝑚𝜋

𝐿
)

4

= 𝜌𝐴 (1 −
𝜌𝑠

𝛽

𝜌𝑚

𝜌
(1 − 𝛿)𝜔2) 𝜔2 .                                                             (4.4) 

Let the two natural frequencies for each mode number m (≥1) be (ω1, ω2), where ω2≥ω1, 

determined by the following quadratic equation of (ω2) with P=0, 

𝑎𝜔4 + 𝑏𝜔2 + 𝑐 = 0 , 𝜔1,2
2 =

−𝑏 ∓ √𝑏2 − 4𝑎𝑐

2𝑎
= (−

𝑏

2𝑎
) (1 ∓ √1 −

4𝑎𝑐

𝑏2
) ,                         (4.5) 

where 

𝑎 =
𝐴𝜌𝑠𝜌𝑚(1 − 𝛿)

𝛽
> 0 , 𝑏 = − (𝐸𝐼

𝜌𝑠

𝛽
(

𝑚𝜋

𝐿
)

4

+ 𝜌𝐴) < 0 , 𝑐 = 𝐸𝐼 (
𝑚𝜋

𝐿
)

4

> 0 .                    (4.6) 

Since ρ≥ρm(1-δ), it follows that 

(𝐸𝐼
𝜌𝑠

𝛽
(

𝑚𝜋

𝐿
)

4

+ 𝜌𝐴)
2

≥ 4
𝐴𝜌𝑠𝜌𝑚(1 − 𝛿)

𝛽
[𝐸𝐼 (

𝑚𝜋

𝐿
)

4

]  .                                                                (4.7) 

Thus, we have b2≥4ac, and the two roots (ω2) of (4.5) are always strictly positive. In addition, it 

can be verified that the two roots (ω2) of eq.(4.5), as a function of the mode number m, have no 

stationary point at any finite value of m, and actually the two roots (ω2) of eq.(4.5) both increase 

with the integer m. Therefore, the larger natural frequency ω2 for any integer m (m≥1) is bounded 

from below by its limit value at m=0 which is equal to the upper cut-off frequency of the bandgap 

given by 

𝜔2
2 > 𝜔𝑢

2 = 𝜔0
2 (

𝜌

𝜌𝑚(1 − 𝛿)
) , 𝑚 ≥ 1 .                                                                                                (4.8) 

On the other hand, the upper limit of the smaller natural frequency ω1 can be obtained by eq.(4.5) 

with m=∞ which is equal to the lower cut-off frequency of the bandgap as 

𝜔1
2 ≤ 𝜔0

2 , 𝑚 ≥ 1 .                                                                                                                                     (4.9) 

In conclusion, the natural frequencies of the hinged rigid sphere-reinforced metacomposite beam 
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for any integer m (m≥1) always stay outside of the bandgap [ω0, ωu] defined by (3.5), independent 

of all other material and geometrical parameters, consistent with the physical concept of the 

“bandgap”. Similar phenomenon is common in metamaterial beams with local resonance, see e.g. 

[36] for an analysis on the two branches of natural frequencies of an elastic beam with distributed 

spring-mass resonators. Here, as an example, natural frequencies of a hinged steel-sphere polyester 

composite beam are shown in Fig. 4.1 for different volume fractions of the steel spheres. There 

are two separate curves with a bandgap in Fig. 4.1, unlike a traditional elastic beam whose natural 

frequency as a function of the mode number m is a single monotonically increasing curve without 

bandgap.  It is seen from Fig. 4.1 that with the given radius of rigid spheres, both the lower and 

upper cut-off frequencies ω0 and ωu increase with the volume fraction of the rigid spheres, 

consistent with the experimental data of [17, 18] (also see Table 3.1 of the present thesis). In 

particular, it is captured from Fig. 4.1 that the wavelength (2L/m) of the free vibration modes of 

the cm-sized composite beam are much larger than (2R) and the lattice constant for, say, the lowest-

order 50 modes (m≤50), which justifies the “long-wavelength” condition for the present model. 

 

Fig. 4.1 Natural frequencies (f=ω/2π) of a hinged steel sphere-polyester composite beam, as a 

function of the mode number m for different volume fractions, of a circular cross-section with 

the diameter D=1cm, the length L=10D, and the radius of steel spheres R=0.5 mm,  

where ρs= 7800 kg/m3, ρm= 1220 kg/m3, (cs)m=1180 m/s and (cl)m=2490 m/s 
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Fig. 4.2 Natural frequencies of a steel sphere-polyester composite cantilever beam, as a function 

of λ for different volume fractions, of a circular cross-section with the diameter D=1cm, the 

length L=10D, and the radius of steel spheres R=0.5 mm, where ρs= 7800 kg/m3,  

ρm= 1220 kg/m3, (cs)m=1180 m/s and (cl)m=2490 m/s 

Next, let us discuss the free vibration of a rigid sphere-reinforced metacomposite cantilever beam 

of length L with P=0. Based on the boundary conditions 𝑤|𝑥=0 =  𝑤′|𝑥=0 = 𝑤′′|𝑥=𝐿 =

𝑤′′′|𝑥=𝐿 = 0, the deflection for the cantilever becomes as (see eq.(9) in [37]) 

𝑤(𝑥, 𝑡) = 𝑊𝑚(𝑥)𝑒𝑖𝜔𝑡,       

𝑊𝑚(𝑥) =
𝑠𝑖𝑛 𝜆𝑚 − 𝑠𝑖𝑛ℎ 𝜆𝑚

𝑐𝑜𝑠 𝜆𝑚 + 𝑐𝑜𝑠ℎ 𝜆𝑚
(𝑠𝑖𝑛

𝜆𝑚𝑥

𝐿
− 𝑠𝑖𝑛ℎ

𝜆𝑚𝑥

𝐿
) + (𝑐𝑜𝑠

𝜆𝑚𝑥

𝐿
− 𝑐𝑜𝑠ℎ

𝜆𝑚𝑥

𝐿
) ,                           

𝑐𝑜𝑠 𝜆𝑚 𝑐𝑜𝑠ℎ 𝜆𝑚 = −1 ,                                                                                                                         (4.10) 

where the constants λ1= 1.875, λ2= 4.694, and λm ≈ (2m-1) π/2 for m≥3 (m=1, 2…) [38, 39]. 

Thus, after substituting w(x,t) for the cantilever into the above eq.(4.3), it is given 

𝐸𝐼 (1 −
𝜌𝑠

𝛽
𝜔2) (

𝜆𝑚

𝐿
)

4

= 𝜌𝐴 (1 −
𝜌𝑠

𝛽

𝜌𝑚

𝜌
(1 − 𝛿)𝜔2) 𝜔2                                                             (4.11) 

so that the coefficients, a, b and c, in eq.(4.5) are as follows: 
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𝑎 =
𝐴𝜌𝑠𝜌𝑚(1 − 𝛿)

𝛽
> 0 , 𝑏 = − (𝐸𝐼

𝜌𝑠

𝛽
(

𝜆𝑚

𝐿
)

4

+ 𝜌𝐴) < 0 , 𝑐 = 𝐸𝐼 (
𝜆𝑚

𝐿
)

4

> 0 .                   (4.12) 

Obviously, b2-4ac≥0 still holds, and the two roots (ω2) are positive for the cantilever beam. Fig. 

4.2 exhibits natural frequencies of a steel-sphere polyester composite cantilever beam, which are 

also two sets of curves separated by the bandgap. The two roots (ω2) increase with λm without any 

stationary point, however, they are bounded by the lower and upper cut-off frequency, ω0 and ωu, 

as well. As a result, the bandgap behavior of the cantilever is like that of the hinged beam, where 

ω0 and ωu are consistent with the experimental data of [20] at δ=0.184. 

4.2 Dynamic buckling of a hinged beam  

Now let us examine the implications of the effective mass density to buckling behavior of a hinged 

stiff sphere-reinforced metacomposite beam under a constant compressive force P>0. It is well 

known that dynamic and static criteria give exactly same critical buckling load for a classical 

elastic beam under such a constant (dead) compressive load. Here, it is of interest to examine if 

the frequency-dependent effective dynamic mass density, discussed in section 3.1, could change 

this conclusion for a rigid sphere-reinforced metacomposite beam. For dynamic buckling of a 

hinged beam of length L, let us consider the deflection of the form w(x,t)=sin(mπx/L)eiωt (m=1,2…) 

for which the eq.(4.3) gives 

𝐸𝐼 (1 −
𝜌𝑠

𝛽
𝜔2) (

𝑚𝜋

𝐿
)

4

− 𝜌𝐴 (1 −
𝜌𝑠

𝛽

𝜌𝑚

𝜌
(1 − 𝛿)𝜔2) 𝜔2 = 𝑃 (1 −

𝜌𝑠

𝛽
𝜔2) (

𝑚𝜋

𝐿
)

2

 .            (4.13) 

Thus, the eigen-equation for (ω2) with P>0 is given by 

𝑎𝜔4 + 𝑏𝜔2 + 𝑐 = 0 ,                                                                                                                             (4.14) 

where 

𝑎 =
𝐴𝜌𝑠𝜌𝑚(1 − 𝛿)

𝛽
> 0, 𝑏 = (𝑃

𝜌𝑠

𝛽
(

𝑚𝜋

𝐿
)

2

− 𝐸𝐼
𝜌𝑠

𝛽
(

𝑚𝜋

𝐿
)

4

− 𝜌𝐴), 

𝑐 = 𝐸𝐼 (
𝑚𝜋

𝐿
)

4

− 𝑃 (
𝑚𝜋

𝐿
)

2

.                                                                                                                  (4.15) 

It is clear that the N&S condition for dynamic stability of the compressed composite beam is that 

the two roots of (ω2) must be non-negative real numbers (ω2≥0), which are equivalent to   
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𝑏 ≤ 0 , 𝑐 ≥ 0 , 𝑏2 ≥ 4𝑎𝑐 ,                                                                                                                      (4.16) 

or, equivalently 

𝜌𝐴 ≥ [𝑃 − 𝐸𝐼 (
𝑚𝜋

𝐿
)

2

] (
𝑚𝜋

𝐿
)

2

 , 

𝐸𝐼 (
𝑚𝜋

𝐿
)

2

≥ 𝑃 ,                                                                                                                                       (4.17) 

(𝐸𝐼
𝜌𝑠

𝛽
(

𝑚𝜋

𝐿
)

4

− 𝑃
𝜌𝑠

𝛽
(

𝑚𝜋

𝐿
)

2

+ 𝜌𝐴)
2

≥ 4
𝐴𝜌𝑠𝜌𝑚(1 − 𝛿)

𝛽
[𝐸𝐼 (

𝑚𝜋

𝐿
)

4

− 𝑃 (
𝑚𝜋

𝐿
)

2

] .             

Note that 

(𝐸𝐼
𝜌𝑠

𝛽
(

𝑚𝜋

𝐿
)

4

− 𝑃
𝜌𝑠

𝛽
(

𝑚𝜋

𝐿
)

2

− 𝜌𝐴)
2

≥ 0 , 𝜌 ≥ 𝜌𝑚(1 − 𝛿) ,                                                       (4.18) 

it is verified that the 2nd condition of (4.17) implies that 

(𝐸𝐼
𝜌𝑠

𝛽
(

𝑚𝜋

𝐿
)

4

− 𝑃
𝜌𝑠

𝛽
(

𝑚𝜋

𝐿
)

2

+ 𝜌𝐴)
2

≥ 4𝐴𝜌 (
𝜌𝑠

𝛽
) [𝐸𝐼 (

𝑚𝜋

𝐿
)

4

− 𝑃 (
𝑚𝜋

𝐿
)

2

] 

≥ 4
𝐴𝜌𝑠𝜌𝑚(1 − 𝛿)

𝛽
[𝐸𝐼 (

𝑚𝜋

𝐿
)

4

− 𝑃 (
𝑚𝜋

𝐿
)

2

] .                                                                                  (4.19) 

Therefore, it is concluded that the listed 3 conditions (4.17) are always met provided the 2nd one 

of (4.17) is met. Thus, the stability condition is given by the 2nd condition (which is identical to 

the well-known classical critical condition) as follows 

𝐸𝐼 (
𝜋

𝐿
)

2

≥ 𝑃 , (𝑚 = 1).                                                                                                                         (4.20) 

Therefore, the effective dynamic mass density gives exactly the same critical buckling load as the 

classical static criterion for a rigid sphere-reinforced metacomposite beam. On the other hand, 

when the critical condition (4.20) with m=1 is met, it is seen from (4.15) that c=0 and one of the 

two roots (ω2) of eq.(4.14) is zero and the other non-zero root (ω2) of eq.(4.14) is the upper cut-

off frequency given by 

𝜔𝑢
2 =

𝛽

𝜌𝑠
(

𝜌

𝜌𝑚(1 − 𝛿)
) .                                                                                                                         (4.21) 
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The deflection ratio w/wmass corresponding to the critical condition (4.20) is determined by eq.(4.1), 

which gives ∂wmass/∂t=0. Thus, it follows from (2.4) that the deflection ratio w/ws (of composite-

to-sphere) corresponding to the critical condition (4.20) is given by 

𝑤

𝑤𝑠
=

−𝜌𝑠𝛿

𝜌𝑚(1 − 𝛿)
=

−𝑀𝑠

𝑀𝑚
 .                                                                                                                    (4.22) 

where (Ms/Mm) is the mass ratio of the rigid-sphere phase to the matrix phase. It is concluded that 

when the buckling is initiated at the critical state determined by the condition (4.20), the sign of 

the deflection of the embedded rigid spheres is opposite to the sign of the deflection of the 

composite beam, and their deflection ratio is inversely proportional to their mass ratio. In particular, 

when the mass ratio (Ms/Mm) of the rigid-sphere phase to the matrix phase is vanishingly small, 

the buckling is characterized by the localized deflection of the embedded rigid spheres while the 

displacement of the composite remains vanishingly small, a phenomenon somewhat similar to 

“local buckling” discussed in the literature (see e.g. [40, 41]). This result distinguishes the present 

metamaterial beam model from the classical composite beam model, the latter ignores the jump 

(umass-u) between the displacement of embedded rigid spheres and the displacement of the 

composite beam and then ∂wmass/∂t=0 implies ∂w/∂t=0.   

4.3 Forced vibration driven by vibrating ends 

In this section, we will analyze the forced vibration of a rigid sphere-reinforced metacomposite 

hinged or cantilever beam under vibrating ends through eq.(4.3) combined with the relevant 

boundary conditions.    

4.3.1 A hinged beam with two vibrating ends [42, 43] 

 

Fig. 4.3 A schematic diagram of a hinged beam driven by two vibrating ends 
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Firstly, let us consider a hinged rigid sphere-reinforced metacomposite beam of length L driven by 

two identical harmonically vibrating ends at x=0 & x=L with P=0 (shown as Fig. 4.3). Thus, we 

have 

𝐸𝐼 (1 +
𝜌𝑠

𝛽

𝜕2

𝜕𝑡2
)

𝜕4𝑤

𝜕𝑥4
+ 𝜌𝐴 (1 +

𝜌𝑠

𝛽

𝜌𝑚

𝜌
(1 − 𝛿)

𝜕2

𝜕𝑡2
)

𝜕2𝑤

𝜕𝑡2
= 0 ,                                                       

𝑤|𝑥=0 = 𝑤|𝑥=𝐿 = 𝑤𝐻 sin 𝜔𝑡 , 𝑤′′|𝑥=0 = 𝑤′′|𝑥=𝐿 = 0,                                                                 (4.23)    

where wH is the amplitude of the vibrating ends. Then, the stimulated steady state forced vibration 

of the hinged rigid sphere-reinforced metacomposite beam is of the form   

𝑤(𝑥, 𝑡) = 𝑓(𝑥) sin 𝜔𝑡 , 𝑓(𝑥) = 𝑤𝐻 (1 + ∑ 𝑎𝑘

∞

𝑘=1

sin
𝑘𝜋𝑥

𝐿
) ,                                                         (4.24) 

where ak (k = 1,2,3, ⋯) are some real constants. Substituting (4.24) into eq.(4.23), and using the 

Fourier series expansion 

1 = ∑
2[1 − cos(𝑘𝜋)]

𝑘𝜋

∞

𝑘=1

sin
𝑘𝜋𝑥

𝐿
 , 0 ≤ 𝑥 ≤ 𝐿 ,                                                                                (4.25) 

we can obtain  

𝑎𝑘 =
𝜌𝐴𝜔2 (1 −

𝜌𝑠

𝛽
𝜌𝑚

𝜌
(1 − 𝛿)𝜔2)

2[1 − cos(𝑘𝜋)]
𝑘𝜋

𝐸𝐼 (1 −
𝜌𝑠

𝛽
𝜔2) (

𝑘𝜋
𝐿 )

4

− 𝜌𝐴 (1 −
𝜌𝑠

𝛽
𝜌𝑚

𝜌
(1 − 𝛿)𝜔2) 𝜔2

 .                                                 (4.26) 

Substituting eq.(4.26) into (4.24), the forced vibration of the hinged rigid sphere-reinforced 

metacomposite beam driven by two vibrating ends can be evaluated, as detailed in Section 4.3.2. 

To the best of our knowledge, relevant data for hinged particle-reinforced metamaterial beams 

driven by vibrating ends are unavailable, thus verification of the above eq.(4.24) with (4.26) by 

comparing with known data fails to proceed. However, the methodology applied here can be found 

in existing literature. For example, our eq.(4.24) and the above Fourier series expansion (4.25) are 

of the same form as eqs. (14) & (15) of [42] or (9) & (10) of [43]. The derived eq.(4.24) with (4.26) 

thus are valid to some extent and applicable in our study to estimate the forced vibration of the 

hinged composite beam. 
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4.3.2 Vibration isolation of a hinged beam 

It is known that vibration isolation is one of the most remarkable physical phenomena of 

metamaterials [43-45] which could find significant application to practical problems. Here, we 

investigate the vibration isolation of a hinged steel sphere-polyester composite beam driven by 

two vibrating ends based on the above formulas (4.24, 4.26). We consider three cases: (a) 

excitation frequency lower than the bandgap, (b) excitation frequency within the bandgap, and (c) 

excitation frequency higher than the bandgap. Through eqs.(3.5, 3.6), we calculate the bandgap of 

the steel sphere-polyester composite with the volume fraction δ=0.184 and other material 

parameters given in [20] as (ω0, 1.56ω0) equal to that shown in Fig. 4.1.  

Then, the forced vibration modes of a hinged steel sphere-polyester composite beam driven by its 

two vibrating ends are plotted in Fig. 4.4. It is easy to find in Fig. 4.4(b) that when the excitation 

frequency falls within the bandgap, the forced vibration is highly localized near two vibrating ends 

while vanishingly small in other parts, which is a typical phenomenon of metamaterials called 

“vibration isolation” [43-45]. On the contrary, the forced vibration under excitation frequencies 

out of the bandgap spreads into the entire beam as shown in Fig. 4.4(a) & (c). Additionally, it is 

seen from Fig. 4.4(a) & (c) that the wavelength of the forced vibration periodic modes is much 

larger than (2R), which meets the “long-wavelength” condition. 

Next, let us study the dependence of the width of the localized vibrational mode on the length of 

the hinged beam under the excitation frequency within the bandgap. Thereby, the forced 

vibrational modes of a hinged beam of various lengths driven by two vibrating ends within the 

bandgap are exhibited in Fig. 4.5. It can be observed from Fig. 4.5 that, for a given bandgap 

frequency, the width of the localized mode at each vibrating end is almost constant, about 0.6D. 

Thus, the width of the localized mode is independent of the length of the hinged rigid sphere-

reinforced metacomposite beam driven by its two vibrating ends. 
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     (a) 

 

       (b) 

 

      (c) 

Fig. 4.4 Forced vibration mode of a hinged steel sphere-polyester composite beam driven by two 

vibrating ends under different excitation frequencies ω: (a) ω < ω0, (b) ω0 < ω < ωu and (c) ω > 

ωu, where D=1cm, L=10D, R=0.5 mm, ρs= 7800 kg/m3, ρm= 1220 kg/m3, (cs)m=1180 m/s, 

(cl)m=2490 m/s and δ=0.184  
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Fig. 4.5 Forced vibrational mode of a hinged steel sphere-polyester composite beam driven by 

two vibrating ends with different length-to-diameter ratio, where ω=0.90ωu, D=1cm, R=0.5 mm, 

ρs= 7800 kg/m3, ρm= 1220 kg/m3, (cs)m=1180 m/s, (cl)m=2490 m/s and δ=0.184 

4.3.3 A cantilever beam with a vibrating built-in end 

 

Fig. 4.6 A schematic diagram of a cantilever beam driven by a vibrating built-in end 

Next, let us analyze the forced vibration of a rigid sphere-reinforced metacomposite cantilever 

beam of length L with a vibrating built-in end at x=0 (shown as Fig. 4.6), which means 

𝑤|𝑥=0 = 𝑤𝐶 sin 𝜔𝑡 , 𝑤′|𝑥=0 = 𝑤′′|𝑥=𝐿 = 𝑤′′′|𝑥=𝐿 = 0,                                                                (4.27) 

where wC is the amplitude of the vibrating built-in end. Thus, the stimulated steady state forced 

vibration of the rigid sphere-reinforced composite cantilever beam is of the form (see eq.(9) in 

[37]) 
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𝑤(𝑥, 𝑡) = 𝑓(𝑥) sin 𝜔𝑡,                                                                                                                      

𝑓(𝑥) = 𝑤𝐶 (1 + ∑ 𝑏𝑘𝜑𝑘

∞

𝑘=1

) ,                                                                                                           

𝜑𝑘 =
𝑠𝑖𝑛 𝜆𝑘 − 𝑠𝑖𝑛ℎ 𝜆𝑘

𝑐𝑜𝑠 𝜆𝑘 + 𝑐𝑜𝑠ℎ 𝜆𝑘
(𝑠𝑖𝑛

𝜆𝑘𝑥

𝐿
− 𝑠𝑖𝑛ℎ

𝜆𝑘𝑥

𝐿
) + (𝑐𝑜𝑠

𝜆𝑘𝑥

𝐿
− 𝑐𝑜𝑠ℎ

𝜆𝑘𝑥

𝐿
) ,                              (4.28) 

𝑐𝑜𝑠 𝜆𝑘 𝑐𝑜𝑠ℎ 𝜆𝑘 = −1 ,                                                                                                                            

where bk and λk (k = 1,2,3, ⋯) are some real constants, and λ1= 1.875, λ2= 4.694 and λk≈ (2k-1) π/2 

for k≥3 [38, 39]. Substituting (4.28) into eq.(4.3) with P=0, and since the mode shape φk(x) satisfies 

the orthogonality condition (see eq.(11) in [37]) and its integral is demonstrated as follows: 

∫ 𝜑𝑘𝜑𝑚 𝑑𝑥
𝐿

0

= 𝐿𝛿𝑘𝑚 , ∫ 𝜑𝑘 𝑑𝑥
𝐿

0

=
2𝐿

𝜆𝑘

𝑠𝑖𝑛 𝜆𝑘 − 𝑠𝑖𝑛ℎ 𝜆𝑘

𝑐𝑜𝑠 𝜆𝑘 + 𝑐𝑜𝑠ℎ 𝜆𝑘
 ,                                                           (4.29) 

where δkm (k, m = 1,2,3, ⋯) is the Kronecker delta, we can obtain 

𝑏𝑘 =
𝜌𝐴𝜔2 (1 −

𝜌𝑠

𝛽
𝜌𝑚

𝜌
(1 − 𝛿)𝜔2)

2
𝜆𝑘

𝑠𝑖𝑛 𝜆𝑘 − 𝑠𝑖𝑛ℎ 𝜆𝑘

𝑐𝑜𝑠 𝜆𝑘 + 𝑐𝑜𝑠ℎ 𝜆𝑘

𝐸𝐼 (1 −
𝜌𝑠

𝛽
𝜔2) (

𝜆𝑘

𝐿
)

4

− 𝜌𝐴 (1 −
𝜌𝑠

𝛽
𝜌𝑚

𝜌
(1 − 𝛿)𝜔2) 𝜔2

 .                                                 (4.30) 

Substituting eq.(4.30) into (4.28), the forced vibration of the rigid sphere-reinforced 

metacomposite cantilever beam driven by a vibrating built-in end can be evaluated, as detailed in 

Section 4.3.4. 

Now let us validate the above formulas (4.28, 4.30) by comparing with the known data for a 

metamaterial cantilever beam consisting of lead spheres coated with rubber in an epoxy matrix 

shown as fig. 1 of [46]. From our eq.(4.28) and the eq.(24) of [46], the transmission coefficient 

can be computed as  

𝑇(𝜔) = 20 lg
𝑓(𝐿)

𝑤𝐶
 .                                                                                                                               (4.31) 

However, an additional silicon rubber coating distinguishes the metamaterial beam studied in [46] 

from our model. So only a qualitative comparison is available here rather than the quantitative 

comparison like what we did in our Section 3.2. Since the elastic modulus of the coating is much 
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lower than that of the matrix, our eq.(2.9) cannot give an accurate spring constant β0 for this case. 

Instead, we may evaluate β0 according to its definition and the common Hooke’s Law as  

1

𝛽0
= ∫

1

𝐸𝑟(4𝜋𝑟2)

𝑅2

𝑅1

𝑑𝑟 ⇒  𝛽0 =
4𝜋𝐸𝑟𝑅1𝑅2

𝑅2 − 𝑅1
, 𝛽 =

𝛽0

𝑉𝑠𝑝ℎ𝑒𝑟𝑒
=

3𝐸𝑟𝑅2

(𝑅2 − 𝑅1)𝑅1
2  ,                          (4.32) 

where Er is the Young’s modulus of silicon rubber coating (=1.078×105 Pa), and R1 & R2 are 

respectively the inside and outside radius of the layer of rubber coating (R1=3mm, R2=3.5mm) [46].  

With the given material and geometric parameters in [46] and some other formulas in our previous 

chapters, the present formulas (4.28, 4.30) give the result as shown in Fig. 4.7. It is found that the 

shape of our curve resembles that in fig. 4(a) of [46] despite different resonance frequencies. Thus, 

the result predicted by our model is in qualitative agreement with the data given by [46], which 

confirms the reasonable validity of our formulas (4.28, 4.30).  

 

Fig. 4.7 Transmission coefficient of the metamaterial cantilever beam [46] consisting of lead 

spheres, silicon rubber coating and epoxy matrix under different excitation frequencies, where 

L=1 m, A=300 mm2, I=22500 mm4, R=3 mm, ρs= 11600 kg/m3, ρm= 1180 kg/m3,  

Em=4.252×109 Pa and δ=0.113 
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4.3.4 Vibration isolation of a cantilever beam 

The vibration isolation of a steel sphere-polyester composite cantilever beam driven by a vibrating 

built-in end is presented in Fig. 4.8 based on formulas (4.28, 4.30). Here, we still consider three 

cases of the excitation frequency: (a) lower than the bandgap, (b) within the bandgap, and (c) 

higher than the bandgap.  

For the case within the bandgap in Fig. 4.8(b), forced vibration modes of the cantilever beam are 

also highly localized near the vibrating end and vanishingly small in other sites except the tiny 

fluctuations near the free end. However, the trivial waves near the free end might vanish as the 

excitation frequency approaches the upper cut-off frequency ωu, say, at ω=1.55ω0 in Fig. 4.8(b). 

When the excitation frequency is out of the bandgap, forced vibration modes in Fig. 4.8(a) & (c) 

spread into the entire beam, though, with irregularity and attenuation near the free end. And the 

vibrational waves could be more periodic and less weakened at lower excitation frequencies in 

either Fig. 4.8(a) or (c). Besides, the wavelength of the periodic waves in Fig. 4.8(a) & (c) is still 

much larger than (2R), which confirms the “long-wavelength” application of the present model. In 

a word, the vibration isolation phenomenon is visible on a rigid sphere-reinforced metacomposite 

cantilever beam driven by a vibrating built-in end at bandgap frequencies. 

Let us also check whether the width of the localized mode at a given bandgap frequency is related 

to the length of the metacomposite cantilever beam. Fig. 4.9 depicts the forced vibrational modes 

of a steel sphere-polyester composite cantilever beam with different lengths driven by a vibrating 

built-in end within the bandgap. We may find from Fig. 4.9 that the width of the localized mode 

near the vibrating built-in end is approximately equal to 0.7D. Consequently, the width of the 

localized mode is independent of the length of a rigid sphere-reinforced metacomposite cantilever 

beam driven by a vibrating built-in end. 
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       (a) 

 

       (b) 

 

  (c)  

Fig. 4.8 Forced vibration mode of a steel sphere-polyester composite cantilever beam driven by a 

vibrating built-in end under different excitation frequencies ω: (a) ω < ω0, (b) ω0 < ω < ωu and 

(c) ω > ωu, where D=1cm, L=10D, R=0.5 mm, ρs= 7800 kg/m3, ρm= 1220 kg/m3, (cs)m=1180 m/s, 

(cl)m=2490 m/s and δ=0.184  
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Fig. 4.9 Forced vibrational mode of a steel sphere-polyester composite cantilever beam driven by 

a vibrating built-in end with different length-to-diameter ratio, where ω=0.90ωu, D=1cm,  

R=0.5 mm, ρs= 7800 kg/m3, ρm= 1220 kg/m3, (cs)m=1180 m/s, (cl)m=2490 m/s and δ=0.184 

4.4 Forced vibration of a hinged beam driven by an external harmonic force [42, 43] 

4.4.1 Forced vibration driven by a point force at midway 

 

Fig. 4.10 A schematic diagram of a hinged beam driven by a point force at midway 

Let us consider an external harmonic force q(x,t)=q(x)sinωt applied on a hinged rigid sphere-

reinforced metacomposite beam, and so the transverse deflection is governed by the equation  

𝜌𝐴
𝜕2𝑤𝑚𝑎𝑠𝑠

𝜕𝑡2
= −𝑃

𝜕2𝑤

𝜕𝑥2
− 𝐸𝐼

𝜕4𝑤

𝜕𝑥4
+ 𝑞(𝑥, 𝑡) .                                                                                  (4.33) 



33 
 

The external force q(x) can always be expanded as 

𝑞(𝑥) = ∑ 𝑄𝑘

∞

𝑘=1

sin
𝑘𝜋𝑥

𝐿
 ,                                                                                                                        (4.34) 

where Qk is the Fourier coefficient. 

For example, for a point force Q0 applied at the midway, x=L/2, of the hinged beam (see Fig. 4.10),  

𝑄𝑘 =
2

𝐿
𝑄0 sin

𝑘𝜋

2
 , (𝑘 = 1, 2, 3 … … ).                                                                                                (4.35) 

At this time, the steady-state forced vibration of a hinged rigid sphere-reinforced metacomposite 

beam can be given by 

𝑤(𝑥, 𝑡) = 𝑓(𝑥) sin 𝜔𝑡 , 𝑓(𝑥) = ∑ 𝑐𝑘

∞

𝑘=1

sin
𝑘𝜋𝑥

𝐿
 ,                                                                             (4.36) 

where ck (k = 1,2,3, ⋯) are some real constants. Substituting (4.33, 4.34) and (4.36) into the relation 

(2.7) with P=0, the coefficients ck are computed as  

𝑐𝑘 =
(1 −

𝜌𝑠

𝛽
𝜔2) 𝑄𝑘

𝐸𝐼 (1 −
𝜌𝑠

𝛽
𝜔2) (

𝑘𝜋
𝐿 )

4

− 𝜌𝐴 (1 −
𝜌𝑠

𝛽
𝜌𝑚

𝜌
(1 − 𝛿)𝜔2) 𝜔2

 .                                                 (4.37) 

Substituting eq.(4.37) into (4.36), the forced vibration of the hinged rigid sphere-reinforced 

metacomposite beam driven by a point force applied at its midpoint can be evaluated, as detailed 

in Section 4.4.2. 

To the best of our knowledge, no relevant data is available for a comparison concerning the forced 

vibration of the hinged particle-reinforced metamaterial beam under a point force. However, our 

eq.(4.36) and expression of the midpoint force are of the same form as eqs.(12) & (10) with (11) 

of [42] or (2) & (14) with (15) of [43]. So, the above derivation for the forced vibration of the 

hinged metacomposite beam driven by a point force at midway is validated to some extent. 

4.4.2 Vibration isolation under a point force at midway  

Let us still consider a hinged steel sphere-polyester composite beam, however, driven by a point 

force at its midway. Likewise, three cases of the excitation frequency are discussed here: (a) below, 
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(b) within and (c) above the bandgap (as shown in Fig. 4.11).  

What is plotted in Fig. 4.11 is the forced vibration of a hinged steel sphere-polyester composite 

beam driven by a point force at midway based on eqs.(4.36, 4.37). From Fig. 4.11(b), we can find 

that, for bandgap frequencies, a peak appears at the midpoint where the external force is applied 

while the forced vibration is vanishingly small in all other parts. In addition, the maximum 

deflection at the midpoint increases with the excitation frequency within the bandgap, which is 

further illustrated by Fig. 4.12. However, for excitation frequencies below or above the bandgap 

shown as Fig. 4.11(a) & (c), the forced vibration always spreads into the entire hinged beam. It is 

also verified that the wavelength of the forced vibration modes in Fig. 4.11(a) & (c) is much larger 

than (2R), which satisfies the “long-wavelength” condition. Moreover, Fig. 4.13 demonstrates that 

the amplitude of the forced vibration linearly increases with the magnitude of the applied force 

under a given excitation frequency. 

Like Fig. 4.5 & 4.9, Fig. 4.14 presents the effect of the length of the hinged beam on the forced 

vibrational mode under an external harmonic force with the excitation frequency within the 

bandgap. The width of the localized mode around the midpoint in Fig. 4.14 is approximately equal 

to D for a given harmonic force and excitation frequency within the bandgap. Therefore, the width 

of the localized mode is independent of the length of the hinged rigid sphere-reinforced 

metacomposite beam driven by a point force at midway. Also, the width of the localized mode is 

unaffected by the magnitude of the applied excitation under a given bandgap frequency as shown 

in Fig. 4.15. Besides, the length of the hinged beam has no impact on the maximum deflection at 

the midpoint as well.  

As a result, a hinged rigid sphere-reinforced metacomposite beam driven by a point force at 

midway can exhibit the evident vibration isolation behavior and the relevant phenomena appear 

like those under vibrating ends. 



35 
 

 

     (a) 

 

                                                                         (b)  

 

(c)  

Fig. 4.11 Forced vibration mode of a hinged steel sphere-polyester composite beam driven 

by a point force at its midway under different excitation frequencies ω: (a) ω < ω0, (b) ω0 < 

ω < ωu and (c) ω > ωu, where D=1 cm, L=10D, R=0.5 mm, ρs= 7800 kg/m3, ρm= 1220 kg/m3, 

(cs)m=1180 m/s, (cl)m=2490 m/s, δ=0.184 and Q0=80 kN  
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Fig 4.12 Maximum deflection of a hinged steel sphere-polyester composite beam driven by a 

point force at its midway under different excitation frequencies within the bandgap, where 

D=1 cm, L=10D, R=0.5 mm, ρs= 7800 kg/m3, ρm= 1220 kg/m3, (cs)m=1180 m/s,  

(cl)m=2490 m/s, δ=0.184 and Q0=80 kN 

 

(a)                                                                        (b) 

Fig. 4.13 Amplitude of the forced vibration of a hinged steel sphere-polyester composite 

beam at (a) x/L=0.5 & (b) x/L=0.8 under different values of the midpoint force Q0, where 

D=1 cm, L=10D, R=0.5 mm, ρs= 7800 kg/m3, ρm= 1220 kg/m3, (cs)m=1180 m/s, (cl)m=2490 

m/s and δ=0.184 
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Fig. 4.14 Forced vibrational mode of a hinged steel sphere-polyester composite beam driven by a 

point force at its midway with different length-to-diameter ratio, where ω=0.90ωu, D=1 cm, 

R=0.5 mm, ρs= 7800 kg/m3, ρm= 1220 kg/m3, (cs)m=1180 m/s, (cl)m=2490 m/s, δ=0.184 and 

Q0=80 kN 

 

Fig. 4.15 Forced vibrational mode of a hinged steel sphere-polyester composite beam under 

different values of the midpoint force Q0, where ω=0.90ωu, D=1 cm, L=10D, R=0.5 mm,  

ρs= 7800 kg/m3, ρm= 1220 kg/m3, (cs)m=1180 m/s, (cl)m=2490 m/s and δ=0.184  
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Chapter 5  

Vibration of a rigid sphere-reinforced metacomposite rod  

To demonstrate the efficiency of the present model, let us apply the model to study axial motion 

of a rigid sphere-reinforced composite rod [47-50]. On using (2.6) and the 1D form of eq.(2.2)  

𝜌𝐴
𝜕2𝑢𝑚𝑎𝑠𝑠

𝜕𝑡2
= 𝐸𝐴

𝜕2𝑢

𝜕𝑥2
+ 𝐹(𝑥, 𝑡) ,                                                                                                         (5.1) 

where A is the cross-sectional area of the rod, and umass(x,t) is expressed in terms of u(x,t) as 

𝑢𝑚𝑎𝑠𝑠 = 𝑢 +
𝜌𝑠

𝛽

𝜌𝑚

𝜌
(1 − 𝛿)

𝜕2𝑢

𝜕𝑡2
−

𝜌𝑠

𝛽𝜌
[𝐸

𝜕2𝑢

𝜕𝑥2
+

𝐹(𝑥, 𝑡)

𝐴
] ,                                                             (5.2) 

where F(x,t) is the external axial force (per unit axial length) applied to the rod, and umass(x,t) is 

the axial displacement of the mass center of the representative unit cell, while u(x,t) is the axial 

displacement of the composite rod. Substituting this expression (5.1) to the above eq.(5.2), the 

equation for u(x,t) is given as follows  

𝜌 (1 +
𝜌𝑠

𝛽

𝜌𝑚

𝜌
(1 − 𝛿)

𝜕2

𝜕𝑡2
)

𝜕2𝑢

𝜕𝑡2
= 𝐸 (1 +

𝜌𝑠

𝛽

𝜕2

𝜕𝑡2
)

𝜕2𝑢

𝜕𝑥2
+ (1 +

𝜌𝑠

𝛽

𝜕2

𝜕𝑡2
)

𝐹

𝐴
 .                              (5.3) 

Thus, the effective mass density given by (5.3) is of the form  

𝜌𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = 𝜌𝑚(1 − 𝛿) [1 +
𝛿𝜌𝑠

𝜌𝑚(1 − 𝛿)
(

𝜔0
2

𝜔0
2 − 𝜔2

)] ,                                                                  (5.4) 

which is coincident with (3.4) and becomes negative in the bandgap defined by (3.5). 

5.1 Free vibration of a metacomposite rod 

For the free vibration of a rigid sphere-reinforced metacomposite rod of length L fixed at x=0 with 

F=0, 𝑢|𝑥=0 =  𝑢′|𝑥=𝐿 = 0. Thus, let us consider its axial displacement as  

𝑢(𝑥, 𝑡) = sin
(2𝑚 − 1)𝜋𝑥

2𝐿
𝑒𝑖𝜔𝑡 , (𝑚 = 1, 2 … ).                                                                                 (5.5) 

Then, the above eq.(5.3) gives                          
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𝐸 (1 −
𝜌𝑠

𝛽
𝜔2) (

(2𝑚 − 1)𝜋

2𝐿
)

2

= 𝜌 (1 −
𝜌𝑠

𝛽

𝜌𝑚

𝜌
(1 − 𝛿)𝜔2) 𝜔2 .                                                   (5.6) 

Let the two natural frequencies for each mode number m (≥1) be (ω1, ω2), where ω2≥ω1, 

determined by the following equation of (ω2)  

𝑎𝜔4 + 𝑏𝜔2 + 𝑐 = 0 , 𝜔1,2
2 =

−𝑏 ∓ √𝑏2 − 4𝑎𝑐

2𝑎
= (−

𝑏

2𝑎
) (1 ∓ √1 −

4𝑎𝑐

𝑏2
) ,                         (5.7) 

where 

𝑎 =
𝜌𝑠𝜌𝑚(1 − 𝛿)

𝛽
> 0, 𝑏 = − (𝐸

𝜌𝑠

𝛽
(

(2𝑚 − 1)𝜋

2𝐿
)

2

+ 𝜌) < 0, 𝑐 = 𝐸 (
(2𝑚 − 1)𝜋

2𝐿
)

2

> 0. (5.8) 

Since ρ≥ρm(1-δ), it follows that 

(𝐸
𝜌𝑠

𝛽
(

(2𝑚 − 1)𝜋

2𝐿
)

2

+ 𝜌)

2

≥ 4
𝜌𝑠𝜌𝑚(1 − 𝛿)

𝛽
[𝐸 (

(2𝑚 − 1)𝜋

2𝐿
)

2

] .                                          (5.9) 

 

Fig. 5.1 Natural frequencies of a steel sphere-polyester composite rod, as a function of the mode 

number m for different volume fractions, with the length L=5 cm and the radius of steel spheres 

R=0.5 mm, where ρs= 7800 kg/m3, ρm= 1220 kg/m3, (cs)m=1180 m/s and (cl)m=2490 m/s 
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So, b2-4ac≥0 holds through (5.9), and the two roots (ω2) of (5.7) are strictly positive and bounded 

by lower and upper cut-off frequencies, ω0 and ωu. Fig. 5.1 shows the natural frequencies of a 

steel-sphere polyester composite rod, which stay outside of the bandgap [ω0, ωu] as well. And the 

bandgap exhibited in Fig. 5.1 is same as that in Fig. 4.1 or 4.2, which is determined by formulas 

(3.5, 3.6), independent of all other material and geometrical parameters. And ω0 & ωu are still 

consistent with the experimental data of [20] at δ=0.184 and increase with the volume fraction of 

the rigid spheres.  

5.2 Vibration isolation of a metacomposite rod 

 

Fig. 5.2 A schematic diagram of a rod with a fixed end and driven by a harmonic axial 

displacement at its free end 

To demonstrate vibration isolation of a stiff sphere-reinforced metacomposite rod, let us examine 

the forced vibration of the composite rod of length L fixed at x=0 and driven by a harmonic axial 

displacement at its free end (x=L) with F=0 (see Fig. 5.2). Thus, we have 

𝜌 (1 +
𝜌𝑠

𝛽

𝜌𝑚

𝜌
(1 − 𝛿)

𝜕2

𝜕𝑡2
)

𝜕2𝑢

𝜕𝑡2
= 𝐸 (1 +

𝜌𝑠

𝛽

𝜕2

𝜕𝑡2
)

𝜕2𝑢

𝜕𝑥2
 , 

𝑢|𝑥=0 = 0 , 𝑢|𝑥=𝐿 = 𝑢𝐿 sin 𝜔𝑡 .                                                                                                          (5.10) 

where uL is a constant. In particular, for a classical elastic composite rod (with β=∞), the forced 

vibration driven by the end displacement is given by 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥) sin 𝜔𝑡 , 𝑢0(𝑥) = 𝑢𝐿

sin [√
𝜌
𝐸 𝜔𝑥]

sin [√
𝜌
𝐸 𝜔𝐿]

 ,                                                                        (5.11) 

whose vibration mode u0(x) has a harmonically varying amplitude along the entire rod. For a rigid 

sphere-reinforced metacomposite rod with a finite value of β, however, the solution of (5.10) when 

ω falls within the bandgap (3.5) is given by 
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𝑢(𝑥, 𝑡) = 𝑢0(𝑥) sin 𝜔𝑡 , 𝑢0(𝑥) = 𝑢𝐿

𝑒
𝜆𝑥
𝐿 − 𝑒− 

𝜆𝑥
𝐿

𝑒𝜆 − 𝑒−𝜆
;  

𝜆 = 𝜔𝐿√(
𝜌

𝐸

(
𝜌𝑚𝜌𝑠

𝛽𝜌
(1 − 𝛿)𝜔2 − 1)

(1 −
𝜌𝑠

𝛽
𝜔2)

) > 0.                                                                                    (5.12) 

It is verified that the amplitude of the vibration mode (5.12) monotonically decays from the free 

end x=L to the fixed end x=0. In particular, when the excitation frequency ω is within the bandgap 

and approaches the lower cut-off frequency ω0, the positive dimensionless parameter λ approaches 

infinity and the forced vibration mode u0(x) is extremely localized around the free end x=L but 

vanishingly small in the entire rod except an infinitesimal neighborhood around the free end.  

As an example, the forced vibrational mode of a steel sphere-reinforced polyester rod is shown in 

Fig. 5.3 with the same cases of the exciting frequency: within and out of the bandgap. It is found 

from Fig. 5.3(b) that the forced vibrational mode is highly localized near the stimulating end x=L 

when the exciting frequency ω falls within the bandgap. Otherwise, the forced vibrational mode is 

a periodic wave through the entire rod when ω is much lower than ω0 in Fig. 5.3(a) or higher than 

ωu shown as Fig. 5.3(c). Here, the wavelength of the forced vibration periodic modes shown in Fig. 

5.3(a) & (c) is also much larger than (2R), which justifies the applicability of the present long-

wavelength model.  

In addition, we still examine the dependence of the width of localized mode on the length of the 

rigid sphere-reinforced metacomposite rod. It is found from Fig. 5.4 that, for a given excitation 

frequency within the bandgap, the width of localized mode around the stimulating end is almost 

constant, about 0.75 cm. Thus, the width of localized mode is independent of the length of the rigid 

sphere-reinforced metacomposite rod as well. 

In brief, the similar vibration isolation phenomenon is also obvious on a rigid sphere-reinforced 

metacomposite rod driven by a harmonic axial displacement at its free end.  
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      (a) 

 

        (b) 

 

(c)  

Fig. 5.3  Forced vibrational mode of a steel sphere-reinforced polyester rod driven by a harmonic 

axial displacement at the free end x=L (L=5 cm) under different excitation frequencies ω: (a) ω < 

ω0, (b) ω0 < ω < ωu and (c) ω > ωu, where ρs= 7800 kg/m3, ρm= 1220 kg/m3, (cs)m=1180 m/s,  

(cl)m=2490 m/s, R=0.5 mm and δ=0.184  



43 
 

 

Fig. 5.4 Forced vibrational mode of a steel sphere-reinforced polyester rod driven by a harmonic 

axial displacement at the free end x=L with different length (L), where ω=0.90ωu, R=0.5 mm, ρs= 

7800 kg/m3, ρm= 1220 kg/m3, (cs)m=1180 m/s, (cl)m=2490 m/s and δ=0.184 

5.3 Free vibration of a metacomposite rod with an attached mass at its end 

 

Fig. 5.5 A schematic diagram of a rod with a fixed end and an attached mass at its free end 

Now let us examine the effect of an attached mass on the free vibration of a rigid sphere-reinforced 

metacomposite rod. As shown in Fig. 5.5, the composite rod is fixed at the end x=0 and with a 

concentrated mass M attached to its other end x=L. Thus, the boundary conditions become 

𝑢|𝑥=0 = 0 , 𝐸𝐴
𝜕𝑢

𝜕𝑥
|

𝑥=𝐿
= − 𝑀

𝜕2𝑢

𝜕𝑡2
|

𝑥=𝐿

 ,                                                                                          (5.13) 

where M is the attached mass. To study free vibration, substituting u(x,t)=u0(x) sinωt into (5.13), 

where ω is the natural frequency, the above boundary conditions are written as 
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𝑢0|𝑥=0 = 0, 𝐸𝐴
𝑑𝑢0

𝑑𝑥
|

𝑥=𝐿
= 𝑀𝜔2𝑢0|𝑥=𝐿 .                                                                                          (5.14) 

It follows from (5.3) (with F=0) that 𝑢0(𝑥) ∝ 𝑒±𝜆𝑥/𝐿 with the λ-ω relation given by 

𝜌𝜔2𝐿2 (
𝜌𝑆

𝛽𝜌
𝜌𝑚(1 − 𝛿)𝜔2 − 1) = 𝜆2𝐸 (1 −

𝜌𝑆

𝛽
𝜔2) .                                                                    (5.15) 

Let us now show that the natural frequency ω can exist within the bandgap (ω0<ω<ωu) when such 

a concentrated mass M>0 is attached to the end x=L of the composite rod. Actually, for the 

frequency ω within the bandgap (ω0<ω<ωu), it is seen from (5.15) that λ2>0. Thus the two roots 

are ±λ (λ>0), and the end condition (5.14) at x=L gives 

𝑀𝜔2
(𝑒𝜆 − 𝑒−𝜆)

(𝑒𝜆 + 𝑒−𝜆)
=

𝜆

𝐿
𝐸𝐴 .                                                                                                                    (5.16) 

Substituting (5.16) into (5.15), we have the equation for λ>0 as 

(𝜆
𝜌𝑚(1 − 𝛿)

𝜌 (
𝜒

𝑚0
)

(𝑒𝜆 + 𝑒−𝜆)

(𝑒𝜆 − 𝑒−𝜆)
− 1)

(1 − 𝜆 (
𝜒

𝑚0
)

(𝑒𝜆 + 𝑒−𝜆)
(𝑒𝜆 − 𝑒−𝜆)

)

= 𝜆𝑚0

(𝑒𝜆 − 𝑒−𝜆)

(𝑒𝜆 + 𝑒−𝜆)
 , 𝜒 =

𝜌𝑆

𝛽
(

𝐸

𝜌𝐿2
) , 𝑚0 =

𝑀

𝜌𝐴𝐿
 .     (5.17) 

Clearly, in the absence of the attached mass (M=0), eq.(5.17) has no a positive solution λ>0, which 

implies the non-existence of natural frequency within the bandgap. For a composite rod with the 

attached mass M>0, however, the existence of a natural frequency within the bandgap can be 

confirmed by studying the existence of an intersection of the following function f(λ) with the 

positive horizontal axis 

𝑓(𝜆) =

(𝜆
𝜌𝑚(1 − 𝛿)

𝜌 (
𝜒

𝑚0
)

(𝑒𝜆 + 𝑒−𝜆)

(𝑒𝜆 − 𝑒−𝜆)
− 1)

(1 − 𝜆 (
𝜒

𝑚0
)

(𝑒𝜆 + 𝑒−𝜆)
(𝑒𝜆 − 𝑒−𝜆)

)

− 𝜆𝑚0

(𝑒𝜆 − 𝑒−𝜆)

(𝑒𝜆 + 𝑒−𝜆)
 .                                          (5.18) 

Since f(λ) given by (5.18) depends on 3 independent parameters: ρm(1-δ)/ρ, χ/m0 and m0, our 

numerical results confirm that, for example, a sufficient condition for the existence of a natural 

frequency inside the bandgap is 0<χ/m0<ρ/[ρm(1-δ)] with m0≤100. For example, if we are mainly 

interested in the physically relevant cases when the attached mass M is comparable to or larger 

than the rod’s mass (ρAL), several cases with m0=0.01, 0.1, 1, 5 and 100 are shown in Fig. 5.6 (a)-
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(f). In particular, it is seen from (2.9) and (5.17) that χ<<1 under the present condition R<<L. For 

instance, a positive root λ≈105.3 exists (which gives ω≈1.026ω0) with m0=0.1 and χ/m0=0.01 as 

shown in Fig. 5.6(a), and a positive root λ≈100.6 exists (which gives ω≈1.003ω0) with m0=1 and 

χ/m0=0.01 as shown in Fig. 5.6(c). It is concluded that an attached concentrated mass M can change 

the total effective mass of the composite rod and gives rise of a natural frequency inside the 

bandgap defined by (3.5, 3.6).  

 

Fig. 5.6 Plots of the function f(λ) defined by eq.(5.18) at different values of m0 and χ/m0 with the 

parameters of steel sphere-reinforced polyester, ρs= 7800 kg/m3, ρm= 1220 kg/m3 and δ=0.184 

Next, let us examine the free vibration with the natural frequency ω outside the bandgap (ω<ω0 or 

ω>ωu). In this case, it follows from (5.15) that λ2<0, then the two roots are two opposite pure 

imaginary numbers, λ=±iα with α>0. With the end x=0 fixed, we have 

𝑢0(𝑥) = 𝐶 𝑠𝑖𝑛 𝛼
𝑥

𝐿
 , 0 ≤ 𝑥 ≤ 𝐿 .                                                                                                          (5.19) 

The end condition (5.14) at x=L gives the α-ω relation 

tan 𝛼 =
𝐸𝐴𝛼

𝜔2𝑀𝐿
= (

𝜔0

𝜔
)

2 𝜒

𝑚0
𝛼 .                                                                                                           (5.20) 

For a given value of α>0, the four roots of ω are two pairs of opposite pure imaginary numbers, 

(±iω1) and (±iω2), respectively, with ω2>ω1>0, where ω2 and ω1 are given in terms of α as 
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(
𝜔1

𝜔0
)

2

=
(𝛼2𝜒 + 1) − √(𝛼2𝜒 + 1)2 − 4𝛼2𝜒

𝜌𝑚(1 − 𝛿)
𝜌

2
𝜌𝑚(1 − 𝛿)

𝜌

< 1 ,                                                  (5.21) 

(
𝜔2

𝜔𝑢
)

2

=
(𝛼2𝜒 + 1) + √(𝛼2𝜒 + 1)2 − 4𝛼2𝜒

𝜌𝑚(1 − 𝛿)
𝜌

2
> 1 .                                                  (5.22) 

Because ρ>ρm(1-δ), it is readily seen that ω2>ωu. Furthermore, in view of 

(𝛼2𝜒 + 1)2 − 4𝛼2𝜒
𝜌𝑚(1 − 𝛿)

𝜌
> (𝛼2𝜒 + 1 − 2

𝜌𝑚(1 − 𝛿)

𝜌
)

2

 ,                                               (5.23) 

it is verified that ω1<ω0. Thus, substituting the above expression (5.22) (or (5.21)) of ω2 (or ω1) 

into eq.(5.20), one can determine the discrete values of α and the corresponding values of ω2 (or 

ω1), as shown in Fig. 5.7 for a specific example of steel sphere-reinforced polyester composite rod. 

It is seen from Fig. 5.7 that the value of α (which determines the wave number of free vibrational 

mode) increases with ω for both cases ω1<ω0 and ω2>ωu.    

 

Fig. 5.7 The α-ω2 (or ω1) relation for free vibration of a steel sphere-reinforced polyester rod 

fixed at the end x=0 and with a mass attached to the other end x=L, where ρs= 7800 kg/m3, ρm= 

1220 kg/m3, R=0.5 mm, L=5 cm and m0=1  
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Chapter 6  

Conclusions and future work 

6.1 Conclusions 

A general analytical model is proposed for dynamics of rigid sphere-reinforced random 

metacomposites based on the concept that the deviation of the displacement field of embedded 

rigid spheres from the displacement field of the composite is responsible for dynamic behaviors of 

the composite. The model is characterized by the well-known elastodynamic equations combined 

with a simple differential relation between the displacement field of the mass center of 

representative unit cell and the displacement field of the composite. The efficiency and accuracy 

of the proposed model are verified by reasonable agreement between the predicted results and 

known experimental or numerical data on several typical stiff sphere-reinforced polymer 

composites reported in literature. The proposed model is applied to study several basic dynamic 

problems of rigid sphere-reinforced composite beams and rods, and the relevant dynamic 

phenomena (such as vibration isolation, localized buckling, and the natural frequency within the 

bandgap caused by an attached concentrated mass) are demonstrated.  

The major conclusions are summarized below:  

(1) Natural frequencies of the rigid sphere-reinforced metacomposite beam or rod always stay 

outside of the bandgap, independent of all other material and geometrical parameters, consistent 

with the physical concept of the “bandgap”.  

(2) A hinged rigid sphere-reinforced metacomposite beam under a constant compressive load can 

exhibit localized buckling at the critical buckling state when the mass ratio of the rigid-sphere 

phase to the matrix phase is vanishingly small. 

(3) A rigid sphere-reinforced metacomposite beam or rod can exhibit vibration isolation 

phenomena. Actually, when the excitation frequency falls within the bandgap, the forced vibration 

mode is highly localized near the site of the applied external harmonic excitation and vanishing 

small in all other parts of the beam or rod. The width of localized mode around the site of the 

applied excitation is independent of the length of the beam or rod and the magnitude of the applied 

excitation. In contrast to this, when the excitation frequency is out of the bandgap, the forced 
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vibration mode is a periodic wave through the entire beam or rod. Besides, for a hinged composite 

beam driven by a midpoint force, the maximum deflection increases with the excitation frequency 

within the bandgap but is also independent of the length of the beam.  

(4) An attached concentrated mass M at the free end can change the total effective mass of the 

composite rod and gives rise of a natural frequency inside the bandgap. 

 

In summation, it is believed that the present model enjoys the conceptual and mathematical 

simplicity and could offer a general simple model to study dynamics of rigid sphere-reinforced 

random metacomposites.  

6.2 Future work 

In this thesis, we develop a much simple (although approximate) model for general 3D dynamics 

of stiff sphere-reinforced random metacomposites. As to a future work, we may consider  

1). How to make our current model more accurate to evaluate forced vibration of one- or two-

dimensional composite structures. For example, we can use more accurate formulas for effective 

elastic moduli of particle-reinforced elastic composites with higher volume fraction of particles, 

beyond the simple refined Einstein formulas. In addition, we can consider forced vibration of stiff 

sphere-reinforced metacomposite plates. 

2). Another important future topic is to apply our analytical model to adjusting the design of 

materials or structures to achieve our desired purpose. For instance, as seen in our Table 3.1, the 

bandgap frequencies for the glass sphere-reinforced polyester composite almost reach the 

magnitude of MHz. To lower the bandgap to, say, KHz range, we may attempt to adopt heavier 

spheres and/or softer matrix, and/or properly reduce the volume fraction of embedded rigid spheres 

in the design of metamaterials according to our formulas (3.5, 3.6). 
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