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ABSTRACT

In finite element analyses of concrete, the application of discrete
cracking models has not been explored as much as that of ‘smeared
cracking models, due to the complication involved in the modeling.
However, the increased interest in detailed local behavior of reinforced
concrete at different loading stages, the need for investigation of
dominant cracks and the inadequacies of smeared models, are stimulants
to the development of discrete cracking models.

This thesis proposes and implements a systemic and automated finite
element approach for distributed discrete concrete cracking. A vertex
based topological data base is formed to represent explicitly all the
adjacency relations included in the input finite element mesh, by the
technique of “"exhaustive nodal splitting”. Crack initiation and
propagation along element boundaries are simulated automatically by
activating and deactivating the associated "nodal splitting numbers" in
the data base. .

The crack face behaVior, crack widening, crack unloading and
crack closing, are modelled on the basis of the softening response of
cracked concrete associated with tensile fracture energy. The fracture
energy criterion is introduced to the solution strategy in order to control
crack instability. Concrete compressive yielding is modelled by classical
plasticity theory for a continuum.

Several well-known “tension-pull” tests were simulated by the
approach developed herein. The two main components of bond for
deformed bars, the mechanical interlock and chemical adhesion, are
modelled by explicitly representing the lugs on the reinforcing bars as
steel elements and specifying a adhesive tensile strength for separation
of the concrete-steel interface. Longitudinal splitting cracking is
modelled by modifying the axisymmetrical formulation to a plane stress
formulation.

In these simulations, distributed discrete cracking, longitudinal
splitting cracking, and compressive yielding at the front faces of lugs,
are identified. Bond stresses and bond slips are evaluated at the

concrete-steel interface. The progression of dominant cracks,



compressive yielding and bond variables are traced through the loading
histories. '

By optimal fit of the global bond behavior of these “tension-pull"
tests, patterns of dominant crack progression, of bond deterioration, and
their correlation are identified. The comparison between these patterns

provides some insight into global bond behavior.
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NOMENCLATURE

Acronyms for the Topological Data Base:

CBEN Crack back element number

CBNSN Crack back nodal splitting number

CCBNN Current crack back nodal number

CCFENN Current crack front nodal number

CFEN Crack front element number

CEFNSN Crack front nodal splitting number

DOF Degree of freedom

ALSDI Accumulated load step displacement increment
NE Total number of distinct edges

NMELM Total number of elements

NMNOD Total number -of input nodes

NS Exhaustive nodal splitting number for the previous

input node , ]
NV Total number of vertices

TCW Total crack width
WS Exhaustive nodal splitting number for the previous

patch of element mesh

Names of Arrays for the Topological Data Base:

ANG(8) Orientation array for edges
emanating from a vertex
ID(2,NMNOD) Nodal DOF status array
KEMT(NMNOD,17) Nodal-element incidence array
KEMT2(NMNOD) Array of initial nodal numbers
corresponding to input nodal numbers
KSID1(4,3) Array of edges of an element, defined

by local nodal numbers
KSID(4,3) Array of edges of an element, defined
by global nodal numbers



MART(8,5,4) Adjacency array for edges emanating

from a vertex

NCRLC(NE,20,3) Array of topological information for all
edges

NCRNN(NV,6,8) Array of vertex-edge adjacencies for all
vertices

NCRNM(NV) Array of total number of edges
emanating from a vertex NV

NAEMI1(8) Array of back element numbers for
edges emanating from a vertex

NPELM(12,NMELM)‘ Element-node incidence array

Scalars:

Ac Area of crack face

C Crack width for overlapping crack

d Displacement at a point

de Elastic component of d

dw Component of d due to cracking

dem Maximum value of de

dm The measure to select root in the "cylindrical arc-

length" method

fe Compressive strength of concrete

f;;o Compressive strength for overlapping crack faces

f'sc Adhesive tensile strength between concrete and
steel

f; Tensile strength of concrete

fin Tensile strength of Concrete in the hoop direction

Fwi-1 Nodal force on the crack face for iteration i-1

fYS Yield strength of steel

h Thickness

H Height of a prism

keci Stiffness for link element at iteration i when the

crack is overlapped



kwi

L

L¢

Lmax

Lmin

Al

Rnomax
Rent, Ren2

Rn1, Rn2

S
SIALB

Stiffness for link element at iteration i when the
crack is open

Length of a "tension-pull" specimen, or crack
spacing

Critical length of concrete prism under tension for
occurrence of snap back behavior after cracking
Maximum crack spacing

Minimum crack spacing

Specified increment of arc-length

Maximum end forces recorded for a link element
during the propagation of a crack

Forces applied at the two ends of an link element
when the crack is overlapped

Forces applied at the two ends of an link element
when the crack is open

Distributed normal stresses on edge L
Interval averaged Longitudinal bond slip

Interval averaged radial bond slip
Specimen averaged Longitudinal bond slip

Specimen averaged radial bond slip

Absolute value of longitudinal slip at the front face
of a lug

Absolute value of radial slip at the front face of a
lug

Interval averaged Longitudinal displacements of
steel

Interval averaged radial displacements of steel
Interval averaged Longitudinal displacements of
concrete _

Interval averaged radial displacements of concrete
Displacement increment at the point of applied load
Increment of strain energy ,

Increment of strain energy at iteration i

Crack width

Ultimate crack width



Wi-1 Crack width at iteration i-1
Wmax Maximum crack width recorded during the

propagation of a crack

Aw Increment of work done by the external load

Awce Increment of fracture energy required for crack
growth

Awci Increment of fracture energy required for crack

growth at iteration i
Awj Increment work done by the external load at

iteration i

B¢ Tolerance of angle between n and p to split an edge
n Load convergence ratio

Ns Critical n to switch to fracture energy control

Y Angle of inclination of the front face of a lug to the

axis of reinforced bar

A Load factor
Af Load factor at iteration i
AA{ Incremental load factor at iteration i .
Kti-l Load factor at iteration i-1 of load step t
K1 kei/lkwil
SIALB Interval averaged Longitudinal bond stress
SIARB Interval averaged radial bond stress
SSALB Specimen averaged Longitudinal bond stress
SSARB Specimen averaged radial bond stress
Otw Tensile stress across two faces of a crack with width
w
Local orientation of an edge
Nondimensional edge coordinate
Vectors:
F - \ External reference loads
[FanFc] Nodal forces equivalent to GOy at nodes a, b

and ¢ on edge L
L Element edge



[ Na Np N |

AR}

ic

AR

le

[Sasb Sc]

Ui, U2

Normal vector of an edge

Shape functions in the nondimensional edge
coordinate { at nodes a, b and ¢ on edge L
Principle stress

Unbalanced nodal forces

Nodal forces equilibrating the internal

stresses
Nodal forces equilibrating the internal

stresses obtained at iteration i-1

Nodal forces equilibrating the internal
stresses obtained at iteration i-1

for load step t

The equivalent nodal forces required to
equilibrate the internal stress of the solid

clements at iteration i-1 for load step t

The nodal forces to which link elements are

subject when the associated cracks are open

at iteration i-1 of load step t

The nodal forces to which link elements are

subject when the cracks are overlapped at

iteration i-1 of load step t

Increment of the nodal forces to which link
clements are subject when the cracks are
overlapped from iteration i-1 to iteration i of

load step t

Increment of the equivalent nodal forces

required to equilibrate the internal stress of
the solid elements from iteration i-1 to
iteration i of load step t

Tensile stresses at node a, b and ¢ on edge L
Orientation vector of an edge

Displacements for splitting nodes 1 and 2



Ui2
Ue

AU
AUj

AU}
I
AU!
U,
Ut-l

AUnp
AUt
[Una Unb Unc ]

Matrices:

Relative displacement for splitting nodes 1

and 2

An estimation of elastic displacement

vector under the external reference load
Distributed normal displacements on edge L
Increment of nodal displacements

Increment of nodal displacements in iteration
i

Incremental nodal displacements solved from
load

external reference

Incremental nodal displacements solved from

unbalanced nodal forces

Total nodal displacements at iteration i-1 of
load step t

Total nodal displacements at the end of load
step t-1

Projection of U12 on vector n

Projection of U12 on vector t

Nodal displacements at node a, b and ¢ on
edge L

Transformation matrix
Tangent stiffness matrix
Tangent stiffness matrix at iteration i

Tangent stiffness matrix at iteration i of
load step t

Stiffness matrix for the link element in
the local coordinate system

Stiffness matrix for the link element in

the global coordinate system



CHAPTER 1
INTRODUCTION

1.1 Behavior of Reinforced Concrete Structures

In the last three decades, the emergence of high speed electronic
computation has led to a revolution in the ability of engineers to predict
internal forces in structures. Coincidentally, the development of the
finite element method has extended these capabilities to two and three
dimensional solid structures of arbitrary shape so that solution for
internal stresses is now routine for problems which were intractable a
few years ago.

In spite of the above developments the analyst's ability to predict
behavior of reinforced concrete structures over their full range of
response, up to the point of failure and into the post-failure region, is
still far from satisfactory. In this respect the only way of checking the
reliability of a numerical simulation of a structure is to verify the
prediction against reliable experimental results. Such results, that are
sufficiently well-documented for this purpose, are rare. In addition, if a
general purpose program is desired, it is necessary that the analytical
program yield reliable results for all of the different types failure
mechanisms which have the potential to occur. The program should then
be checked against experimental results which span the spectrum of all
relevant failure mechanisms.

Reinforced concrete structures can fail in a large number of
modes. Some of these are ductile, such as, flexural failure for under-
reinforced beams and slabs. Others are 'brittle’, such as, flexural failures
for over-reinforced beams, punching shear failures of slabs, and shear
failure of beams without web reinforcement. The type of failure, and
consequently its characteristics, may be changed by altering the nature
and distribution of the reinforcement, such as, placing web
reinforcement in, or increasing the flexural reinforcemént of, a beam.
By including the effect of cracking, incorporating the reinforcement
into the model, and modifying the continuum properties of the concrete

depending upon the nature of the confinement, current analytical



techniques are sufficient to predict some of these transitions between
failure modes (Balakrishnan and Murray, 1989). Yet a rational method
for including the complexities of concrete stress-strain response,
cracking, steel-concrete interface behavior, and confinement, for the
prediction of macroscopic behavior, in such a way that reliable results

can be achieved, is lacking.

1.2 Cracking and Failure

A macroscopic failure mechanism in a reinforced concrete
structure is developed as a result of concrete cracking or crushing, or
some combination of these effects, usually involving progressive
deterioration and often complex interaction between the reinforcement
and the concrete. Final failure often involves rupture of the
reinforcement. Since effective development of stress in the
reinforcement cannot occur until after concrete cracking, cracking is
an important factor in most failure mechanisms.

In structures of plain concrete, or for which the reinforcement is
widely spaced, a single 'dominant crack' may be the primary cause of
failure (e.g.- for structures of mass concrete, ‘beams without web
reinforcement or punching shear failures in slabs). In such cases a
'discrete’ crack approach, which models the fracture of concrete in
association with the dominant crack may capture the essential aspects of
behavior. Techniques of discrete crack analysis to model such behavior
have been developed based on fracture mechanics (Ingraffea and
Saouma, 1985) and tested for a limited range of applications.

However, for structures with closely spaced (i.e. distributed)
reinforcement a multitude of cracks may occur and cracking is often
distributed over a significant portion of the structure prior to collapse.
For such a structure it is generally undesirable and not feasible to
attempt to trace the progress of each crack as a discrete crack and the
general approach has been to modify the continuum constitutive
properties for the concrete in an attempt to reflect the influence of
cracking on ‘'averaged' stress-strain response. This ‘'smeared’ cracking
approach has been widely used, but the constitutive properties have
often been determined in an ad-hoc manner which has led to

considerable criticism of the overall approach.



If the smeared cracking approach is to be placed on a firm
foundation, rational methods of determining the effective continuum
properties must be found. Furthermore, a proper smeared simulation
should be able to adequately represent behavior incorporating the
spacing of cracks, the interface behavior between steel and concrete,
and the effect of confinement produced by the reinforcement. No method

currently exists which does this.

1.3 Levels of Analysis

If the heterogeneous nature of concrete is considered it is apparent
that a model which adequately simulates local behavior is impractical for
the analysis of a major structure. It, therefore, appears that a useful
approach would be to adopt the concept of a system of hierarchical
structural levels, from the concrete materials disciplines (Whittmann,
1983), to the problem of analytical modeling. This is particularly
appropriate in view of the fact that all analyses to determine failure and
failure mechanisms are nonlinear in nature.

One such classification of hierarchical levels for analytical
purposes is illustrated in Fig. 1.1. To determine the proper response of a
mesolevel element as input, to a macrolevel analysis, the element can be
modeled on the microlevel. If cracking, interface behavior, and local
crushing can be determined for the microlevel model, and properly
assimilated to produce smeared properties which are appropriate for the
mesolevel element, a reliable mesolevel analysis might be carried out
without following in detail the events occurring at the microlevel. This

study is an attempt to contribute to such approach.

1.4 Objectives and Scopes
The objectives of this study are:
1. To develop a systematic and automated approach for the finite
element analysis of distributed discrete concrete cracking.
This approach includes the following features:
* Production, in a 'data preparation phase', of a topological
data base which can represent explicitly and exhaustively
the adjacency of the topological entities (vertices, edges,

etc.) abstracted from the finite element mesh as input.



¢ Discrete crack automatic initiation and propagation along
element boundaries created by referring to and modifying the
topological data base.

« Constitutive relationships at  discrete crack faces which

~ are built on the softening response of cracked concrete
associated with the tensile fracture energy.

» Solution strategy which switches from displacement
control to fracture energy control as crack instability
arises.

2. To apply the approach to the numerical simulation of "tension-
pull" tests. By explicitly modeling the lugs on the surface of reinforcing
bars in the finite element analyses, at the microlevel described in Sect.
1.3, discrete concrete cracking, longitudinal splitting concrete cracking,
interface behavior and local crushing are identified and investigated
through the complete loading history.

3. To evaluate bond stresses and bond slip on the surface of
reinforcing bars of "tension-pull” tests.

Finite eleinent solution of the above problem types is achieved by
considering inelastic behavior caused by the progressive propagation of
cracks and plastic yielding of concrete and steel. An incremental
iterative formulation of equilibrium is adopted. Time-dependent, dynamic
and bifurcation behavior are not considered. ’

Displacements are assumed to be small. The undeformed state is
considered to be the initial configuration for the following equilibrium

configurations. That is, geometry is not updated.

1.5 Outline of Report

A brief review of approaches to simulate concrete cracks in finite
element analysis is presented in Chapter 2. A review of selected
references on the investigation of bond is also included in the chapter.

In Chapter 3, the strategy for the formation of a new topological
database, from finite element input, is described and illustréted by its
application to a sample patch of a finite element mesh.

Chapter 4 presents discrete crack initiation criteria for concrete,
and concrete-steel interfaces, and the procedure to trace crack growth.

Systematic activation and deactivation of "nodal splitting numbers"



simulates crack propagation by referring to and modifying the
topological database. |

The constitutive relations at crack faces are expressed in terms of
the .relative displacement of the coupled crack faces, called the crack
width, and the associated nodal forces on the crack faces. The signs and
magnitudes of the stiffness of these relations depend on the crack
situation (open or closed cracks), the crack width, and the length of
element adjacent to the crack faces. The approach to estimate this
stiffness from known crack width-tensile stress curves forms the
content of Chapter 5.

The solution strategies, which include displacement control, crack
width control and control based on the criterion of fracture energy, are
presented in Chapter 6.

In Chapter 7, the approaches described in the previous chapters
are applied to four examples, with emphasis on the simulation of
"tension-pull" tests. The finite element model explicitly includes the lugs
as solid elements and identifies cracking, interface behavior and local
. crushing. Bond stresses and bond slip are evaluated at intervals

referenced to lugs on the surface of the reinforcing bar.
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Characteristics

Region = an assemblage
of members
» one dimensional elements

* deformation described in
terms of joint displacements

Region = a member or joint
assemblage
* two or three dimensional
concrete elements
» discrete or smeared
modeling of reinforcement

« smeared modeling of cracking

Region = an element used in a
mesolevel model

* concrete and steel separated
into subregions

« discrete crack and interface
behavior included

Region = a subregion of a
microlevel model

« concrete and steel
separated
into subregions

» discrete cracks, stress
concentrations and
fracture propagations
included

« inhomogeneity may
be included

Figure 1.1: Possible Hierarchy of Analytical Models



CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

Knowledge of the fundamental mechanics of reinforced concrete,
such as concrete cracking and bond, is essential if the development and
application of nonlinear finite element analysis of reinforced concrete is
to progress. This knowledge is obtained by thoroughly searching
previous studies, or by carrying out tests if the information required is
not available. _

When the physical nature of the mechanics is basically understood,
the next step is to find approaches which model this mechanics in finite
element analyses. In this modelling process, compromise must be made
between the capture of the detailed nature of the mechanisms and the
mathematical model implemented in the finite element coding.

In this chapter, selective review of concrete cracking and bond are
présented in Sect. 2.2 and 2.3 respectively. Each is  reviewed by
discussing its essential nature first, followed by its finite element

modeling.

2.2 Concrete Cracks
2.2.1 Characteristics of Concrete Cracks

There are three characteristics of concrete cracks which
distinguish them from cracks which occur in the other types of materials
(Hillerborg, 1985).

The first characteristics is the long and narrow fracture process
zone which exists for concrete cracks. The term 'fracture process zone'
was defined originally in fracture mechanics as "a small region
surrounding the crack where fracture develops through the successive
stages of inhomogeneous slip, void growth and coalescence, and bond
breaking on the atomic scale"” (Kire Hellan, 1984). The concrete fracture
| process zone is found "in front of a growing crack to be of the order of
100-200 mm or even longer" (Hillerborg, 1985). This concrete fracture

process zone has a width about the aggregate size and consists of



discontinuous microcracks (Mindess and Diamond, 1980; Cedolin et al.,
1983). The damage due to microcracks along the concrete fracture process
zones does not cause appreciable lateral deformation, as in the case of
ductile fracture of metal where yielding produces a necking zone whose
size depends on the the geometry of the specimen (Hillerborg,1985).

The linear fracture mechanics, or the Ky approach in which K is
the fracture toughness (Broek, 1986), is "valid if the size of the process
zone is small compared to the size of the area in which the singular term
in the theoretical stress distribution is the dominant contribution to the
stress field" (Ingraffea and Saouma, 1985).

The second characteristic for concrete cracks is that linear
fracture mechanics is assumed not to be applicable to concrete because of
the large size of its process zone, except for massive concrete structures
such as dams, where the size of the fracture process zone is negligible
compared to the size of the structure. (Ingraffea and Saouma, 1985;
Hillerborg,1985).

The third characteristic of a concrete crack is its post-cracking
softening. Tests (Evans and Marathe, 1968; Cantalano and Ingraffea, 1981;
Petersson, 1981) show that "cracked concrete does indeed resist tension.
The extent of resistance depends inversely on the average crack width"
(Gopalaratnam and Shah, 1985). The ©-W curve, representing the
relationship between the tensile stresses carried over a crack and the
associated crack width, is claimed to be a material property (Hillerborg,
1985).

Ingreffea and Saouma (1985) have discussed the reasons why stress
singularity terms are not required for the solution of crack propagation
problem in concrete materials. Because "the singular stress term has little
to do with stress at the tip of the crack" (Ingreffea and Saouma, 1985),
singular eclements or fine mesh layouts at crack tip are not necessary for
modelling of concrete cracking. The modelling of post-cracking
softening, however, becomes essential. The mechanism for tensile stress
across a 'crack' is not yet fully understood. Gopalaratnam and Shah(1985)
state:

"The observed post-cracking resistance of concrete in direct
tension may be due to discontinuities in cracking at the submicroscopic
level and to bridging of cracked surfaces by aggregates and fibrous

crystals.”



2.2.2 Discussions of the Results of the Tests of Gopalaratnam
and Shah (1985) ‘

Some details and the results of the tests conducted by Gopalaratnam
and Shah (1985) are given in Table 2.1. The terms marked Op in the table
represent the peak tensile stresses recorded in the tests, and the terms
marked Gg represent the fracture energy densities which were
"calculated from the area under the net stress versus average
displacement relationship” (Gopalaratnam and Shah, 1985) as shown in
Fig. 2.1.

The coefficients of variation of Gg and Op for the four mixes of
concretes listed in Table 2.1 are calculated in this study to be 16.2% and
19% respectively. For every mix, the quotient of Gg and Op, W =2Gg/ Op, is
also calculated as shown in Table 2.1. The coefficient of variation for W,
of these concrete materials is only 4.16% which represents the ratio of
the spread in the W¢'s to their mean of 0.001286 in..

It seems to be indicated from the analysis of these test results that
W, can be estimated to be a constant of 0.001286 in. for different concrete
-materials with much less error than forv fracture energy densities of the
different concrete materials. Therefore, the fracture energy density of
-concrete can be calculated from the product of a constant W, and the
given tensile strength f't. Or f'[ can be calculated from the quotient of the
given Gp and constant Wg.

This tendency of constant W. is more apparent in the test results
obtained from the three mixes of mortar shown in Table 2.1. The
coefficients of variation of G and Op are 10.46% and 11.67%, respectively,
while that of W is only 1.22%. This represents the magnitude of the
spread of the W values to their mean value of 0.00202 in..

The correlation between Op and Gg described in the previous
paragraph, for test data of concrete and mortar shown in Table 2.1, is
illustrated as shown in Fig. 2.2. The two straight lines which have slopes
of (2/W¢) for the W¢'s of the concrete and mortar data, respectively,

indicate an excellent fit with the test data.



2.2.3 Discrete and Smeared Cracking Models
2.2.3.1 Introduction ‘

Concrete cracking has "a major influence on the basic behavior of
the (concrete) member" (Cedolin et al.,1982). "Failure of reinforced and
prestressed concrete structures is initiated in many instances by
cracking of plain concrete" (Gopalaratnam and Shah, 1985). Over the past
24 years, a number of models have been developed to simulate concrete
cracking in finite element analyses. Each model! "is composed of a suitable
combination of three basic components; an initiation determination, a
method of crack representation, and a criterion for crack propagation”
(Cedolin et al.,1982).

The crack representations fall into two basic approaches: discrete
cracking and smeared cracking. A description in chronological order for
the approaches to discrete cracking is given in Sect. 2.2.3.2. The
comparison between the discrete crack and smeared crack approaches is

presented in Sect. 2.2.3.3.

2.2.3.2 Discrete Cracks

The first finite element analysis for reinforced concrete structures
to model the effect of cracking was carried out by the discrete crack
approach (Ngo and Scordelis, 1967). In this analysis, a particular crack
configuration was activated by the separation of nodal points along a
predefined crack path which coincided with some element boundaries.
Link elements, called lumped stiffness elements, were introduced across
cracks to simulate aggregate interlock (Ngo et al.,, 1970). The analysis was
linear elastic, and linear interpolation elements were used.

A modification of this approach was made (Nilson, 1968) to allow
finite elements to generate the location of the crack by disconnecting two
elements along their common edge. "After each crack forms, the
structure is unloaded, and the newly defined structure is reloaded”
(Cedolin, et. al.,, 1982). To allow path independence on reloading, the
compression zone behavior must remain linear.

This modified version was further improved and partially automated
(Mufti, et al., 1970 and 1972; Al-Mahaidi, 1979) by incorporating a
predefined crack utilizing two nodes at one nodal point connected by a

linkage element. "When the stress in the elements exceeds the cracking
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strength of the concrete, the linkage element is softened to allow the
crack to open" (Cedolin, et al., 1982).

A novel approach was proposed by Ngo and Scordelis (1975) in
which graph theory was applied to treat the adjacency of eclements as
networks. In this approach new nodes are added to the element mesh
only when new cracks were initiated and detected as gaps in the 'dual
graph' for the cracked element mesh. Compared with the approach in
which all nodes located on the possible crack path are doubled and
connected by linkage elements, this approach is economical. The Frontal
Solution Method (Irons, 1970) was implemented in the approach, "thus
alleviating the constraint in the node numbering normally required in
most banded type of solution schemes" (Ngo and Scordelis,1975). Because
compression failure was not considered in the approach, and linear
elastic response is assumed  throughout the whole analysis, post peak
descending behavior of a simple modulus of rupture test was simulated by
"scalingl the stress intensity” ( Ngo and Scordelis, 1975).

"An algorithm has been developed which automatically remeshes in
the vicinity of a crack to accommodate arbitrary, predicted trajectory”
(Ingraffea and Saouma, 1985). In this approach, fracture mechanics was
extensively applied. Two fracture models, the linear and nonlinear
models, were implemented in the approach.

The linear model is based on classical, linear elastic fracture
mechanics (LEFM). In the model, quarter-point singular elements (Shih,
et al,, 1976) are automatically installed at a newly created crack-tip. The
stress intensity factors for pure Mode I, Kj, and Mode II, Kyj, derived from
the displacements at crack-tip, are used to determine initiation,
orientation and stability of new cracks. The formulations may also be
based upon one of two mixed-mode fracture initiation theories, namely,
the theory of maximum circumferential tensile stress near the crack tip,
(09)max, or, the theory of strain energy density near crack tip (Erdogan
and Sih, 1963; Sih, 1974).

In the solution strategy of Ingraffea and Saouma's approach, either
the increment of load or increment of crack length can be specified as
the control factor. When the length of a crack is selected as control
factor, the load at step i+1, Pj+1, is obtained from the load at step i, Pj, is

11
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i+

in which Ky, is the stress intensity factor Kj calculated from load Pj,
crack length aj and specified crack length increment Aa at step i+l.
Expression (2.2.1) may be explained by the strategy of keeping the stress
intensity factor Kjequal to Kjc, or keeping the fracture energy (in the
sense of LEFM) equal to the critical energy of crack initiation, through
adjusting the external load level. This expression seems applicable only to
a single dominant crack.

The nonlinear model of Ingraffea and Saouma (1985) is an
outgrowth of the linear model. Most features for the linear model are still
maintained in the nonlinear model such as the automatic placement of
quarter-point singular elements at the crack-tip and the determination of
orientation of new cracks from stress intensity factors, Ky and Kjj. In
the nonlinear model, post-cracking tension softening is implemented at
the crack faces through the use of interface elements. Similar to the
Dugdale approach (Dugdale, 1960) shown in Fig. 2.3, the crack faces carry
post-cracking tension, "tending to close the crack. The size of (the
cracked faces) is chosen such that the stress singularity disappears: K]
should be zero." (Broek, 1986). In incremental iteration, a new crack is
initiated when Kj and/or K] become greater than zero. This crack
initiation criteria is in contrast to that for the linear model in which a
crack initiates when the crack toughness, K¢, which is usually much
greater than zero, is exceeded. Expression (2.2.1) seems not to be
applicable to the nonlinear model, and user's specification of both the
increments of crack length and load seems to be required in a highly

iterative manner.

2.2.3.3 Smeared versus Discrete Approach

_ The smeared cracking model, first introduced by Rashid (1968),
represents cracked concrete as an orthotropic continuum. "It is sufficient
to switch from initial isotropic stress-strain law to an orthotropic law
upon crack formation, with the axes of orthotropy being determined
according to a condition of crack initiation" (Rots and Blaauwendraad,

1989). The smeared approach has prevailed in finite element analysis of

12



reinforced concrete since 1970's. The popular applications of the smeared
model are attributed mainly to two computational conveniences: " (1)
automatic generation of cracks without the redefinition of the finite
element topology and (2) complete generality in possible crack direction”
(Cedolin, et al.,, 1982). This approach is also claimed to be the "only
rational approach" to “diffuse crack pattern in large-scale shear wall or
panels due to the presence of densely distributed reinforcement” (Rots
and Blaauwendraad, 1989).

In spite of all the conveniences and widespread use of the smeared
approach, there is no consensus as to its superiority relative to the
discrete approach. A concrete crack is considered to be a "geometrical
discontinuity that separates the (concrete) material" (Rots and
Blaauwendraad, 1989). The smeared crack concept, for which the cracked
concrete is represented as a continuum, conflicts with the discontinuous
nature of cracks. On the other hand, discrete cracks, which are
represented as displacement discontinuities, coincide with the nature of
cracks. This coincidence, as described in the following, provides
'advantages in the finite element analyses of reinforced concrete
structures. "For " those problems that involve a few dominant cracks, it
offers a more realistic representation of those cracks .." (Cedolin, et al.,
1982). Aggregate interlock, dowel action, post cracking softening and
bond effects can be represented naturally with the discrete model,
through the use of associated linkage elements which connect two crack
faces and control the behavior of the crack as its two faces undergo

relative displacements.

2.2.4 Comments Relative to this Study

The discrete crack representation is chosen for the microlevel
model developed in this study. This model shares some common features
with the previous studies. These features include discrete cracks along
predefined element boundaries (Ngo,1975), implementation of post-
cracking softening (Hillerborg, 1985; Ingraffea and Saouma, 1985) and
explicit topological data base (Ingraffea and Saouma, 1985).

The characteristics of this model are as follows. In terms of
topology, the data structure developed by Wawrzynek and Ingraffea
(1987) is edge-based as shown in Fig. 2.4. The comment made by



Wawrzynek and Ingraffea (1986) on the three types of topological data

structures, edge-based, face-based and vertex-based, are quoted below:
"The data structure is designed so that most adjacency queries
are edge-based. This is because we know a priori the
multiplicity of an edge's adjacent elements. An edge has two
adjacent vertices, two adjacent faces, and four adjacent edges
(Fig. 2.3). It would be more difficult to design a data structure
which has vertex or face based queries because one cannot
know a priori the multiplicity of the adjacent topological
elements for a face or a vertex."

The data structure developed in this study is vertex-based as
shown in Fig. 3.4.

Ingraffea and Saouma (1985) developed an incremental iterative
approach in which a crack length control is used for the solution of one
single discrete crack in the category of linear elastic fracture mechanics
(LEFM) as described in Sect. 2.2.3.2. In this study, a fracture energy
control is developed for the incremental iterative solution of multiple

discrete cracks in the category of nonlinear fracture mechanics.

2.3 Bond Stress and Bond Slip
2.3.1 Introduction

The previous studies on bond and slip (Mains, 1951; Lutz and
Gergely, 1967; Nilson, 1968; Mirza and Houde, 1979) were carried out
mainly through tests. They can be classified into two categories: the
investigation of fundamental mechanisms of bond and the formulation of
the relationship between ~ basic variables related to bond and slip. These
two categories are selectively reviewed in Sect. 2.3.2 and 2.3.3,
respectively. The review of finite element models for bond and slip is

presented in Sect. 2.3.4.

2.3.2 Mechanics of Bond and Slip

Bond stress may be defined as the "unit shearing force parallel to
the bar axis on the steel-concrete interface” (Houde, 1973). Bond is
considered to be made up of three components, namely, chemical
adhesion, friction and mechanical interaction between concrete and

steel.
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Bond on plain bars which have no deformations, or lugs, on their
surfaces depends primarily on chemical adhesion and friction.

Bond on deformed bars depends primarily on mechanical
interlocking. "Initially, chemical adhesion combined with mechanical
interaction prevents slip. After adhesion is destroyed, and slip occurs, the
ribs of a bar restrain this movement by bearing against the concrete
between the ribs" (Lutz and Gergely, 1967). Houde (1973) stated that

"The bearing pressure developed at the lug interface can be
resolved into two components ... : one parallel to the bar
tending to shear a cylinder of concrete, concentric with the
bar deformation, and a radial component which tends to split
the concrete. If the bearing pressure at the bar lugs is large,
it can cause local crushing of the concrete. Experimental
evidence to date indicates that in unrestrained pull-out test
(without restraining steel in the form of ties or spiral), bond
failures always occurred by splitting of concrete, and very
rarely due to shearing or crushing of the surrounding
concrete." .

It has been suggested (Lutz and Gergely, 1967) that the chemical
adhesive strength can be estimated from adhesion tests of nonreactive
aggregates to mortar. Tensile bond tests (Hsu and Slate, 1963) yielded 150
to 300 psi of adhesive strength for 'saturated surfaced dry' specimens and
about 50 psi for 'air dried' specimens. Shear tests (Taylor and Broms, 1964)
yielded 280 to 600 psi of adhesive strength. "From these results it appears
much more likely that adhesion will be lost in tension rather than in
shear." (Lutz and Gergely, 1967)

2.3.3 Relationships between Variables Related to Bond
2.3.3.1 Crack Spacing

Broms (1965) showed that the measured average crack spacing S,ye
obtained from the tests of tension members reinforced with a single bar
was about twice the thickness of the concrete cover, t, as expressed by the
equation:

Save =2t (2.3.1)

The scatter of crack spacings from Saye is expected to be from 33%
(Hognestad, 1963; Broms, 1965) to 50% (Houde, 1973).
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2.3.3.2 Bond Slip and Bond Stress
Nilson (1968) fitted the following third degree polynomial to the

data obtained from his tests:

u = 3.606 x 10°d-5.356 x 10°d* + 1.986x 10'%d> (53,

in which u is the nominal bond stress in psi and d is the local bond slip in
inches. Based on the test data obtained from an improved technique of
measurement, Nilson (1971) proposed the following bond stress-slip

relationship:

u = 3,100x(1.43¢ + 1.50) x d x f, (23.3)

in which the bond stress U <(1.43c + 1.50) xfc ¢ is the distance in

inches from the loaded end of the bar, f; is the concrete strength in psi,
and d is the slip in inches.

Equation (2.3.3) indicates that the slope of u to d, increases as the
distance from loaded end, ¢, increases.

The influence of the steel stress and the section geometry,
represented by the reinforcing ratio Ag/Ac, in which Ag and A¢ are the
cross sectional areas of reinforcing bar and concrete, on the average slip
at the loaded end of the bar have been evaluated through tests (Mirza and
Houde, 1979) as shown in Fig. 2.5. The slip may be expressed by an
equation of the form:

d = kif§(Ac/Ae)" (2.34)
in which the value of the slip is in 10°* in., and the steel stress fgis
expressed in ksi. The coefficients, k2 and k3 are 1.0 and 0.33, respectively.
The value of ki ranges from 0.18 to 0.22 X104 in/ksi as the steel stress
levels vary.

The tendency that slip increases with an increase in the dimension
of the cross section is only valid to a certain size. After the size is

exceeded, the slip decreases as shown in Fig. 2.5.

2.3.4 Finite Element Implementation

"The link element was first published by Ngo and Scordelis (1967) to
simulate the effect of bonding and bond slip.... The basic concept is to
derive an element whose stiffness characteristic is independent of its

physical dimensions such as cross-sectional area and length." (Ngo, 1975)
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"Following the same basic concept of the link eiement, Goodman,
'Taylor and Brekke (1968) later developed a joint element which assumes
the shape of a line instead of a point..." (Ngo, 1975). Ngo introduced a
'‘bond element’ as a special kind of joint element into his approach of
finite element analyses. The spring constant assigned to the 'bond
element' is on the basis of the shear force per unit length.

The finite element approaches to bond have not changed much
from the early approach (Ngo, 1975). The two types of element, link
element (or lumped interface element) and joint element (or continuous
interface element), are still used. However, the determination of the
stiffness constants (lumped - or continuous) has been updated by the

experimental investigations of bond, such as that described in Sect. 2.3.3.

2.3.5 Comments Relative to this Study

As discussed in Sect. 2.2.3.3, the discrete crack model offers a more
realistic representation for detailed local behavior of reinforced
concrete, such as the bond effect. In this study, deformations on the
surfaces of bars are explicitly modeled so that the behavior of deformed
bars can be reflected on a rational basis. Strength and crack initiati_on
criteria for concrete and concrete-steel interfaces are specified
separately. Bond stress and bond slip are evaluated at the interface of
concrete and steel.

Concrete cracking, in the plane which coincides with the axis of a
reinforcing bar, is represented by discrete cracks. The longitudinal
splitting cracking modelled by modifying the axisymmetrical formulation
to a plane stress formulation.

To reflect the local crushing caused by the bearing pressure at lugs,
Von Mises plastic model (Chen, 1982), has been used. Because local
crushing, which occurs at concrete-steel interfaces where two different
materials are in contact, is associated with in plane and longitudinal
splitting  cracking, the effects of hardening due to hydrostatic
compression are assumed not to be important. This is the the reason for
that the relatively simple Von Mises plastic model, rather than more

complicated models, is selected.
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Link elements are used to represent behavior of discrete concrete
cracking (opening or closing) and cracking at  the concrete-steel

interface.



Table 2.1: Material Properties of the Test Mixes
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CHAPTER 3

FORMATION OF TOPOLOGICAL DATABASE
FROM FINITE ELEMENT INPUT

3.1 Introduction

In the analysis of concrete for discrete cracking, the creation of a
crack requires that the material points immediately adjacent to one side
of the crack have different displacements than the material points
immediately adjacent to the other side of the crack. In a finite element
analysis, in which the displacements of material points are expressed by
interpolating displacements occurring at a discrete set of 'nodal' points,
this 'split’ requires that additional nodes be introduced in order to
represent the discontinuity of displacements across the crack.

The splitting phenomenon is illustrated in Fig. 3.1. In Fig. 3.1a, the
displacements may be expressed ‘as continuous functions over the entire
region in terms of the displacements of the 9 nodes (A, B, M, C,D,E, N, F
and K) by interpolation over the 8 ‘element’ subregions (1-8)..If a crack
were to occur along line MKN, an additional node, L, must be introduced,
as illustrated in Fig. 3.1b, in order to describe the displacements. The
original node K will be said to be 'split' into two nodes, designated as L and
K. The result is that the number of nodes defining the problem, and the
nodal numbers defining the elements must be modified. To keep track of
such information in a systematic way, such that it properly reflects the
definition of the elements and the change in the stiffness characteristics
of the structure, is a formidable task.

The rapid developments in computer graphics (M;ntyl;,1988) have
led to a definition of a number of different types of data structures for the
efficient handling of such systems. Wawrzynek and Ingraffea (1987) and
Martha and Ingraffea (1989) have deviséd advanced flexible data
structures for efficient handling of the topology of discrete cracking for
two and three dimensional problems respectively, in interactive
graphical computer environments. However, one conclusion from that
work is that, "Because this type of data management system is so central to

a program architecture, programs that were not originally designed to
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use high-level calls to a data management system cannot be easily
converted" (Wawrzynek and Ingraffea, 1987). '

The strategy for handling discrete cracking developed herein was
designed prior to a knowledge of these systems and to be incorporated
into the existing nonlinear finite element program called NORCO
(Balaknishnan and Murray, 1989). The primary motivation was to study
the effect of cracking, with a view to determining appropriate properties
for smeared cracking models, rather than to produce a program for
efficient analysis of discrete cracking as a desirable general purpose
approach to nonlinear analysis. Consequently, its efficiency may not be
competitive with those strategies made possible by specially designed data
structures.

Nevertheless, it appears appropriate to present the strategy
developed herein wusing the terminology associated with recent
developments in data structures. Section 3.2 introduces this terminology,
which is then used throughout the remainder of the work.

One of the reasons that it was necessary to develop the radically
different data structures, contained in the works cited above, was the
desire to solve fracture mechanics problems. These probléms are
generally dominated by a single crack, as discussed in Sect. 1.2. For such
problems the crack trajectory is unknown a_priori, and 'remeshing', with
the associated complexities of reorienting element boundaries and
translating nodal points, arises. However, for the purposes of the work
presented herein, associated with multiple small discrete cracks, it is
assumed that the analyst has a_ priori knowledge of probable crack
orientation and that he can incorporate this into his _original mesh
layout. Consequently, the strategy to be presented confines the
topological treatment of the problem to cracking along predefined

element boundaries.

3.2 Some Topological Terminology and Definitions

There are many definitions for topology. The one given is quoted
from Weiler (Weiler,1986):

"Topology, by definition, is an abstraction, a coherent subset, of the
information available from the geometry of a shape. More formally, it is a

set of properties invariant under a specified set of geometric
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transformations. Invariance of these properties under transformation
implies by definition that the properties represented by the topology do
not include the set of information which is actually changed by such
transformations." Topology "can theoretically be derived from the
complete geometric specifications”, and "support a meaningful view of
the whole".

In two-dimensional finite element analysis, the input consists of
three types of information, namely geometrical information, topological
information and material information.

Geometrical information consists of the global coordinates of the
nodes.

Topological information consists of the global nodal numbers of the
individual elements. Usually these global nodal numbers are given in
prescribed sequence of corresponding local nodal numbers. Thus a local-
global node correspondence is indicated by the order in which the
element global nodes are input.

Material information consists of the parameters describing the
physical properties of the materials of the elements.

When aﬁtomatcd initiation and propagation of discrete cracks are
introduced in finite element analysis, frequent changes occur in the
topology of the structure being analyzed. This requires a robust
topological data structure which supplies explicit topological adjacency
relationships between "topological elements". The seven topological
elements that are related to this study are: vertex, edge, face, graph, loop,
edgeuse and vertexuse.

The definitions of vertex, edge, face, graph and loop, as given by
Wawrzynek and Ingraffea (1987), are as follows.

"A vertex is a point in space; in the planar case, a point in the plane
in which the mesh construction will take place. In the discussion to
follow, a vertex is isomorphic to a node in the finite element sense and
the terms will be used interchangeably."

"An edge is a set of two vertices. The edges discussed here will be
directed edges, edge points from one vertex to the other. The finite
element analogy to the edge is a portion of an element boundary that

connects two adjacent elements. In general, an edge will be shared by two
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elements, except -along a structural boundary where the edges are
adjacent to only one element."

As is illustrated in the following seétions, the topological database
developed in this work is 'vertex based.' So the definition of the direction
of an edge depends on which of the two vertices of the edge is referenced.
Whereas in the 'edge based' database, the direction of one edge is not
changed once it is defined.

"A graph is a set of vertices and distinct edges that utilize the
vertices. Distinct edges mean that at most one edge joins any two
vertices."

For the purposes of this work, the term graph may be confined to
refer to the set of all vertices and distinct edges in a mesh.

"If we embed a graph on a surface, a face is a polygon on the
surface bounded on all sides by edges and vertices of the graph."

In the two dimensional finite element work herein, a face does not
have internal vertices or edges. Hence a "face" is identical to a single
solid element.

"A loop is a connected boundary of a single face." .

Weiler (Weiler, 1986) gave the definitions of "edgeuse" and
"vertexuse" for three dimensional modeling. Similar definitions for two
dimensional finite element analysis are adopted in this study.

"An edgeuse is an oriented boundary curve segment on a loop ...."

"A vertexuse is a structure representing the adjacency use of a
vertex by an edge as an edge point ..."

In the next section, a simple example is given to show the meaning

of these definitions.

3.3 A Simple Example

Figure 3.2 shows a mesh with 9 solid elements and 16 nodes. The bold
line 9-10-11-12 represents reinforcement elements. So the total number
of elements is 12.

According to the definitions of topological elements given in Sect.
3.2, there are 16 vertices (or nodes), 9 faces (or elements) and 24 distinct

edges.

Edge 6-7 has two edgeuses: one is on loop 2-3-7-6 and another one is_

on loop 6-7-11-10. As used by Weiler (1986) edge 6-7 is célled the
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"owneredge" of its two edgeuses. Vertex 6 has one 'vertexuse' for each
'‘edgeuse’ which is associated with an edge emanating from it. Because
four edges are incident to vertex 6, and each edge has two edgeuses, there
are cight vertexuses for vertex 6.

As edge 1-2 is located on the boundary of the mesh, it only has one
edgeuse. Similarly vertex 2 only has four vertexuses instead of eight.

One special case is that the reinforcement is embedded in the
boundaries of 2 elements. If truss element 9-10 is considered as a special
case of a loop; that is an open loop, then edge 9-10 has three edgeuses: two
from loops enclosing the solid elements and one from an open loop
including the truss element. As a result, the total number of vertexuses of
vertex 10 is ten.

Another special case is when an edge is located on a line of
symmetry as shown by line 13-14-15-16 in Fig. 3.2. Though only one loop
covers edge 13-14 in the mesh, it is considered that there are two edgeuses
for edge 13-14 because another loop is implicit on the right side of line of

symmetry.

3.4 Exhaustive Enumeration for Nodal Splitting

Figure 3.3a shows the mesh of Fig. 3.1a with all the discrete cracks
which can emanate from node K along element boundaries. Exhaustive
enumeration gives a system of nodal and crack numbering which will
permit any or all of these cracks to develop during a stress analysis. The
approach is based upon nodal 'splitting' in which node K is split into two
nodes, as illustrated in Fig. 3.1b, when a crack passes through it. When
such a split occurs it is desirable that the new node, node L of Fig. 3.1b, is
numbered K+1 in order that the resuiting bandwidth of the stiffness
matrix be maintained, approximately, at a minimum. Therefore, an
'exhaustive enumeration' scheme is introduced, which permits the
extreme case of all possible nodal splitting, and the set of sequential nodal
numbers associated with node K are held in reserve to be activated or
deactivated as required.

Continuing with the example of Figs 3.1 and 3.3, exhaustive
enumeration produces another seven nodal numbers, K+i, in which i is in
the range 1< i <7, because cight edges emanate from the unsplit node K,

as shown in Fig. 3.3a.
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The 'split’ nodal numbers increase by one each time an edge is
crossed in executing a clockwise circuit around the node, commencing at
6= 180°, where 6 is the counterclockwise angle measured from the positive
X axis and 180° 26 > -180°. This results in the nodal numbering of Fig.
3.3a.

The nodal numbering for problem definition in the input file
(hereinafter, called the 'input nodal number') is sequential with each
node having a number one greater than the node preceding it in the
input numbering sequence. During exhaustive enumeration, the 'initial
nodal number' a node receives (i.e.- K in the example of Fig. 3.3) is one
greater than the maximum split node number of the previous node in the
input numbering sequence. That is, the initial node number for the node
following node K, will be (K+7)+1=K+8. Consequently, the number of nodal
numbers assigned during exhaustive enumeration is much greater than
the number which is input. The newly produced list of exhaustive nodal
numbers forms a basis on which all possible crack patterns can be
represented.

‘Exhaustive nodal numbering is carried out in the 'data preparation
bphase' of problem solution. For the uncracked structure, only the initial
nodal number (i.e.- the K number of Fig. 3.3a) at each node will be active.
As an example of how the other nodal numbers are activated when a
crack is formed, consider that the crack of 3.1b is introduced into the
~patch of Fig.3.1a. Using the exhaustive numbering of Fig. 3.3a, the
resulting active nodal numbers at node K become K and K+4 as illustrated
in Fig. 3.3 b. This is established by the following procedure.

When a counterclockwise circle is traced around a node, the crack
edge that the circle first crosses is defined as the ‘crack back' and the
second edge crossed is defined as 'crack front'. In Fig. 3.3b two cracks are
encountered by the counterclockwise circle b around the center node.
Crack 1 initiates at the center node and terminates at node M while crack
2 initiate at the center node and terminates at node N. Starting from a
crack front all the elements encountered by a counterclockwise rotation
about the node are given the same nodal number until the next crack is
encountered. Thus, in Fig. 3.3 the nodal number which is on the front
edge of crack 1, and is associated with element 1, is assigned to elements 1,

8, 7 and 6. Similarly, the nodal number K+4, which is the number on the
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front edge of crack 2, associated with element 5, is assigned to elements 5,
4,3 and 2. |

Only two of the eight nodal numbers associated with initial node K
become active for assembly into the stiffness matrix by this process. The
other six nodal numbers remain inactive. The normal finite element
program assigns degrees of freedom based on an array ID(2,NMNOD)
where NMNOD equals total number of input nodes and 2 indicates that
there are two degrees of freedom for every node. Degrees of freedom are
assigned to a node depending upon a boundary condition code, input to
the ID array, which indicates whether the degree of freedom is ‘active’ or
'inactive'. Similarly, after exhaustive enumeration, the degrees of
freedom for the inactive nodes remain at zero and consequently are not
assembled into the stiffness matrix. Therefore, no penalty in the solution
is incurred by the exhaustive enumeration of nodal numbers. For the
'unsplit’ node, only the initial nodal number is active and the other seven
nodal numbers remain inactive.

The  algorithmic procedure for carrying out systematic exhaustive

enumeration is presented in Sect. 3.6.

3.5 Topological Basis for Exhaustive Enumeration

The basic ideas and application of exhaustive enumeration for nodal
splitting and crack identification can be expressed in terms of the
topological terminology and definitions of Sect. 3.3. In this respect every
"corner" node of a finite element is considered to be a topological 'vertex'.
Every eclement ‘edge’ emanating from a vertex may be identified since it is
part of a loop. The 'edgeuses’ for each edge may be enumerated and the
sum of all 'edgeuses' for all edges emanating from the vertex gives the
number of ‘'vertexuses' for the vertex. In the data preparation phase of
the solution a topological data base is constructed to exhaustively
enumerate these features.

As an example, the 'edgeuses' and ‘vertexuses' associated with the
center node of Fig. 3.1a, with 'initial' node number K, are illustrated in
Fig. 3.4. The edgeuses of the edges emanating from node K are associated
with the elements incident to node K. The boundary of each of these
elements forms a 'loop', and the boundary between two elements has two

edgeuses, one associated with each loop. Consequently, vertex K has 16
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vertexuses, one associated with each edgeuse of each of the edges
emanating from K.

In Fig. 3.4 the edgeuses for the edges emanating from node K are
identified in sequence in a clockwise direction, and are drawn separately
from their owneredges for the purpose of illustration. Two cases arise
according to the topological relation between two edgeuses in sequence:

Case A. The current edgeuse and the previous edgeuse in the
sequence do not belong to same loop. A new nodal splitting number is
then introduced, and this number is assigned to the vertexuse associated
with the current edgeuse. This case occurs at edgeuses with local edgeuse
number 2, 4, 6, 8, 10, 12, 14 and 16. Their associated vertexuse are assigned
nodal splitting number K, K+1, K+2, K+3, K+4, K+5, K+6 and K+7
respectively.

Case B. The current edgeuse and the previous edgeuse in sequence
belong to same loop. No new nodal splitting number is introduced, and the
vertexuse associated with the current edgeuse has the nodal splitting
number of the vertexuse associated with previous edgeuse. This case
occurs at edgeuses with local edgeuse number 1, 3, 5, 7, 9, li, 13 and 15,
and their associated vertexuses have nodal splitting number K+7, K, K+1,
K+2, K+3, K+4, K+5 and K+6 respectively.

Based on the assumption that cracks can only form along element
boundaries, Case A corresponds to a pair of splitting nodes, one on each
side of a possible crack, while Case B corresponds to the corner node of a

element where interior cracking is not permitted.

3.6 Procedure for Formation of Topological Data Base
3.6.1 Introduction

The description of the procedure for the formation of a topological
data base to facilitate the analysis of cracking along interelement
boundaries can now be undertaken. In this chapter the description is
confined to the construction of the data base in the 'data preparation’
phase of the problem. Modifications to this data base during the '‘problem
run phase' will be discussed in Chapter 4. Note that names of arrays are
summarized in the section on Nomenclature, pg. xviii.

To assist in the description of the procedure, the patch shown in Fig.
3.5 will be used as an example throughout. The nodal and element
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numbers in Fig. 3.5a are assumed to be those from the input data,
" implying that numbers not shown in the patch exist elsewhere in the
discretization. However, the system of sequential identification of vertex
and edge numbers will be explained as if the patch were being processed

independently from the remainder of the mesh.

3.6.2 Vertex Based Identification of Edges and Edgeuses

The process of identification of edges and exhaustive enumeration
of nodes proceeds by sequentially processing the nodes in the sequence
of their input numbering. In preparation for this the element-nodal
incidence array NPELM(12,NMELM), where NMELM equals the total
number of elements and 12 indicates a maximum of 12 nodes for every
element, are input as given in Table 3.1 for the patch of Fig. 3.5a and
processed to form the nodal-element incidences. Concentrating on node
309, which is the central node of the patch, all element-node incidences
are searched to find those elements which have node 309 in their
definition. When this is done, the clements in Table 3.1 are identified as
incident to this node and their identities stored- in a array KEMT(J,M),
where J is the input nodal number. The row of nodal-element "incidence,
for node 309, is shown in Table 3.2. The total number of elements incident
to node 309 are accumulated and stored in the array element KEMT(309,1).
In this study, the maximum number of incident elements permitted is 8, as
illustrated in Fig. 3.4.

In the procedure developed, herein, only ‘corner' nodes will be
considered as 'vertices' and the ‘'edges’ emanating from the vertex at
input node 309 will now be identified. For this purpose the parent element
in nondimensional coordinates, shown in Fig. 3.6 is used to identify the
local numbering pattern for the input nodes and the sides of the element.
The definition of the parent element edges in terms of local nodes is
shown in column (a) of Table 3.3, as the array KSID1. These local nodal
numbers, which form the pattern for element-nodal incident input,
permit the global nodal number of the element edges to be picked from
the element-nodal incident array NMELM (Table 3.1) to form the edge
array KSID for element 9 as shown in column(b) of Table 3.3. Since the
process is to identify edges for element 9 which emanate from node 309,

the rows of KSID are examined and if node 309 is present as the third
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entry rather than the first entry of a row in KSID (because 309 is a
“comer" node, and clement 9 has 3 nodes on its sides, node 309 cannot be
present as the second entry), the nodal numbers in position 1 and 3 are
interchanged to result in the KSID array shown in column (c) of Table
3.3.

The temporary array MART(LJ,K) is now constructed from KSID to
contain edges emanating from node 309. The above process has identified
two of these (the last two rows in column (c) of Table 3.3). However, in the
exhaustive enumeration process, node 309 will be assigned a set of
different nodal numbers to permit the node to be split along each edge.
Therefore, a common edge between, say elements 9 and 10, must be itreated
as a separate edge in each element, i.e.- for each edgeuse as defined in
Sect. 3.3. In a manner consistent with Weiler (1986), the edge identified in
terms of input nodes may be called the 'owneredge' of its edgeuses.

Since element 9 is the first element processed in association with
node 309 (see Table 3.2), the edges identified above are assigned local
owneredge numbers 1 and 2, and their nodal definitions are stored in
array MART, together with the element number.from which they arise, as
shown in - the upper partition of Table 3.4. Processing the elements 10, 18
and 19, of Table 3.2, as discusscd above, identifies the other edges
emanating from 309 associated with all other incident elements. They are
entered sequentially into MART as shown in the second, third and fourth
partitions of Table 3.4. If the edges arising from these latter elements
have nodes identical to those of a previously assigned owneredges, the
edge is not given a new owneredge number, but this second edgeuse of a
previously identified owneredge is entered, together with its element
number, into the first empty column for the owneredge number. This
process is made possible because the fourth column for the owneredge is
assigned an eclement number of zero and the input nodal numbers are
stored in this column to serve as an identification array for the edge.
Nodal numbers in the other columns will be reassigned for nodal splitting
as is described in the following but the input nodal numbers are always
retained in column 4. At most, three edgeuses of an owneredge are
possible: two from adjacent solid elements and one for reinforcement

inserted along the edge.
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Each owneredge emanating from the vertex has its local
orientation, 0, defined as the angle between the emanating directions of
the edge and the X axis of the global coordinates. These are computed, in
the range -180°<0<180° and stored in the ANG (8) as shown in the

‘bottom row of Table 3.4.

3.6.3 Ordering Edgeuses and Exhaustive Nodal Numbering

The owneredges and edgeuses for edges emanating from nodal 309
have now been identified and appear in the temporary array MART as
shown in the bottom partition of Table 3.4. This array is now rearranged
so that the owneredges are placed in descending order of the angle 6.
MART then becomes as shown in Table 3.5a. Next, edgeuses which have a
common element number in successive owneredges (i.e. N and N+1) are
found. These element numbers are in the first row(K=1) of the array
MART shown in Table 3.5a. The element number for the first edgeuse of
owneredge N+1 is made to be the same as that for the second edgeuse of
owneredge N. After these interchanges MART appears as show in Table
3.5b. The second e¢lement number' appearing in the edgeuse for each
owneredge is called the "back -element" number, because in a
counterclockwise circuit around the node it would be the element behind
the crack on an owneredge. These back element numbers are stored in
the temporary array NEAMI1, as shown in the bottom line of Table 3.5c.

Exhaustive enumeration for this node (309) may now be carried out.
If the last nodal splitting number for the previous node was NS, then
nodal number 309 for the sccond edgeuse of the first owneredge is
changed to NS+1 and, at the same time, NS+1 is inserted for node 309 in the
first edgeuse of the second owneredge. This process continues through all
the edgeuses at the node to produce the nodal numbers shown on Table
3.5c.

The result of this is to produce the local owneredge number and the
nodal splitting numbers for node 309, shown in Fig 3.5b for each element.
The back and front of each potential crack for each owneredge

emanating from node 309 are indicated by 'b' and 'f' adjacent to the edge.
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3.6.4 Construction of Exhaustive Enumeration Database

The information contained in the temporary array MART, shown in
Table 3.5, is fundamental to a global database which it is necessary to
construct in order to provide the flexibility to deal with all possible
potential crack patterns along eclement boundaries. However, prior to
discussing the assembly of this database from the MART array, the method
of global numbering of vertices and owneredges must be introduced.

For the purpose of illustration it is again assumed that the patch of
Fig. 3.5a constitutes the entire mesh. Processing the vertices in ascending
order of their input nodal numbers, the vertices and owneredges are
numbered sequentially as they arise in the process described in Sect. 3.6.1
and 3.6.3. For the patch of Fig. 3.5a the global vertex and owneredge
numbering would be as shown in Fig. 3.5c. As each "comer" node is
processed, in turn, it is given a vertex number. For the patch of Fig. 3.5a,
two new owneredges arise with each of the vertices 1 and 2, 4 and 5, while
one arises at vertex 3. These are consecutively numbered in the order in
which they appear in the temporary array MART by the process of Sect.
3.6.3. -

3.6.4.1 Database Edge Array NCRLC

Progressing through the patch of Fig. 3.5 as discussed in Sect. 3.4,
the owneredges which sequentially arise by the process are assembled
into a global array with identifications as shown in Table 3.6, as each
vertex node is processed. They are given the global identification
numbers designated by NE in the table. Owneredge NE=8 and NE=9 arise
from the processing of node 309, through the MART array of Table 3.5c.
Note that two of the owneredges in Table 3.5¢ appear in Table 3.6 prior to
processing node 309: owneredge NE=3 first appears for vertex 2; while,
owneredge NE=7 first appears for vertex 4. Therefore, the local
owneredges presented in MART must first be compared with previously
saved global owneredges to ensure that they will not be duplicated, prior
to being given a global identity number.

In the illustrative example for the MART array of Table 3.5c, the
local owneredges 1 and 2 are given the global owneredge numbers of 8
and 9, respectively, but local owneredges 3 and 4 are not assigned new

global numbers since these edges already have global numbers 3 and 7.
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A three dimensional database array NCRLC(NE,ND,NN) is designed to
be the assemblage of topological information for all owneredges. NE is the
global identification number for owneredge; NN, ranging from 1 to 3,
represents a local ordering of the nodes on the edge; and ND ranging
from 1 to 20 represents a maximum of 20 information parameters (i,e, -
attributes) associated with each node on the edge.

For owneredges which have not appeared in NCRLC prior to
processing node 309 (i.e- global owneredges NE=8 and NE=9), their nodal
identification as shown in Table 3.6 is stored in NCRLC(NE,20,1),
NCRLC(NE,20,2) and NCRLC(NE,20,3), as shown in Table 3.7. These three
numbers are used as an identification array for the owneredge, so that if
they arise again during the processing of nodes other than node 309, they
will not be duplicated. The other information stored for these new
owneredges (8 and 9) consists of their crack front nodal number (ND=1),
their crack back nodal number (ND=2), the edge local orientation (ND=5)
and the back element number (ND=6). This information is all available
from array MART, and its associated arrays ANG and NEAMI, as shown in
Tables 3.5 and 3.6. The quantities stored in NCRLC are defined in the Notes
to Table 3.7.

For the new owneredges identified at node 309 (i,e.- NE=8 and 9), the
information is stored in NCRLC using local nodal number NN=1, and
subscripts ND=1, 2, 5, 6 and 10 respectively, as shown in Table 3.7.

For owneredges which appeared in NCRLC prior to processing node
309 (i.e.- owneredges NE=3 and NE=7), their nodal identifications have
already been stored in association with the processing of a previous node.
Their identities may be established by checking the nodal numbers of the
fourth columns of Table 3.5¢ with those in Table 3.6.

The same kind of information as for the new owneredges is now
stored for the old owneredges 3 and 7 at the location of node 309 for these
edges. This data is available from arrays MART, ANG and NEAMI, under
local owneredges 3 and 4, as shown in Table 3.5c. However, this new
information is stored in NCRLC using local nodal number NN=3 instead of
NN=1, as shown in Table 3.7, because position NN=1 is already occupied by
the information associated with the first edgeuse of the owneredge when

it was first identified.
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Examination of Table 3.7 for ownercdées NE=3 and NE=7 indicates
that the orientation and crack back element number of an owneredge are
different for the two vertices of an edge. This is due to the vertex based
approach adopted in this study where all owneredges are oriented away
from the vertex to which they are referred. This does not cause any
confusion because a vertex based approach deals with edges through
their common end vertices, for which a uniform clockwise ordering of
emanating owneredges is implemented.

The information from Table 3.7 can be identified in its position in
the three dimensional NCRLC array that is shown in Table 3.8, which is
assembled in the order of the global owneredge identification identified
in Fig. 3.5c, as the first rows for NE=3 and 7, and the the last rows for NE=8
and 9.

3.6.4.2 Database Vertex Array NCRNN

The processing to determine owneredges and edgeuses, leading to
the contribution of the MART arrays of Sect. 3.6.3 to NCRLC of Sect. 3.6.4.1.
is vertex based, and the nodes are processed in sequential order of their
input numbers. The comer nodes are defined as vertices as described in
Sect. 3.6.4 and given a global vertex number. For the patch of Fig. 3.5a,
these global vertex members are shown in Fig. 3.5c.

The MART array of Sect. 3.6.3 also contains information for input
node 309, which is stored in a vertex database designated as NCRNN, As for
NCRLC, NCRNN is a three dimensional array as indicated in Table 3.10.

However, for each vertex, the information stored may be
represented as a two dimensional array and is easier to described in this
context. The information for vertex 5 of Fig. 3.5c (input node 309) is
shown in Table 3.9a where it is identified by the local owneredge number
NM. The information originally stored from MART for each edge consists,
in part, of the crack front element number (NT=6), the crack back
element number (NT=7), the nodal splitting number for the crack front
(NT=1 and 10), the nodal splitting number for the crack back (NT=2 and
11), the corresponding global owneredge number (NT=16) and thé
position NN in NCRLC(NE, ND, NN) in which the input nodal number of
this vertex appears in the edge identifier (NT=17).
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Table 3.9a contains the nodal numbers in lines 1 and 2 as if all edges
were cracked at input node 309, and also in lines 10 and 11. If there are no
cracks passing through the vertex only one nodal number should be
associated with the node. The number assigned is the lowest splitting
number that arises at the node. Consequently, for an wuncracked
condition, all nodal numbers in line 1 and 2 are set to NS+1, so that the
entries for vertex 5 appear as shown in Table 3.9b. Nodal numbers from
the exhaustive nodal numbering are retained in lines 10 and 11 and can
be activated at any time by assigning them to line 1 and 2 in such a way
as to produce any combination of cracks that can appear at vertex 3.

. The complete three dimensional array for NCRNN, for the patch of
Fig. 3.5a is shown in Table 3.10. In Table 3.10, NV represents global vertex
number for the comer nodes. Therefore, input node 309 is assigned a
global vertex number 5 (NV=5), and its topological information given in
Table 3.9 is stored in the 5th row of Table 3.10, such that the last row of
Table 3.10 is composed of the first column of Table 3.9b. If NS represents
the last nodal splitting number for the previous node to node 309 (NV=35),
and WS represents the last splitting number for previous node to node 105
(NV=1), then NS of Table 3.9 equals WS+14 i'esplting in the global splitting
numbers shown in columns 10 and 11 of Table 3.10.

A one dimensional array NCRNM is used to record the total number
of edges emanating from a vertex (corner node), so NCRNM() gives total
number of edges emanating from the comer node which has a sequential
number I. On the left side of Table 3.10, the value of NCRNM
corresponding to the vertices NV are listed.

The presence or absence of cracking is indicated by a flag in the
array NCRLC. This indicator, using 1 for uncracked conditions, and 0 or
negative values for various cracking conditions, is stored for each
owneredge at each nodal point under ND=3 in Table 3.7. The interface
indicator of an owneredge, using 0 for being continuous concrete
material, 1 for being a boundary between concrete and steel materials
and 2 for being continuous steel material, is stored for ND=4. The criterion
for whether or not a crack is considered to occur along an owneredge,
and how this is incorporated into the database arrays is discussed in
Chapter 4.
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3.6.4.3 Summary of Usages for Some Entries in Array NCRNN

Some key entries in array NCRNN which will be repeatedly used in
Chapter 4 are summarized as follows (see Table 3.9).

1) The information stored in NCRNN(NV, 6, NM) and NCRNN( NV, 7,
NM) gives respectively the crack front element number (CFEN) and crack
back element number (CBEN) for the edge with local owneredge number
NM emanating from the vertex with global vertex number NV.

2) Stored in NCRNN(NV,1,NM), NCRNN(NV,2,NM) are the global nodal

numbers currently activated for the elements in NCRNN(NV,6,NM) and

NCRNN(NV,7,NM). These global numbers correspond to the vertexuses of
the vertex NV in the loops of these two elements. The two numbers reflect
the current crack condition of vertex NV along edge NM. This pair of
entries, NCRNN(NV,1,NM) and NCRNN(NV,2,NM), are called the current
crack front nodal number (CCFNN) and current crack back nodal number
(CCBNN) respectively.

3) Stored in NCRNN(NV,10,NM) and‘NCRNN(NV,ll,NM) are the nodal
numbers associated with the elements in NCRNN(NV,6,NM) and

NCRNN(NV,7,NM) if all the potential nodal splittings occur at vertex NV..

. All these pairs of numbers for the local owner edge NM=1 to NM=NMM,
where NMM is the total number of edges emanating from vertex NV,
reflect the extreme or "worst" cracking condition at the vertex. This pair
of entries, NCRNN(NV,10,NM) and NCRNN(NV,11,NM) are called crack
front nodal splitting number (CFNSN) and crack back nodal splitting
number (CBNSN) respectively.

4) Stored in NCRNN(NV,3,NM), and not shown in Table 3.9, is a flag
for the cracking status at vertex NV along edge NM. Its values are

assigned as follows:

1 = uncracked;
0 = incipient cracking;
-1 = cracked, with tensile stress exists between two crack

faces at vertex NV along edge NM;
-2 = cracked and no tensile stress existing between the two
crack faces;

-3 = free edge.
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5) Stored in NCRNN(NV,4,NM), and also not shown in Table 3.9, is a
flag for material adjacency along edge NM at vertex NV. Its values are

assigned as follows:

0 = eclements on both sides of edge NM at vertex NV are
concrete.

1 = eclement on one side is concrete, and the one on other side
is steel.

2 = clements on both sides are steel.

3.6.5 Variations in Database Procedures
3.6.5.1 Treatment of Boundary and Corner Nodes

The procedure described in Sect. 3.6.2 and Sect. 3.6.3 is able to deal
with boundary nodes as well as interior nodes. Node 107 in Fig. 3.5a is a
boundary node, and processing of its temporary array MART is shown in
Table 3.11. Two of three owneredge emanating from the node, owneredge
107-106-105 and 107-108-109,‘only have one edgeuse stored  as shown in
Table 3.11la.

In the processing of array MART to order the owneredges according
to decreasing values of orientation ANG, owneredge 107-108-109 has no
back element edgeuse and another owneredge 107-106-105 has no front
element edgeuse, as shown in Table 3.11b. Fig. 3.5¢ depicts the topological
meaning of temporary array MART. As a counterclockwise circle is drawn
around node 107, the circle "enters" the structure at owneredge 107-108-
109, and the "entrance" is represented by the existence of a crack front
(first column) and absence of a crack back (second column). On the
contrary, the circle "exits" the structure at owneredge 107-106-165, and
this "exit" is represented by the absence of a crack front and existence of
a crack back. Exhaustive nodal numbering, Table 3.11c, progresses the
same way as in Table 3.5 but zero nodes are not assigned splitting
numbers.

The procedure of storing MART to the topological database is the
same as described in Sect. 3.6.4.1 and Sect. 3.6.4.2. A point of particular
interest is the determination of the cracking flag, ND=3 in array
NCRNN(NT,ND,NN), described in Sect. 3.6.4.2. A boundary owneredge can
be a free boundary of a structure or a line of symmetry of a structure.

This can be identified by inspection of the 'ID array' for the degree of
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freedom. If both D.O.F of the boundary node are nonzero (active), a free
boundary node is detected. Otherwise, it is a node on a line of symmetry,
or a constrained node. In the case of a free boundary, the crack flag
(ND=3 in Table 3.7) is set to -3 so that no crack evaluation will be executed
(see Chapter 4). In the second case the crack flag is set to 1 to indicate an

uncracked state for a potential crack.

3.6.5.2 Treatment of Midside Node

A vector in the vicinity of a vertex drawn from the back element
or (crack back) to the front element across owneredge i and
perpendicular to the edge, will be called the normal of the owneredge,
and designated as ni. These owneredge normals are shown for node 309 in
Fig. 3.5d, and for node 107 in Fig. 3.5e. If the orientation vector for
owneredge i, denoted by ti, is rotated 90° counterclockwise, it will
coincide with ni. This is an equivalent representation of the adjacency
relation, and is used frequently in the crack evaluation which will be
discussed in Chapter 4.

Node 308 in Fig. 3.5a is taken as an example of the treatment of a
midside node. The processed array MART at this node is shown in Table
3.12. For an interior node three steps, denoted by (a), (b) and (c¢)
respectively, have been shown in Table 3.3. Two of these steps, (a) and
(b), are applicable to midside nodes, but step (c), which exchanges the two
nodes in position 1 and 3 if the vertex being processed is not at position 1,
is eliminated. The ordering of edges by decreasing values of ANG, as
shown in Table 3.5a, is also eliminated because there is only one
owneredge incident to a midside node. As shown by Table 3.12a and Fig.
3.5¢, the orientations of the two edgeuses of the owneredge differ by 1800°.
For consistency with the coincidence of the owneredge orientation
vector t after the counterclockwise 900 rotation and the normal vector n,
as described at the beginning of this section, the orientation of the first
edgeuse at a midside node is defined as the owneredge orientation, and the
element which brings the second edgeuse is defined as the back element.
As shown by Table 3.12a and Fig. 3.5e, the orientation of the owneredge at
node 308 is -90, and the back element is 18. Exhaustive enumeration of

nodal splitting proceeds as shown in Table 3.12b.
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As the array MART is stored into the topological database, only
array NCRLC is updated. Array NCRNN is for vertices only, and no midside
node information is required. The same kind of information as described
in Sect. 3.6.4.1 for vertices is saved for the midside nodes. Recalling that
data for vertices are stored at the local position number NN=1 or NN=3 in
NCRLC(NE,ND,NN), data for midside nodes is stored for NN=2. Midside node
308 appears in Table 3.7 and Table 3.8 under the subscripts NE=7 and NN=2
in which the nodal splitting number have been made consistent with the

other nodes in this tables.

3.6.5.3 Treatment of Reinforcing Element and Interfaces

To illustrate the treatment of reinforcing eclements, a line of
reinforcement along line 311-310-309-308-307 in the mesh shown in Fig.
3.5a is inserted in Fig. 3.5f. These reinforcing elements are 3-node truss
elements and designated as clement 13 and 14, as shown in Fig. 3.5f.
Sequential construction of array MART for node 309 is illustrated in Table
3.13. It is similar to the result in Table 3.4 for the mesh in Fig. 3.5a except
that the reinforcing elements add a third edgeuse to two of the local
owneredges. By comparing the last partition of Table 3.13 and Table 3.5, it
is found that, in Table 3.13, for edges 309-308-307 and 309-310-311 the
number of edgeuses is increased from 2 to 3, and the newly added
edgeuses associated with the reinforcing elements appear in the second
edgeuse position.

Every edgeuse of the owneredge emanating from node 309 is
examined. If one edgeuse is associated with a reinforcing element which
is identified by its type of flag, and is not at the third edgeuse position, its
position is exchanged with third edgeuse. The result is shown in Table
3.14a. The procedure then followed is exactly the same as that for no
reinforcing element: reordering edges in order of decreasing magnitude
of ANG, reordering the first two edgeuses so the same element numbers
are in paired in sequential owneredges. After the exhaustive
enumeration is finished for all splitting nodes of the solid elements, the
maximum nodal splitting number is increased by 1 to get additional nodal
splitting numbers for reinforcing nodes as extreme cracking occurs. This
is illustrated in Table 3.14b and Fig. 3.5h.
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As owneredge 309-310-311 and 309-308-307 are stored into the
topological database NCRLC(NE,ND,NN), NCRLC(NE,12,NN) is used as a flag
to denote insertion of reinforcement, and is set to one if reinforcement is
present (otherwise it is zero). The exhaustive enumeration nodal number
for the reinforcement, and the two numbers of the reinforcing elements
incident to the node, 13 and 14, follow in ND=13 to 15.

3.6.5.4 Variation of Element Type
3.6.5.4.1 Quadratic Triangle Element

The procedures for quadratic triangle eclements are almost the same
as for quadratic rectangular elements. The only difference is in the
formation of array KSID1, the parent element edge definition in terms of
local nodal numbers, as described in Sect. 3.6.2. Array KSID1 for quadratic
triangles is shown in Fig. 3.6b, and can be written in the order of a

counterclockwise sequence as illustrated by the labels in Fig. 3.6.

3.6.5.4.2 Linear Element

The procedures for linear elements are almost the same as for
quadfatic elements. The only difference is that no midside node is dealt
with. As a result, only two nodes exist on any edge instead of three. Then,
only the first two of three positions for local nodes on an owneredge are
used in arrays such as KSID1, KSID, MART and NCRLC.

3.7 Transformation of Problem from Input Numbering to

Exhaustive Enumeration

As the exhaustive enumeration at a node with input nodal number I
is completed, the lowest splitting number that arises at the node, namely,
NS+1, is saved to an array designated as KEMT2 at position I, that is,
KEMT2(I)= NS+1.

For the example shown in Fig. 3.5a, if it is assumed that the new
nodal number for node 105 is WS+1, the corresponding value of KEMT?2 is
given in parenthesis besides the input nodal number in Fig. 3.5h. Array
KEMT2 represents a correspondence in an uncracked structure between
the input nodal number and the lowest nodal splitting number for this
node arising from exhaustive enumeration. The KEMT2 array for the

example of Fig. 3.5h is as shown in Table 3.15.
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The last procedure in the "data preparation phase" is to transform
the problem input numbering system to that obtained from exhaustive
enumeration, and array KEMT2 is used for this transformation. The
transformation includes two parts:

1) The global node number is replaced in the element-nodal
incidence array NPELM by new numbering. This is shown by Table 3.16
for the example shown in Fig. 3.5a. This new numbering recorded in
array KEMT2, is used to represent the initial uncracked structure, and was
denoted to be the 'initial nodal number' in Sect. 3.4.

Initial nodal numbers are also introduced into the global array
NCRNN to replace the numbers at positions NT=1 and NT=2 as shown in
Tables 3.9b and 3.10. As the numbers in these two positions are designed
to represent current crack front and crack back nodal numbers, they are
both identical to the initial nodal number for an uncracked state.
Noticing the exhaustive splitting numbers are also stored in NT=10 and
NT=11 for array NCRNN, the exhaustive splitting numbers are not lost by
altering the values in positions NT=1 and NT=2.

2) The arrays which were originally defined having length equal to
the total number of input nodes (NMNOD), must be expanded to encompass
the maximum nodal number obtained by exhaustive enumeration. For the
example in Fig. 3.5a, the total number of input nodes is 21, and the
maximum number of nodes after exhaustive enumeration is 32. How an
array is expanded depends on its function. The array which contains the
nodal geometry is expanded by assigning the geometry of the input node
to all nodes, in the group produced by exhaustive enumeration, for this
input node. As shown in Table 3.15, input node 309 correspond to 4 nodes,
namely, nodes WS+15 to WS+18. This can be determined by the difference
in the first nodal splitting number for nodes 310 and 309. These four split
nodes will be assigned the same initial position as input node 309.

The ID array which contains the ‘activity status' (or boundary
condition code) for the degrees of freedom (DOF) of the nodes, is expanded
by assigning the activity status of the input node to the first node in the
group produced by exhaustive enumeration (i.e.- initial nodal number).
The DOF's of the other nodes in the group are assigned an activity code of
one indicating they are inactive in the initial uncracked state. These

procedures are discussed in detail in Chapter 4.
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.Table 3.1 Element-Nodal Incidence Array NPELM for Fig. 3.5

Element No. Element-Nodal Incidence Array
I NPELM (K,]) K=1, 8

9 307, 105, 107, 309, 210, 106, 211, 308

10 309, 107, 109, 311, 211, 108, 212, 310

18 509, 307, 309, 511, 405, 308, 406, 510

19 511, 309, 311, 513, 406, 310, 407, 512

Table 3.2 Nodal-Element Incidence Array KEMT(J,M)

for Node 309 of Fig. 3.5
KEMT
Input Node UM
M=1 M=2 | M=3 | M=4 | Ms5
I Number of Element Incident Element
Incidences
309 4 9 10 18 19

Table 3.3 Processing of Edge Identification Array KSID
for Node 309 in Element 9 of Fig. 3.5

Parent | a) Local Nodal b) Global Nodal | ¢) Vertex Focused
Element | Definition: KSID1 | Definition: KSID | Global Definition:
Side No.| in Parent Element | in Real Element |, _ KSID
in Real Element
1 1 5 2 307 210 105 | 307 210105
2 2 6 3 105 106 107 105 106 107
3 3 7 4 107 211 309 | 309 211 107
4 4 8 1 [309 308 307

309 308 307
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Table 3.4 Processing of Edgeuse Array MART(N,K,J)

for Edges Emanating from Node 309 in Fig. 3.5

LOCAL
OWNEgIlEDGENo. 1 2 3 4
LAST MART(1,K,J) MART(2,K.]) MART(3,K,J) MART(@4,K,J)
ELEMENT | ¢ J J J J
PROCESSED| I T2 a V1 J2 341234 121314
1|9 ol 9 0
2 309 309|309 309
? 3 |21 211|308 308
4 |07 107]307 307
s|o ol o 0
19 [10 ol 9 0] 10 0
2 |309 [309 309 |309 309 |309 309
10 3 |11 211 211 |308 308 |310 310
4 107 |107 107 307 307 |31 311
s{o ol o olo 0
1 ]9 |10 ol 9]18 0|10 0 | 18 0
2 Boo po9 309 [309 Bo9 309 {309 309 |309 309
8 3 b1 pii 211 |308 Bos 308 {310 310 |406 406
4 o7 po7 107 |307 07 307 |311 311 |511 511
slo o oJlo]o 0o]o o]o
1t 9|10 ol 918 o]10]19 o | 18] 19 0
i 2 309 |309 309 |309 P09 309 {309 |309 309 {309 [309 309
3 211 21 211 |308 pos 308 |310 310 310 |406 [406 406
4 |107 j107 107 |307 Bo7 307 |311 311 311|511 |511 511
slolo ololo o0]o|o o0]lo|o 0
0 -90 90 180

ANG (6)
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Table 3.5 Processing the MART(N,K,J) ARRAY

for Exhaustive Enumeration

a) Reorder Distinct Edges Emanating from Node 309 in Order of Descreasing

Magnitude of ANG
ANG(8) 180 > 90 > 0 > -90
T
Owlr\}‘;gld e 1 2 3 4
= MART(1,K,J) MART(2,K.J) MART(3,K,J) MART(4,K,))
_ J J J J
K 1| 2 4t 1|2 |3]1411)2(3]l4}1]21]3 4
1 18 119 0]10 |19 0 9 10 0 9118 0
2 309 | 309 309 1309 {309 309 1309 {309 309 {309 | 309 309
3 406 | 406 406 1310|310 310211 (211 2111308 | 308 308
4 511 | 501 501 311|311 311107 { 107 107 §307 | 307 307
5 0 0 0 0 0 0 0 0 0 0 0 0
b) Record Elements to Pair Element Numbers in Sequential Edgeuses
- T -7
1 18 19 p— 199|104 ~ —10] 9 4+ - 9 |18
2 | 309 1309 309 | 309 309 | 309 309 | 309
3 ] 406 1406 3101310 211] 211 308 | 308
4 | 511 |51 311|311 107 | 107 307 | 307
510 (o 0 |o 0 |o 0o [o
¢) Renumber Node 309 for Exhaustive Enumeration
1 | 18 19 0 |19] 10 0 1009 o |9 | 18 0
2 | NS+4| Ns+1 309 |NS+1{Ns+2 309 |NS+2|NS+3 309 INS+3|NS+4 309
3 | 406 | 406 406 |310 310 310 J211 |211 211 {308 |308 308
4 |sun | sin si jsn |3 311 |107 | 107 107 }307 |307 307
s o 0 o Jo o | 0o |o

0

NEAM1

19

10

18




Table 3.6
Processing Global Identification of Sequential Owneredges

in NCRLC(NE,20,NN)
NN Global Owneredge Number NE
Last
Node [Edee
Pro- Local 1 2 3 4 516 7 8 9
cessed | Nodal
No.
1 1051105
105 2 210|106
3 307|107
1 105|105 {107 | 107
107 2 2101106 |211 {108
3 307|107 {309 | 109
1 1051105 [107 | 107 {109
109 2 210106 |211 | 108 |212
3 307 |107 |309 | 109 |311
1 105 {105 {107 | 107 {109 | 307 |307
307 | 2 |210106|211 | 108 [212 | 405 |308
3 307 1107309 | 109 {311 | 509 |309
1 |105 [105]|107 | 107 |109 | 307 307 309 309
309 2 |210 |106{211 | 108 [212| 405{308 {406 {310
3 |307 {107(309 | 109 |311 | 509|309|511 |311
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Table 3.7 Entries in NCRLC for Node 309

46

NE 8 9 3 7

1 2 |3 1 |2 3 1 2 3 1213
ND
1 | NS+4 NS+1 * | % INS+2] *) [NS-1|NS+3
2 | NS+1 NS+2 ™ | (*) INS+3] (*) | NS |NS+4
3
4
5 | 180 90 (180) 0 o0y | -90 |-90
6 [ 19 10 (10) 9 9 | 18 | 18
10
20 | 309 406 511309 (310 (311 107 |(211)](309) |(307) | (308)|(309)
Data Description:

NE= Global owneredge number

NN= Edge Local Nodal Number X
ND= 1= Nodal splitting number on back of owneredge
2= Nodal splitting number on front of owneredge

3= Crack status indicater; for exampe, 1 for uncracked state

and -1 for cracked state

4= Interface indicator of the edge; for example O for
concrete element on both sides and 1 for one concrete element
on one side with steel element on the other side

5= Orientation of the owneredge when emanating
from node for NN=1

6= Crack back element number

10=

20= Input node Identification

Notation:

()=Indicates information stored from MART arrays previous
to that for input node 309
(* )= Proviously evaluated but unspecified for this example




Table 3.8 Processing of Global Array NCRLC(NE,ND,NN) for Fig. 3.5

L A Al Al /| A
— S/ ] /| /| /| /]
CE 1 | | | | |
7 4 7 7 7
NE Qus+1241 404 | g8QM _§ _ 0M4- {1 _ a07 _V
1 A3 o e ASED3L] A8 1 O . L. 201 . /
. (O kowseiyr  (180) lzo1 12105
» ©0)2 (WS+3)2 (-90)2 9)2 107 /
(WS+2)1.1 0)1.1 90)1.1 1.1 106 /
[ | S+1)1 1 (90M (1 105
3 (WS+16)5 (WS+17)5 )5 95 309 /
(WS+8)3.2 | (WS+9)3.2 (180)3.2 (10)3.2 211 /
2 3)2 IAY) (180)2 102 107
. 06 (WS+6)3 (-90)3 (10)3 109 /
(WS+5)2.1 (0)2.1 (90)2.1 2.1 108 /
- X2 2 (90)2 2 107
3 s (0)6 (WS+21)6 06 (10)%6 311 4
(WS+10)3.3 (0)3.3 (180)3.3 0)3.3, C 212 /
] )3 3 (180)3 ()X} 109
6 (WS+27)7 0y7 0)7 )7 509 /
4 (0)6.1 (WS+23)6.1 (180)6.1 (18)6.1 405 /
(0¥ WS+11)4 (180)4 (184 307
7’ (WS+17)5 (WS+18)5 (-90)5 (18)5 309 /|
(WS+13M4.1 (WS+14)4.1 (90)4.1 (9M4.1 308 /
- (WS:12)4 1 (90)4 9)4 307
8 (WS+29)8 (WS+30)8 8 (18)8 511 /
(WS+24)6.2] (WS+25)6.2 (180)6.2 (19)6.2 406 /
5 (WS+15)5 (180)5 (19)5 309
Ylo (WS+21)6 (WS+22)6 (-90)6 (196 311 /
(WS+10)5.1 (WS+20)5.1 (90)5.1 (10)5.1 310 /
S+155  kws+16)s (90)5 ams 300
ND > 1 2 5 6 20
Notation: CE sequential corner node (vertex) number

(WS+11)4 exhaustive splitting number WS+11 which is produced at

(WS+13)4.1 exhaustive splitting number WS+13 which is produced

the 4th corner node

at the 1st mideside node after the 4th corner node
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Table 3.9 Entries into NCRNN (NV,NT,NM) for Vertex 5 of Fig. 3.5

(a) NV 5
NM
NT 1 2 3 4
1 NS+4 | NS+1 | NS+2 | NS+3
5 NS+1 | NS+2 NS+3 | NS+4
| 0 NS+1=WS+15
6 18 19 9 NS+2=WS+16
7 19 10 9 18 NS+3=WS+17
10 NS+4 | NS+1 | Ns+2 | Ns+3 | NS+4=WS+18
11 NS+1 | NS+2 | NS+3 | NS+4
16 8 9 3 7
17 1 1 3 3
1 2 3 4
“(b) NT
1 | NS+1 |NS+l | NS+1 | NS+l
2 | NS+l |NS+1 | NS+l | NS+
6 18 19 10 9
7 19 10 9 - |18
10 NS+4 NS+1 NS+2 NS+3
11 NS+1 NS+2 | NS+3 NS+4
16 8 9 3 7
17 1 1 3 3
Data Descriptors:

NV= Global Vertex Number
NM= Local Owneredge Number of Edges Emanating from this Vertex
NT= 1= Current Crack Front Nodal Number (CCFNN)
2= Current Crack Back Nodal Number (CCBNN)
6= Crack Front Element Number (CFEN)
7= Crack Back Element Number (CBEN)
10= Crack Front Nodal Splitting Number (CFNSN)
11= Crack Back Nodal Splitting Number (CBNSN)
16= Global owneredge number
17=Position of input nodal number for this vertex, in crack
nodal identification in NCRLC.
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Table 3.11 Processing of Array MART at Boundary Node 107
of Fig. 3.5

a) Sequential Construction of Array MART at Boundary Node 107

Last MART(1,K,J) MART(2K,J) MART@3.K,J)
Element |X J J J
Processed 1 2 3 4 1 2 3 4 1 2 3 4
119 9
9 2 1107 107 107 107
31106 106 | 211 211
4 {105 105 |309 309
119 9 10 10
10 |2]107 107 |107 107 107 | 107 107
31106 106 (211 211 211 {108 108 |
4 |105 105 [309 309 309 | 109 109
ANG -90 180 50

b) Reorder Distinct Edges in Order of Decreasing Magnitude of

ANG and Reorder Elements to Pair Element Number

in Sequential Edgeuses

1 9 10 10 0 0 9
21107 107 107 1107 © 107 | 0 107 107
31211 211 211 {108 O 108 | 0 106 106
4 1309 309 309 1109 O 109 | 0 105 105

ANG 180 90 -90

NEAMI 10 0 9

¢) Renumber Node 107 by Exhaustive Enumberation

119 10 10 0 0 9
2 INS+2NS+1 107 [NS+10 107 | 0 NS+2 107
3 211 211 2111108 0 108 | 0 106 106
4 1309 309 309109 o 109 | 0 105 105




Table 3.12  Processing of Array MART at Midside Node 308
of Fig. 3.5

a) Sequential Construction of Array MART at Node 308 in Fig.3.5

Local 1
Owneredge No.
Element K MAR'? (LK.J)
Processed '
1 2 3 4
1 9
9 2 1 309
3] 308
4 1 307
5
1 9 18
18 21 309 | 307
3] 308 | 308
4 ] 307 | 309
5
ANG 90 | 90

b) Renumber Node 308 for Exhaustive Enumeration

1l 9 18

2 }309 | 307
3 INS-1| NS
41307 | 309




Table 3.13 Processing of Array MART for Embedded Reinforcement

in Fig. 3.5f
Local Owneredge 1 2 3 4
No.
Last Element MART(1.K.J) MART(2,K.J) MARTGK,)) MART(4,K,])
J J J J
Processed
1 2 314 1 213 ] a4 1 2 |3 4 1 (2 ]3 4
1 9 9
21 309 309 | 309 309
9 3] 2n 211 | 308 308
4] 107 107 | 307 307
5
11 9| 10 9 10
2| 309( 309 309 | 309 309 | 309 309
10 3| 211] 211 211 | 308 308 | 310 310
4] 107] 107 107 | 307 307 | 311 311
3
1 9| 10 9113 , 10
3 2| 309] 309 309 | 309 [309] 309 | 309 309
31 211 211 211 ] 308 | 308 308 | 310 310
41 107] 107 107 | 307 | 307 307 | 311 311
s
1]9 10 9 | 13 10|14
14 2 | 309§ 309 309 | 309 |309 300 | 3091 309 309
3{21]2n 211 | 308 | 308 308 | 310 310 310
4| 107] 107 107 | 307 |307 307 ] 311 311 3m
5
1 91 10 9 | 13] 18 10 | 14 18
2] 309} 309 309{ 309 309309 [309 | 309 | 309 309 {309 309
18 3lann| an 211} 308 |308 308 |308 | 310 | 310 310 | 406 406
41 107] 107 107{ 307 }307}307 |307 | 311 | 311 311 |sn 511
5
1 9 10 9 13} 18 10 141 19 18 |19
21309 | 309 309 | 309 |309] 309]309 § 309 {309 | 309|309 | 309 {309 309
19 3f211 | 211 211 | 308 |308] 308§308 | 310 | 310 | 310310 | 406 | 406 406
41107 | 107 107 | 307 | 307} 307|307 | 311 | 311 | 311|311 | 511511 511
5
0 -90 90 180




Table 3.14 Processing of Array MART for
Reinforcement shown by Fig. 3.5g

a) Exchange Edgeuse Brought by Reinforcing
Element to 3rd column in Array MART

Local
Owneredge 1 2 3 4
No.
MART(1K,]) MART(2,K,J) MART@3.K.)) MARTH4 ,K,J)
J J J )
2 4 2 1]s3 4 1 ]2 3 14 1])2 3 4
1 9 10 9 18 {13 10 |19 | 14 18 ] 19
2 309 |309] |309 | 309 |309]309] 309 |309{309 | 309 | 309 |309] 309 309
3 211 j211 211 ] 308 1308 | 308] 308 31013101310 }310 406|406 406
4 107 | 107 107 | 307 {307 |307] 307 |311}311]311 |311 511|511 511
s _
ANG 0 -90 90 180
b) Renumber Node 309 for Exhaustive Enumeration
1 18 |19 19 |10 14 1019 9 18 | 13
2 NS-+4|NS+1 309 INS+1|NS+2|NS+5B09 INS+2{NS+3 309 NS+3INS+4|NS+5{309
3 406 [406 406 §1310 {310 310 P10} 211] 211 211} 308| 308| 308 {308
4 511 |s11 511§ 311 |311 {311 B11] 107] 107| {107} 307| 307| 307|307
5
ANG 180 9 0 90
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M C D M C D
2 3 2 3
1 K 4 1 { 4
B E B E
8 S 8 5
7 6
7 6
A F N A F N
(a) Before cracking (b) After cracking
Fig. 3.1 Discrete Crack Formation
5 9 |
1 13
1 4 7
2 14
6 10
2 5 8
~e-Line of symmetry
15
3 7 "1
3 6 9
16
4 8 12
Fig. 3.2 A Mesh of Elements
M C D M crackback C D
—
crack 1 2 3
——
crack front | 1 k+d k+4
\ k+4
B E B ta E
crack front
8 k\k ~
7 b 6 \crack 2
A N A F Jcrackback N
(a) Extreme of nodal splitting (b) Nodal splitting with

around node K

2 active nodal numbers

Fig. 3.3 Two Examples of Nodal Splitting
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k to k+7 nodal splitting number

Notation: O vertexuse
to element number
edgeuse

owneredge
owner loop to edgeuse number

. vertex ,

Fig. 3.4 Decomposition of Edges and Vertices
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407 311 212
513 r ——e— T o— o 109

X 309,4(
511 > - 7107

406 211
510 p 308 9 @ 2106
o 2 ® 105
509 405 307 210
a) Input nodal and element numbers b) Nodal splitting numbers for node 309

d) Owneredge orientation ti (i=1,4)
and owneredge normal n i (i=1,4)
for node 309

¢) Global vertex and owneredge numbers

b | crack back element numbe; local (owner) edge
Notation: + @ umber EI ( ) edg

number

crack front
o ‘ni normal of the ith local edge

ti orientation of the ith local edge
) 1: global (owner) edge number

o—— node and local edge
I 1 ) global vertex number

Fig. 3.5: Example of Exhaustive Enumeration
(continued in the next page)
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407 311 212 109

513 P & & -
“
512 ¢ 310 108
406 211 s
2 * 300 ° 107
510 L @106CT
© 425 o (
309 307 210 105
e) Orientation t i and normal n i for
owneredges incident to corner node f) Inserted reinforcing element

107 and midside node 308

513 407 311 212
(WS+32) (WS+26)(WS+21) (WS+10) 109

[(ws+6)
310
512 108
S+19
ws+31) [ p VS (WS+5)
309
511
(WS+29) $ o W51 $ 107
406 211 S+3
(WS+24) (Ws+8) | (WS+3)
310 308
ws+28) ¥ ¢ $106
(WS+13) (WS+2)
509
® o < o 0 105
(W5+27) 405 307 211 WS+D)
g)Exhaustive enumeration for (WS+23}(WS+11) (WS+7)
the example in Fig. 3.5 f) h) Correspondence between input nodal
number and initial nodal number
Notation: b crack back + 309: input nodal number :?:;l bcé:vneredge
f * crack front  “(ws415): initial nodal number
O . @ element number
t i orientation of the ith local edge ni normal of the ith local edge

l\ 13 reinforcing element and reinforcing element number

Fig. 3.5: Example for Exhaustive Enumeration
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f side 3 P
8o side 4 side 2 # 6
L side 1 L

F

5 2

2) Quadratic rectangular

b) Quadratic tranglar

Fig. 3.6 Local Nodal and Side Numbering Schemes
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CHAPTER 4
SIMULATION OF CRACK PROPOGATION

4.1 Introduction

In the section 3.4, the approach for simulation of crack propagation
was briefly outlined. The detailed description of the procedures used is
presented in this chapter.

The procedure for crack propagation includes three parts:

1) Initiate new cracks. At every input node, examine the satisfaction
of crack initiation criteria for every uncracked edge emanating from it.
If the criteria are met, change the crack flag accordingly.

2) Update the adjacency relations. For every newly introduced split
node, activate the associated nodal splitting numbers, and introduce them
into the element-nodal incidence array NPELM for the incidental
elements. Update current crack front and back nodal numbers as well.

3) Find the relative normal and tangential displacements of a pair of
split' nodes on both faces of every crack and define the nodal stresses and
nodal forces accordingly.

Procedures for the first two parts will be discussed in Sects. 4.2 and
4.3, respectively. For the third part, the procedure will be described in
Chapter 5.

4.2 Determination of Element Nodal Stress
4.2.1 Scheme  of Integration

Because the strategy is to introduce cracks at boundaries of
elements according to the state of stress ét the element node,
determination of nodal stress becomes an unavoidable step in the
procedure. In this study, the quadratic triangular element with the
integration scheme (Zienkiewicz, 1971) shown in Fig. 4.4 is used because
of the following considerations.

1) Triangle elements can provide more edges emanating from one
vertex in a regular mesh, than quadrilateral elements.

2) The coincidence of integration points for the stiffness matrix and

element node eliminates the requirement of extrapolating (from
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integration points) or extra computing (through nodal strain) for nodal
stresses. In the case where the constitutive relation between stress and
strain for the element is nonlinear, it eliminates the requirement of extra

memory for accumulated nodal stresses in an incremental approach.

4.2.2 Averaging Nodal Stresses at Vertices

The stresses at a vertex are obtained by averaging the
corresponding nodal stresses from all elements incident to this vertex.
The principal stresses at the vertex are then calculated.

Two cases should be considered here. First, is the case where one or

more cracks run through a vertex in the concrete material and divide the

neighborhood at this vertex into sectors. In the example shown in Fig.
3.3b, a diagonal crack runs through the center node K from comer M to
opposite corner N. The possibility for further cracking is examined
separately on the two sectors formed by the ‘'through crack'.

In the first sector composed by elements 2, 3, 4, and 5, the stresses at
vertex K+4 are obtained by averaging nodal stresses from element 2, 3, 4
and 5, and then the principal stresses and their orientation at vertex K+4
are calculated. The principal tensile stress and .its orientation is used to
check the cracking possibilities along edges (K+4)-C, edge (K+4)-D, and
edge (K+4)-E at vertex K+4. This process is repeated in the other sector
composed of elements 1, 8, 7 and 6.

The second case is when the vertex is located on a boundary
between steel and concrete elements. As illustrated in Fig. 4.2a, the
principal stress for concrete at vertex K is derived from the concrete
elements 1 and 2, and the incident steel eclements 3 and 4 are .cxcluded

from the evaluation.

4.3 Evaluation of Crack Situation
4.3.1 Crack Initiation Criteria

Tensile strength is adopted as the crack initiation criterion. For a
pair of unsplit vertexuses which are located on the two edgeuses of an
owneredge, four different cases characterized by the material types of
the solid elements, on both sides of the edge, are described below in Sects
4.3.1.1 to 4.3.14.
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4.3.1.1 Case 1: Concrete Elements on Both Sides of the
Edge v

Because the unsplit pair of vertexuses are located on the two
edgeuses of an edge located inside continuous concrete material, the
orientation of the impending crack should be perpendicular to the
orientation of the principal stress. Because the predefined edge is not
likely to be exactly perpendicular to the orientation of principal stress, a
tolerance B¢, or a "threshold" value, is selected so that when the angle
between the direction of the normal for the edge at the vertex and the
orientation of the principal stress is smaller than this tolerance, a crack

is deemed initiated at the vertex along the direction of the edge, provided

that the principal stress is larger than tensile strength, denoted by f,.
Two examples are shown in Fig. 4.1. In Fig 4.1a, vector p represents
the principal stress at vertex K, and the unit vector n represents the two
possible normal directions for edge BF, one for edge KB and one for edge
KF. Assume vector p falls into the the sectors bounded by the two lines
separated by angle 2B8¢ and centered about the normal. For this condition
node K is split along both edges KB and KF, as shown in Fig. 4.1b. The
criteria for cracking along an edge at vertex K inside the concrete

material can be described mathematically as

P> f't and (4.3.1a)

cos(p?n) = cos(B¢) (4.3.1b)
where P is the norm of vector p and p*n is the angle between vectors p
and n. Fig. 4.1c and Fig. 4.1d show another example centered at node K
from which eight edges emanate. The angle Bt is used to define the limit
of "closeness" of an edge to the principal stress orientation to be split.
Therefore, B¢ is mesh dependent. For the mesh in Fig. 4.1a, B¢ is set to be

450 so a crack will be initiated on one of the four edges emanating from

vertex K wherever the principal stress exceed f;. For the mesh in Fig.
4.1c, B¢ is set to be 22.59,

A classical plastic stress-strain relation is adopted for concrete
behavior. Because the yield strength for tension is specified equal to the

yield strength for compression, which is much higher than the tensile

strength for boundary cracking, f;, discrete cracking along element

boundaries dominates the behavior in tension.
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4.3.1.2 Case 2: Interface -between Concrete and Steel
Elements
This case simulates the boundary between a solid steel reinforcing
clement (as opposed to a line element) and the surrounding concrete. Due

to the material discontinuity at the edge and a lower adhesive strength,

f'sc, between concrete and steel than the concrete tensile strength, ft,

only the concrete stress component perpendicular to the edge at the
vertex is considered. If this stress component is larger than the adhesive
strength f'sc, a crack is deemed to be initiated at the vertex along the

boundary of the two materials.

4.3.1.3 Case 3: Steel Elements on Both Sides of the Edge

Because the edge considered is located inside the steel material, the
constitutive relations for steel will apply. In this study, classical plastic
stress-strain relations are adopted for steel in both tension and
compression. A yield stress fyg is specified and, as it is reached, the steel
will "flow" along the yield surface. Discrete cracking at the boundary of
“two solid steel elements, or rupture of steel, is eliminated by specifying a

very high tensile strength for boundary cracking.

4.3.1.4 Case 4: Reinforcement Embedded between Two Concrete
Elements

This is a special case of Case 1, and the criteria for nodal splitting is
the same. However, after nodal splitting, three nodes will exist at the same
initial geometrical position: two nodes for the pair of concrete faces of
the crack, and one node for the reinforcement truss element which is no
longer attached at the vertex to the incidental solid elements. Fig. 4.3
gives an example.

Although the crack pattern of Fig. 4.3b creates a mechanism which
cannot sustain force in the lateral direction on the truss element, test

runs for the condition have not exhibited numerical problems.
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4.4 Updating Adjacency Relations for New Cracks

4.4.1 Updating NPELM and ID Arrays

4.4.1.1 Procedure for Assembly of Stiffness Matrix in
NORCO

In the finite element procedure adopted herein, direct solution
strategies using algorithms based on Gaussian elimination are used with
the the upper triangle of the stiffness matrix in a skyline-like form as a
one-dimensional array.

Before the eclement stiffness matrix is assembled into this one-
dimensional array, the height of the skyline columns for the stiffness
matrix are calculated and the accumulation of these heights is carried out
so that the addresses of the diagonal elements of the stiffness matrix in
the one-dimensional array are known.

To evaluate the height of the skyline columns, two arrays are
needed. These two arrays in the finite element program NORCO
(Balaknishnan and Murray, 1989), which is the program  adopted as a
point of departure for this study, are the element-nodal incidence array
NPELM and array ID which have been defined in Sect. 3.6.2 and Sect. 3.4,
respectively.

By processing elements one by one, the maximum equation number
differences between a node and all nodes incident to it can be determined
from array NPELM and ID, and the heights of the columns of the skyline

for stiffness matrix can be calculated from these.

4.4.1.2 Procedure for Changing Topology of Structure

For problems where the topology of the structure is never changed,
the assessment of total length of the one-dimensional stiffness matrix
array, and the addresses of diagonal stiffness terms, is only done once in
the "data preparation phase” and never altered in the "problem run
phase”.

But if the topology of structure changes during the analysis, as
occurs in this study, the assessment of addresses for diagonal stiffness
terms has to be repeated frequently in the "problem run phase".

The procedure of exhaustive enumeration for nodal splitting was
described in detail in Chapter 3. Every vertex is associated with several

vertexuses. If a nodal splitting number for one vertexuse is taken by any
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element, as its element global nodal number, the nodal splitting number
is said to be active. Otherwise it is inactive. That is, active nodal splitting
numbers are inserted into array NPELM(12, NPELM), whereas inactive
nodal numbers. are not. The array ID(2,NMNOD) is used as an activity code
in the crack updating process: 0 for an active DOF and 1 for an inactive or
restrained DOF. When all nodes are processed, the zero values of the ID
array are replaced by the numbers of the active DOF's accumulated from
the first node. This new value becomes the equation number for the DOF
of the node. The unit values in the ID array, for inactive or restrained
DOF's, are replaced by zero.

In other words, the equation number for a DOF of an active node, if
the DOF is not one of predefined zero displacement, is set to a nonzero
equation number. The equation number for each DOF of an inactive node
is set to zero. An inactive node and an active node with 2 DOF of
predefined zero displacement both have two zero equation numbers. The
former is not included in any loop of element, so it is 'isolated' from the
structure. The latter is included in the loop of at least one element, so its
roll is indicated as such by the nodes it relates in the loops.

As new discrete cracks are introduced, which means vertices are
being split and new vertexuse mnodal splitting numbers are being
activated, both the NPELM and ID array are updated. Based on these
updated arrays, the total length of the one dimensional array for the
stiffness matrix, and the addresses for the diagonal terms in the array,
are recomputed. Then the element stiffness matrices are assembled to the
global stiffness matrix using the newly produced addresses for the one-
dimensional stiffness matrix array.

The external nodal forces equivalent to external load (distributed or
concentrated) are assembled to the right hand side of the equilibrium
equations according to the newly produced ID array. The value of
equivalent nodal forces integréted from element stresses are also
assembled with opposite sign accordingly. When the equilibrium
equations are satisfied, the effect on displacements due to new cracks is

determined.
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4.4.2 Updating Adjacency Relations
The two global arrays of topological information, NCRLC and NCRNN,

which were constructed in the "data preparation phase"” (see Sect. 3.6.4)

include all the information for crack pattern recognition, and are

-modified to record crack propagation.

4.4.2.1 General Processing at a Vertex
. The strategy of crack simulation processing is:

a) find the first cracked edge NM1=NM emanating from a vertex NV
in ascending order (or in a clockwise circle around the vertex, i.e-
NM=1,2,...) by checking NCRNN(NV,3,NM);

b) record the local current cracked edge number NMZ=NM;

c¢) insert the crack front nodal splitting number (CFNSN)
NCRNN(NV,10,NMZ) of the cracked edge NMZ into the element- nodal
incidence array NPELM for the «crack front element (CFEN)
NCRNN(NV,6,NMZ); assign CFNSN to the current crack front nodal
number (CCFNN) NCRNN(NV,1,NMZ); deactivate the old CCFNN and activate
new CCFNN in the ID array; _ ,

d) insert CFNSN, NCRNN(NV,10,NMZ), into the element-nodal
incidence array NPELM for the crack back element (CBEN) of the next
edge NM in a counterclockwise circle around the vertex, ( i.e.- NM=NMZ-i,
i=1,2,...); assign CFNSN to the current crack back nodal number (CCBNN)
of the next edge NM; deactivate the old CCBNN in the ID array;

e) if the next edge NM is an uncracked edge, repeat the procedure in
step d) for CFEN and CCFNN of edge NM;

f) if the next edge NM is a cracked edge and NM does not equal NM1,

that is, the counterclockwise circle starting from edge NMI1 is not
completed, repeat step b) to e);

g) if NM  equals NMI1, the updating processing at node NV is
completed.

A flow chart of the general processing is given in Fig. 4.5. The
cxampl\e shown in Fig. 3.5 is illustrated in Fig. 4.6 to describe the
processing. The following six steps give details of the processing at input
node 309 of the example. Table 4.1a is produced to show the evolution of

the numbers at vertex 309 in the example.
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Step 1 : The crack situation at the vertex 309 is shown in Fig. 4.6a.
The crack flags for edges emanating from node 309 contained in
NCRNN(NV,3,NM) are checked in ascending order as shown by the
clockwise circle a. As the first edge with a zero or negative valued crack
flag is found, that is edge 2 (NM=2) in Fig. 4.6a, the checking of the edge
crack flags is stopped. A counter KL2 is set to zero.

Step 2 : The counter NMZ which records the current crack edge
number is set to 2. The CFNSN for edge 2, NCRNN( NV,10,2) which equals
WS+15 as shown in Tables 3.10 and 4.1a, is brought into the element-nodal
array NPELM of the crack front element, which is NCRNN(NV,6,2) or 19 in
the example, to replace the CCFNN, NCRNN(NV,1,2) which is also WS+15, so
the replacement update is trivial. The newly introduced CCENN is stored in
a temporary array KMEM at the vertex for later reference.

The activity code of the old CCFNN should be deactivated because the
new CCFNN will be activated. But this deactivation is executed only after
confirmation that none of the numbers in temporary array KMEM
coincide with it. At edge 2, the current crack front number is the only
number in array KMEM, so no deactivation is carried out.

The updating process at the crack front of edge 2 is trivial because
the old CCFNN before updating is the same as the newly introduced CCFNN:
both are WS+15. But this is not the case for the crack back of edge 1.

Step 3 : Beginning from crack front of edge 2, edges emanating
from node 309 are processed in descending order as shown by the
counterclockwise circle b in Fig. 4.6a. The first edge following is edge 1.
Counter KL2 is increased from 0 to 1. As in Step 2, the crack back and
crack front of edge 1, the CCFNN and CCBNN are equal the latest crack
number, which is WS+15. So the updating process at edge 1 is trivial.

Step 4 : The next edge being processed in descending order is edge 4
(NM=4). The counter KL2 is increased from 1 to 2. Because the CCBNN is
equal the latest crack number, the updating process for the crack back of
edge 4 is also trivial. Since the crack flag for edge 4, NCRNN(NV,3,4) is
zero which indicates edge 4 is an incipient crack, the procedure in Step 2
is repeated. That is, the crack front splitting number, NCRNN(NV,10,4),
which is WS+17 (Tables 3.10 and 4.1) is different from CCFNN of edge 4,
WS+15. The global nodal number WS+15 in the array NPELM for the crack
front element 9 is replaced by WS+17, Node WS+17 is activated by setting
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the components of ID array for WS+17 to zero. But deactivation of DOF for
the old CCFNN, WS+15, is not carried out, because it is stored in array
KMEM. The newly introduced CCFNN WS+17 is added to temporary array
KMEM.

Displacements of node WS+15 are assigned to WS+17, and then the
CCFNN of edge 4, WS+15, is replaced by WS+17. The counter NMZ which
records the latest crack in processing is renewed to 4 (NM=4).

Step 5 : The next edge in descending order is edge 3 (NM=3). Counter
KL2 is increased from 2 to 3. As edge 3 is uncracked, the CCFNN and CCBNN
which are both WS+15, are replaced by the crack front number of latest
crack NMZ (edgev4). WS+17. Because WS+15 is in KMEM, deactivation of
WS+15 is not carried out.

Step 6 : The next edge in descending order is edge 2, and counter
KL2 is increased to 4. The current crack back number for edge 2, WS+15, is
replaced by the crack front nodal number of latest crack NMZ, WS+17.
Because the counter KL2 is equal to the total number of edges emanating
from node 309, NMM, the updating processing at node 309 is completed.

It is emphasized that the first cracked edge, edge 2, obtains its crack
front nodal number WS+15 from its nodal splitting number,
NCRNN(NV,10,2), but its crack back number is determined at the end of
the processing because this crack back number is decided by the crack
front number of the latest crack NMZ( edge 4), not by edge 2 itself.

Figure 4.6b shows the result of the above processing at node 309.

4.4.2.2 Discussion of Updating Process

The trivial updating process which occurred in Steps 2 and 3 of the
example illustrated in Sect. 4.4.2.1 disappears if the incipient crack
passing vertex 309 is horizontal as shown in Fig. 4.7a. The updating of
nodal numbers is represented in Table 4.1b. The first incipient crack is
edge 1, and its crack front splitting number, WS+18 (Table 3.10), is
different from its CCFNN which is WS+15 (also its initial nodal number in
the case). Processing at the next edge in descending order, uncracked
edge 4, is also not trivial. The CCFNN WS+15 is replaced by the latest crack
front number WS+18. The second incipient crack, edge 3 brings its CFNSN,
WS+16 to its crack front element 10 to replace WS+15. The processing at
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edge 2 is similar to that at edge 4 but WS+15 is replaced by WS+16 instead
by WS+18.

The result of the complete updating is shown in Fig. 4.7b.

For omne crack pattern (either vertical or horizontal, passing
through node 309), there are 4 updating processings corresponding to the
4 edges emanating from the node. In the total of 8 updating processing
associated with the two crack patterns there are 2 which are trivial (Fig.
4.6b). The probability of trivial processing is 1/4.

For the case where 8 edges emanate from a vertex, an example is
given in Fig. 4.8.

The 4 possible crack patterns where cracks run straight through
the patch involve a total of 4+8=32 updating processings at edges, and 4 of
them are trivial as shown in Fig. 4.8c. So the probability of trivial

processing is 1/8.

4.4.2.3 Non-Strength Crack Criterion

Cracks which change orientation at a vertex, such as that shown in
Fig. 4.8f, need somewhat more discussion. For the treatment of the special
cases, such as shown in Fig. 4.9, a non-strength crack criterion is added.

Assume a progressive crack propagates from vertex N to L of Fig.
4.9a, as shown in Fig. 4.9b. The nodes N and L are split because the crack
strength criterion is met at these vertices. That is, the value of the
principal stress is larger than tensile strength and the angle between the
orientation of the principal stress and the normal of an edge n is smaller
than the tolerance B; (Sect. 4.2.2.1). But the cracking criterion is not met
at vertex K along edge KLN which is local edge 6. Two possibilities arise:
one is that the stress of the principal stress is smaller than the tensile
strength, the other is that the value is larger than the tensile strength,
but the orientation of the principal stress deviates from the edge normal
n by more than the tolerance Bi.

If the principal stress at vertex K exceeds the tensile strength but
the. normal of edge 3 deviates from the orientation of the principal stress
by less than the tolerance B¢, a crack is initiated at the vertex along edge
3. This is represented by setting the crack flag NCRNN(NV,3,3)=0. But if
the crack criterion is not satisfied at edge 6 at vertex K, the updating

process as described in Sect. 4.4.2.2 cannot make the crack run through
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vertex K with this change of orientation. Such a '‘point pinned crack'
shown in Fig. 4.9c is not a realistic phenomena, and a supplementary
non-strength crack criterion is introduced to eliminate it. The criteria
state that an edge is cracked (i.e. the node is split) at a vertex if:

1) For a quadratic element there are another two nodes along the
edge which are already cracked or for which cracking is incipient (in
the example of Fig. 4.9, these nodes are L and N on edge 6). For a linear
element, only one other node needs be cracked or be in a state of
incipient cracking; and

2) At least one edge emanating from the vertex is already cracked at
the vertex (or cracking is incipient ). In the example, these are edges 3
and 7.

The result of the application to the example is shown in Fig. 4.9d.

As a crack changes orientation at a vertex, the "point pinned crack"
described in Fig. 4.9 is not .always the case. Another situation is that the
crack propagates from node N to L ‘and then to K. Even if it then changes
orientation to M no problems arise, because a "point pinned crack" does

not occur, and the non-strength crack criteria is not required.

4.4.2.4 Variations in Crack Processing
4.4.2.4.1 Processing at a Midside Node

The examples shown in Figs. 4.10a and 4.10b are used to illustrate
midside node processing. If a vertex with input node 308 is to be split, the
back element 9 (NCRLC(7,6,2) shown in Table 3.8) will be assigned the
crack back number WS+14 (NCRNN(7,2,2) in Table 3.8) to replace WS+13.
The component of the ID array for WS+14 is activated and node WS+14 is

assigned an initial displacement the same as that of node WS+13,

4.4.2.4.2 Processing at a Boundary -Node

This situation is illustrated in Fig. 4.10a and Table 3.8. Assume a
crack is initiated at edge 2 (307-308-309) and the edge is processed in a
descending order, two free boundary edges with crack flag equal -3 are
encountered. A rule is defined which states that: (a) a boundary edge with
a zero crack front nodal number ( edge 1, i.e. - 307-405-509) is processed
as an uncracked edge; and; (b) a boundary edge with a nonzero crack

front nodal number (édge 3, i.e. - 307-210-105) is processed as a cracked
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edge. This rule does not have any physical meaning but is just for
convenience so an enclosed processing circle used at an inner vertex can
be applied and, as shown in the example of Fig. 4.10a, processing edge 3 as
a cracked edge brings nodal number WS+12 into element 9. Free edges are
bypassed by crack updating processing because they are initially ‘'real’
boundaries as designated by NCRNN(NV,3,NM)= -3. For a boundary
representing a line of symmetry in a structure (crack flag assigned as
inner edge with NCRNN(NV,3,NM)=1), cracking along the boundary is
simulated by releasing the restraint by updating the ID array from 1 to
zero, so that it becomes a cracked free edge.

The crack propagation for the example shown in Fig. 3.5h is given
in Fig. 4.10 where a crack propagates from input node 307 to 309. The
cracking or splitting at these three nodes can occur in different
iterations if the crack is  gradually propagating, or can occur in one
iteration if the crack criteria is met at.these three nodes simultaneously.
The arrays NPELM and ID for the uncracked patch shown in Fig. 3.8 are
listed in Table 3.16 and Table 4.2 respectively. The same arrays for the
cracked patch in Fig. 4.10c are given in Table 4.3 and Table 4.4.
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Table 4.2 ID Array for the Uncracked Patch in Fig.4.10

Nodal No. ,
1l 2] 31 4] 5] 6| 7] 8| 9| 10| 11 f12 |13 14 15 16 (17 |18 19 RO R1
I =WS+
ID(1,1) olojo]1jo]0joOjoO] 1O ohppppppppeop
ID(2,]) olofoflilololojoj1jo ol PR PR pPpppPRD
Notation: 0- activated, 1- deactivated
Table 4.3 Array NPELM(L,J) for Fig. 4.10
I= Local Nodal No
J =Elem. No. | Nodal
No. 1 2 3 4 5 6 7 8
1P 307 | 105 | 107 | 309 | 210 | 106 | 211 | 308
9 RI=WS+ 11 1 3 15 7 2 8 13
U =WS+ 12 1 3 17 7 2 8 14
IP 309 | 107 | 109 | 311 | 211 | 108 | 212 | 310
10 RI=WS+ 15 3 6 21 8 5 10 19
U= WS+ 17 3 6 21 8 5 10 19
P 509 | 307 | 309 | 511 | 405 | 308 | 406 | 510
18 RI=WS+ 27 11 15 29 23 13 24 28
U= WS+ 27 11 15 29 23 13 24 28
1P S11 | 309 | 311 | 513 | 406 | 310 | 407 | 512
19 RI=WS+ 29 15 21 32 24 19 26 3
U =WS+ 29 15 21 32 24 19 26 31

Notation: IP- Input Nodal Number, RI- Redefined Initial Number, U-Updated Nodal No.

Table 4.4 ID Array for the Cracked Patch in Fig.4.10

Nodal No.
odal No 1l 2| 31 4l 5] 6] 7] 8| 9] 10] 11 12 13 [14 |15 |16 17 18 19 RO P1
I =WS+
D@D olololilololojolilotopppbobprpphpfhp
ID.D) olololilofolojojilolopppbpprpbprppp

Notation: 0- activated, 1- deactivated
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JCRNN(NV,3,NM)<0 3
NCRNN(NV,1,NM) 20

NMZ=NM, add NCRNN(NV, 10,NMZ) to KMEM array, NELM=NCRNN(NV,6,NMZ)
NCRNN(NV,1,NMZ) is replaced by NCRNN(NV,10,NMZ) in array NPELM of element NELM
If NCRNN(NV,1,NMZ)# any NO. in array KMEM, then IDOINCRNN(NV,1,NMZ)= 1(inactivated)

ID(NCRNN(NV,10,NMZ)=((activated)
Displacement UINCRNN(NV,10,NMZ))=UNNCRNN(NV,1,NMZ))

NCRNN(NV,1,NMZ)=NCRNN(NV,10,NMZ)

Y

NM=NM-1 |[=

KL2=KL2+1
If NCRNN(NV,1,NMZ)# any NO. in array KMEM, IDINCRNN(NV,2,NM))=1
NCRNN(NV,1,NM)= NCRNN(NV,1,NMZ)

SCRNN(NV,3,NM)<0 and NCRNN(NV,1,NMyZ)

no
NELM=NCRNN(NV,6,NM) and NCRNN(NV,1,NM) is replaced by NCRNN(NV,1,NMZ) in
NPELM of element NELM

NCRNN(NV,1,NM)= NCRNN(NV,1,NMZ)

Fig. 4.5 Flowchart for Updating Adjacencies at A Vertex .
(Subroutine PARC4)
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Fig. 4.9 Example Application of Non-Strength Crack Criterion
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CHAPTER 5§
CONSTITUTIVE RELATIONS AT CRACK FACES

5.1 Introduction

As described in Chapter 2, a long crack fracture process zone and
post-cracking softening are characteristics of concrete cracking. These
characteristics also dominate the modeling methods for finite element
analysis of concrete cracking. As a result, implementing the post-
cracking softening relation into the analytical procedure becomes an
essential part of finite element analysis of concrete structures.

In smeared crack analysis, this softening relation is realized
through stress-strain relations at integration points inside solid elements.
In the discrete crack approach, the crack is simulated by splitting nodes
along a common boundary between two elements. In this study force-
displacement relations at discrete crack faces are assigned based on
concrete fracture mechanics. Normal stress across cracks is assumed to be
related to crack width as discussed in Sects 5.2 and 5.3. Shear stresses,
which might be transferred across crack interfaces, have been

neglected.

5.2 A Normal Stress-Crack Width Relation
5.2.1 Determination of Crack Width

As described in Chapter 3, a pair of unsplit vertexuses represents a
material point in a structure, with zero relative displacement between
these two vertexuses. A pair of split vertexuses represents two different
material points located on the two faces of a crack which runs through
the vertex and is oriented along the owner edge associated with the two
vertexuses. In the case of a pair of split vertexuses, the relative
displacement between them is nonzero. This relative displacement can be
projected in any direction to obtain its components in those directions.
The components perpendicular and parallel to the owner edge are of
most interest.

Two split nodes 1 and 2 located on opposite sides of a crack on

owneredge L are shown in Fig. 5.1. Vector n is normal to edge L and

84



vector t is defined perpendicular to vector n by rotating n 90° clockwise.
According to the definition of "crack front" and "crack back", node 1 is on
the "crack front" and node 2 on the "crack back" for the crack emanating
from the split vertex in the direction A to B. The relative displacement
between node .1 and node 2, U112, is written in terms of the displacement of
node 1, U1, and the displacement of node 2, U2, as:

U12=U1-U2 (5.2.1.1)
where vectors are implied by the bold face symbols.

The projection of U12 on vector n is denoted by AUpn. Because AUp
represents the distance between two crack faces along the direction
normal to the crack, it is also called the "crack width" and denoted by W.
The projection of U12 on vector tis denoted by AU¢, and it represents the
relative displacement of the two crack faces along the direction
tangential to the crack. The expression for the magnitudes of the
components of AUp and AUg are as follows:

w=|AUnl= U1p o n (5.2.1.2a)

|AUg= U1z « t (5.2.1.2b)

5.2.2 Relations between Tensile Stress and Crack Width

Post-cracking softening of concrete is a term used to describe the
reduction in the average tensile stress transferred across the section
where a crack is forming. The magnitude of the tensile stress decreases as
the 'crack width' becomes greater. As discussed in Sect. 2.2, this concept
has been established by a number of experimental investigations, and the
tensile relationship of Gopalaratnam and Shah has been shown in Fig. 2.1.

Several linear and bilinear analytical relations between normal
tensile stress and 'crack width' are widely used in finite element analysis
of concrete cracking.

a) Linear Relation

As shown in Fig. 5.2, line AE divides the coordinate axis of
deformation into two parts: the part on the right represents crack width,
and the part on the left represents strain. The ultimate crack width at

which tensile stress between two crack faces is  assigned to decrease to

zero is denoted as W¢. The two parameters, f, and f;, represent the tensile
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strength and compressive strength of concrete respectively. If the crack
width W is smaller than W, the tensile stress at W, Oyy, is

ctw=f't(1-W/wc). (52.2.1)

b) Bilinear Relation

To simulate the common feature exhibited in test curves, which
show a steep drop after fy is reached, a bilinear relation is widely used in
analysis (Gerstle, Ingraffea and Gergely, 1982, Petersson 1981). The
bilinear relation proposed by Gerstle, Ingraffea and Gergely (1982),
shown in Fig. 5.3 has been adopted in this study. If the area under the
bilinear curve to the right of line AE in Fig. 5.3 is kept the same as that
under the linear curve in Fig.5.2 (that is, the fracture energy density is
kept the same), the ultimate crack width in the bilinear relation must be
about 4 times the W¢ defined in the linear relation of Fig. 5.2.

c) Discontinuous Linear Relation

The bilinear curve shown in Fig. 5.3 includes two segments: AB and
BC. The ‘line  AB has a steep slope of negative stiffness of considerable
magnitude. Bécause this negative stiffness when assembled into the
stiffness matrix of a structure may lead to numerical instabilities, a
'discontinuous' linear relation, as shown in Fig. 5.4 is preferable.
Extending line CB of Fig.5.3 to meet the vertical line AE at D, line DC may
be used to approximate the relation between tensile stress and crack
width. Then the tensile stress is not continuous when the crack just
occurs. A simple calculation shows a 14 percent decrease of area under
the ‘'discontinuous' line in comparison to that under the bilinear curve.
The negative slope of softening still remains in the ‘'discontinuous’

relation but the steep transient slope is eliminated.

5.3 Relation between - Normal Tensile Force. and Crack Width
§.3.1 Introduction

When a discrete crack approach is adopted to simulate concrete
cracking, the application of the relation between normal tensile stress
and crack width implies the normal stresses are distributed along the two
faces of the crack. This situation is similar to that where external

distributed surface traction is applied to the boundaries of a structure
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since the normal stress across cracks is similar to the surface traction
normal to the boundaries of a structure.

Two characteristics for the crack face are:

1) The normal tensile stress is always applied equally to the two
faces of a crack, which have the same geometrical position before
initiation of cracking, and

2) The normal tensile stresses are introduced only after the crack is
initiated by nodal splitting and subsequently the magnitude of the stress

is a function of crack width.

5.3.2 Nodal Forces Equivalent to Distributed Normal Tensile
Stress
The example shown in Fig. 5.5 is used to illustrate the procedure by
which surface forces can be obtained from the relation between normal
stress and crack width. This procedure includes four steps:

Step 1- Examine every vertex. -If the vertex is split along an

owneredge, find the two activated nodal  numbers,  and then the

displacements for the two split nodes. This step was described in Sect. 4.4.

Step 2- For every pair of split nodes, find the crack width, or the
relative normal displacement between the two split nodes as discussed in
Sect. 5.2.1.

Step 3- Determine the normal tensile stress on the crack faces
associated with the crack width, by application of the relations described
in Sect. 5.2.2. The example in Fig. 5.5 illustrates the correspondence
between crack width and normal tensile stress.

Step 4- Calculate the equivalent nodal forces at the crack faces from
the distributed surface traction equal to the normal tensile stress obtained
in Step 3.

Formulae for obtaining the work equivalent normal - nodal forces
along an eclement edge L, designated as Fa, Fp, Fc, to the normal tensile
stress are derived from virtual work by integrating along the element

edge, which yields
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Una Na Una
[FaFy FJ8{ Unp =f sdupdL = f [SaSuSck Np [ Na Ny N 1§ Uy (dL
L L
{Unc Nc {Unc

(5.3.2.1)
in which the a,b,c subscripts identify with the three nodes along the
edge, s is the normal stress on the edge, S is its value at a node, and N

represents an edge shape function. The nodal forces are

I N,

Fa=f [SaSbSc)i Nb Na\/ Xy @Yy g (5.3.2.22)
-1 N 0( 0
1 N,

Fb=f [SaSpSck Np {Nb\/ (59—5)2+(§—§£)A2 dg (5.3.2.2b)
9 N ] 3L’ AL
1 Na

Fc=j [SaSbScl No Nc\/ QXp @Yy 4¢ (5.3.2.2¢)
y {N ETAEY:

in which the differential length dL along the edge has been expressed as

0X.2 dY.2
dL=,/ (2224 X)2 4
“/(acwac ¢

and { is the nondimensional edge coordinate.

§.3.3 Stiffness and Nodal Forces for Split Nodes
§.3.3.1 Introduction
The equilibrium equation for nonlinear finite element analysis
can be formulated as (Bathe and Dvorkin, 1983):
KiAUj= AiF- Rj.1 (5.3.3.1)
in which i is an iteration number, K is the tangent stiffness matrix, A is

the load factor, F is the vector of external reference loads, AU is the



unknown increment of nodal displacements, and R is the vector of
external nodal forces which equilibrates the internal stresses.

When the  distributed normal tension between two crack faces is
simulated by spring elements connecting pairs of split nodes, similar to
the 'link element' proposed by Ngo and Scordelis (1967) to simulate bond
between reinforcing bars and concrete, these spring elements contribute
to the terms Kjand Rj-1 in Eq. 5.3.3.1 just as other elements do. These
contributions can be evaluated in terms of the nodal forces equivalent to

the normal stresses.

5.3.3.2 Contributions to Tangential Stiffness K and Nodal Force
Vector R

The nodal force equivalent to the normal tensile stress at a node is

denoted by Fwij-1, where subscript Wj.1 indicates the crack width and

associated tensile stress and equivalent nodal force are calculated from

the displacements determined for - iteration i-1. When the crack width at .

the node reaches W, the ultimate crack width, the associated equivalent
nodal force is zero. This is because the normal tensile stress at W¢ is zero.
If a linear relation between the equivalent nodal force and crack width is

assumed, the force can be expressed as:
Fwi-1= kwi( Wj-1- W¢) for 0 < Wj-1< W¢ (5.3.3.2)

in which kwj is the slope of the curve for the relation between
equivalent nodal force Fwi-1 and crack width Wj.1, Equation (5.3.3.2) can
be rearranged as:

kwi=Fwi-1/(Wi-1-W¢) for 0 <Wij-1 <W¢ (5.3.3.3a)

and
kwi=0 for Wj.12 W¢, (5.3.3.3b)

The nodal force Fwi-1 is determined by . integration of the mormal

stress acting on the crack, as described in Sect. 5.3.2. Because it is positive
and Wi-‘l is smaller than W¢, kwi is negative indicating a descending
slope of the curve of the relation between equivalent nodal force and
crack width as shown in Fig. 5.6.

The link elements simulating distributed normal tension between
two crack faces have stiffness kwij given by Eq.(5.3.3.3), and apply forces
Fwi-1 given by Eq.(5.3.2.2), to the two crack faces. Then, the springs are
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subject to forces, Rp1 and Rp2, which have the same magnitudes as Fwi-1
but opposite directions.

The contribution to the tangential stiffness matrix for a pair of split
nodes, such as nodes 1 and 2 as shown in Fig. 5.1, is assumed equal to kwi.
This assumption is accurate for uniform crack width. Substituting
Eq.(5.2.1.2a) for W and differentiating Eq.(5.3.3.2) by assuming constant
kwi, results in the following equation:

dFwi-1= kwi(dUn1-dUn2) (5.3.3.4)

The equilibrium equations for one of these springs is similar to Eq.
(5.3.3.4):

kw; (dUp1-dUn2) = dRp3 (5.3.3.5a)

kw; (dUn2-dUp1) = dRp2 (5.3.3.5b)
which can be written as

[kwi -kwip dUn1 | g, 7 9Un: }={ dRpi } (5:33.6)

-kw; kw; \ dUn2 { \ dUn2 dRn2

in which Rp1, Rp?2 are the forces which the link element is subject to at
node 1 and node 2 respectively.

The orientation of Rp1  coincides with the normal of the cracked
edge, n, and that of Rpp is opposite to n as shown in Fig. 5.7a.

Expressing force and displacement in Eq.(5.3.3.2.5) in terms of their

components in X and Y directions yields the relations:

Uix | Rix ‘
KJd VY g Riy (53.3.7)
Uax Rox [

in which

[Ks] {B[" [Kwl [B]
where [B] denotes the transformation matrix, [Kw,] is the matrix in Eq.
(5.3.3.6) and the subscript g indicates of stiffness of the spring.

This stiffness matrix [Ks,] is the contribution of the spring linking
the crack faces to the tangential stiffness matrix of the structure, Kj, and
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can be assembled into Ki by referencing the equation numbers of the
global nodal numbers for nodes 1 and 2 (Sect. 4.4.1.1).

The terms shown in Eq.(5.3.3.7), Rix, R1y,R2x and R2y, are the
negative of the components of the normal forces arising from the normal
tensile stresses at crack faces. These forces are evaluated by Eq. 5.3.2.2 and
can be assembled into Rj-1 of Eq. 5.3.3.1 in the same way as [Ks,] is to Kj.

5.3.3.3 Treatment of Decrease of Crack Width

When two crack faces approach, instead of moving away from each
other, the crack width decreases. The treatment adopted in this study for
this case is based on the assumption that the tensile stress normal to two
crack faces decreases proportionally to the decrease of crack width. When
the crack width decreases to zero, the tensile stress is reduced to zero. The
relation is shown in Fig. 5.8.

For every pair of split nodes a record of maximum crack width,

‘W max, is kept updated. If the -current crack width is smaller than Wpax., -

the tensile stress across the crack is defined by point- B on line DF (crack
unloading) instead of point A on line ED (tension softening) shown in Fig.
5.8. After the recorded maximum crack width is regained, the tensile
stress across the crack is recovered (crack reloading). This procedure is

shown by the arrows in Fig. 5.8.

5.3.4 Discussion

The procedure presented in this chapter develops the relation
between nodal force and crack width at crack faces where tension
softening exists. The key step in this procedure is the determination of
the nodal forces equivalent to the tensile stress normal to crack faces.

The equivalent nodal forces, Fa, Fp and F¢, evaluated from .Eq.
(5.3.2.1) reflect a  combination —-of - cracking factors or cracking
parameters. These cracking factors include crack width, which
determines the magnitude of -tensile stress denoted by s.in Eq.(5.3.2.1),
and the cracked edge length, denoted by L in Eq.(5.3.2.1).

The examples for uniform crack width shown in Fig. 5.9 are used for

the purpose of illustration and discussion. When the crack width, denoted
by Wj.1 in Eq. (5.3.3.2), is uniform along crack faces the magnitude of the
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equivalent nodal force, IFyj.1l, can be used to compare ky;'s at different

locations.

For the case shown in Fig. 5.9b where the crack has equally spaced
nodes and linear elements, the magnitude of ky; is the same for each
node along the crack faces. For the other cases shown in Fig. 5.9a, 5.9¢
and 5.9d where the clements are quadratic or different in size, kyjis

nodal position dependent. But the signs of ky j for all cases are

nonpositive indicating tension softening.

5.4 Relations for Overlap of Crack Faces

When the discrete cracks are distributed, an abrupt crack initiation
or propagation may cause unloading or closing of an adjacent crack, and
may further cause the two crack faces of the adjacent crack to interfere
with or overlap each other. Gradual crack propagation can cause stress
redistribution and, as a result, some locations previously in tension may
shift to compression. Crack face overlapping, as shown in -Fig. 5.7b may
arise at the cracks in these previous tension locations. Compression will
then be developed between the two crack faces to prevent the faces from
overlapping. To simulate this phenomenon, a relation to inhibit overlap
of crack faces, dependent on the relative displacement of two overlapped
faces has been employed. If two crack faces overlap, the scalar U12 * n
defining W in Eq.(5.2.1.2a) is nonpositive. To distinguish the condition
from the crack width W which is nonnegative, the absolute value of the
scalar U12 * n is denoted by C for an overlapping crack.

Similar to the procedure for tension softening, the contributions of
the overlapping compression to the terms Ki and Rj-1 in Eq.(5.3.3.1.1) are
evaluated and assembled. These contributions can also be represented by
a compressive spring connecting .the split -nodes associated with the
overlapped crack faces. This spring (link element) has stiffness kci and
is subject to forces Rcpnl and Rgp2 at its two ends. Stiffness kgi is positive
indicating a ascending curve for -overlapped displacements vs.
compressive nodal forces as shown in Fig. 5.6.

The terms kc¢i, Renl and Ren?2, have their counterparts in the
spring for temsion softening, namely, kwi, Rn1 and Rp2. Replacing kwi,

Rp1 and Rp2 respectively by kci, Renl and Renp?2 in equations from
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Eq.(5.3.3.4) to Eq.(5.3.3.6), the equilibrium equations for the spring can be

obtained.
The stiffness k¢i should depend on nodal spacing in the same

manner as kw i (Fig.5.9). However, kc¢j should have a magnitude
vconsidcrably greater than Ilkwil. It is convenient to compute k¢i from the
ratio of magnitudes, pi =kc¢i/lkwil. Then kcj can be calculated from ki
which was previously evaluated for the earlier crack propagation. The
approach adopted is that for a pair of split nodes, the maximum nodal
force equivalent to the normal tensile strength at the crack faces s
stored and designated as Rpmax. From this an estimation of lkwil is:
kw=Rnmax/Wc¢
where W is the ultimate crack width,
Then k¢i is calculated as kci=pi1kw, One could argue that an infinite
spring stiffness would be required to eliminate overlap and maintain

‘nodal displacements the same on each side of the closed crack. However,

- 'infinite stiffnesses are not - acceptable numerical - values, and experience

has shown that the solution is most stable if a value of p] is.chosen less
than 20. Assembling kci, Rcnl and Regp2 are exactly the same as in the

procedure for tension softening.
The parameter p) can be selected to reduce, but not to eliminate, the

overlap produced in the numerical simulation procedure.
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CHAPTER 6
SOLUTION STRATEGY

6.1 Introduction

The finite element model for distributed discrete cracking has
been described from Chapter 3 to Chapter 5. The related solution
strategy, is discussed in this chapter.

Equation (5.3.3.1) of Sect. 5.3.3.1 can be rewritten as:

KiAU; = AMF + Qi-g 6.1.1)
where i is an iteration number, t is a load step number, and AAj is the
increment of the load factor during the iteration. The vector of

unbalanced force Qj-1 is expressed as

Qi-1=1i-1F - R}, (6.1.2)
where lti-l is the total load factor at the end of iteration i-1. ,

If n is the number of displacement degrees of freedom for the
structure, Eq. (6.1.1) contains n+1 unknowns because of the presence
of ALj. Consequently, an additional scalar equation is introduced. This
may usually be written in the form:

h(AA,AU)=0 (6.1.3)

A common approach to solve Eq.(6.1.1) with constraint Eq.(6.1.3)
is to decompose AUj according to the following expression (Batoz and

Dhatt,1979):

AU1=AMAU§ +AU§I (6.1.4)
where AU}and AU{I can be solved from the following equations:
KAU] =F (6.1.5a)
and
KAU{ - Qi1 (6.1.5b)

In this study three different methods were used to formulate the
constraint equation. These are:

Method 1 - The norm of the set of accumulated displacements for a
load step, 6Uj, defined in (6.2.1.2), is constrained to a prescribed value;
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Method 2 - The norm of the crack widths, Wj, is constrained to a
prescribed value;

Method 3 - The increment of work done by the external forces is
constrained to be equal to the strain energy absorbed in the solid
elements plus that dissipated in the cracks.

Because constraint equations for Methods 1 and 2 are closely
related, they are discussed together in Sect. 6.2. The constraint equation
for Method 3 is discussed in Sect. 6.3.

6.2 Constraint Equations Based on Displacement or Crack
Width '
6.2.1 Displacement Control
One widely used form of Eq. (6.1.3) as proposed by Crisfield (1981),
is
(BUNT(8U;) = (AL)2 (6.2.1.1)
where AQ is a specified arc-length. This procedure is designated as the

‘cylindrical arc-length’ method by Bellini and Chulya (1987).
The accumulated displacements of the current load step are given
by

8Ui=Uit_1- Ut'1+ AxiAUhAUgI (6.2.1.2)

in which Uti-l are the total displacements at the end of the previous
iteration, and Ut'l, the total displacements at the end of the previous

load step.
Substituting Eq.(6.2.1.2) into Eq.(6.2.1.1) and carrying out the

multiplication, Eq.(6.2.1.1) is
I 1 1
AADZAUHDTAUH+2ALAUHTE;-D+HEi-DTE;}-1)-(A 2)2=0
| (6.2.1.3a)

t t-1 II
where Ei.1 =U;_ - U +AUj. (6.2.1.3b)
The two roots for Eq.(6.2.1.3) are

-b+Vb2-4ac

2a

in which a, b and c¢ denote the following expressions:

Adjy 2=
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a= AUHTAU))

b= 28 UDT(E;.1)

= (Ei-DT(Ei-1)- A2)2.

The rules for selecting AAj from the two roots of Eq.(6.2.1.3),
again following Crisfield (1981), are:

1) If the roots are imaginary, reset A and restart the
current iteration;

2) If the roots are real and different, experience has shown
that the root which gives the largest algebraic value of d should
be selected as AAj, where d is defined as

d=@U»pT@Uj.1) for i>1;

d =(Ut-1At-1)T§U1 for t >1 and i =1 where At-1 is the total
load factor at the end of previous load step ;

d =(Ue)T8U] for i=1 and t=1 where Ug is an estimation of
elastic displacement vector under the external reference load.
The displacement vector 8Uj in Eq.(6.2.1.1) usually includes all

nodal displacements. However a set of selected nodal displacements,
such as the displacements at the loading points, may be used to form

the vectors.

6.2.2 Crack Width Control
As pointed out by de Borst (1988), constraint equations like Eq.
(6.2.1.1) in which displacement vector 8Uj includes all nodal
displacements,
"have been employed successfully within the realm of
geometrically nonlinear problems, where snapping and

buckling of thin shells can be traced quite -elegantly.

"Nevertheless, for materially nonlinear -problems the method .

sometimes fails, which may be explained by considering that
for materially nonlinear problems, failure or bifurcation modes
are often highly localized. Hence, only a few nodes contribute
to the norm of displacement increments, and failure is not

sensed accurately by such a global norm."
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He also suggested that when 8Uj "contains only a limited number
of degrees of freedom" it is more suitable to use the term "indirect
displacement control" instead of "arc-length".

However, determination of the selected degrees of freedom to be
included in the constraint equation is not always an easy task. In the
initial loading stage, the displacements at the points of load application
are often selected as control displacements. As the nonlinearity
becomes more apparent, slow convergence or divergence often
reflects failure of the displacement control associated with loading
positions. In this case experience in this study has shown that it is
usually advantageous to switch to crack width control.

The crack width control approach uses the split nodal numbers
and computes a norm for the corresponding crack widths. If  the
nonlinearity is crack-dominated, the constraint equation based on
crack width, may provide a rational way to trace the load path. The
constraint equation, Eq. (6.1.3), based on crack width is

(WHT(W;) = (a9)2 (6.2.2.1)
where W is the crack width vector which includes all the crack widths
at split nodes, Wj, as defined by Eq.(5.2.1.2.a), and AQ represents a
specified constraint on crack width, instead of on displacement.

In Eq.(6.2.2.1), because Wi, by its definition, is the relative
displacement of a pair of split nodes, only the nodal displacements at
crack faces are included in the equation. The procedure for obtaining
AXj from Eq.(6.2.2.1) is exactly the same as that for displacement
control, with the U's denoting displacements being replaced by W's

denoting crack width,

6.3 :Constraint Equation Based on Fracture Energy
6.3.1 Introduction
6.3.1.1 Fracture Energy Criterion
The basic criterion for fracture mechanics, the fracture energy
criterion or ‘'the Griffith energy criterion', states that
"crack propagation will occur if the energy released upon
crack growth is sufficient to provide all the energy that is
required for crack growth." (Broek, 1986)
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An example of a concrete prism with a steel bar inserted in the
center, which illustrates this criterion is shown in Figs. 6.1 and 6.2. The
following derivations assume that the material remains linearly
elastic.

For Case 1, shown in Fig.6.1, the end of the prism is uniformly
pulled to a displacement Au, where the crack initiates, and is held at
that displacement as the crack propagates. The configuration just
before cracking, designated as A, is shown in Fig.6.1a, and the
configuration after cracking, designated as B, is shown in Fig. 6.1b.
Because the end of the prism is kept fixed during cracking, the work
done by the external force, denoted as A, is zero. On the load vs.
displacement curve shown in Fig.6.1c, point A represents
configuration A with its strain energy given by the area of triangle O-
A-C, while point B represents configuration B with its stain energy
given by the area of triangle: 0-B-C.. Then the area of triangle 0-A-B
gives the release of strain energy during cracking. If the external

force drops from Py in configuration A to P¢ in configuration B, the

change of strain energy is
AU = Au(Pc-Py)/2 (6.3.1.1)

where the sign of AU is negative because P¢c< Py, which indicates

release of strain energy.
The energy required for crack growth, AW ¢, is

AW .= o, dWdA
¢ fw W ¢ (6.3.1.2)

Ac

where Ac is the area of the crack surface (i.e. cross section of the
concrete prism which forms the transverse crack), W is the crack
width defined by Eq.(5.2.1.2a) and otw is the normal ‘tensile stress on the
crack faces, defined in Sect. 5.2.2,

According to the fracture energy criterion, the following
equation should be satisfied if crack propagation occurs:

AW < -AU . (6.3.1.3)

Eq.(6.3.1.3) can be rearranged as
AW +AU 0. 7 (6.3.1.4)
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In Case 2 shown in Fig. 6.2, the end of the prism is uniformly
pulled to a displacement Au where the crack initiates. If the load is
now kept constant the end of the prism is pulled further during
cracking until a total displacement A; is reached. Since the external
force is kept constant, Py = Pc = P, in the process.

As shown in Fig. 6.2c, the work done by the external force during
the process is

AW = P(Ac-Ay), (6.3.1.5)

and the change of the strain energy is
AU = PAc/2 - PAy/2 = P(Ac-Ay)/2. (6.3.1.6)

The energy supplied for cracking is
AW -AU = P(Ac-Ay) - P(Ac-Au)/2 = P(Ac-Ay)2 (6.3.1.7)

which is the area of the triangle 0-A-B.

If the crack propagation shown in Fig. 6.2c occurs, the value of
AW -AU should at least equal the energy required for crack growth.

That is

AW -AU2 AW ¢ (6.3.1.8)
or

AW +AU s AW. (6.2.1.9)

Comparing Eq.(6.3.1.4) and Eq.(6.3.1.9), we note that 6.3.1.4 is a
special case of 6.3.1.9 for AQ =0, and Eq.(6.3.1.9) is, therefore, assumed

to be valid for general cases of cracking.

6.3.1.2 Fracture Energy as a Constraint for Solution Control
The general condition for propagation of distributed (or
multiple) cracking is controlled by the energy balance associated with

incremental crack extension, which may be stated in a form similar to

(6.3.1.9) as:
a) No crack extension (Crack pattern stable)
AQU > AW - AU (6.3.1.10a)

b) Energy Balance
AW =AW - AU (6.3.1.10b)

¢) Crack propagation (Crack pattern unstable)
AW < AW - AU (6.3.1.10¢)
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in which AQ ¢ is the sum of the energy required to form the crack

growth in the structure, and AW - AU is the total energy available to

propagate this growth.

ACondition (6.3.1.10a) indicates the energy available for
distributed crack propagation, is less than that required for it. This is
defined as a stable distributed crack pattern. This definition of stability
is based on the whole structure.

Condition (6.3.1.10c) indicates the energy available, is more than
that required to propagate the distributed crack pattern. This is defined
as unstable crack propagation. The instability is defined on the basis of
the whole structure, though one crack may be locally stable. Under
condition (6.3.1.10c), distributed cracks propagate in a dynamic
manner because the excess energy AW -AU -AW  is transferred into
kinetic energy. Because the eqilibrium equation for nonlinear finite
element analysis, Eq. 6.1.1, is based - on static considerations, excessive
unbalanced force Qj.1 arises as unstable crack propagation occurs.

The approach proposed in this study as unstable distributed crack
propagation occurs, is to replace constraint equation (6.1.3) with the
energy balance requirement of Eq. (6.3.1.10b). Then the load
increment factor AMAj is determined so as to eliminate the excess energy
AW -AU -AQY  associated with a displacement increment. As a result,
Eq. (6.1.1) is appropriate again for the eqilibrium configuration and
the excessive Qj-1 can be reduced.

The load convergence ratio, m =i Qi_1l/ll Aj-1F |, where the
symbol || Il represents the norm of the vector, is used as a criteria for
switching from displacement control to fracture energy control. If the
value of m is smaller than a specified ms, displacement control is used;
-otherwise, fracture energy control is used. The mg is problem
dependent. In this study, it ranges from 40% to 80%.

The formulation for application of the energy constraint
equation, for control of the iterative solution for distributed cracking

of a structure, is described in Sect. 6.3.2.
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6.3.2 Formulation of the Constraint Equation
6.3.2.1 Incremental Work of Applied Force

The increment work done by the external forces at iteration i,
AW i, is

AW =\ F)TAU; + (AMF)TAU;R2 (6.3.2.1)

6.3.2.2 Assemblage of Equilibrating Force Rti_l

As described in Sect. 5.3.3, the vector of equilibrating forces Rti,l
in Eq.(6.1.1) is assembled from three vectors:
R =R, +R, +R| (632.2)

-lo¢ -1¢

t . . -
where Ri-le are the equivalent nodal forces required to equilibrate the

. . t
internal stress of the solid elements; Ri-lc are the nodal forces to

which link elements are subject when the associated cracks are open, .

with components equal to the Rp's defined in Sect. 5.3.3.2; and Rti-loc
are the nodal forces to which link elements are subject when the
cracks are overlapped, with components equal to the Rgp's defined in
Sect. 5.4 .

For an unsplit node, the associated components of both the second
and the third terms on the right hand side of Eq.(6.3.2.2) do not exist
and are set to zero. For a split node, the associated component of either
the second term or the third term on the right hand side does exist,
because the crack faces at the split node must be in one of the two

possible crack situations: crack faces are either open or overlapped.

6.3.2.3 Incremental Strain Energy Absorption
The strain energy increment at iteration i, AU j, is the sum of
strain energy absorbed by solid elements and link elements subject to

compression caused by crack face overlapping:
t

A%; = R} +R.) )AU; + (ARG + AR} )AU;2 (6.3.2.3a)
where
AR =R; - R} (6.3.2.3b)

and
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AR, =R|

t
loc™ "Moc” Ri

Neglecting the terms of second order, namely,

(6.3.2.3¢)

-loc

t
Ioc

( AR}_+AR, )AUi/2, Eq.(6.3.2.3a) reduces to

A% =(R_; +R}.1, )AU; (6.3.2.4)

-loc

6.3.2.4 Incremental Energy Absorption in Cracks

The increment of energy required for crack growth at iteration i,
A(w Ciy iS

n Wi+AW;
AQI} 01=§ f (GIW|.1+AGIW|)dW1hdL (6.32.5)
Wi
L

where n is the total number of split nodes and other terms have been

defined in Chapter 3.

The three distributed quantities, Wj, Gtwi-l and AGtWi, can be

represented by the quantities at the nodes j along edge L, namely, Wj j,

Otw;.,,j and ActWi,jv and the shape function of the nodes, Nj, as
dW;=3, N;dWi;

J
ctwm:Z Njotwi-l,j ’
j (6.3.2.6)

AGthZ N;AGtw;,j
i
where j indicates the local nodal number on edge L.
If the term of second order in Eq.(6.3.2.5), Ao'twid Wi, is

neglected, the energy required for crack growth along edge L is

Wi+AW;
Ay o= I Oyw;,d WihdL (6.3.2.7)
Wi
L
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Na AW,
=| [SaS6Schk Np [ Na Ny N. Il AW, |hdL
L l N AW,

(6.3.2.8)

where symbols Sa, Sp, Sc, Na, Np, N¢ were defined in Eq.(5.3.2.1).

According to Eq.(5.3.2.1), Eq.(6.3.2.8) can be expressed by equivalent
nodal forces Fa, Fp and Fc which are also defined in Eq.(5.3.2.1), as

AW, l
AW i=[F,FyF.l AW, =2, FiAW; (6.3.2.9)
ch’ :
where the summation over j, is for j=a,b,c.

Eq.(6.3.2.9) indicates that the energy absorbed at node 'a' is
Aawcy =FaAW ,. Substituting ‘Eq.(5.2.1.2.a) for W into Eq.(6.3.2.9), and

considering the forces, Rp1 and Rpo (defined in Sect. 5.3.3.2), which a
link elements is subject to, equal to Fa and -Fj respectively, AQ ¢4 can

be expressed as:
Awca= RixAUx + RlyAUly +RoxAUyx + RzyAUzy.
(6.3.2.10)
The quantities R 1%, R 1y, R2x and Ry are the components of

Rti_l c, and the energy required for crack growth at every pair of split
nodes is evaluated and summed together to get A ¢j. So AW ¢j can be

expressed as:

AW ¢i= RY.; AUj, (6.3.2.11)

6.3.2.5 Incremental Energy Balance
Substituting Eq.(6.3.2.1) for A/, Eq.(6.3.2.4) for AU and

Eq.(6.3.2.11) for A  into Eq.(6.3.1.9), the following equation is
obtained:
(Ai-1F)TAU; + (AAF)TAU}/2 = (RY.; + R}y + R} )AU;,
(6.3.2.12)
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Substituting Eq.(6.3.2.2) into  Eq.(6.3.2.12) and rearranging the
terms yields

AL F)TAU; + (AAF)TAU;2 - R.;aU; = 0, (6.3.2.13)

Using the expression given by Eq.(6.1.2), Eq.(6.3.2.13) can be
further simplified to

Q;-1TAU;;+(AMF)TAU; /2 =0. (6.3.2.14)

Substituting Eq.(6.1.4) into Eq. (6.3.2.14), the following quadratic
equation for unknown AMAj is obtained:

Qi-1TAMAURAUDLALIF)TALAURAU2 =0
or

T 1 T 11

(F_Lz&_p_i)(Ali)2+(Qi-lTAU§+ %q‘i‘)M»HQi-lTAUEI =0

(6.3.2.15)

Different solution situations of Eq.(6.3.2.15) are illustrated in Fig.
6.3. Parabola 'A' corresponds to the situation where both roots of AAi
are imaginary. This corresponds to a situation where a load path which
leads to a stable crack in terms of the fracture emergy criterion cannot
be found. Differentiation of Eq.(6.3.2.15) with respect to AAi leads to

Qi TAULFTAU Y24 AMFTAU = 0
from which

Adi= -(Qi.;TAULFTAU2)/FTA U], (6.3.2.16)

The AAi given by Eq.(6.3.2.16) corresponds the minimum of
function f(AUj, AAi)=A W -Au -AwW as represented by point m on
parabola A in Fig.6.3.

When the two roots of AAi are real and different, the selection
rule in the cylindrical arc-length method, described in Sect. 6.2.1, is
used.

If the unbalanced nodal force at iteration i-1, Q -1, is a zero
vector, SO is AUgl(Eq.(6.l.5.b)). Then Eq.(6.3.2.16) gives zero value of
AMAi. This means that when the structure is in the linear stage, or
nonlinearity is not dominant, the constraint based on the fracture
energy criterion cannot provide a proper magnitude for the load

increment factor AAi. Therefore the efficiency of iteration is low. On
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the other hand, displacement control can give a large load increment
factor AAi, if a large A2 in Eq.(6.2.1.1) is specified.
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CHAPTER 7

APPLICATIONS

7.1 Introduction

In this chapter, four examples of application for the approaches
described in Chapters 3 to 6 are presented. The brief descriptions of these
examples and what they are intended to accomplish are as follows.

The first example is a concrete prism under uniform tension. A
transverse crack of uniform width is assumed to occur as the cracking
strength is reached. The uniform tension applied at the ends of the prism
is controlled to balance the traction across the crack when ceither the
crack width or end displacement is specified. This example is used to

verify the performance for basic automatic operations of discrete

concrete ‘cracking, such as nodal splitting, addition of traction to cracked

faces, and control of the load increment according to the constraints of
displacement or crack width.

The second example is a simplification of three-point bending of a
notched beam. A single crack initiated from the bottom of the middle
span and propagating vertically is traced. The correspondence obtained
between the concentrated load level and displacement at the point of
loading is compared with the result from the previous study of Hillerborg
(1985).

The third and fourth examples, which form the main contents of
this chapter, deal with "tension-pull" problems.

In the third example, two tests conducted by Goto (1971), are
‘numerically simulated through their whole loading history wusing the
proposed modeling approach. The lengths of the . specimens correspond to
the maximum and minimum crack spacings as defined for the tests. The
modeling approach includes representation of discrete concrete
cracking, explicit modeling of lugs of deformed bars, compressive
concrete yielding and longitudinal crackirig. The solution strategy
combines the displacement control and fracture energy control. Bond
stresses at individual lugs are extracted from the analyses at every

iteration, and their history can be traced. By comparison of test and
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analytical results, the influences of some important factors are
investigated.

The test conducted by Watstein and Mathey (1959) is simulated in the
fourth example, following the same procedure as is used for the third

example.

7.2 A Concrete Prism wunder Uniform Tension
7.2.1 Introduction

Tests (Evans and Marathe, 1968; Petersson, 1981; Gopalaratnam and
Shah, 1985) were carried out to investigate the behavior of a concrete
prism subject to uniform tension. In these tests, the relative
displacements between two faces of a localized crack were measured, and
a softening relation between the average of the relative displacements
and the associated stress levels was found (Fig. 2.1). The simplified forms
of this softening relation, as described in Sect. 5.2.2, were adopted in this
study.

To verify the implementation of the relation in Sect. 5.2.2, a
numerical simulation for the concrete prism subject to uniform tension
was carried out. The concrete prism fixed at one end and pulled by
uniform traction at another end, shown in Fig. 7.la, was modelled with
two elements as shown in Fig. 7.1b. Because the concrete prism was
assumed symmetrical about line A-A shown in Fig. 7.la, only the half
under line A-A was modelled.

In the tests (Gopalaratnam and Shah, 1985) a crack occurred at the
location where a notch was preset. Similarly in the finite element
simulation, only the boundary between elements 1 and 2, line 7-8-11
shown in Fig. 7.1b, was allowed to split. The two material properties
which are the most important for the analysis, the modulus of elasticity E
and the tensile strength f,, were assumed to be E = 2,600,000 psi and f; =
200 psi. The linear softening relation between crack width and tensile
stress at crack faces described in Sect. 5.2.2 was used with the ultimate
crack width W¢ assumed to be 0.00126 in.. The height of the prism, H, and
its thickness h, are H = 2 in. and h = 1 in. respectively. _

Two different aspect ratios, H/L = 1 and H/L = 1/12, were used. For
both cases, the two constraint methods described in Sect. 6.2.1 and 6.2.2,

namely, the accumulated load step displacement increment at a point of
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loading (cylindﬁcal formulation, Crisfield, 1981) and total crack width,
were applied.

The first of these methods is denoted as ALSDI (accumulated load step
displacement increment) and the second as TCW (total crack width).

When the tensile strength f; was reached, elements 1 and 2 were
separated along their common boundary, line 7-8-11. Exhaustive nodal
splitting numbers were assigned to these nodes as described in Chapter 3
and 4. The configuration for post-cracking is shown in Fig. 7.1c. The link
elements connecting related split nodes to represent the post-cracking

softening relation are not shown in the diagram.

7.2.2 Theoretical Analyses
In tracing the load path, the tensile stress in the solid elements vs.

the associated displacement at Node 14 was plotted. The displacement, d, at

Node 14 can be expressed as:
d=de+dy (7.1.1a)

in which de is the elastic component, given by

O

de=—1¥L (7.1.1b)
and dy is the component due to crack propagation.

Before crack initiation

dw=0, (7.1.1c)
and after crack initiation

dw=(1- Tmyw, .

f, (7.1.1d)

Before crack initiation, only the elastic displacement component,
de, exists. When the tensile stress reaches f,, de reaches its maximum

value of



f
dem:ELL, (7.1.1¢)

at which point the crack initiates. Then the load, the tensile stress, Ctws
and the elastic displacement, de, drop but the displacement component
due to crack propagation, dy, increases. When the load decreases to Zero,
the elastic displacement component, de, vanishes, and dy, reaches the
ultimate crack width W¢. Because both components are linear in the post-
cracking range, the total displacement is also linear, and its slope can be
determined completely by two points on the stress-displacement curve.
These two known points are dep associated with maximum tensile stress f;,
and W associated with zero tensile stress.

Equating Eq. 7.1.1e to W¢ indicates that when the length L is smaller
than the critical length

L= \T\I;:_ft , (7.1.16)

c
the displacement at the point of loading, d, increases as the load drops.
When L is larger than Lc, d decreases as load drops. This indicates that a
snap back occurs for large L. For the values cited for the example
problem of this section, L¢ is 22.68 in. which gives a critical aspect ratio
of H/L=1/11.34. Consequently, the values of H/L selected for the
numerical tests straddle the critical length for snap-back behavior.

7.2.3 Finite Element Analyses

For an aspect ratio H/L=1, which is a 'stumpy' prism, the computing
results for ALSDI and TCW constraints are given in Fig. 7.2 and Fig. 7.3
respectively. It is seen that both approaches reach good agreement with
the theoretical solution for this simple problem. In the TCW approach, the
crack initiated at a tensile stress of 210 psi instead of f, = 200 psi because
crack width control can only take effect after crack initiation. Before
that the tensile stress was increased by an increment equivalent to the
specified reference load, which was 70 psi for this example.

The results for the case of an aspect ratio H/L =1/12, a 'slender
prism which exceeds the critical length, are presented in Fig. 7.4 for
ALSDI constraint and in Fig. 7.5 for TCW constraint. The ALSDI constraint
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failed to follow the snap back behavior. The TCW constraint can trace the

load path of post-cracking with satisfactory accuracy.

7.2.4 Discussion

The superiority of TCW over ALSDI in following the load path of the
snap back, which occurred in the case of the 'slender' prism, may be
explained as follows. The TCW constraint controls width of cracks which
are localized and are not directly related to the size of structure. Because
the crack widths for the 'stumpy' prism and the 'slender' prism in this
example are the same if the applied loads are the same, the TCW is not
sensitive to the effects caused by the size of the structure, such as snap
back. On the other hand, the displacement at the point of loading, which
may snap back as cracks initiate, is the variable which is controlled in
the ALSDI. Therefore, for the cases of a single crack TCW may be more
favorable than ALSDI. However, for cases of multiple cracks, uncertainty
occurs for -the application of TCW because there may be many
combinations of individual crack widths whose sum equals the specified

value of total crack width.

7.3 Three-Point Bending of a Notched Concrete Beam

The numerical example shown in Fig. 7.6 was first used by
Hillerborg (1985) to demonstrate the numerical methods to simulate
softening and fracture of concrete. A notch is preset at the bottom of the
middle span, and only an upward vertical discrete crack (or 'fictitious'

crack as Hillerborg put it) initiated from the notch, is allowed to

propagate. In the approach, the tensile strength f, is assumed to be

reached at the current crack tip. Then for every step as the crack tip

extends, the corresponding - load is ‘calculated by - iteration (Petersson, P.-.

E., 1981).

The approach of Chapters 3, 4, 5 and 6 was applied to this example.
As illustrated in Fig. 7.7 the finite element model was for only half of the
beam, because of symmetry about the center of the span.

The procedure for automatic nodal splitting to simulate crack
propagation, described in Chapters 3 and 4, was used to predict the crack

growth. Both the constraint of displacement at the point where the
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concentrated force F was applied and the constraint of total crack width,
as described in Chapter 6, were used separately to control the load
increment AF. To be consistent with the analysis carried out by
Hillerborg (1985) and Petersson (1981), the linear relation between crack
width and tensile stress, as shown in Fig. 5.2, was used for the behavior of
the crack faces and a linear elastic strain-stress relation was used in the
solid elements.

Because the analytical results from the displacement control and
the crack width control are quite close, only those from crack width
control are plotted in Fig. 7.8. The abscissa represents the displacement of
the point at which the concentrated force F was applied. The analytical
result from Hillerborg (1985) and Petersson (1981) is also plotted in the

figure. Good agreement between the two sets of results was obtained.

7.4 Numerical Simulation of Cracks Formed in "Tension-Pull"

Tests
7.4.1 Introduction

A numbers of "tension-pull" tests in which a single reinforcing bar
surrounded by a concentric prism is pulled at its two protruding ends
have been carried out (Watstein and Mathey, 1959; Broms, 1965; Goto, 1971;
Nilson, 1971; Mirza and Houde, 1979). The cross section of the prisms can
be square or round as shown in Fig. 7.9. The focus of these tests varies.
Some of the variables documented are: crack pattern, crack spacing,
crack width, relative displacements between bar and concrete, and the
relation between these entities and the steel stress levels, or the
differential of the steel stress along the bar.

The interest in the investigation of the tension-pull specimen is
caused mainly by the assumption that it can . serve as a "simplified model
of the situation which occurs on the tension side of a reinforced concrete
beam"” or "a portion of a steel reinforced diaphragm under
tension"(Ingraffea and Saouma, 1985).

Tests show that the behavior of tension-pull specimens reinforced
by deformed bars is quite different from that of specimens reinforced by
plain bars (Watstein and Mathey, 1959). The effect of the deformations, or
lugs, on the surface of the bar may be investigated by means of

numerical simulations of tension-pull tests. In these numerical
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simulations, the lugs should be explicitly included in the finite element
model. The "micromechanics of bond slip" (Ingraffea and Saouma, 1985)
between deformed bar and surrounding concrete may be clarified by
comparing results of test and finite element analyses. The following

sections present some results of such numerical simulations.

7.4.2 The Finite Element Model

Because a cylindrical specimen is symmetrical to the central plane
A as shown in Fig. 7.10a, only half of it needs to be considered. To model
this three-dimensional axisymmetric problem in the domain of two
dimensional finite element analysis, axisymmetric elements were used. As
a result, only one quarter of the cross sectional plane which coincides
with the axis of the cylinder is meshed, as shown in Fig. 7.10b.

Regular triangular elements with two angles of 450 and one angle
of 90° were used for concrete. Such an .arrangement produces. regular
- distributed nodes from which eight edges -emanate. This means that at
these nodes eight possible crack orientations are provided to simulate
concrete cracking initiated by the principal stress on the element
boundaries, with an orientation error less than 22.5°. As a result, cracks
of zigzag shape are produced and their smoothed versions are assumed to
represent the real crack paths.

A typical lug on the surface of a reinforcing bar is shown in Fig.
7.11a. The shape of cross section of the lug is an isosceles trapezoid. The
finite element model simplifies the trapezoid into a triangle by merging
the two tips of the trapezoid into one as shown in Figs. 7.11b.

The discontinuous linear relation between crack width and tensile

stress described in Sect. 5.5(Fig. 5.4) was used to model the cracking

behavior of crack faces. - Displacement constraint- at the -point of loading

was combined with the constraint based on the fracture energy criterion
to control the loading increments.

As the compressive strength of concrete or the yield strength of the
steel is reached, plastic yielding is initiated.

Since the two-dimensional axisymmetric element cannot simulate
discrete longitudinal splitting, this kind of cracking was simulated by the
smeared approach. The approach can be described as follows. When the

circumferential stress reaches the concrete tensile strength at a point, a
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longitudinal splitting crack is considered to occur at this point, and the
crack width is smeared over the circumference which intercepts the
mesh plane at the point. The post-cracking tensile stress which crosses
the longitudinal crack faces is set to zero, as shown in Fig. 7.12.
Thereafter the  post-cracking stiffness calculated at the point should be
consistent with plane stress conditions rather than axisymmetric
conditions.

The dashed line in Fig. 7.11b represents an element boundary on
which a high tensile strength has been specified in order to inhibit
cracking because, in the judgement of the investigator (Sect. 2.3.2), it is

not considered to be a possible crack path.

7.4.3 Description of the Tests by Goto (1971)

In his tests, Goto assumed "the spacing L of lateral cracks, after
cracking stabilizes", "roughly follows the following rule:

Lmin € L < Lmax Lmax =2 Lmin"

" in which Lmpjn and Lmax represent maximum crack spacing and
minimum crack spacing, respectively.

Tests were conducted on two different setups as shown in Table 7.1.
In the first setup, one specimen has a 19 mm (3/4 in.) bar encased in 100
mm square of concrete while the other has a 32 mm bar encased in 120
mm square. The lengths of the specimens were four times the assumed
maximum crack spacing, which was assumed to be 250 mm for the first
setup. Cracks were initiated by prefabricating notches in the specimens
at the discrete crack spacings. The bars were axially loaded in tension,
and internal cracks were dyed and examined by cutting the specimens
along the bars(see Fig. 7.22).

In the second setup, three. specimens were axially .loaded in
tension. They had the same cross section, consisting of a 19 mm bar
encased in 120 mm square of concrete, but different lengths equal to: the
maximum crack spacing, which is assumed to be 300 mm; the minimum
crack spacing (150 mm); and, the intermediate crack spacing (200 mm).
The elongation of the perimeter of a 60 mm square on the end faces of
these prisms (see Fig. 7.13a) was measured as steel stress levels increased.
In the following, the first of these specimens (L=300 mm) will be referred
to as Case 1, and the second (L=150 mm) as Case 2 (see Table 7.1).
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Because the method of defining the maximum crack spacing is not
mentioned in the documentation of Goto's tests ( note that the minimum
crack spacing is assumed to be the half of the maximum crack spacing),
the generally accepted approach as described by Watstein and Mathey
(1959) is assumed applicable. The approach is described for "tension-pull”
specimens which "simulate a portion of a beam between two successive
cracks". The maximum crack spacing was determined by trial to be the
maximum length of specimens which would not develop transverse

cracks during testing (Watstein and Mathey, 1959).

7.4.4 Numerical Simulation of Goto's Case 1
7.4.4.1 Parameter Inputs

The specimen having length equal to the maximum crack spacing
(i.e.- Case 1, for which L=300 mm) in the second setup of Goto's tests was
simulated as follows. For the purpose of modeling, the 120 mm square
- cross section was transferred -to an. area-equivalent circular one with
radius equal to 1354 mm as shown in Fig. 7.13a. Then the two-dimensional
axisymmetric finite element can be applied to this model. The
compressive strength, f;;, used in the analysis was 29 MPa (4,200 psi)
according to Goto(1971). The modulus of elasticity E for concrete and

steel were assumed to be 24,822 MPa (3.6x106 psi) and .199,955 MPa
(2.9><107) psi, respectively. The tensile strength for concrete crack
initiation was assumed to be 3.4475 MPa (500 psi) which is about 0.623V f.

(7.5 f;;) according to Lutz and Gergely (1967).
Because the "specimens were tested in a moist condition to avoid any

shrinkage - complication”  (Goto,1971), the adhesive strength of the

* concrete-steel interface, denoted as f;;s, -was estimated by assuming that
the adhesion is of the "saturated surface dry" category whose strength
ranges from 150 to 300 psi (Lutz and Gergely, 1967; Hsu and Slate, 1963).

The f'cs used in the analysis described in this Section is 1.724 MPa (250
psi), which was selected by optimal fit of Goto's Case 1 tests from four

numerical simulations (f'cs=180, 215, 230 and 250 psi). The ratios p; for

overlapping cracks defined in Sect. 5.4 was assumed to be 20.
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Switching from displacement constraint at the point of loading, to
the fracture energy criterion constraint, was carried out when the
specified load convergency factor mg defined in Sect. 6.3.2 was exceeded.
The nmg used in the analysis is 60%.

The 60 mm square on the end face of the test specimen, along whose
perimeter the elongation was measured, was transferred to an area-
equivalent circle with radius equal 67.7 mm in the analytical model, as
shown in Fig. 7.13a. The elongation of this circle calculated from analysis

is considered equivalent to that of the square measured from the test.

7.4.4.2 Illustrations - of Analytical Results

The measured elongation of the perimeter of the square and the
calculated elongation of the, perimeter the circle are plotted in Fig. 7.13b.

The crack distributions, stress distributions and enlarged deformed
meshes associated with the 8 data points on the curve for the analytical
results' shown in Fig. 7.13b are presented, in ascending order of steel
stress levels ranging from 68.8 to 294.1 MPa (9.6 ksi to 41.2 ksi), in Figs.
7.14 to 7.21 respectively. The crack paths, shown in Figs. 7.14a to 7.21a, are
drawn by lines of three different weights: light, medium and heavy.
These represent closed cracks or structural boundaries, open cracks with
width less than W¢, and open cracks with width greater than Wg,
respectively. Because of discontinuous relation for tensile stress vs. crack
width (Fig. 5.4) is used, the W is about four time of that for linear
relation.

Some observations of the crack propagation obtained from this

analysis are summarized in the following Sects. 7.4.4.3 to 7.4.4.6.

7.4.4.3 Progression of the Most Prominent Cracks

Cracks initiate from the back face of lugs and may extend to the
outer surface. Though cracks nucleate at the back face of every lug,
propagation is quite uneven. As the tensile load increased, some cracks
located several lug spaces further inside the specimen than the current
most prominent crack (i.e. - the crack with the greatest crack
propagation radius from the center of the bar or the greatest crack
width), propagated rapidly and emerged as the most prominent. These

cases happened in such transitions as those from the crack configuration
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shown in Fig. 7.17 to that shown in Fig. 7.18, and from that shown in Fig.
7.18 to that shown in Fig. 7.19.

When a new most prominent crack emerged, some of the previous
cracks decreased their crack width (crack unloading) or even closed as
indicated by comparisons among Fig. 7.17a, 7.18a and 7.19a. After the
emergence of the crack pattern shown first in Fig. 7.19a, no new cracks
emerged, and the most prominent crack became so dominant that nearly
all the previous cracks closed. Even the adhesion between concrete and
steel on the front faces of the lugs which were located in front of the
dominant crack was damaged due to tension. These cracks at the front
face of lugs soon closed due to compression which developed immediately
after the crack pattern stabilized.

The shaded areas in Fig. 7.19a to 7.21a represent the parts of

concrete which are enclosed by cracks and have no node ( or only one

"node) connected to- other parts of concrete. This separation indicates that

“the concrete in ‘the shaded areas disconnects from. the remainder of the -

specimen.

The domination of the current most prominent cracks is shown by
the evolution of the deformed meshes from Fig. 7.14b to Fig. 7.21b. For the
purpose of illustration the nodal displacements were enlarged 80 times
before they were added to their associated undeformed nodal positions.
The part of the steel-concrete interface which is positioned in front of
the current most prominent crack separates, and the concrete lifts up
from the bar, with the highest gap found at the exit of the bar from the
concrete.

Unfortunately, Goto did not longitudinally cut the specimens in the
second setup to examine the crack patterns. Therefore, crack pattern
comparison between tests and their associated simulations described in
this Section cannot be made. However, Goto did cut the specimens in the
first setup, and the dye crack pattern in the cross sections are shown in
Fig. 7.22. The halves on which the reinforcing bars are not attached show
that at some crack spacings black dye penetrating through the concrete-
steel interface from the lateral cracks to a considerable extent. This may
be explained by lift-up of the concrete interface from the steel.

The current most prominent crack and the open cracks positioned

behind it can be recognized by the distinct crack faces in these 'b’
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figures. But the concrete cracks positioned in front of the current most
prominent cracks cannot be recognized, even though they are still
marked as open cracks by lines of medium thickness in the 'a' figures.
Due to the enlargement of displacements by 80 times, a false impression is
given that the surfaces initially cemented to the front face of the lugs lift
up and move back from the bar so much that they clear the associated
lugs. In fact, these concrete surfaces still contact the associated front
faces of the lugs in the form of closed cracks. Compressive bond forces

are exerted on these faces by the overlap springs described in Sect. 5.4.

7.4.4.4 Longitudinal Splitting Cracks

Goto observed the formation of longitudinal cracks on sides of the
specimens at steel stress levels around 155 MPa. In the present
numerical simulation, the longitudinal cracks were modelled by the
smeared approach described in Sect. 7.4.2. The extent of longitudinal
cracking at the eight steel stress levels are illustrated in Figs. 7.14c to
7.21c respectively. In these figures, the small longitudinal dashes indicate
that longitudinal cracks are present at these locations. As shown in Fig.
7.17c, the longitudinal cracks have reached the sides of the specimen at
the associated steel stress level of 165 MPa. This is consistent with the test.
The configurations shown in Fig. 7.17c to 7.19c indicate rapid propagation
of longitudinal cracks.

In contrast, the predicted steel stress increased only 20 MPa from
Fig. 7.17c to Fig. 7.18c. This causes the deviation of the analytical results
from the test result as shown in Fig. 7.13b. This delay of the increase of
steel stress during the rapid propagation of the longitudinal crack may be
explained by the inability of the two-dimensional approach adopted in
this study to simulate discrete circumferential cracking which s
typically a three dimensional effect. This argument is supported by
comparison of Figs. 7.19c to 7.21c, in which propagation of longitudinal
splitting cracks slowed, and the curve obtained from the finite element
analysis again approaches the one obtained from the test, as shown in
Fig. 7.13b.

The stress distributions at the eight steel stress levels in the parent
plane of the cylinder are shown in Figs. 7.14d to 7.21d. This technique is

not very informative for the type of problem considered and parts (d)
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have been included primarily for completeness and to show the
consistency of these stress distributions with parts (a) to (c).

Comparison of the crack distributions shown in Figs. 7.14a to 7.21a to
their associated distributions of longitudinal splitting crack shown in
Figs. 7.14c to 7.21c, indicates that 'the most prominent crack' appears to
remain close to the front of deepest penetration of the longitudinal

splitting cracks.

7.4.4.5 Compressive Yielding of Concrete on the Front Faces of
Lugs

In the approach adopted by the study, the option of compressive

yielding of concrete is included. The locations at which the compressive

yield strength is reached and plastic yielding takes effect are marked in

Fig. 7.14c to 7.21c by -small dashes oriented in the direction perpendicular

to the axis of reinforcing bar. "As shown, compressive yielding of

concrete occurs on the front slope of -:lugs - which are in the vicinity of -

the most prominent cracks.

For the conditions, as shown in Fig. 7.14c, 7.17c and 7.18c
respectively, compressive yielding of concrete occurs at the front faces
of the lugs from whose back faces the cracks initiate. For the last crack,
as shown in Fig. 7.19c to 7.21c, the concrete located behind the crack
yields.

As the most prominent crack progresses, the concrete yielding
vanishes at the previous crack location, and new yielding occurs at the
current location. In this sense, progressions of the most prominent
cracks, longitudinal cracks and concrete yielding at the front faces of

lugs are synchronized.

7.4.4.6 Illustrations of Bond Stresses and Bond Slips

On steel-concrete interfaces, as shown in Fig. 7.10 and 7.11, bond
forces (or stresses) exist. At the locations where the reinforcement and
concrete are in contact, the bond forces applied to the reinforcement
have the same magnitudes as those applied to the concrete, but have
opposite directions.

If the nodal forces which are integrated from the stresses in the

solid elements of the reinforcement are assembled for the nodes which
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arc located on the interface, these assembled nodal forces represent the
bond forces applied to the reinforcement by the concrete.

The interface presented in the finite element model of Fig. 10 is
divided into 8 intervals of length as shown in Fig. 7.23, each equal to
16.76 mm (0.66 in.) as shown in Fig. 7.11b. Every interval is centered by a
lug, and these are numbered from No.1 to No.8 in a sequence starting
from the symmetry plane A-A, as shown in Fig. 7.23. (The two half lugs
with their associated half intervals in the finite element mesh, one at the
line of symmetry and another at the exit of steel from concrete, are not
counted).

For every interval, the component of bond forces in the
longitudinal direction is summed up to obtain the total bond force in this
direction. This force may be divided by the nominal area of the surface of
the reinforcement (nominal diameter of the bar X T X length of the
interval) to obtain the interval averaged longitudinal bond stress,
denoted as OjALB.

The OjaLB's in a interval at 10 ascending steel stress levels are
plotted in Fig. 7.24a on one of the 8 curves which represent OJALB's versus
steel stresses in intervals No.l1 to No. 8, respectively. If the 10 steel stress
levels associated the 10 data points on the curves are denoted as Level 1 to
10 in ascending order of magnitude (with Level 1 representing the initial
zero stressed state), the 8 steel stress levels shown in Fig. 7.14 to 7.21
correspond to Levels 3 to 10, respectively.

The eight Oja1B's associated with the same steel stress level in the
eight intervals are averaged to obtain the specimen averaged
longitudinal bond stress denoted as Osarp. The OSALB's are plotted versus
the associated steel stress levels in Fig. 7.24b.

Following the same procedure, radial components of bond forces are
processed. The interval averaged radial bond stresses, denoted as O[ARB.,
are plotted versus steel stress levels in Fig. 7.25a. The specimen averaged
radial bond stress, denoted as OSArRB, are plotted versus the steel stress
levels in Fig. 7.25b.

In any interval, the displacements of the nodes at the steel-concrete
interface, Uyx's and Uy's, are averaged separately in terms of material

types, that is, one pair of interval averaged displacements (longitudinal
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and radial) for steel reinforcement, Ujars and Ujars, and another pair of
averaged displacements for surrounding concrete, Ujarc and Ujarc. The
difference between the averaged displacements of steel and concrete in
longitudinal (or radial) direction is the average slip in this direction,

s1aLB = UiaLs - UraLc (7.4.1a)

(or S1ARB =Uiars - UIARC) (7.4.1b)
in which SjaLB (or SIARB) denotes interval averaged longitudinal (or
radial) slip.

The SJALB's (or SIARB'S) versus associated steel stresses are plotted in
Fig. 7.26a (or 7.27a) on one of 8 curves corresponding to the 8 intervals.
The specimen averaged longitudinal (or radial) slip, denoted as SSALB (or
SSARB), is plotted versus associated steel stress levels in Fig. 7.26b (or
7.27b).

7.4.4.7 Progressive Deterioration of Bond
"As shown in Fig. 7.24a, the O151B's have -negative signs indicating

that they are opposite to the direction of applied external load. Except for

the OjaLB's in the interval No. 2, the Oja1B's decreased after a certain steel
stress level was reached. The steel stress level for which this peak bond
stress was produced in the different intervals is given in Table 7.2. The
correspondences indicate a trend of a higher level number for a interval
pos‘itioned further inside the specimen. This trend, in turn, indicates
bond deterioration begins at the outer edge of the specimen and
progresses inward as steel stress increases.

The crack distributions at different steel stress levels have been
shown in Fig. 7.14 to 7.21. An examination of these indicates that the

emergence of a new most prominent .crack causes the concrete surface

~surrounding the bar located immediately in front -of the crack to lift and

separate from the bar surface. Comparing these crack distributions with
their associated data points of bond stresses on the curves in Fig. 7.24a,
indicates that the bond between the concrete and the steel is reduced as
the concrete lifts up.

For the cylindrical interfaces located between two consecutive lugs
(the faces of the two lugs are not included), there is complete loss of bond
as the concrete lifts up from the bar on the interface. On the front faces

of lugs, the adhesion is destroyed as the concrete lifts up from the bar,
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but increased longitudinal movement of bar occurs keeping concrete and
steel in contact on the faces. Compressive bond forces can still be
delivered through the contact, as illustrated in Fig. 7.28a.

As contact on the front face of a lug is lost, loss of bond occurs as
shown in Fig. 7.28b. Loss of contact on the front face of a lug occurs as the
the following condition is met

|sgg[xcosy = |sy g|xsiny (142)
in which |SLB| and ISrsl represent the absolute values of longitudinal slip
and radial slip respectively, and vy represents the angle of inclination of
the front face of the lug to the axis of the bar. When the last most
prominent crack emerged and the longitudinal splitting crack
propagated rapidly, the bond stresses in the intervals located in front of

the crack were almost all lost due to the surge in 'SRBI

7.4.4.8 Local Variations of Bond

As shown in Fig. 7.24a, the maximums of OJALB's obtained in the .

different intervals range from 2.758 to 8.62 MPa (400 to 1,250 psi). The
maximum of OSALB is about 4.0 MPa (580 psi) as shown in Fig. 7.24b. This
maximum occurred at the steel stress level of 160 MPa (22ksi), just before
the emergence of the last most prominent crack.

It is noticed in Fig. 7.24a that the Oja1R's averaged in intervals No.7
and No.5, in which the first two most prominent cracks initiated, have
considerably lower magnitudes than the OjaLB's averaged on the adjacent
intervals (interval No.8, No.6 and No.4). It is also noticed that the lower
OJALB's in the intervals No.7 and No.5 are associated with higher SJALB's
than the one's in the intervals No.8 and No.6, as shown in Fig. 7.29.

The lower Oja1B's and higher SjarLp's in the vicinities of these two
- most prominent cracks may be explained as follows. As the prominent
cracks initiate from the back faces of the lugs located in these two
intervals and propagate to the outer surface, the cylindrical concrete
interfaces between these lugs and the next lugs inside the specimen are
split and lift up from the steel interface. Therefore the longitudinal
bond stresses are reduced, and the longitudinal slips are considerably

increased.
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As shown in Fig. 7.25a, most of the OJaARB'sS obtained at different
intervals are negative. This indicates that the radial bond stresses
applied to the bar are compressive.

In contrast to the case of OJALB'S in the vicinities of the first two
prominent cracks, OJARB'S in intervals No.7 and No.5, have higher
magnitudes in compression than OjARB's in the adjacent intervals, No.8.
No.6 and No.4. The OjarB's in these three intervals have quite flat low
magnitudes in compression and transient high magnitudes in tension
during by the emergence of the last prominent crack.

The OpaLB's in interval No.2 in which the last prominent crack is
located, increased monotonically to the second highest magnitude among
the 8 intervals, as shown in Fig. 7.24a. Part of the adhesion of the
interface behind this crack, as shown in Fig.7.21a, is still sound at high
steel stress levels. This portion of undamaged adhesion behind the crack

may contribute to the high OjARB's in the -interval.

7.4.5 Numerical Simulation of Goto's Case 2
7.4.5.1 Comparison of Results of Test and Analyses

By removing the elements on the right half of the mesh for Case 1
(L=300 mm) shown in Fig. 7.11, the remainder of the mesh can be used as
the finite element mesh to simulate the "pull-tension”  specimen having
length equal to the minimum crack spacing (150 mm), designated as Case
2 in Sect. 7.4.3. The input parameters for the analysis are the same as
that used for the analysis of Case 1 except for one of them. That is the

strength for tension in the circumferential (hoop) direction, denoted as

fin, which was set equal to 1.3 times f', instead of f;. This value was
determined by trial in order to  obtain an optimal fit of the test result.
* ‘Similar to the procedure for Case 1, the -elongations of the perimeters in
the end face (Fig. 7.13a), one from the test and another from analysis, are
plotted against the steel stresses in Fig. 7.30a. In addition to the plotting of
the curves for Case 2, the curves for Case 1, plotted in Fig. 7.13b, are
reproduced in Fig. 7.30b to give a comparison of the magnitudes of the
elongations for the two cases. It is seen that the ratio of the perimeter

elongations for Case 1 and Case 2, which is approximately 6, is
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considerably larger than the ratio of the lengths of the two specimen,
which is 2.

The crack and stress distributions at two steel stress levels, 225.8
MPa and 347.2 MPa, are presented in Fig. 7.31 and 7.32 respectively. It is
seen that the longitudinal splitting cracks only reach three quarters of
the specimen's radius at the steel stress level higher than 300 MPa. This is
contrary to the result of the analysis for Case 1 in which longitudinal
splitting cracks reached the side of the specimen for all steel stresses
higher than 150 MPa. The difference in the two specimens is also noted in
Goto's tests. In the document of the test, it states that

"the closer the specimen length is to the maximum crack
spacing, the more probable is the development of
longitudinal cracks. Where the primary crack spacing is
close to the minimum, longitudinal cracks are seldom seen

at a steel stress less than 42 ksi (3,000 kg/cmz)".

In Fig. 7.33, comparison of 3 analytical results characterized by. 3 .

different magnitudes of fyp ( fip= £, 1.2f; and 1.3f, respectively) are

presented. It is seen that fin greater than f, must be selected in order to

obtain a good fit to Goto's Case 2 tests.

7.4.5.2 Bond Stresses and Bond Slips

The prominent crack located at the plane of symmetry of the
specimen, A-A (Fig. 7.10), propagates slowly but steadily upwards as
shown in Fig. 7.32, but it does not reach the outer surface at the high steel
stress level of 347.2 MPa. The OjarB in the vicinity of the crack,
represented by interval No.1 as designated in Sect. 7.4.4.6 and Fig. 7.23,
changes sign at the steel stress level of about 300 MPa as shown in Fig.
7.34a. The OjprB in this interval also has a deep drop at this steel stress
level as shown in Fig. 7.35a. The curve obtained from Goto's test plotted in
Fig. 7.30a shows the eclongation of the perimeter on the end face becomes
flat at the steel stress level of about 300 MPa. This may be explained by the
propagation of the prominent crack located on the plane of symmetry.

Comparisons between the corresponding specimen averaged
quantities obtained in Case 2 and Case 1 are presented in the following.

The maximum Ogarp in Case 1 is about 4.0 MPa (580 psi) obtained at steel
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stress of 160 MPa (at which the longitudinal splitting cracks reached the
side of specimen and began rapid propagation), as shown in Fig. 7.24b.
The maximum Ogapp in Case 2 is about 4.82 MPa (700 psi) obtained at steel
stress of approximately 220 MPa, as shown in Fig. 7.34b. The maximum
OsARB in Case 1 is about 1.58 MPa (230 psi) obtained at steel stress of 160
MPa as shown in Fig. 7. 25b, and the maximum OgpRpB in Case 2 is also about
160 MPa (230 psi) obtained at steel stress of 300 MPa as shown in Fig. 7.35b.

The maximum SgarB in Case 1 is about 0.0609 mm (0.0024 in.) as
shown in Fig. 7.26b, and the maximum Sgapp in Case 2 is about 0.0304 mm
(0.0012 in.) as shown in Fig. 7.36b. So the ratio of these two maximums of
SSALB is 2 which is equal to the ratio of the lengths of the specimens. For
Case 1, the SgALB is only about 0.00635 mm (0.00025 in.) at the steel stress
level of 160 MPa, and after that it increases rapidly to 0.0609 mm (0.0024
in.) at the steel stress level of 300 MPa. On the other hand, the Sga1B in
Case 2 increases nearly linearly in the whole-range of steel stress levels.
The maximum SgARB in Case 1 is about 0.0355 mm (0.0014 in.) as shown .in
Fig. 7.27b while the SgarRp in Case 2 is only about 0.00762 mm.(0.0003 in.)
as shown in Fig. 7.37b. The ratio of these two maximums is about 4.6 which

is considerably larger than the ratio of the lengths of the specimens.

7.4.6 Numerical Simulation of the Test Conducted by Watstein
and Mathey
7.4.6.1 Outlines of the Test and the Finite Element Modeling
In the tests conducted by Watstein and Mathey (1959), 6 inch square
prisms, 8 in. long, with a centrally embedded reinforcing bar, were tested

by applying a tensile force to the ends of the reinforcing bar. The length

of specimen was selected by trial to be the the maximum length "which

would not - develop. a .transverse .crack during the test" (Watstein and
Mathey, 1959). The measurements included "the over-all extension of
concrete at a point 3/8 in. from the surface of the bar, the extension of
the embedded length of the bar, and the strain distribution on the sides of
the specimens". Bars of different diameters were used, but only the
specimens reinforced by the bar with diameter 7/8 in. were recorded
with all three measurements mentioned.

The finite element model was formed by the same procedure as used

in the simulation of Goto's test shown in Fig. 7.10. A axisymmetric
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cylinder, with 3.38 in. radius for the equivalent circular cross section to
the 6x6 square of the tested specimens, was modelled on a quarter of the

‘parent plane as an axisymmetric prism by axisymmetric 2-D elements.
The lug detail was dimensioned in the same way as the model for Goto's
test shown in Fig. 7.11.

The material properties were the same as used in the simulation of
Case 2 of Goto's test except for the compressive strength of concrete and
yield strength of reinforcement, which are 4,140 psi and 104 ksi
respectively, according to the test data.

Because the specimens "were all moist cured until test” (Watstein

and Mathey, 1959), the adhesive strength for the concrete-steel interface,

f'cs, was assumed to be in the range of 150 to 300 psi (Lutz and Gergely,
1967; Hsu and Slate, 1963) and set to be 180 psi, which was selected as the

best fit of the tests from two simulations ( f'cs = 180 and 250 psi).

7.4.6.2 Extension of Concrete Adjacent to the Bar ,

The extension of concrete was measured at the point 0.375 in. . from
the face of the bar as shown in Fig. 7.38a. The curve denoted by ‘finite
element' in Fig. 7.39 represents the extensions of concrete from finite
element simulation versus steel stress levels. In comparison with the
curve from the test, which is shown in the same figure, the analytical

result presents good agreement.

7.4.6.3 Extension for Embedded Bars

The measurement of the extension for embedded bars as shown in
Fig. 7.38b was presented in the form of the ratio Eg/Ef in which Eg is the
"effective” modulus of the embedded bar defined as "the ratio of applied
stress to average strain in the embedded length" ( Watstein and Mathey,
1959), and Ef is the modulus of free bar. The comparison between the
analytical result and the test result is given in Fig. 7.40. The curve for
analytical results shows a horizontal shift from the curve for the test, but
the shapes of two curves exhibit similar characteristics. The experimental
result is significantly stiffer than the analytical result for low steel

stresses.
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7.4.6.4 Distribution of Strain on the Surface of Specimens
The strains on the outer surface of the specimens were measured in

the tests at the locations shown in Fig. 7.38c. The test result shows that the

strain at the midpoint is slightly tensile (10-25 x10'6) up to a steel stress
of 60 ksi as shown in Fig. 7.41. Above this value of stress, the strain at the
midpoint of the concrete became a compressive one.

The analytical result also shows this reversal of midpoint strain, as
shown in Fig. 7.41. The analytical crack distributions which occurred
before and after the reversal are presented in Fig. 7.42 and 7.43
respectively. The steel stress levels associated with these two cracking
states are 32 ksi and 43 ksi respectively. Comparison of these two crack
distribution‘s indicates three changes occurred: (1) the longitudinal
- splitting crack reached and propagated along the outer surface; (2) the
concrete separated from the front face of the lug located in interval No.5
and lifted up; and, (3) the crack located in- interval No.l propagated
upward and other two cracks located in intervals No.2 and No. 4 became
wider in width. The reversal of strain at the midpoint may be caused by
combinations of these changes.

The crack distribution associated with steel stress level equal to 75
ksi is presented in Fig. 7.44. It is seen that the crack located in interval
No. 1 has apparent growth in the vertical direction after the reversal of
the strain at the midpoint, while the two cracks in the intervals No.2 and
4 have no development in crack length.

The comparison between different simulations in which  only the

tensile strength in the circumferential direction, f;y, is varied as shown

in Fig. 7.45. This indicates that the greater the f;; specified, the greater
the steel stress level required to produce the reversal- of the strain at the

midpoint.

7.4.6.5 Bond Stresses and Bond Slips

The four interval averaged quantities of bond, namely, the Oja1B's,
OIARB'S, SIALB's and SIARB's, are plotted against steel stress levels in Fig.
7.46a to 7.49a, respectively, for the Watstein and Mathey tests. The four
specimen averaged quantities, OSALB, OSARB, SSALB and SSARB, are plotted
against steel stress level in Fig. 7.46b to 7.49b, respectively.
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The OlALB in interval No.1 changes sign at about 27 ksi of steel
stress level. The steel-concrete interface behind the most prominent
crack located in the center of this interval is completely destroyed at
early loading stage. This is evidenced in Fig. 7.42a, 7.43a and 7.44a where
the part of the interface behind the crack is marked as an open crack. On
the other hand, part of the interface in front of the crack is still sound at
high steel stress levels due to the compressive radial bond stress, and this
portion of undamaged adhesion is assumed to deliver the longitudinal
bond stress, and it is unmarked in these Figs., i.e.- retains sound adhesion.
In Fig. 7.48a the SjoALB in interval No.1 has a greater magnitude than the
S1ALB in interval No.2 due to the complete damage of adhesion behind the
crack.

The OjaLB in interval No.5 reduces to zero due to the lifting up of
concrete from the front face of the lug in the interval associated with the
reversal of strain at midpoint as described in Sect. 7.4.6.4. The OjaLp in
‘interval No.4 keeps a nearly constant value of about 700 psi through the
whole loading history (0-80 ksi) as shown in Fig. 7.46a.

The OjaLB in interval No.3 developed the maximum value of about
2,100 psi for the specimen and then drops quickly to 600 psi. This is
associated with the reversal of strain at midpoint as described in Sect.
7.4.6.4. It then gradually reduces to zero due to the complete loss of contact
in the front face of the lug in interval No.3. On the other hand, the OJaLB
in interval No.2 has a big jump as the deep drop of the OjaLp in interval
No.3 occurs, and keeps increasing until the final loading stage.

Comparison of Fig. 7.42b, 7.43b and 7.44b indicates that contact on
the front face of the lug in interval No. 3 is greatly reduced while the

contact on the front face of interval No. 4 remains nearly unchanged.

This is in contrast to the configurations which occurred in the analyses. .

of Case 1 for Goto's tests, in which the loss of contact in the front face of
lugs progresses in proportion to the positions of lugs. That is, the closer to
the protruding end of the steel the lug is, the earlier the loss of contact
on the front face of the lug occurs.

The maximums of specimen averaged quantities are as follows. The
maximum of OgayB, 780 psi, occurred at about a steel stress of 27 ksi, after
which the OjaLB in interval No.1 begins to change sign. At the same steel

stress level, the maximum of OJARB, which is about 265 psi, is reached. The
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maximum of OgarB of Watstein and Mathey tests is 30% greater than Case 1
and about 11% greater than Case 2 of Goto's tests. The maximum of Ojars
is about 15% greater than both Case 1 and 2. This increase may be related
to the increase of concrete cover in Watstein and Mathey test in which
the area of cross section is 36 in.2 while that in Goto's test is only 22.3
in.2, The maximum of SSALB is about 0.0008 in. which is about 1/3 of that
(0.0024 in.) obtained from the analysis of Case 1 of Goto's test. The
maximum of SSARB is 0.00065 in. which is about 1/2 of that ( 0.0012 in.)
obtained from Case 1 of Goto's test. These decreases in SSALB and SSARB
also may be explained by the increase of concrete cover in Watstein and

Mathey test.

'7.4.7 Discussion on Bond Stress-Bond Slip Relationships
7.4.7.1 Nilson and Tanner's Test Arrangements

In Nilson and Tanner's tests (1971), bond-slip in "tension-pull”
“specimens, shown in Fig. 7.50, was investigated. The steel strains were-
measured by " electric strain gages which were placed in milled grooves
inside the reinforcing bars as shown in Fig. 7.51. The concrete strains
were measured from the concrete strain gages embedded in the vicinities
of and parallel to the bars as shown in Fig. 7.50. The bar size is No. 8.

The unknown bond slip at a location b, Sp, is determined by

integration of the strains in the reinforcing bar and concrete

b b
Sp=Sa +f € -I € (7.4.3)
a a

in which S, is the known slip at location a, € is the steel strain and Ec is
the concrete strain. In the tests, the slips at the center of the specimens,
are assumed to be zero, and were used as known slips.

The bond stress at any point was calculated using the -slope of the
steel strain curve at that point. This was done by using the formula:

dT=ue Y0 * dx
in which, the bond stress, u, is

u= (dT/dx)/ X0. (74.4)

This equation is evaluated using the relations

dT/dx= (d€s/dx)<E-A

and



20 =7D
in which d€s/dx is the slope of steel strain curve, E is Young's Modulus, A

is the area of the bar and D is the diameter of the bar.

7.4.7.2 Nilson and Tanner's Test Results

The specimens tested were categorized into two groups, II-A and II-
B. The concrete compressive strength for the specimens in group II-A
was about 3,500 psi. It is recorded in the documentation of the tests that
"since these specimen developed lateral cracks near the center, it was
impossible to measure the slip at the higher bond stresses developed after
the cracking".

The results of two specimens in group II-A, named II-A-1 and II-A-
3, are shown in Figs. 7.52 and 7.53. The two specimens are identical except
for the positions at which the concrete strain gages were placed. In the
II-A-1 specimen, concrete strain gages are placed at 1/2 to 1 in. from the
bar surface, while in the II-A-3 specimen, they are placed at 1/4 to 1/2 in.
from the bar surface. It is shown in Fig. 7.52 and 7.53 that at the same
bond stress 200 psi, the slip for II-A-1 is about 350 microinches, while
that for II-A-3 is about 150 microinches. As a result, the slope of the curve
for II-A-1 is considerably flatter than that for II-A-3. Therefore, the
documentation of the tests states that it "indicated in turn, a large strain
gradient in the concrete, and thus the necessity to keep the concrete
strain gages as close to the reinforcing bar as possible” (Tanner, 1971).

The concrete compressive strengths for the specimens in group II-
B varies from 4,000 to 4,500 psi. All the concrete strain gages placed in
the specimens of this group were located 1/4 to 1/2 in. from the bar

surfaces. Lateral cracking did not occur, but "there was extensive

"~ -cracking longitudinally along the reinforcing bar propagating from the

ends toward the center of specimens” (Tanner,1971). The test results for
three specimen of this group, II-B-1, II-B-2 and II-B-3, are given in Fig.
7.54 to 7.56. From these curves it is shown that "as the center of the
specimen is approached, the maximum bond stresses increase” (Tanner,
1971).
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7.4.7.3 Comparison with the Results of this Study

The O1ALB's and SjALB's, obtained in the finite element simulation of
Case 1 of Goto's tests, are shown in Fig. 7.24 and 7.26 respectively. The
O1ALB's and SyApLB's in intervals No.7 and No.8 are averaged to represent
the bond stress and bond slip at the point which joins the two intervals
and is located 1 in. from the loaded end. Similarly, averages of Oyprp's and
SIALB's in intervals No.5 and No.6 give the bond stress and bond slip at a
point located 2.3 in. from the the loaded end. The bond stress and bond
slip at the point located 3.7 in. from the loaded end are obtained from the
averages of OjarB's and SJALB's in interval No. 3 and No.4. The curves for
bond stress- bond slip relationships at these three points are plotted in
Fig. 7.57.

By comparison of the curves for the simulation of Goto's Case 1
shown in Fig. 7.57 to the curves for group II-B of Nilson and Tanner's
tests shown in Figs. 7.54-7.56, it is seen that they share the common

" feature, that "as the center of the specimen is approached, the maximum .

bond stresses increase" (Tanner, 1971).

The progressive deterioration of bond in Case 1 of Goto's tests,
described in Sect. 7.4.4.7 is due to the progressive lift-up along the
concrete-steel interface caused by the progression of the most prominent
cracks, longitudinal splitting cracks and compressive concrete yielding
at the front faces of lugs as described in Sect. 7.4.4.3-7.4.4.5.

Because extensive longitudinal cracking was recorded for group II-
B of Nilson and Tanner's tests, it is natural to infer that the mechanism of
progressive deterioration of bond existing in the simulation of Goto's Case
1 may explain the phenomena where local maximum bond stress
~increases from the loaded end to the center, as occurred in Nilson and
" Tanner's tests. It seems that this ~-mechanism -of progressive bond
deterioration dominates for the general cases where longitudinal
cracking dominates.

The differences between the curves shown in Fig. 7.57 to the curves
shown in Figs. 7.54-7.56 are also obvious. In the simulation of Goto's Case
1, the magnitudes of bond slips at which local maximum bond stresses are
obtained are much smaller, and the values of local maximum bond

stresses are higher, than in group II-B of Nilson and Tanner's tests. In
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addition, the bond stress at zero bond slip is not zero in the simulation of
Goto's Case 1.

The differences can be attributed to the different geometries of the
specimens used in the two tests: a No. 8 bar embedded in a 18 inX 6 in.x6
in. prism for Nilson and Tanner's test and a No. 6 bar embedded in a 12
in.X4.7in.X4.7 in. prism for Goto's tests.

These differences can also be attributed to the locations where the
bond slips are evaluated. The specimens II-A-1 and II-A-3 of Nilson and
Tanner's tests have shown that moving the measuring positions from 1/2-
1 in. to 1/4-1/2 in. reduces the slips by about 350/150= 2.3 times. Because
the bond-slip in the simulation of Goto's Case 1 is evaluated at the
interface of concrete and steel, that is, at a zero distance from the bar,
much smaller slips than that in the II-B group of Nilson and Tanner's
tests are anticipated, and at zero slip the bond stresses are not zero due to

the adhesion.

7.4.8 Effect of the Parameter ng

The effect of parameter mng defined in Sect. 6.3.1.2, is shown by
giving it a value which is so big that the switch from displacement
control to fracture energy control does not occur. Two results of
elongation of the perimeters in the end faces in  simulations of Goto's
Case 1 are plotted in Fig. 7.58. The only difference between them is that
one is with fracture energy control and the other is without. It is seen
that after the rapid propagation of longitudinal cracking, the one with
fracture energy control approaches the test result, but the one without
the control deviates from the test results substantially.

For those displacement .control points which deviate substantially
from the energy control points in Fig. 7.58, the ratio of the unbalanced
force norm to the applied force norm 1is greater than 0.6. Thus these
points may be considered to have 'not satisfied' a ‘'reasonable’ force
convergence criterion. On the other hand, the satisfaction of force
convergence criterion is much more difficult to achieve than for
displacement criterion. The entire field of convergence criterion appears
to be lacking a rational treatment and is awaiting a disciplined analysis to

provide reliable guidelines for practical solutions.
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The displacement measure used in Fig. 7.58 is particularly sensitive
to the convergence criteria. The longitudinal displacements of the
loading point for the same solution, which are shown in Fig. 7.59, are less

sensitive.
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Table 7.1: Specimens of Goto's Tests

Setup

First Setup Second Setup
Case Case 1 Case 2
Length 1,000 mm | 1,000 mm 300 mm 150 mm
Maximum
Bar Diameter|{ 19 mm 32 mm 19 mm 19 mm
Cross Section {100mm x100mm{120mm x120mm}120mmx 120mm|120mmx 120mm
Documented Elongation of perimeters on
None he end £
Measurements the end faces
Obexggrvations Longitudinal splitting cross None
Dye Internal | sections show Dye Cracks
Cracks

Table 7.2: Steel Stress Levels associated with

Interval Maximum OJALB 'S

Interval
No. 1 2 3 4 5 6 7 8
Steel
Stress 8 10 7 7 6-7 6 2 4
level No.
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Figure 7.7: Finite Element Model for Notched Concrete Beam
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Fig. 7.9: Deformed Reinforcing Bar in a Concrete Prism
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Figure 7.26: Bond Slips in Longitudinal Direction: Case 1
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Figure 7.27: Bond Slips in Radial Direction: Case 1
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Figure 7.34: Bond Stresses in Longitudinal Direction: Case 2
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Figure 7.35: Bond Stresses in Radial Direction: Case 2
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Figure 7.36: Bond Slips in Longitudinal Direction: Case 2
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Figure 7.37: Bond Slips in Radial Direction: Case 2
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Figure 7.46: Bond Stresses in Longitudinal Direction:
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CHAPTER 8
SUMMARY AND CONCLUSIONS

8.1 Summary

In this study, a systematic and automated approach for the finite
clement analyses of distributed discrete concrete cracking, has been
developed. As the first step of the approach, a topological data structure,
or data base, is built from the input data for the finite element mesh in
the 'data preparation phase'.

This vertex-based data structure represents explicitly all the
adjacency relations included in the input finite element mesh. Possible
crack patterns of the mesh are exhaustively represented in the data
structure by the technique of "exhaustive nodal splitting", developed
herein.

Crack initiation and propagat'ion can be simulated by activating or
deactivating the associated "nodal splitting numbers". This process is
carried out by referencing and modifying the topological data base.

Link elements of the continuous type are used to represent crack
face behaviors. The softening response of cracked concrete associated
with the tensile fracture energy forms the basis for the constitutive
relation at the crack faces.

A fracture energy criterion is introduced to the solution strategy
which controls the load increment to stabilize crack propagation.

To represent longitudinal splitting cracking, which is typical of
three-dimensional behavior, by a two-dimensional axisymmetrical finite
element model, a smeared crack model is applied in the circumferential
direction when cracks in that direction are initiated.

A Von Mises plastic model has been used to reflect the concrete
compressive yielding.

The approach developed has been applied to: (1) the solution of a
concrete prism under uniform tension; (2) the problem of three-point
bending of a notched concrete beam; (3) the numerical simulation of the

"tension-pull” tests conducted by Goto (1971); (4) the numerical
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simulation of the "tension-pull" tests conducted by Watstein and Mathey
(1959).

The finite element simulation of a concrete prism in direct tension
reproduces the basic behavior of post-cracking softening in the form of a
discrete crack representation.

The analysis of a notched concrete beam under three-point bending
demonstrated that the approach adopted in this study is capable of
producing results consistent with the well established previous study
(Hillerborg, 1985).

The finite element simulations of “tension-pull” tests explicitly
model the lugs on the reinforcement surface as solid elements. A number
of aspects of the behavior of "tension-pull" members which have been
recorded in experimental tests, have been compared with the results of
these finite element simulations.

Discrete cracking, longitudinal splitting cracking, interface
behavior and local crushing are identified in these simulations.
Progressions of these mechanisms at different stages during the loading
history are clearly represented in the simulation processes. The
correlations of the mechanisms have been discussed.

Bond stresses and bond slips were evaluated along the concrete-
steel interface. The variables of bond were averaged at intervals
referenced to lugs on the surface of the reinforcing bars along the
length of the "tension-pull” specimens. The influence of cracking on the
response of different variables at different loading stages for different

tests, has been discussed.

8.2 Conclusions
8.2.1 General

1. The major conclusion from this study is that the finite element
method with discrete crack representation can be used to closely simulate
not only the global behavior of reinforced concrete members, such as
load deflection behavior, crack pattern, failure load and failure mode, but
also detailed local behavior at particular stages during the loading
history, such as patterns of dominant crack progression and patterns of
bond deterioration progression, which may determine and explain a

variety of global behaviors.
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2. In order to obtain  satisfactory simulations it is necessary to
include approaches to simulate major sources of nonlinearity of
reinforced concrete. This appears to require: (i) a robust and efficient
topological data base and a dynamic bookkeeping scheme for the stiffness
matrix in order to automate simulation of discrete tensile crack initiation
and propagation; (ii) constitutive relationships for link elements based
on the softening response of cracked concrete associated with the tensile
fracture energy, in order to simulate discrete crack face behavior such as
crack widening, crack unloading and crack closure; (iii) a solution
strategy of fracture energy control for simulating transition of crack
instability; and (iv) a plastic material model for simulating compressive

yielding and crushing of concrete.

8.2.2 Conclusions from the Simulation of "Tension-Pull" Tests

3. Agreement with reasonable accuracy of global behavior for
"tension-pull” members has been obtained between the finite element
simulations and tests. The global behavior compared includes the
elongation along the circumferential direction, on the end faces of the
specimens for ‘the maximum and minimum crack spacings of Goto's tests
(1971); and, the extension of concrete located close to the bar, the
effective modulus of elasticity of the embedded bar, and the concrete
strain at the midpoint, in the tests conducted by Watstein and Mathey
(1959).

To obtain agreements with reasonable accuracy between finite
element simulations and the tests, input parameters for numerical
analyses must be properly defined. If some of them are not available in
the documents of tests, they should be selected in the practical range of
the parameters by optimal fit of the test results. Most important among
these parameters are the tensile strength of concrete, f'[, the compressive
yield strength of concrete, f;, the tensile strength of concrete for crack
initiation in the circumferential direction, f;h and the tensile strength of
adhesion between concrete and steel, f'sc.

4. Finite element simulations of the "tension-pull” tests indicate that
longitudinal split cracking has an important influence on the bond effect

between concrete and reinforcement. Therefore, a model which simulates
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this cracking, such as the circumferential smeared crack model adopted
in this study, is necessary for the analyses of local bond effects.

5. Finite element simulations of Goto's "tension-pull” tests indicate
that tensile strength for crack initiation in the circﬁmferential direction,
f'th, should be given a greater value for a smaller crack spacing. When
the fy;, for maximum crack spacing was set to be equal to f't, and the i, for
minimum crack spacing was set to be 1.3 times f't, good agreement was
obtained for global behavior in simulating Goto's tests.

6. Finite element simulations of Goto's "tension-pull” tests reveal
that the pattern of dominant crack progression for 'maximum' crack
spacing is different from that for 'minimum’' crack spacing.

7. For Goto's maximum crack spacing, the concrete-steel adhesion
and contact at the front faces (and back faces) of lugs were lost
progressively from the protruding end of reinforcement to the center of
crack spacing due to the progressive lifting up of the concrete from the
interface bar surface as the ‘'dominant' crack, the front of the

longitudinal splitting cracks, and the local compressive yielding of

concrete synchronously relocate toward the center of the crack spacing. .

8. For Goto's minimum crack spacing, the progressive loss of contact
at the front faces of lugs does not occur. Instead, the contact between
concrete and steel at the front face of a lug located close to the
protruding end of the reinforcement remains until the final failure,
while the contact at the front faces of lugs which are located behind this
lug is lost earlier. As a result, dragging forces applied by the lugs which
are in contact with surrounding concrete, lead the vertical concrete
cracks located at, or close to, the center of the crack spacing to grow
slowly and steadily. Final failure at high steel stress levels appears‘to
involve complete unbonding along the concrete-steel interface and
cracking to the exterior concrete surface at the center of the specimen.

9. The different patterns of dominant crack progression explain
why the ratio of elongations in the circumferential direction in the end
faces of maximum' and minimum crack spacings of Goto's tests, which is 6,
is much greater than the ratio of the crack spacings, which is 2.

10. Finite element simulations of the Watstein and Mathey "tension-
pull” tests indicate that the reverse of the strain at the midpoint is caused

by the three synchronously occurring factors, namely: propagation of
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longitudinal splitting cracks reaching the outer surface of the specimen;
lifting of concrete from the interface at the lugs near the protruding end
of reinforcement; and, propagation of the vertical discrete cracks located
close to the center of the specimen. '

11. Modeling lugs of reinforcement as solid elements provides
realistic evaluation of bond stresses which are characteristic of deformed
bars. The modeling provides evaluation of bond slip at the interface of
concrete and steel, rather than at a distance away from the interface.

12. In general, low longitudinal bond stresses and high longitudinal
bond slips exist at the  concrete-steel interface just behind dominant
cracks. On the other hand, high radial bond stresses exist at the front
faces of the lugs where these dominant cracks are located, because of the
compressions which are applied on the front faces. This produces tension
and tensile cracking in the circumferential direction. High longitudinal
bond stresses occur on the interface where the concrete-steel adhesion is
not damaged, but radial bond stresses at these locations are usually low.

13. The pattern of dominant crack progression determines the
associated pattern of progression of bond deterioration. Different typical
behavior patterns were observed.

For Goto's maximum crack spacing, the specimen averaged bond slip
has a sudden increase, and the specimen. averaged bond stress has a
sudden decrease, as the last dominant crack emerges. This change is
associated with the propagation of the longitudinal splitting crack.

For Goto's minimum crack spacing, the specimen averaged bond
slips  increase linearly through the whole loading history as the steel
stresses increase. The specimen averaged bond stresses begin to decrease
at high steel stress levels, as the local bond stresses at the the center of
the crack spacing change sign due to the adjacent vertical crack
propagating toward the outer surface.

If Goto's maximum and minimum crack spacings are considered as
two opposite extremes for the patterns of progression of bond
deterioration, the tests conducted by Watstein and Mathey exhibit a
pattern which is between the two extremes. That is, the effect of
longitudinal splitting causes it to have some characteristics of Goto's
maximum crack spacing, and the dominant crack progression causes it to

have some characteristics of Goto's minimum crack spacing.
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8.2.3 Other Conclusions

14. Finite element simulation of a concrete prism under uniform
tension indicates that for the analyses of a single discrete crack, the
crack width control approach can successfully deal with the "snap back"
problem, while the displacement control approach fails.

15.Analysis of results of the tests of plain concrete in direct tension
(Gopalaratnam and Shah, 1985) suggests that the ultimate crack width
defined by linear tension softening of concrete (or mortar), W, =
2Gp/Op, is a more invariant measure of the tension softening
relationship than the other parameters, such as Op, the peak tensile

stress, or G, the fracture energy density.

8.3 Final Perspectives

In spite of the significant effort devoted to the distributed discrete
cracking analysis discussed in this work there are many aspects of this
type of analysis which have been only partially explored, or remain
unexplored. Further exploration of some of these aspects could contribute
substantially to our understanding of both the analytical technique, and
the mechanisms of behavior in the response of concrete structures.

In this respect one could, for instance, single out the influence of
mesh design, the configuration of the reinforcement, the effects of
including interface shear behavior across cracks, the nature of the
tensile cracking relationship across steel-concrete interfaces, and the
effectiveness of truss elements for modeling web reinforcement in
concrete beams.

It is important to recognize, however, that there is a great scarcity
of reliable test data against which the analyst can calibrate his model and
verify the mechanisms of progressive failure that his models predict. It
appears that modern feed-back controls, such as those used by
Gopalaratnam and Shah (1985), now make it feasible to design
experiments and accumulate data on important mechanisms which would
be necessary for a proper modeling and verification of some of the
factors identified in the previous paragraph. Thus, well-conceived
projects in the future should probably involve experiments appropriate

to the phenomena that they are attempting to represent.
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At the same time the work presented herein suggests that, because
of the importance of longitudinal splitting, attempts to model tensile-pull
behavior cannot now be properly undertaken with two dimensional
models. Yet, to develop a general three dimensional splitting model would
be very complex. (See, for instance, Martha, 1989). In addition, as shown
in Chapter 7, bond behavior in tension-pull specimens depends on
transverse crack spacing. A general purpose program should be capable
of predicting the response which leads to the establishment of primary
cracks and growth of secondary cracks until a stable crack pattern has
been established. If the spacing between cracks reduces, the direction of
the forces on some of the lugs of the bar, which play a major part in the
force transfer mechanism, may reverse, thus leading to diagonal cracks
at the opposite orientation to those that first formed. Consequently, the
loading history can become complex. Also, the control of the numerical
solution associated with propagation of a secondary crack into a primary
crack may not be accomplished in a simple manner.

The current state of development, as reflected by this work, has
avoided these problems -by selecting specimen dimensions in a manner
. similar to Goto (1971). |

If one now returns to the discussion of Chapter 1, involving the
relations postulated between the 'micro-' and 'meso-' level models, it is
apparent that the need for implementation of micro-level analysis to
determine properties for meso-level analysis, has not been significantly
reduced by this work. It is hoped that the exhaustive nodal splitting
scheme developed herein will provide a valuable facility to attack this
problem but it is apparent that much development work remains to be

done.
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APPENDIX A

RECOGNITION AND TREATMENT OF MECHNISMS

A.1 Introduction

A structure becomes a "mechanism" if there exists a displacement
pattern for it for which it does not absorb energy. Such a structure is
unstable and it is not possible to determine an unique set of displacements
from the solution of the equilibrium equations.

In discrete cracking two-dimensional finite element analysis, a
group of elements representing a block of a structure forms a mechanism
if it does not have any nodes, or only has one node, connecting it to the
"main block"”. This 'main block' is a group of elements for which a set of
supports ensuring its stability are defined on its boundary. Fig. A.1 shows
some examples of mechanisms.

The two elements in Fig. A.la under uniform tension may separate
along their common boundary, as shown in Fig. A.lb. As support S is on
the boundary of element No. 1, element No. 1 is a main block. Since
element No. 2 has no nodes connecting to the main block, it becomes free
to move and therefore is a mechanism.

A second example of a mechanism is shown in Figs. A.lc and d. In
Fig. A.l.c, point S at the symmetry line of a "tension-pull" concrete bar
with a steel bar embedded along its center, is the support sufficient to
define a main block. Fig. A.1d shows that elements B and C, located at the
exit of the steel from the concrete may become mechanisms because
inclined cracks in the concrete, may develop, and the adhesive bond
between the steel face and concrete be destroyed.

Fig. A.1d also shows the tensile stress trajectories which indicate
tensile stress distributed along vertical edges of elements in columns E
and F of Fig. A.lc. As the cracking load P¢ is reached the stresses on both
vertical edges of these elements may exceed the tensile strength and
cracks may be introduced on both sides, as shown in Fig. A.le. Then each

of the element columns E and F is separated from a main block.
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A fourth type of mechanism is shown in Fig. A.l.g where clement
No.2 has only one node connected to the main block.

These mechanisms cause numerical difficulties. They cause zero or
negative diagonal values for some equations in the mechanism blocks
during Gaussian elimination and, normally, the solution is terminated
because it is no longer unique. ' |

Adoption of coarse element meshes sometimes eliminates these
difficulties. But coarse meshes reduce accuracy, and in the case of the
discrete crack approach, greatly reduce the capability to predict

distributed discrete cracking behavior.

A.2 Mechanism Recognition and Treatment

The procedure of mechanism recognition and treatment is
illustrated by the example shown in Fig. A.2. For the purpose of
illustrating recognition of a mechanism, an artificial crack pattern is
introduced, without supporting engineéring calculations, as shown - in
Fig. A.2.b. Note that, because of the cracking, the unsplit nodes in the
mesh of Fig. A.2a have multiple numbers in the configuration of Fig.
A.2b. However, no 'gaps' have been used in the nodal numbers of Fig.
A.2b, as would occur in exhaustive enumeration, since such gaps do not

influence the procedure described in the following.

A.2.1 Step 1: Formation of Node-Element Incidence Array KEMT

As described in Sect. 3.6.2, a node-element incident array KEMT is
formed in which KEMT (I,1) gives the number of elements incident to
node I, and from KEMT(,2) to KEMT(I,KEMT(,1)+1), give the element
numbers. The array KEMT for the example in Fig. A.2b is shown in Table
A.l.

A.2.2 Step 2: Formation of Element-Element Incidence Array
KEMTS3
From array KEMT, build the element-element incidence array
KEMT3(,J,K) where I represents the element number, J represent the
sequential order of elements incident to element I and K ranges from 1 to
2. In KEMT3 (1,J,1), the incidental element number is given, and in
KEMT3(I,J,2) the number of nodes of this incidental element common to
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clement I is given. For a quadratic displacement element, a maximum of 3
nodes can be shared by two elements, so the maximum of KEMT3(I,J,2) is 3.
Table A.2 gives KEMT3 for the example.

The process of producing KEMT3 from KEMT is illustrated for node
35 of the example. After hodc 34 is processed, node 35 is processed as
follows. From Table A.1, node 35 has 3 elements incident to it: 7, 8 and 9.
These 3 element numbers produce 3 pairs of connected elements: 7 and 8,
8 and 9 and 7 and 9. For the first pair, 7 and 8, the elements incident to
element 7 are stored in KEMT3(7,K,J) shown in Table A.2 under I=7, and
KEMT3(7,2,1)=8 already exists. Because node 35 adds another incidental
node, so KEMT3(7,2,2) is changed from 2 to 3. Similarly KEMT3(8,2,2) is
increased from 2 to 3. Pair 8 and 9 repeats the same routine as for pair 7
and 8. Pair 7 and 9 adds KEMT3(7,3,1)=9, KEMT3(7,3,2)=1, KEMT3(9,3,1)=7
and KEMT3(9,3,2)=1 to KEMT3.

A.2.3 Step 3: Recognizing Distinct Blocks in the Cracked
Configuration

A ‘'distinct' block is defined as a group of elements for which any
element of the group must be incident to at lease one other element in the
group by at least 2 nodes. As the example in Fig. A.2b is concerned,
elements 1, 2 and 3 belong to the same block, but element 15 and 16 do not
belong to the same block. According to this rule, the example is composed
of 4 distinct blocks marked by the numbers in the rectangular boxes
shown in Fig. A.2c.

Two arrays, the one-dimensional array MEM, and the two-
dimensional array MEMI1(L,M), with L ranging from 1 to 2, are used to
identify these blocks. The example of Fig. A.2 is again used and all
operations are shown in Table A.3 where they are numbers.

Before operation No. 1, arrays MEM and MEMI1 are set to zero. In
operation No.l, the number of the first element, namely, 1, is stored in
MEMI(1,1) and MEM(2). Referring to array KEMT3 of Table A.2 under I=1,
element 2 and 8 are found incident to element 1 by at least two nodes (
that is, KEMT3(1,1,2)=2 and KEMT3(1,3,2)=3), and these for 2 and 8 are
stored in MEM1(2,1) and MEM1(2,2), and also in MEM(3) and MEM(4).

In operation No. 2, all numbers in the second row of MEM1(L,M)
(L=2) are copied to first row of MEMI1(L,M), and then the second row of
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MEMI1(L,M) is set to zero. Referring now to array KEMTS3, under 1=2,8,
elements 1, 3, 7 and 9 are found incident to elements 2 and 8 by at least 2
nodes, but because eclement 1 has already been stored in MEM(1,1), only 3,
7 and 9 are stored in second row of MEMI1 and also in MEM.

Operations No. 3 to No.5 repeat the same routine as for operation
No.l. At operation No. 6, all elements listed in ihe first row of MEMI1 do not
have any two or three nodes incidental elements which are not already in
array MEM. This indicates the exhaustive search for elements in the first
distinct block is completed. Then a zero is added behind the last nonzero
number in MEM to mark this completion. Since element 1 was the start of
this chain of operations for completing the first distinct block, sequential
element number starting at 2 are checked for existence in array MEM,
until the first element number which is not in MEM, that is, element 13, is
found.

Operations Nos. 7 and 8 are similar to operations No. 1 to 6 and add
another distinct block of only two elements (13 and 14). Operation No. 9
indicates element 15 is a one element block. Operations Nos. 10 and 11 give
another two element Block (16 and 17). Table A.4 shows the final result of
array MEM in which the 4 distinct blocks are separated by zeros.

A.2.4 Step 4: Finding Common Nodes between Distinct Blocks
An array KEMT4 is built to record the total number of elements
incident to a node and also inside a specified block. Recall that in array
KEMT (Table A.1), KEMT(I,1) is the total number of elements which are
incident to a node. But these are not limited to any particular block. Array
KEMT4 for the first distinct block in the example of Fig. A.2b is listed in
Table A.4. It is seen that KEMT4(40)=1, because only one element in the
block is incident to it. But in Table A.1, KEMT4(40,1) equals 3 which differ
from KEMT4(40) and therefore indicates that node 40 is a common node
between the first block and other blocks. For the first block, another
node, node 62, also is a common node as shown in Fig. A.2c. Common nodes

for every distinct block are shown in Table A.S.
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A.2.5 Step S§: Determination of Main Block and Mechanism
Blocks

As described in Sect. A.1, a main block is the block on whose
boundary support conditions are defined. In the example in Fig. A.2, the
first distinct block is the main block. In this study, a block which has at
least 2 common nodes with a main block is also defined as a part of main
block. So the 4th block which has 2 commoninodes with the main block,
namely, nodes 40 and 62, is also included in the main block. The second
and third distinct blocks become mechanism blocks because the former
has no connection to the main block while the second is connected to

main block by only one node, which is a hinged connection.

A.2.6 Treatment of Mechanism Blocks

To prevent numerical problems caused by block mechanisms, the
following measures are taken:

‘(a) A flag is set for elements in a block mechanism, so that these
elements will not be brought into the stiffness matrix formulation.

(b) For all nodes in mechanism blocks, except common nodes with
main block, the equation numbers in the array of degrees of freedom (ID
array) are set to zero, so they become inactive nodes. For the example of
Fig. A.2, the common node of block 3 with the main block is node 37, all
other node is block 3 ( 47, 48, 57, 58 and 59 as shown in Fig. A.2b) are set to
be inactive. All nodes in block 2 are also set to be inactive.

(c) Set all the nodal forces at the crack faces between the main
block and the mechanism blocks to zero. The results of these measures are
that the mechanism blocks are removed from the structure as shown in
Fig. A.2d.
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Table A.1 Nodal-Element Incidence Array KEMT for Fig, A.2

KEMT(1,2), -,

I KEMT (I,1) I KEMT(,1) {KEMT(,2), -,
1 2 1,2 32 2 13, 14
2 1 2 33 1 7

3 3 2,3,4 34 1 14

4 1 4 35 3 7,8,9
5 3 4,5,6 36 1 14

6 1 6 37 1 15

7 1 6 38 1 16

8 1 1 39 1 9

9 2 1,2 40 3 9,16,17
10 2 2,3 41 3 10,11, 18
11 2 3,4 42 2 11,18
12 2 4,5 43 3 11, 12, 18
13 2 5,6 44 1 13

14 1 6 45 2 13, 14
15 3 1,7,8 46 1 14

16 2 1,8 47 1 15

17 3 1,8,9 " 48 1 15

18 3 2,3,10 49 1 16

19 2 3,10 50 2 16,17
20 6 3,4,5,10,11, 12 51 1 17

21 2 5,12 52 1 18

22 3 5,6,12 53 1 18

23 1 7 54 1 13

24 2 7,8 55 1 13

25 2 8,9 56 2 13, 14
26 1 9 57 1 15
27 1 10 58 1 15
28 2 10, 11 59 1 15
29 2 11,12 60 2 16,17
30 1 12 61 1 17
31 1 7 62 2 17,18
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Table A.2: Element- Element Incidence Array KEMT3(1,J,K)

for Fig. A.2
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Table A.3: Operations for Identifying Distinct Blocks

Operation MEMI(1,M), M=1,2,3,... )
MEM((N), N=1,2,3,... Comment
No. MEM1(2,M), M=1,2,3,...
1 0,1,2,8
1 2,8 .
) 2,8 0,1,2,8,3,7,9
3,7,9
3 3,79 0,1,2,8,3,7,.9.4,10
4,10
4 4,10 0,1,2,8,3,7,9,4,10,5,11
5,11
5 5,11 0,1,2,8,3,7,9,4,10,5,11,6,12, 18
6,12, 18
6 6,12, 18 0,1,2,8,3,7,9,4, 10, 5, 11,6, 12, 18 [first block
0 . complete
; 13 0,1,2,8,3,7,9,4,10,5,11,6, 12, 18,
14 0,13,14 Isecond block|
8 14 0,1,2,8,3,7,9,4,10,5, 11,6, 12, 18, | complete
0 0,13, 14
9 15 0,1,2,8,3,7,9.4, 10,5, 11,6, 12, 18, | third block
0 0,13,14,0,15 complete
10 16 0,1,2,8,3,7,9,4, 10,5, 11, 6, 12, 18,
17 0,13, 14,0, 15,0, 16, 17
» 17 0,1,2,8,3,7,9,4, 10, 5, 11, 6, 12, 18, [fourth block
0 0,13, 14,0, 15,0, 16, 17 complete
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Table A.4: Nodal-Element Incidence Array KEMT4 for

the First Block in Fig. A.2

I KEMT4 (I,1) | KEMT4 (1,2), -, I KEMT4 (1,1) |[KEMT4 (1,2 ), -,
1 2 1,2 32 2 13, 14
2 1 2 33 1 7
3 3 2,3,4 34 1 14
4 1 4 35 3 7,8,9
5 3 4,5,6 36 1 14
6 1 6 37 1 15
7 1 6 38 1 16
3 1 1 39 1 9
9 2 1.2 40 1 9
10 2 2,3 41 3 10, 11, 18
11 2 3,4 42 2 11, 18
12 2 4,5 43 3 11, 12, 18
13 2 5,6 44
14 1 6 45
15 3 1,7,8 46
16 2 1,8 47
17 3 1,8,9 48
18 3 2,3,10 49
19 2 3,10 50
20 6 3,4,5,10,11, 12 51
21 2} 5,12 52 1 18
22 3 5,6,12 53 1 18
23 1 7 54
24 2 7,8 55
25 2 8,9 56
26 1 9 57
27 1 10 58
28 2 10, 11 59
29 2 11,12 60
30 1 12 61
31 1 7 62 1 18
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b) Crack pattern

OO

a) Model for concrete prism
in uniform tension

v vy

E
\Q_N\\\ } B
S o a——"“’% !;
- > p

: P . .

E‘ C Reinforcing bar ‘C

. F |
¢)-Model for "Tension-pull" bar d) Concrete elements B and C
E separated from main block

f LR
AU Y Nolol
N\  Reinforcing bar / P

F
e) Columns of concrete element E and F @ @

separated from main block

¢ f) Model for concrete prism
in eccentric tension

g) Crack pattern: hinge connection

Fig. A. 1: Examples of Mechanisms in Finite Element Analyses
of Discrete Cracking
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a) Element mesh for uncracked state b) Element mesh for cracked state

Main Block Main Block

c¢) Distinct blocks and common nodes d) Result structure

Fig. A.2: Example for Recognition and Treatment of Mechanisms
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