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Abstract

This thesis describes a study on two optical devices intended to be building blocks

for the creation of integrated optical/microfluidic lab-on-a-chip systems. First,

arrays of curved-mirror dome-shaped microcavities were fabricated by buckling

self-assembly of a-Si/SiO2 multilayers. This novel technique employs controlled,

stress-induced film delamination to form highly symmetric cavities with minimal

roughness defects or geometrical imperfections. Measured cavity heights were in

good agreement with predictions from elastic buckling theory. Also, the measured

finesse (> 103) and quality factor (> 104 in the 1550-nm range) were close to

reflectance-limited predictions, indicating low defects and roughness. Hermite-

and Laguerre-Gaussian modes were observable, indicating a high degree of

cylindrical symmetry.

In the second part of the research, transmittance in periodic metal-dielectric

multilayer structures was studied. Metal-dielectric stacks have many potential

applications in optofluidic microsystems, including as transmission filters,

superlenses, and substrates for surface plasmon sensors. In this work, we showed

that potential transmittance theory provides a good method for describing the

tunneling of photons through metal-dielectric stacks, for both Fabry-Perot and

surface plasmon resonances. This approach explains the well-known fact that for a

given thickness of metal, subdividing the metal into several thin films can increase

the maximum transmittance. Conditions for admittance matching of

dielectric-metal-dielectric unit cells to an external air medium were explored for

Fabry-Perot based tunneling, revealing that thicker metal films require

higher-index dielectrics for optimal admittance matching. It was also shown for

the first time that potential transmittance theory can be used to predict the

maximum possible transmittance in surface-plasmon-mediated tunneling.

In a subsequent study, potential transmittance was used to derive an expression



for reflection-less tunneling through a dielectric-metal-dielectric unit cell. For

normal-incidence light in air, only a specific and impractically large dielectric

index can enable a perfect admittance match. For off-normal incidence of

TE-polarized light, an admittance match is obtained for a specific angle

determined by the index of the ambient and dielectric media and the thickness and

index of the metal. For TM-polarized light, admittance matching is possible for

surface-plasmon-mediated tunneling. These results provide important insight for

the design and optimization of optical filters and superlenses.
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1 Introduction

This thesis describes an experimental and theoretical study into optical filters and

resonators, with the intended goal of developing devices for optical lab-on-a-chip

applications. This work grew out of previous developments in our research group,

which facilitated the creation of novel curved-mirror microstructures. The present

chapter provides some background and context for the rest of the thesis.

1.1 Optofluidic microsystems

In lab-on-a-chip [1] and optofluidic [2] microsystems, there is a need to be able to

integrate many different devices into a single platform, to facilitate a diverse set of

sensing and analysis requirements. Waveguides and microchannels are needed to

transport light and fluid between on-chip components. In biophotonic analysis

methods such as fluorescence and Raman spectroscopy, spectral filtering is

necessary to separate the excitation source from emitted signal wavelengths. This

filtering is sometimes accomplished using absorption filtering, where a material

has high absorptance at the excitation wavelength but low absorptance at the signal

wavelength. The alternative is to use interference filters (an example of which is

shown in Figure 1.1), where a multilayer dielectric stack is designed to filter out

the excitation source [1]. Devices combining the two methods in a hybrid filter, to

mitigate the drawbacks of both, have also been demonstrated [4], as shown in

Figure 1.2. Microresonators have been studied for many applications, including

optical sources such as LEDs and microlasers, optical filters and switches for

WDM systems, cavity quantum electrodynamics, and fluorescence enhancers for

biochemical sensors [5]. One example of an array of microcavities is shown in

Figure 1.3. As a final example, metal-dielectric superlenses, described in Section

1.3.2, are being investigated as a means of optically imaging nanometer scale
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Figure 1.1: Example of an optofluidic filter designed for detecting biomolecules
[6]. (a) and (b) show SEM images of the hollow and solid core portions of the
waveguide, respectively, and (c) shows a schematic of the integrated optical filter.

objects and individual molecules [3].

In previous research, our group developed a method of fabrication, called

buckling self-assembly, that potentially allows for straightforward creation and

integration of many of the components required for these lab-on-a-chip devices,

including microfluidic channels, optical waveguides, microcavities and curved

metal-dielectric superlenses and filters. In this thesis, we studied two specific

building blocks necessary for the development of these systems - resonant

microcavities and metal-dielectric multilayer stacks - and were able to successfully

demonstrate their potential utility for applications in lab-on-a-chip systems.

1.2 Buckling self-assembly

For several years our research group has been studying buckling self-assembly, a

procedure for fabricating hollow microstructures by controlled delamination of thin

film dielectric stacks. In this process, an area of low adhesion is patterned within

a thin film stack on a substrate, allowing the films to separate in that area when
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Figure 1.2: Schematic of hybrid optofluidic filter designed by Richard et al. [4],
integrated with an analytical device.

Figure 1.3: (a) Schematic of half-symmetric microcavities. (b) Array of concave
features milled in silicon, which comprises one-half of the cavities shown in (a).
Another flat mirror layer is added to complete the cavities [7]. Our microcavities,
formed through buckling self-assembly, have the benefit of being fully formable on
a single substrate.

3



the sample is subjected to a critical amount of stress. Many different structures

can be formed, including crossing, ring-shaped and tapered channels, and previous

work was primarily focused on air-core waveguides (with Bragg reflector claddings)

fabricated by this technique.

Figure 1.4: Schematic of process for producing buckling in Si/SiO2 thin film
system. (a) a 4-period Si/SiO2 Bragg mirror is deposited on a Si substrate. (b)
A low-adhesion fluorocarbon layer is deposited on the mirror according to a desired
pattern. (c) Another 4-period mirror is deposited with deposition parameters that
produce a net compressive stress in the layer. (d) Heat is applied to the sample to
induce adhesion loss and the stress in the top layer causes it to buckle and form the
patterned structure. [10]

We have successfully formed these waveguides using two material systems. In

the first case, multilayers containing alternating layers of chalcogenide glass (IG2)

and commercial polymer (PAI) were used, with silver doping of the chalcogenide

glass used to define regions of low adhesion [8, 9]. In the second case, multilayers

containing alternating layers of SiO2 and Si with a patterned low adhesion layer

of fluorocarbon were used [10]. The general procedure for the Si/SiO2 system is

shown in Figure 1.4.

As mentioned, this process allows complex structures including bends and

tapers to be manufactured in parallel, with smooth sidewalls that allow for low loss

light propagation and fluid flow [10]. Air-core waveguides have many potential
4



applications including chip-scale optical interconnects [11], optical analysis of

small amounts of gases or liquids [12], device tuning through actuation of the top

mirror [13], and creation of microfluidic channel networks [14].

Motivating the work in the first part of this thesis, it was found that a circular

region of the low adhesion layer will, under appropriate conditions, produce a

microscopic dome-shaped optical resonator, examples of which are shown in

Figure 1.5. The research discussed in Chapter 3 of this thesis is a detailed study of

the morphology and optical properties of these microcavities.

Figure 1.5: Domes of various sizes fabricated through buckling self-assembly.

1.3 Applications of curved spherical surfaces in microsystems

1.3.1 Curved mirror microcavities

Fabry-Perot microcavities in general have several useful properties for optical

systems, including sharp resonances and high resolving power in spectroscopic

applications [15]. Cavities with curved mirrors, such as the half-symmetric

dome-shaped cavities described in Chapter 3, have several advantages over cavities
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with planar mirrors. These advantages include the potential for improved quality

factor and finesse, which are limited by factors such as non-parallel mirrors in

planar cavities [16]. Furthermore, curved mirror Fabry-Perot cavities enable

three-dimensional confinement of light, and in well-designed and high-quality

microcavities, light can be confined to very small modal volumes [15].

Figure 1.6: Basic schematic of a microcavity used as an optomechanical system.
The radiation pressure from the light resonant in the cavity applies a force F on the
mirrors, which expand and contract (as a spring with some spring constant K) as
the resonant frequency of the cavity changes.

One potential application for these cavities is in the field of optomechanics,

where the interaction between electromagnetic radiation and mechanical forces is

examined [17]. When resonant light is present in an optical cavity, the photons can

exert significant radiation pressure on the cavity walls. If the cavity is deformable,

this pressure will cause the cavity to change shape, thereby shifting the resonant

frequency and changing the amount of energy stored in the cavity. The amount

of pressure will correspondingly decrease, and the cavity will attempt to regain its

original shape, creating an optical/mechanical feedback system. This behaviour can

be induced through a change in light wavelength or intensity, or in external force

applied to the mirrors, and can be used for high-precision measurement applications
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such as atomic force microscopy and gravity-wave detectors [18].

Cavities with low modal volume and high finesse have also attracted interest in

the field of cavity quantum electrodynamics [19], as well as in studying emissions

from single molecules [20]. In general, air-core microcavities with open access to

the cavity have great potential for use in microfluidic and lab-on-a-chip systems.

If liquids or gases can be controllably introduced into the cavity, novel and high

performance lasers [2] and sensing devices [21] might be realized.

1.3.2 Superlenses

Another potential application for the microdome structures described above is in

the creation of superlenses, based on artificially engineered metamaterials. When

light is incident on an object, the light scattered from its surface is made up of two

components: propagating waves which contain the large features of the object, and

evanescent waves which contain the small, sub-wavelength features. A typical lens

has no problem magnifying the features contained by the propagating waves, but

the evanescent waves decay exponentially and are lost in the near-field before they

can reach the image plane of the lens. This property is commonly referred to as the

diffraction limit of the lens [22]. In the 1990s, Pendry theoretically demonstrated

that a negative index metamaterial could overcome this limitation and enable a lens

that could enhance the evanescent field through resonant coupling to surface waves

[23]. It has been found that very thin metal films are capable of acting as negative

index materials for TM-polarized light, and working superlenses have been

fabricated using silver films [24].

Superlenses are limited in that they can only produce images that continue in

the near-field and therefore again decay exponentially over a short distance. One

solution developed to project the evanescent wave into the far-field, and

subsequently produce a more useful image of the object’s sub-wavelength features,
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(a) (b)

Figure 1.7: (a) Example of multilayer far-field superlens (FFL) [22]. (b) Potential
concept of a curved MD far-field superlens integrated into a buckled microchannel.

is the far-field superlens. The far-field superlens consists of a metal layer or a

metal-dielectric (MD) multilayer with a sub-wavelength-period, metal-dielectric

grating that converts the evanescent field into a propagating wave (the MD

multilayer allows for more flexibility in design of the evanescent band) [25].

Implementing superlenses in curved surfaces, like the microdomes fabricated for

this thesis, might allow the focal length of the lenses to be pushed out to more

practical distances [26]. Furthermore, the implementation of a superlens adjacent

to a microfluidic channel might enable high resolution imaging of cells and other

organic structures. As shown in Figure 1.7(b), we envision that buckling

self-assembly could eventually enable straightforward fabrication of such

structures.

MD multilayer devices present additional design challenges in terms of

maximizing transmission of light and selection of bandwidth. It was these

problems that inspired further study into the second part of this thesis, namely the

study of transmission of light through MD multilayer stacks.
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1.4 Metal-dielectric multilayer filters

Metal-dielectric transmission filters have been studied for several decades [14],

motivated mainly by their ability to exhibit a single transparency band while

providing excellent rejection of out-of-band wavelengths [32]. Transmission filters

are of great importance in lab-on-a-chip systems [1], for example, in the separation

of excitation light from the light fluoresced or scattered by an analyte. In spite of

their interesting properties, MD filters have not been widely studied for

lab-on-a-chip applications. This fact partly motivated the work described in the

second part of the thesis (Chapters 4 and 5), which is a theoretical study of the

optimization of transparency bands in periodic dieletric-metal-dielectric

multilayers. In the following sub-sections, a brief overview of some of the

traditional applications for transparent MD stacks is provided.

1.4.1 Solar/Heat-reflecting windows

MD multilayer stacks have traditionally found use as transparent heat mirrors and

heat-reflecting windows [29, 30, 31]. In this application, MD multilayers are

designed to have optimal transmittance in the visible range, while being highly

reflective in the infrared region (Figure 1.8). Heat-reflecting windows can be used

for many applications, such as solar cells, where they prevent external heat from

interfering with the efficiency of the solar cell, or as windows in buildings that

prevent heat transfer while letting sunlight through [31].

1.4.2 Transparent conductors

A great deal of recent study has been focused on transparency bands exhibited by

metal-dielectric photonic bandgap structures [32]. It has been shown that for both

propagating [28] and evanescent [33] waves, splitting a metal layer into multiple

thinner layers separated by dielectrics can yield a higher transmission than that
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transmitted to the absorber, but the ir radiation
emitted by the absorber will be reflected back to the
absorber. An important advantage of the heat mir-
ror is that it remains at a much lower. temperature
than the absorber because they are not in contact.

Flat-plate collectors are already in use for solar
heating, and their utilization in the generation of
electric power has also been suggested. We will dis-
cuss each of these applications separately, since they
require different absorber temperatures and there-
fore could employ heat mirrors with somewhat differ-
ent properties.
A. Solar/Thermal/Electric Conversion

In this application, thermal energy from the collec-
tor would be converted into electrical energy by
means of a generator such as a steam turbine. To
achieve reasonable Carnot efficiencies for this pro-
cess would require operation at rather high absorber
temperature (-750 K, according to present esti-
mates). Such high temperatures can only be at-
tained by evacuating the collector in order to mini-
mize conduction and convection losses and by using a
wavelength selective coating to reduce radiation loss-
es, which are proportional to the fourth power of
temperature. Figure 2 shows three alternate

schemes for incorporating selective coatings into
evacuated flat-plate collectors. On the left is the
scheme suggested by Meinel and his colleagues at the
University of Arizona, it consists of a glass coverplate
and a selective absorber, which for efficient conver-
sion must have a high solar absorptivity (a) and a
ratio of a to ir emissivity () exceeding 100.3 Such a
selective absorber must also be stable while undergo-
ing daily cycles between operating temperatures up
to 750 K and low nighttime temperatures. Obvious-
ly, these requirements pose severe materials prob-
lems for the absorber.

Our basic scheme (shown in the center of Fig. 2)
also uses a coverplate and an absorber, but the inside
surface of the coverplate is coated with a transparent
heat mirror, and the absorber is black. Since radia-
tion is the dominant loss mechanism, optimal collec-
tor performance is achieved by making the ir reflec-
tivity of the heat mirror as high as possible, even if
this is accomplished at the price of some reduction in
solar transmission. In fact, collector performance
can be improved still further by using the scheme
shown at the right side of Fig. 2, which incorporates a
selective absorber in addition to the heat mirror.
With this combined scheme, the requirements for
both the heat mirror and the selective absorber are
lowered in comparison with those needed for the
same performance when either is used without the
other.

We have made computer calculations,4 using pub-
lished data for bulk optical constants, to evaluate the
potential performance of many materials and multi-
layers as transparent heat mirrors for use in solar/
thermal/electric conversion. In these calculations,
we assumed an AMO solar spectrum and radiation as
the only mode of heat loss from the absorber. One
multilayer found to be particularly promising is a
film of TiO2 /Ag/TiO 2 . Figure 3 shows the maximum
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Fig. 3. Theoretical efficiencies for solar/thermal/electric conver-
sion using a TiO2/Ag/TiO 2 heat mirror and a selective absorber (a
= 1.0, = 0.2), calculated as a function of absorber temperature T.
Solid line: thermal power available/input solar power. Dashed
line: Carnot efficiency. Dot-dash line: combined efficiency

(electric power/solar power).
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(a) (b)

Figure 1.8: (a) Plot showing the small amount of overlap between the light spectrum
emitted by the sun and the heat emitted by an object that has absorbed the solar
energy. An ideal heat mirror (indicated by the dotted line) would be able to filter out
the majority of heat, while still letting light through [30]. (b) Measured transmission
and reflectivity of a TiO2/Ag/TiO2 thin film designed as a heat mirror [30].

obtainable with the original metal layer, due to resonant tunneling. However, it has

often been overlooked that this property can be explained using the theory of

potential transmittance, developed by Berning and Turner in 1957 [12]. This

theory is discussed further in Chapters 2, 4 and 5. The ability to increase

transmission of light through metals at specific wavelengths is highly useful,

considering that metals can be both highly reflective, allowing for the design of

filters with high rejection of out-of-band wavelengths/frequencies, and highly

conductive, facilitating their use in optoelectronic applications such as solar cells

and in transparent conductive display technology [32]. Traditionally, films of

indium oxide doped with tin (commonly referred to as indium tin oxide (ITO)),

have found common use as transparent conductors [28, 35]. However, these films

are hindered by high resistivities (three orders of magnitude higher than those for

metals) [28] and a higher tendency to fail under mechanical strain compared to

other layers [36]. Transparent conductors made of MD multilayer stacks can be

designed to have transmission similar to ITO conductors, and benefit from much

lower electrical resistance and increased flexibility, making them ideal for

applications such as solar cells, windshields, electromagnetic interference
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shielding, and electrodes for displays [36].

1.5 Summary of thesis

This thesis describes work on dome microcavity structures fabricated through

buckling self-assembly of thin film stacks, and work on the design and

optimization of MD multilayer stacks using the concept of potential transmittance.

The chapters are summarized as follows:

Chapter 2 summarizes some background theory applicable to this work,

including theoretical treatments of buckling self-assembly, Fabry-Perot optical

cavities and potential transmittance.

Chapter 3 describes the work done on the microcavity domes fabricated by

buckling self-assembly, with examinations of their structure, their viability as

resonant cavities and the structure of modes they support.

Chapters 4 and 5 describe our studies on the application of the theory of

potential transmittance to periodic metal dielectric multilayers. The studies involve

finding the conditions that match the admittance of the MD multilayer to an

ambient medium and thus optimize the transmittance of light through the stack.

The work encompasses cases of both normal and oblique incidence, and tunneling

of both propagating and evanescent waves.

Chapter 6 outlines some preliminary experimental work intended to demonstrate

admittance matching in real-life dielectric-metal-dielectric multilayers. Measured

and theoretical results are compared for three different multilayer designs.

Chapter 7 provides some concluding remarks on the topics presented in the

thesis, as well as some speculation on possible future work.
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2 Theory

This chapter describes some of the important background theory pertaining to

resonant microcavities and metal-dielectric multilayer films, and serves as an

introduction to the topics discussed in Chapters 3, 4 and 5.

2.1 Delamination buckles

In order to understand the formation of the dome microcavities studied in Chapter

3, it is useful to examine the theory behind thin film delamination. Buckling

delamination is one of the major causes of failure in compressively stressed thin

films [1]. In this phenomenon, a film deposited under conditions inducing biaxial

compressive stress can delaminate from its substrate, depending on factors such as

film stress, film thickness and adhesion. Although delamination can be a problem

in thin film fabrication, it can also be used to fabricate interesting structures if the

film is fabricated in a way that allows for controlled, patterned delamination in

localized areas.

Figure 2.1: Views of the various types of buckles [1].

There are two main types of buckles that form as a delamination propagates

through a film, the straight-sided (Euler) buckle and the undulating buckle, which
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can take the form of either a telephone cord or in rare cases a varicose structure

(Figure 2.1). In an unpatterned film, the particular morphology that appears

depends on a number of factors, including film stress, film thickness and adhesion,

but mostly on the toughness of the interface between the substrate and the film,

which increases as the delamination crack propagates through the film and the mix

of stress modes at the interface shifts from normal stress (normal to the plane of

the film) to shear stress (in the plane of the film) [1].

When the buckled area is confined to a strip by a patterned area of low adhesion

with width greater than a critical width determined by the stress present in the film,

the buckle will propagate freely along that area. Smaller widths will produce the

Euler buckles, and larger ones will favour the telephone cords, as the stress in the

film is relieved in the direction parallel to the strip.

When determining its buckling properties, a patterned thin film area of width

2b undergoing buckling can be modeled as an infinitely long plate of the same

width clamped fully on all edges. This model will hold true as long as the Young’s

modulus of the substrate is at greater than or equal to one fifth of that of the film

to be buckled, else deformations of the substrate will need to be taken into account

[1]. The start of buckling is dominated by the Euler mode, or straight buckle, whose

shape is independent of the direction parallel to the strip (as seen in Figure 2.1). The

critical compressive biaxial stress σc needed to induce buckling in a strip of width

2b is given by:

σc =
π2

12
E

1− v2

�
h
b

�2
, (2.1)

where E is Young’s modulus, v is Poisson’s ratio, h is the thickness and b is the

half-width of the plate. The cross-section of the buckle can be described by a raised

cosine function, and the normal displacement δ of the Euler buckle with half-width

b is given by:
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δ =
δmax

2

�
1+ cos

�πy
b

��
, (2.2)

where y is measured from the centre of the buckle and δmax is given by:

δmax = h

�
4
3

�
σ
σc

−1
�
, (2.3)

where σ is the biaxial compressive stress in the film. For the Euler mode to continue

to propagate a buckle through a film, the energy release rate averaged over the

curved end of the buckle must exceed the toughness of the interface, i.e., G > Γ.

This energy is the difference between the energy per unit area in the unbuckled

portion of the plate (Uo), and the average energy per unit area in the fully buckled

portion of the plate (U).

G =Uo −U (2.4)

Uo and U can be calculated with the following equations[1, 2]:

Uo =
(1− v)σ2h

E
, (2.5)

U =Uo

�
1−

�
1+ v

2

��
1− σc

σ

�2
�
. (2.6)

Substituting these into Equation 2.4 results in

G = Go

�
1− σc

σ

�2
, (2.7)

where

Go =

�
1+ v

2

�
Uo =

�
1− v2�σ2h

2E
(2.8)
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is the elastic energy per unit area stored in the unbuckled film, associated with the

compressive stress of the pre-buckled film.

The interface toughness Γ, also known as the practical work of adhesion, is

made up of several factors. Of mainly theoretical importance is the true work of

adhesion, WA, which is defined as the amount of energy needed to separate two

bonded materials from each other:

WA = γ f + γs − γ f s, (2.9)

where γ f and γs are the surface energies of the film and substrate, respectively, and

γ f s is the energy of the film-substrate interface. When the film debonds from the

substrate, other factors in addition to the work of adhesion dissipate energy in the

interface and must be overcome by the energy release rate in order for delamination

to occur. Accounting for these factors produces a practical work of adhesion, or the

actual interface toughness:

Γ =WA +Uf +Us +Uf ric, (2.10)

where Uf and Us are the energy released in plastic deformation of the film and

substrate and Uf ric is the energy released due to friction. It should be noted that the

majority of adhesion testing methods actually measure the interface toughness

instead of the true work of adhesion, as they typically involve buckling or peeling

of the film, making the true work of adhesion very difficult to extract from

measurements [3].

2.2 Fabry-Perot optical microcavities

The microcavities studied in this thesis are made up of an air gap surrounded by

two reflectors, one curved and one flat, which is the basic form of a half-symmetric
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optical resonator. Fabry-Perot optical resonators are devices used to store light

at certain resonance frequencies by continuously reflecting light between two low-

loss, flat or curved reflective surfaces separated by a gap or optical medium of length

d. In order for light of a given wavelength to be resonant in the cavity, its partial

reflections must interfere constructively, i.e. the phase shift or delay between two

partially reflected waves must be a multiple of 2π .

2.2.1 Planar Fabry-Perot resonator

Figure 2.2: Diagram of a basic Fabry-Perot cavity with multiple reflections caused
by a wave incident on the cavity at an angle θi. Ai, An, and Bn are amplitude
coefficients denoting the incident, transmitted and reflected light, respectively.

The most basic form of an optical resonator is the Fabry-Perot etalon or

interferometer, which consists of a set of plane-parallel mirrors surrounding a

medium of index n and immersed in another medium of index n� as shown in
20



Figure 2.2. For a wave inside the resonator, the path difference travelled during a

single round trip is given by:

∆L = AB+BC = 2d cosθ , (2.11)

which gives a total phase shift of

φ =
−2π (∆L)n

λ
=

−4πnd cosθ
λ

. (2.12)

|φ/2| is generally known as the phase thickness of the layer (denoted by δ ). In

addition, the fraction of incident light reflected and transmitted by the resonator

(derived by summing up the complex amplitudes of the partial reflections of the

wave) can be expressed [4]:

Ir

Ii
=

4Rsin2 δ
(1−R)2 +4Rsin2 δ

, (2.13)

and

It
Ii
=

(1−R)2

(1−R)2 +4Rsin2 δ
, (2.14)

where Ii, Ir, and It are the total incident, reflected and transmitted intensities of

light, and R is the reflectance of the mirrors. From these equations, it is apparent

that the transmission through the cavity will be maximum when δ =mπ , where m is

any integer. Combining this fact with Equation 2.12, an equation for the resonance

frequencies of the cavity is obtained:

vm = m
c

2nd cosθ
, (2.15)

where c is the speed of light in vacuum and vm is the optical frequency for a given

integer m. The difference between the frequencies of two consecutive values of m
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(vm+1 − vm) is called the free spectral range of the cavity:

∆v =
c

2nd cosθ
. (2.16)

There are two main figures of merit used to describe optical resonators. These

are the quality factor (Q), used to describe the resonator’s ability to trap light energy,

and the finesse (F), used to measure the resolution of the resonator. There are two

definitions for Q that are most commonly used. The first defines Q by the energy

stored in the cavity:

Q = ω
�

fieldenergystored inresonator
powerdissipatedbyresonator

�
, (2.17)

where ω = 2πvo is the resonance frequency of the mode in question. The second

defines Q in terms of the resonance bandwidth of the cavity:

Q =
vo

∆v1/2
. (2.18)

where ∆v1/2 is the full width of the transmission peaks of the cavity at half their

maximum (FWHM).

The FWHM of a Fabry-perot resonators transmission peaks also determines its

ability to resolve individual wavelengths. From Equation 2.14, it can be seen that

It/Ii = 0.5 when:

sin2 δ =
(1−R)2

4R
. (2.19)

Since R is close to 1 for most high-resolution cavities, an approximate solution for

δ can be obtained, and following some basic arithmetic, the FWHM in terms of

frequency (∆v1/2) can be obtained [4]:
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∆v1/2 =
c(1−R)
2dπ

√
R

=
c

2dFR
, (2.20)

where FR ≡ π
√

R/(1−R) is the reflective finesse. Ignoring losses other than the

loss due to mirrors with sub-unity reflectance, FR is equal to the effective finesse

Fe f f , which can be found from the transmission spectrum using the free spectral

range and the FWHM of a resonant transmission peak:

Fe f f =
∆v

∆v1/2
. (2.21)

However, in non-ideal devices, absorption and scattering from imperfect reflectors

will cause the effective finesse to diverge from the ideal reflective value. There

are three primary types of defects that affect the finesse of the resonator. These are

spherical defects (Fds), surface irregularities (Fdg) and parallelism defects (Fd p) (see

Figure 2.3). These contribute to an overall defect finesse as follows:

1
F2

d
=

1
F2

ds
+

1
F2

dg
+

1
F2

d p
. (2.22)

The final expression for effective finesse is then:

1
Fe f f

=

�
1

F2
R
+

1
F2

d
. (2.23)
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Figure 2.3: Examples of mirror defects that affect the finesse of a Fabry-Perot
resonator.

2.2.2 Fabry-Perot cavities with spherical mirrors

Figure 2.4: Optical cavity with spherical mirror surface of radius R2. The flat mirror
can be considered to have a radius R1 of infinity. This cavity is the basic form of
the resonators studied in Chapter 3 of this thesis.

The previous equations for resonator spectral properties were derived for the

Fabry-Perot cavity, i.e., a set of two plane-parallel mirrors, and also assume that the

fields are uniform plane waves. However, if a cavity has some amount of lateral

confinement of light, as in the case of a cavity with curved mirrors (Figure 2.4),

higher-order modes adjacent to the fundamental mode will be supported. In a cavity

with rectangular symmetry (with discernible differences in the x- and y-directions)
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adjacent modes will be separable in Cartesian coordinates (see Figure 2.5). These

modes are called Hermite-Gaussian modes, and the field distribution of a transverse

mode with given (�,m) is given by [5]:

Figure 2.5: Examples of Hermite-Gaussian modes [7].

E�,m = Eo
ωo

ω (z)
H�

�√
2

x
ω (z)

�
Hm

�√
2

y
ω (z)

�

×exp
�
−x2 + y2

ω2 (z)
− ik

x2 + y2

2R(z)
− ikz+ i(�+m+1)η

�
,

(2.24)

where H� and Hm are the Hermite polynomials of order � and m, respectively, and

ω (z) is the spot size and is given as:

ω (z) = ωo

�
1+

�
z
zo

�2
�1/2

. (2.25)

ωo is the minimum spot size and zo is the Rayleigh range, also know as the confocal
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beam parameter, which is the position where the input beam spot size increases by

a factor of
√

2 from the minimum, and is given by:

zo =
πω2

o n
λ

. (2.26)

The radius of curvature R(z) of the wavefront is given by:

R(z) = z

�
1+

�
πω2

o n
λ z

�2�
. (2.27)

Finally, η is the Gouy phase shift, defined as the difference between the phase

shift seen by a Gaussian beam relative to the phase shift seen by a plane wave at the

same frequency:

η = tan−1
�

z
zo

�
= tan−1

�
λ z

πω2
o n

�
. (2.28)

As with the Fabry-Perot cavity, the resonator length must be an integer number

of half-wavelengths in order for a stable standing wave pattern to be established.

For a cavity with mirrors at positions z1 and z2, the phase shift experienced by the

TEM�,m mode in one complete pass through the resonator needs to be a multiple of

2π (or a half-pass needs to be a multiple of π) which can be expressed as:

θ�,m (z2)−θ�,m (z1) = qπ, (2.29)

where q is an integer and θ�,m (z) is the phase change of the wave in the direction of

propagation, given by:

θ�,m (z) = kz− (�+m+1) tan−1
�

z
zo

�
, (2.30)

where k is the wavenumber. The phase shift experienced by the mode during

reflection at the mirrors is omitted, as it will cancel out in subsequent derivations.
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Using this equation, the resonance condition becomes:

kqd − (�+m+1)
�

tan−1
�

z2

zo

�
− tan−1

�
z1

zo

��
= qπ, (2.31)

where d = z2 − z1 is the resonator length. For the fundamental TEM0,0 modes, the

free spectral range can be found:

kq+1 − kq =
π
d
, (2.32)

or, after substituting k = 2πvn/c,

vq+1 − vq =
c

2nd
, (2.33)

which is the same as the result obtained for the planar Fabry-Perot cavity. In the case

of transverse Hermite-Gaussian modes, the resonance frequency depends on the

sum of � and m, rather than on � and m separately. Therefore, modes with the same

�+m value will be degenerate, meaning at the same resonance frequency. Given this

property, the frequency separation between two adjacent transverse modes (∆vHG)

can be found:

(k1 − k2)d = [(�+m+1)1 − (�+m+1)2]

�
tan−1

�
z2

zo

�
− tan−1

�
z1

zo

��
, (2.34)

and:

∆vHG =
c

2πnd
∆(�+m)

�
tan−1

�
z2

zo

�
− tan−1

�
z1

zo

��
. (2.35)

where ∆(�+m) is the difference in the sums of the mode indices for two adjacent

transverse modes. In the case of a near-planar resonator such as the microcavities

studied in this thesis (see Chapter 3), where d � R1 and R2 and therefore z1 and
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z2 � zo [4], Equation 2.35 becomes:

∆vHG ∼=
c

2πnzo
∆(�+m) . (2.36)

The resonant frequencies of the transverse modes can also be calculated by

manipulating Equation 2.31:

vq,�,m =
c

2nd

�
q+

(�+m+1)
π

cos−1

���
1− d

R1

��
1− d

R2

���
. (2.37)

For the half-symmetric microcavities in this thesis, for which R2 =∞, Equation 2.37

simplifies to:

vq,�,m =
c

2nd

�
q+

(�+m+1)
π

cos−1

���
1− d

R1

���
. (2.38)

2.2.3 Other high-order Gaussian modes

The high-order Hermite-Gaussian modes defined by Equation 2.24 are part of a set

of orthogonal solutions to the paraxial wave equation, a simplification of the general

wave equation that assumes the wavefront of the lightwave travels either parallel or

near-parallel to the optical axis. It is given by:

∂ 2ψ
∂x2 +

∂ 2ψ
∂y2 − i2k

∂ψ
∂ z

= 0, (2.39)

where ψ is a complex factor determining how the wave in the resonator differs from

a uniform plane wave, i.e.:

E = Eoψe−ikz. (2.40)

Another valid set of modes is obtained when the solution is written in terms or
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cylindrical coordinates (r, φ , z) instead of rectangular coordinates. These modes are

called the Laguerre-Gaussian modes, and are generally of the form [6]:

Ep,l =Eo

� √
2r

ω (z)

�
Lp,l

�
2r2

ω2 (z)

�

×exp
�
− r2

ω2 (z)
± ilφ − ik

r2

2R(z)
− ikz+ i(2l + p+1)η

�
,

(2.41)

where Lp,l is the associated Laguerre polynomial for the (p, l) mode, and p and l

are the mode indices for the radial and azimuthal coordinate directions, respectively.

These modes will be favoured in structures with high cylindrical symmetry, such as

optical fibres and the domes studied in this thesis, although defects in the shape

of the structure will allow the existence of Hermite-Gaussian modes, and in many

cases favour them. For example, real lasers tend to heavily favour the Hermite-

Gaussian modes with even small rectangular symmetry added by tilted surfaces or

defects [8]. Examples of the Laguerre-Gaussian modes are shown in Figure 2.6.
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Figure 2.6: Examples of Laguerre-Gaussian modes [7].

In addition, there is a third family of modes that are also exact solutions of the

paraxial wave equations, and make up the transition between the Hermite and

Laguerre modes. These modes, called the Ince-Gaussian modes [9], have elliptical

symmetry and can be observed in structures whose cylindrical or rectangular

symmetry is slightly broken [10]. There are two expressions in elliptical

coordinates for the Ince-Gaussian modes based on the even and odd Ince

polynomials [11]:

Eeven =Ceven
ωo

ω (z)
Cm

p (iξ ,ε)Cm
p (ϕ,ε)

×exp
�
− r2

ω2 (z)
+ ik

r2

2R(z)
+ ikz− i(p+1)η

�
,

(2.42)
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Eodd =Sodd
ωo

ω (z)
Sm

p (iξ ,ε)Sm
p (ϕ,ε)

×exp
�
− r2

ω2 (z)
+ ik

r2

2R(z)
+ ikz− i(p+1)η

�
,

(2.43)

where Cm
p and Sm

p are the even and odd Ince polynomials of order p and degree

m, respectively, Ceven and Sodd are normalization constants, (ξ ,ϕ) are transverse

coordinates of the traveling wave, and ε is an ellipticity parameter. Hermite and

Laguerre-Gaussian modes are actually special case Ince modes with ε = ∞ and

ε = 0, respectively. Some examples of Ince modes are shown in Figure 2.7, along

with a few similar field patterns that were observed in the domes studied in Chapter

3.

(a) (b)

Figure 2.7: (a) Transverse shapes of Laguerre, Ince and Hermite-Gaussian modes
for modes with the same degeneracy [11]. (b) Ince-Gaussian-like modes observed
in some of the microdomes discussed in Chapter 3.

2.3 Induced transmission/potential transmittance

The concept of potential transmittance was developed by Berning and Turner in

1957 [12] as a tool to optimize the transmittance of light through absorbing metal

films, particularly in the case of bandpass filters. At the time, it was well known that
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surrounding a metal film with appropriate interference film structures could greatly

enhance the transmission of light through that film at a certain wavelength. In their

1957 paper [12], Berning and Turner put forth a theory that allowed for strict design

of metal-dielectric-metal filters using this property.

Figure 2.8: General multilayer film structure.

Figure 2.8 shows an arbitrary film structure consisting of m isotropic,

homogeneous plane-parallel layers, with one or more absorbing layers with

complex refractive index given by Nj = n j − ik j. T0 and R0 are the overall

transmission and reflectance of the structure when it is exposed to

normal-incidence light of wavelength λ from the external surrounding medium

with refractive index n0. From the definitions of the time-averaged numerical

magnitudes of the Poynting vectors at the incident and exit surfaces of the

structure (I0 and Im, respectively):

T0

1−R0
=

Im

I0
, (2.44)

where I at any point in the structure is given by I = 1
2Re{EH∗}, and E and H are

the electric and magnetic field intensities at that point. The overall ratio Im/I0 can

also be expressed as a product of the ratios of the power entering and exiting each

individual absorbing layer of the structure, i.e.:
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T0

1−R0
= ∏

j

�
I j

I j−1

�
, (2.45)

where j refers to the absorbing film between the jth and ( j−1)th boundaries, with

n j and k j > 0. It is not necessary to include non-absorbing films, as the power

entering them is equal to the power exiting (i.e.: Ik−1 = Ik, where k denotes a non-

absorbing film). The ratio I j/
�
I j−1

�
, dubbed the “potential transmittance” of the

jth layer by Berning and Turner, is the ratio of net radiant flux transmitted past

the jth boundary to that transmitted past the ( j−1)th boundary. They also gave an

equation that can be used to calculate the potential transmittance of the film directly:

PT j =
1− |r j|2 −2

�
k j/n j

�
|r j|sinρ j

exp
�

4πk jh j
λ

�
− |r j|2 exp

�
−4πk jh j

λ

�
−2 k j

n j
|r j|sin

�
ρ j −

4πn jh j
λ

� , (2.46)

where r j = |r j|exp(iρ j) is the reflectance coefficient at the interface between the

jth layer and the ( j−1)th layer. r j is related to the normalized admittance (Yj =
�
Hj/E j

�
/Yo, where Yo is the impedance of free space) at the jth boundary by:

r j =
Nj −Yj

Nj +Yj
. (2.47)

From Equation 2.46, Berning and Turner noted that the potential transmittance

of a layer only depends on its index (Nj), its thickness (h j), and on the admittance

Yj, and therefore does not depend on the structure to the left of the film or the

specific structure to the right. In addition, they noted that the product of the

individual potential transmittances of the layers (Equation 2.45) can be viewed as

the overall potential transmittance of the entire multilayer structure. The potential

transmittance will also have a maximum value for any given fixed refractive index

and thickness, and this value can be used to find the exit admittance needed to
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maximize transmittance through the film structure. These calculations will be

discussed in more detail later in the thesis. As well, the following paragraphs will

introduce the terminology and theory used for those calculations, as described by

Macleod [13].

Put in different terms, the potential transmittance of a layer is the ratio of

intensity exiting the layer’s rear interface to the intensity entering the layer after

reflections at the front surface.

PT =
Iexit

Ienter
(2.48)

Figure 2.9: Naming conventions for (a) a single layer and (b) a multilayer. In the
overall multilayer structure, Ia = Ienter and Id = Iexit .

When Iexit and Ienter are expressed in terms of the incident intensity (Ii),

transmittance (T ) and reflectance (R) of the layer:

PT =
T

1−R
=

T
A+T

=
1

1+A/T
, (2.49)

where A is the absorptance of the layer (A+R+ T = 1). From its definition and

from Equation 2.49, we see that the potential transmittance is independent of

reflections at the surface of the film, meaning it is unaffected by changes made to

the structure at the input of the layer. In other words, the potential transmittance is
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the transmittance of light through the film that would be obtained if the reflections

at the front surface were reduced to zero. The factors that do affect the potential

transmittance are the properties of the film itself and the admittance of the exit

structure. Also, since the properties of the film are fixed, it will have a maximum

potential transmittance obtainable by a specific exit structure admittance, which

can be calculated from the properties of the metal layer. In addition, the PT of a

series of N layers can be found by multiplying their individual PTs, that is:

PT = PT1PT2PT3 . . .PTN , (2.50)

which is apparent if the PT of the overall structure is split into its separate

components, as seen in the example in Figure 2.9:

PT =
Iexit

Ienter
=

Id

Ia
=

Ib

Ia

Ic

Ib

Id

Ic
= PT1PT2PT3. (2.51)

The same property also applies to the maximum potential transmittances

(PTMAX = PT1,MAXPT2,MAXPT3,MAX . . .PTN,MAX).

Two methods for finding the ideal exit admittance have been outlined by

MacLeod [13] and Baumeister [14], although in the interest of brevity only the

MacLeod method will be outlined in this thesis. It begins by looking at the linear

relationship between the electric and magnetic fields entering and exiting the metal

film:




Ein

Hin



= [M]




Eout

Hout



 , (2.52)

where [M] is the characteristic matrix of the metal film, given by:
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[M] =




cosδM (isinδM)/Y

iY sinδM cosδM



 , (2.53)

where the term δM = 2π (n− iκ)d/λ is the complex phase thickness of the metal

and Y = n− iκ is the admittance of the metal film in free space units (normalized

to the admittance of free space, Yo). Since the admittance of the output structure is

defined as Yout = Hout/Eout , normalizing Equation 2.52 by dividing both sides by

Eout gives:




B

C



= [M]




1

Yout



 , (2.54)

where B=Ein/Eout and C =Hin/Eout . The potential transmittance can be expressed

in terms of B, C, and Yout as follows [13]:

PT =
Re(Yout)

Re(BC∗)
. (2.55)

Expressing Yout as X + iZ, and performing a great deal of arithmetic gives an

equation for PT in terms of the admittance components:

PT =





(n2−κ2)−2nκ(Z/X)

(n2+κ2)

�
sin2 α cosh2 β + cos2 α sinh2 β

�

+
�
cos2 α cosh2 β + sin2 α sinh2 β

�

+ 1
X (nsinhβ coshβ +κ cosα sinα)

+ X2+Z2

X(n2+κ2)
(nsinhβ coshβ −κ cosα sinα)





−1

, (2.56)

where α and β are the real and imaginary components of δM, respectively, i.e.,

δM = α − iβ , where α = 2πnd/λ and β = 2πκd/λ . From here the values for X

and Z that maximize PT can be found:
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X =




(n2+κ2)(nsinhβ coshβ+κ cosα sinα)

(nsinhβ coshβ−κ cosα sinα)

−n2κ2(sin2 α cosh2 β+cos2 α sinh2 β)
(nsinhβ coshβ−κ cosα sinα)2





1/2

(2.57)

Z =
nκ

�
sin2 α cosh2 β + cos2 α sinh2 β

�

(nsinhβ coshβ −κ cosα sinα)
(2.58)

The values calculated for X and Z can be substituted back into Equation 2.56 to

find PTMAX.

Once X and Z are known, a stack of dielectric layers can be designed to

admittance match the metal layer to the surrounding medium or substrate. As an

example, for a silver film of thickness 70 nm, the expected maximum potential

transmittance is � 80.5% at a wavelength of 550 nm. Macleod [13] describes a

structure to match the admittance of this film at 550 nm as follows:

Glass |HLHLHL� |Ag |L�HLHLH |Glass, (2.59)

where nGlass = 1.52, NAg = 0.055− i3.32, H represents a dielectric layer of optical

thickness 0.25λ0 and index 2.35, L represents a dielectric layer of optical thickness

0.25λ0 and index 1.35, and L� represents a layer of optical thickness 0.4417λ0 and

index 1.35. Since the multilayers produce a narrowband admittance matching of the

Ag film, the overall structure acts as a bandpass filter, as seen in Figure 2.10.
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336 Band-pass filters

Figure 7.34. (a) Calculated performance of the design:

Glass|H L H L H L ′Ag L ′ H L H L H |Glass

where

nGlass = 1.52
Ag = 70 nm (geometrical thickness) of index 0.055 − i3.32
H = 0.25λ0 (optical thickness) of index 2.35
L = 0.25λ0 (optical thickness) of index 1.35
L ′ = 0.4417λ0 (optical thickness) of index 1.35
λ0 = 550 nm.

Dispersion has been neglected.

disappointing. One example, the low-index matched induced-transmission filter,
is shown in figure 7.35(a). In the case of the Fabry–Perot and the DHW, the rise
is smoother, but is of a similar order of magnitude. The reason for the rise is,
in fact, our assumption of zero dispersion. This means that β is reduced as λ
increases. α is always quite small and the performance of the metal layers is
determined principally by β. Silver, however, over the visible and near infrared,
shows an increase in k which corresponds roughly to the increase in λ so that k/λ
is roughly constant (to within around ±20%) over the region 400 nm–2.0 µm.
This completely alters the picture and is the reason why the first-order metal–
dielectric filters do not show longwave sidebands.

Taking dispersion into account, the performance of the induced transmission
filter improves considerably and is shown in figure 7.35(b). The rejection is,
however, not particularly high, being between 0.01 and 0.1% transmittance over
most of the range with an increase to 0.15% in the vicinity of 860 nm. This level

Copyright © 2001 H A Macleod

Figure 2.10: Calculated transmission of 550-nm filter design [13].

As expected, the filter reaches a peak transmittance of 80% at 550 nm. In addition,

the out-of-band rejection of the filter can be improved by adding extra metal

layers, at a cost to overall transmission. Because the induced transmission filter

can be viewed as a pair of Fabry-Perot resonant cavities (the L� layers act as cavity

cores surrounded by the mirrors formed by the Ag layer and the HL quarter-wave

stack multilayers), the transmission band has two peaks because of mode splitting

caused by coupling between the two cavities [15]. The transmission of the

multi-metal layer structure, assuming perfect admittance matches to the exit and

entrance media, will be equal to the products of the individual layer

transmittances, as stated in Equation 2.50. Additionally, the overall potential

transmittance of a filter with multiple metal layers will be greater than that of a

filter containing the same amount of thickness in a single metal layer. This

property is discussed further in Chapter 4.

Another interesting property of the potential transmittance relates to the

absorptance of absorbing layers. Normally, the bulk absorption coefficient αbulk of

an absorbing medium can be determined from the transmission through that
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medium in the absence of reflection:

αbulk =− ln(T )
d

, (2.60)

where d is the thickness of the medium. However, if this equation is applied to the

maximum potential transmittance in a structure with one or more metal layers that

are correctly admittance-matched with dielectric layers, we can define:

αe f f =− ln(PTMAX)

dtotal
, (2.61)

where dtotal is the sum of all metal layer thicknesses. Therefore αe f f is an effective

absorption coefficient, which for thin metal films is much lower than that predicted

by the bulk value. As an example, Figure 2.11 plots effective absorption coefficient

for a range of Ag film thicknesses at λ0 = 550 nm:

Figure 2.11: Effective absorption coefficient versus Ag film thickness for 550-
nm light with normal incidence. For comparison, the dashed line shows the bulk
absorption coefficient for Ag at 550 nm.

As can be seen, the effective absorption coefficient is lower than that of the

bulk value for a wide range of thicknesses, and is as much as nearly two orders of

39



magnitude lower for Ag films in the 10-nm thickness range. It is well-known that

the properties of very thin films (such as complex refractive index N) can deviate

from their bulk values, which would affect results as they are assumed to be constant

in the calculation of PTMAX. However, films of Ag as thin as 10 nm have been

deposited with no significant change from the bulk values [16] and therefore the

results past this thickness can be considered reasonably accurate. In addition, αe f f

for a series of metal layers (optimally admittance matched) will be the same as that

obtained for a single metal layer of equivalent thickness. This property shows the

dramatic effect admittance matching has on transmission through metal-dielectric

systems. These points are discussed in greater detail in Chapters 4 and 5.
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3 High-finesse cavities fabricated by buckling

self-assembly of a-Si/SiO2 multilayers1

3.1 Introduction and background

MEMS-based Fabry-Perot cavities have many applications in fibre and sensing

systems and for fundamental physics studies. However, the quality factor (Q) and

finesse (F) of flat-mirror cavities has typically been limited by defects such as

surface roughness and non-parallelism or uncontrolled curvature of the mirrors

[1, 2]. Furthermore, to mitigate finesse reduction arising from walk-off of

non-collimated beams, flat-mirror cavities typically must operate in a low mode

order with relatively large lateral dimensions [3]. Tayebati et al. [4] demonstrated

half-symmetric cavities with improved stability and finesse, by using thin-film

stress to control the curvature of a tethered mirror in a surface micromachining

process. Similar results were obtained by Halbritter et al. [5], using a bulk

(two-wafer) micromachining process. Half-symmetric cavities with F ∼ 3× 103

are reportedly used in commercial MEMS-based micro-spectrometers [6].

Curved mirror resonators have also been applied to the study of cavity quantum

electrodynamics (CQED), including Bose-Einstein condensation [7], cavity

optomechanics [8], and optical interrogation of single atoms [9]. For these studies,

open-access air-core cavities with ultra-high finesse and low modal volume (Vm)

are sought [10]. Since mirror roughness and shape deformations can ultimately

limit the finesse, researchers have used novel fabrication processes such as transfer

of a thin-film mirror from a lens to a fibre [7], CO2-laser ablation of glass fibres or

substrates [9], and focused ion beam drilling in silicon [10]. Recently, single

cavities with F > 105 [11] and arrays of microcavities with F ∼ 460 [10] have

been reported. For the most part, the devices mentioned were fabricated using
1This chapter was published as a paper in Optics Express, vol. 19, pp. 18903-18909, 2011.
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relatively time-consuming, serial processing techniques. For applications in

lab-on-chip systems, there is a need for parallel fabrication of microcavity arrays

[12].

Here, we describe a method that employs standard silicon processing steps (film

deposition, lithography) to produce variable-size microcavities on a single chip.

Circular regions of low adhesion were embedded within Si/SiO2 multilayer stacks,

and delamination buckles were subsequently induced to form in these regions. The

resulting structures closely resemble half-symmetric resonators with one flat mirror

and one nearly spherical mirror, and their optical properties were found to be in

excellent agreement with the well-known predictions (derived from the paraxial

wave equation) for macroscopic cavities of that type. Due to the nearly perfect

symmetry of the cavities, modes from both the Laguerre-Gaussian and Hermite-

Gaussian basis sets could be coupled and observed. The cavities exhibit F as high

as 3×103 and Q as high as 4×104.

3.2 Fabrication and morphology of buckled dome microcavities

General details of the fabrication process were provided elsewhere [13] in the

context of air-core waveguide channels, but a brief summary is as follows. First, a

Bragg mirror (4 periods of SiO2 and a-Si) was deposited by reactive magnetron

sputtering onto a double-side-polished Si wafer. Next, a low adhesion, vapor-phase

deposited fluorocarbon layer (∼ 10 nm thick) was patterned on the top (a-Si)

surface of this mirror. Subsequently, a second 4-period mirror (starting with a-Si),

capped by a double-thickness a-Si layer, was deposited. All layers in both the

upper and lower mirror were targeted as quarter-wave layers at 1550 nm, except

for the half-wavelength (latent) capping layer. The capping layer was added to

increase the stiffness of the upper mirror, thereby improving the thermal stability

as discussed below. The total thickness of the upper mirror with capping layer is
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∼ 1.7 �m. Sputtering parameters were as described previously [13], except that

here we used a slightly lower background pressure (3 mTorr) for the a-Si layers

and a slightly higher substrate temperature (170 °C). For magnetron sputtered a-Si,

these conditions have been associated with higher film density, higher index, and

lower loss [14]. Our process produced a-Si layers with refractive index ∼ 3.7 and

extinction coefficient ∼ 0.001 at 1550 nm, as estimated from VASE measurements.

The SiO2 layers were estimated to have refractive index ∼ 1.47 in the same range.

Using well-known formulae (and confirmed by transfer matrix results), these

values imply a best-case reflectance R ∼ 0.999 for the 4-period mirrors,

corresponding to a best-case (reflectance-limited) finesse FR ∼ 3140 in the absence

of defects.

After deposition of the upper mirror, samples were placed on a hot plate and

subjected to an empirically optimized heating process, to induce loss of adhesion

between the upper and lower Bragg mirrors in the regions of the embedded

fluorocarbon. The multilayers exhibit an effective medium compressive stress

∼ 200 MPa immediately after deposition, and this stress reduces with subsequent

annealing [13]. From numerous trials, delamination buckles formed at a

sample-dependent temperature, typically in the 250- to 350-°C range. Variation in

the buckling temperature is likely due to uncontrolled variation in the properties

(i.e. thickness, roughness) of the fluorocarbon layer, although this is the subject of

ongoing work. In any case, it results in uncertainty regarding the effective stress at

the time of buckle formation.

As shown schematically in Figure 3.1(a), the compressive stress causes the

upper Bragg mirror to buckle away from the substrate, producing a hollow cavity

between a curved mirror and a flat mirror. Within a certain range of diameter for a

given net stress, the circular delamination produced a dome-shaped buckle with a

nearly spherical shape at its centre. The cavities have diameters in the 100- to
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Figure 3.1: Buckled dome microcavities: (a) schematic cross-section showing
optimized coupling to the fundamental cavity mode by a nearly Gaussian beam
(with waist radius ω0) from a lensed fibre. For most cavities tested, the fibre mode
field diameter was actually larger than 2ω0, resulting in the excitation of multiple
modes. (b) Microscope image of pairs of 150-, 200-, and 250-�m diameter domes.
Some dust particles are also visible.

800-�m range and peak heights in the ∼ 2- to 25-�m range. However, larger

buckles exhibited greater deviation from a spherical shape, such as partial collapse

or flattening of the central region. In the following, we focus mainly on buckles

with diameters of 400 �m or less (see Figure 3.1(b)), which exhibited the best

morphology and optical properties.

Neglecting plastic deformation, the theory for elastic buckling of a clamped

circular plate can be used to predict the preconditions and height of a circular

delamination buckle [15]. The critical buckling stress is

σc = 1.2235
�
E/

�
1− v2��(h/a)2, where E is Young’s modulus, v is Poisson’s

ratio, and h and a = D/2 are the thickness and radius of the plate. For a given

stress and assuming fixed E, v, and h, this implies a minimum diameter (Dmin) for

buckling to occur. For D > Dmin, the peak deflection of the plate can be

approximated as:

δ = h
�

1.9
�

σ
σc

−1
��1/2

≈
�

1.9σ
�
1− v2�

1.2235E

�1/2
D
2
, (3.1)

where σ is the biaxial compressive stress, and the last approximation holds for
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Figure 3.2: (a) The red curve shows peak height versus buckle diameter as predicted
by elastic buckling theory, using the film parameters described in the main text
and an effective medium compressive stress of 150 MPa. The blue symbols show
dome height measured using a profilometer. An average height value is displayed
when more than one dome height measurement is available. In these cases (200-,
250-, and 400-�m domes) the variation in heights range from ±1.2 to 5.8%. (b)
The symbols show experimental profiles for representative 200-, 250-, and 300-�m
diameter domes. The curves are circular sections with radius of curvature estimated
by fitting the profile data from the top portion of each buckle, as described in the
text.

σ � σc (i.e. for D � Dmin). Thus, for a given σ , v, and E, and for D � Dmin,

Equation 3.1 predicts that buckle height will increase approximately linearly with

diameter. However, Equation 3.1 is an approximate closed-form solution to a

nonlinear problem [15], and is expected to over-estimate the height for large σ/σc

(i.e. for large D). In fact, bifurcation to a nonaxisymmetric buckling mode is

predicted at high values of stress (for σ/σc > 56 when v = 1/3 [15]).

Figure 3.2(a) shows average peak height versus diameter, as obtained from

profilometer scans (Alpha-Step IQ, KLA-Tencor) on several domes of each

diameter. From previous work [13] (and the layer thicknesses described above),

we estimated effective medium parameters h ∼ 1.7 �m, E ∼ 50 GPa and v ∼ 0.3

for the buckled mirror with the capping layer. Using these and a buckling stress

σ = 150 MPa produced good agreement between Equation 3.1 and the measured

heights. Consistent with the plot, Equation 3.1 is expected to be most accurate in

the small diameter range, while over-estimating the height for large dome

diameters.

46



The radius of curvature of the buckled mirror is a key parameter, since it

determines the modal volume and the spacing of the high-order transverse modes.

However, there is no closed-form expression for the profile of a circular buckled

plate, even if the buckling is assumed to be an elastic deformation [15]. Moreover,

thin-film buckling often deviates from the predictions of elastic theory, due to

plastic deformation of the layers near the buckle boundaries [16]. Assuming for

simplicity a perfectly spherical dome shape, the expected radius of curvature is

given by:

RCD =
D2

8δ
+

δ
2
, (3.2)

where D is the buckle diameter (i.e. chord length of the dome) and δ is the peak

height of the buckle (i.e. the sagittal length of the spherical section).

The experimental radius of curvature was estimated by fitting to data from the

scanning profilometer. Typical scans are shown in Figure 3.2(b), along with

circular fits to the top portions of the buckled mirrors. Somewhat arbitrarily, but

with the intent of capturing the curvature for the portion of the mirror sampled by

the low-order cavity modes, the fit in each case was based on the profile data

within ±20 �m (along the lateral direction) of the peak. Smaller domes (diameters

of 200 �m or less) exhibited an approximately spherical shape, whereas larger

domes appear somewhat flattened at the top. This flattening is exacerbated by the

force of the profilometer needle, which might also explain the slight asymmetry for

the 200-�m dome. However, the same basic trends were also observed using a

non-contact optical profilometer (Zygo). For the 200-, 250-, and 300-�m-diameter

domes shown in Figure 3.2(b), Equation 3.2 predicts RCD ∼ 0.9, 1.1, and 1.3 mm,

respectively. Rather than being flattened, the measured radius of curvature RC (at

the peak) of the smallest domes was smaller than the value predicted by Equation

3.2. This is reminiscent of the profile for a straight-sided (Euler) buckle [15],
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w(x) = (δ/2) [1+ cos(πx/a)], where w is the vertical deflection, x is the distance

across the buckle, and a is the half-width of the buckle, which exhibits minimum

radius of curvature at its centre.

3.3 Optical properties and characterization

Assuming a spherical shape for the buckled upper mirror, the domes form

half-symmetric Fabry-Perot cavities [4]. Depending on the degree of cylindrical

symmetry, mode-fields for such cavities are traditionally described using one of

two alternative sets of orthogonal basis functions [17, 18]. In a rectangular

coordinate system, the solutions are Hermite-Gaussian (HG) functions

H�,m (x,y,z), where � and m are integer mode indices for the x and y transverse

coordinates. In a cylindrical coordinate system, the solutions are

Laguerre-Gaussian (LG) functions Lp,l (r,φ ,z), where p and l are integer mode

indices for the radial and azimuthal coordinate directions, respectively. In most

macroscopic cavities, deviation from cylindrical symmetry is significant so that it

is predominately HG modes that are observed experimentally [18]. However, a

predominance of LG modes has been reported for some microcavities [19].

Each family of solutions forms a complete set of orthogonal basis functions, so

that a given HG mode can be expressed as a linear weighted sum of degenerate LG

modes, or vice-versa [20]. The degeneracy condition requires that the modes have

equivalent Gouy phase shift, and is expressed as follows:

g = �+m = 2p+ l. (3.3)

For example, the HG1,1, LG1,0, and LG0,2 modes form a nominally degenerate

set. Degenerate modes are expected to share the same resonance frequency,

although slight imperfections (such as deviations from spherical mirror symmetry)
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Table 3.1: Predicted and measured optical properties for representative
microcavities. Predicted values are based on the measured peak height and effective
radius of curvature near the peak, as described in the text.

will perturb this degeneracy [10]. For RC � δ , the nominal wavelength spacing

between non-degenerate transverse spatial modes can be approximated [17] as:

∆λT =
λ 2

2πzo
∆g, (3.4)

where λ is the resonant wavelength, and zo is the Rayleigh range, of the

fundamental cavity mode. Table 1 shows predicted and measured mode properties

for 4 representative cavities, where the predictions are based on the RC fit

described above (±20 �m from the peak).

Optical properties of the cavities were tested using the experimental setup

illustrated in Figure 3.1(a). Light from a tunable laser was coupled into the cavities

via a lensed optical fibre with focal spot diameter ∼ 20 �m, somewhat larger than

the fundamental mode field diameter for most of the cavities tested. This resulted

in significant coupling to higher-order spatial modes. However, lower-order modes

could be isolated and imaged by tuning the laser to the corresponding resonant

wavelength of a given mode. Transmitted light was captured by either an infrared

camera or a cooled photodetector.

Given the estimated mirror reflectance (∼ 0.999), the circulating power at

resonance is predicted to be greater than 1000 times the incident power [17]. Even

for low input power (< 0.1 mW), significant drift (on the time scale of seconds) in

the transmitted power was observed when the laser was tuned to a fundamental

49



g
zT

0

2

2
 ,    (4) 

where  is the resonant wavelength, and z0 is the Rayleigh range, of the fundamental cavity 
mode.  Table 1 shows predicted and measured mode properties for 4 representative cavities, 
where the predictions are base on the RC fit described above (+/- 20 m from the peak). 

Optical properties of the cavities were tested using the experimental setup illustrated in 
Fig. 1(a).  Light from a tunable laser was coupled into the cavities via lensed optical fiber with 
focal spot diameter ~20 m, somewhat larger than the fundamental mode field diameter for 
most of the cavities tested.  This resulted in significant coupling to higher-order spatial modes.  
However, lower-order modes could be isolated and imaged by tuning the laser to the 
corresponding resonant wavelength of a given mode.  Transmitted light was captured by 
either an infrared camera or a cooled photodetector. 

Given the estimated mirror reflectance (~0.999), the circulating power at resonance is 
predicted be greater than 1000 times the incident power [17].  Even for low input power (<0.1 
mW), significant drift (on the time scale of seconds) in the transmitted power was observed 
when the laser was tuned to a fundamental resonance frequency.  We speculated that this was 
caused mainly by thermal expansion [21] related to residual absorption in the mirrors.  This 
instability was reduced significantly by addition of the a-Si capping layer, as described in 
Section 2.  To minimize error in estimating experimental line-widths, scans were performed at 
low laser power.  Also, measurements were repeated at various scan rates, and for both 
decreasing and increasing laser frequency.  Experimental Q and F were estimated from the 
FWHM line-width of the fundamental resonance.  The predicted FSR takes mirror penetration 
into account [22], and was confirmed using a white-light source and spectrum analyzer setup 
(not shown).  As listed in Table 1, experimental F was typically in good agreement with the 
reflectance limited prediction (FR ~3140). 
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Fig. 3.  The plot shows the transmission spectrum for a 250 m diameter cavity, with peak 
height ~7.5 m.  The inset plot shows the fundamental resonance line in greater detail.  The 
broad peak near 1522 nm is due to a transmission resonance outside the buckled areas.  Mode-
field images were captured with the laser tuned near one of the resonance lines, as indicated.  
Images for the four nominally degenerate modes associated with the third-order resonance were 
captured by making fine adjustments to the laser wavelength. 

Representative results for a 250 m diameter dome are shown in Fig. 3.  Transverse 
modes exhibited fixed spacing with values in good agreement with the predictions from 

Figure 3.3: The plot shows the transmission spectrum for a 250-�m diameter
cavity, with peak height ∼ 7.5 �m. The broad peak near 1522 nm is due to
a transmission resonance outside the buckled areas. The inset plot shows the
fundamental resonance line in greater detail. Mode-field images were captured
with the laser tuned near one of the resonance lines, as indicated. Images for the
four nominally degenerate modes associated with the third-order resonance were
captured by making fine adjustments to the laser wavelength.

resonance frequency. We speculated that this was caused mainly by thermal

expansion [21] related to residual absorption in the mirrors. This instability was

reduced significantly by addition of the a-Si capping layer, as described in Section

3.2. To minimize error in estimating experimental line-widths, scans were

performed at low laser power. Also, measurements were repeated at various scan

rates, and for both decreasing and increasing laser wavelength. Experimental Q

and F were estimated from the FWHM line-width of the fundamental resonance.

The predicted FSR takes mirror penetration into account [22], and was confirmed

using a white-light source and spectrum analyzer setup (not shown). As listed in

Table 1, the experimental finesse for each cavity was in good agreement with the

reflectance limited prediction (FR ∼ 3140).

Representative results for a 250-�m diameter dome are shown in Figure 3.3.
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paraxial theory, as summarized in Table 1.  As mentioned, associated with each higher-order 
resonance line is a set of nominally degenerate HG and LG modes, whose degeneracy is 
perturbed by any deviation from cylindrical/spherical symmetry, such as spherical aberration 
or astigmatism [10,19].  Such perturbations are apparent from the multiple sub-peaks within 
the g = 2 and g = 3 resonant lines in Fig. 3.  By making fine adjustments (typically on the 
order of a few picometers) to the laser wavelength, it was possible to isolate individual HG 
and LG modes within a given resonant line.  As an example, the H3,0, H2,1, L0,3, and L1,1 
modes shown represent the complete set of HG and LG modes possessing g = 3 degeneracy.  
To our knowledge, such direct experimental evidence for the intrinsic relationship between 
LG and HG modes is rarely reported.  We believe it is made possible, in part, by the near-
cylindrical symmetry and geometrical perfection of the self-assembled microcavities. 
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Fig. 4.  The plot shows the transmission spectrum for a 200 m diameter dome, with peak 
height ~5.7 m.  Representative LP,1 mode images are shown; they were captured by tuning the 
laser source to one of the resonance lines as indicated. 

For the smallest cavities, the LG modes were dominant and it was in fact more difficult to 
isolate HG modes.  Moreover, there was less evidence for the existence of multiple peaks 
within the high-order resonance lines, suggesting a higher degree of symmetry.  As an 
example, Fig. 4 shows the transmission spectrum for a 200 m diameter cavity.  Also shown 
are representative images of Lp,1 modes, which were found to be dominant in this case.  The 
mismatch between the incident beam and the fundamental cavity mode is particularly large 
here, resulting in significant coupling to higher order modes.  As above, these modes exhibit a 
fixed spacing in good agreement with paraxial theory. 

4. Summary and conclusions 

The reflectance-limited optical properties of the cavity modes can be taken as evidence that 
the ‘defect finesse’ [1] of the cavities is high.  This suggests that cavities formed by buckling 
can have very low roughness and a highly regular geometric shape.  In principle, the finesse 
could be improved by using higher reflectance mirrors.  For example, reflectance of the 
present mirrors is mainly limited by absorption in the a-Si layers, which could be reduced by 
the use hydrogenated a-Si.  Furthermore, operation at shorter wavelengths might be possible 
by replacing a-Si with TiO2 or similar, provided compressively stressed layers are possible. 

The shape of the cavities, and especially the minimum radius of curvature and thus cavity 
modal volume, will ultimately be limited by the restricted combination of film thicknesses, 
cavity size, and stress that produces dome-shaped buckles.  A full exploration of these details 
is left for future work.  Another major issue, particularly for sensing and atomic physics 

Figure 3.4: The plot shows the transmission spectrum for a 200-�m diameter dome,
with peak height ~ 5.7 �m. Representative Lp,1 mode images are shown; they were
captured by tuning the laser source to one of the resonance lines as indicated.

Transverse modes exhibited fixed spacing with values in good agreement with the

predictions from paraxial theory, as summarized in Table 1. As mentioned,

associated with each higher-order resonance line is a set of nominally degenerate

HG and LG modes, whose degeneracy is perturbed by any deviation from

cylindrical/spherical symmetry, such as spherical aberration or astigmatism

[10, 19]. Such perturbations are apparent from the multiple sub-peaks within the

g = 2 and g = 3 resonant lines in Figure 3.3. By making fine adjustments

(typically on the order of a few picometers) to the laser wavelength, it was possible

to visually isolate individual HG and LG modes within a given resonant line. As

an example, the H3,0, H2,1, L0.3, and L1,1 modes shown represent the complete set

of HG and LG modes possessing g = 3 degeneracy. To our knowledge, such direct

experimental evidence for the intrinsic relationship between LG and HG modes is

rarely reported. We believe it is made possible, in part, by the near-cylindrical

symmetry and geometrical perfection of the self-assembled microcavities.

For the smallest cavities, the LG modes were dominant and it was in fact more
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difficult to isolate HG modes. Moreover, there was less evidence for the existence of

multiple peaks within the high-order resonance lines, suggesting a higher degree of

symmetry. As an example, Figure 3.4 shows the transmission spectrum for a 200-

�m diameter cavity. Also shown are representative images of Lp,1 modes, which

were found to be dominant in this case. As predicted by Equation 3.3, this family

of modes occupies the odd-order (g = 1,2,5, ...) resonance lines. The mismatch

between the incident beam and the fundamental cavity mode is particularly large

here, resulting in significant coupling to higher order modes. As above, these modes

exhibit a fixed spacing in good agreement with paraxial theory. Finally, the effective

fundamental mode volume is on the order of Vm ∼ 100λ 3 for the smallest cavities,

comparable to values reported for similar cavities [10, 11].

3.4 Summary and Conclusions

The reflectance-limited optical properties of the cavity modes can be taken as

evidence that the ‘defect finesse’ [1] of the cavities is high. This suggests that

cavities formed by buckling can have very low roughness and a highly regular

geometric shape. In principle, the finesse could be improved by using higher

reflectance mirrors. For example, reflectance of the present mirrors is mainly

limited by absorption in the a-Si layers, which could be reduced by the use of

hydrogenated a-Si. Furthermore, operation at shorter wavelengths might be

possible by replacing a-Si with TiO2 or another similar material, provided

compressively stressed layers are possible.

The shape of the cavities, and especially the minimum radius of curvature and

thus cavity modal volume, will ultimately be limited by the restricted combination

of film thicknesses, cavity size, and stress that produces dome-shaped buckles. A

full exploration of these details is left for future work. Nevertheless, the Q, F , and

Vm demonstrated are already competitive with values reported in the literature
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[10, 11, 12]. Another major issue, particularly for sensing and atomic physics

studies, is the possibility of implementing ‘open-access’ versions of the dome

cavities. A possible solution might involve intersecting air channels, which we

have demonstrated previously using the buckling process [13].
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4 Assessing the maximum transmittance of periodic

metal-dielectric multilayers2

4.1 Introduction and Background

When resonant tunneling conditions are satisfied [1], metal-dielectric (MD)

multilayers containing many skin depths of metal can exhibit bands of high

transparency [2, 3, 4]. For problems involving propagating waves inside the

dielectric layers, the MD stack can be viewed as a series of coupled Fabry-Perot

cavities. Structures of that type have been studied for use as transparent conductors

[3] and nonlinear media [5]. More recently, the propagation of evanescent waves

through MD stacks has been explored for metamaterial and superlensing

applications [6]. The mechanism for evanescent wave transfer is the excitation of

coupled surface plasmon resonances at the metal-dielectric boundaries [7, 8].

For both propagating [3] and evanescent [9] waves, it has been recognized that

higher transmittance (for a given total thickness of metal) is possible when the metal

is sub-divided into a series of thin films. This fact has long been known by optical

engineers [2], however, owing to the potential transmittance (PT) theory of Berning

and Turner [10]. PT theory shows that low transmittance through a thin metal film is

most often due mainly to an impedance mismatch between the film and the external

media, rather than absorption by the metal. A given metal film has a maximum

PT, by adding appropriate impedance-matching assemblies to the entrance and exit

surfaces of the film. For example, a narrowband impedance match is the basis of the

induced transmission (IT) filter [10]. In our view, the work of Berning and Turner

remains somewhat under-appreciated. For example, a recently proposed strategy

[11] for maximizing transparency of a single metal layer is essentially identical to
2This chapter was published as a paper in the Journal of the Optical Society of America B, vol.

28, pp. 2529-2536, 2011.
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the half-century-old IT filter concept (for which a detailed description is provided

in the text book by MacLeod [12]).

PT theory was derived from considerations of Poynting power flow [10], and

thus provides a general framework for assessing the transparency of MD stacks.

On that basis, the primary contributions of the present study can be summarized as

follows:

1. We show that the maximum transmittance predicted by PT theory is a useful

upper limit for assessing the transparency of MD stacks, such as those

recently studied as transparent metals [3].

2. For propagating waves in a stack comprising DMD unit cells, we show that

PT theory combined with the theory of equivalent layers [13, 14, 15] can aid

in the understanding of the impedance matching role of the dielectric spacer

layers. This approach illustrates that thinner metal films can be impedance

matched (to an external air medium) by lower index spacer layers.

3. We generalize the PT results for arbitrary (effective) angles of propagation,

and confirm that the maximum PT of an absorbing assembly always

represents an upper limit for the intensity transmittance of tunneling waves,

regardless of the type of resonance (Fabry-Perot or surface-plasmon)

associated with the tunneling.

4.2 Maximum potential transmittance of metal (Ag) films

As mentioned, the opacity of thin metal films is often attributable to an impedance

mismatch with the external media [16]. For example, Bloemer et al. [3] showed that

MD stacks can have a band of high transparency (in the visible region for example)

while exhibiting high opacity for all other frequencies. The opacity derives mainly

from the impedance mismatch between the incident medium and the multilayer,
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while absorption by the metal plays a much smaller role. In the same sense, high

transmittance can be interpreted as a band-limited impedance matching condition,

determined by the particular index and thickness of the dielectric layers separating

adjacent metal layers.

Impedance matching to maximize power flow through absorbing layers is

precisely the problem addressed by PT theory [2, 10, 12, 13, 14, 15]. PT of an

absorbing layer (or assembly of absorbing layers) is the ratio of the transmitted

intensity to the intensity entering the front surface:

PT =
T

1−R
=

T
T +A

(4.1)

where T , R, and A are the transmittance, reflectance, and absorbance of the layer

or assembly of layers. For R = 0 (i.e. with a perfect antireflection coating on the

incident side), the transmittance is equal to the potential transmittance. While T

depends on the properties of both the incident and exit media, PT is determined

solely by the properties of the absorbing assembly and the exit medium. For a given

absorptive layer, PT has a limiting value (PTMAX), which is attained by appropriate

choice of the exit medium admittance and can be calculated from the properties of

the layer [2, 10, 12, 13, 14]. Typically, the PT concept has been applied to the design

of filters for normally incident plane waves. However, the underlying equations can

be generalized to allow for arbitrary values of the in-plane wave vector as follows

[15]:

PTMAX = σ −
�
σ2 −1

�1/2
, (4.2)

where:

σ =
cosh(2µi)+Γ2 cos(2µr)

(1+Γ2)
. (4.3)

Γ is unique for TE- and TM-polarized waves, and is given by:
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ΓTE = Im(NMb)/Re(NMb)

ΓTM = Im(NM/b)/Re(NMb)
, (4.4)

where b = cos(θM), θM is the complex angle of propagation in the absorptive

(metal) layer and NM = nM − iκM is its complex refractive index. Finally, the

complex phase thickness of the absorptive layer (with thickness dM) is defined as

follows:

µc = µr + iµi =

�
2π
λ

�
NMdM cos(θM) . (4.5)

A very useful property, in the present context, is that for a layered sequence of

N absorbing assemblies having individual potential transmittances PT1, PT2,

...PTN , the overall potential transmittance is the product of that for each assembly

[15]; i.e. PTtotal = PT1 · PT2 · ... · PTN , and it follows that

PTMAX = PT1,MAX ·PT2,MAX · ... ·PTN,MAX. The maximum potential transmittance

of a multilayer can thus be predicted from the properties of its constituent

absorptive layers. The actual transmittance of the multilayer depends on the media

(index, thickness, and order of layers) in which these absorptive layers are

embedded. Finally, it can be shown [15] that the maximum transparency condition

(i.e. T = PTMAX) occurs when the system containing absorbing layers is perfectly

AR-coated for both left and right incidence (i.e. when the system is optimally

impedance matched to both the incident and emergent media).
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Figure 4.1: (a) Normal-incidence PTMAX of a silver film versus wavelength, for
film thicknesses of 10, 20, 40, 60 and 80 nm (top to bottom). (b) The dotted line
shows the normal-incidence PTMAX versus film thickness, for a silver film at 550-
nm wavelength. The solid lines indicate the maximum potential transmittance for a
multilayer containing 10, 20, and 50 Ag films, where each Ag film is 20 nm thick.
(c) PTMAX versus transverse component of the wave propagation vector (transverse
spatial frequency), for 3 different thicknesses (as indicated by the labels) of an Ag
film at 550-nm wavelength. The solid curves correspond to TE polarization and the
dotted curves correspond to TM polarization.
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Figure 4.1(a) shows the normal-incidence PTMAX versus wavelength for a

single Ag film of varying thickness. Except where indicated otherwise, the optical

constants of Ag were modeled using the Lorentz-Drude expressions provided by

Rakic et al. [17]. In keeping with the discussion above and below, very thin metal

films can exhibit significant transparency in the visible-near IR region, where the

metal refractive index is dominated by its imaginary part.

Figure 4.1(b) plots the normal-incidence PTMAX versus Ag film thickness at

550-nm wavelength, where the Rakic model predicts Ag refractive index

NM = 0.1342− 3.1688i. PTMAX increases rapidly with decreasing film thickness,

allowing a sequence of very thin films to have much higher transparency than a

single relatively thick film. For 20-nm thickness, as an example, the plot predicts

PT1,MAX = 0.975. For a multilayer containing N Ag films, each 20 nm thick, and

no other absorbing layers, it follows from above that PTMAX = (0.975)N , as

indicated by the horizontal lines in Figure 4.1(b) for the cases N = 10, 20, and 50.

A multilayer with 50 such films (total Ag thickness ∼ 1 �m) has the same potential

for transparency as a single film ∼ 100 nm thick. In general, for a given total

thickness of Ag (dTOT), PTMAX increases as the metal is subdivided into a larger

number of distinct films with smaller thickness (dTOT/N) [2]. Clearly, this

property is one of the bases for the multilayer transparent metal concept [3].

In Figure 4.1(c), PTMAX at 550-nm wavelength is plotted versus the

normalized transverse component of the wave vector. Note that for a dielectric

index nD, evanescent wave behavior (in that dielectric) corresponds to the range

kt > nDk0, where k0 is the free-space wave number. For TE-polarized waves,

PTMAX is relatively insensitive to the effective angle of incidence in the metal

layer. However, for TM-polarized waves, PTMAX drops off quite rapidly with

increasing transverse component of the wave vector. Since it is TM-polarized

surface plasmons that mediate the tunneling of evanescent waves [9], we can
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expect that the maximum intensity transmittance of such waves will decrease

monotonically with increasing (transverse) spatial frequency, as discussed further

in Section 4.4.

4.3 Impedance matching of DMD structures for propagating

waves

The use of impedance matching layers to enhance the transmission of single metal

films is an established technique in various fields, including work on

heat-reflecting windows [18] and surface-emitting LEDs [19]. For example, it is

known from empirical studies [18] that the transparency of a noble metal film can

be greatly enhanced if the film is sandwiched by high-index dielectric layers of

appropriate thickness. In the context of periodic metal-dielectric stacks [3],

high-index spacer layers have been shown to provide enhanced peak transmittance,

a wider transparency band, and improved omnidirectionality [6, 20, 21]. As above,

these insights have been derived mainly from empirical and numerical studies. In

the present section, our goal is to provide new insights into the impedance

matching role played by the dielectric spacer layers. We consider a finite stack

embedded in air, with a fundamental dielectric-metal-dielectric (DMD) unit cell

(see Figure 4.2), and for simplicity we assume normal incidence. Note that this

type of stack is equivalent to the ‘AR-coated transparent metal’ described by

Bloemer et al. [3, 6] and others [21], where the terminating dielectric layers are

half the thickness of the spacer layers. At a given frequency, symmetric unit cells

of this type can be replaced by a single equivalent layer [13, 14, 15]. A key

motivation for the unit cell approach is as follows: if conditions for optimal

impedance matching (R1 = 0) of the unit cell are established, then any sequential

stack of N unit cells is also optimally impedance matched (RN = 0) [15].
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Figure 4.2: (a) Schematic diagram of a DMD unit cell in air with normal incidence
light. The symmetric DMD cell can be replaced by a single layer with frequency-
dependent effective index and phase thickness. (b) Schematic diagram of a 1-
dimensional metal-dielectric multilayer constructed from a sequence of N unit cells.

At a given wavelength, the symmetric DMD cell can be replaced by a single

equivalent layer with an effective phase thickness (δe f f ) and an effective index

(ne f f ) (see Figure 4.2(a)). General expressions for these parameters (in terms of

the layer thicknesses and indices) are available, but do not readily lend themselves

to analytical insight [13]. Simplification is possible if a purely imaginary metal

index is assumed (i.e. an ideal metal assumption), in which case the effective index

can be expressed [14]:

ne f f = nD

�
sin2δ cosh µ− 1

2 (κM/nD−nD/κM)cos2δ sinh µ− 1
2 (κM/nD+nD/κM)sinh µ

sin2δ cosh µ− 1
2 (κM/nD−nD/κM)cos2δ sinh µ+ 1

2 (κM/nD+nD/κM)sinh µ

�1/2
, (4.6)

where nD is the real dielectric index, NM = −i ·κM is the purely imaginary metal

index, δ = (2πnDdD)/λo is the phase thickness of the dielectric layers,

µ = (2πκMdM)/λo is an effective phase thickness for the metal layer, dD is the

dielectric layer thickness, dM is the metal layer thickness, and λo is the free-space
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wavelength. The approximation is reasonable for metals with high potential

transmittance, for which the refractive index is necessarily dominated by its

imaginary part [10].

It is interesting to consider the conditions for unity transmittance through the

idealized DMD unit cell in air. Considering the equivalent layer from Figure 4.2(a),

T1 = 1 can occur under two scenarios: (i) the effective index is real and the effective

phase thickness is an integer multiple of π (δe f f = mπ , where m = 0,1,2...) or (ii)

the effective index is equal to 1. The first scenario corresponds to the Fabry-Perot

resonance condition for a lossless layer embedded in air [22]. However, numerical

studies reveal that δe f f is an integer multiple of π only in regions where ne f f is

complex [13]. The second scenario represents a perfect impedance match between

the DMD cell and the air medium. For a given dielectric index, this condition can be

satisfied by appropriate choice of dD, provided the metal thickness is below some

maximum value (see Figure 4.3). Further insight into this interesting behavior is

possible by setting nD = κM, in which case Equation 4.6 reduces to:

ne f f = κM

�
sin2δ cosh µ − sinh µ
sin2δ cosh µ + sinh µ

�1/2
. (4.7)

Since µ is positive by definition, the maximum real value for ne f f occurs when

the dielectric layers are tuned such that sin2δ =+1:

ne f f ,MAX = κMe−µ . (4.8)

For T1 = 1, the maximum allowable metal thickness follows by setting ne f f ,MAX =

1:

dM,MAX =

�
λo

2πκM

�
ln(κM) ; [fornD = κM] . (4.9)

For example, using λ0 = 638.3 nm and κM = 5, Equation 4.9 predicts dM,MAX =
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32.7 nm, in agreement with the numerical result shown in Figure 2 of reference

[16]. While restricted to a special case, Equation 4.9 nevertheless provides insight

with respect to the numerical results below, and to our knowledge it has not been

derived previously.

To explore the effect of varying the dielectric index, we used a standard transfer

matrix technique. The transmittance is a periodic function of dD, and the maximum

transmittance was extracted from plots of the type shown in Figure 4.4(a) below.

Figure 4.3(a) shows typical plots of the maximum transmittance versus ideal metal

thickness, with nD as a parameter. In keeping with the analysis above, a perfect

impedance match in air (ne f f = 1) is possible up to a maximum value in each case,

beyond which a higher dielectric index is required. Although not obvious from

the plot, the transfer matrix result for the case nD = κM = 3.1688 reveals perfect

agreement (dM,MAX = 31.86 nm) with Equation 4.9.

65



Figure 4.3: (a) Maximum transmittance versus ideal metal layer thickness is plotted
for a DMD unit cell in air, at a wavelength of 550 nm. A metal refractive index
NM =−3.1688i was assumed, approximating Ag at 550 nm. The labels indicate the
real refractive index (nD) assumed for the dielectric layers. The vertical dotted line
indicates the analytical result predicted by Eq. (9) for the case nD = κM = 3.1688.
(b) Transmittance is plotted for N (1, 5, and 10 as indicated by the labels) period
multilayers under an ideal metal assumption, with nD = 3.1688, dD = 21.7 nm,
dM = 31.86 nm.

As mentioned, an optimally matched unit cell automatically leads to an

optimally matched multilayer constructed from N unit cells. Stated another way, if

the unit cell is characterized by equivalent parameters δe f f and ne f f , then a

symmetric multilayer containing N unit cells can itself be replaced by a single

equivalent layer with effective phase thickness N · δe f f and the same effective

index [13]. Thus, the condition ne f f = 1 for the unit cell extends to the multilayer

constructed from that unit cell. This is numerically verified in Figure 4.3(b), for

the particular case nD = κM (550 nm) = 3.1688 and dM = dM,MAX = 31.86 nm;
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dD = 21.7 nm is the thinnest dielectric layer thickness that produces ne f f = 1 in

this case. A non-dispersive dielectric index and dispersive metal extinction

coefficient (from the Rakic model) were used. Unity transmittance at 550 nm is

predicted for any number of periods N. Of course, the periodic multilayer is a

photonic bandgap structure, and the transmittance band in the 450-700-nm range

lies between two stop bands.

In the case of real metals, unity transmittance is not possible and the goal is

instead to realize T = PTMAX. From the discussion above and since the structure is

assumed symmetric, the PT of the DMD unit cell is maximized when R1 = 0. The

statements regarding equivalent layers still hold [13], and for a multilayer

constructed of unit cells with R1 = 0 it follows that RN = 0 and TN = (PT1,MAX)
N .

In words, if we can construct a DMD unit cell that is optimally matched to the

ambient medium, then a multilayer constructed from N repeat units of that same

cell is also optimally matched to the ambient medium.

Figure 4.4(a) plots the predicted transmittance for 25-nm Ag thickness versus

dD, with nD as a parameter. In general, the transmittance is a periodic function of

the dielectric layer’s thickness. The peak transmittance increases with dielectric

index, reaching PT1,MAX at a particular value, given by nD = 4.75 in this case.

For the more realistic, but still high, dielectric index nD = 3.5, peak transmittance

is very close to PT1,MAX. Figure 4.4(b) plots the maximum transmittance versus

metal thickness with nD as a parameter. Similar to the ideal metal case, there is an

overall trend that for increasing dielectric index it is possible to impedance match

(i.e. to make T1,MAX close to PT1,MAX) for increasingly thick metal films.
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Figure 4.4: (a) Normal-incidence transmittance versus thickness of the dielectric
layers (for three different values of the dielectric refractive index as indicated by the
labels) is plotted for a DMD unit cell in air at 550-nm wavelength, with metal index
NM = 0.1342− 3.1688i (representing Ag at 550 nm) and metal thickness 25 nm.
The dotted line indicates PT1,MAX. (b) Maximum transmittance is plotted versus
metal thickness at 550-nm wavelength, for various dielectric indices as labeled.
The dotted line indicates PT1,MAX.

Figure 4.5(a) shows the variation in maximum transmittance versus nD, for

several values of metal thickness. Interestingly, for a given wavelength, metal

thickness, and metal index, only a specific dielectric index can enable perfect

impedance matching of the unit cell. As shown in Figure 4.5(b), the required index

does not vary monotonically with metal thickness. For illustration purposes,

unrealistically high values of dielectric index were considered. Indeed, for

materials with reasonable transparency in the visible range, refractive index is

typically less than ∼ 3.5 [6]. For thinner metal layers (< 25 nm thick), a nearly

optimal impedance match is provided by realistic dielectrics with index in the 2 to
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3.5 range. This is consistent with the high transparency reported for

metal-dielectric multilayers comprising thin (∼ 20 nm) metal films and high index

spacers [3, 6]. Related to this discussion, it has been previously suggested [20, 21]

that an optimal impedance match is attained when nD = κM. However, that

conclusion was derived either from considerations of a thin metal film embedded

in an infinite dielectric medium [20] or of a dielectric anti-reflection layer on an

infinitely thick metal film [21]. Our results suggest that when the finite thickness

of both dielectric and metal films is taken into account, the problem is more subtle.

Based on our numerical treatment (and that in [16]), the dielectric index required

to produce an optimal impedance match varies with the thickness of the metal film.

Figure 4.5: (a) Maximum transmittance at 550-nm wavelength for a DMD unit cell
is plotted versus the refractive index of the dielectric layers, for Ag layer thicknesses
of 15, 25, and 40 nm. The dotted lines indicate PT1,MAX. The inset shows the top of
the curves for 15 and 25 nm thick Ag layers. (b) The refractive index that enables
optimal impedance matching of an Ag film in a DMD structure is plotted versus the
Ag film thickness, for 3 different wavelengths.
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However, to our knowledge, a complete physical explanation for this behavior has

not been provided. Equation 4.9 provides some analytical insight, but only for a

particular case. Analytical treatments for the general case would be an interesting

topic for future study.

Figure 4.6 shows transmittance plots for periodic multilayers with 5, 10, and

20 unit cells, each cell containing a 25-nm thick Ag film, and for two different

dielectric spacer layers. In the first case, a fictitious dielectric with nD = 4.75 and

dD = 17.5 nm was assumed, since this represents the optimal impedance matching

condition for a 25-nm thick Ag film at 550 nm (see Figure 4.5). As per the

discussion above, a multilayer constructed from any number of such unit cells is

also optimally impedance matched, so that the transmittance at 550 nm is identical

to (PT1,MAX)
N for any value of N. In the second case, nD = 2.3 was assumed,

representative of TiO2. Furthermore, dD = 45.5 nm was used in order to produce a

peak transmittance near 550 nm. Note that this is different than the optimal

thickness for a single unit cell of the same type (∼ 38 nm, see Figure 4.4). The

peak transmittance TMAX is in each case significantly greater than

(T1,MAX)
N ∼ (0.9)N , and the ratio TMAX/(T1,MAX)

N actually grows with

increasing N. This represents an impedance matching advantage arising from field

redistribution inside the periodic medium, and was interpreted as anomalous loss

scaling by Blair [23]. Of course, in all cases the peak transmittance lies below the

maximum potential transmittance curve. PT theory thus provides useful insight

into the transparency (relative to optimized transparency) of a given MD stack, and

offers a valuable framework for evaluating transparent metals [3].
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Figure 4.6: Spectrally dependent, normal-incidence transmittance of metal-
dielectric multilayers is plotted for N = 5, 10, and 20. 25 nm thick Ag layers and
a non-dispersive dielectric with nD = 4.75 (thick solid line) or nD = 2.3 (thin solid
line) were assumed. The unit cell dielectric thickness was set to dD = 17.5 nm and
dD = 45.5 nm for the higher and lower index cases, respectively. The dotted curves
indicate PTMAX of a multilayer containing N Ag layers (each 25 nm thick).

4.4 Impedance matching of DMD structures in the evanescent

wave regime

As discussed in Section 4.2, PT theory can be generalized for non-normal

incidence. Moreover, since it is based on the flow of photon flux, the theory

applies even when Snell’s law predicts complex angles (i.e. evanescent behavior)

inside the lossless layers of a stack. While tunneling of evanescent fields (mediated

by TM-polarized surface plasmon resonances) [7, 8] is the basis for practical

implementation of the superlens [6, 9], the optimization of power flow in that
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context is still the subject of ongoing research [24] and careful interpretation of the

transmittance is necessary. For example, when framed in terms of a near-field

(evanescent) input, a transmission coefficient much greater than 1 can be predicted

[6, 9]. This reflects the fact that the evanescent field is coupled to a guided mode

resonance of the layered structure, via which it is effectively transferred to the

output side. Energy associated with the input evanescent wave is not transmitted

into the output far-field (unless a curved geometry [25] or diffraction grating [26]

is added to facilitate such a coupling), but rather is dissipated by absorption in the

metal layers [27]. On the other hand, the interpretation of transmittance is

straightforward if the evanescent waves are coupled (via prisms in practice) to

propagating waves in the input and output medium [7, 8, 28]. Below, we illustrate

that PT theory provides a useful framework for assessing these types of problems.

To parallel the treatment in Section 4.3, we again consider a general N-period

stack with symmetric DMD unit cells, but here bounded by high-index input and

output media (see Figure 4.7) to facilitate the coupling of fields that are evanescent

within the dielectric layers.

Figure 4.7: The schematic diagram illustrates prism-based coupling of evanescent
waves through an N-period metal-dielectric stack with symmetric DMD unit cells.
The prisms have refractive index nP > nD.
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Surface-plasmon mediated tunneling through a single-period DMD structure

was first studied by Dragila et al. [7]. They provided closed-form expressions for

reflectance and transmittance, and also provided an approximate expression for the

angle of incidence (inside the prism) that produces peak transmittance (θMAX).

The expressions are quite involved and are not repeated here; however, a key

conclusion was that the maximum transmittance occurs when R = 0. Given the

general nature of PT theory, this can be placed in context with the discussion in

Section 4.2. Specifically, R ∼ 0 is the hallmark of a nearly perfect impedance

match, in which case we should expect T ∼ PTMAX. Furthermore, a multilayer

constructed from N repeat units of an impedance-matched unit cell will also be

impedance matched to the external media, and will thus exhibit T ∼ (PT1,MAX)
N .

In the following, we use transfer matrix theory to verify these relationships. Note

that a variable incident angle introduces an additional free parameter, so that

impedance matching is not solely dependent on the refractive index of the

dielectric spacer layers [16]. For non-normal incidence, the energy flow normal to

the boundaries of the films can be analyzed by assigning a so-called ‘tilted optical

admittance’ [12] to each medium. For TM polarization, this effective admittance

for medium i is given by ni/(Z0 cosθ), where ni is the refractive index, Z0 is the

impedance of free space, and θ is the angle (predicted by Snell’s law) inside the

medium. In a sense, for non-normal incidence the medium has an effective

refractive index, which is ni/cosθ for TM polarization.

We first consider the geometry described in [7], with a 60-nm Ag film

symmetrically bounded by MgF2 layers (nD = 1.38) and coupled by glass prisms

(nP = 1.515). To facilitate direct comparison, we assumed the same wavelength

and Ag index as used in [7]. As shown in Figure 4.8, the transfer matrix

calculation reproduces their results for the case of 300-nm MgF2 layers. As

mentioned, however, their expression for θMAX contains an approximation. From a
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numerical optimization, an improved impedance match (i.e. R closer to zero) is

possible using 220-nm thick MgF2 layers, and occurs at a slightly higher incident

angle. Also plotted in Figure 4.8 is the maximum potential transmittance, as

predicted by the expressions from Section 4.2. As expected from the discussion

above, the transmittance curve is perfectly bounded by the PTMAX curve, with

T ∼ PTMAX occurring at the incident angle (∼ 80 degrees) that produces nearly

optimal impedance matching.

Figure 4.8: Theoretical reflectance (thin solid line), transmittance (thick solid line),
and PTMAX (dotted line) for a 1-period DMD structure with nD = 1.38, dD = 220
nm, NM = 0.066−4.0i, and dM = 60 nm. The wavelength is 632.8 nm, and data is
plotted versus incident angle inside a prism medium with nP = 1.515. The vertical
dotted line indicates the critical angle for total internal reflection between the prism
and the dielectric medium. The thin solid line shows the transmittance for dD = 300
nm, to facilitate direct comparison with [7].

To illustrate that impedance-matched unit cells can be cascaded to form

impedance-matched MD stacks, we first consider a similar geometry as used in

Figure 4.8, but with a thinner Ag layer (dM = 25 nm). Also, we reverted to using

the Ag optical constants from the Rakic model so that spectral plots could be

generated. Given these assumptions, a nearly optimal impedance match at

632.8-nm wavelength is obtained for dD = 230 nm and at an incident angle of
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∼ 67.1 degrees (i.e. kt ∼ 1.4k0). Figure 4.9(a) plots the transmittance and PTMAX

for MD stacks comprising 1, 5, 10, and 20 unit cells of this type, versus the

transverse component of the wave vector. Note that kt > 1.38k0 corresponds to

evanescent behavior in the MgF2 layers. Thus, the nearly optimal impedance

match at kt ∼ 1.4k0 corresponds to tunneling mediated by a surface plasmon

resonance. The transmission band at lower incident angles (0.5k0 < kt < k0) is due

to Fabry-Perot mediated tunneling of propagating waves. While the reflectance

curves are not shown in the interest of clarity, the nearly optimal impedance match

(R ∼ 0) is retained for an arbitrary number of unit cells and, as expected from the

discussion above, T ∼ (PT1,MAX)
N at the resonant angle. Note that mode splitting

related to the multiplicity of metal-dielectric interfaces is clearly observed in the

angular domain.

In Figure 4.9(b), the predicted spectral dependences are plotted for conditions

of resonant tunneling (kt ∼ 1.4k0). Interestingly, relatively featureless (i.e. flat) and

broad transparency bands are observed. The existence of such ‘transparent bands’

has been described previously by Feng et al. [28], although their theoretical

analysis was restricted to the case of ideal lossless metal layers (in which case

100% transmission is predicted regardless of N). The transparent band arises only

in symmetric structures, and corresponds to excitation of field profiles that match

the Bloch modes of an equivalent structure with infinite extent. The present results

confirm analogous behavior in the case of a real metal. However, the transmittance

is necessarily within the limits predicted by PT theory, and thus reduces with

increasing number of periods N.

75



Figure 4.9: (a) Transmittance (solid and dash-dot curves), and PTMAX (dotted
curves) predicted for 1-, 5-, 10-, and 20-period DMD stacks (note: TMAX and
PTMAX reduce with increasing number of periods), versus the normalized transverse
wave vector component. Dielectric indices and wavelength are the same as in 4.8,
but here dD = 230 nm, NM = 0.1436−3.8045i (from the Rakic model) and dM = 25
nm. (b) Transmittance and maximum potential transmittance for the structures
in part (a) versus wavelength, and for the incidence angle (i.e. kt = 1.4k0) that
produces an impedance match at 632.8-nm wavelength.

As a final illustration, we consider a structure more closely aligned with those

studied in [28], and more typical of the MD stacks studied for superlens

applications. Figure 4.10(a) shows results analogous to those in Figure 4.9(a), but

with nD = 1.631, nP = 4, dD = dM = 50 nm, and at 500-nm wavelength.

Simulations were repeated for different values of nP, but the reflectance and

transmittance curves exhibit little dependence on that parameter. In agreement

with Figure 7 of [28], a transmission peak is observed at (kt/k0)∼ 2.18. However,
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the peak transmittance falls off rapidly (compared to Figure 4.9) with increasing

number of periods, for two reasons. First, PTMAX is considerably lower for 50-nm

Ag films compared to 25-nm Ag films. Second, PTMAX for TM-polarized waves

drops off considerably with increasing kt/k0, as discussed in Section 4.2. As

above, the transmittance in all cases is perfectly bounded by PT theory results,

with T ∼ (PT1,MAX)
N under impedance-matched conditions.

Figure 4.10(b) shows the spectral dependence for the structure described in

Figure 4.10(a), for (kt/k0) = 2.18, illustrating the existence of the transparent

band. As above, the transmittance is perfectly bounded by the PTMAX curves and

the peak transmittance drops off accordingly with increasing number of periods.

We stress that the results shown in Figures 4.8, 4.9 and 4.10 are intended to be

illustrative. The statements regarding the PT theory are generally applicable to

problems of this type, not restricted to the particular structures shown.
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Figure 4.10: (a) As in 4.9(a), except for 1, 2, and 4 periods of a DMD stack
with dD = dM = 50 nm, nD = 1.631, and at a wavelength of 500 nm where
NM = 0.1436 − 3.8045i (from the Rakic model) (b) As in 4.9(b), but for the
parameters in part (a) and for the incident angle (i.e. kt = 2.18k0) that produces
an impedance match in this case.

4.5 Summary and Conclusions

We reviewed the main results from PT theory, and demonstrated its general utility

for analyzing power flow through MD stacks. For a given stack, PT theory provides

the maximum potential transmittance (PTMAX), which represents a useful reference

for assessing the transmittance of any tunneling-based transparency band.

For propagating waves inside the dielectric layers, our results help to clarify

the impedance matching conditions for MD stacks embedded in air. Confirming a

previous result in the literature [16], we showed that for ideal metal films
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sandwiched by dielectric layers, unity transmittance is predicted up to a maximum

metal thickness that scales with the dielectric index. While the impedance

matching conditions are more complicated for real metal films, there is an

analogous trend that thicker metal films require higher index dielectrics in order to

be well-matched to an air medium.

For evanescent waves inside the dielectric layers, we confirmed that the

intensity transmittance is bounded (as for propagating waves) by the predictions of

the PT theory. The numerical study was restricted to a prism-coupled system

modeled using standard transfer-matrix techniques. However, we expect that the

PT theory will always correctly predict the maximum power transmittance, even if

the evanescent waves are coupled by diffraction gratings or other means. This is

possibly an interesting topic for further studies.
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5 Conditions for admittance-matched tunneling

through symmetric metal-dielectric stacks3

5.1 Introduction and background

Tunneling of electromagnetic radiation through metal films has captured the

attention of researchers for a variety of reasons. Since the 1970s [1], for example,

dielectric-metal-dielectric (DMD) coatings have been studied in the context of

solar control and thermal emittance windows [2, 3], and as transparent electrodes

for displays [4]. In the late 1990s, Bloemer et al. [5] showed that periodic MD

multilayers can exhibit wide bands of high transparency, and suggested their

application as transparent conductors and radiation shields. Others have explored

the analogy between optical tunneling and the quantum mechanical tunneling of

electrons over potential barriers [6, 7]. More recently, metal-dielectric stacks have

been studied in the context of superlenses [8, 9], since they support

plasmon-mediated tunneling of TM-polarized evanescent waves. Energy transport

through such structures remains an active topic for study [10, 11, 12].

Symmetric DMD tri-layers have played a central role in the aforementioned

research [1, 2, 3, 4, 6, 7], including antireflection-coated MD stacks [5, 11], which

are essentially periodic structures with a DMD unit cell. Much of the knowledge

about these structures derives from numerical studies which show, for example,

that the use of high-index dielectric layers tends to enhance transparency [2, 5, 11].

Theoretical treatments, on the other hand, have typically relied on simplifications

such as use of a lossless metal assumption [7, 13]. In our view, it has not been widely

recognized that these various bodies of work can be unified within the framework

of potential transmittance (PT) theory [14, 15]. For example, PT theory explains

[16] the observation that transmittance can be increased by sub-dividing a given
3This chapter was published as a paper in Optics Express, vol. 20, pp. A578-A588, 2012.
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thickness of metal into some number of thinner metal layers, appropriately spaced

by dielectrics [5, 8].

The goal of this work is to assess the limits of tunneling-based transparency,

given a periodic DMD multilayer containing real, absorbing metal layers. In a

previous, transfer-matrix-based numerical study [17], we used PT theory as a

general framework for assessing maximum transmittance. Here, we provide an

extended theoretical treatment of this approach, and derive a general equation that

encapsulates the conditions for admittance-matched tunneling. This approach

offers new insight into previously disjointed research on tunneling through MD

stacks. Moreover, it directly addresses the important problem of maximizing

transmittance (T ) and minimizing reflectance (R) in such structures.

5.2 Admittance matching for minimum effective absorptance of

a metal film

As first explained by Berning and Turner [14], the transparency of a thin absorbing

film is highly dependent on its boundary conditions. In fact, there is a maximum

potential transmittance (PTMAX) that, for a sufficiently thin film, is much greater

than the maximum transmittance suggested by the bulk optical absorption

coefficient. To achieve PTMAX at a given wavelength (which Berning and Turner

termed as ‘inducing transmission’ [14]), one must design the surrounding media so

that the exit optical admittance (viewed from the perspective of the absorbing film)

attains a particular value determined by the optical constants and thickness of the

film [15]. T = PTMAX occurs when R = 0 for both left and right incidence [17],

which illustrates that inducing transmission is essentially equivalent to admittance

matching an absorbing film to the ambient media.

Consider a single absorbing film (with index NM = nM − iκM) embedded within

an arbitrary assembly of otherwise lossless layers, as shown in Figure 5.1(a). The
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Figure 5.1: (a) Schematic showing a multilayer containing one absorbing layer.
The optical admittance viewed from the perspective of the absorbing layer, looking
towards the incidence and exit directions, is labeled as Yin and Yout respectively.
(b) The optimal (i.e. minimum) optical absorption coefficient, as defined in the
text, is plotted versus Ag film thickness at a wavelength of 550 nm and for normal
incidence. The bulk absorption coefficient for Ag at the same wavelength is
represented by the red dotted line.

potential transmittance (PT = T/(1−R)) of the film depends on the properties (i.e.

thickness and index) of the film itself and on the optical admittance presented by

the exit assembly (Yout = Hout/Eout), which determines the ratio of the magnetic to

electric field at the output interface of the absorbing layer. For a given incident angle

and state of polarization, PTMAX is dependent on the properties of the absorbing

film only, and can be calculated using expressions provided previously [17].

While not typically stated in terms of absorption, one implication of PT theory

is that the absorptance of a thin film can be significantly lower than the value

predicted by the bulk optical constants. This is especially true for very thin films,

but the possibility of reduced absorption (with appropriate admittance matching)

extends to surprisingly large film thickness. To illustrate, we compared the

minimum effective absorption coefficient (αmin) for an Ag thin film to the bulk

optical absorption coefficient (αM = 4πκM/λ ) for Ag. Optical constants of Ag

were modeled using the Lorentz-Drude expressions provided by Rakic et al. [18].

Noting that PT is the ratio of power flux at the entrance and exit interface of the
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absorbing film, it follows that PTMAX = exp(−αmindM), or rearranging:

αmin =− ln(PTMAX)/dM. (5.1)

As an example, Figure 5.1(b) shows a plot of αmin versus Ag film thickness at a

wavelength of 550 nm and for normal incidence. Remarkably, for a 10-nm thick Ag

film the minimum effective absorption coefficient is 2 orders of magnitude lower

than the bulk absorption coefficient. Note that a multilayer containing an arbitrary

number of 10-nm thick Ag films can have absorptance embodied by this same αmin,

provided that the Ag films are separated by appropriate dielectric layers to produce

an optimal admittance match. Band-limited admittance matching is the reason for

the surprisingly high transparency of MD stacks containing many skin depths of

metal [5].

Implicit above, and to PT theory in general, is the assumption that the bulk

refractive index NM = nM − iκM remains valid for describing the optical properties

of the thin film. As is well known, very thin metal films can exhibit optical

properties that deviate from bulk values, such as a higher effective extinction

coefficient arising from electron scattering at grain boundaries. Furthermore,

quantum confinement effects cannot be neglected for length scales less than ∼ 10

nm [19]. Nevertheless, carefully deposited Ag films have been shown [19, 20] to

exhibit bulk properties for thickness as low as ∼ 10− 12 nm. Based on this, we

restrict our theoretical analysis to films > 10 nm thick, and assume that bulk optical

constants can be applied in this range. In practice, deviation from bulk properties

is possible depending on the film deposition technique, and should be considered.

As mentioned, to achieve PT = PTMAX requires that the exit admittance Yout is

set to a specific, optimal value Yop = Xop + iZop. In the following, all admittances

are expressed in free-space units (i.e. normalized to the admittance of free space).

Closed-form expressions for Xop and Zop at normal-incidence are provided by
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Macleod [15]. Those expressions can be generalized for non-normal incidence as

follows:

Xop =





�
η2

R +η2
I
�
(ηR sinhβ coshβ +ηI sinα cosα)

(ηR sinhβ coshβ −ηI sinα cosα)

−
η2

Rη2
I
�
sin2 α cosh2 β + cos2 α sinh2 β

�

(ηR sinhβ coshβ +ηI sinα cosα)2





1/2

Zop =
ηRηI

�
sin2 α cosh2 β + cos2 α sinh2 β

�

(ηR sinhβ coshβ −ηI sinα cosα)

. (5.2)

Here, ηR and ηI are the real and imaginary parts of the tilted optical admittance [15]

of the metal layer, which is unique for TE and TM polarization:

ηM = ηR − iηI =






(nM − iκM) · cosθM [TE]

(nM − iκM)/cosθM [TM]

(5.3)

where θM is the complex angle in the metal layer. For consistency with Macleod

[15], the effective phase thickness of the metal layer is expressed:

δM = α − iβ =

�
2π
λ

�
(nM − iκM)dM cosθM. (5.4)

Note that the last expression differs from the notation and convention (µ = µr+ iµi)

used for the effective phase thickness of the metal layer in our previous work shown

in Chapter 4 [17]. Also note that PT = PTMAX occurs when Yout = Yop, whereas

T = PTMAX (and R = 0) occurs when Yin = Yout = Yop. Thus, our goal can be

restated as follows: given a periodic DMD multilayer, we seek to identify conditions

for attaining Yin = Yout = Yop.

Figure 5.2(a) shows a representative plot of Xop and Zop versus Ag film

thickness, at a wavelength of 550 nm and for normal incidence. For reasons that
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Figure 5.2: (a) Components of the exit admittance (Xop and Zop) that produce PT =
PTMAX for normal incidence are plotted versus Ag film thickness, at a wavelength
of 550 nm. The green curve shows the ratio Zop/Xop. The dashed curves show
the real (blue) and imaginary (red) parts of the Ag refractive index at the same
wavelength. (b) The same quantities are plotted versus normalized transverse wave
vector, for a 30-nm thick Ag film at 550-nm wavelength. The dashed and solid
curves correspond to TM and TE polarization, respectively.

will be explained in the following section, the ratio Zop/Xop is also plotted. As

expected [15], Yop tends toward N∗
M = nM + iκM in the limit of a thick metal film

(for example, the Rakic model predicts NM = 0.1342− i3.1688 for Ag at 550-nm

wavelength, as indicated by the dashed lines in the figure). Figure 5.2(b) plots the

same quantities versus the normalized transverse wave vector, for a 30-nm thick

Ag film at the same wavelength and for both TE and TM polarization. For a fixed

metal film thickness, the optimal admittance (and the ratio Zop/Xop) shows

relatively little variation versus the transverse wave vector (i.e. angle).

5.3 Admittance matching conditions for a periodic DMD

multilayer

Consider a symmetric DMD unit cell embedded between identical incident and

exit media, as shown schematically in Figure 5.3(a). As explained previously [17],
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Figure 5.3: (a) Geometry for plane wave incidence on a symmetric DMD unit cell
embedded between identical incidence and exit media. The admittance viewed from
the perspective of the absorbing metal film (Yout) is that for a thin film (n1) on
a substrate (n2). (b) Schematic illustration of a periodic MD stack composed of
DMD unit cells. Conditions (i.e. n1, d1, NM, dM, n2, θ2) that admittance match the
unit cell also result in an admittance-matched multilayer.

conditions (i.e. particular combinations of λ , n1, d1, NM, dM, n2, and θ2) that

maximize transmittance (i.e. that produce T = PTMAX) for the unit cell also

correspond to conditions for maximum transmittance through the periodic

multilayer based on that unit cell.

For the single unit cell, the exit admittance from the perspective of the metal

layer is that presented by a single thin film (with real index n1) on an infinitely thick

substrate (with real index n2) [15]:

Yout =
η2 cosδ1 + iη1 sinδ1

cosδ1 + i(η2/η1)sinδ1
, (5.5)

where η1 and η2 are the tilted optical admittances of the dielectric layer and the

ambient medium, respectively. For TE polarization ηi = ni cosθi and for TM

polarization ηi = ni/cosθi, where ni and θi are the refractive index and the

propagation angle (from Snell’s law) in medium i. Furthermore,

δ1 = (2π/λ )n1d1 cosθ1 is the phase thickness of the dielectric film. Equating the

real and imaginary parts of Equation 5.5 to Xop and Zop, respectively, and after

some algebraic manipulation, the following admittance matching equation results:
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Xop =
2η2

±cos
�
sin−1

�
2Zop

Xop(η1/η2−η2/η1)

���
1− η2

2
η2

1

�
+
�

1+ η2
2

η2
1

� . (5.6)

The modifier (+/-) on the cosine term arises because the argument of the arcsine can

correspond to an angle in one of two possible quadrants. For a given metal layer

(i.e. for a given Xop and Zop), the equation predicts that admittance matching (when

possible) is dependent on the values of η1 and η2 only. However, given a solution to

Equation 5.6, the required thickness for the dielectric layer n1 is fixed by the same

set of equations as follows:

d1,M =

�
λ

4πn1 cosθ1,M

�
sin−1

�
2Zop

Xop (η1,M/η2,M −η2,M/η1,M)

�
, (5.7)

where n1, θ1,M, η1,M and η2,M are particular values that resulted in a solution to

Equation 5.6. Although not explicitly indicated in Equation 5.7, care must be taken

to ensure the angle of the arcsine is taken from the same quadrant that produced

the solution to Equation 5.6. Also note that Equation 5.7 corresponds specifically

to the minimum thickness that enables the admittance match. At normal incidence,

for example, any value d1 = d1,M +q(λ1/2), where q is an integer and λ1 = λ/n1,

will also produce an admittance match [17]. In general, the admittance matching

conditions are attained for periodically repeating values of d1. As illustrated below,

equations Equations 5.6 and 5.7 can be applied to a variety of tunneling problems,

including tunneling of propagating waves (i.e. real angles in both the dielectric and

ambient media) and tunneling of evanescent waves (i.e. with n2 > n1 and complex

angle θ1).

Note that Xop and Zop are real numbers by definition, and that η2 is a real number

for all cases considered below (i.e. lossless ambient media with real incident angle).

Thus, in all cases for which η1 is purely real (i.e. for non-evanescent wave solutions

90



in dielectric layers n1), solutions to Equation 5.6 are restricted to the following

range:

�
η1

η2
− η2

η1

�
≥

2Zop

Xop
. (5.8)

For a given metal layer, Equation 5.8 places a lower limit on the ratio η1/η2,

below which solutions to Equation 5.6 are not possible. The ratio Zop/Xop is

typically high (see Figure 5.2), and diverges for increasing Ag film thickness.

Thus, an admittance match is typically reliant on high values of η1/η2, especially

for large metal thickness.

5.3.1 Normal incidence in air

We first consider the simplest but practically important case of normal incidence

from an ambient air medium (i.e. n2 = 1). For normal incidence, the admittance of

a medium in free-space units is simply equal to its refractive index. From the

preceding discussion, solutions to Equation 5.6 are possible provided

(n1 −1/n1) > 2Zop/Xop. Given typical values of Xop and Zop for a thin Ag film in

the visible range (see Figure 5.2), this implies that high values of dielectric index

n1 (> 4) are necessary to achieve a perfect admittance match. Moreover, with fixed

n2 and for a given metal layer at a given wavelength, only a specific value of n1

results in a solution to Equation 5.6. This observation was made previously [17],

but in that case solely on the basis of a transfer-matrix numerical study. Solutions

to Equations 5.6 and 5.7 were obtained as a function of Ag film thickness using a

commercial software tool (Matlab), and representative data is shown in Figures

5.4(a) and 5.4(b).

The results in Figure 5.4(a) provide a theoretical underpinning for, and are in

exact agreement with, the transfer-matrix results seen in Figure 4.5(b), other than

some numerical noise in the earlier results. Clearly, an impractically large
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Figure 5.4: (a) The dielectric index required for admittance-matched tunneling of
normally incident waves through a periodic DMD stack (with Ag metal layers and
air ambient) is plotted for three different wavelengths. The symbol indicates the data
point used in subsequent examples. (b) The minimum dielectric layers thickness
that results in admittance-matched tunneling when combined with the dielectric
indices in part (a). (c) Predicted transmittance for a 1-period (blue solid line) and
20-period (blue dashed line) DMD multilayer with dM = 25 nm, n1 = 4.732 and
d1 = 17.5 nm (as indicated by the symbols in parts (a) and (b)). The red dashed lines
indicate PTMAX for each case. (d) Predicted reflectance for the structures in part (c).
Note that the reflectance diverges at 550 nm, indicating a perfect admittance match
for any number of periods.

dielectric index is required to facilitate a perfect admittance match for the Ag film

at normal incidence. Nevertheless, it is illustrative to consider the implications of

the solutions to Equations 5.6 and 5.7. As an example, Figures 5.4(c) and (d) show

the predicted T , PTMAX, and R for a specific admittance-matched case (λ = 550

nm, and assuming a unit cell with dM = 25 nm, n1 = 4.732 and d1 = 17.5 nm)

indicated by the symbols in Figures 5.4(a) and (b). T and R were calculated using

a transfer matrix technique, and PTMAX was calculated using previously described

expressions [17]. As expected, a perfect admittance match (i.e. T = PTMAX and

R = 0) is verified at λ = 550 nm. This perfect admittance match holds, in

principle, for a DMD multilayer comprising an arbitrary number of such unit cells.

To illustrate this, data for both 1- and 20-period cases are shown.
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Figure 5.5: (a) Incident angle that results in admittance-matched tunneling of TE
waves is plotted versus Ag film thickness, for n1 = 2.3 and n2 = 1, and at two
different wavelengths. The dotted curve plots the tunneling angle for λ = 550 nm,
n1 = 2.3, and n2 = 1.5. The symbol indicates the data point used in subsequent
examples. (b) The minimum dielectric layers thickness that results in admittance-
matched tunneling when combined with the indices and tunneling angles from part
(a). (c) Predicted transmittance versus incident angle for a 1-period (blue solid line)
and 10-period (blue dashed line) DMD multilayer with n1 = 2.3, n2 = 1, λ = 550
nm, dM = 25 nm, and d1 = 53.7 nm (as indicated by the symbols in parts (a) and
(b)). The red dashed lines indicate PTMAX for each case. (d) Predicted reflectance
for the structures in part (c). Note that the reflectance diverges at 75.01 degrees,
indicating a perfect admittance match.

5.3.2 Admittance-matched tunneling of TE-polarized propagating waves

Given the difficulty of achieving a perfect match at normal incidence, it is

interesting to consider tunneling at off-normal incidence. We first consider

structures with n1 > n2, such as the air-ambient case in the previous section. From

above, admittance matching requires a sufficiently high value of the ratio η1/η2.

Interestingly, for a given n2 and n1 > n2, this ratio increases with increasing

incident angle (θ2) for TE polarization, but decreases with increasing incident

angle for TM polarization. This implies that when n1 > n2, solutions to Equation

5.6 are possible for off-normal incidence of TE-polarized light only. Tunneling of

this kind was described by Hooper et al. [7], but not in the context of the PT theory

formalism employed here.
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As an example, solutions to Equations 5.6 and 5.7 were obtained for fixed

indices n1 = 2.3 and n2 = 1, with results at two different wavelengths plotted in

Figures 5.5(a) and (b). For a given wavelength and Ag film thickness,

admittance-matched tunneling of TE-polarized light is predicted at a specific

incident angle. To further illustrate, a specific data point from these solutions

(λ = 550 nm, dM = 25 nm, d1 = 53.71 nm) was used to generate plots of T and R

versus incident angle, shown in Figures 5.5(c) and (d). As expected,

admittance-matched tunneling occurs at the incident angle of 75.01 degrees

indicated by the symbol in Figure 5.5(a). As for the normal-incidence case, this

admittance match extends to a multilayer with arbitrary number of unit cells. The

1- and 10-period cases are shown as examples.

To our knowledge, this efficient tunneling of off-normal TE-polarized waves

through multi-period DMD stacks has not been studied previously. It might have

implications for the realization of polarizing and angularly selective filters.

However, it should be noted that the perfect admittance match is dependent on the

symmetry of the structures considered, including the assumption of identical input

and exit media. The air-ambient case considered would certainly present practical

challenges. Solutions exist for higher values of n2; example data is shown for

n2 = 1.5 in Figure 5.5(a). This could represent a DMD stack symmetrically

embedded between glass plates, for example. Note, however, that the solutions lie

at even higher incident angles in this case. For propagating waves in an external air

medium to access these tunneling angles, coupling prisms [7] or equivalent

momentum matching interfaces are required.

5.3.3 Admittance-matched tunneling of TM-polarized evanescent waves

Plasmon-mediated tunneling through symmetric, single-period DMD stacks was

originally reported by Dragila et al. [21] and later by Hayashi et al. [6].
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Analogous tunneling through multi-period DMD stacks was studied

experimentally by Tomita et al. [22] and theoretically by Feng et al. [13], who

proposed optical filters and modulators based on the concept. Relevant to the

present discussion, the low transmittance reported in [22] can be attributed in part

to non-optimal admittance matching in their structures.

Consider the structure in Figure 5.3 for cases when n2 > n1, which might

represent a periodic DMD multilayer coupled at its entrance and exit faces by high

index prisms. This geometry allows plane waves in the ambient media to couple

with evanescent waves in the dielectric layers, thereby enabling a straightforward

analysis of the Poynting power flow associated with surface-plasmon-mediated

tunneling [13, 17]. Excitation of evanescent waves occurs for

θ2 > θC = sin−1 (n1/n2), where θC is the critical angle for total internal reflection.

Assuming n1 and n2 represent lossless dielectrics, it follows that η1 and sinδ1 are

both purely imaginary under these conditions. In that case, the admittance

expressed by Equation 5.5 has the same general form as for the propagating wave

case, which means that Equations 5.6 and 5.7 retain their validity. However, with

n2 > n1, the ratio η1/η2 is expected to increase for TM waves and decrease for TE

waves as the incident angle is increased. Thus, opposite to the situation described

in the previous section, solutions to Equation 5.6 are expected for TM-polarized

waves only.

The existence and the nature of the solutions to Equation 5.6 were found to

depend on the stack parameters (λ , dM, n1, n2). However, typically two solutions

were found in the evanescent range for a given Ag film thickness and wavelength, as

shown by the representative data in Figures 5.6(a) and (b). Note that the transverse

wave vector is defined by kt = (2π/λ )n2 sinθ2, and that waves in the n1 layers are

evanescent when (kt/k0) > n1. We assumed n1 = 1.631 and a fictitious coupling

medium with n2 = 4, to enable comparison with similar structures studied by Feng
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Figure 5.6: (a) Normalized transverse wave vectors that result in admittance-
matched tunneling of TM waves is plotted versus Ag film thickness, for n1 = 1.631,
n2 = 4, and two different wavelengths (λ = 500 nm and λ = 550 nm). The symbols
indicate data points used in subsequent examples. (b) The minimum dielectric
layers thicknesses that result in admittance-matched tunneling when combined with
the indices and tunneling angles from part (a). (c) Predicted transmittance for a 1-
period DMD multilayer for λ = 500 nm, dM = 50 nm, n1 = 1.631, n2 = 4, and
various d1 as indicated by the labels. Note that d1 values corresponding to the data
points indicated by the symbols in part (b) result in admittance-matched tunneling
at the transverse wave vector values indicated by the corresponding symbols in
part (a). The red dashed line indicates PTMAX. (d) Predicted reflectance for the
structures in part (c). Note that the reflectance diverges for the two cases that
produce a perfect admittance match.

et al. [13]. For some combinations of λ and dM (such as for λ = 550 nm and

dM <∼ 42 nm in Figure 5.6(a)), no solutions are found.

The implications of the solutions to Equations 5.6 and 5.7 are analogous to

those for the propagating wave cases above. As an example, T and R were plotted

in Figures 5.6(c) and (d) for a particular admittance-matched case (λ = 500 nm,

dM = 50 nm. Consistent with the solutions in Figures 5.6(a) and (b), dielectric

thicknesses d1 = 12.77 nm and 46.07 nm result in a perfect admittance match (T =

PTMAX and R = 0) at normalized wave vector values of 2.18 and 3.61, respectively.

Other values of d1 result in a partial tunneling peak at a different angle, but without

a perfect admittance match. The data for d1 = 20 nm is shown as an example.

From an experimental perspective, coupling prisms with n2 = 4 are not practical.
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Figure 5.7: As in Figure 5.6, except with n2 = 1.515, n1 = 1.38, and for a 632.8-
nm wavelength. (a) Incident angle in external medium (θ2) that produces a perfect
admittance match. (b) Dielectric layers thickness that produces admittance-matched
tunneling when combined with the incidence angles from part (a). (c) Transmittance
versus incidence angle for a 1-period DMD structure, with λ = 632.8 nm, dM =
25 nm, and d1 set to the values indicated by the symbols in part (b), verifying a
tunneling peak at the corresponding angles from part (a). (d) Reflectance versus
incidence angle for the same conditions as in part (c).

Figure 5.7 shows results for a more practical combination of indices, n1 = 1.38 and

n2 = 1.515, representing the MgF2-based tunneling structures studied by Dragila et

al. [21].

As mentioned in the introduction, much of the recent interest in

plasmon-mediated tunneling through DMD structures is motivated by their

potential to transmit the evanescent fields from an object [8]. In these superlens

applications, there is a need to design MD structures offering both high

transmittance and low reflectance, ideally for a wide range of transverse wave

vectors and over the entire operational wavelength range of the lens. In particular,

significant reflectance of energy back towards the object contributes to image

distortion [10]. The model system studied above (a symmetric DMD stack,

symmetrically embedded in lossless ambient media) is not expected to capture all

pertinent details of the superlens. For example, transfer of energy associated with

the evanescent fields of an object necessarily involves optical absorption by the
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detector (at the image plane) and finite reflection from the lens [12]. Nevertheless,

the prism-coupled DMD stack can provide insight regarding the qualitative nature

of tunneling through the multilayer superlens [22, 23].

5.4 Summary and conclusions

Using potential transmittance theory, we derived a general equation describing the

conditions for admittance-matched tunneling through periodic DMD multilayers.

We furthermore verified its applicability to tunneling problems involving both

propagating and evanescent waves. For normal incidence, the equation predicts

that a perfect match occurs only for specific and large values of the dielectric

refractive index. For off-normal incidence and assuming fixed dielectric and

ambient medium indices, the equation predicts that a perfect admittance match

occurs at specific tunneling angles. For TE-polarized light, solutions are found in

the propagating wave regime. For TM-polarized light solutions are found in the

evanescent-wave regime.

In all cases, matching is predicted to occur at a single wavelength and/or

tunneling angle. It seems probable that using two or more dielectrics would enable

structures that are matched at more than one wavelength or tunneling angle. The

rich body of literature on multilayer anti-reflection coatings and on induced

transmission filters might provide substantial guidance in this regard, but such

studies are left for future work.
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6 Fabrication and testing of

dielectric-metal-dielectric multilayers

Although the study of dielectric-metal-dielectric filters in this thesis was primarily

theoretical in nature, some preliminary experimental work was also done. This

chapter outlines that work, which demonstrates some of the benefits of admittance

matching of DMD multilayers. Further experimental studies are left for future work.

6.1 Admittance matching of SiO2/Ag-based multilayer

structures

For certain applications, DMD multilayers with low-index dielectric layers provide

advantages such as lower loss, reduced nonlinearities, and ease of deposition [1].

However, the gap between Tmax and PTMAX is relatively large when the dielectric

index is low, due to an unavoidable admittance mismatch with the external air

medium. In terms of the equivalent layer representation discussed in Chapter 4, the

effective index can assume real values but typically ne f f � 1 [2]. In principle, this

index offset can be compensated (at a desired wavelength) by terminating the

DMD cell or multilayer with an appropriate admittance matching assembly

[2, 3, 4, 5, 6].

Figure 6.1 shows three different assemblies intended to mitigate admittance

mismatches between a 5-period SiO2/Ag multilayer and an ambient air medium.

The first (m1) adds a single SiO2 half-layer on both sides of the structure, forming

a DMD unit cell like those studied in Chapters 4 and 5. The second (m2) adds a

single TiO2 layer with a similar phase thickness to the SiO2 half-layer used in m1,

and was intended to examine the effects of a higher-index outer layer. For the third

structure (m3), the entire multilayer was designed to be an induced transmission

filter at a wavelength of ~500 nm, according to the standard procedures described
102



Figure 6.1: Schematic diagrams of SiO2/Ag multilayers with matching assemblies
for fabrication and use in simulations. The Ag layers are nominally ~25 nm thick.

in Chapter 7 of the textbook by Macleod[8]. The 74-nm SiO2 layer is a

phase-matching layer that converts the admittance of the 25-nm Ag films into a

real value, and the Ag films were separated by SiO2 layers of twice the

phase-matching thickness. Finally, the structure was terminated on both ends by

2-period quarter-wave stacks (QWS) of TiO2 and SiO2 layers with quarter-wave

thicknesses appropriate for the ~500-nm wavelength light. With appropriate choice

of the number of periods, stacks transform the effective index of the multilayer to a

value close to 1 [8]. For the design and for the transfer matrix simulations below,

Ag optical constants were calculated from the Rakic model [10], TiO2 optical

constants were from the model of Kim [11], and a fixed index n = 1.45 was used

for SiO2. These models were verified by ellipsometric measurements (not shown)

on TiO2 and SiO2 films. The presence of a glass substrate (instead of air) was also

taken into account, but does not greatly affect the design or the predicted optical

response.

Figure 6.2 shows the results of normal-incidence transfer matrix simulations

(source code given in Appendix A) for both the unmatched multilayer and for

sample m1, as shown in Figure 6.1. The addition of a simple half-layer

significantly increases the transmittance of the metal-dielectric structure. The
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Figure 6.2: Simulated transmittance curves for the unmatched assembly and
multilayer m1 shown in Figure 6.1.

results for the three multilayer structures, as well as a structure that uses TiO2

exclusively for the dielectric (with 76-nm layers separating the Ag layers and the

same 40-nm matching layer as in m2), are shown in Figure 6.3 (a). As expected,

the m3 induced transmission filter has T ∼ PTMAX at the designed wavelength, at a

cost of reduced bandwidth in comparison to the other structures. The simple

design (m1) has a relatively low transmittance and significant ripple in the

passband. In comparison, the m2 design shows higher transmittance, increased

bandwidth and reduced ripple. It also has benefit of being simpler to implement

than the induced transmission design, with only slightly lower transmittance.

When compared to the structure using all TiO2 layers, the m2 design shows a

slightly higher peak transmittance and a reduced bandwidth. This behaviour is

interesting in that it shows that some of the benefits associated with high-index

dielectrics [1, 13, 14] can be obtained by replacing only the SiO2 half-layer with

TiO2, and may be a useful compromise in some situations.

In preliminary experimental work, structures were grown in a multi-pocket

e-beam evaporation system. Target materials were Ag, SiO2, and TiO2, and films

were deposited onto glass substrates that had been previously cleaned using a
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Figure 6.3: (a) Theoretical transmittance for the three multilayer structures shown
in Figure 6.1. The additional blue dashed line shows the transmittance for a
TiO2-only structure, with the Ag layers spaced by 76-nm TiO2 layers. The red
dotted line shows the PTMAX for a structure containing five 25-nm thick Ag films.
(b) Experimental transmittance for the fabricated structures based on the three
structures shown in Figure 6.1. The symbols show another theoretical prediction
for m3, with the addition of a +7% error in the thickness of all SiO2 layers that
produces a better fit to the experimental result.

piranha solution. Chamber base pressure was ∼ 10−6 Torr. TiO2 films (only) were

deposited in an oxygen environment at pressure ∼ 5×10−5 Torr, in order to ensure

stoichiometry [11]. Normal-incidence transmittance curves were obtained using a

VASE instrument (J.A. Woollam Co. Inc.) and verified using a spectrophotometer

(Perkin-Elmer Lambda 900). The transmittance in each case was normalized to

that for a blank glass substrate.

Experimental and theoretical results showed reasonable agreement (Figure 6.3),

although the experimental transmittance was slightly less than the predicted value

in each case. This reduction in transmittance was likely due in part to the use of

Ag bulk constants in the simulation results, because thin films have a tendency to

exhibit higher loss from roughness-induced scattering [1, 12]. The experimental

curves also show a shift to higher wavelengths, which we attribute to a systematic

error in the thickness of the SiO2 layers. For example, introducing a 7% increase

in thickness of the SiO2 layers of the m3 structure produced a transmittance curve

with a much better fit (as shown in Figure 6.3(b)). Another discrepancy shown by

the curves is a slight reduction in bandwidth compared to the predicted curves. This
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Figure 6.4: Cross-sectional TEM image of structure m3. The glass substrate is
visible in the upper-left of the picture.

reduction could potentially be caused by random layer thickness errors, leading to

a reduction in the splitting of the coupled cavity modes [7, 15]. Tighter controls

in the deposition process could most likely reduce or eliminate these discrepancies.

Nevertheless, the relative transparency and shape of the transmission curves show

similar trends in the theoretical and experimental results.

We have also performed preliminary transmission electron microscopy (TEM)

analysis of the samples, as shown for example in Figure 6.4, and the results are

consistent with the aforementioned hypotheses. However, accurate thickness

estimation was hindered by difficulties with sample preparation, which resulted in

Ag layers appearing erroneously thick. Work aimed at improving the deposition

accuracy and the TEM analysis of layer thickness is ongoing, and we hope to

obtain a more complete set of experimental results in future work.
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6.2 Transmission of oblique-incidence light through SiO2/Ag

multilayers

In addition to the measurements detailed above, preliminary measurements have

been performed to determine the transmission response of the basic single-layer

multilayers (m1 and m2) for oblique-incidence light. The m3 multilayer was not

measured since it is an induced transmission filter designed specifically for normal

incidence light. Transmission scans were obtained with a spectrophotometer

(Perkin-Elmer Lambda 900), using a rotation stage to orient the sample to the

desired incidence angle, and simulation results were obtained using the transfer

matrix formulation code used in Section 6.1 and outlined in Appendix A, modified

to calculate transmittance for both TE and TM waves for different incidence

angles. Since the spectrometer’s light source was unpolarized, the simulation

results for TE and TM were averaged to find total transmittance values for

comparison to the measured results. Results for m1 and m2 are shown in Figures

6.5 and 6.6, respectively.

As in the normal incidence case, the actual measured curves show a reduction in

bandwidth and transmittance, as well as a shift to higher wavelengths. Despite these

discrepancies, the shapes of the curves maintain a level of consistency between

experiment and theory in terms of their shapes and an overall shift of the curves to

lower wavelengths as the angle of incidence is increased. The change in number of

peaks and curve shape remains consistent for different angles, even in a case such

as the m2 multilayer at 30 degrees angle of incidence, where both the simulated

and measured curves become smooth. However, as mentioned previously, a more

controlled deposition process will be necessary for more accurate and predictable

results to be obtained.
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Figure 6.5: Theoretical and experimental transmittance curves at different light
incidence angles (relative to normal) for the multilayer structure m1 shown in
Figure 6.1. Theoretical transmittance was obtained by averaging the predicted
transmittance for TE and TM polarization. The experimental and theoretical curves
are plotted on different scales in order to facilitate comparison of their shapes.
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Figure 6.6: Theoretical and experimental transmittance curves at different light
incidence angles (relative to normal) for the multilayer structure m2 shown in
Figure 6.1. Theoretical transmittance was obtained by averaging the predicted
transmittance for TE and TM polarization. The experimental and theoretical curves
are plotted on different scales in order to facilitate comparison of their shapes.
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7 Conclusions

7.1 Summary

This thesis describes several contributions that are relevant to the future

development of integrated lab-on-a-chip systems. These include:

- The fabrication of novel resonant microcavities using buckling self-assembly.

The cavities were shown to have good quality factor and finesse, and exhibited some

of the cleanest Hermite- and Laguerre-Gaussian mode structures ever reported for

on-chip microcavities.

- The application of potential transmittance theory to resonant tunneling through

MD stacks, for both propagating and evanescent wave tunneling. To our knowledge,

this work is the first to unify these separate classes of tunneling problems.

- The derivation of a general expression that encapsulates the admittance

matching conditions for a dielectric-metal-dielectric unit cell, and for periodic

structures based on such unit cells. We furthermore applied this admittance

matching expression to the two classes of tunneling problems (i.e. tunneling of

propagating and evanescent waves) mentioned above.

7.1.1 Resonant microcavities formed through buckling self-assembly

As summarized in Chapter 1, this thesis was partly motivated by previous work on

microstructures fabricated by controlled buckling of multilayer films. After

studying waveguides made with this technique [1, 2, 3], we turned our attention to

dome-shaped microcavities, as outlined in Chapter 3. Arrays of cavities with

diameters varying from 200-400 µm were fabricated in a Si/SiO2 multilayer

system and subsequently measured to determine their optical and morphological

properties. Measurements of the profiles of the domes showed peak heights to be

in agreement with those predicted by elastic buckling theory, and optical
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transmission measurements showed the quality factor Q, finesse F and mode

volume Vm to be similar or superior to those seen in other cavities reported in the

literature [4, 5, 6]. The measured Q-factor and finesse of the domes were as high as

4 × 104 and 3× 103, respectively, quite high for cavities on this scale [4]. The

domes also allowed straightforward isolation of individual Hermite- and

Laguerre-Gaussian modes, indicating a high degree of cylindrical symmetry in the

shape of the cavities.

Buckling self-assembly is a novel method of manufacturing these cavities, given

that these devices have typically been made using relatively time-intensive serial

processing techniques [4, 5]. The buckling technique allows microcavity arrays to

be quickly made in parallel using standard silicon processing methods such as film

deposition and lithography. This process also allows for the creation of structures

with very smooth features and highly regular shapes (verified by the high Q and F

values measured for our domes), important properties for the creation of resonant

cavities.

7.1.2 Optimization of transmittance of periodic metal-dielectric multilayers

Since bucking self-assembly has been shown to be a viable method of creating

structures in multilayer thin films, we undertook a theoretical study of optimizing

transmittance through metal layers, with the goal of eventually forming buckled

structures within metal-dielectric (MD) multilayers. Thin metal films have several

properties that make them desirable to various applications including filters,

resonators and spectroscopic devices, and have seen a great deal of recent study as

transparent conductors [7], in which it has been observed that metals (normally

highly absorptive in bulk form) can be transparent for certain wavelengths when

deposited as thin films and admittance matched using dielectric layers. We showed

that transparency in MD multilayers is aptly explained by the theory of potential
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transmittance (PT), developed by Berning and Turner in 1957 [8], a fact that has

been somewhat under appreciated in current literature. Furthermore, we showed

that PT theory is a useful tool for finding the upper limit on metal transparency, for

both Fabry-Perot (propagating wave) and surface plasmon (evanescent wave)

resonances. To our knowledge, ours is the first study that has unified these two

tunneling mechanisms within a single theoretical framework. In combination with

equivalent layer theory, it can also be used to help understand and clarify the

conditions for admittance matching, and we found in general that to achieve a

reasonably good admittance match, higher index dielectrics are needed as metal

thickness is increased. This work is outlined in Chapter 4.

We extended our work into MD multilayers and derived an expression to find

the conditions for reflection-less tunneling through a periodic stack with a

dielectric-metal-dielectric unit cell. This equation was then used to examine

admittance matching for different input light configurations. We found that for

perfect matching with normal incidence light, a dielectric layer with specific and

impractically large refractive index is needed. For TE-polarized light, perfect

matching is obtainable for a specific incidence angle determined by the refractive

indices of the dielectric and ambient media, and the thickness and refractive index

of the metal. For TM-polarized light, perfect matching is possible in the

evanescent wave regime. In all cases, matching occurred at a single wavelength

and/or tunneling angle. This work is outlined in Chapter 5.

In addition, we also designed, fabricated and performed preliminary

measurements on several different MD multilayer structures. A quarter-wave stack

based structure designed to be an induced transmission filter showed transparency

limited only by the potential transmittance of the metal layers, although at a cost of

reduced bandwidth and increased fabrication complexity. A simpler design, using

a single high-index matching layer on each end of the multilayer structure showed
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a lesser increase in transmittance, but had a wider bandwidth that may be useful in

appropriate applications. The single layer design also was improvable in

transmission and bandwidth by using TiO2 instead of SiO2 as the matching layer.

7.2 Future work

7.2.1 Resonant microcavities formed through buckling self-assembly

The microcavities studied in Chapter 3 offer significant potential for future work.

It should be possible to improve the Q and F of the cavities through improvements

to the fabrication process; for example, reducing the absorption losses from the

a-Si layers by replacing them with hydrogenated Si. In addition, the cavities could

be tailored for shorter wavelength regions by using different dielectric materials

such as TiO2, assuming that they can be deposited in a way that induces the needed

compressive stress in the layers. As mentioned in Chapter 3, the transmitted power

from the domes experienced significant drift when input light was set to the dome

resonant frequency. Further study could determine the source of the drift - whether

it was due to thermal expansion from absorption in the mirrors, environmental

factors such as humidity or temperature, radiation pressure induced by resonant

photons in the cavity, or a combination of other factors. Moreover, these variations

could be harnessed for useful applications such as sensing of temperature or

pressure. Perhaps the most interesting possibility for future work is to integrate the

domes with other hollow structures formed with buckling self-assembly. Hollow

waveguide channels could potentially be used to introduce fluids or gases into the

domes, which would present interesting options for microfluidic sensing

applications. An early prototype of such a system is shown in Figure 7.1.
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Figure 7.1: Example of a microfluidic system fabricated as a test to see if hollow
waveguide channels and a dome microcavity could be integrated using the buckling
self-assembly process. This device could potentially be used as a junction point to
introduce a laser probe or pump beam into a fluid.

7.2.2 Optimization of transmittance of periodic metal-dielectric multilayers

Since our study of MD multilayers was primarily theoretical, the most obvious

next step is to expand the experimental results to further verify the results seen in

Chapters 4 and 5. In addition, further theoretical studies are warranted. For

example, in our study of the maximization of transmission of evanescent waves,

we limited our scope to waves in a prism coupling system. It would be interesting

to extend the study to a consideration of other coupling systems, such as

diffraction gratings. Also, it could be interesting to study the effect of matching

assemblies consisting of multiple dielectric layers with different refractive indices,

to see their effect on the transmission spectrum of the overall MD multilayer

structure. A final possibility for future work would be to combine the knowledge

obtained on maximizing transmittance through MD multilayers with the

microstructures made through buckling self-assembly. Adding metal to these

structures might provide for mirrors with better reflectance or interesting spectral
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transmittance properties, making them highly useful for many applications such as

optical resonators, filters and superlenses. However, much work would need to be

done to determine the effects of the metal layers on the buckling process.
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Appendix A: Source code

Determination of optimal admittance matching conditions for a

DMD multilayer structure (Chapter 5)

Normal incidence case

This Matlab file calculates the dielectric index required to maximize the potential

transmittance of a silver film embedded in air, as a function of film thickness and at

a single wavelength for normal incidence light. Results obtained from this code can

be seen in Figure 5.4(a) and (b).

% Inputs

% lam - free-space wavelength

AgOpCon; %Matlab file that calculates the optical constants of

Ag

nAg=nAgv;

kAg=kAgv;

dAg=9.9e-9;

qa=0;

Xo=1.5;

while Xo>1.1;

dAg=dAg+0.05e-9;

qa=qa+1;

dAgnm(qa)=dAg*1e9;

aAg=2*pi*nAg*dAg/lam; % Real part of effective phase

thickness of Ag layer

bAg=2*pi*kAg*dAg/lam; % Imaginary part of effective phase

thickness of Ag layer

%Calculations for quantities used in equations for Xo and Zo:

sa=sin(aAg);

ca=cos(aAg);

cb=cos(bAg);

sb=sin(bAg);

sha=sinh(aAg);
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shb=sinh(bAg);

cha=cosh(aAg);

chb=cosh(bAg);

Xo=sqrt(((nAg^2+kAg^2)*(nAg*shb*chb+kAg*sa*ca)/(nAg*shb*chb

-kAg*sa*ca))-(nAg^2*kAg^2*(sa^2*chb^2+ca^2*shb^2)^2

/(nAg*shb*chb-kAg*sa*ca)^2));

Zo=nAg*kAg*(sa^2*chb^2+ca^2*shb^2)/(nAg*shb*chb-kAg*sa*ca);

Xv(qa)=Xo;

Zv(qa)=Zo;

A=2*Zo/Xo;

ndmin=(A+sqrt(A^2+4))/2;

Xndm=2*ndmin^2/(ndmin^2+1);

PTi=(((nAg^2-kAg^2)-2*nAg*kAg*(Zo/Xo))/(nAg^2+kAg^2))

*(sa^2*chb^2+ca^2*shb^2)+(ca^2*chb^2+sa^2*shb^2)

+(nAg*shb*chb+kAg*sa*ca)/Xo+(nAg*shb*chb-kAg*sa*ca)

*(Xo^2+Zo^2)/(Xo*(nAg^2+kAg^2));

PTm(qa)=1/PTi; %maximum potential transmittance of the Ag

film at current wavelength

if Xo>Xndm

nop(qa)=fzero(’nopt2’,4.5,[],Xo,Zo); % Solves Equation 5.6 to

find optimal index, see below for nopt3

del=0.5*(pi-asin(2*Zo/(Xo*(nop(qa)-1/nop(qa)))));

dop=del*lam/(2*pi*nop(qa)); % Calculates optimal thickness

based on optimal index

dopnm(qa)=1e9*dop;

else

nop(qa)=fminsearch(’nopt3’,4.5,[],Xo,Zo); % Solves Equation

5.6 to find optimal index, see below for nopt3

del=0.5*(asin(2*Zo/(Xo*(nop(qa)-1/nop(qa)))));

dop=del*lam/(2*pi*nop(qa)); % Calculates optimal thickness

based on optimal index

dopnm(qa)=1e9*dop;

end

end

%
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subplot(2,2,1)

plot(dAgnm,nop)

subplot(2,2,3)

plot(dAgnm,dopnm)

nopt2:

This Matlab file encodes the equation for the dielectric refractive index

(Equation 5.6) that results in optimal impedance matching of a thin Ag film in air,

bounded by a single dielectric layer on each side. The real value of the equation is

taken to eliminate numerical noise introduced by Matlab, and is intented for use

with the built-in function fzero, for cases where Xo>Xndm.

function nd=nopt2(nD,Xz,Zz)

nd=real(2+Xz*(cos(asin(2*Zz/(Xz*(nD-1/nD))))*(1-(1/nD^2))

-(1+(1/nD^2))));

nopt3:

This Matlab file encodes the equation for the dielectric refractive index

(Equation 5.6) that results in optimal impedance matching of a thin Ag film in air,

bounded by a single dielectric layer on each side. The absolute value of the

equation is taken to eliminate numerical noise introduced by Matlab, and is

intended for use with the built-in function fminsearch, which was found to be more

robust for cases where Xo<Xndm.

function nd=nopt3(nD,Xz,Zz)

nd=abs(2+Xz*(-cos(asin(2*Zz/(Xz*(nD-1/nD))))*(1-(1/nD^2))

-(1+(1/nD^2))));

TE-polarized case

This Matlab code calculates the angular position of the impedance-matched TE

tunneling peak versus metal thickness, for a fixed dielectric spacer index, fixed
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’prism’ index, and fixed wavelength. The data obtained using this code is shown in

Figure 5.5(a) and (b).

% % Inputs

% dAgv - vector of thicknesses for the Ag film

% lam - free-space wavelength

dAgnm=dAgv*1e9;

AgOpCon; %Matlab file that calculates the optical constants of

Ag

Nm1=nAgv-i*kAgv;

nd1=2.3; %index of dielectric spacer layer

np1=1.5; %index of input/output media

kop1=1; %initial guess for the fzero function

for qa=1:length(dAgv);

dm1=dAgv(qa);

kop(qa)=fzero(’noptTE’,kop1,[],nd1,np1,Nm1,dm1,lam); % Solves

Equation 5.6 to find optimal angle (in terms of transverse wave

vector), see below for noptTE

kop1=kop(qa);

dop=doptTE(kop(qa),nd1,np1,Nm1,dm1,lam); % Calculates optimal

thickness, see below for doptTE

dopnm(qa)=1e9*dop;

end

angop=(180./pi).*asin(kop./np1);

subplot(2,2,1)

plot(dAgnm,angop)

subplot(2,2,3)

plot(dAgnm,dopnm)

noptTE:

This Matlab file encodes the equation for the angle in terms of transverse

wavevector (ktt) for TE polarization that results in optimal impedance matching of

a thin metal film (Nm1), bounded by a single dielectric layer (n1) on each side, and

coupled by identical input/output dielectric media (n2).

function ktt=noptTE(kt,n1,n2,Nm1,dm1,lam1)
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angm=asin(kt/Nm1); %complex angle in the Ag medium

ang1=asin(kt/n1); %imaginary angle in bounding dielectric

layers

ang2=asin(kt/n2); %real angle in ’prism’ media

i1=conj(n1*cos(ang1)); %admittance of dielectric layers for

TE polarization

i2=conj(n2*cos(ang2)); %admittance of prism media for TE

polarization

nm1=real(Nm1);

km1=abs(real(Nm1));

dM=(2*pi/lam1)*dm1*Nm1*cos(angm);

iM=Nm1*cos(angm);

aAg=real(dM);

bAg=-imag(dM);

iR=real(iM);

iI=-imag(iM);

sa=sin(aAg);

ca=cos(aAg);

cb=cos(bAg);

sb=sin(bAg);

sha=sinh(aAg);

shb=sinh(bAg);

cha=cosh(aAg);

chb=cosh(bAg);

Xz=sqrt(((iR^2+iI^2)*(iR*shb*chb+iI*sa*ca)/(iR*shb*chb

-iI*sa*ca))-(iR^2*iI^2*(sa^2*chb^2+ca^2*shb^2)^2

/(iR*shb*chb-iI*sa*ca)^2));

Zz=iR*iI*(sa^2*chb^2+ca^2*shb^2)/(iR*shb*chb-iI*sa*ca);

ktt=real(2*i2+Xz*(cos(asin(2*Zz/(Xz*(i1/i2-i2/i1))))*(1

-(i2^2/i1^2))-(1+(i2^2/i1^2))));

doptTE:

This Matlab file encodes the equation to calculate the thickness of the dielectric

layers that produces an optimal impedance match for a DMD structure, once the

optimal tunneling angle has been determined from noptTE.m.
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function dop1=doptTE(kt,n1,n2,Nm1,dm1,lam1)

angm=asin(kt/Nm1); %complex angle in the Ag medium

ang1=asin(kt/n1); %imaginary angle in bounding dielectric

layers

ang2=asin(kt/n2); %real angle in ’prism’ media

i1=conj(n1*cos(ang1)); %admittance of dielectric layers for

TE polarization

i2=conj(n2*cos(ang2)); %admittance of prism media for TE

polarization

nm1=real(Nm1);

km1=abs(real(Nm1));

dM=(2*pi/lam1)*dm1*Nm1*cos(angm);

iM=Nm1*cos(angm);

aAg=real(dM);

bAg=-imag(dM);

iR=real(iM);

iI=-imag(iM);

sa=sin(aAg);

ca=cos(aAg);

cb=cos(bAg);

sb=sin(bAg);

sha=sinh(aAg);

shb=sinh(bAg);

cha=cosh(aAg);

chb=cosh(bAg);

Xz=sqrt(((iR^2+iI^2)*(iR*shb*chb+iI*sa*ca)/(iR*shb*chb

-iI*sa*ca))-(iR^2*iI^2*(sa^2*chb^2+ca^2*shb^2)^2

/(iR*shb*chb-iI*sa*ca)^2));

Zz=iR*iI*(sa^2*chb^2+ca^2*shb^2)/(iR*shb*chb-iI*sa*ca);

del=0.5*(pi-asin(2*Zz/(Xz*(i1/i2-i2/i1))));

dop1=real(del*lam1/(2*pi*n1*cos(ang1)));
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TM-polarized case

This Matlab file calculates the angular position of the impedance matched surface-

plasmon mediated tunneling peak versus wavelength, for a fixed dielectric spacer

index, fixed ’prism’ index, and fixed metal thickness. Results obtained using this

code can be found in Figure 5.6(a) and (b) and Figure 5.7(a) and (b).

% Inputs

% dAgv - vector of thicknesses for the Ag film

% lam - free-space wavelength

% dAgnm=dAgv*1e9;

AgOpCon; %Matlab file that calculates the optical constants of

Ag

Nm1=nAgv-i*kAgv;

nd1=1.38;%1.631;%; %index of dielectric spacer layer

np1=1.515;%4;% %index of coupling ’prisms’

kop1=1.4;%3.8;%0.2; % initial guess for fzero function

for qa=1:length(dAgv);

dm1=dAgv(qa);

kop(qa)=fzero(’noptSP’,kop1,[],nd1,np1,Nm1,dm1,lam); % Solves

Equation 5.6 to find optimal angle (in terms of transverse wave

vector), see below for noptSP

kop1=kop(qa);

dop=doptSP(kop(qa),nd1,np1,Nm1,dm1,lam);

dopnm(qa)=abs(1e9*dop);

end

angop=(180./pi).*asin(kop./np1);

subplot(2,2,1)

plot(dAgnm,kop)

subplot(2,2,3)

plot(dAgnm,dopnm)

noptSP:

This Matlab file encodes the equation for the tunneling angle in terms of

transverse wavevector (ktt) that results in optimal impedance matching of a thin
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metal film (Nm1), bounded by a single dielectric layer (n1) on each side, and

coupled by high index input/output ’prisms’ (Nm1,dm1).

function ktt=noptSP(kt,n1,n2,Nm1,dm1,lam1)

angm=asin(kt/Nm1); %complex angle in the Ag medium

ang1=asin(kt/n1); %imaginary angle in bounding dielectric

layers

ang2=asin(kt/n2); %real angle in ’prism’ media

i1=conj(n1/cos(ang1)); %admittance of dielectric layers for

TM polarization

i2=conj(n2/cos(ang2)); %admittance of prism media for TM

polarization

nm1=real(Nm1);

km1=abs(real(Nm1));

dM=(2*pi/lam1)*dm1*Nm1*cos(angm);

iM=Nm1/cos(angm);

aAg=real(dM);

bAg=-imag(dM);

iR=real(iM);

iI=-imag(iM);

sa=sin(aAg);

ca=cos(aAg);

cb=cos(bAg);

sb=sin(bAg);

sha=sinh(aAg);

shb=sinh(bAg);

cha=cosh(aAg);

chb=cosh(bAg);

Xz=sqrt(((iR^2+iI^2)*(iR*shb*chb+iI*sa*ca)/(iR*shb*chb

-iI*sa*ca))-(iR^2*iI^2*(sa^2*chb^2+ca^2*shb^2)^2

/(iR*shb*chb-iI*sa*ca)^2));

Zz=iR*iI*(sa^2*chb^2+ca^2*shb^2)/(iR*shb*chb-iI*sa*ca);

ktt=real(2*i2+Xz*(-cos(asin(2*Zz/(Xz*(i1/i2-i2/i1))))*(1

-(i2^2/i1^2))-(1+(i2^2/i1^2))));

doptSP:
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This Matlab file encodes the equation to calculate the thickness of the dielectric

layers that produces an optimal impedance match for a DMD structure, once the

optimal tunneling angle has been determined from noptSP.m.

function dop1=doptSP(kt,n1,n2,Nm1,dm1,lam1)

angm=asin(kt/Nm1); %complex angle in the Ag medium

ang1=asin(kt/n1); %imaginary angle in bounding dielectric

layers

ang2=asin(kt/n2); %real angle in ’prism’ media

i1=conj(n1/cos(ang1)); %impedance of dielectric layers for TM

polarization

i2=conj(n2/cos(ang2)); %impedance of prism media for TM

polarization

nm1=real(Nm1);

km1=abs(real(Nm1));

dM=(2*pi/lam1)*dm1*Nm1*cos(angm);

iM=Nm1/cos(angm);

aAg=real(dM);%2*pi*nAg*dAg/lam;

bAg=-imag(dM);%2*pi*kAg*dAg/lam;

iR=real(iM);

iI=-imag(iM);

sa=sin(aAg);

ca=cos(aAg);

cb=cos(bAg);

sb=sin(bAg);

sha=sinh(aAg);

shb=sinh(bAg);

cha=cosh(aAg);

chb=cosh(bAg);

Xz=sqrt(((iR^2+iI^2)*(iR*shb*chb+iI*sa*ca)/(iR*shb*chb

-iI*sa*ca))-(iR^2*iI^2*(sa^2*chb^2+ca^2*shb^2)^2

/(iR*shb*chb-iI*sa*ca)^2));

Zz=iR*iI*(sa^2*chb^2+ca^2*shb^2)/(iR*shb*chb-iI*sa*ca);

del=0.5*asin(2*Zz/(Xz*(i1/i2-i2/i1)));

dop1=-real(del*lam1/(2*pi*n1*cos(ang1)));
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Transfer matrix simulation of admittance-matched multilayer

structures (Chapter 6)

This Matlab code simulates the optical reflectance, transmittance, absorbance, and

potential transmittance versus wavelength for various incidence angles of a

periodic metal-dielectric-metal structure, for both TE and TM polarization. The

file is set up for a half-space of air on the incident side and a fixed index ’substrate’

on the transmission side of the multilayer. The transfer matrix formulation for TE

polarization is taken from the 4th edition of the text, Optics, by Eugene Hecht [1],

and the TM is taken from the 7th edition of Principles of Optics by Max Born and

Emil Wolfe [2]. The transfer matrix formulations and variables used here are

specific to the structures detailed in Chapter 6, but different structures can easily be

implemented by defining layer thicknesses and periods for the multilayers

structures, calculating the characteristic matrices of the layers, and multiplying the

matrices to obtain an overall structure matrix.

% % % User inputs

% dl - thickness of the low index (SiO2) layers

% dli - thickness of the low index (SiO2) ’antireflection’ phase

matching

% layers (if used), assumed same at input and output sides.

% dh - thickness of the high index (TiO2) layers

% dhi - thickness of high index (TiO2) ’antireflection’ layers,

if used.

% dAg - thickness of metal (Ag) layers

% zo - integer number of periods in mirror

% lambda0 - vector of free-space wavelengths

imp=376.8; % impedance of free space

thetain=(pi/180)*[0 10 30 40 50 60]; % vector of input angles,

relative to normal

% Indices for the low and high index layers:

nl=1.45; %modify these as necessary
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AgOpCon; %Matlab file that calculates the optical constants of

Ag

TiO2OpCon; %Matlab file that calculates the optical constants of

TiO2

n=ntio2;

nsub=1; % fixed substrate index

for qt=1:length(thetain)

angin=thetain(qt);

for ql=1:length(lambda0)

nh=n(ql);

nAg=nAgv(ql);

kAg=kAgv(ql);

NAg=nAg-i*kAg;

lam=lambda0(ql); %current free space wavelength

Snell’s law is used to determine the angle in each type of layer at the current

wavelength and air incidence angle:

angl=asin(sin(angin)/nl); %angle in low index layers

angh=asin(sin(angin)/nh); %angle in high index layers

angAg=asin(sin(angin)/NAg); %angle in Ag layers

angS=asin(sin(angin)/nsub); %angle in substrate

Parameters that go into the Hecht transfer matrix formulation are calculated for each

type of layer:

kohl=(2*pi/lam)*nl*dl*cos(angl); %phase thickness of low n

layers

kohli=(2*pi/lam)*nl*dli*cos(angl); %phase thickness of low n

AR layers

kohh=(2*pi/lam)*nh*dh*cos(angh); %phase thickness of high n

layers

kohAg=(2*pi/lam)*NAg*dAg*cos(angAg); %phase thickness of Ag

layers

yote=cos(angin)/imp; %effective admittance of air for TE

polarization
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zotm=cos(angin)*imp; %effective impedance of air for TM

polarization

ylte=nl*cos(angl)/imp; %effective admittance of low index

layers for TE

zltm=(cos(angl)*imp)/nl; %effective impedance of low index

layers for TM

yhte=nh*cos(angh)/imp; %effective admittance of high index

layers for TE

zhtm=(cos(angh)*imp)/nh; %effective impedance of high index

layers for TM

yAgte=NAg*cos(angAg)/imp; %effective admittance of Ag layers

for TE

zAgtm=(cos(angAg)*imp)/NAg; %effective impedance of Ag layers

for TM

yste=nsub*cos(angS)/imp;%effective admittance of substrate

for TE

zstm=(cos(angS)*imp)/nsub; %effective impedance of substrate

for TM

The transfer matrices for each type of layer at the current wavelength and indicent

angle are calcuated for both TE and TM polarization:

mlte=[cos(kohl) i*sin(kohl)/ylte; i*ylte*sin(kohl)

cos(kohl)];

mlite=[cos(kohli) i*sin(kohli)/ylte; i*ylte*sin(kohli)

cos(kohli)];

mltm=[cos(kohl) i*sin(kohl)/zltm; i*zltm*sin(kohl)

cos(kohl)];

mlitm=[cos(kohli) i*sin(kohli)/zltm; i*zltm*sin(kohli)

cos(kohli)];

mhte=[cos(kohh) i*sin(kohh)/yhte; i*yhte*sin(kohh)

cos(kohh)];

%mhite=[cos(kohhi) i*sin(kohhi)/yhte; i*yhte*sin(kohhi)

cos(kohhi)];

mhtm=[cos(kohh) i*sin(kohh)/zhtm; i*zhtm*sin(kohh)

cos(kohh)];
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%mhitm=[cos(kohhi) i*sin(kohhi)/zhtm; i*zhtm*sin(kohhi)

cos(kohhi)];

mAgte=[cos(kohAg) i*sin(kohAg)/yAgte; i*yAgte*sin(kohAg)

cos(kohAg)];

mAgtm=[cos(kohAg) i*sin(kohAg)/zAgtm; i*zAgtm*sin(kohAg)

cos(kohAg)];

Next, the overall transfer matrices for the multilayer at the current wavelength and

incident angle are calculated, for both TE and TM. These matrices describe the

overall structure of the multilayer, and can be customized to any given structure

as long as the characteristic matrix of the layer can be calculated as in the above

lines of code. The overall matrix for the first admittance-matched multilayer (m1)

in Chapter 6 is shown here for illustrative purposes.

mte=(mlte*mAgte*mlte)^zo; %multilayer 1

mtm=(mltm*mAgtm*mltm)^zo; %multilayer 1

The amplitude reflection coefficients at the current incident angle and wavelength

are calculated:

rte=(yote*mte(1,1)+yote*yste*mte(1,2)-mte(2,1)

-yste*mte(2,2))/(yote*mte(1,1)+yote*yste*mte(1,2)+mte(2,1)

+yste*mte(2,2));

rtm=(zotm*mtm(1,1)+zotm*zstm*mtm(1,2)-mtm(2,1)

-zstm*mtm(2,2))/(zotm*mtm(1,1)+zotm*zstm*mtm(1,2)+mtm(2,1)

+zstm*mtm(2,2));

tte=(2*yote)/(yote*mte(1,1)+yote*yste*mte(1,2)+mte(2,1)

+yste*mte(2,2));

ttm=(2*zotm)/(zotm*mtm(1,1)+zotm*zstm*mtm(1,2)+mtm(2,1)

+zstm*mtm(2,2));

The reflectances, transmittances and potential transmittances at the current incident

angle and wavelength are calculated and stored:

Rte(qt,ql)=rte*conj(rte);

Rtm(qt,ql)=rtm*conj(rtm);

131



Tte(qt,ql)=tte*conj(tte)*nsub*cos(angS)/cos(angin);

Ttm(qt,ql)=ttm*conj(ttm)*cos(angS)/(nsub*cos(angin));

PTte(qt,ql)=Tte(qt,ql)/(1-Rte(qt,ql));

PTtm(qt,ql)=Ttm(qt,ql)/(1-Rtm(qt,ql));

end

end

The values for TE and TM polarizations are averaged to find total reflectance,

transmittance and potential transmittance:

Ravg=(Rte+Rtm)./2;

Tavg=(Tte+Ttm)./2;

PTavg=(PTte+PTtm)./2;

For the simulations in Chapter 6, the following values and overall matrix equations

were used:

m0 - Unmatched multilayer
dl=140e-9

dAg=25e-9

zo=4

mte=(mAgte*mlte)^zo*mAgte

mtm=(mAgtm*mltm)^zo*mAgtm

m1 - Single SiO2 matching layer
dl=70e-9*

dAg=25e-9

zo=5

mte=(mlte*mAgte*mlte)^zo

mtm=(mltm*mAgtm*mltm)^zo

* In the m1 multilayer, the 140-nm SiO2 layers are viewed as two 70-nm layers

put together for the sake of simplicity in the overall matrix formula.

m2 - Single TiO2 matching layer
dl=140e-9

dh=40e-9

dAg=25e-9
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Figure A.1: Curves for reflectance, transmittance and potential transmittance of
multilayer m1 at normal incidence, calculated using transfer matrix code.

zo=4

mte=mhte*(mAgte*mlte)^zo*mAgte*mhte

mtm=mhtm*(mAgtm*mltm)^zo*mAgtm*mhtm

m3 - Induced transmission filter design at 500-nm wavelength
dl=74e-9

dli=86e-9

dh=53e-9

dAg=25e-9

zo=5

mte=(mhte*mlite)^2*(mlte*mAgte*mlte)^zo*(mlite*mhte)^2

mtm=(mhtm*mlitm)^2*(mltm*mAgtm*mltm)^zo*(mlitm*mhtm)^2

An example of typical data obtained from this program is shown in Figure A.1,

for the m1 multilayer at normal incidence.
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Appendix B: Detailed derivation of DMD admittance

matching equation

In Chapter 5, an admittance matching expression for a dielectric-metal-dielectric

multilayer was derived using equations from the textbook by Macleod [1]. This

equation predicts that for a given metal layer (with a corresponding optimal

admittance, Yop = Xop + iZop), the admittance match to the dielectric layers

depends only on the values of admittances of the dielectric and surrounding

material (η1 and η2, respectively). This appendix demonstrates the derivation of

this equation in more detail.

The derivation begins with the equation for the admittance seen by the metal

layer looking into a single thin film (with real index n1 and admittance η1) on an

infinitely thick substrate (with index n2 and admittance η2):

Yout =
η2 cosδ1 + iη1 sinδ1

cosδ1 + i(η2/η1)sinδ1
, (B.1)

where δ1 is the phase thickness of the dielectric film. Multiplying the numerator

and denominator by the complex conjugate of the denominator produces a result

easily split into its real and imaginary components:

Yout =
η2 + i

�
η1 −

�
η2

2/η1
��

cosδ1 sinδ1

cos2 δ1 +
�
η2

2/η2
1
�

sin2 δ1
, (B.2)

where the trigonometric identity cos2 δ1 + sin2 δ1 = 1 has been used to simplify the

real portion of the equation. Next, the real and imaginary portions can be equated

to the real and imaginary portions of the optimal admittance:

Xop =
η2

cos2 δ1 +
�
η2

2/η2
1
�

sin2 δ1
, (B.3)
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Zop =

�
η1 −

�
η2

2/η1
��

cosδ1 sinδ1

cos2 δ1 +
�
η2

2/η2
1
�

sin2 δ1
(B.4)

Dividing the two equations leads to the following expression:

Xop

Zop
=

η2

cosδ1 sinδ1
�
η1 −

�
η2

2/η1
�� , (B.5)

which, after slight manipulation and the use of the identity sin2δ1 = 2cosδ1 sinδ1,

becomes:

Xop =
2Zop

sin2δ1

�
η1
η2

− η2
η1

� . (B.6)

Solving for the phase thickness δ1:

2δ1 = sin−1



 2Zop

Xop

�
η1
η2

− η2
η1

�



 (B.7)

This equation gives the dielectric phase thickness necessary for an admittance

match for the specified metal layer, and can be substitued into the equation for

phase thickness (δ1 = (2π/λ )n1d1 cosθ1) to obtain Equation 5.7. Next, if the

squared cos and sin in the denominator of Equation B.3 are replaced using the

identities cos2 δ1 = (1+ cos2δ1)/2 and sin2 δ1 = (1− cos2δ1)/2, Equation B.7

can be substituted in to the resulting equation to obtain the impedance matching

expression shown in Equation 5.6:

Xop =
2η2

±cos
�
sin−1

�
2Zop

Xop(η1/η2−η2/η1)

���
1− η2

2
η2

1

�
+
�

1+ η2
2

η2
1

� . (B.8)

The (+/-) modifier is necessary since the arcsine can produce an angle in one of

two different quadrants.
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Appendix C: Optical properties of metals

This appendix serves as an introduction to the properties of metals pertaining to

their interaction with light, which plays a large role in the work outlined in Chapters

4, 5 and 6 of this thesis.

Optical properties of conductive media

In a conductive medium such as a metal, the optical properties are determined

largely by free carriers, i.e., carriers that are not bound to any particular atomic

site. Accordingly, the conduction term of the general wave equation is of greater

interest than the polarization term, and the polarization term will be negligible in

most cases. The general wave equation then reduces to:

∇2E+
1
c2

∂ 2E
∂ t2 =−µ0

∂J
∂ t

, (C.1)

where E is the electric field in vector form, c is the speed of light in vacuum, µ0

is the permeability of air and J is the current density. However, because of the

inertia of the electrons, J cannot simply be replaced using the basic conductivity

equation J = σE. To derive a more general expression for J, we can start by with

the equation for a linear harmonic oscillator with no restoring force to describe the

displacement of the electrons (the restoring force term goes to zero because the

electrons are unbound):

m
d2X
dt2 +mγ dX

dt
=−eE (C.2)

where m is the electron mass, X is the displacement of the electrons, γ is the

damping coefficient (equal to the inverse of the relaxation time, τ), and e is the

electron charge. In terms of the velocity (V = dX/dt):
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m
dV
dt

+mτ−1V =−eE, (C.3)

and since the current density can also be expressed as J =−NeV:

dJ
dt

+ τ−1J =
Ne2

m
E. (C.4)

For a static field (i.e.: ω = 0), dJ/dt becomes zero and we obtain the expression

for static conductivity:

σ =
Ne2

m
τ. (C.5)

However, if E is assumed to have a harmonic time dependence (i.e., E = Eoeiωt)

Equation C.4 becomes:

�
iω + τ−1�J =

Ne2

m
E, (C.6)

which gives a dynamic expression for J:

J =
σ

1+ iωτ
E (C.7)

Equation C.7 can be substituted into Equation C.1 to obtain:

∇2E =
1
c2

∂ 2E
∂ t2 +

µ0σ
1− iωτ

∂J
∂ t

. (C.8)

This equation will have homogeneous plane wave solutions of the form:

E = Eoei(Kz−ωt), (C.9)

where the complex wavenumber K is given by:
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K2 =
ω2

c2 +
iωµ0σ
1− iωτ

. (C.10)

At very low frequencies (ω → 0), K2 � iωµ0σ , or

K = −
√

iωµ0σ = (1− i)
�

ωµ0σ/2 (since
�

1−i√
2

�2
= −i). Since the complex

wavenumber is related to the complex refractive index through K = Nko = Nω/c,

the real and imaginary components of the refractive index (N = n− iκ) in the low

frequency limit are given by:

n � κ �
�

σ
2ωεo

. (C.11)

This equation indicates that n and κ will diverge in the low frequency region. In

addition, it can be used to find the skin depth δ of the metal, defined as the distance

a plane wave at normal incidence will travel into a metal before either its electric

field amplitude or intensity (depending on the reference) decays to 1/e of its initial

value. In terms of intensity, the absorption coefficient α can be used to derive an

expression for skin depth since α = 2koκ:

δI =
1
α

=

�
1

2ωµ0σ
. (C.12)

When going to higher frequencies, the general expression for K given in

Equation C.10 is more useful. Again, using the fact that K = Nko = Nω/c, we

obtain:

N2 = εr = 1−
ω2

p

ω2 − iωτ−1 , (C.13)

where εr is the permittivity of the metal, ωp =
�

Ne2

mεo
is the plasma frequency of

the metal, and εo is the permittivity of free space. This equation is also sometimes

called the Drude model. The plasma frequency is the natural oscillation frequency
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Figure C.1: Typical plot of index of refraction n and extinction coefficient κ for a
metal. [3]

of the free electrons in the conductor. For example, if the electrons in a conductor

were somehow arranged in to alternating planes of high and low electron density,

the charge density would oscillate at the plasma frequency, which depends on the

inertia and forces between the electrons [1]. Quanta of the energy associated with

these oscillations are called plasmons.

Since N = n− iκ , we can use Equation C.13 to find expressions for n and κ:

n2 −κ2 = 1−
ω2

p

ω2 + τ−2 , (C.14)

2nκ =
ω2

p

ω2 + τ−2

�
1

ωτ

�
. (C.15)

Solving these equations numerically produces plots similar to that seen in

Figure C.1. For low frequencies, n and κ are close to the same value and divergent,

indicating a high degree of opaqueness. At high frequencies n and κ approach

limits of 1 and 0, respectively, showing that metals (like all materials) are

essentially transparent for sufficiently high frequencies. The two curves cross at

ω =
�

ω2
p − τ−2 � ωp. This model describes most metals quite well, and the

approximation for the crossing frequency is usually accurate given that typically

ωp is on the order of 1016 rad/s while τ−1 is on the order of 1013 s−1.
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The lossless metal approximation

When studying the optical properties of metals, it is useful to examine the behaviour

of an ideal, lossless metal, in which it is assumed that there are zero collisions of

the free electrons with the atomic lattice, i.e. that the relaxation time τ → ∞. In

the static case (Equation C.5), σ → ∞, and at DC the lossless metal has infinite

conductivity. Of course, at higher frequencies the inertial effects of the electrons

comes into play, and Equation C.13 becomes:

N2 = εr = 1−
ω2

p

ω2 . (C.16)

From this equation we can make several observations. First, for frequencies

less than the plasma frequency, εr is negative, leading to a purely imaginary

refractive index (N = iκ). Correspondingly, the wavenumber (K = Nko) is also

purely imaginary, corresponding to an evanescent wave decay of the wave at the

metal boundary. In this case the energy of the incident wave is completely

reflected. At frequencies above the plasma frequency, εr is positive and less than 1,

corresponding to a completely real refractive index that is also less than 1. The

wave propagates without loss in the metal, although it is highly dispersive as n

changes rapidly with frequency just above the plasma frequency.

For real metals, where loss associated with the collisions of electrons must be

taken into account, the general Drude model is fairly accurate. Some metals will

have a different plasma frequency than that predicted by this model however, due

to interband resonant transmissions. This will typically cause a reduction in

reflectance in blue region wavelengths, which causes some metals such as copper

or gold to have their distinctive colours.
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Figure C.2: Schematic showing light impinging on a dielectric/metal boundary.

Light interaction at metal boundaries

If a plane wave traveling in a lossless medium is incident on an absorbing medium

(like a metal) with a complex refractive index and complex wavenumber (as shown

in Figure C.2), the refracted wave inside the medium can be considered to also have

a complex wave vector, i.e., Kt = ktR − iktI. Given this wave vector, the complex

fields can be expressed as:

Ei = Eioei(ki·r−ωt), (C.17)

Er = Eroei(kr·r−ωt), (C.18)

Et = Etoei(Kt·r−ωt) = EtoektI·rei(ktR·r−ωt). (C.19)

As in the case of a dielectric interface, the fields must maintain a constant ratio

at the boundary plane. These boundary conditions can be expressed as:
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ki · r = kt · r, (C.20)

ki · r = Kt · r = (ktR − iktI) · r. (C.21)

Equation C.20 expresses the law of reflection, while the second equation, if the

real and imaginary parts are set equal to one another, produces;

ki · r = ktR · r, (C.22)

0 = ktI · r. (C.23)

These equations indicate that the real and imaginary components of the wave

vector in the metal have different directions, and in this case the wave is

inhomogeneous. Also, we can note that ktR can have any direction, determined by

n1 and θi, and that ktI is always perpendicular to the boundary, as illustrated in

Figure C.3. Equation C.22 is analogous to Snell’s law, and can be used to find the

angle of refraction φ that separates ktR and ktI:

ki sinθi = ktR sinφ , (C.24)

where ki and ktR are the magnitudes of ki and ktR, respectively. However, it is

important to note that ktR is not constant but actually a function of φ . As shown in

Figure C.3, the planes of constant phase are perpendicular to ktR, while the planes

of constant amplitude are perpendicular to ktI. This property means that the photon

flux decays with distance away from the boundary inside the medium, and that

power flows along the direction of ktI, not in line with ktR, making the wave in the

metal non-homogeneous. Only in the normal-incidence case (θi = 0) do ktR and ktI
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Figure C.3: Schematic showing real and imaginary components of the wave vector
in an absorbing medium, with oblique incidence light.

align along the same direction, in which case the wave is considered to be a lossy,

homogeneous wave.

There is also a relationship between ktR and ktI that can be derived using

Maxwell’s equations [3]:

ktr cosφ + ikti = ko

�
N2 − sin2 θi. (C.25)

This equation assumes the light is incident from air. In addition, it can be shown

that the Fresnel formulae and related transfer matrix techniques still apply to

absorbing layers [3]. The only real difference is that the complex refractive indices

and complex propagation angles (calculated using Snell’s law) are used in the

appropriate places when metal layers are involved. It is also important to note that

the complex angle of propagation in the metal is not equal to the angle between

ktR and ktI, which has a real value.
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