
Artificial intelligence is the science of making machines do things that would require intelligence if
done by men.

– Marvin Minsky, 1968.

University of Alberta

MODEL-FREE INTELLIGENT DIABETES MANAGEMENT USING MACHINE
LEARNING

by

Meysam Bastani

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

©Meysam Bastani
Spring 2014

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis, and
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatever without the author’s prior written permission.

To my parents
for their love and support

Abstract

Each patient with Type-1 diabetes must decide how much insulin to inject before each meal to

maintain an acceptable level of blood glucose. The actual injection dose is based on a formula

that takes current blood glucose level and the meal size into consideration. While following this

insulin regimen, the patient records their insulin injections, blood glucose readings, meal sizes and

potentially other information in a diabetes diary. During clinical visits, the diabetologist analyzes

these records to decide how best to adjust the patient’s insulin formula.

This research provides methods from supervised learning and reinforcement learning that auto-

matically adjust this formula using data from a patient’s diabetes diary. These methods are evaluated

on twenty in-silico patients, achieving a performance that is often comparable to that of an expert

diabetologist. Our experimental results demonstrate that both supervised learning and reinforcement

learning methods appear effective in helping to manage diabetes.

Acknowledgements

The completion of this dissertation could not have been possible without the guidance, support and

encouragement of my supervisor, my friends, and my beloved family. I wish to express my sincere

appreciation to Russell Greiner, my supervisor, for his wisdom, patience, and advice throughout my

research. I am very grateful for all I have learned from him.

I would like to thank Edmond A. Ryan, for his endless help in my quest to understand the

biology of diabetes, and for agreeing to help us as our expert diabetologist throughout this research.

Many thanks to the other members of my committee, David Wishart and Michael Bowling for their

constructive feedback.

I have benefited from the insight and advice of several other professors. Specifically, I owe

Richard S. Sutton a big thank you for helping and encouraging me to learn and use reinforcement

learning from the beginning of my research. Many thanks to Susan A. Murphy for her helpful ideas,

our numerous discussions on actor-critic methods during her visit to UofA, as well as sharing her

algorithm with me.

I thank the students and staff at the AICML. In particular, credit goes to Leslie Acker, Bret

Hoehn, and Nasimeh Asgarian for creating an enjoyable environment for work and research. I

would also like to thank many of the RLAI lab members for their productive discussions whether it

was during the tea-time talks or ACPG meetings or in Patrick Pilarski’s or Joseph Modayil’s office.

My special thanks to Katherine Chen for her time and helpful feedback on my dissertation.

I am thankful for the support of my dear friends Kasra Nikooyeh and Shima Khatibisepehr

whom I consider family. I owe the same gratitude to my CS friends who made my stay in Edmonton

a unique and delightful experience: Yavar Naddaf, Babak Damavandi, Saman Vaisipour, Maysam

Heydari, Siamak Ravanbakhsh, Reihaneh Rabbani, Arash Afkanpour, Sheehan Khan, and many

other great friends.

I am indebted to my parents for their never-ending support and dedication, this thesis is ded-

icated to them. My eternal gratitude goes to my wonderful wife, Fatemeh Miri Disfany, for her

unconditional love and support. She has always been there for me through thick and thin. She has

earned this as much as I have.

This research has been financially supported by the Alberta Ingenuity Centre for Machine Learn-

ing (AICML).

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline . 4
1.3 Biological background . 4

1.3.1 History of diabetes . 4
1.3.2 Glucose-insulin equilibrium . 6
1.3.3 Types of diabetes . 6
1.3.4 Current means of diabetes management 7
1.3.5 Standard treatment-policy formula . 8
1.3.6 Performance measures . 9
1.3.7 Performance surface of the standard policy 11

1.4 Related work . 13
1.4.1 Open-loop dosage adjustment . 14
1.4.2 Closed-loop blood glucose control . 17
1.4.3 Model-free, or model-based, that is the question 18

2 Machine learning foundations 20
2.1 Supervised learning . 20

2.1.1 Support vector regression (SVR) . 21
2.1.2 Cross-validation . 21

2.2 Reinforcement learning (RL) . 22
2.2.1 Sequential decision-making problems . 23
2.2.2 Grid world . 23
2.2.3 Markov decision process (MDP) . 24
2.2.4 Two additional RL examples and their similarity to the diabetes task 26
2.2.5 Reward . 28
2.2.6 Policy . 28
2.2.7 Goal . 29
2.2.8 Epsilon-soft policy . 29
2.2.9 Objective function . 29
2.2.10 State/state-action value function . 30
2.2.11 Value-based reinforcement learning methods 32
2.2.12 Policy-based methods . 32

3 T1DM Simulator 33
3.1 Prerequisites to simulation . 33
3.2 Complications, modifications, and add-ons . 34

3.2.1 Hypoglycemia . 36
3.2.2 Finite simulation time . 36
3.2.3 Continuation . 36
3.2.4 History buffers . 36
3.2.5 Glucose sensor and noise . 36

4 Methods 38
4.1 Formulation of the problem . 38

4.1.1 Meal scenario . 38
4.1.2 Injection scenario . 39
4.1.3 Glucose monitoring . 39
4.1.4 Controller . 40
4.1.5 Experimental setup . 40

4.2 Supervised algorithm, T1DC . 42

4.2.1 Temporal features . 43
4.2.2 Training phase . 44
4.2.3 Testing phase, iterative use . 44
4.2.4 Further details . 44
4.2.5 Initial policy . 45

4.3 Reinforcement learning algorithms . 46
4.3.1 Sarsa: on-policy temporal difference control 46
4.3.2 Actor-critic methods . 48

5 Experimental results and discussion 54
5.1 T1DC results . 54

5.1.1 T1DC prediction error . 54
5.1.2 Comparing the performance of T1DC to that of an expert diabetologist . . 57

5.2 Reinforcement learning results . 59
5.2.1 Naming convention . 59
5.2.2 Sarsa . 59
5.2.3 SAC . 62

5.3 Summary and further discussion . 67
5.3.1 T1DC . 67
5.3.2 Sarsa . 69
5.3.3 SAC . 70
5.3.4 Additional discussion . 70

6 Conclusion and future work 72
6.1 Contributions . 72
6.2 Future Work . 73

6.2.1 Meal consumption actions . 73
6.2.2 Extending the application to type-2 diabetes 73
6.2.3 Other score functions . 73
6.2.4 Reinforcement learning exploration methods 74
6.2.5 Dynamic learning rates . 74
6.2.6 T1DC improvements . 74
6.2.7 Warm-start . 74

Bibliography 75

A List of In-Silico Patients 80

B Additional Results for SAC algorithm 81
B.1 SAC with tabular critic . 81
B.2 SAC with tile-coding critic . 111

C Performance contours 131

List of Tables

1.1 An example of the rules used in a rule-based algorithm for insulin regimen adjust-
ment; adapted from [64]. 15

1.2 A few examples of model-based control techniques that has been used in diabetes
literature. For a comprehensive list see [70, 13, 43]. 17

2.1 Various forms of reinforcement learning objectives. 29

List of Figures

1.1 The prevalence map of diabetes in 2012; Reprinted from Diabetes Atlas 2012 [37]. 2
1.2 Age-standardized prevalence percentages of diagnosed diabetes among people aged

one year and older, by sex, Canada, 2000-2001 to 2006-2007. Age-standardized to
1991 Canadian population [30]. The population of females diagnosed diabetes in
2007 is about one million (indicated by arrow). 3

1.3 Effects of Insulin Therapy. Adopted from [53], the photographs show a young girl
who underwent insulin treatment in a study by Geyelin [35] in 1922. The left figure
shows the young girl with insulin-deficient diabetes before treatment with insulin,
and the right figure, after successful treatment. 5

1.4 Glucose-Insulin equilibrium. When a person consumes food, the carbohydrates in
the food break down into glucose in the stomach, and are absorbed into the blood
stream. To bring the blood glucose levels back down to normal, in a healthy indi-
vidual, the pancreas secretes insulin into the blood stream. The presence of insulin
reduces the concentration of glucose in blood stream by allowing its disposal into
cells. A type-1 diabetic, however, is incapable of producing insulin. Maintaining
normal blood glucose levels requires patient intervention by injecting insulin. . . . 6

1.5 The standard policy adjustment (treatment update) cycle of a diabetic patient. . . . 8
1.6 Our devised score function, BGSF. 11
1.7 Contour plot corresponding to the performance surface of the standard policy with

respect to policy parameters CR and CF . The policy performance is calculated by
averaging the BGSF scores of the blood glucose readings over 9 days of following
the policy. The two hatched regions show the policy parameter settings that would
cause hypoglycemia (low blood glucose) or hyperglycemia (high blood glucose).
This contour plot is generated for patient 2 (PID=2); the contour plots for other
patients can be found in Appendix C. 12

1.8 Performance surface of standard policy with respect to its parameters. Both of the
pictures exhibit the same surface but from different view points. Policy performance
is calculated by averaging the BGSF scores of the blood glucose readings over 9
days. Note that there are sharp cliffs around the low values of CR and CF. This
performance surface belongs to patient-2 (PID=2). 13

1.9 Categorization of computer-based diabetes control systems. 15

2.1 This figure visualizes the soft margin loss for a linear SVR. Adapted from [65] . . 22
2.2 Grid world. 23
2.3 Optimal policy in the Grid world. The arrow in each tile shows the action that agent

should take to arrive at goal (G) achieving the highest accumulating reward. 24
2.4 Conventional reinforcement learning setup. In every decision-making time-step t,

the agent observes a state St ∈ S from the environment, then decides to perform the
action At ∈ A. The environment receives this action from the agent and emits back
a reward Rt+1 ∈ R value, and the agent arrives at the new state St+1 25

2.5 The pole-balancing reinforcement learning problem, adapted from [67]. 27
2.6 The Cliff-Walk problem adapted from [67]. Reward for each transition on the grid

is −1 except on the cliff tiles where it is −100. The starting state is denoted by S
and the terminal goal state by G. 28

2.7 An example of discretization on blood glucose. 31
2.8 An example of tile coding with 2-tilings on blood glucose. 31

3.1 Simulink view of the glucose-insulin simulator system of the T1DMS adapted from [31] 35

4.1 T1DC algorithm: In the training phase a learner and predictor is trained based on
two patients, p1

T and p2
T , using three sample policies for each patient. In the testing

phase the learned predictor is used to do three iterations of policy update on patient p1
t . 45

4.2 Comparison between our two local exploration methods. The zero on the horizontal-
axis corresponds to the candidate action. 48

4.3 Schematic of an actor-critic agent (dotted box) in interaction with the environment;
adapted from [69]. 49

5.1 Distance of policy predicted parameter θpred
1 (CR) from optimal parameter θ†1 after

one-iteration of T1DC as a function of the distance of the initial policy from the
optimal policy (horizontal axis). The former is the same as prediction error, and is
calculated for all of the patients using leave-one-out cross-validation. The patient-ID
(PID) is denoted by the superscript p to the left of θ. 55

5.2 Comparison of average control performance of T1DC and diabetologist policies.
The control performance is measured by averaging the evaluation over one hundred
days(EOH) criterion over 19 patients (PID ∈ {2, · · · , 20}). In the legend, KB stands
for Knowing Basal. 58

5.3 Comparing the performance of the Sarsa algorithm in two different settings. Blue is
the actual reward signal, red is the average reward signal in a window of 200 meals,
cyan is the standard deviation around the average. It can be seen that (a) did not
achieve the performance of (b), despite using almost 7 times more samples. Note
that the scale of the horizontal axis is different in (a) and (b). 60

5.4 The effects of generalization over actions and different explorations on the perfor-
mance of Sarsa. Each curve represents a single run (labelled with its result-id). The
legend shows the exploration type for each result (either TG or UN) as well as if the
Sarsa method used generalization (GE) over actions or not (NO). The y-axis shows
the historical average reward signal over a window of 100 meals. 61

5.5 The effects of γ parameter on the performance of Sarsa. Each curve represents a
single run. 63

5.6 The evolution of variables during the SAC learning phase on patient 2 (PID=2). See
text for more information. 65

5.7 The evolution of variables during the SAC learning phase on patient 14 (PID=14).
See text for more information. 66

5.8 Evolution of different variables during the learning phase of SAC with tile coding.
Here the algorithm was run on patient 2 (PID=2). See text for more information. . 67

5.9 Evolution of different variables during the learning phase of SAC with tile coding.
Here the algorithm was run on patient 14 (PID=14). See text for more information. 68

List of Symbols

Other
N natural numbers: {1, 2, · · · }
N0 natural numbers with zero: {0, 1, 2, · · · }
R real numbers
ϕ ∈ R(nϕ) vector over nϕ features
θ ∈ R(nθ) policy parameters
W ∈ R(nW), ω ∈ R(nω) weight vectors
∼ drawn from distribution
≈ approximation
[A,B] column-wise concatenation of two matrices: A ∈ Rm×n, B ∈ Rm×n

′

[A;B] row-wise concatenation of two matrices: A ∈ Rm×n, B ∈ Rm
′×n

êi i-th unit vector in the Cartesian coordinate system
U(a, b) uniform distribution on [a, b]
N(µ, σ) Gaussian distribution
N(σ) Gaussian distribution with µ = 0
TN(µ, σ, a, b) truncated Gaussian distribution Section 4.1.5
θ† T1DM optimal policy parameters Section 4.2
pθ† T1DM optimal policy parameters for patient p Section 4.2
MDP
S: state space Section 2.2.3
A: action space Section 2.2.3
P: S ×A× S → [0, 1] transition probability matrix Section 2.2.3
R reward probability matrix Section 2.2.3
t ∈ N time-step Section 2.2.3
τt ∈ R the actual time at time-step t Section 2.2.5
R̃ mean-reward Section 2.2.5
R+ accumulative-reward Section 2.2.5
π policy Section 2.2.6
J reinforcement learning objective function Section 2.2.9
V π value function of policy π Section 2.2.10
V ∗ optimal value function Section 2.2.10
Qπ action value function of policy π Section 2.2.10
Q∗ optimal action value function Section 2.2.10
πQ(greedy) greedy policy based on Q Section 2.2.11
γ ∈ [0, 1] discount factor Section 4.3.1
α ∈ [0, 1] step-size/learning-rate Section 4.3.1

Chapter 1

Introduction

1.1 Motivation

Diabetes mellitus is increasingly responsible for significant levels of mortality and health complica-

tions. According to estimates from the International Diabetes Federation (IDF), as of 2012, more

than 371 million people worldwide have diabetes [37] with 50% of this population still remaining

undiagnosed. A prevalence map of diabetes as well as more detailed information about the percent-

age of undiagnosed cases within the population can be seen in Figure 1.1. The prevalence rate of

diabetes has been rising rapidly in the last decade, especially in North America and Europe. This is

replicated in Canada for the years 2001 to 2007 – see Figure 1.2.

This chronic disease imposes a large economic burden on healthcare systems, especially in North

American countries. In 2010, 11.6% of the worldwide healthcare expenditure (about $376 billion)

was spent to prevent and treat diabetes and its complications; about half of these costs occurred

in North America [84]. In addition to these direct costs, diabetes also imposes significant indirect

social costs to the economy due to earnings losses, lost work days, restricted activity days, lower

productivity, etc. The American Diabetes Association estimates that in 2007, the US economy lost

around $58 billion in indirect costs (about half of the direct health care expenditure on diabetes

during the same year) [84].

Diabetes is defined in simple terms as a disease that causes a high blood glucose level in patients.

Currently there is no evident cure for this disease [33]. Treatment consists of regulating a patient’s

blood glucose level to stay within a specific range. There are two major sub-types of diabetes

mellitus: type-1 and type-2. This dissertation focuses on type-1 diabetes treatment which affect

about 10 percent of the diabetic population. According to Tao et al. [71], about 25 percent of the

total diabetic costs is related to indirect costs of the type-1 diabetic population; this share for direct

medical costs is about 7 percent1.

In order to keep their blood glucose level in an acceptable range, type-1 diabetic patients must

inject insulin several times during a day. The amount of each injection is specified by a formula (or

1Early mortality costs are ignored in these estimates.

1

T
h
e

n
u
m

b
e
r

o
f
p
e
o
p
le

H
a
lf
o
f
p
e
o
p
le

w
it

h

M
o
re

h
e
a
lt

h
ca

re
d
o
ll
a
rs

w
e
re

s
p
e
n
t
o
n

d
ia

b
e
te

s
in

th
is

re
g
io

n
th

a
n

a
n
y

o
th

e
r

1
in

1
0

a
d
u
lt

s
in

th
is

re
g
io

n

•
1

in
3

a
d
u
lt

s
w

it
h

d
ia

b
e
te

s
li
ve

s
in

th
is

re
g
io

n

•
6

o
f
th

e
to

p
1
0

co
u
n
tr

ie
s

fo
r

d
ia

b
e
te

s
p
re

va
le

n
ce

a
re

P
a
c
if

c
Is

la
n
d
s

W
E
S
T
E
R
N
P
A
C
IF
IC

N
O
R
T
H
A
M
E
R
IC
A

A
N
D
C
A
R
IB
B
E
A
N

•
1

o
u
t
o
f
e
ve

ry
3

d
o
ll
a
rs

s
p
e
n
t
o
n

d
ia

b
e
te

s
h
e
a
lt

h
ca

re
w

a
s

s
p
e
n
t
in

th
is

re
g
io

n

•
2
1
.2

m
il
li
o
n

p
e
o
p
le

in
th

is
re

g
io

n
h
a
ve

d
ia

b
e
te

s
a
n
d

d
o
n
’t

k
n
o
w

it

E
U
R
O
P
E

•
1

in
9

a
d
u
lt
s

in
th

is
re

g
io

n
h
a
s

d
ia

b
e
te

s

•
M

o
re

th
a
n

h
a
lf

o
f
p
e
o
p
le

w
it
h

d
ia

b
e
te

s
in

th
is

re
g
io

n
d
o
n
’t

M
ID
D
L
E
E
A
S
T
A
N
D

N
O
R
T
H
A
F
R
IC
A

Fi
gu

re
1.

1:
T

he
pr

ev
al

en
ce

m
ap

of
di

ab
et

es
in

20
12

;R
ep

ri
nt

ed
fr

om
D

ia
be

te
s

A
tla

s
20

12
[3

7]
.

2

2001 2002 2003 2004 2005 2006 2007

4

5

6

1M

Years

Pr
ev

al
en

ce
pe

rc
en

ta
ge

s

Both
Males

Females

Figure 1.2: Age-standardized prevalence percentages of diagnosed diabetes among people aged one
year and older, by sex, Canada, 2000-2001 to 2006-2007. Age-standardized to 1991 Canadian pop-
ulation [30]. The population of females diagnosed diabetes in 2007 is about one million (indicated
by arrow).

a table), which we call a (treatment) policy. This policy is prescribed by the patient’s diabetologist2,

is specific to each patient, and needs to be adjusted regularly. Patients are instructed how to make

policy changes themselves but many lack confidence to make the changes. Accordingly, patients

are encouraged to visit their diabetologist every 3-6 months [3], which corresponds to 2-4 policy

updates per year. Such frequent policy adjustments are only possible if there is a sufficient number

of diabetologists available –e.g., in the developed world, where there are on average more than 2

physicians per 1000 people [77]. In emerging nations (e.g., countries with fewer than one physician

per 1000 individuals) the treatment policy updates would be far less frequent – perhaps 1 per 2 years

or in some cases never!

Automation of the policy adjustment process would help patients manage their diabetes without

frequent in-person diabetologist supervision. Patients might be able to get the same level of care (or

better) and the diabetologists may be able to manage larger patient populations. Policy adjustment

automation could be even more beneficial in rural areas and emerging nations. This automation

system could be implemented on a cell-phone, personal computer, or a dedicated device that suggests

a policy adjustment to the patient. The system might also have the ability to warn the patient’s

diabetologist or caregiver that the patient needs medical attention.

The main contributions of this dissertation are as follows: Contributions

• Formalizing the diabetes treatment policy adjustment problem.

• Showing that, given access to the optimal standard treatment-policies for some patients, a

supervised learning method can produce a regressor that can effectively control the blood

glucose of other patients.

• Showing that a reinforcement learning method can effectively control the blood glucose of a

2In this dissertation, the term diabetologist is taking to include the medical doctor, the nurses, the dietitians and the general
diabetes care team. The diabetes care team essentially includes the patient; however, in this dissertation by diabetologist we
mainly refer to the external resources and not the patient.

3

patient.

Here, a method is considered effective if it can control the blood glucose level with an accept-

able performance. To assess the effectiveness of blood glucose control, we define a score function

in Section 1.3.6.

After formalizing the policy adjustment problem, we employed the following three methods.

One method uses a supervised learning approach to automate policy adjustments based on popu-

lation data. The other two methods use reinforcement learning algorithms to dynamically tailor a

treatment policy to individual patients. Our experimental results, on twenty simulated patients, show

that some of these methods are as effective as an expert diabetologist in controlling a patients’ blood

glucose levels.

1.2 Outline

The remaining sections of this chapter offer background information on diabetes (Section 1.3) and

discuss the existing literature on automated diabetes management (Section 1.4). Chapter 2 intro-

duces the foundations of the machine learning technologies that are used in our methods. Chapter 3

explains a type-1 diabetes simulator platform that we used to evaluate our systems. Our formulation

of the diabetes blood glucose control problem, our supervised policy adjustment algorithm, as well

as two reinforcement learning policy adjustment algorithms are presented in Chapter 4. Chapter 5

presents the experimental results obtained from each of the algorithms on the simulated patients.

Conclusions from the study, and a number of possible future research directions, are presented

in Chapter 6. Appendix A provides additional information about each in-silico patient. Additional

experimental results are provided in Appendix B and Appendix C.

1.3 Biological background

In this section we provide a brief history of diabetes, describe how diabetes affects blood glucose

levels, and introduce current strategies for diabetes treatment. Readers who are interested in the

history of diabetes will find a brief discussion below (Section 1.3.1); others may skip directly to Sec-

tion 1.3.2.

1.3.1 History of diabetes

Polyuric diseases have been described for over 3500 years. Aretaeus gave the first description of

what we now know as type-1 diabetes in the second century A.D.: “Diabetes is a dreadful affliction,

not very frequent among men, being a melting down of the flesh and limbs into urine”. It is clear

from his description why he called the disease “diabetes”, the Greek word for a syphon [72].

Avicenna (980–1037), a Persian physician and philosopher, provided a comprehensive list of the

symptoms for diabetes in one of his books, The Canon of Medicine. He pointed out that diabetic

4

Figure 1.3: Effects of Insulin Ther-
apy. Adopted from [53], the pho-
tographs show a young girl who un-
derwent insulin treatment in a study by
Geyelin [35] in 1922. The left fig-
ure shows the young girl with insulin-
deficient diabetes before treatment with
insulin, and the right figure, after suc-
cessful treatment.

urine, when it has evaporated, leaves a sweet residue that looks like honey [52, 72, 33]. Later,

the adjective “mellitus”, the Latin word for honey, was added to the name by Edinburgh physician

William Cullen (1710–1790) [52].

In 1815, the French chemist Michel Chevreul (1786–1889) identified the sugar in diabetic urine

as glucose [14]. Later in the 1840s, Claude Bernard (1813–1878) proved that glucose is normally

present in blood, and showed that it is stored in the liver (as glycogen) [48].

In 1889, an accident happened in a laboratory where Oskar Minkowski was working. After

a house-trained dog had a pancreatectomy, it was no longer continent of its urine. After further

analysis of the dog, Minkowski claimed that the pancreatectomy had caused severe diabetes in the

dog [52]. In 1893, Gustave Laguesse proposed that pancreatic islets, described by Paul Langerhans

in 1869, are involved in the production of an internal secretion that regulates glucose metabolism.

At that time, it was still questionable whether there is a true glucose-lowering role associated with

the internal secretion of pancreatic islets, which in 1909, Jean de Meyer named “insulin” (from the

Latin for island) [33].

Finally, in 1921, insulin was successfully extracted from pancreatic islets by Banting, Best,

Macleod and Collip in Macleod’s lab at the University of Toronto in Canada. The first clinical use

of insulin for diabetes treatment was conducted in 1922. Figure 1.3 shows the effects of insulin treat-

ment on a young adolescent girl [35, 53]. The effectiveness of such treatments meant the discovery

of insulin was a significant milestone in the history of diabetes.

Over the past century, there have been other breakthroughs, including modifications of insulin to

5

higher than normal
blood glucose level

eating

insulin secretion/injection

normal blood glucose level

Figure 1.4: Glucose-Insulin equilibrium. When a person consumes food, the carbohydrates in the
food break down into glucose in the stomach, and are absorbed into the blood stream. To bring
the blood glucose levels back down to normal, in a healthy individual, the pancreas secretes insulin
into the blood stream. The presence of insulin reduces the concentration of glucose in blood stream
by allowing its disposal into cells. A type-1 diabetic, however, is incapable of producing insulin.
Maintaining normal blood glucose levels requires patient intervention by injecting insulin.

increase its biological half-life, glucose monitoring, and insulin pumps. One of the most recent and

significant breakthroughs was the the successful transplantation of islets of Langerhans cells from

the pancreases of recently deceased people to the pancreas of diabetic patients by a team from the

University of Alberta in Canada [61]. Despite all of these efforts to cure diabetes, success has still

eluded the scientific community in this goal. Until a cure is achieved it is important to maintain

glucose control and prevent diabetes complications. For this, a glucose-insulin equilibrium has to

be maintained.

1.3.2 Glucose-insulin equilibrium

When we eat food, our digestive system breaks the carbohydrates down to glucose. The absorption

of glucose in the intestine increases its concentration in the blood stream, which puts the body into

a state of hyperglycemia (state of high blood glucose). Glucose, the key source of energy in human

body, needs insulin for its routine disposal into cells. In a healthy individual, the pancreas produces

insulin, which allows muscle and fat cells to absorb glucose from blood stream (Figure 1.4). Con-

sequently the blood glucose level decreases back to the normal level – about 5.5 mmol/L (3.5–6.5

mmol/L)3 [52].

Other mechanisms operate when the blood glucose goes below its normal value – that is, when

the body enters a state of hypoglycemia. However, as standard diabetes management does not involve

these mechanisms, we do not discuss them in this dissertation4.

1.3.3 Types of diabetes

The vast majority of diabetic patients can be divided into two categories: type-1 and type-2. In

patients with type-1 diabetes, the patient essentially does not produce insulin. This type begins with

3All the values referring to blood glucose in this dissertation are in SI units (mmol/L). To convert these values to mg/dl,
the prevalent unit being used in United States and a few other countries, multiply the value in SI unit by 18. For instance, 4
mmol/L is equal to 4× 18 = 72 mg/dL.

4For a preliminary introduction to blood glucose regulation in body, see [38].

6

the selective autoimmune destruction of insulin-producing pancreatic cells (β-cells), which later

leads to the inability of the pancreas to secrete insulin. This insulin deficiency affects the glucose-

insulin equilibrium and causes the blood glucose of the patients to rise. The body cannot use the

glucose, so it senses starvation and then breaks down body fats in an uncontrolled manner, giving

rise to ketoacidosis, which eventually leads to death. Type-1 diabetic patients without insulin will

die in days to weeks. This type afflicts about 10% of diabetic patients.

Far more prevalent than type-1 is type-2 diabetes, where patients may still produce normal

amounts of insulin, yet their cells cannot utilize glucose efficiently. Sometimes, in addition to insulin

resistance, some degree of insulin deficiency is also involved, where the amount of insulin secreted

by the pancreas is lower than normal. This type of diabetes is usually associated with obesity or high

BMI. The most important factors associated with the increased prevalence of type-2 diabetes are be-

lieved to be a high-fat, high-calorie diet and a sedentary lifestyle [53]. Patients with type-2 diabetes

will not die if not given insulin, as they have enough of their own insulin to prevent ketoacidosis.

This dissertation focuses on ways to help type-1 diabetic patients manage their diabetes. Wher-

ever we mention diabetes we are referring only to type-1 diabetes unless otherwise specified.

1.3.4 Current means of diabetes management

Type-1 diabetic patients regulate their blood glucose by injecting insulin multiple times during the

day. There are two major types of insulin: bolus insulin and basal insulin. Bolus insulin is a rapid-

acting insulin injected at meal times to balance the short-term burst of glucose associated with eating

food. Basal insulin is a long-acting insulin with a slow release time. It provides the body with the

background insulin that is needed for normal cell functions during the day.

The treatment policy, as mentioned above, determines the amount of each insulin injection –

bolus and basal. The part of policy that deals with basal injections is usually in the form of fixed

dosage at specific times, or in the form of a low dose insulin infusion in the background using an

insulin pump; see Section 4.1.2.

As mentioned earlier, ideally a patient maintains a diabetes record or diary, in which she records

the amounts of carbohydrates in each meal, blood glucose readings, insulin injections, and the time-

stamp of each event. The patient’s diabetologist then uses this diary (plus some other information

about the patient, e.g., Age, Weight, Gender, BMI5, etc.) to improve the treatment policy to attain

steady glucose control (Figure 1.5). High glucose concentrations in blood over the long term in-

crease the risk of long term complications (chronic problems for internal organs) and hence needs to

be avoided. However, low blood glucose values carries the immediate risk of passing out and coma,

and thus has to be avoided at all costs.

Various options are available to a patient on how to take insulin injections and how to record his

or her blood glucose readings; see Section 4.1. Next we discuss the standard form of policy that

5BMI stands for body mass index.

7

treatment-policy

diabetes diary

patient follows
policy

diabetologist

diabetes diary
and adjusts the
treatment-policy

analyzes

Figure 1.5: The standard policy adjustment (treatment update) cycle of a diabetic patient.

diabetologists use.

1.3.5 Standard treatment-policy formula

Most patients compute how much bolus insulin to inject per meal based on the following treatment-

policy formula6:

Inj = bg − Ctarget
CF

+ carbs

CR
(1.1)

where:

Inj: Bolus injection dose
bg: Current blood glucose
Ctarget: Target blood glucose (constant)
carbs: the size of the meal (in grams of carbohydrate)
CR: Carbohydrate-ratio
CF : Correction-factor

In Equation 1.1, CR and CF are known as policy parameters. We also refer to the pair of parameters

as θ = [θ1, θ2] = [CR,CF] ∈ R2. The target blood glucose constant, Ctarget, is usually selected

by the diabetologist and remains constant. For the purpose of this dissertation we are going to fix

the target blood glucose constant to Ctarget = 6 mmol/L and not consider adjusting it.

An example can clarify how this policy is used. Assume that the patient’s diabetologist has

prescribed a correction-factor of 2 mmol/L/U and a carbohydrate-ratio of 10 gr/U (θ = [CR,CF] =
[2, 10]). Imagine the patient’s blood glucose is bg = 8 mmol/L and she is about to consume carbs

= 50 grams of carbohydrates. According to the treatment policy, the patient should inject 6 units of

bolus insulin for the current meal.
6This formula may be modified if the diabetic patient is planning to do exercise or any other activity that consumes

glucose. In such a situation, the patient will need to inject less insulin than computed by Equation 1.1.

8

Inj = (8− 6)
2 + 50

10 = 1 + 5 = 6

We refer to the Equation 1.1 as standard policy. Note that both parameters in this policy are

within a typical range of CR ∈ [CRmin, CRmax] = [3, 30], CF ∈ [CFmin, CFmax] = [.4, 2.8].
In a real-world scenario, a diabetic patient, might have different policies for different meals (e.g., one

for lunch, and one for breakfast and supper), but in this thesis, to simplify the problem, we assume

the policy is the same for all meals.

Among the components of the policy adjustment process, we thus far have described the form

of the standard policy that patients use. Of course, in each iteration of the cycle, the diabetologist

wants to improve on the current policies. This requires a benchmark (performance measure), which

provides the quality of a given policy. This score can be used to compare different policies, and it

helps the diabetologist to evaluate the adjustment of the policy. In the next section we provide more

details about this concept.

1.3.6 Performance measures

One of the challenges in diabetes management is the lack of a gold standard quantitative measure

to evaluate the performance of the treatment policy. In the following section we introduce the cur-

rently accepted performance measure that is used by diabetologists. Later we introduce our own

performance measure.

A1C (the standard performance measure)

Hemoglobin A1C, also known as HbA1C, glycated hemoglobin, or more commonly now, simply

A1C, is a specific form of hemoglobin, which is formed by the glycosylation of hemoglobin –

an irreversible attachment of glucose to hemoglobin. It was distinguished from other forms of

hemoglobin for the first time by Huisman and Meyering in 1958 using chromatography [36]. Ten

years later, Bookchin and Gallop realized that A1C is a glycoprotein [9]. Rahbar and coworkers in

1969 noticed that levels of A1C are higher in diabetic patients [55]; and in 1976 Cerami et al. [39]

suggested that A1C can be used to measure the quality of glucose control in diabetic patients [79],

as it shows the percentage of hemoglobin that is glycated, which corresponds to the average blood

sugar level for the past two to three months. The A1C test has been considered the most reliable

method for assessing chronic glycemic control and has become the worldwide standard –e.g., is used

by the FDA to evaluate new diabetic drugs [3, 46, 59].

Nathan et al. (2008) sought to define the mathematical relationship between A1C and average A1C is
correlated
with
average
blood
glucose

blood glucose. Their study included 500 subjects of various types of patients (non- diabetic, type-1,

and type-2 diabetic patients). They obtained 2700 glucose samples from each patient over the three

month duration of the study.

9

Using linear regression, they expressed average blood glucose as a function of A1C levels for

most patients with type-1 and type-2 diabetes (R2 = 0.84):

Average BG(mmol/L) = 1.59×A1C − 2.59

Our performance measure

Although the A1C measure is informative about the average level of glucose in blood and relates to

long-term complications, it cannot provide any information about variation in blood glucose levels.

These variations could reflect the instability in the blood glucose and possibly hypoglycemia. For

example, a patient could have a normal A1C but be repeatedly passing out with hypoglycemia, as

she often has hyperglycemia to compensate. Having a more informative performance measure is

critically important for automated policy adjustment. We need a performance measure that incorpo-

rates some aspects of blood glucose variation, especially the contrast in the consequences of having

high blood glucose vs having low.

To come up with a good performance measure, we first need to determine what is expected of

an ideal controller. An ideal controller must keep the blood glucose level in an acceptable range,

which for a diabetic patient is considered to be between four and eight mmol/L [33]. When the

blood glucose is within this range, it is best to maintain it as close to six mmol/L as possible; when

it is outside, it is desirable to get it back in the range.

We therefore need to identify an appropriate penalty to assign if the policy is not performing well

by letting the blood glucose level go outside of the specified range. If this happens, patients will enter

into either the hyper- or the hypoglycemic states, each of which lead to biological complications for

the patient.

When in a state of hypoglycemia, in which the blood glucose drops below four mmol/L, a patient

develops various symptoms. Since glucose is vital for brain function, there will be neuroglycopenic7

symptoms, such as confusion, weakness, drowsiness, tiredness, blurred vision, etc. In addition, as

the body attempts to address this, it will quickly produce symptoms to help counter this, which

include autonomic symptoms such as sweating, trembling, warmness, pounding heart, anxiety, and

shivering [32]. A more serious case is acute hypoglycemia, when the blood glucose level drops

significantly below four mmol/L in a short time. This sudden drop can cause unconsciousness,

seizure, and in rare cases, permanent brain damage or death.

In contrast, hyperglycemia, where the glucose is higher than normal, is typically not associated

with any acute symptoms unless very severe. However, chronic hyperglycemia can cause various

complications within two to ten years. The severity of the complications depends on how high

the average blood glucose level is. These complications may occur even at blood glucose levels

slightly above normal. The common complications usually affect vital organs by causing chronic

7Lack of glucose in brain.

10

Figure 1.6: Our devised score function, BGSF.

problems that affect nerves, kidneys, eyes (retina) and increased risk of coronary heart disease or

other damages such as diabetic foot (ulcers) [1, 17].

While some score functions have been used on continuous blood glucose readings (e.g., M-

value [60]), there exists no gold standard, or generally-accepted score function8. Therefore, we

decided to define a score function that matched our objectives.

We let the normal level of blood glucose, six mmol/L, have the highest score. Knowing that

hypoglycemia can cause immediate and severe problems, our proposed score function assigns expo-

nentially lower scores for blood glucose levels lower than four mmol/L. For Hyperglycemia, how-

ever, as the effects are chronic, the proposed score of blood glucose values above eight mmol/L

linearly decreases. Our blood glucose score function, BGSF, is shown in Figure 1.6.

This score function evaluates a single blood glucose reading, but it can also be used to evaluate a

treatment policy over a period of time (as we see next). More details will be provided in Section 2.2.5

and Section 4.2.5.

1.3.7 Performance surface of the standard policy

In order to better understand the standard treatment-policy, we examined variations in the perfor-

mance of this policy with respect to its parameters. To achieve this goal, we sampled around 1600

policies with different parameter settings from the CR×CF space and evaluated their performance

using the average BGSF score of the blood glucose readings over 9 days9. Using this information

for patient 2 (one of our in-silico patients), we provide the contour plot of the performance surface

in Figure 1.7. This surface is created by fitting a curve (linear interpolation [25]) to the sampled

points for patient 2. In this plot, we indicate regions in parameter space that correspond to policies

8For information about the score functions used on discrete readings (e.g., a few samples per day), see [58] and for the
ones that has been used on continuous readings see Fig.4 of [24]

9Refer to mean-reward in Section 2.2.5 for more detail about this averaged score.

11

Hyperglycemia

Hypoglycemia

CR

C
F

5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

14

14.5

15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

Figure 1.7: Contour plot corresponding to the performance surface of the standard policy with re-
spect to policy parameters CR and CF . The policy performance is calculated by averaging the
BGSF scores of the blood glucose readings over 9 days of following the policy. The two hatched
regions show the policy parameter settings that would cause hypoglycemia (low blood glucose)
or hyperglycemia (high blood glucose). This contour plot is generated for patient 2 (PID=2); the
contour plots for other patients can be found in Appendix C.

that lead to hypoglycemia and hyperglycemia.

A three-dimensional plot of the same surface is given in Figure 1.8. To highlight the more

informative parts of the plot, all performance values below 14 are replaced with the value 14. Per-

formances below this threshold roughly correspond to average blood glucose levels under 4 or over

13, both of which are undesirable.

We can make some observations about the shape of the performance surface10. First, we see

that the optimal (highest) performance region of the surface is independent of the CF value. This

expansion implies that, when the CR parameter is in proximity of its optimal values, the performance

of the standard policy is insensitive to CF. This insensitivity can be explained by the fact that the

correction factor, as its name suggests, is important when there is a need for correction (that is, when

the blood glucose is either too high or too low), and it becomes almost irrelevant once the bolus peaks

are handled with the correct carbohydrate ratio (and thus the blood glucose is in the correct range).

Second, we observe the high sensitivity of performance with respect to the CR parameter –i.e., the

10Note that the surface plot for our other (in-silico) patients looks different – in particular, for patient 3 (in Appendix C)
we see that the surface has a highly irregular shape.

12

20 40
0

5

14

16

18

20

CR

CF

Pe
rf

or
m

an
ce

20
40 0

514

16

18

20

CR
CF

Pe
rf

or
m

an
ce

Figure 1.8: Performance surface of standard policy with respect to its parameters. Both of the
pictures exhibit the same surface but from different view points. Policy performance is calculated
by averaging the BGSF scores of the blood glucose readings over 9 days. Note that there are sharp
cliffs around the low values of CR and CF. This performance surface belongs to patient-2 (PID=2).

CR values of 4 to 7 seem to have around optimal performance (about 19), but a CR value of 2 leads

to performances below 2. The final notable observation is the quick drop in performance of the

policy when the CR parameter takes smaller than optimal values. On one side of the optimal ridge

are policies that perform well; on the other side, and not very far away, we have policies that lead to

hypoglycemia. The proximity of the optimal policies to the devastating ones suggests that the search

for optimal policies should be done cautiously.

1.4 Related work

Various studies have investigated ways to utilize computer-based systems to control the blood glu-

cose level of diabetic patients. These methods can be mainly categorized into open-loop and closed-

loop control systems [27, 70].

Following the definitions provided in [27, 10], we call a diabetes management system “open-

loop”, when the patient (or diabetologist) is involved in the decision making related to each insulin

injection and it is the patient’s responsibility to decide the right dosage of insulin to inject11. Re-

gardless of the injection scenario or glucose monitoring system used, as long as a patient is making

the decision about the injections, it is categorized as an open-loop system12.

In contrast, a closed-loop blood glucose controller (also known as artificial pancreas) is a system

that tries to mimic the function of the pancreas [27, 70]. It tries to inject the right amount of insulin

at the right time such that the fluctuations in levels of blood glucose of a patient imitate that of

a healthy individual. To achieve this goal, the controller needs live feedback of the current blood

11Note that this dosage might be calculated based on her treatment policy.
12This definition of an open-loop system in diabetes literature might rather seem different from the definition of open-loop

controller in control theory. Maybe patient-mediated closed-loop system or open-loop intermittent feedback control would be
a more precise name. Although there is no direct feedback loop in these systems, these systems rely on an indirect feedback
of the blood glucose values (collected by patient).

13

glucose values. For this reason, closed-loop controllers usually need a continuous blood glucose

monitoring (CGM) system in conjunction with an insulin pump. Thus, one of the drawbacks of

using a closed-loop (diabetes) control system is its financial burden. The cost for the combination

of a CGM and an insulin pump is currently about $10,000 to startup plus the ongoing operating cost

of about $300 per month. Furthermore, it is usually harder to validate and test closed-loop systems;

as the patients should be under the vigilant supervision of a medical team to prevent potential life

threatening situations should the system malfunction.

Open-loop and closed-loop systems can be further categorized as methods that are either model- Definition of
Model-based
Methods

based or not; see Figure 1.9. A method is categorized as model-based if it relies on a mathematical

model of the physiological processes involved in the glucose-insulin interaction. Before we get into

the details of the control algorithms, we briefly describe the common practice method used to create

such mathematical models.

Mathematical models of the glucose-insulin interaction

Many different approaches have been used to create mathematical models for glucose-insulin in-

teraction dynamics in the body. The prevalent approach is to create models based on the current

physiological knowledge of the organs and bio-mechanisms involved in regulation of glucose, in-

sulin, and possibly other hormones [43, 5]. Bolie’s model [8] and Bergman’s minimal model [6] are

two examples of such models.

These models are only as good as our knowledge about the physiology of the human body. It

might be impossible to create a precise model of these mechanisms due to an insufficient under-

standing of the biological mechanisms involved, or simply because we cannot calibrate the model

when a specific substance in the body cannot be measured (due to technical or ethical issues). For

instance, Bolie’s model considers the glucose-insulin regulatory system consisting of liver, pancreas

and peripheral tissues ignoring some very important organs such as kidneys.

On the bright side, the more we learn about the human glucose regulatory systems, the more

accurate our models become13. Thus far, the Type-1 Diabetes Mellitus Simulator (T1DMS) system,

described in Chapter 3, is one of the most comprehensive attempts that incorporates physiological

knowledge of the glucose regulatory system into a model.

1.4.1 Open-loop dosage adjustment

Several open-loop diabetes control algorithms use clinically obtained rules to perform their decision-

making tasks. These systems are devised based on clinical experience. Other methods prefer to

employ mathematical models to assist dosage control.

13 Of course, this depends on our ability to incorporate some of the novel knowledge into the models.

14

diabetes control methods

open-loop closed-loop

rule-based model-based model-based model-free

rely on mathematical models of the
glucose regulation physiological process

Figure 1.9: Categorization of computer-based diabetes control systems.

Scenario: Hyperglycemia (high blood sugar) not explained by
diet/exercise/insulin
•If fasting blood glucose on rising is greater than 5 mmol/L for 2 days
in a row, increase your evening long-acting insulin by 1-2 U.
•If blood glucose 2 h after breakfast is greater than 6.7 mmol/L AND
blood glucose before lunch is greater than 5.8 mg/dl for 2 days in a row,
increase your morning short-acting insulin by 1-2 U.
•If blood sugar 2 h after breakfast is greater than 6.7 mmol/L, but less
than 5.8 mmol/L before lunch, consult your doctor or clinician.
•If blood glucose 2 h after lunch is greater than 6.7 mmol/L, AND blood
glucose before supper is greater than 5.8 mmol/L for 2 days in a row,
increase your morning long-acting insulin by 1-2 U.
•If blood glucose 2 h after lunch is consistently greater than 6.7 mmol/L
AND blood glucose before supper is less than 5.8 mmol/L, consult your
doctor or clinician.

Table 1.1: An example of the rules used in a rule-based algorithm for insulin regimen adjustment;
adapted from [64].

15

Open-loop rule-based algorithms

Rule-based algorithms (Figure 1.9) usually find policy adjustments directly from the patient’s con-

dition. This is usually done by explicitly defining rules and/or formulas to adjust the insulin dosage

by consulting a diabetologist [42]. These rules can be used directly or in a knowledge-based system.

An example rule-based system is Skyler et al. [64]. See Table 1.1 for some of their rules for a

specific scenario.

On one hand, rule-based systems help patients adjust their treatment policy when the rules are

correct and do not contradict each other. On the other hand, their functionality is limited by the

size and broadness of their rules. Some of the rules (Table 1.1) explicitly require input from the

diabetologist. Furthermore, no adaptation occurs, and these rules are fixed unless updated by an

expert physician.

Knowledge-based systems, also known as expert systems, are more sophisticated versions of

these algorithms. Expert systems are systems that attempt to act the way experts think the expert

should act. An expert system consists of two main components: a knowledge base and an inference-

core [29]. The knowledge base in this case is a set of rules that are written by an expert. The

inference core is a reasoning backbone that can deduce facts (given the current situation of the

patient) that are not stored in the knowledge-base but can be deduced from the other rules that are

stored and also patient information.

One such expert system is ExDiabeta developed by Siemens. This system recommends the

required insulin dosage adjustment, based on blood glucose readings that are measured during the

day (7 measurements in total). The knowledge base for this system is contained in about 300 rules.

For more information about this system and similar systems see [42].

Rule-based algorithms suffer from some fundamental issues. These methods rely on expert

physicians to add more rules and resolve contradictions in the rule set. More importantly, if such a

method fails in a situation, it always fails in the same situation, unless a physician revises the rules

by hand, a very time-consuming process that might benefit from automation.

Open-loop model-based approaches

Model-based approaches differ from the rule-based systems by relying on mathematical models

of the glucose-insulin interaction. The open-loop model-based methods (Figure 1.9) are further

categorized into two groups: manual and automatic. In the first group, the methods use the model

to build a simulator for a specific patient; this simulator is then used by the diabetologist to search

for the best dosage adjustment. The diabetologist examines multiple dosage adjustments on the

simulator and evaluates their performance using her professional knowledge. The best performing

dosage adjustment is then used to update the patient’s treatment policy [41, 12] 14. In contrast, the

methods in the second group (automatic), use optimization techniques on the mathematical model

14For more examples, see Section 3.3.1 of [42].

16

Control technique Reference Notes
Full state feedback Shimoda et al. [63] If fails in situation s, always fails in s
Adaptive Control Pagurek et al. [49] Adapts (learns from failures)
Model Predictive Control Andreassen et al. [4]

Table 1.2: A few examples of model-based control techniques that has been used in diabetes litera-
ture. For a comprehensive list see [70, 13, 43].

to come up with the optimal15 dose adjustment for the patient (e.g., [34]). Note that these systems

provide suggestions to the diabetologist (or to the patient).

1.4.2 Closed-loop blood glucose control

We can categorize closed-loop methods into two classes: model-free versus model-based [13];

see Figure 1.9. Closed-loop model-based control methods, very similar to open-loop model-based

methods (mentioned in Section 1.4.1), are based on mathematical models of glucose regulatory

systems in the human body. Various researchers have attempted to solve diabetes problems using

model-based control techniques. However, only a few diabetes studies have tried to use a model-free

approach. Note that a model-free approach is the focus of our research.

Closed-loop model-based control

Model-based control methods apply algorithms from control theory to the mathematical model of Model-Based
Controlthe glucose-insulin regulatory system [13]. The details of these algorithms need a control theory

foundation and are outside of the scope of this dissertation. Therefore, we will confine our introduc-

tion to a very short list of model-based control techniques that have been used in diabetes literature

with an example for each in Table 1.2; for more information about the applications of model-based

control algorithms in diabetes, see [70, 13, 43].

Closed-loop model-free control

As can be inferred from the name, model-free diabetes control algorithms are not dependent on a

physiological model and instead rely solely on experimental data. The two main classes of model-

free control methods in the closed-loop diabetes literature are proportional-integral-derivative (PDI) Model-Free
Controland curve-fitting-based control [13, 43].

In the algorithms that use curve-fitting for glucose control, the usual approach is to first gather Curve-Fitting

experimental data by observing the effects of insulin (as well as glucose) on blood glucose levels

for a diabetic patient. Thereafter, the goal is to fit a response curve to the data for both glucose and

insulin to be used for the blood glucose control. For instance, the curve-fitting controller by Albisser

et al. [2] utilizes a system capable of intravenous injection of glucose and insulin separately. Insulin

and glucose response curves are manually selected by an expert from a family of sigmoidal response

15Like any other optimization method, these methods need to have an objective function, which is a measure of the
performance of the adjusted treatment (see Section 1.3.6).

17

curves based on patient’s clinical characteristics (e.g., body weight, daily insulin requirements).

These curves specify the minute-by-minute insulin and glucose infusion rates based on current blood

glucose and its rate of change. The main problem with curve-fitting control algorithms is that a delay

in the blood glucose readings can make the system unstable and put it out of synchronization [13].

The second category of model-free control methods in the literature are Proportional-Derivative- PDI

Integral (PDI) methods, a generic method borrowed from control theory. In the PDI approach,

an error value is calculated based on the difference between the blood glucose signal value and a

desirable target blood glucose value. PDI consists of three main components, all of which play a

role in selecting the (next) insulin injection through a weighted sum of their output signals. The

proportional (“P”) component is the error itself (the difference). The derivative component (“D”) is

the derivative of the error signal (the slope of the difference). Finally, the integral (“I”) term is an

integrated version of the error signal over a period of time (sum of differences).

Solving a PDI involves finding the right weight for each component. Finding these weights

is not an easy problem but there are black-box solvers that can be borrowed from control theory

(e.g., Matlab’s PDI tuner) to help. An instance of using PDIs in diabetes literature is the work

of Palazzo and Viti [50] 16. Similar to the curve-fitting approaches, a disadvantage of PDI methods

is that they are sensitive to delays in blood glucose readings.

1.4.3 Model-free, or model-based, that is the question

Model-free methods, in either open-loop or closed-loop systems, have some advantages over their

model-based counterparts (Figure 1.9). One problem with the model-based methods is that they

need an accurate model, and building such a model usually requires special and costly physiological

studies of the processes involved in glucose regulation. However, model-free control algorithms

rely solely on the “simple” type of data that patients normally collect. Another problem with the

model-based methods is their dependence on a patient specific model. Thus any modification to a Flexibility

component of the mathematical model will require the parameters of the model-based method to be

re-calculated.

Due to recent advancements in technology, glucose meters and insulin injection devices have

become cheaper and provide more functionality. Glucose meters now have memories that can store

days worth of glucose reading logs [15]. Furthermore, various cell-phone tracking applications are Vast Amount
of Daraavailable to help patients keep a record of their blood glucose values, insulin injections, exercise, and

diet [51, 85]. More advanced devices such as insulin pumps and continuous glucose meters make it

even easier to maintain the patient’s computer-readable diabetes diary. Model-free approaches have

the ability to utilize this huge amount of “simple” information, while model-based methods usually

need more “advanced” measurements (e.g., the concentration of blood glucose in the hepatic vein).

Given the above factors, we believe model-free methods are an important avenue of research that

16For more examples, see Chee and Fernando [13] and Lunze et al. [43]

18

has not been exploited to its full advantage by the diabetes community.

Our decision to employ a model-free approach to tackle the diabetes dosage adjustment problem

is mainly motivated by the ever-increasing amounts of available patient data coupled with the power Scarcity of
Model-Free
Methods

of model-free approaches to utilize it. In addition, the scarcity of the model-free research in the

literature of diabetes control has further encouraged us to examine the possibility of using machine

learning techniques in this context.

One of the important steps in a study to develop a model-free approach is the evaluation phase.

Such studies could be on either real patients or on in-silico patients. An obvious major disadvantage

of clinical studies (involving real patients) is their cost and length of study. Considering all the

advancements that have been made in the modelling of in-silico patients, we decided to use an

insulin-glucose mathematical model to evaluate our work, acknowledging the need for later clinical

evaluation.

To select the mathematical model for our in-silico patients, we did a simple search for imple-

mentations of a type-1 diabetes simulator and filtered studies by their number of citations and the

availability of their simulators for public use. We ended up with two options: Lehmann et al. [41]’s

AIDA and Dalla Man et al. [21]’s T1DMS simulators.

Our first choice for type-1 diabetes simulation was AIDA, primarily because it was available

at no cost. However, after careful deliberation we ruled out this choice mainly because we could Why T1DMS?

not obtain the stand-alone version from the authors. Using the AIDA web-interface17 was not an

option as well because it was not capable of handling the large number of simulation requests that

we required. In contrast, for T1DMS, we were able to purchase its stand alone version. Also, this

simulator has a more sophisticated model of the glucose-insulin mechanism (compared to AIDA).

We will provide details about T1DMS in Chapter 3.

17Available at http://www.2aida.net/aida/options.htm.

19

http://www.2aida.net/aida/options.htm

Chapter 2

Machine learning foundations

Machine learning has been used to tackle various problems, from playing games like chess and

backgammon to helping physicians in diagnosing cancer. In this dissertation we use two differ-

ent techniques from the machine learning field, supervised learning and reinforcement learning, to

deal with the diabetes dosage-adjustment/control problem. Simply put, supervised learning involves

teaching through the use of examples, while reinforcement learning involves teaching through the

use of encouragement/punishment. These methods have their own specialities and are designed to

deal with specific forms of problems, which will be discussed further when they are introduced. Sec-

tion 2.1 first describes supervised learning and later, Section 2.2 introduces reinforcement learning.

2.1 Supervised learning

The goal of supervised learning is to approximate the true relationship between x and y, given a

training set that has sample pairs of x and y. In Section 4.2 we use supervised learning to build a

mapping from patient data, to best treatment policy parameters (of that patient).

Formally, a training set of size N : (x1, y1), (x2, y2), · · · , (xN , yN) is given where each of the

pairs in the training set is an example pairs of input and output, where the outputs are generated by

an unknown function y = f(x). The goal of supervised learning is to find a function h (called a

predictor) that approximates the true function f , h ≈ f [57].

If the output value is y ∈ R, then the supervised learning problem is called regression [57]. In

regression, we call x ∈ Rd the input feature vector and y output variable. We can stack up the input

feature vectors and outputs in two matrices X (N × d) and Y (N × 1).

A simple example of regression is to predict the A1C of a patient based on his averaged blood A Simple
Exampleglucose (ABG). Let us assume that the duration of the study is three months and that 1000 patients

are involved in this study, for whom the ABG’s are calculated by averaging the blood glucose over

this period. Also assume that we have measured the patients’ A1C on the last day of the study. The

set of input feature vectors X is column vector of 1000 ABG readings (a matrix of size 1000 × 1)

and Y is another column vector containing the A1C measures of patients (output feature vectors).

20

Each row of X and Y corresponds to one patient. Regression can help us train a predictor on this

training set (X and Y) to find an h function. Later we can use this function h on the averaged blood

glucose readings of a new patient to estimate her A1C measure. In order to estimate our potential

error in estimating the A1C of this new patient, we can use cross-validation, a technique that will be

discussed in Section 2.1.2.

2.1.1 Support vector regression (SVR)

Various methods have been created to address the regression problem. One of the most significant

of these is Support Vector Regression(SVR) [74].

For simplicity we explain the SVR problem in brief for a linear predictor. In this case, the

predictor has the following form:

ŷ = h(x) = xW + b where: W ∈ Rd×1, b ∈ R, x ∈ R1×d

or in matrix form :

Ŷ = h(X) = XW +~1b where: W ∈ Rd×1, b ∈ R, X ∈ RN×d

To calculate the best W,b for approximating the response Y from X , SVR solves the following

optimization:

min
W,b,~ξ

1
2 ||W ||

2 + C · (~1>~ξ +~1> ~ξ∗) subject to:


~ξ + ε ≥ Y −XW − b
~ξ∗ + ε ≥ −Y +XW + b
~ξ, ~ξ∗ ≥ ~0

In this optimization, SVR uses the soft margin loss function and the slack variables ξ, ξ∗. Note

that this loss function penalizes a prediction only if its error is more than ε; see Figure 2.1. This loss

function and the use of slack variables provide a feasible optimization that can be solved efficiently.

Various formulations and implementations of SVRs exist that are based on the same idea but

have minor differences. For example, another formulation of the SVR supports the use of kernels

(dual formulation) [65]. A kernel is a matrix whose (i,j) entities shows the similarity between two

feature vectors i and j; the simplest example is a dot product (XX>) kernel. For a comprehensive

introduction to support vector regression, and support vector machines and kernels in general, refer

to [74, 62].

In our experiments we use the SVMTorch II implementation of the SVR [16], which is optimized

for large training sets (i.e., large N).

2.1.2 Cross-validation

Evaluation of a machine learning method, L, usually involves two phases: the training phase and the

test phase. The datasets used in these two phases are denoted respectively as DT and DE (datasets

that could be equal – i.e., DT = DE). The output of the training-phase of the learner L is a predictor

21

x

x

x

x

x

x

x

x

x

x

x

x

x

x

ξ

loss

0

+ε

-ε

ξ

+ε-ε 0

x

y

error

Figure 2.1: This figure visualizes the soft margin loss for a linear SVR. Adapted from [65]

P that is obtained from training data (DT). During the test-phase the predictor P is evaluated on

testing-data (DE) and reports the resulting score (e.g., accuracy, error, etc.).

One way of evaluating the performance of a machine learning (prediction) method is cross-

validation [82]. This method is especially useful when the amount of data is limited. In k-fold

cross-validation we first partition the available training data, D, into k disjoint subsets (or folds)

D1, D2, · · · , Dk where D = D1 ∪ D2 ∪ · · · ∪ Dk and ∀ 1 ≤ i, j ≤ k , i 6= j : Di ∩ Dj = ∅.
In the cross-validation process we evaluate a machine learning method k times. The test data for

fold-i is: Di
E = Di and the train data for this fold is: Di

T = D \ Di. After evaluating L on all

of the k folds, we can aggregate the evaluation scores over folds and report the desired statistics –

e.g., average score.

2.2 Reinforcement learning (RL)

“The idea that we learn by interacting with our environment is probably the first to occur to us when

we think about the nature of learning. When an infant plays, waves its arms, or looks about, it has

no explicit teacher, but it does have a direct sensorimotor connection to its environment. Exercising

this connection produces a wealth of information about cause and effect, about the consequences of

actions, and about what to do in order to achieve goals” [67].

The above paragraph introduced the form of learning that well explains the main idea behind

reinforcement learning (RL); learning by interacting with the environment. This is in contrast to

supervised learning, which needs an explicit teacher.

Reinforcement learning is usually used to solve sequential decision-making problems. The dia-

betes control problem is a good example of this sort of problem.

22

�
r= 1000

r=-1
· · · tile-id

2 3 4 5 6 7 8 9 10 11 121

13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45 46 47 48

�

Figure 2.2: Grid world.

2.2.1 Sequential decision-making problems

Many problems can be formulated as a sequential decision-making problem. We represent a se-

quential decision-making problem using two major entities: agent and environment. These two

entities interact with each other in a sequence of decision-making events. It is the agent’s responsi-

bility to make decisions by performing an action. The environment, on the other hand, is anything

that surrounds the agent and can interact with the agent. In the following we introduce sequential

decision-making problems with the help of a simple example.

2.2.2 Grid world

Grid world [67], is a simple environment consisting of aN byM grid of tiles. Two tiles in this world

are special, goal (�) and start (�). In every step the agent should choose an action, to move: Up (U),

Down (D), Left (L), and Right (R). All of the tiles are labelled with unique tile-IDs. The state of the

agent in the environment is the tile-id of the tile it currently occupies. There is a -1 reward assigned

to every tile except the goal tile, which has a reward of 1000. The agent receives the reward of a tile

as soon as it enters that tile. The goal of the agent is to accumulate the highest reward. The world

starts with the agent in the � state and ends when the agent is in the � state (see Figure 2.2).

The grid-world is a very simple sequential decision-making problem. The environment dynam-

ics in this example are very simple; at every state, the environment changes the state of the agent

according to its action. For example, if the agent is in state 3, after it has chosen action U (Up), the

environment will transit it from state 3 to 15.

A policy is a mapping from states to actions that tells the agent what action it should take in its

current state (tile-id). Here, one wants to provide the agent with a policy that guides it through the

grid from start to goal by passing the least number of intermediate tiles. This policy is called the

optimal policy as it helps the agent to get the most cumulative reward (Figure 2.3).

The dynamics of the environment is not always as simple as the above version of the grid world.

We can change the grid world dynamics to make it more complex by adding a lock on the goal tile

and then putting its key in another tile (lets assume that is tile 22). The agent now needs to pass

through the key tile to be able to enter the goal state. Thus the dynamics of the system (specifically

23

2 3 4 5 6 7 8 9 10 11 121

13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45 46 47 48

Policy

� �

Figure 2.3: Optimal policy in the Grid world. The arrow in each tile shows the action that agent
should take to arrive at goal (G) achieving the highest accumulating reward.

for the states leading to goal) cannot be represented as a function of the agent’s current tile and

action alone. This is because, it is essential to know if the agent is in possession of the key or not.

Another way of making sure that the agent is able to unlock the goal is by knowing if the agent has

passed through state 22, which requires having the history of agent’s transitions in the grid world.

In this context, if any transition in an environment is independent of the past given the current Markov
Propertystate, we say the Markov property holds [67]. For example in the grid world with the lock, the

Markov property does not hold if state (or the agent’s observation of it) only contains the tile-ID

variable. This is because the agent’s transition to the goal state not only depends on the agent’s

tile-ID (location) but also on its possession of the key. However, the Markov property would hold if

a Boolean variable showing this possession is added to the state variables1.

A sequential decision process is called a Markov Decision Process if the Markov property holds

for its transitions.

In the standard reinforcement learning framework, it is usually assumed that the environment

consists of a Markov Decision Process (MDP) with a finite number of states and actions2.

2.2.3 Markov decision process (MDP)

An MDP is defined by quadruple (S,A,P,R), where:

• S = {s1, s2, · · · , s|S|} are states

• A = {a1, a2, · · · , a|A|} are actions

• P(s, a, s′) = Pr(St+1 = s′|St = s,At = a) are state transition probabilities, characterizing

the distribution over the next state.

• R(s, a, s′) = E[Rt+1|St = s,At = a, St+1 = s′] is the reward function, that determines the

expected reward associated with a state transition accomplished by a specific action.

1This Boolean variable would be true if the key is in possession of the agent and false otherwise.
2For a comprehensive introduction to MDP see [54]

24

action:At

Rt+1

St+1

reward:Rt

state:St

Environment

Agent

Figure 2.4: Conventional reinforcement learning setup. In every decision-making time-step t, the
agent observes a state St ∈ S from the environment, then decides to perform the action At ∈ A.
The environment receives this action from the agent and emits back a reward Rt+1 ∈ R value, and
the agent arrives at the new state St+1

.

• R(s, a) =
∑
s′∈S
P(s, a, s′)R(s, a, s′) = E[Rt+1|St = s,At = a], is another similar form of

reward function.

As in the grid world example, in every decision-making time-step t ∈ N0, the agent first receives

information from the environment that shows its current state St ∈ S. The agent then decides to

perform an action At ∈ A based on its policy. The environment receives this action from the agent

and emits back a reward Rt+1 ∈ R value, at the same time, the agent receives information about its

next state, at time-step t+ 1, St+1(see Figure 2.4).

In the diabetes world, if we ignore the basal injections for simplicity, we can think of meals as Diabetes
MDPdecision points. Likewise, the state can be viewed as the current blood glucose (and the meal that

the patient is going to eat –as it will also have an effect on the patient’s next state). The amount

of insulin that the patient is going to inject is considered as an action. For the rewards we need a

measure that shows how well the blood glucose is controlled between one decision point (meal) and

the next. The transitions can be thought as the way the body of the patient behaves after having a

meal and taking the injection.

An example will help to clarify what we mean by transition in the diabetes world. Let us assume

that the patient’s current blood glucose is at a normal level, and that the patient is going to eat a

normal meal. If the patient takes her normal insulin injection, then at the time of her next meal, her

blood glucose level will be around the normal value. Whereas, if she takes more insulin, she will

probably end up with lower blood glucose at her next meal.

There are many differences between the grid world and the diabetes world. One of these is the

continuing nature of the diabetes problem. In RL, tasks are usually either episodic or continuing.

An episodic task, as in the case of the grid world, is a task in which the interaction between agent Continuing
vs
Episodic

and environment consists naturally of multiple sequences (each of which is called an episode). For

example, an episode in the grid world as mentioned starts at the S tile, and ends at the G tile. In

contrast, the diabetes problem, which is a continuing task, is a task in which the agent-environment

25

interaction is like a single chain of events and does not have natural episodes (it does not end as long

as the patient is diabetic and alive).

Another difference is the type of information that the agent receives about the environment.

Depending on the type of information that an agent receives from the environment, we can have a MDP vs
POMDPfully observable environment or a partially observable environment (in this case we have a partially

observable MDP or a POMDP). In a fully observable environment, the agent receives a Markov

state St at every time-step; otherwise it only gets a partial observation of the true state. In the

diabetes world, the true Markov state probably includes many variables representing various factors

in the patient’s body, ranging from her blood pressure to the concentration of various hormones in

her system and her brain activity. Not all of the above factors are observable (measurable), thus in

reality the patient only receives a partial observation of the current state of her body.

Although we only have partial observations of the true state of the patient’s body, we might

still have enough information in our observations to guide the patient to maintain her blood glucose

within an acceptable range. For instance, the state space that diabetologists use consists only of

current blood glucose and the amount of carbohydrates that the patient is going to eat, and this state

is informative enough to be used by patients in real life. Although the diabetes world is a non-

Markovian environment, we assume that we have full observations of the state and thus have an

MDP.

In the Grid World example we explained that the Markov property holds if the future is indepen-

dent of the past given the current state. Here is a formal definition: the Markov property holds if and

only if:

Pr(St+1 = s′, Rt+1 = r|st, at, rt, st−1, at−1, rt−1, ..., r2, s1, a1) = Pr(St+1 = s′, Rt+1 = r|st, at)

Thus far we have employed the grid-world example to introduce sequential decision-making and

MDP. Next we motivate the use of RL in the diabetes domain using two more examples. The first

example is a control problem in which the goal is to balance a pole on a cart. This example is a

good analog for balancing blood glucose in diabetes. In the second example, we illustrate one of the

subtleties of the diabetes world.

2.2.4 Two additional RL examples and their similarity to the diabetes task

One of the commonly used examples in the reinforcement learning literature is the pole-balancing

problem. Pole-balancing is a good example of a control task, where the goal is to keep the value of a

parameter (angel of the pole) within a specific range. In that sense, the task of controlling the blood

glucose level within a certain range is very similar to the pole-balancing problem.

The goal of the pole-balancing problem is to balance a pole (an inverted pendulum) that is

connected to a cart by a pivot. The cart can only move along a horizontal rail, and the pole is only

free to move about the horizontal axis of the pivot. The state of the system is defined by four real

26

φ

Y

X

dd

θ

Figure 2.5: The pole-balancing reinforcement learning problem, adapted from [67].

values: the angle of the pole θ, the angular velocity of the pole θ̇, the position of the cart relative

to the centre of the track x and the velocity of the cart ẋ. The output of the control system (action)

is a forward or backward force to the cart. The constraints of the system are: (1) the pole must

remain upright with a deviation angle no more that ±φ degrees (from vertical axis) and (2) the cart

must remain within ±d of origin; see Figure 2.5. The reward for violation of the constraint is -1 and

otherwise 0. Once the constraints are violated, the state is reset to a random valid state (which does

not violate the system constraints).

There exists an analogy between the blood glucose control and pole-balancing example, in which

the angle of the pole is analogous to the blood glucose level. There are also some clear differences

between the two tasks. First, the dynamics of the diabetes task are more complex –i.e., the number

of parameters that impact the blood glucose level is larger– and many things can affect the blood

glucose level of the patient (e.g., the temperature of the environment, stress, etc.). In addition, there

is a difference between actions that can be taken. In the diabetes control task, the only possible

action for the controller is to inject insulin, which decreases the blood glucose level. In contrast, in

the pole-balancing problem, the available actions are pushing left or right. Put another way, in the

diabetes task, our actions are one-sided. Having only a one-sided action available is analogous to a

version of the pole-balancing problem in which the cart is on a hill and its controller can only push

the cart to the left. In this analogy, eating meals in diabetes task is very similar to the push-to-right

action in pole-balancing, in that these respective controllers are incapable of taking either of these

actions.

Another example of a reinforcement learning problem that can clearly show some of the burdens

involved in glucose control is the cliff-walk problem [67]. The schematics of this problem can be

seen in Figure 2.6

The cliff-walk world is very similar to the grid world. However, in the cliff-walk world there

exists a “cliff ”, consisting of a few tiles with very negative rewards. The agent’s goal is to arrive

at the goal state without falling off the cliff (entering the cliff states). The cliff state(s) in this

environment is very similar to hypoglycemia state in the diabetes problem. The closer one can get

27

S G

r= -100

r=-1

safe path

optimal path

T h e C l i f f

Figure 2.6: The Cliff-Walk problem adapted from [67]. Reward for each transition on the grid is−1
except on the cliff tiles where it is −100. The starting state is denoted by S and the terminal goal
state by G.

to the cliff, the greater the reward will be. Yet one must be careful not to get too close to the cliff,

because falling off the cliff, like succumbing to hypoglycemia, leads to devastating consequences.

Thus far, we have used some examples to familiarize the reader with reinforcement learning

and to motivate its application to diabetes management. In the following section, we first formalize

the concepts that we provided in the previous examples, and then introduce some additional rein-

forcement learning concepts. These concepts are the building blocks of our reinforcement learning

methods, which will be introduced in Section 4.3.

We start by providing a formal description of the reinforcement reward in the diabetes problem.

2.2.5 Reward

Reward is defined for blood glucose measurements over a specific time interval. It shows how well

blood glucose has been controlled in this time interval (e.g., from breakfast to lunch).

We define two different forms of rewards based on our previously defined score function :

• mean-reward (over time):

R̃t+1 =
∫ τt+1
τt

score(BGτ) dτ
τt+1 − τt

• cumulative-reward:

R+
t+1 =

∫ τt+1

τt

score(BGτ) dτ

where τ is the actual time (e.g., 11am) at time-step t (e.g., 3rd meal).

2.2.6 Policy

In the grid world example we described the policy concept and provided an optimal policy for that

problem. Here we formalize the definition of the policy.

We can have two different forms of policy:

• Stochastic policy: π(a, s) = Pr(At = a|St = s). This form of policy assigns a probability

to each action given the current state.

28

Objective type/name Objective formula

Discounted Sum Jγ ,
∞∑
t=0

γtRt+1, 0 ≤ γ < 1

Finite Horizon JT ,
T∑
t=0

Rt+1

Average Reward J∞ , lim
T→∞

1
T

T∑
t=0

Rt+1

Table 2.1: Various forms of reinforcement learning objectives.

• Deterministic policy: Very similar to a stochastic policy, but the probability of selecting one

of the actions is one and the probability for any other action is zero.

A good example of a deterministic policy, in the diabetes world, is the standard treatment policy

that we introduced in Section 1.3.5. Note that each action is the amount to inject (Inj), which is

deterministically specified by the policy parameters and user state.

In the following we formalize the goal of reinforcement learning.

2.2.7 Goal

The goal of reinforcement learning is to find a policy that selects actions in such a way that an

objective function is maximized; this objective function is based on future rewards (will be discussed

in Section 2.2.9). To accomplish this goal, an inexperienced agent must train its policy π(a, s) =
Pr(At = a|St = s), in a process that usually needs both to exploit its current knowledge about the

environment (to acquire good rewards), and to explore the environment to learn about unidentified

opportunities.

2.2.8 Epsilon-soft policy

As mentioned above, a reinforcement learning (RL) agent usually tries to explore the world to learn

about the environment and potentially achieve a desirable performance. One of the very common

exploration techniques that is used in the RL literature is ε-soft policy [78]. This technique creates

an ε-soft policy, π(ε-soft) based on policy π by adding some exploration. At each step, an ε-soft policy

selects actions at random with probability ε (exploration) and selects the actions from policy π with

probability 1− ε (exploitation).

2.2.9 Objective function

The objective function, denoted by J , can have different meanings and forms. It may refer to the

discounted sum of future rewards, the average of all future rewards, or the sum of the future rewards

up to a finite horizon (see Table 2.1). Each of these formulations would have its own optimizing

policy which might be well different from the others.

Based on the objective function, one can define a measure of goodness for states or state-action

pairs, which will be discussed next.

29

2.2.10 State/state-action value function

State value function, or simply value function, V π(s), is defined as the expected objective (J) when

the agent starts at state s and follows policy π. Similarly, state-action value function, or simply

action value function,Qπ(s, a), is defined as the expected objective (J) when agent follows policy π

after taking action a at state s. Note that these definitions are based on the expectation on trajectories

generated by policy π, which is denoted by Eπ .

V π(s) , Eπ[J |S1 = s]

Qπ(s, a) , Eπ[J |S1 = s,A1 = a]

There exists a unique optimal value for each of these functions denoted by:

V ∗(s) = max
π

V π(s), ∀s ∈ S

Q∗(s, a) = max
π

Qπ(s, a), ∀s ∈ S, a ∈ A.

As in the case of Q∗, we can define π∗(s, a) = argmax
π

Qπ(s, a). This optimal policy is the

policy whose corresponding action value function (Qπ
∗
) would be Q∗. Note that this policy is not

necessarily unique.

Next we discuss different ways that the value function can be represented.

Function approximation

In problems with discrete and small state spaces, one can represent the value function with an array

or matrix, which contains the state-value V (s) of each state (s ∈ S). This representation method

is known as the tabular representation. In most real-life problems, however, the state space is

usually very large or continuous. In these problems, it is not possible or feasible to use a tabular

representation, since the number of elements in the table of these value functions could be very large

(or in the case of a continuous state space, infinite).

One way of dealing with the above issue is to use function approximation. The goal of func-

tion approximation is to find a more compact representation that approximates the value function.

In function approximation one first needs to define a set of features ϕ(S) for state S. Once this

feature vector is defined one can approximate the value function with a predictor. As an exam-

ple, in linear approximation, the value function can be approximated using a weight vector ω as:

V (S) ≈ ϕ(S)>ω.

Discretization (or tiling) is one of the linear function approximation methods most commonly

used in RL literature [67]. This method gets its name from the fact that it discretizes the state space

into disjoint areas, which are called tiles. Using this method, an approximate state is assigned to

each tile (tile index) and this state is the representative of all the actual states that fall into the same

tile; see Figure 2.7. In this method a feature vector is defined using a binary vector and the tile index

30

blood glucose

tiles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8

(mmol/L)

Figure 2.7: An example of discretization on blood glucose.

blood glucose

tiles in tiling 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4

(mmol/L)

tiles in tiling 2 1 2 3 4

Figure 2.8: An example of tile coding with 2-tilings on blood glucose.

i. Given that the number of tiles is n, we create a binary vector with n elements, where the i-th

feature in this vector is one and the rest of the values are zero.

ϕdiscretization(S) = [
i−1︷ ︸︸ ︷

0 · · · 0 1
n−i︷ ︸︸ ︷

0 · · · 0]

For example, in Figure 2.7, we discretize the blood glucose values of interval [1, 17] into n = 8 tiles.

In the example presented in this figure, all blood glucose values between 1 and 3 mmol/L fall into

the tile 1, and all are represented by feature vector [1,0,0,0,0,0,0,0]. Similarly blood glucose values

of 10 and 10.5 are located in tile 5 and consequently have a feature vector of [0,0,0,0,1,0,0,0], where

the 5th bit is one.

By adjusting the sizes of the tiles, we can obtain the desired compactness in the representation.

Furthermore we can obtain generalization over the state space using tile-coding (that is, through the

use of more than one tiling) with larger tiles. In tile-coding, different tilings have different offsets

(so that the tilings overlap). Figure 2.8 is an example that shows how two tilings can be used. In

this example, we have four tiles in each tiling. The tile-coded feature vector of blood glucose of

12 mmol/L in this case is [
tiling-1 features︷ ︸︸ ︷

0,0,1,0 ,

tiling-2 features︷ ︸︸ ︷
0,0,0,1], as the value of 12 mmol/L for blood glucose

is in tile 3 of the first tiling, and in tile 4 of the second tiling (tiling 2). For more information on

tile-coding see [67]. A very similar argument can be used to address the action space. Consequently

we can also use function approximation to approximate the action value function Q(s, a).

In the following we describe two commonly used classes of reinforcement learning algorithms

that help an agent to find an optimal policy. We use one method from each of these categories

in Section 4.3 to address the diabetes problem.

31

2.2.11 Value-based reinforcement learning methods

These methods are based on value functions. If we have access to Q∗ then a simple form of optimal

policy can be obtained from the following greedy policy (substitute Q with Q∗):

π(greedy)(s, a) =

1, if a = argmax
a′

Q(s, a′)

0, otherwise
.

Value-based methods consist of many iterations of the following two phases: policy evaluation

and policy improvement. In the policy evaluation phase (e.g., at iteration i), the goal is to come

up with an estimate of the current policy’s action value function (Qπi). In contrast, in the policy

improvement phase of iteration i, the goal is to come up with a slightly better policy by using

π(greedy) of Qπi . As these iterations proceed, under certain conditions Qi converges to Q∗ [67].

In model-free RL, the policy evaluation phase is usually done by sampling trajectory/trajectories

of (state, action, reward, state) quadruples achieved by following the policy that is going to be

evaluated. One of the standard methods for policy evaluation estimation is Temporal Difference

learning (TD-learning) [66]. TD-learning is a general method for solving prediction problems that

uses previous predictions as targets for next predictions during the learning process (this is called

bootstrapping).

One of the value-based RL algorithms that we utilize is Sarsa. This algorithm will be introduced

in Section 4.3.

2.2.12 Policy-based methods

In contrast to value-based methods, policy-based methods do not directly use the (action-)value

functions to select actions [67]. These methods might still calculate the value function or action-

value function, but these might only affect the policy indirectly (e.g., to update the policy). Actor-

critic methods are one of the methods in this category; these methods are discussed in Section 4.3.2.

In the next chapter we introduce our experimental platform, the type-1 diabetes simulator.

32

Chapter 3

T1DM Simulator

In this chapter we introduce our diabetes evaluation platform. We examine and evaluate our al-

gorithms on in-silico patients simulated by Type-1 Diabetes Mellitus Simulator (T1DMS). We de-

scribed the reasons behind selecting this specific simulator for our purposes in Section 1.4.3. In the

following we briefly introduce the T1DM-simulator.

T1DMS is a commercial software created by “The Epsilon Group”1 to simulate the metabolic

system of type-1 diabetic patients. This simulator is implemented in Simulink®/Matlab® and uses

the mathematical model of Dalla Man et al. [21]. This in-silico model is the first (and so far the

only) FDA-accepted tool to substitute animal trials in pre-clinical testing of new treatment strategies

in type-1 diabetic patients. T1DMS provides a set of in-silico patients that can be used to measure

and compare the effectiveness of different proposed treatments.

The science behind T1DM simulator is the result of more than a decade of research done by

Dr. Claudio Cobelli and his team from the University of Padova, Italy, and of their collaboration

with researchers at the University of Virginia, USA [28, 11, 75, 47, 19, 20, 73, 22, 21, 40, 31].

The T1DM simulator is a Matlab® program consisting of multiple subsystems. These subsys-

tem are mostly implemented in Simulink. Each of the subsystems has its own compartments and

potentially its related differential equations. As T1DMS is not an open source software, we do not

have access to most of the implementations of its subsystems.

3.1 Prerequisites to simulation

In order to use the T1DM simulator, we need to specify the following options [31]:

1. The simulation period: how long the patient should be simulated (e.g. 5 days).

2. The patient-ID (PID) of the in-silico patient which is going to be simulated. The simulator

comes with 30 in-silico patients. A list of patients and their parameters is provided in Ap-

pendix A.

1http://tegvirginia.com/

33

http://www.dei.unipd.it/~cobelli/
http://tegvirginia.com/

3. The meal information for the whole simulation period, consisting of exact meal amounts and

their associated times2.

4. The injection controller block.

Figure 3.1 shows the main view of the T1DMS model in Simulink. This view shows various

blocks of the simulator. The block that is indicated by a large light-blue vertical rectangle in the

middle is the heart of the simulator. This block is a black box3 that models the human body. The rest

of the blocks are white boxes4 and are responsible for simulating the glucose sensor, insulin pump,

and (most importantly) the controller.

The controller block, the orange horizontal box in the bottom of the figure, is responsible for

decision-making related to control of the blood glucose level of the simulated patient. This is the

block that decides about the time and amount of insulin injections. It is our job to fill the contents of

this block (with our algorithms).

Figure 3.1 shows that the controller receives a number of input signals and produces output sig-

nals accordingly (all links in Simulink are in the form of signals –that is, of time varying variables).

The input signals consist of (1) the current glucose reading that is supplied to the controller by the

glucose-sensor block (this block simulates the noise in the glucose meter readings); (2) the current

insulin injection (previously advised pump rates); (3) time-of-day, the current simulated time of day

for the in-silico patient (e.g. 18.5 would be the signal’s value at 6:30pm); (4) the meal announce-

ment signals, including one that specifies meal times and another that shows the size of the meal.

The outputs of the controller block are (1) the suggested basal pump rate and (2) the suggested bolus

pump rate.

A more complex version of the controller can also be implemented. This version offers the

option of advising users about carbohydrate consumption by providing a signal showing the grams

of carbohydrates per minute for food intake. We did not use this option but it will be discussed

in Chapter 6.

The controller can process its input signals once every minute5, and produces a subsequent

output signal. In other words, the controller measures the information about the state of the patient

(blood glucose, meal consumption, and time-of-day) and then recommends an appropriate action

(injection).

3.2 Complications, modifications, and add-ons

In the process of using T1DMS we faced several problems that needed special solutions. Here we

provide a list of these issues and our proposed solutions.

2Another meal-related information is the meal duration, which we fixed to 20 minutes in our experiments
3Black box blocks are blocks that we do not have access to their implementation
4White box refers to the blocks that their implementation is available to us
5This is the time scale that is observable to the in-silico patient.

34

sc
e
n
a
ri
o
.m

e
a
l
a
n
n
o
u
n
c
e

u
p
lo
a
d
m
e
a
l
a
n
n
o
u
n
c
e
m
e
n
t

sc
e
n
a
ri
o
.m

e
a
ls

u
p
lo
a
d
c
a
rb
s
in
ta
ke

sc
e
n
a
ri
o
.S

Q
in
su

li
n

u
p
lo
a
d
O
p
e
n
lo
o
p

in
su

li
n
re
g
im

e
n

sc
e
n
a
r i
o
. I
V

in
su

li
n

u
p
lo
a
d
IV

in
su

li
n

sc
e
n
a
ri
o
.I
V

g
lu
c
o
se

u
p
lo
a
d
IV

g
lu
c
o
se

In
1

O
u
t1

t i
m
e
o
f
d
a
y

sc
e
n
a
r i
o
.s
im

T
o
D

s t
a
r t
s i
m

T
o
D

sc
e
n
a
ri
o
.T

c
lo
se

d

st
a
rt
C
L
ti
m
e

ti
m
e

sa
v
e
ti
m
e
v
e
c
to
r

se
n
so

r

sa
v
e
se

n
so

r
re
a
d
in
g
s

p
h
y
s i
o

s t
a
te
s

sa
v
e
p
h
y
s i
o
l o
g
i c
a
l
st
a
t e
s

m
o
d
e
l
st
a
te
s

sa
v
e
m
o
d
e
l
st
a
te
s

m
e
a
su

re
d

sa
v
e
m
e
a
su

ra
b
l e

d
a
t a

G

sa
v
e
b
lo
o
d
g
lu
c
so

e

S
Q

[p
m
o
l
p
e
r
m
in

]
p
u
m
p
in

je
c t
io
n

p
u
m
p

-K
-

p
m
o
l/
m
in

to
U
/ h
r

-K
-

p
m
o
l
to

U

0
m
e
a
l

B
G

IG

C
G
M

S
M
B
G

g
lu
c
o
se

se
n
so

r

g
C
H
O

-K
-

g
to

m
g

-K
-

g
C
H
O
/ m

i n
t o

m
g
C
H
O
/ k
g
/ m

i n

- K
-

U
/ m

in
to

p
m
o
l/
m
in

-K
-

U
to

p
m
o
l

2
5
6
.6

T
o
ta
l
in
su

li
n
[U

]

1
4
3
3

T
o
ta
l
c
a
rb

[g
]

T
o

P
U
M
P

B
O
L
U
S

B
A
S
A
L

c
a
r b

in
ta
ke

in
j e
c
ti
o
n

S
w
it
ch

c
lo
se

d
lo
o
p
3

S
w
it
ch

c
lo
se

d
lo
o
p
2

S
w
it
ch

c
lo
se

d
lo
o
p
1

S
w
it
ch

c
l o
se

d
l o
o
p

g
lu

c o
s
e

In
s
u
li
n
in

je
c t
io
n

m
e
a
l
a
n
n
o
u
n
ce
m
e
n
t

T
o
D

s
u
g
g
e
s
t e
d
b
a
sa

l
p
u
m
p
ra

t e
[p

m
o
l
p
e
r
m
in

]

s
u
g
g
e
s
te
d
b
o
lu

s
p
u
m
p
ra

te
[p

m
o
l
p
e
r
m
in

]

IV
in

su
li
n
[p

m
o
l
p
e
r
m
in

]

IV
d
e
x
tr
o
se

[p
m
o
l
p
e
r
m
in

]

c
a
rb

s
[g
/ m

in
]

S
ta
n
d
a
r d

T
re
a
tm

e
n
t
C
o
n
tr
o
ll
e
r
1

SMBG

CGM

IV

G

S
e
n
so

r
se

le
c
to
r

J

1
/ s

I n
t e
g
ra
t o
r1

1 s

In
te
g
ra
to
r

m
e
a
ls

d
e
x
tr
o
se

I
V

in
je
c t
io
n

in
su

li
n

IV
in

je
c t
io
n

in
su

li
n

su
b
Q

in
je
c t
io
n

b
lo
o
d

g
lu

c o
s
e

p
h
y
s
io
lo
g
ic
a
l
s
ta
te
s

m
o
d
e
l
s
ta
te
s

in
te
rs
ti
ti
a
lg

lu
c o
s
e

H
u
m
a
n
m
o
d
e
l

G

D

C
lo
ck
1

C
lo
ck

Fi
gu

re
3.

1:
Si

m
ul

in
k

vi
ew

of
th

e
gl

uc
os

e-
in

su
lin

si
m

ul
at

or
sy

st
em

of
th

e
T

1D
M

S
ad

ap
te

d
fr

om
[3

1]
.

35

3.2.1 Hypoglycemia

The first issue that we had with the T1DMS was the lack of any information about hypoglycemia

symptoms. No such information is provided by T1DMS, either at run time or after the simulation.

If the blood glucose of the patient goes very low, then the simulator gets into a state in which none

of the actions suggested by the controller, nor the meal signals, will change the state of the in-silico

patient. This could be an issue for the learning algorithms (as one would expect the blood glucose

level to rise after eating a meal). Furthermore, the simulator can stay in this terminal state for a very

long time, which wastes CPU time. The way we dealt with this issue was to command the Simulink

to stop the simulator if the blood glucose readings got below a certain threshold (2 mmol/L).

3.2.2 Finite simulation time

There is a limit to the simulation period. This limit is basically posed by the hardware memory limit

of the workstation that runs the simulator. This limit in our system was about 100 simulation days.

3.2.3 Continuation

When the simulator stops, either due to the Hypoglycemia (see above) or because the simulation

period is over, it is not possible to continue simulation of the patient past this point (e.g., in another

run)6. Therefore whenever a continuous run is desired, e.g., during a learning task, if the simulator

stops, we restart it and assume that the second simulation is a continuation of the first. Although

these restarting events happen rarely (e.g., once in 100 days), one needs to be careful about handling

them in the learning algorithm.

3.2.4 History buffers

In order to provide some information about the history of events to the controller we needed to add

various buffers inside the controller module. These buffers store historical information related to the

three following signals: sensor blood glucose readings, insulin injections, and meal signals.

3.2.5 Glucose sensor and noise

As mentioned above, the simulator has a few blocks that simulate the continuous glucose sensor.

These blocks are capable of simulating various types of sensors: intravenous (IV), sub-cutaneous,

and Self-Monitoring of Blood Glucose (SMBG). We use the sub-cutaneous sensor, which is the

standard type of continuous blood glucose sensor that diabetic patients use in real-life. The simulator

adds some noise to the blood glucose signal that the controller receives (to simulate the real life

noise in blood glucose sensors). To reduce the noise in blood glucose readings, we pre-processed
6The simulator’s internal state variables are only accessible at the end of simulation, and these variables are read-only at

the beginning of the simulation. In order to make sure that we could not initiate the simulation from the end of another run,
we contacted the T1DMS developers. They told us that in order to have full access to these (internal) variables, one needs
access to the protected code (which is not available to us). Additionally changing these variables might necessitate further
verification of the resulting model. Due to these issues we decided not to follow this path.

36

the blood glucose signal inside our controller by applying a moving-average filter (over a window

of 100 minutes).

37

Chapter 4

Methods

This chapter presents our formulation of the diabetes control problem and the methods we used to

address this problem. Section 4.1 describes the problem and Section 4.2 presents T1DC, our algo-

rithm based on supervised learning. Finally, Section 4.3 provides details about two reinforcement

learning algorithms that we use to automate the diabetes treatment-policy adjustment.

4.1 Formulation of the problem

This section introduces our formulation of the diabetes blood glucose control problem. First, some

concepts are introduced, including meal and injection scenarios as well as patient options for blood

glucose measurement and insulin injection. Section 4.1.4 then defines the blood glucose controller

concept. This dissertation uses the vocabulary used in T1DMS [31] to name these concepts so that

they correspond with the terms used by the software to simulate a patient with a specific patient-ID1

(PID). Finally, Section 4.1.5 details our experimental settings.

4.1.1 Meal scenario

To be able to manage diabetes more easily, diabetic patients try to eat very similar meals every day.

In real life, achieving this goal is not easy (e.g., it is almost impossible to eat your usual meal at a

party). In contrast, for in-silico patients, it is easy to assume that similar meals are consumed every

day.

A daily meal plan specifies the size and time of daily meals. For example, the daily meal plan

of a simulated patient can be as follows: three meals per day at 8am, 12am and 7pm, with the as-

sociated carbohydrate consumptions of 30, 50 and 70 grams. To make the daily meal plan more

realistic, we may add some stochasticity to the time and the size of each meal. For example, in

a more natural scenario, a lunch contains about 50 grams of carbohydrate and is eaten sometime

around noon. Formally, this stochasticity can be added using probability distributions to create a

generative model for lunch. An example is when the patient’s lunch time is normally distributed

1List of in-silico patients can be found in Appendix A.

38

around noon, (e.g., N(µ = 12am, σ = 30 minutes)), and consists of about 60 grams of carbohy-

drate (e.g., normally distributed N(µ = 60, σ = 10)). Similar generative models can be used for

breakfast and supper. Details of the actual daily meal plan that we used in our experiments will be

discussed in Section 4.1.5. This daily meal plan can be used to generate the sequence of meals that

an (in-silico) patient consumes over a period of time (e.g., k-days). We call this randomly generated

sequence the meal scenario.

4.1.2 Injection scenario

An injection scenario describes how a diabetic patient takes insulin through insulin injections. As

explained in Chapter 1, type-1 diabetic patients use two different types of insulin: Basal and Bolus.

Each of these types has its own injection scenario:

Bolus injection scenario

For the short-acting insulin, two different types of injection scenarios exist: standard and continu-

ous. In the standard injection scenario, injections happen prior to each meal, while in the continuous

injection scenario insulin injections can happen at any moment (e.g., once every few minutes). The

latter scenario can be used only by patients who are using an insulin-pump (at the time of writing

this dissertation, an insulin-pump costs about $7000).

Basal injection scenario

Basal injection scenario is also categorized into two types: standard and continuous. In the stan-

dard basal injection scenario, long-acting insulin is used for basal injections. However, in the con-

tinuous basal injection scenario, continuous infusion of rapid-acting insulin is used.

4.1.3 Glucose monitoring

Glucose monitoring can be done in two ways:

• Discrete monitoring

• Continuous monitoring

In discrete monitoring, patients sample their blood glucose level a few times a day, usually two

to eight times. To measure the blood glucose level, patients prick their skin, usually around the

fingertip, with a lancet and then put the resulting small drop of blood on a test strip. The test strip is

then inserted into a blood glucose meter, which measures the level of blood glucose. These samples

are usually gathered right before meals and sometimes after meals (e.g. 2 hours after the meals).

In continuous glucose monitoring, patients use a Continuous Glucose Meter (CGM) device [52].

This device has a glucose sensor that is placed under the skin and measures blood glucose every

minute or every few minutes. These readings can be easily exported to a computer.

39

4.1.4 Controller

A controller is a device or algorithm that monitors and controls a dynamical system [81]. In this the-

sis, the controller is controlling the blood glucose level by deciding the amount of insulin injections

needed at any moment2.

Inputs to the controller can be temporal features such as:

• History of previous blood glucose readings 3

• History of previous meals (time, duration, size)

• History of previous insulin injections (time, amount)

and/or other clinical information about the patient (e.g. body weight, body mass index (BMI), age,

gender, etc.)4.

As the controller controls the blood glucose level by specifying the amount to inject, it needs to

be defined in conjunction with an Injection scenario.

4.1.5 Experimental setup

As mentioned in Chapter 1, we use the T1DM simulator, described in Chapter 3, for all of our

experiments. The first part of our experimental setup describes the inputs to T1DMS (introduced

in Section 3.1). The first input is the meal information for the duration of the simulation. Using

the approach that is discussed in Section 4.1.1, we generate a meal scenario based on the following

daily-meal-plan:

Meal Time Size (grams of carbohydrate)
Breakfast TN(7, .5, 6, 8) TN(40, 10, 20, 60)
Lunch TN(12, .5, 11, 13) TN(50, 10, 30, 80)
Supper TN(18, .5, 17, 19) TN(70, 10, 50, 90)

where TN denotes a truncated Gaussian distribution, which is a bounded version of Gaussian distri-

bution: TN(µ, σ, a, b) defines a truncated Gaussian distribution with mean µ and standard deviation

σ, whose values are bounded to interval [a, b] (a Gaussian distribution conditioned on the random

variable being in the interval) [80].

The second input is the injection scenario, in which we use continuous basal in conjunction

with standard bolus injections. For glucose monitoring we use a continuous glucose meter. While

this setup may look arbitrary at first, there is a reasoning behind this choice. We could not choose

standard basal injection as T1DMS is unable to simulate long-acting insulin. This forced us to use

the insulin pump for basal injections. However, we still had the choice of using a standard scenario

for bolus injections.

2Remember that there exist a specific controller module in the T1DM simulator with the same role (see Chapter 3).
3For more details refer to Section 4.1.3.
4Of course if the inputs to the controller are instantaneous readings, we can still assume that temporal data can be extracted

from this instantaneous data within the controller itself (e.g., using a buffer).

40

This raises an important question: why would we want to use a standard scenario for bolus injec-

tions, given that we are using a continuous scenario (insulin pump) for basal injections? Fortunately,

according to our diabetologist5, if a patient is using the pump solely for basal injections, it is not hard

to come up with the right settings for the standard basal scenario. Thus, our decision to combine

continuous basal and standard bolus injection scenarios enables us to switch back to the full standard

injection scenario if this is desired at a future time (e.g., with a more sophisticated simulator or in a

clinical study).

Our choice of a continuous blood glucose monitor is based partly on the fact that it helps us

to define a performance measure. While the CGM does not cost as much as an insulin pump, it

provides an immense amount of information about the variations and complex patterns of blood

glucose. Although this amount of raw information might be overwhelming for the human brain to

analyze6, this certainly is not the case with a computer.

We simplified the diabetes control problem in various ways. In this thesis, we address only the

bolus injection control problem and leave the basal injection control to be addressed in a future study.

For the basal injections, we used the optimal basal infusion rates that are provided by the creators of

T1DMS. Second, we had reason to believed that children’s diets as well as their sensitivity to blood

glucose fluctuations might significantly differ from those of adults and adolescents [26]. Thus,

to further simplify our problem, we removed children from our study, and used only 20 in-silico

patients that model adolescents and adults.

Apart from the above simplifications, due to the limited speed of the simulator it was not possible

to extensively tune some of the parameters for the methods that we introduce in this chapter. The

extensive tuning becomes even less feasible if we have multiple parameters to tune; for example

there are three parameters in one of our reinforcement learning algorithms. As a result, we only

tried a handful of randomly picked parameters. Consequently there is room for future comprehensive

studies to address the parameter tunings.

Here we explain the setting in which each algorithm works. T1DC is very similar to the policy

treatment adjustment cycle that is introduced in Section 1.3.4. T1DC is a supervised learning method

that automates the treatment adjustment cycles. T1DC is trained using data from a population of

patients, to learn the effects of a given policy on the diabetes-diary. After the training, T1DC can

suggest a policy adjustment for a new patient by observing her diabetes diary. T1DC is more like an

open-loop diabetes control system.

The reinforcement learning methods are meant to be used in a different setting. Our RL methods

are more similar to the closed-loop diabetes control systems. The health of all of our in-silico

patients is very important to the algorithm (even during the learning phase7), we want them to have

5Here and below, this refers to Dr. Edmond A. Ryan (Department of Medicine, University of Alberta, Edmonton, Canada)
6For example, three months’ worth of minute-by-minute readings is about 130,000 blood glucose readings.
7This is in contrast to the T1DC’s case, where we are only concerned about the patients in the test phase – i.e., there is no

penalty for going hyper- or hypo-glycemic during the training phase.

41

the least number of hypoglycemia events possible. If such an event happens, the patient is assumed

to be disconnected from our system, being taken care of by a specialist, until her health situation

gets back to normal and she is reconnected to our RL system. We simulate this process by stopping

the simulation and restarting it. In the following section, we discuss our first treatment adjustment

algorithm.

4.2 Supervised algorithm, T1DC

The T1DC algorithm uses supervised learning to predict the best policy parameters. The policy is

assumed to be in standard policy form – Equation 1.1. Policy Form

T1DC uses extracted temporal features (from blood glucose readings) of a patient to predict

the treatment policy parameters that would work best for her. The main assumption is that these

temporal features contain information that helps to describe the hidden physiological properties of

patients, by specifying the intrinsic properties of the patient’s body and her blood glucose regulatory

system (the properties include such factors as liver properties, sensitivity to insulin, the total volume

of the blood in the patient’s body, etc.). If we had access to all of these hidden properties of our

in-silico patients, we could use them as input to our policy, and also to the learning process that

would allow us to identify the appropriate policy. But even if we did have access to those values, we

would not want to use them; because in real life, these hidden properties are very hard to measure

without extensive testing of the patient, and are generally inaccessible. However, we would still

use easily obtainable clinical information about the patients (such as, body-weight, blood glucose

readings, age, etc.).

To be able to apply T1DC on new patients, we need to train the algorithm based on information

acquired from a fixed set of patients (training set). During the training phase, a learner uses the

training set and returns a predictor. At this point T1DC can be used in an iterative policy adjustment

cycle for a new patient: the patient follows an initial policy, πθ0 , for k-days, meaning that we

simulate the patient for this period of time, using injections based on πθ0 . Then we extract some

features (called temporal features) from the diabetes diary of the patient (data that are observed over

these k-days). The input features of the predictor consist of these temporal features as well as some

clinical features. The output of the predictor is the estimated optimal policy parameters θ1. When

the predictor provides an output, the above cycle can be repeated by starting with the policy from

the newly estimated policy parameters, πθ1 (instead of starting with πθ0).

We should note that the T1DC algorithm is not directly concerned with blood glucose control

performance, but only tries to predict the optimal policy parameters as accurately as it can (on its

training patients). T1DC assumes that the optimal parameters will provide the best possible blood

glucose control, and the closer the predicted parameters get to the optimal parameters, the better the

blood glucose control performance will be. Yet, in practice, we do not care about the parameters as

much as we care about the actual performance of the predicted policies in action. In our experimental

42

results (Section 5.1.2), we provide both of these evaluations and discuss this difference further.

Given the above overview of the algorithm, we are ready to provide the details of the T1DC

algorithm. First we introduce the input and output feature vectors, and then we discuss the learning

and testing phases.

The prediction label of the T1DC is the optimal policy parameter(s) θ†. As we are using su- Optimal policy
parameterspervised learning, we have to have access to the optimal policy parameters. This information is

available for each of the in-silico patients, as it has been provided by the creators of the T1DM

simulator. We denote patient p’s optimal policy parameters by pθ†.

The input features of the T1DC algorithm are ϕ = [ϕ�, ϕþ, θ], where:

• ϕ�: Temporal features (described next)

• ϕþ: Clinical features (body weight and age for this in-silico patient)

• θ: Current policy parameters

4.2.1 Temporal features

After simulating k-days of patient life by following policy πθ0 , we first form the ζt (row) vector,

which is formed using the blood glucose readings obtained at each of the meal times during the

simulation 8:

ζt = [bg(τt−4 hr), bg(τt−3 hr), bg(τt−2 hr), bg(τt−1 hr), bg(τt),

bg(τt+1 hr), bg(τt+2 hr), bg(τt+3 hr), bg(τt+4 hr), bg(τt+1)]

Note that bg(τt−1 hr) is the blood glucose level at an hour before t-th meal, and the last feature,

bg(τt+1), is the blood glucose level at next meal and (by definition) is not available for the last t; thus

ζt is formed for all of the meals except the last one. For example if k = 3, then we will have eight (
meals︷︸︸︷

3 ×
days︷︸︸︷
3 −

last meal︷︸︸︷
1 = 8) ζt vectors , t ∈ {1, 2, · · · , 8}. ζ1 corresponds to the breakfast of the first

day, ζ2 is related to first day’s lunch, etc. Then we form ζ, by stacking up ζts9:

ζ = [ζ1; ζ2; ...; ζ8]

In this example, ζ is a 8× 10 matrix.

The temporal feature vector is then formed by aggregating some statistics over all ζt vectors:

ϕ� = [mean(ζ), std(ζ), min(ζ)]
8Note that here t ∈ N is the meal-index, while τt ∈ N is the actual meal-time from the beginning of the simulation (in

minutes).
9We are using Matlab®’s notation for concatenation. If A = [1, 2, 3] and B = [3, 4, 5] are two row vectors then

C = [A;B] is a 2× 3 matrix, with A being its first row, and B its second row.

43

where :

mean(ζ) = 1
N
·
N∑
t=1

ζt (4.1)

std(ζ) =

√√√√ 1
N

N∑
t=1

(
ζt −mean(ζ)

)2
(4.2)

min(ζ) = Λ ∈ R1×10 : Λj = min
i
ζ(i,j) (4.3)

Note that in Equation 4.1 and Equation 4.2 operations are all element-wise. In Equation 4.3 ζ(i,j)

refers to the element in the ζ matrix that is in the i-th row and j-th column; this equation is calculat-

ing the minimum along columns (the min(ζ) would have the same size as the ζt –i.e., 1 × 10). In

the above example, N is eight.

4.2.2 Training phase

To generate samples for patient pT , who is in the training-set (pT ∈ PT), we generate 300 random

policy parameters pT θi, i ∈ {1, 2, . . . , 300}. For each of pT θi policy parameters, we run the simula-

tor for k days and extract temporal features ϕ
pT θi

� . We can train a predictor by having the temporal

features, policy parameters, and clinical features (as input features), and optimal policy parameters

of patients pT θ† (as output features); see Figure 4.1. We use two separate support vector regres-

sors, one for each of the policy parameters (CR and CF). As mentioned in Section 2.1.1, we use the

SVM-Torch [16] implementation of support vector regression. The following parameter setting is

used for SVM-Torch: C = 1000; Gaussian Kernel with σ = 5; and ε = .5 for CR and ε = .1 for CF

predictor. We did not do an extensive tuning of the parameters. We used a large C (regularization

constant) as we had only 20 patients, and we tuned σ and ε on one of the patients (PID=1) and used

these for all patients.

4.2.3 Testing phase, iterative use

Let us consider patient pt from the set of test patients (pt ∈ Pt). We choose a random initial

policy for this patient, ptθ0, and then use this policy to simulate pt for k days. Then we extract

the temporal features from the simulated data and form the ϕ
ptθ0

� . Given the temporal features, we

can create the complete input feature vector ϕ
ptθ0 = [ϕptθ0

� , ϕptþ ,
ptθ0] and use the predictor. The

predictor provides us p̂tθ†1 , which will be our next policy parameters to follow (e.g., ptθ1 = p̂tθ†1).

We can further continue the policy update for more iterations; see Figure 4.1.

4.2.4 Further details

If policy parameter prediction errors are negative (θ̂ > θ† e.g. ĈR > CR†) then the amount of

bolus insulin injection will be higher than the optimal dosage. This type of error can potentially

cause hypoglycemia. As explained in Section 1.3, hypoglycemia can have serious complications

44

Patient p1T

T
1
D
M

si
m
u
la
to

r
(k

d
a
y
s)

p1t θ0

p2T θ1

p2T θ2

p2T θ3
Patient p2T

Patient p1t

p1t θ1

p1t θ1

p1t θ2

T
ra

in
T
e
st

Features

Learner

Predictor

Labels

p1T θ†

p2T θ†

[ϕ
p1T θ1� , ϕ

p1T

þ , p
1
T θ1]p1T θ1

p1T θ2

p1T θ3

[ϕ
p1T θ2� , ϕ

p1T

þ , p
1
T θ2]

[ϕ
p1T θ3� , ϕ

p1T

þ , p
1
T θ3]

[ϕ
p2T θ1� , ϕ

p2T

þ , p
2
T θ1]

[ϕ
p1t θ1� , ϕ

p1t

þ , p
1
t θ1]

[ϕ
p2T θ2� , ϕ

p2T

þ , p
2
T θ2]

[ϕ
p2T θ3� , ϕ

p2T

þ , p
2
T θ3]

[ϕ
p1t θ0� , ϕ

p1t

þ , p
1
t θ0]

[ϕ
p1t θ2� , ϕ

p1t

þ , p
1
t θ2]

p1t θ2

p1t θ3

Figure 4.1: T1DC algorithm: In the training phase a learner and predictor is trained based on two
patients, p1

T and p2
T , using three sample policies for each patient. In the testing phase the learned

predictor is used to do three iterations of policy update on patient p1
t .

and it is crucial that we prevent it. This suggests the prediction loss assigned to positive errors

should be higher than that assigned to negative errors.

To address the above issue, instead of changing the predictor (which is discussed in Section 6.2.6),

we slightly modified the iterative phase in the algorithm. In each iteration (e.g., i-th iteration) when

the next policy parameters are calculated by the predictor (θ̂i), we compare them with the previous

policy parameters (θi), and if the changes in the parameters are negative (∆θi = θ̂i − θi < 0), then

instead of using θ̂i as the next policy parameters, we use θi+1 = θi+α∆θi, where 0 < α ≤ 1 (in our

implementation α = 0.7). We should emphasize that this modification is only applied to the iterative

process if ∆θi < 0. We provide empirical evidence to support this modification in Section 5.1.1.

4.2.5 Initial policy

We used two different means of initializing the policy:

• Safe initialization

• Smart initialization

In safe initialization, we use the safest policy for the population. This means that the policy param-

eters are chosen as θmax (introduced in Section 1.3.5). Note that this policy is safe in the sense that

it involves injecting a very small amount of insulin (as θ1 and θ2 are denominators in the standard

policy formula).

In smart initialization, we use the formula suggested by Wolpert [83] which uses the patient’s

body weight to initialize the θ (we use his 1800 rule for sensitivity and 500 rule for carbohydrate

45

ratio).

After consulting with our expert diabetologist, we realized that a reasonable period of time for

the policy to show its effect on the glucose reading patterns is about one to two weeks. Based on

this suggestion we set k = 9 in the T1DC algorithm.

Evaluation over one hundred days (EOH)

To evaluate the performance of T1DC policy, the policy is followed for 100 days and then the

mean-reward of the resulting blood glucose values is calculated. This mean-reward is used as our

evaluation criterion. Using this measure we can compare two controllers. The larger the mean-

reward, the better the controller. The blood glucose values used in the above evaluation are the

actual blood glucose values provided by the simulator (not the noisy values given to the learning

algorithm; see Section 3.2.5) provided by the simulator10.

4.3 Reinforcement learning algorithms

In this section we describe two reinforcement learning (RL) algorithms and detail how we utilized

them to address the diabetes control problem.

The following sections describe the temporal difference control algorithm Sarsa (Section 4.3.1),

and Policy-Gradient (Section 4.3.2) and Actor-Critic (Section 4.3.2) methods; and discuss how we

utilized them.

4.3.1 Sarsa: on-policy temporal difference control

The Sarsa algorithm [56] is an on-policy temporal difference (TD) control algorithm. It uses TD-

learning to predict the action-value function (Section 2.2.10) by observing transitions from one

state-action pair to the next. Sarsa’s update rule for the Q function, in a discounted reward setting

(Jγ –see Section 2.2.7), is given by:

δt+1 =rt+1 + γQt(st+1, at+1)−Qt(st, at) (4.4)

Qt+1(st, at) =Qt(st, at) + αδt+1, (4.5)

where α ∈ [0, 1] (learning rate) and γ ∈ [0, 1] (discount factor) are parameters of the algorithm,

and At = at, St = st, St+1 = st+1, At+1 = at+1, Rt+1 = rt+1, and At+1 ∼ π(St+1, ·), St+1 ∼

P(St, At, ·), Rt+1 ∼ R(St, At) –see Figure 2.4.

Sarsa is created by combining the above update rule with an ε-greedy policy, which is an ε-soft

greedy policy based on the action value function; see Algorithm 1. This algorithm is executed in

each state and the Q is updated after each step.

10Remark: During the EOH process, we ignore any hypoglycemic event that occurs and continue to follow the policy until
the end of 100 days of simulation. This way, if blood glucose is low, then the mean reward will be low, and if the patient
suffers a severe hypoglycemia event then the blood glucose value will stay low; consequently, the mean reward will be much
lower.

46

Algorithm 1 The Sarsa algorithm

function Sarsa(S,A,R, S′, A′, Q)
Input: S is the previous state, A is the previous action chosen (e.g., by ε-greedy policy), R is the

immediate reward received when transitioning to S′, where actionA′ is chosen. Q is the current
estimation of the action value function.

1: δ = R+ γ ·Q(S′, A′)−Q(S,A)
2: Q(S,A) = Q(S,A) + α · δ
3: return Q

One can use linear function approximation for the action value function in the Sarsa algorithm

to obtain Algorithm 2.

Algorithm 2 The Sarsa algorithm with linear function approximation

function SarsaLinFuncApprox(S,A,R, S′, A′, θ)
Input: S is the last state, A is the last action chosen (e.g., by ε-greedy policy), R is the immediate

reward received when transitioning to S′, where action A′ is chosen. θ ∈ Rd is the parameter
vector of the linear function approximation.

1: δ = R+ γ · θ>ϕ(S′, A′)− θ>ϕ(S,A)
2: θ = θ + α · δ
3: return θ

Implementation details

We implemented Sarsa with linear function approximation, which is outlined in Algorithm 2. Mean-

reward (Section 2.2.5) is used as the reward signal for Sarsa. In the following, we describe our action

space, action value function approximation, and the exploration methods used in our experiments.

It is more natural to consider the insulin injection amount as a continuous variable, but the Sarsa

algorithm requires actions to be discrete. Thus, we discretized the insulin injection range into bins.

We used 20 units as the maximum amount of insulin injection11.

The state in our experiments usually consists of current blood glucose value and size of meal that

is going to be consumed (in grams of carbohydrate). As we did in the case of action, we discretized

these continuous variables.

To present our action value function, we either simply discretize the states/actions (similar to

tabular representation –Section 2.2.10) or we use tile-coding. In the next chapter, a table containing

this information accompanies each result. If the number of the tilings in the accompanied table is

one, then the discretization is used, otherwise the tile-coding representation is used. In both of the

aforementioned representations, the state-action value function Q is initialized pessimistically (with

zeros).

Tile-coding on action space is done by considering action as a new dimension in the state space

(and then using the regular tile-coding on the space-action pair). In this case, to find the best per-

forming action at a given state, our policy evaluates all of the possible actions on the joint tile-coding

11This matches the maximum injection dosage that the optimal T1DMS policies would advise on our 20 in-silico patients.

47

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Neighbouring Actions

P
ro

ba
bi

lit
y

of
 S

el
ec

tio
n

(a) UN exploration.

−4 −3 −2 −1 0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Neighbouring Actions

P
ro

ba
bi

lit
y

of
 S

el
ec

tio
n

(b) TG exploration.

Figure 4.2: Comparison between our two local exploration methods. The zero on the horizontal-axis
corresponds to the candidate action.

(of states and actions) and selects the action that provides the highest Q value.

Due to some properties of the diabetes problem, we do not use the standard exploration methods

in our RL implementations. In the diabetes control domain, exploration is risky, as some of the

actions may harm the patient. Common exploration methods, such as ε-greedy, are problematic

because they have a non-zero chance of selecting any action. We avoid the risk of taking a harmful

action by only allowing exploration in a limited neighbourhood around the best action. We use two

exploration methods, uniform (UN) exploration, and truncated Gaussian (TG) exploration.

In UN-exploration, the action is initialized greedily based on Q: a(temp) = argmax
a

Q(s, a).

Then a uniform random number from range [−2, 2] is added to a(temp). Thereafter, a(temp) is

rounded to the nearest integer and then it is truncated to the acceptable action range. The resulting

number is the action –that is, the amount of insulin that is injected. TG-exploration is done very

similarly, except the random number is selected from a truncated Gaussian distribution rather than

from a uniform distribution. This truncated Gaussian distribution has the following form: TN(µ =
0, σ = 2,−4, 4), where the last two parameters define the truncation interval [-4,4]. The above

process essentially provides a local exploration around the best candidate action, by selecting the

neighbouring actions of the candidate action (argmax
a

Q(s, a)) with some probability; see Figure 4.2.

More details about the parameter settings and function approximation are provided in Sec-

tion 5.2.

4.3.2 Actor-critic methods

Actor-Critic (AC) methods are one of the policy-based methods that are introduced in Chapter 1.

In an actor-critic method, two main components work closely together. The first component is the

actor, which is responsible for making actions and improving the policy. The second component is

the critic. It is usually a state-value function that helps the learning process by evaluating (criticizing)

the current policy. The critic evaluates the current policy based on effect of its selected action on

current state. Using the state-value function, the critic can estimate whether the actor’s choice of

48

Reward

State

Action
Critic

Environment

Actor

State values

Figure 4.3: Schematic of an actor-critic agent (dotted box) in interaction with the environment;
adapted from [69].

action is leading the agent to a better state or not [67, 69]; see Figure 4.3.

The separation of actor and critic provides some advantages that makes actor-critic methods

favourable for our task. One of these advantages is their ability to select actions more efficiently if

the action space is continuous or large. In the mentioned value-based RL methods, choosing the best

action needs a search through action space to find the action that has the highest action-value. This

process becomes infeasible if the number of actions grows large. In contrast, if we have an explicit

form of policy in the actor, action selection might become easier and more feasible. For example,

selecting actions using the standard policy can be done by a simple calculation. This calculation is

based on policy parameters and current state, and involves no search.

In actor-critic methods the policy is usually selected to be stochastic. This stochasticity not only

enables exploration, but it also provides the ability to deal with continuous actions for free (when it is

combined with the policy-gradient methods). In the following section, we introduce policy-gradient

methods, one of the methods that can improve the policy and can thus be used as an actor [69].

Policy-gradient methods

Policy-gradient methods perform a gradient ascent on the performance surface induced by a policy

class. Let us assume that we are considering the class of linear policies that are parametrized by θ,

πθ, where θ ∈ Rdθ . Let us also assume that the objective function is the average-reward J∞(π). In

this setting, the goal of the policy-gradient method is to find the policy parameters θ∗ that maximizes

the performance of the policy –i.e., that maximizes the objective function J∞(π).

49

θ∗ = argmax
θ

J∞(πθ)

This is usually done by stochastic gradient ascent – that is, by updating θ approximately propor-

tional to the performance gradient:

θt+1 ≈ θt + αθ∇θJ∞(π)

In order to do the stochastic gradient ascent, we need to reformulate J∞(π) to be able to cal-

culate the gradient with the help of the policy gradient theorem. First we make an assumption that

facilitates the reformulation, then we describe the reformulation and move on to the theorem.

We assume that dπ(S) = lim
t→∞

Pr(St = s|S0 = s0, π), the stationary distribution of states Stationary
Distributionunder π, exists and is independent of S0 for all policies 12. The performance of a policy, J∞(π) can

then be written as: Performance
of Policy

J∞(π) =
∑
s

dπ(s)
∑
a

π(s, a)R(s, a) (4.6)

Simply put, if all of the states of the MDP (that represents the environment) are reachable us-

ing the current policy π, then d is a probability distribution over all of the states and shows how

probable it is that the agent is in a specific state at any time, when following the policy π. Now,

let us describe Equation 4.6. The left-hand side J∞(π), which was defined (in Table 2.1) as

lim
T→∞

1
T

T∑
t=0

Rt+1, is the expected average reward gained by following policy π. On the right-hand

side, according to the definition of d, an agent is in state swith probability dπ(s), and in that state the

agent has a probability π(s, a) of taking action a (as the policy π is being followed). By definition,

the expected reward that the agent will receive by performing action a in state s is R(s, a). Thus the

right-hand-side is a weighted sum over all states and a weighted sum over actions, of the expected

reward of doing those actions in those states. This is essentially the expected reward that an agent

will get if it follows policy π; thus the right-hand-side is equal to the left-hand side13.

The policy gradient theorem [68] uses this formulation of the performance and proves that : Policy Gradient
Theorem

∇θJ∞(π) =
∑
s

dπ(s)
∑
a

π(s, a)
(
∇θ ln π(a, s) ·

(
Qπ(s, a)− V π(s)

))
Note that there is no term of form∇θdπ(s) in the gradient. As we are the ones who choose the form

of policy (and as a result, its derivative), this theorem paves the way to calculating the gradient and

to optimizing the performance of the policy from samples gathered during the execution of a policy.

Policy gradient as an actor

Policy gradient method can be used to implement an actor in an actor-critic method. For a few

reasons we chose the policy of the actor (of our actor-critic method) based on the standard policy.

12This puts some restriction on MDPs involved, regarding the chain of states that result from following any policy,
i.e., Markov chain must be ergodic; see [44].

13This simple explanation is meant to provide some insight into the reformulation; for a formal description see [68].

50

Before we provide the reasons underlying our decision, we first remind the reader that the standard

policy (introduced in Section 1.3.5) has the following form:

πθ(a, s) = π(CF,CR)(a,
[bg, carbs]︷︸︸︷

s) =

1 if a = 1
CF
· (bg − Ctarget) + 1

CR
· carbs

0 otherwise

where :

Ctarget : target blood glucose value constant

CF : Correction Factor (sensitivity to insulin)

CR : Carbohydrate Ratio

There are three reasons for choosing this form of policy. First, the standard policy proved its

capabilities in practice. Second, it is easy to interpret the evolving parameters during and after op-

timization (parameters have biological meanings –i.e., sensitivity of blood glucose to carbohydrate

consumption, and to insulin injection). Last, it is a form of policy that patients are familiar with,

which could be an advantage for a potential clinical study. In the following we describe the policy

for our actor-critic implementation.

We created our policy by first bounding the range of parameters using a logistic function. This

bounding is used to ensure that the policy parameters remain in a sensible range at all times. As

mentioned in Section 1.3.5, this sensible range for policy parameters is assumed to be:

CR ∈ [3, 30]→ 1/CR ∈ [.03, .3]

CF ∈ [.4, 2.8]→ 1/CF ∈ [.35, 2.5]

Incorporating the range for the parameters, our stochastic policy is defined as:

πθ(a, s) = N(µθ(s), σ2) = 1
σ
√

2π
exp
(
− (a− µθ(s))2

2σ2

)
where :

µθ(s) =(bg − Ctarget) · ν(θ1, 0.35, 2.5) + carbs · ν(θ2, 0.03, .3)

ν(x, l, h) : logistic function bounded by (l, h) i.e., l + h− l
1 + e−x

σ : exploration rate

h

l −∞ +∞
x

0

ν(x, l, h)

The compatible features ∇θ ln π(a, s) can be calculated based on the probability density of our

policy as:

∇θ ln π(a, s) = ∇θπθ (a, s)
π (a, s) = a− µθ(s)

σ2 × ∂µθ
∂θ

µθ(s) = (bg − Ctarget) ·
(

0.35 + 2.5− 0.35
1 + e−θ1

)
+ carbs ·

(
0.03 + .3− 0.03

1 + e−θ2

)

51

∂µθ
∂θ1

= (bg − Ctarget)
2.5− 0.35

(1 + e−θ1)2 e
−θ1

∂µθ
∂θ2

= carbs · .3− 0.03
(1 + e−θ2)2 e

−θ2

Implementation details

Here we first describe an actor-critic algorithm that aims to maximize the long term average-reward

J∞, then we describe a different version that we utilized in our experiments.

Algorithm 3 shows the actor-critic algorithm, which is slightly different from the original algo-

rithm [7] in its J∞ update rule (the first two steps of the algorithm). This version uses a more stable

rule that was proposed to us by Richard S. Sutton and had previously been used in [23].

Algorithm 3 Average-Reward Actor-Critic algorithm with function approximation (MDP).

function ActorCritic(St, At, Rt+1, St+1, J
∞
t , ωt, θt)

Input: St is the previous state, At is the last action chosen by policy π, Rt+1 is the immediate
reward received when transitioning to St+1; J∞t , ωt, θt are the current estimations of average
reward, value-function weights, and best policy parameters (respectively).

1: δt = Rt+1 − J∞t + ω>t ϕ(St+1)− ω>t ϕ(St)
2: J∞t+1 = J∞t + αj δt
3: ωt+1 = ωt + αωδtϕ(St)
4: θt+1 = θt + αθ δt∇θ ln π(At, St)
5: return (J∞t+1, ωt+1, θt+1)

For the actor-critic methods, we used accumulative-reward, R+ (introduced in Section 2.2.5).

When we use R+, the reward signal that the algorithm receives depends on the length of the re-

ward’s time-window. As the time-window between various meals can be different from day to day,

the Markovian assumption would not hold unless we have a time-related feature in our state rep-

resentation. Adding an extra feature to the state enlarges the state space and makes the critic’s job

harder (it has to learn a more complex function), which can potentially slow down the learning

pace. In order to solve this issue without adding a time-related feature to our state features, we use

SMDP formulation of the above actor-critic. Semi-Markov Decision Processes (SMDPs) are very

similar to MDPs, but in SMDPs, the time window between time-steps can vary for each time-step

(e.g., (τt2−τt1) 6= (τt3−τt2)). The full description of SMDPs and their average-reward formulation

can be found in [54]. The average-reward formulation of the SMDP aims to maximize:

J∞SMDP (π) = lim
T→∞

Eπ[
∑T
t=0 Rt+1]

Eπ[
∑T
t=0(τt+1 − τt)]

= lim
T→∞

Eπ[
∑T
t=0 Rt+1]

Eπ[τT − τ0]

Although this might look different from J∞14, they are very similar. J∞SMDP is the average

reward over time, whereas J∞ is average reward over the time-steps. Their difference is only a nor-

14J∞ is defined in Section 2.2.5 as J∞ = lim
T→∞

1
T

T∑
t=0

Rt+1.

52

malization factor (the length of the simulation divided by the number of meals). Note that J∞SMDP

is analogous to A1C, as both are averaged over time, one on blood glucose (A1C), and the other on

scores of blood glucose values. The SMDP actor-critic algorithm (Algorithm 4) is very similar to the

MDP actor-critic in Algorithm 3, differing only in step 1 of the algorithm (the TD-error calculation).

We used this algorithm for our actor-critic. For further information about this algorithm and details

about its derivation, see [45].

Algorithm 4 SMDP Average-Reward Actor-Critic algorithm with function approximation
(SAC) [45].

function ActorCritic(St, At, Rt+1, St+1, J
∞
t , ωt, θt)

Input: St is the previous state, At is the last action chosen by policy π, Rt+1 is the immediate
reward received when transitioning to St+1; J∞t , ωt, θt are the current estimations of average
reward, value-function weights, and best policy parameters (respectively).

1: δt = Rt+1 − J∞t (τt+1 − τt) + ω>t ϕ(St+1)− ω>t ϕ(St)
2: J∞t+1 = J∞t + αj δt
3: ωt+1 = ωt + αωδtϕ(St)
4: θt+1 = θt + αθ δt∇θ ln π(At, St)
5: return (J∞t+1, ωt+1, θt+1)

More details about the parameter setting of the algorithm and function approximation that is

used in the critic is presented with the results.

53

Chapter 5

Experimental results and discussion

The previous chapter introduced the three algorithms that are used in our experiments and Sec-

tion 4.1.5 provided details about our experimental setup. In this chapter, we discuss the experimental

results obtained from those algorithms. In the following, we present and discuss the results from

the T1DC algorithm (in Section 5.1), and the reinforcement learning algorithms (in Section 5.2).

Finally, we provide a summary of our results and further discuss them (in Section 5.3).

5.1 T1DC results

This section describes the results of experiments using T1DC. We perform two different sets of anal-

ysis on these results. In the first analysis, we report T1DC’s prediction error using cross-validation.

For the second part, we compare the performance of the policies proposed for an in-silico patient by

T1DC with that of the policies provided by a diabetologist.

5.1.1 T1DC prediction error

T1DC prediction error is calculated in a leave-one-out cross-validation setting (introduced in Sec-

tion 2.1.2). The training data corresponding to each patient are obtained from k = 9 days of simula-

tions of random policy parameters θ. For each patient, 300 random samples of θ are drawn from the

inverse uniform distribution1 in interval [0.8×θ†, θmax], where θ† is the optimal policy parameters2

and θmax is the maximum value the policy parameters are allowed to take3.

Our rationale to use a minimum range of 0.8 × θ†, as opposed to θmin, is to avoid the com-

plications of handling severe hypoglycemia. An example of such a complication occurs when we

use close-to-θmin policy-parameters to obtain sample training data. In such cases, the simulator

usually stops after the first few meals due to severe hypoglycemia and does not make it to day 9.

Consequently, the resulting temporal features are not complete and it is difficult to use these data for

training purposes.
1Inverse uniform distribution is used because the parameters are in the denominator of the policy formula. The policy

formula is introduced in Section 1.3.5.
2Optimal policy parameters are introduced in Section 4.2.
3θmax = [CRmax, CFmax], where CRmax and CFmax are introduced in Section 1.3.5.

54

-10 0 10 20

-10

0

10

20
1

-10 0 10 20

-10

0

10

20
2

-10 0 10 20

-10

0

10

20
3

-10 0 10 20

-10

0

10

20
4

-10 0 10 20

-10

0

10

20
5

-10 0 10 20

-10

0

10

20
6

-10 0 10 20

-10

0

10

20
7

-10 0 10 20

-10

0

10

20
8

-10 0 10 20

-10

0

10

20
9

-10 0 10 20

-10

0

10

20
10

-10 0 10 20

-10

0

10

20
11

-10 0 10 20

-10

0

10

20
12

-10 0 10 20

-10

0

10

20
13

-10 0 10 20

-10

0

10

20
14

-10 0 10 20

-10

0

10

20
15

-10 0 10 20

-10

0

10

20
16

-10 0 10 20

-10

0

10

20
17

-10 0 10 20

-10

0

10

20
18

-10 0 10 20

-10

0

10

20
19

-10 0 10 20

-10

0

10

20
20

pθinit1 −p θ†1

p
θp
re
d

1
−
p
θ† 1

Figure 5.1: Distance of policy predicted parameter θpred
1 (CR) from optimal parameter θ†1 after

one-iteration of T1DC as a function of the distance of the initial policy from the optimal policy
(horizontal axis). The former is the same as prediction error, and is calculated for all of the patients
using leave-one-out cross-validation. The patient-ID (PID) is denoted by the superscript p to the left
of θ.

55

In the first set of T1DC experiments, our goal is to analyze the effects of initial policy on the

predicted policy in one iteration of T1DC. To study this effect, we plot the prediction error after one

iteration (pθpred
1 -pθ†1) versus the distance of the initial policy (pθinit

1) from the optimal policy(pθ†1),

which is pθinit
1 -pθ†1 (initial error).

Figure 5.1 shows the results of this experiment. For simplicity we only plotted results corre-

sponding to θ1 (CR). Performing the same analysis on θ2 (CF) produced similar results. Each graph

in this figure deals with a specific patient (whose id, p, appears above). For each point (x,y) shown,

the x-value is the initial error of the θ1 value (CR) – i.e., the distance between this CR value and the

optimal value θ†1, and the y-value is the prediction error of the CR value after one iteration – i.e., the

distance between the predicted CR value and the optimal value.

In this experiment, the desired predictor will have a prediction error near zero, independent of

the initial policy. In other words, the ideal predictor will output nearly optimal policy parameters,

using the data that are gathered by an arbitrary initial policy. Patient 20’s plot is a good example of

such desired qualities. Prediction errors for this patient are almost constant and close to zero across

different initial values of θ1. A less desirable predictor would not yield the optimal results in the

first iteration, but would produce slightly more accurate predictions in each iteration. This trend is

observable in patient 6’s prediction results. For this patient, the predictions get more accurate with

more iterations. In this case, in general we want the |y| < |x|, as this means that the error decreases

with each iteration of T1DC.

To further clarify the results shown by patient 6’s plot in Figure 5.1, we provide a step-by-step

example of running T1DC on this patient. Knowing that the optimal parameter for patient-6 is
6θ†1 = 7, given the initial parameter 6θ0

1 = 35, it is possible to infer the predicted policy parameter

from the plot using the following procedure. Consider the data point on the far (top) right of the

plot, with coordinates [x = 28; y = 10], whose x coordinate shows 6θ0
1 − 6θ†1 = 35 − 7 and

whose y coordinate shows the error corresponding to the next iteration, 10. This means that the next

parameter will be 6θ1
1 = next-error + 6θ†1 = 10 + 7 = 17. If we followed this process based on the

estimation of errors in the plot, the value of 6θ1 in following iterations would be about 6θ2
1 = 12,

6θ3
1 = 9.5, and eventually it would converge to 6θ†1.

In contrast to above examples, some of the plots shown in Figure 5.1 do not show any of the

desirable trends. Patient-17 is a clear example of such a case, with 17θ†1 = 22. Using the initial

policy parameter of 30 (17θ0
1), the prediction error will be approximately -15, which results in 17θ1

1 =
17θ†1 − 15 = 7. This value for the parameter is noticeably lower than the optimal value, which leads

to a larger-than-optimal dose of insulin injection, and it could potentially lead to hypoglycemia.

In Section 4.2.4 we suggested a modification to the T1DC’s testing phase that would alleviate this

kind of dramatic drop in the policy parameters.

In this experiment 52% of the prediction errors are less than the initial errors and 74% of the

prediction errors are not farther than .2×θ† from the initial errors.

56

5.1.2 Comparing the performance of T1DC to that of an expert diabetologist

In the previous subsection, we analyzed the T1DC prediction errors. In evaluating the T1DC, what

we are really concerned about is not how accurate T1DC predicts the parameters, but about the actual

performance of the obtained policies. In this regard, we compare the performance of the policies

proposed by T1DC with that of the polices that our expert diabetologist provided. The performance

of each policy will be evaluated using evaluation over one hundred days (EOH)4.

To be able to perform a fair comparison between T1DC and our expert diabetologist, we must

provide both with the same initial knowledge about patients. As explained in Section 4.1.5, T1DC

has access to the optimal basal values, which is not accessible to the diabetologist. Therefore, we

design two experimental settings for the diabetologist. In the first experiment, the diabetologist

has access to the optimal basal-infusion-rates of the patients, while in the second experiment, the

diabetologist not only has to adjust the CR and CF, but also has to come up with the basal-infusion

rates. Using these two experiments we can see how this additional information (knowing the optimal

basal) can help the diabetologist in the policy adjustment process. Apart from optimal basal rates,

in our experiments the diabetologist and T1DC both have access to similar patient information and

similar amounts of data.

This set of experiments follows the same procedure described in T1DC’s testing-phase (Sec-

tion 4.2.3): the controller, either the diabetologist or the T1DC predictor, starts with an initial policy

and the simulator runs this policy for k = 9 days. The controller then uses the information that has

been gathered during these k = 9 days and updates the policy for the next iteration. Note that when

T1DC is being used on a patient, it used the predictor that was trained on other patients; refer to

cross-validation in Section 2.1.2.

Following the above process, each controller produces a sequence of policy parameters for each

patient. The length of this sequence in our experiments is four (four update iterations). Each policy

that is created using these parameters is then evaluated using the EOH method. To aggregate the

performance of a controller for each iteration, we take the average of the EOHs over all patients

except the patient-1, as we tune the parameters of the T1DC on this patient5. The results of this

comparison is given in Figure 5.2.

This figure shows the evaluated performance of five different policy iteration sequences. Two of

these sequences are obtained using the T1DC algorithm – one using the safe initialization of policy

parameters, the other using smart initialization6. Two other sequences are obtained with the help

of our expert diabetologist. The last sequence, which is shown by the dashed-line at the top of the

figure, depicts the performance of the optimal T1DM policy for the patients. Error bars in the plot

show standard deviation of performance over the 19 patients.

Some observations can be made about this figure. First, we see a significant difference between

4EOH is introduced in Section 4.2.5.
5Adding patient-1 does not cause any significant change to the plot.
6These initializations are introduced in Section 4.2.5.

57

1 2 3 4
14

15

16

17

18

19

20

A
ve

ra
ge

 E
O

H

Iterations

T1DM
T1DC (k=9,SmartInit)
T1DC (k=9,SafeInit)
Diabetologist KB
Diabetologist

Figure 5.2: Comparison of average control performance of T1DC and diabetologist policies. The
control performance is measured by averaging the evaluation over one hundred days(EOH) criterion
over 19 patients (PID ∈ {2, · · · , 20}). In the legend, KB stands for Knowing Basal.

58

the performance of the two diabetologist iteration sequences, which suggests that knowing the basal

value significantly improved the performance of the diabetologist. This difference is significant in all

of the iterations (based on paired t-test, p-value< 0.05). Second, for T1DC results, we see that smart

initialization seems to provide a better starting performance, but it did not affect the performance

of the other iterations. Finally we observe that the performance of the T1DC is comparable to the

performance of the diabetologist (when diabetologist does know the basal values).

5.2 Reinforcement learning results

In this section, we present results and discussion for reinforcement learning methods. Section 5.2.1

first explains the naming convention used in this section. Section 5.2.2 and Section 5.2.3 then discuss

the experimental results obtained from reinforcement learning algorithms.

5.2.1 Naming convention

In order to easily distinguish the results, every result in this section is identified by a result identifier, Result and
Setting
Identifier

which is the letter ‘R’ followed by a number, e.g., R1, R2, etc. A result’s identifier is also used to

refer to the parameter setting that produces this result. Note that due to stochasticity in the algorithm

and the simulator, the same parameter settings could produce different results in two runs. This is

why we used the same parameter setting for several runs, each with its own identifier. Hence, two

or more different identifiers can refer to same parameter setting. For example if R1 and R2 are two

different runs of the same algorithm with the same parameters, then the settings for R1 and R2 are

the same.

5.2.2 Sarsa

In this section we discuss results of the Sarsa algorithm, which was introduced in Section 4.3.1.

Our first attempts to run Sarsa were naive and involved discretizing features and feeding them

to the algorithm. The outcome was not very good. In the second round of trials, we achieved

substantial improvement by applying common practices, such as tile-coding and parameter-tuning.

In the following we provide details about the settings of both runs and explain why one worked

better than the other.

To emphasize the importance of tuning Sarsa, we provide a comparative analysis between Sarsa

with naive settings and Sarsa with enhanced settings. Figure 5.3 shows the performance of two

single runs of Sarsa with two different settings, R10 (left) and R84 (right). The y-axis in this figure

denotes the average historical rewards (R̃) over the previous 200 time-steps. It is clear that R10

is slower than R84 – i.e., the performance (historical rewards) achieved by R84 after about 15,000

meals7 is not achieved by R10 even after 85,000 meals.

Below are the settings used to achieve R10 and R84 – panel (a) and (b) of Figure 5.3:

7As we model three meals per day, this means observing 15,000 meals would take more than 13 years.

59

0 2 4 6 8 10 12

x 10
4

6

8

10

12

14

16

18

20

Time Steps (Meals)

R
ew

ar
d

S
ig

na
l

X=14789
Y=15.9

X=118548
Y=17.9

(a)

0 5000 10000 15000
6

8

10

12

14

16

18

20

Time Steps (Meals)

R
ew

ar
d

S
ig

na
l

X=14789
Y=18.3

(b)

Figure 5.3: Comparing the performance of the Sarsa algorithm in two different settings. Blue is the
actual reward signal, red is the average reward signal in a window of 200 meals, cyan is the standard
deviation around the average. It can be seen that (a) did not achieve the performance of (b), despite
using almost 7 times more samples. Note that the scale of the horizontal axis is different in (a) and
(b).

R10

State Tilings # Q-state State Feature Range State Tiles # Sarsa-Parameters
1 [bg,carbs] [1,15],[0,100] [15, 10] γ = .99, α = .3
Action Tilings # Actions Action Range Action Tiles # Exploration
1 [inj] [1,20] 20 UN-exploration

R84

State Tilings # Q-state State Feature Range State Tiles # Sarsa-Parameters
100 [bg,carbs] [1,20],[0,100] [8,4] γ = .1, α = .001
Action Tilings # Actions Action Range Action Tiles # Exploration
100 [inj] [1,20] 4 UN-exploration

The main issue with the Sarsa-R10 settings is that there are 15 × 10 × 20 = 30008 elements in

the Q matrix and the algorithm only updates one of them at each meal. In this setting no generaliza-

tion is performed over state space or action space. This makes the learning process very slow and

inefficient. The setting we used in R84 varies greatly from the R10 setting, as R84 can generalize

over both state and action spaces. In R84, we used tile coding with large tiles to generalize over

state-action space. In addition, in this setting, we used a smaller γ.

Thus far we have analyzed the importance of the settings used for Sarsa. In the following, we

provide a more detailed analysis of the effects of employing exploration methods as well as using

generalization over actions on the performance of Sarsa. Exploration methods can take one of the

two following forms: TG-exploration or UN-exploration (see Section 4.3.1). Regarding the actions,

we either generalize over them (GE), or use discretized actions (NO –i.e., no generalization-over-

actions). Figure 5.4 shows three single runs for each of the four possible combinations of the above

options. This figure is generated for patient 2 (PID=2).

These results suggest that the combination of TG-exploration and GE results in the best perfor-

mance – see R88, R90 and R94 in the figure. The runs corresponding to UN+GE setting, R84, R86

and R92, show a very similar performance and arguably stand as the second-best option.

8AsQ is represented in a tabular form, its size can be calculated by multiplying the number of possible states and actions.
State space has two dimensions (bg, carb) that are discretized into 15 and 10 tiles respectively and action space is also divided
into 20 tiles. Thus, the size of Q would be 15× 10× 20.

60

0 2000 4000 6000 8000 10000 12000 14000
9

10

11

12

13

14

15

16

17

18

19
•←R90

•←R94

•←R88
•←R92

•←R86

•←R84

•←R95 •←R91

•←R89

•←R93

•←R85

•←R87

Timesteps(Meals)

R
ew

ar
d(

m
ea

n−
re

w
ar

d)

R90 (TG GE)
R94 (TG GE)
R88 (TG GE)
R92 (UN GE)
R86 (UN GE)
R84 (UN GE)
R95 (TG NO)
R91 (TG NO)
R89 (TG NO)
R93 (UN NO)
R85 (UN NO)
R87 (UN NO)
T1DMS

Figure 5.4: The effects of generalization over actions and different explorations on the performance
of Sarsa. Each curve represents a single run (labelled with its result-id). The legend shows the
exploration type for each result (either TG or UN) as well as if the Sarsa method used generalization
(GE) over actions or not (NO). The y-axis shows the historical average reward signal over a window
of 100 meals.

61

Unlike two above settings, the results of UN+NO settings are scattered and show a fair amount of

variation from one run to another9. This stochasticity in the results could be due to the lack of action

generalization, and to the combination of restricted exploration of UN-exploration (in comparison

to TG-exploration) with pessimistic optimization. If the algorithm incidentally picks a few small

actions at the beginning, this combination might cause the algorithm to get stuck in choosing small

actions, and might consequently limit the performance. The selection of small actions may be due

to poor exploration, which in our combination, would lead to larger Q-values for these (small)

actions. As the Q-values of these small actions get larger and larger, it becomes even harder for

the exploration method to induce the algorithm to pick larger actions. Hence this Sarsa will remain

trapped in this situation until Q-values of these actions converge to their true values. Thereafter,

even with the poor exploration, slightly larger actions will be selected and the algorithm will learn

that these larger actions have larger Q-values10.

A closer look at Sarsa results in Figure 5.4 suggests that this algorithm is capable of learning

a near-optimal policy. This figure shows that Sarsa achieves an acceptable performance, which is

comparable to the performance of the optimal policy. One drawback of using Sarsa (with our offered

settings) is its speed. Our best performing Sarsa is still very slowly and takes more than 6 years of in-

silico patient life to achieve a near optimal performance. Sarsa’s laggard pace makes it impractical

for real-life practice.

After observing that setting γ = .1 improves Sarsa’s performance in some of our initial (not

reported) experiments, we decided to evaluate Sarsa’s performance with respect to γ. The effect

of γ on learning can be seen in Figure 5.5, which shows that Sarsa with γ = 0 can achieve near

optimal performance. This result implies that our formulation of the diabetes control problem can

be solved using a one-step look-ahead approach – i.e., where actions only affect the next state and

have negligible effect on future rewards.

To explain this situation, recall that we are only considering the short-acting insulin, which is

mostly active in the first 4 hours [76]. However, in our meal scenario, meals are about 5 hours apart.

Therefore, it is reasonable to speculate that the action will not affect future rewards. Note that the

problem will not be a one-step look-ahead problem if one wants to use a more realistic meal scenario

where the patient may have one or two snacks between the main meals, or when the main meal times

vary dramatically.

5.2.3 SAC

As mentioned in Section 4.3.2, we implemented Algorithm 4 (SAC) for our actor-critic method. The

first step towards running this algorithm was to choose appropriate learning rates. So we started by

looking at similar actor-critic algorithms in the reinforcement learning literature. Despite the fact

9This is pointed out to us by Micheal Bowling during one of our meetings.
10Unfortunately due to time constraints, this theory could not be validated in this dissertation; this will need to be done in

a future study.

62

0 1000 2000 3000 4000 5000 6000 7000
12

13

14

15

16

17

18

19

Timesteps (Meals)

R
ew

ar
d(

m
ea

n−
re

w
ar

d)

γ = 0
γ = .1
γ = .3
γ = .5
γ = .7
γ = .9
T1DMS

Figure 5.5: The effects of γ parameter on the performance of Sarsa. Each curve represents a single
run.

that SAC is formulated on SMDPs, and the actor-critic algorithm of Degris et al. [23] is formulated

on MDPs, they are still fairly similar. Therefore, we decided that this work (Degris et al. [23]) is a

good candidate for our purpose. Using this paper, we tried to approximate the relative scale of our

parameters towards each other (e.g., αj is 10 times smaller than αω , etc.).

Based on the estimated relative scale, we tried various parameter settings on two of the patients

(PID=1,2), to determine good values for the parameters αj , αω, αθ; this led to αj = 10−5, αω =
10−4, αθ = (10−5, 5× 10−5). The exploration parameter (σ) was set to 0.5. As mentioned earlier,

due to the slowness of the simulator, comprehensive parameter selection needs to be addressed in a

future study and the provided parameters should not considered optimal.

In addition to tuning the above-mentioned parameters, we needed to initialize SAC’s variables.

We initialize the average reward, J∞ using the first observed reward. The other important set of

variables is the starting policy parameters, which we initialized using the smart-initialization method

(Section 4.2.5). To represent the state value function of the SAC’s critic, we used the following

features: current blood glucose, blood glucose an hour before meal, the size of the meal to be

eaten (in grams of carbohydrates), and the meal-category (breakfast/lunch/supper). This state-value

function is approximated using discretization or tile-coding.

We summarize the results of SAC algorithm in Figure 5.6, Figure 5.7, Figure 5.8 and Figure 5.9,

which depict the evolution of different variables during the learning process. The first two fig-

ures in the series are obtained using discretization, and the last two are obtained using tile-coding.

Each figure consists of 8 plots where each plot is indexed by its row (starting at 1 from the top

row) and column (starting at 1 from the left column); for example, top-left plot is plot(1,1) and the

bottom-middle plot is plot(3,2). Corresponding information for each plot is presented below. This

63

information is similar across all four figures.

• Plot(1,1) shows blood glucose readings at meal time. The average blood glucose value over a

window of 100 meals is plotted in red. The desirable range of blood glucose values is shown

by the green dashed lines.

• Plot(1,2) shows the first parameter of the policy, CF (correction factor). The red dashed line

shows the optimal CF parameter and is provided in the T1DMS package.

• Plot(1,3) shows the other parameter of the policy, CR (carbohydrate ratio). As with the

plot(1,2), the red dashed line shows the optimal CR parameter.

• Plot(2,1) shows the evolution of the average reward J∞.

• Plot(2,2) shows the mean-reward corresponding to the time span between two consecutive

meals. The averaged mean-reward over a window of 100 (pair-of) time spans is plotted in red.

Standard deviation around this average is shown in cyan. The black dashed line in this plot

shows mean-reward performance obtained by optimal T1DMS policy for the patient.

• Plot(2,3) shows the raw bolus insulin injections suggested by SAC. Average injections over a

window of 100 meals is shown in red. Standard deviation around this mean is shown in cyan.

• Plot(3,1) shows the distribution of blood glucose values measured at meals between the 400th

and 500th meals (a period corresponding roughly to the fifth month of learning). The green

dashed lines show desirable range of blood glucose values.

• Plot(3,2) shows the distribution of blood glucose values measured for the last 100 meals (the

last month of the 33 month learning process). The green dashed lines show the desirable range

of blood glucose values.

• More information about the patient is provided in the bottom right corner of the figure: Patient-

ID11, CR∗ and CF∗ show the optimal standard policy parameters (θ†). Reward∗ is the average

mean-reward if the optimal policy is followed.

The first figure in the series, Figure 5.6, shows results of SAC on patient 2 (PID=2). In this

figure, Plot(1,3) shows the evolution of CR. Note that the smart-initialization suggested a higher-

than-optimal value for the initial CR parameter. Plot(1,1) and Plot(3,1) show that blood glucose is

poorly controlled in the first 500 meals. However, after about 1000 meals, when the CR parameter

has almost converged to the optimal CR value, the blood glucose levels seem to be close to the

acceptable range. Plot(2,2) shows a similar pattern for the mean-reward, where the mean-rewards

get very close to optimal value after the first 1000 meals. Plot(3,2) shows histogram of blood glucose

values over the last 100 meals; these values are in the acceptable range most of the time. This plot
11The patient-ID (PID) can be used to access more information about the patient in Appendix A.

64

0 1000 2000 3000
1
4

8
10

Timesteps

bg

0 1000 2000 3000
0.5

1

1.5

2

2.5

Timesteps

C
F

0 1000 2000 3000
5

10

15

20

25

30

Timesteps

C
R

0 1000 2000 3000
17.5

18

18.5

19

Timesteps

J

0 1000 2000 3000
12

14

16

18

20

Timesteps

m
ea

n−
re

w
ar

d

0 1000 2000 3000
0

10

20

30

Timesteps

In
je

ct
io

n(
U

)

0 4 8 10 15 20
0

5

10

15

20

BG histogram at timestep 400 to 500

BG

C
ou

nt

0 4 8 10 15 20
0

5

10

15

20

BG histogram in the last 100 timesteps

BG

C
ou

nt

PID = 2

CF* = 0.73

CR* = 5

Reward* = 18.84

optimal bg range = [4,8]

Figure 5.6: The evolution of variables during the SAC learning phase on patient 2 (PID=2). See text
for more information.

65

0 1000 2000 3000

4

8

10

Timesteps

bg

0 1000 2000 3000
0.5

1

1.5

2

2.5

Timesteps

C
F

0 1000 2000 3000
5

10

15

20

25

30

Timesteps

C
R

0 1000 2000 3000
19

19.2

19.4

19.6

19.8

Timesteps

J

0 1000 2000 3000
18

18.5

19

19.5

20

Timesteps

m
ea

n−
re

w
ar

d
0 1000 2000 3000

0

5

10

Timesteps

In
je

ct
io

n(
U

)

0 4 8 10 15 20
0

5

10

15

20

25
BG histogram at timestep 400 to 500

BG

C
ou

nt

0 4 8 10 15 20
0

5

10

15

20

25
BG histogram in the last 100 timesteps

BG

C
ou

nt

PID = 14

CF* = 2.4

CR* = 16

Reward* = 19.56

optimal bg range = [4,8]

Figure 5.7: The evolution of variables during the SAC learning phase on patient 14 (PID=14). See
text for more information.

shows a notable improvement over the histogram of the 5th month (Plot(3,1)). Plot(1,2) shows that,

unlike other variables, the performance of SAC does not depend on the value of CF. This observation

is in agreement with results provided in Section 1.3.7.

Next, we will discuss results for patient 14 (PID=14) shown in Figure 5.7. These results are in

agreement with patient 2’s results in showing the effectiveness of the SAC algorithm in controlling

blood glucose. In this figure, Plot(1,3) shows that the smart initialization suggested a lower-than-

optimal value for the initial CR parameter. We can see an increase in the CR parameter in the first

hundred meals, which led to a better control of the blood glucose (see the slight increase of the blood

glucose readings during the first hundred meals). Accordingly, Plot(3,1) shows that blood glucose

levels are acceptable during the 5th month. Finally, Plot(1,2) shows that the CF parameter is initiated

very close to its optimal value and has not changed much during the learning phase.

The effect of tile coding on performance of SAC

As observed in Section 5.2.2, tile coding improved Sarsa’s performance. This observation motivated

us to try to improve SAC’s performance using a similar approach. For this purpose, we used a

configuration similar to Sarsa’s tile coding: 8 tiles for each blood-glucose feature, 3 tiles for meal

size, 3 tiles for meal type, and 100 tilings. Figure 5.8 and Figure 5.9 demonstrate results obtained

66

0 1000 2000 3000
1

4

8
10

Timesteps

bg

0 1000 2000 3000
0.5

1

1.5

2

2.5

Timesteps

C
F

0 1000 2000 3000
5

10

15

20

25

30

Timesteps

C
R

0 1000 2000 3000
16

17

18

19

Timesteps

J

0 1000 2000 3000
14

16

18

20

Timesteps
m

ea
n−

re
w

ar
d

0 1000 2000 3000
0

10

20

30

Timesteps

In
je

ct
io

n(
U

)

0 4 8 10 15 20
0

10

20

30
BG histogram at timestep 400 to 500

BG

C
ou

nt

0 4 8 10 15 20
0

10

20

30
BG histogram in the last 100 timesteps

BG

C
ou

nt

PID = 2

CF* = 0.73

CR* = 5

Reward* = 18.84

optimal bg range = [4,8]

Figure 5.8: Evolution of different variables during the learning phase of SAC with tile coding. Here
the algorithm was run on patient 2 (PID=2). See text for more information.

from running this version of SAC on patient 2 and patient 14 respectively. The results for patient

2 (Figure 5.8) show that this version of the SAC converges after about 200 meals to the optimal

policy. This is 5 times faster than the convergence rate of the previous version of the SAC shown

in Figure 5.7. Results for other patients show a similar performance improvement when the SAC

algorithm is used with tile coding; see Appendix B.

5.3 Summary and further discussion

In this chapter we illustrated the results of our supervised and reinforcement learning algorithms.

Here we provide a summary and further discussion of the results.

5.3.1 T1DC

We used two different methods to evaluate the T1DC algorithm. First, we analyzed the performance

of the T1DC algorithm by looking at its prediction error, and later we compared its performance

with that of an expert diabetologist. Although it generated prediction errors for some of the patients,

the performance of the policy sequence obtained by T1DC was comparable to that of a diabetologist.

One important feature of the T1DC algorithm is its ability to generalize over a population. De-

67

0 1000 2000 3000

4

8

10

Timesteps

bg

0 1000 2000 3000
0.5

1

1.5

2

2.5

Timesteps

C
F

0 1000 2000 3000
5

10

15

20

25

30

Timesteps

C
R

0 1000 2000 3000
19

19.2

19.4

19.6

19.8

Timesteps

J

0 1000 2000 3000
18

19

20

21

Timesteps

m
ea

n−
re

w
ar

d

0 1000 2000 3000
0

2

4

6

8

Timesteps

In
je

ct
io

n(
U

)

0 4 8 10 15 20
0

5

10

15

20

BG histogram at timestep 400 to 500

BG

C
ou

nt

0 4 8 10 15 20
0

5

10

15

20

BG histogram in the last 100 timesteps

BG

C
ou

nt

PID = 14

CF* = 2.4

CR* = 16

Reward* = 19.56

optimal bg range = [4,8]

Figure 5.9: Evolution of different variables during the learning phase of SAC with tile coding. Here
the algorithm was run on patient 14 (PID=14). See text for more information.

68

spite the small size of the patient population (20 patients), the T1DC algorithm was able to gener-

alize its predictions across the patients and managed to achieve an acceptable performance within

a short period of time (36 days –four iterations of 9 days). We anticipate this performance would

be enhanced as the size of training set increases, making this method an appropriate tool for large

clinical studies. Yet, one should be aware of the complications associated with using this method.

For instance, it is not possible to use T1DC’s current training method in a clinical study. In the cur-

rent method the training data is obtained from some random policies, and in real life, these random

policies cannot be tried on patients due to potential dangers. One way to address this issue might be

to devise a clinical trial in which a small amount of noise is added to the policy that each patient is

following. Although the sampled policies would not cover the whole space of policies, they might

still cover the space sufficiently for T1DC’s generalization purposes. More importantly, the optimal

policy parameters (the labels of the T1DC algorithm), are not available for such a clinical study.

5.3.2 Sarsa

We have tested the Sarsa algorithm with various parameter and approximation settings. The results

suggested the importance of two factors in the performance of Sarsa: (1) the exploration method

and (2) generalization over state-action space. Our best performing Sarsa is obtained when TG-

exploration is combined with generalization on the state-action space.

One of the main challenges of using Sarsa (and SAC) in this domain was finding an appropriate

exploration method. To limit the possibility of harming the patient by taking an exploratory action,

we limited the exploration to the neighbourhood of the best candidate action. The combination

of this exploration method with pessimistic initialization of state-action value function helped us

to prevent hypoglycemia as much as possible. Another challenge was selecting good values for

the learning-rate and discount factor parameters. As explained earlier, due to the slowness of the

simulator it was not feasible to search extensively for the right parameters. Despite this, our results

suggests that Sarsa works best when γ is small. Finally, finding an appropriate discretization of

actions was also a challenge in running Sarsa.

Although we did not address the discretization issue in our experiments, we note that discretiza-

tion must be in accordance with the exploration method. We further discuss this using an exam-

ple with the following assumptions. Assume that the Sarsa algorithm is running with the optimal

state-action value function. Consider that, for a hypothetical patient, the optimal dosage of insulin

corresponding to a specific size of meal is 10 units and that injections of 14 units of insulin or more

causes hypoglycemia. Also assume that the range of available actions is [0,20]. If the size of bins

for discretization of actions is 1 unit, then it is safe to use an exploration that selects 3 neighbouring

actions (of the best candidate action) on either side of the action12. However if the size of bins are 2,

then the same exploration may cause hypoglycemia. This is the case because during the exploration,

12The actions that are not away from the optimal action more than 3 actions.

69

the 3rd farthest neighbour might be selected. This would lead to an injection of six units more in-

sulin than the optimal dosage (3 bins × 2 units per bin = 6), which, based on our assumption, would

cause hypoglycemia.

5.3.3 SAC

We demonstrated the results of our implementation of the SAC algorithm, using four instances (from

the complete set of results that are given in Appendix B). These results showed compelling evidence

that the performance of a policy using parameters found by SAC are comparable to the performance

of optimal policies. For some patients (e.g., PID=5), this performance surpassed the performance of

the T1DMS’s optimal policy according to our criteria.

5.3.4 Additional discussion

Each of the above algorithms have their own advantages and disadvantages. On one hand, the T1DC

algorithm can generalize over patient’s population, based on sampled data from each patient. This

generalization ability helps the T1DC algorithm to improve the policy efficiently in a short period of

time (in our case, 36 days). On the other hand, the T1DC predictor cannot further adapt to a patient

once its learning phase is over. When T1DC’s learning phase is over, the predictor is fixed and the

T1DC does not benefit from the additional data that are gathered during the test phase. By contrast,

reinforcement learning (RL) methods learn continually from new experience. Another disadvantage

of T1DC, is that it requires knowing the optimal policy parameters for training patients, while RL

methods do not need this information.

In contrast to the T1DC algorithm, which naturally generalizes over patient population, it is hard

for the Sarsa algorithm to transfer the knowledge that it has learned from one patient to another.

We did not pursue this goal, but one way of incorporating this knowledge might be through the

initiation of the action-value function using prior knowledge about a patient (and patients in general).

For example, one can initialize the Q values corresponding to the actions that match the smart-

initialization policy with higher values.

Among the reinforcement learning algorithms, SAC showed a better overall performance, which

is not surprising for a few reasons. First, SAC has the knowledge about the structure of an ef-

fective policy (the standard policy). Second, SAC starts from a reasonable policy setting (smart-

initialization) while Sarsa starts from scratch (Q = 0). Finally, SAC is designed for a continuous

action space, which matches our task, while Sarsa is designed for discrete actions (which might

cause the problems that are discussed in Section 5.3.2).

We should note that comparison between T1DC and the two reinforcement learning methods

would not be fair due to the significant difference in their training data. T1DC achieves an accept-

able performance (comparable to the performance of an expert diabetologist) faster than SAC, but

when it was tested on one patient it had already seen 2700 days of data on each of the other 19 in-

70

silico patients (e.g., 153,900 meals). Furthermore, the T1DC’s learner has access to optimal policy

parameters for its training patients.

Finally, we anticipate it may be possible to benefit from all of the above advantages by using

T1DC for a few iterations and then initializing the SAC policy parameters using T1DC’s suggested

policy parameters.

71

Chapter 6

Conclusion and future work

This dissertation demonstrated the application of three machine learning techniques in automating

type-1 diabetes management. As illustrated in Chapter 1, the management process requires a type-1

diabetic patient to follow a treatment policy to maintain her blood glucose level within an acceptable

range. Currently, the patient’s diabetologist adjusts patient’s treatment-policy to enhance her blood

glucose control. In this research we used machine learning techniques to automatically adjust the

parameters of the meal-related component of patient’s treatment policy.

We implemented three machine learning algorithms, consisting of T1DC, which is a supervised

learning method, and Sarsa and SAC, which are reinforcement learning algorithms, and tested them

on twenty in-silico patients. These in-silico patients were simulated using a commercial type-1

diabetes simulator called T1DMS. Our experimental results indicated that the methods we employed

were able to adjust the treatment-policy of our in-silico patients with a performance level that was

often comparable to that of an expert diabetologist.

6.1 Contributions

During the course of this dissertation, we formalized the diabetes treatment policy adjustment prob- Contribution

lem and devised the following tools to solve this problem:

• Given that we have access to the optimal standard treatment-policies for some patients, we

built a supervised learning tool that allows us to effectively control the blood glucose of other

patients.

• We built a reinforcement learning tool to effectively control the blood glucose of a patient.

We defined a plausible score function to assess the effectiveness of our provided tools1. Our

empirical results for the T1DC method (Section 5.1) showed that the performance of the policy se-

quence obtained using this supervised learning tool is comparable to that of an expert diabetologist.

1Note that our framework is independent of the specific score function, which can be replaced by another score function
to address the policy adjustment problem. But we did not try that here.

72

Furthermore, the results of SAC and Sarsa (provided in Section 5.2) showed that these reinforcement

learning tools can be used to effectively adjust the treatment policy of in-silico patients.

6.2 Future Work

In this dissertation we only scratched the surface of the type-1 diabetes control problem, leaving

many avenues for future work. The next sections provide a selection of topics for further research,

including many that have already been introduced in earlier chapters.

6.2.1 Meal consumption actions

In a real-life hypoglycemia event, a typical diabetes patient immediately consumes some form of

sugar (e.g., sugar-tablet, candy, etc.) to prevent the blood glucose level from further decreasing [52].

As mentioned in the description of the T1DMS simulator (Chapter 3), it is possible to implement

a controller that can simulate the above corrective behaviour of the patient. This extension can

alleviate some of the hypoglycemia-related issues discussed in Section 3.2 – that is stopping and

restarting the simulator if patient’s glucose level drops below a certain threshold. This corrective

measure can be considered as a new action for the controller or it can be implemented as a rescue

signal. In the case of the rescue signal, upon the occurrence of a hypoglycemia event, the signal

would induce the controller to feed the patient with a fixed amount of sugar and punish the learning

algorithm (of the controller) and then continue the learning process. This modification would make

the learning task more similar to the real-life scenario but it also adds complexities that need to be

addressed (e.g., what is the right way of penalizing this action).

6.2.2 Extending the application to type-2 diabetes

As mentioned in Chapter 1, the bodies of the patients with type-2 diabetes can still produce some

quantity of insulin. Thus, management of type-2 diabetes is not as hard as that of type-1 diabetes. In

severe cases of type-2 diabetes, where patients need to inject insulin, the control problem becomes

very similar to the type-1 diabetes problem. It would be interesting to investigate whether our algo-

rithms would work in this slightly modified domain with some tuning. A commercial simulator of

type-2 diabetes is under development by developers of T1DMS, and it could be a potential platform

for future analysis.

6.2.3 Other score functions

A critical part of a reinforcement learning problem is the definition of a reasonable reward function.

This reward function characterizes the goal of the algorithm. Our formulation of reward in the

diabetes problem (as explained in Section 2.2.5) is defined based on a score function. One possibility

for future work is to analyze the properties of various score functions proposed in the diabetes

literature (e.g., see Fig.4 of [24]) and their effect on the performance of blood glucose control.

73

6.2.4 Reinforcement learning exploration methods

As demonstrated in Chapter 5, one of the factors that can influence the performance of a rein-

forcement learning algorithms is its exploration method. Some properties of diabetes management

(e.g., the risk of hypoglycemia) make it essential to come up with a customized exploration method,

which considers the risk associated with each exploration event. We dealt with the risk issue by

restricting exploration to a local neighbourhood. But a more rigorous study of this issue is of great

interest. As a possible first step towards this customization we could change the Gaussian stochastic

policy of our actor-critic method to an asymmetric distribution.

6.2.5 Dynamic learning rates

It might be of interest to improve the performance of the reinforcement learning algorithms by

dynamically changing their learning rates through the learning process (e.g., see [18]). In simple

terms, this is intuitive because when we get more confident in our estimates (of state-value function,

action-value function, etc.) we do not want to change them significantly.

6.2.6 T1DC improvements
Asymmetric prediction loss (for T1DC)

In the T1DC algorithm, the loss function of the support vector regression method (as shown in Fig-

ure 2.1) penalizes positive and negative errors similarly. However, in our application, the positive

errors are less important than the negative errors (as explained in Section 5.1.1). Using an asymmet-

ric loss may improve performance of the T1DC algorithm.

Check for improvement

One way of making sure that T1DC policy updates are actually improving current policy is to con-

sider the evolution of the mean-reward for each policy over its k-days. Using this information in the

updates could prevent a decrease in the performance of T1DC during the iterative process.

6.2.7 Warm-start

One of the factors that affect the performance of the reinforcement learning algorithms (as discussed

in Section 5.3) is their initialization. In real-life situations, when a new patient wants to try a hy-

pothetical sophisticated controller, there might be years’ worth of information from a diabetes diary

available for her. One possibility for future work is to find ways to leverage this available informa-

tion for better initialization of the controller.

74

Bibliography

[1] S.I. Ahmad. Diabetes: An Old Disease, a New Insight. Springer-Verlag New York Incorpo-
rated, 2013. ISBN 9781461454403.

[2] A.M. Albisser, B.S. Leibel, T.G. Ewart, Z. Davidovac, C.K. Botz, W. Zingg, H. Schipper, and
R. Gander. Clinical control of diabetes by the artificial pancreas. Diabetes, 23(5):397–404,
1974.

[3] American Diabetes Association. Standards of medical care in diabetes–2013. Diabetes
Care, 36(Supplement 1):S11–S66, December 2012. ISSN 0149-5992, 1935-5548. doi:
10.2337/dc13-S011. URL http://care.diabetesjournals.org/content/36/
Supplement_1/S11.full.

[4] S. Andreassen, J.J. Benn, R. Hovorka, K.G. Olesen, and E.R. Carson. A probabilistic approach
to glucose prediction and insulin dose adjustment: description of metabolic model and pilot
evaluation study. Computer Methods and Programs in Biomedicine, 41(3):153–165, 1994.

[5] N.P. Balakrishnan, G.P. Rangaiah, and L. Samavedham. Review and analysis of blood glucose
(bg) models for type 1 diabetic patients. Industrial & Engineering Chemistry Research, 50
(21):12041–12066, 2011.

[6] R.N. Bergman, Y.Z. Ider, C.R. Bowden, and C. Cobelli. Quantitative estimation of insulin
sensitivity. American Journal of Physiology-Endocrinology And Metabolism, 236(6):E667,
1979.

[7] S. Bhatnagar, R.S. Sutton, M. Ghavamzadeh, and M. Lee. Natural actor–critic algorithms.
Automatica, 45(11):2471–2482, 2009.

[8] V.W. Bolie. Coefficients of normal blood glucose regulation. Journal of Applied Physiology,
16(5):783–788, 1961.

[9] R.M. Bookchin and P.M. Gallop. Structure of hemoglobin AIc: nature of the n-terminal
chain blocking group. Biochemical and Biophysical Research Communications, 32(1):86–
93, July 1968. ISSN 0006-291X. doi: 10.1016/0006-291X(68)90430-0. URL http:
//www.sciencedirect.com/science/article/pii/0006291X68904300.

[10] E.R. Carson and T. Deutsch. A spectrum of approaches for controlling diabetes. Control
Systems, IEEE, 12(6):25–31, 1992.

[11] A. Caumo and C. Cobelli. Hepatic glucose production during the labeled IVGTT: estimation
by deconvolution with a new minimal model. The American Journal of Physiology, 264(5
Pt 1):E829–41, May 1993. LR: 20061115; JID: 0370511; 0 (Blood Glucose); 11061-68-0
(Insulin); 50-99-7 (Glucose); ppublish.

[12] S.C. Chao and A.M. Albisser. The diabetes simulator. Decision support for patient manage-
ment, 1989.

[13] F. Chee and T. Fernando. Closed-Loop Control of Blood Glucose. Lecture Notes in Control
and Information Sciences. Springer, 2007. ISBN 9783540740308. URL http://books.
google.ca/books?id=NJe-NdZzgGMC.

[14] M.E. Chevreul. Note sur le sucre du diabte. Ann Chim (Paris), 95:319–320, 1815.

[15] S.F. Clarke and J.R. Foster. A history of blood glucose meters and their role in self-monitoring
of diabetes mellitus. British Journal of Biomedical Science, 69(2):83–93, 2012.

75

http://care.diabetesjournals.org/content/36/Supplement_1/S11.full
http://care.diabetesjournals.org/content/36/Supplement_1/S11.full
http://www.sciencedirect.com/science/article/pii/0006291X68904300
http://www.sciencedirect.com/science/article/pii/0006291X68904300
http://books.google.ca/books?id=NJe-NdZzgGMC
http://books.google.ca/books?id=NJe-NdZzgGMC

[16] R. Collobert and S. Bengio. Svmtorch: Support vector machines for large-scale regression
problems. The Journal of Machine Learning Research, 1:143–160, 2001.

[17] M.A. Creager, T.F. Lüscher, F. Cosentino, and J.A. Beckman. Diabetes and vascular disease
pathophysiology, clinical consequences, and medical therapy: part i. Circulation, 108(12):
1527–1532, 2003.

[18] W. Dabney and A.G. Barto. Adaptive step-size for online temporal difference learning. In
AAAI, 2012.

[19] C. Dalla Man, A. Caumo, R. Basu, R. Rizza, G. Toffolo, and C. Cobelli. Minimal model
estimation of glucose absorption and insulin sensitivity from oral test: validation with a tracer
method. American journal of physiology. Endocrinology and metabolism, 287(4):E637–43,
October 2004. ISSN 0193-1849. doi: 10.1152/ajpendo.00319.2003. URL http://www.
ncbi.nlm.nih.gov/pubmed/15138152.

[20] C. Dalla Man, G. Toffolo, R. Basu, R. a Rizza, and C. Cobelli. A model of glucose production
during a meal. Conference proceedings : ... Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology
Society. Conference, 1(0):5647–50, January 2006. ISSN 1557-170X. doi: 10.1109/IEMBS.
2006.260809. URL http://www.ncbi.nlm.nih.gov/pubmed/17946713.

[21] C. Dalla Man, R. a Rizza, and C. Cobelli. Meal simulation model of the glucose-insulin sys-
tem. IEEE transactions on bio-medical engineering, 54(10):1740–9, October 2007. ISSN
0018-9294. doi: 10.1109/TBME.2007.893506. URL http://www.ncbi.nlm.nih.
gov/pubmed/17946394.

[22] C. DallaMan, Raimondo D.M., Rizza R.A., and C. Cobelli. GIM, simulation software of meal
glucose-insulin model. Journal of diabetes science and technology, 1(3):323–330, May 2007.
LR: 20100928; JID: 101306166; OID: NLM: PMC2769591; ppublish.

[23] T. Degris, P.M. Pilarski, and R.S. Sutton. Model-free reinforcement learning with continuous
action in practice. In American Control Conference (ACC), 2012, pages 2177–2182. IEEE,
2012.

[24] L. Desborough, C. Palerm, and S. Monirabbasi. Glycemic health metric determination and
application, April 25 2013. US Patent 20,130,102,867.

[25] Matlab® developers. Curve fitting toolbox, interpolants. URL http://www.mathworks.
com/help/curvefit/interpolants.html.

[26] D. Elleri, J.M. Allen, D.B. Dunger, and R. Hovorkea. Closed-loop in children with type 1
diabetes: Specific challenges. Diabetes research and clinical practice, 93:S131–S135, 2011.

[27] T.G. Farmer, T.F. Edgar, and N.A. Peppas. The future of open- and closed-loop insulin delivery
systems. Journal of Pharmacy and Pharmacology, 60(1):1–13, 2008. ISSN 2042-7158. doi:
10.1211/jpp.60.1.0001. URL http://dx.doi.org/10.1211/jpp.60.1.0001.

[28] E. Ferrannini and C. Cobelli. The kinetics of insulin in man. i. general aspects. Diabetes
Metab Rev, 3(2):335–63, 1987. ISSN 0742-4221. URL http://www.biomedsearch.
com/nih/kinetics-insulin-in-man-General/3552526.html.

[29] M. Gondran. An introduction to expert systems. McGraw-Hill, Inc., 1986.

[30] Public Health Agency of Canada Government of Canada. Report from the na-
tional diabetes surveillance system: Diabetes in canada, 2009. http://www.phac-
aspc.gc.ca/publicat/2009/ndssdic-snsddac-09/index-eng.php#toc, February 2009. URL
http://www.phac-aspc.gc.ca/publicat/2009/ndssdic-snsddac-09/
index-eng.php#toc. Presents the findings from the National Diabetes Surveillance
System (NDSS) for 2009. Indicates future plans for the NDSS.

[31] The Epsilon Group. The UVa / Padova T1DM Simulator T1DMS Distributed Version User
Guide, 2011.

[32] D.A. Hepburn, I.J. Deary, B.M. Frier, A.W. Patrick, J.D. Quinn, and B.M. Fisher. Symptoms
of acute insulin-induced hypoglycemia in humans with and without iddm: factor-analysis ap-
proach. Diabetes Care, 14(11):949–957, 1991.

76

http://www.ncbi.nlm.nih.gov/pubmed/15138152
http://www.ncbi.nlm.nih.gov/pubmed/15138152
http://www.ncbi.nlm.nih.gov/pubmed/17946713
http://www.ncbi.nlm.nih.gov/pubmed/17946394
http://www.ncbi.nlm.nih.gov/pubmed/17946394
http://www.mathworks.com/help/curvefit/interpolants.html
http://www.mathworks.com/help/curvefit/interpolants.html
http://dx.doi.org/10.1211/jpp.60.1.0001
http://www.biomedsearch.com/nih/kinetics-insulin-in-man-General/3552526.html
http://www.biomedsearch.com/nih/kinetics-insulin-in-man-General/3552526.html
http://www.phac-aspc.gc.ca/publicat/2009/ndssdic-snsddac-09/index-eng.php#toc
http://www.phac-aspc.gc.ca/publicat/2009/ndssdic-snsddac-09/index-eng.php#toc

[33] R.I.G. Holt, C. Cockram, A. Flyvbjerg, and B.J. Goldstein. Textbook of Diabetes. Wi-
ley, 2011. ISBN 9781444348064. URL http://books.google.ca/books?id=
mGV4wu8AkPwC.

[34] R. Hovorka, S. Svacina, E.R. Carson, C.D. Williams, and P.H. Sonksen. A consultation system
for insulin therapy. Computer methods and programs in biomedicine, 32(3):303–310, 1990.

[35] Geyelin H.R., Harrop G., Murray M.F., and Corwin E. The use of insulin in juvenile diabetes.
Journal of Metabolic Research, 2:767–792, 1922.

[36] T.H.J. Huisman, E.A. Martis, and A. Dozy. Chromatography of hemoglobin types on car-
boxymethylcellulose. The Journal of laboratory and clinical medicine, 52(2):312–327, 1958.

[37] IDF. IDF diabetes atlas update 2012, 2012. URL http://www.idf.org/
diabetesatlas/5e/Update2012.

[38] P. James and McFadden R. Understanding the processes behind the regulation
of blood glucose. Nursing times, 100(16):56–58, April 2004. ISSN 0954-7762.
URL http://www.nursingtimes.net/Journals/2012/12/04/i/c/v/
040420Understanding-the-processes-behind-the-regulation-of-blood-glucose.
pdf. PMID: 15132068.

[39] R.J. Koenig, C.M. Peterson, R.L. Jones, C. Saudek, M. Lehrman, and A. Cerami. Cor-
relation of glucose regulation and hemoglobin AIc in diabetes mellitus. New Eng-
land Journal of Medicine, 295(8):417–420, 1976. ISSN 0028-4793. doi: 10.
1056/NEJM197608192950804. URL http://www.nejm.org/doi/full/10.1056/
NEJM197608192950804. PMID: 934240.

[40] B.P. Kovatchev, M. Breton, C.D. Man, and C. Cobelli. In silico preclinical trials: A proof of
concept in closed-loop control of type 1 diabetes. Journal of diabetes science and technology,
3(1):44–55, 2009.

[41] E.D. Lehmann, T. Deutsch, E.R. Carson, and P.H. Sönksen. Aida: an interactive diabetes
advisor. Computer methods and programs in biomedicine, 41(3):183–203, 1994.

[42] E.D. y Lehmann and T. Deutsch. Application of computers in diabetes care-a review. ii. com-
puters for decision support and education. Informatics for Health and Social Care, 20(4):
303–329, 1995.

[43] K. Lunze, T. Singh, M. Walter, M.D. Brendel, and S. Leonhardt. Blood glucose control algo-
rithms for type 1 diabetic patients: A methodological review. Biomedical Signal Processing
and Control, 2012.

[44] S.P. Meyn, R.L. Tweedie, and P.W. Glynn. Markov chains and stochastic stability, volume 2.
Cambridge University Press Cambridge, 2009.

[45] S.A. Murphy. personal communication, dec 2012.

[46] D.M. Nathan, J. Kuenen, R. Borg, H. Zheng, D. Schoemfeld, and R.J. Heine. Translating
the A1C Assay Into Estimated Average Glucose Values. Diabetes, 31(8):1–6, 2008. doi:
10.2337/dc07-0545.

[47] G. Nucci and C. Cobelli. Models of subcutaneous insulin kinetics. A critical review. Computer
methods and programs in biomedicine, 62(3):249–57, July 2000. ISSN 0169-2607. URL
http://www.ncbi.nlm.nih.gov/pubmed/10837910.

[48] J.M.D. Olmsted. Claude bernard, 1813-1878; a pioneer in the study of carbohydrate
metabolism. Diabetes, 2(2):162–164, April 1953. ISSN 0012-1797. PMID: 13033650.

[49] B. Pagurek, J.S. Riordon, and S. Mahmoud. Adaptive control of the human glucose-regulatory
system. Medical and biological engineering, 10(6):752–761, 1972.

[50] P. Palazzo and V. Viti. A new glucose-clamp algorithm-theoretical considerations and com-
puter simulations. Biomedical Engineering, IEEE Transactions on, 37(5):535–543, 1990.

[51] K. Patrick, W.G. Griswold, F. Raab, and S.S. Intille. Health and the mobile phone. American
journal of preventive medicine, 35(2):177, 2008.

77

http://books.google.ca/books?id=mGV4wu8AkPwC
http://books.google.ca/books?id=mGV4wu8AkPwC
http://www.idf.org/diabetesatlas/5e/Update2012
http://www.idf.org/diabetesatlas/5e/Update2012
http://www.nursingtimes.net/Journals/2012/12/04/i/c/v/040420Understanding-the-processes-behind-the-regulation-of-blood-glucose.pdf
http://www.nursingtimes.net/Journals/2012/12/04/i/c/v/040420Understanding-the-processes-behind-the-regulation-of-blood-glucose.pdf
http://www.nursingtimes.net/Journals/2012/12/04/i/c/v/040420Understanding-the-processes-behind-the-regulation-of-blood-glucose.pdf
http://www.nejm.org/doi/full/10.1056/NEJM197608192950804
http://www.nejm.org/doi/full/10.1056/NEJM197608192950804
http://www.ncbi.nlm.nih.gov/pubmed/10837910

[52] W.A. Petit, W.A.J. Petit, and C.A. Adamec. The Encyclopedia of Diabetes. Facts on File
Library of Health and Living. Facts On File, Incorporated, 2010. ISBN 9780816079483. URL
http://books.google.ca/books?id=0-H-QQAACAAJ.

[53] K.S. Polonsky. The past 200 years in diabetes. New England Journal of Medicine, 367(14):
1332–1340, 2012. ISSN 0028-4793. doi: 10.1056/NEJMra1110560. URL http://www.
nejm.org/doi/full/10.1056/NEJMra1110560. PMID: 23034021.

[54] M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994. ISBN 0471619779.

[55] S. Rahbar, O. Blumenfeld, and H.M. Ranney. Studies of an unusual hemoglobin in patients
with diabetes mellitus. Biochemical and Biophysical Research Communications, 36(5):838–
843, August 1969. ISSN 0006-291X. doi: 10.1016/0006-291X(69)90685-8. URL http:
//www.sciencedirect.com/science/article/pii/0006291X69906858.

[56] G.A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems. University
of Cambridge, Department of Engineering, 1994.

[57] S.J. Russell and P. Norvig. Artificial intelligence: a modern approach. Prentice hall Englewood
Cliffs, 2010.

[58] E.A. Ryan, T. Shandro, K. Green, B.W. Paty, P.A. Senior, D. Bigam, A.M.J. Shapiro, and
MC. Vantyghem. Assessment of the severity of hypoglycemia and glycemic lability in type 1
diabetic subjects undergoing islet transplantation. Diabetes, 53(4):955–962, 2004.

[59] C.D. Saudek, R.L. Derr, and R.R. Kalyani. Assessing glycemia in diabetes using self-
monitoring blood glucose and hemoglobin a1c. The Journal of the American Medical As-
sociation, 295(14):1688–1697, April 2006. ISSN 0098-7484. doi: 10.1001/jama.295.14.1688.
URL http://dx.doi.org/10.1001/jama.295.14.1688.

[60] J. Schlichtkrull, O. Munck, and M. Jersild. The m-value, an index of blood-sugar control in
diabetics. Acta Medica Scandinavica, 177(1):95–102, 1965. ISSN 0954-6820. doi: 10.1111/
j.0954-6820.1965.tb01810.x. URL http://dx.doi.org/10.1111/j.0954-6820.
1965.tb01810.x.

[61] A.M.J. Shapiro, J.R.T. Lakey, E.A. Ryan, G.S. Korbutt, E. Toth, G.L. Warnock, N.M. Knete-
man, and R.V. Rajotte. Islet transplantation in seven patients with type 1 diabetes mellitus
using a glucocorticoid-free immunosuppressive regimen. New England Journal of Medicine,
343(4):230–238, 2000.

[62] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge Uni-
versity Press, 2004. ISBN 9780521813976. URL http://books.google.ca/books?
id=9i0vg12lti4C.

[63] S. Shimoda, K. Nishida, M. Sakakida, Y. Konno, K. Ichinose, M. Uehara, T. Nowak, and
M. Shichiri. Closed-loop subcutaneous insulin infusion algorithm with a short-acting insulin
analog for long-term clinical application of a wearable artificial endocrine pancreas. Fron-
tiers of medical and biological engineering: the international journal of the Japan Society of
Medical Electronics and Biological Engineering, 8(3):197, 1997.

[64] J.S. Skyler, D.L. Skyler, D.E. Seigler, and M.J. O’Sullivan. Algorithms for adjustment of
insulin dosage by patients who monitor blood glucose. Diabetes Care, 4(2):311–318, 1981.

[65] A.J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics and computing,
14(3):199–222, 2004.

[66] R.S. Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3
(1):9–44, 1988.

[67] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. A Bradford book.
A Bradford Book, 1998. ISBN 9780262193986. URL http://books.google.ca/
books?id=CAFR6IBF4xYC.

[68] R.S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for rein-
forcement learning with function approximation. Advances in neural information processing
systems, 12(22), 2000.

78

http://books.google.ca/books?id=0-H-QQAACAAJ
http://www.nejm.org/doi/full/10.1056/NEJMra1110560
http://www.nejm.org/doi/full/10.1056/NEJMra1110560
http://www.sciencedirect.com/science/article/pii/0006291X69906858
http://www.sciencedirect.com/science/article/pii/0006291X69906858
http://dx.doi.org/10.1001/jama.295.14.1688
http://dx.doi.org/10.1111/j.0954-6820.1965.tb01810.x
http://dx.doi.org/10.1111/j.0954-6820.1965.tb01810.x
http://books.google.ca/books?id=9i0vg12lti4C
http://books.google.ca/books?id=9i0vg12lti4C
http://books.google.ca/books?id=CAFR6IBF4xYC
http://books.google.ca/books?id=CAFR6IBF4xYC

[69] C. Szepesvári. Algorithms for reinforcement learning. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning, 4(1):1–103, 2010.

[70] D. Takahashi, Y. Xiao, and F. Hu. A survey of insulin-dependent diabetes-part ii: control
methods. International journal of telemedicine and applications, 2008:4, 2008.

[71] B. Tao, M. Pietropaolo, M. Atkinson, D. Schatz, and D. Taylor. Estimating the cost of type 1
diabetes in the us: a propensity score matching method. PLoS One, 5(7):e11501, 2010.

[72] R. Tattersall. Diabetes: The Biography. Biographies of Disease. OUP Oxford, 2009. ISBN
9780199541362. URL http://books.google.ca/books?id=UBuVrdNBWKkC.

[73] G. Toffolo, M. Campioni, R. Basu, R. a Rizza, and C. Cobelli. A minimal model of in-
sulin secretion and kinetics to assess hepatic insulin extraction. American journal of physi-
ology. Endocrinology and metabolism, 290(1):E169–E176, January 2006. ISSN 0193-1849.
doi: 10.1152/ajpendo.00473.2004. URL http://www.ncbi.nlm.nih.gov/pubmed/
16144811.

[74] V. Vapnik. The nature of statistical learning theory. springer, 1999.

[75] P. Vicini, A. Caumo, and C. Cobelli. The hot IVGTT two-compartment minimal model: in-
dexes of glucose effectiveness and insulin sensitivity. The American Journal of Physiology,
273(5 Pt 1):E1024–32, Nov 1997.

[76] J. Walsh. Using insulin: everything you need for success with insulin. Torrey Pines Press,
2003.

[77] WHO. Health system statistics: Human resources for health, by who region,
1995-2004, 2005. URL http://www.who.int/healthinfo/statistics/
14whostat2005graph_humanresources.jpg.

[78] M. Wiering and M. Van Otterlo. Reinforcement Learning: State-of-the-art, volume 12.
Springer, 2012.

[79] Wikipedia. Glycated hemoglobin — wikipedia, the free encyclopedia, 2013. URL https:
//en.wikipedia.org/w/index.php?title=Glycated_hemoglobin. Online;
accessed 2013-06-04.

[80] Wikipedia. Truncated normal distribution — wikipedia, the free encyclopedia, 2013. URL
https://en.wikipedia.org/wiki/Truncated_normal_distribution. On-
line; accessed 2013-06-04.

[81] Wikipedia. Controller (control theory) — wikipedia, the free encyclopedia, 2013. URL
https://en.wikipedia.org/wiki/Controller_%28control_theory%29.
Online; accessed 2013-07-04.

[82] I.H. Witten and E. Frank. Data Mining: Practical machine learning tools and techniques.
Morgan Kaufmann, 2005.

[83] H. Wolpert. Smart Pumping: A Practical Approach to the Insulin Pump. McGraw-Hill Com-
panies,Incorporated, 2002. ISBN 9781580401258. URL http://books.google.ca/
books?id=mxkCAAAACAAJ.

[84] P. Zhang, X. Zhang, J.B. Brown, D. Vistisen, R.A. Sicree, J. Shaw, and G.A. Nichols. Eco-
nomic impact of diabetes. Diabetes Atlas, IDF, 4, 2010.

[85] F. Zhou, HI Yang, J.M.R. Álamo, J.S. Wong, and C.K. Chang. Mobile personal health care
system for patients with diabetes. Springer, 2010.

79

http://books.google.ca/books?id=UBuVrdNBWKkC
http://www.ncbi.nlm.nih.gov/pubmed/16144811
http://www.ncbi.nlm.nih.gov/pubmed/16144811
http://www.who.int/healthinfo/statistics/14whostat2005graph_humanresources.jpg
http://www.who.int/healthinfo/statistics/14whostat2005graph_humanresources.jpg
https://en.wikipedia.org/w/index.php?title=Glycated_hemoglobin
https://en.wikipedia.org/w/index.php?title=Glycated_hemoglobin
https://en.wikipedia.org/wiki/Truncated_normal_distribution
https://en.wikipedia.org/wiki/Controller_%28control_theory%29
http://books.google.ca/books?id=mxkCAAAACAAJ
http://books.google.ca/books?id=mxkCAAAACAAJ

Appendix A

List of In-Silico Patients

Patient-Type Patient-id(PID) Body-Weight(Kg) Age Optimal-basal Optimal-Sensitivity(CF) Optimal-CHO(CR)

Adolescent 1 68.7 18 0.84 0.5 12
Adolescent 2 51 19 0.92 0.5 15
Adolescent 3 44.8 15 0.65 0.5 15
Adolescent 4 49.6 17 0.87 0.5 15
Adolescent 5 47 16 0.72 0.5 15
Adolescent 6 45.5 14 0.88 0.5 15
Adolescent 7 37.9 16 0.78 0.4 17
Adolescent 8 41.2 14 0.56 0.4 17
Adolescent 9 43.9 19 0.61 0.4 17
Adolescent 10 47.4 17 0.79 0.4 17

Adult 11 102.3 61 1.27 0.7 10
Adult 12 111.1 65 1.37 0.7 10
Adult 13 81.6 27 1.43 0.6 13
Adult 14 63 66 0.89 0.5 14
Adult 15 94 52 1.18 0.6 10
Adult 16 66 26 1.72 0.5 12
Adult 17 91.2 35 1.37 0.6 10
Adult 18 102.8 48 1.14 0.7 10
Adult 19 74.6 68 1.13 0.5 13
Adult 20 73.9 68 1.02 0.5 12
Child 21 34.6 9 0.39 0.4 17
Child 22 28.5 9 0.4 0.3 20
Child 23 41.2 8 0.29 0.3 20
Child 24 35.5 12 0.49 0.3 20
Child 25 37.8 10 0.52 0.3 20
Child 26 41 8 0.4 0.3 20
Child 27 45.5 9 0.47 0.4 20
Child 28 23.7 10 0.34 0.3 20
Child 29 35.5 7 0.39 0.3 20
Child 30 35.2 12 0.4 0.3 20

80

Appendix B

Additional Results for SAC
algorithm

B.1 SAC with tabular critic

Figure B.1: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

81

Figure B.2: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

82

Figure B.3: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

83

Figure B.4: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

84

Figure B.5: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

85

Figure B.6: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

86

Figure B.7: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

87

Figure B.8: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

88

Figure B.9: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

89

Figure B.10: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

90

Figure B.11: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

91

Figure B.12: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

92

Figure B.13: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

93

Figure B.14: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

94

Figure B.15: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

95

Figure B.16: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

96

Figure B.17: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

97

Figure B.18: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

98

Figure B.19: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

99

Figure B.20: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

100

Figure B.21: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

101

Figure B.22: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

102

Figure B.23: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

103

Figure B.24: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

104

Figure B.25: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

105

Figure B.26: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

106

Figure B.27: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

107

Figure B.28: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

108

Figure B.29: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

109

Figure B.30: The evolution of different variables during the learning phase of SAC (no-tile coding
version). See Section 5.2.3 for more information.

110

B.2 SAC with tile-coding critic

Figure B.31: The evolution of different variables during the learning phase of SAC (tile-coding
version). See Section 5.2.3 for more information.

111

Figure B.32: The evolution of different variables during the learning phase of SAC (tile-coding
version). See Section 5.2.3 for more information.

112

Figure B.33: The evolution of different variables during the learning phase of SAC (tile-coding
version). See Section 5.2.3 for more information.

113

Figure B.34: The evolution of different variables during the learning phase of SAC (tile-coding
version). See Section 5.2.3 for more information.

114

Figure B.35: The evolution of different variables during the learning phase of SAC (tile-coding
version). See Section 5.2.3 for more information.

115

Figure B.36: The evolution of different variables during the learning phase of SAC (tile-coding
version). See Section 5.2.3 for more information.

116

Figure B.37: The evolution of different variables during the learning phase of SAC (tile-coding
version). See Section 5.2.3 for more information.

117

Figure B.38: The evolution of different variables during the learning phase of SAC (tile-coding
version). See Section 5.2.3 for more information.

118

Figure B.39: The evolution of different variables during the learning phase of SAC (tile-coding
version). See Section 5.2.3 for more information.

119

Figure B.40: The evolution of different variables during the learning phase of SAC (tile-coding
version). See Section 5.2.3 for more information.

120

Figure B.41: The evolution of different variables during the learning phase of SAC (tile-coding
version). See Section 5.2.3 for more information.

121

Figure B.42: The evolution of different variables during the learning phase of SAC (tile-coding
version). See Section 5.2.3 for more information.

122

Figure B.43: The evolution of different variables during the learning phase of SAC (tile-coding
version). See Section 5.2.3 for more information.

123

Figure B.44: The evolution of different variables during the learning phase of SAC (tile-coding
version). See Section 5.2.3 for more information.

124

Figure B.45: The evolution of different variables during the learning phase of SAC (tile-coding
version). See Section 5.2.3 for more information.

125

Figure B.46: The evolution of different variables during the learning phase of SAC (tile-coding
version). See Section 5.2.3 for more information.

126

Figure B.47: The evolution of different variables during the learning phase of SAC (tile-coding
version). See Section 5.2.3 for more information.

127

Figure B.48: The evolution of different variables during the learning phase of SAC (tile-coding
version). See Section 5.2.3 for more information.

128

Figure B.49: The evolution of different variables during the learning phase of SAC (tile-coding
version). See Section 5.2.3 for more information.

129

Figure B.50: The evolution of different variables during the learning phase of SAC (tile-coding
version). See Section 5.2.3 for more information.

130

Appendix C

Performance contours

Here we provide the contour plot of the performance of the standard policy with respect to its

parameters. See Section 1.3.7 for more details about the description of the plots. The surface is

interpolated based on the 300 sampled points on the policy space. Note that the sampled parameters

are selected from a restricted interval (the same interval that is used for generating training data for

T1DC algorithm) ; see Section 5.1.1.

Figure C.1: Contour plot corresponding to the performance surface of the standard policy with
respect to policy parameters CR and CF . The policy performance is calculated using mean-reward
over 9-days of following the policy. See Section 1.3.7 for more details.

131

Figure C.2: Contour plot corresponding to the performance surface of the standard policy with
respect to policy parameters CR and CF . The policy performance is calculated using mean-reward
over 9-days of following the policy. See Section 1.3.7 for more details.

132

Figure C.3: Contour plot corresponding to the performance surface of the standard policy with
respect to policy parameters CR and CF . The policy performance is calculated using mean-reward
over 9-days of following the policy. See Section 1.3.7 for more details.

133

Figure C.4: Contour plot corresponding to the performance surface of the standard policy with
respect to policy parameters CR and CF . The policy performance is calculated using mean-reward
over 9-days of following the policy. See Section 1.3.7 for more details.

134

Figure C.5: Contour plot corresponding to the performance surface of the standard policy with
respect to policy parameters CR and CF . The policy performance is calculated using mean-reward
over 9-days of following the policy. See Section 1.3.7 for more details.

135

Figure C.6: Contour plot corresponding to the performance surface of the standard policy with
respect to policy parameters CR and CF . The policy performance is calculated using mean-reward
over 9-days of following the policy. See Section 1.3.7 for more details.

136

Figure C.7: Contour plot corresponding to the performance surface of the standard policy with
respect to policy parameters CR and CF . The policy performance is calculated using mean-reward
over 9-days of following the policy. See Section 1.3.7 for more details.

137

Figure C.8: Contour plot corresponding to the performance surface of the standard policy with
respect to policy parameters CR and CF . The policy performance is calculated using mean-reward
over 9-days of following the policy. See Section 1.3.7 for more details.

138

Figure C.9: Contour plot corresponding to the performance surface of the standard policy with
respect to policy parameters CR and CF . The policy performance is calculated using mean-reward
over 9-days of following the policy. See Section 1.3.7 for more details.

139

Figure C.10: Contour plot corresponding to the performance surface of the standard policy with
respect to policy parameters CR and CF . The policy performance is calculated using mean-reward
over 9-days of following the policy. See Section 1.3.7 for more details.

140

Figure C.11: Contour plot corresponding to the performance surface of the standard policy with
respect to policy parameters CR and CF . The policy performance is calculated using mean-reward
over 9-days of following the policy. See Section 1.3.7 for more details.

141

Figure C.12: Contour plot corresponding to the performance surface of the standard policy with
respect to policy parameters CR and CF . The policy performance is calculated using mean-reward
over 9-days of following the policy. See Section 1.3.7 for more details.

142

Figure C.13: Contour plot corresponding to the performance surface of the standard policy with
respect to policy parameters CR and CF . The policy performance is calculated using mean-reward
over 9-days of following the policy. See Section 1.3.7 for more details.

143

Figure C.14: Contour plot corresponding to the performance surface of the standard policy with
respect to policy parameters CR and CF . The policy performance is calculated using mean-reward
over 9-days of following the policy. See Section 1.3.7 for more details.

144

Figure C.15: Contour plot corresponding to the performance surface of the standard policy with
respect to policy parameters CR and CF . The policy performance is calculated using mean-reward
over 9-days of following the policy. See Section 1.3.7 for more details.

145

Figure C.16: Contour plot corresponding to the performance surface of the standard policy with
respect to policy parameters CR and CF . The policy performance is calculated using mean-reward
over 9-days of following the policy. See Section 1.3.7 for more details.

146

Figure C.17: Contour plot corresponding to the performance surface of the standard policy with
respect to policy parameters CR and CF . The policy performance is calculated using mean-reward
over 9-days of following the policy. See Section 1.3.7 for more details.

147

Figure C.18: Contour plot corresponding to the performance surface of the standard policy with
respect to policy parameters CR and CF . The policy performance is calculated using mean-reward
over 9-days of following the policy. See Section 1.3.7 for more details.

148

Figure C.19: Contour plot corresponding to the performance surface of the standard policy with
respect to policy parameters CR and CF . The policy performance is calculated using mean-reward
over 9-days of following the policy. See Section 1.3.7 for more details.

149

Figure C.20: Contour plot corresponding to the performance surface of the standard policy with
respect to policy parameters CR and CF . The policy performance is calculated using mean-reward
over 9-days of following the policy. See Section 1.3.7 for more details.

150

	Introduction
	Motivation
	Outline
	Biological background
	History of diabetes
	Glucose-insulin equilibrium
	Types of diabetes
	Current means of diabetes management
	Standard treatment-policy formula
	Performance measures
	Performance surface of the standard policy

	Related work
	Open-loop dosage adjustment
	Closed-loop blood glucose control
	Model-free, or model-based, that is the question

	Machine learning foundations
	Supervised learning
	Support vector regression (SVR)
	Cross-validation

	Reinforcement learning (RL)
	Sequential decision-making problems
	Grid world
	Markov decision process (MDP)
	Two additional RL examples and their similarity to the diabetes task
	Reward
	Policy
	Goal
	Epsilon-soft policy
	Objective function
	State/state-action value function
	Value-based reinforcement learning methods
	Policy-based methods

	T1DM Simulator
	Prerequisites to simulation
	Complications, modifications, and add-ons
	Hypoglycemia
	Finite simulation time
	Continuation
	History buffers
	Glucose sensor and noise

	Methods
	Formulation of the problem
	Meal scenario
	Injection scenario
	Glucose monitoring
	Controller
	Experimental setup

	Supervised algorithm, T1DC
	Temporal features
	Training phase
	Testing phase, iterative use
	Further details
	Initial policy

	Reinforcement learning algorithms
	Sarsa: on-policy temporal difference control
	Actor-critic methods

	Experimental results and discussion
	T1DC results
	T1DC prediction error
	Comparing the performance of T1DC to that of an expert diabetologist

	Reinforcement learning results
	Naming convention
	Sarsa
	SAC

	Summary and further discussion
	T1DC
	Sarsa
	SAC
	Additional discussion

	Conclusion and future work
	Contributions
	Future Work
	Meal consumption actions
	Extending the application to type-2 diabetes
	Other score functions
	Reinforcement learning exploration methods
	Dynamic learning rates
	T1DC improvements
	Warm-start

	Bibliography
	List of In-Silico Patients
	Additional Results for SAC algorithm
	SAC with tabular critic
	SAC with tile-coding critic

	Performance contours

