NSERC/COSIA Industrial Research Chair in Oil Sands Tailings Geotechnique

Development of an integrated tailings closure model using GoldSim: preliminary results and lessons learned

Tony Zheng

- Introduction: System Dynamics and Causal Loop Diagrams (CLD)
- Case Study: Soil Water Dynamics of Tailings Cap Part I: Consolidation Part II: Unsaturated Flow
- Concluding Remarks

Developed by Jay Forrester at MIT's Sloan Business
 School in the 50s:

To model complex inter-relationships between elements within a system or multiple systems.

- Feedbacks, Feedbacks and Feedbacks
- Applications in Public Health, Management Consulting, Public Policy, International Relations, Defense and Securities etc. Increasingly used in inter-disciplinary modelling (i.e. combined management and technical models).

A Simple Example of Causal Loop Diagrams

System Dynamics Modelling Process

Amount of Time Spent in the Real World

Soil Water Dynamics of Tailings Cap

Question 1: When will the tailings cap reach a steady-state in terms of water storage ?

Question 2: What are the major factors that will influence the time to reach steady-state ?

Soil Water Dynamics of Tailings Cap

Part I: A Bottom-Up Re-Interpretation of Tailings Consolidation Flux using System Dynamics and Causal Loop Diagrams

Part II: Unsaturated Flow Interaction in Tailings Cap

Case Study

System dynamics modeling of infiltration and drainage in layered coarse soil

Mingbin Huang^{1,3}, Amin Elshorbagy^{1,4}, S. Lee Barbour¹, Julie D. Zettl¹, and Bing Cheng Si²

Assumptions

- Darcian Flow
- Advection-Dominated

0 O G

- One-Dimensional
- No Volume Change

Key Deficiencies

- No Climatic Input
- Limited Validation
- No Consolidation
- Exogenous variables not shown in CLD

Case Study – Simulation Setup

What kind of narrative and conclusion can we make by just looking at those CLDs?

0 O G

Previous Be **Permeability Loop #1** Previous^{*} a e a e Void Ratio Вe **Compressibility Loop #1** + dStress de-Previous Permeability Loop #2 Void Ratio Hydraulic Conductivity

Temporal Feedback

....

Boundary Condition: Single Drainage

Inside GoldSim Consol_Dash nterface_Heigh ettlement results Laver10 Jx x PV_a_e a_e_initia dstress_de_initial Output y A TimeHistor fx Negative Layer Feedback #3 (Compressibility) Negative $\int x$ Feedback #1 fx fx (Permeability) Settlem final h Negative Laver6 B_e_initial PV B e PV e dstress de Feedback #2 (Permeability) t PV final h Ix **f**x Be **Temporal Feedback** Layer3 Layer2 See the GeoEdmonton 2018 conference paper for **Spatial Feedback** further details 13

Case Study – Consolidation Validation

1 m Column Caustic MFT

*Remember to include "Extreme Condition" in validation cases

> 1 m Column Non-Caustic MFT

Soil Water Dynamics of Tailings Cap

Part I: A Bottom-Up Re-Interpretation of Tailings Consolidation Flux using System Dynamics and Causal Loop Diagrams

Part II: Unsaturated Flow Interaction in Coarse Sand Tailings (CST) Cap

Case Study – Partial CLD for CST Cap

System dynamics modeling of infiltration and drainage in layered coarse soil

Mingbin Huang^{1,3}, Amin Elshorbagy^{1,4}, S. Lee Barbour¹, Julie D. Zettl¹, and Bing Cheng Si²

Partial Causal Loop Diagram (CLD)

Assumptions

- Darcian Flow
- Advection-Dominated
- One-Dimensional

000

- No Volume Change

Key Deficiencies

- No Climatic Input
- Limited Validation
- No Consolidation
- Exogenous variables not shown in CLD

Case Study – Simulation Setup

Case Study – Partial CLD for CST Cap

Negative (Balancing) Loop

000

- Suction-Driven
- Dominates when evaporation > precipitation

Positive (Reinforcing) Loop

- Infiltration-Saturation Driven
- Dominates when precipitation > evaporation

Case Study – CST Cap

The mathematics is hidden behind the one-way arrows

Vol Water Content
$$\theta(h) = \begin{cases} \theta_r + \frac{\theta_s - \theta_r}{[1 + |\alpha h|^n]^m} & h < 0\\ \theta_s & h \ge 0 \end{cases}$$
Hydraulic Conductivity $K(\theta) = \begin{cases} K_s S_e^{1/2} [1 - (1 - S_e^{1/m})^m]^2 & S_e < 1\\ K_s & S_e = 1 \end{cases}$ Relative Saturation $S_e = \frac{\theta - \theta_r}{\theta_s - \theta_r}$ Inter-Layer
Transmission Rate $f_i = -\frac{1}{2} [K_{i-1}(\theta_{i-1}) + K_i(\theta_i)] \left(\frac{h_i - h_{i-1}}{L_{i-1} + L_i} - 1 \right)$

Van Ganutchen - Maulem 1980 and Richard's Equation (Darcy's Law)

Evaporation-Suction Model for Climatic Input

Wilson et al, 1997

Case Study – Evaporation CLD

Case Study – Validation

400

SV60 - Soil Water Storage 450 400 350 Evaporation only with no precipitation and bottom free drainage 100 50 0 0 50 100 150 200 250 300 350 Time (days)

*Again, remember to include "Extreme Condition" in validation cases.

> Silt column evaporation with constant head bottom boundary for the first 30 days

Case Study – Simulation Setup

Step 2: Boundary Conditions

Step 1: Geometry and Soil Properties

	(cm)	(cm)			(cm-1)	(cm/min)		Constant infiltration
	Depth	Thickness	Qr	Qs	alph	n	Ks	constant militration 0.944 cm/min
	8.33335	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
2	25.00003333	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	Constant Evaporation 0.0003888 cm/min
	41.6667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
	58.33336667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
	75.00003333	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	Bottom Downward 0 cm/min Flux
	91.6667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
	108.3333667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
	125.0000333	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	Bottom Upward Flux [1.72E-05] cm/min Resdual Suitcho (6/9) Value Profile_Time (sky) 3550 Suitchol (bright) 3550 Suitchol (bright) 3550
	141.6667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
0	158.3333667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
1	175.0000333	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
2	191.6667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
3	208.3333667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
	225.0000333	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
	241.6667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	Upper Boundary Inflow Condition Monthly Precipitation
3	258.3333667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
7	275.0000333	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	
8	291.6667	16.66666667	0.012	0.428	0.02259243	5.4848	0.0072	Upper Boundary
_								Outflow Condition
ep	3: Simula	tion Settin	gs N	Nodel S	Input Data	Result	s Summary	Lower Boundary Outflow Condition No Downward Flux
Go to Output				Layer1 Layer5 Layer9			13 Layer17	Lower Boundary Inflow Condition Upward Flux Consolidation Upward Flux Ing
				Layer3 Layer7 Layer11 Layer15 L				Climate Data
			l l ì	Layer4	ayer8 Layer1	2 Layer1	.6	Monthly PE Monthly Monthly T Monthly Rel

User Input

Real-Time Simulation Results

Case Study – Preliminary Results

Case Study – Preliminary Results

Case Study – Preliminary Results

Question 1: When will the tailings cap reach a steady-state in terms of water storage?

Answers and Insights: It varies from 2 years to 7 years depending on the upward flux from the consolidating TT.

A 10% increase in the initial solids content of TT can delay the time to steady-state by 1 to 2 years. Above 60% solids content, the upward consolidation flux has little influence on "time to steady state".

Question 2: What are the major factors that will influence the time to reach steady-state

Answers and Insights: Upward consolidation flux from TT and initial saturation conditions of CST are two major factors; saturated Ks of the CST cap has little temporal influence.

Incentives for improving initial solids content of TT above 65% may be minimal.

Concluding Remarks

- Why System Dynamics?
 - Feedback Structures
 - Transparency
 - Rigorous Qualitative Process
 - Scalability
 - Participatory Modelling
 - Structural Sensitivity

Ability to model soft variables

- And many more

- Limitations
 - Poor Capture of Spatial Variation
 - Over-Simplification
 - Complacency?

Acknowledgements

- Dr Nicholas Beier

Software Support:

FSCA (Dr Silawat Jeeravipoolvarn)