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Abstract

The Kohonen Self-Organizing Map (SOM), a kind of artificial neural network, is 

evaluated for its efficacy in determining test structure in educational measurement 

applications. It is argued that the SOM may be particularly useful for this function since 

it can reveal both the dimensional (latent trait) and class (latent state) structure of 

complex data. A series of monte carlo experiments assessed the capacity of one- and 

two-dimensional, small and large SOMs to determine the structure of data composed of 

dichotomously-scored test items. These data were simulated to comprise latent classes 

and varied with respect to the discrimination of the individual items and the 

dimensionality of the data as a whole. In addition to the important role for item 

discrimination in producing high quality projections and low quantization error, the 

relationship between characteristics of the map and the complexity of the data was found 

to be critical for the SOM to effectively represent test data. In particular, it was 

determined that SOMs most accurately preserved adjacency and proximity relationships 

when the intrinsic dimensionality of the data matched the number of co-ordinate axes of 

the map. Implications for future applications of SOMs in educational measurement are 

discussed, as well as suggestions for further research.
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ANNs and Test Structure 1

Determining Structure in Test Performance -  An Artificial Neural Network Approach

Chapter 1 - Introduction 

One of the essential functions of educational measurement is to summarize 

complex data. In particular, the data comprising raw or scored student responses must be 

transformed into summary measures that make student performance overall more 

transparent and interpretable. Because these data usually comprise many measures (e.g., 

responses to test items), such summaries are essential to facilitate a meaningful 

interpretation of performance.

Summaries of student data are not only to make data appear more simple in 

structure; simplification follows from the structure of the data itself. For most tests, 

performance on large numbers of items can be well described by a small number of 

variables. Consider a hypothetical achievement test comprising multiple-choice items, 

represented in Figure 1. The scored student responses to this test consist of n- 

dimensional vectors, or alternatively, points in an ^-dimensional space. Performance on 

these items is represented in Figure 1 by the first row of circles. Interpretation of student 

performance based on all item responses simultaneously is unmanageable and therefore, 

some summary of performance has to be found. But which summary should be chosen as 

the best representation of performance on the test as a whole?

To effectively address this question, the pervasive relationships among responses 

to the test items, known as test structure, must be carefully examined. When this 

examination reveals a consistent structure, a test summary that follows that structure can 

be adopted. For example, a situation common to many standardized tests is that 

responses to all items are positively related; they share common variance. In this case, a
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ANNs and Test Structure 2

single measure may be a good summary of overall test performance. This is represented 

in Figure 1.1 by the connection of all items to a single circle, representing the strength of 

a single dimension underlying performance on all items and thus the reasonableness of 

adopting a single measure as a test summary. For other tests, responses to certain test 

items might be positively related only to certain other test items, depicted in Figure 1.2.

In this case, an appropriate summary of test performance could be two separate measures, 

represented by the two circles to which the subsets of items connect.

Figure 1.1. A Possible Relationship between Item-level Performance and Test Summary 

Measure in a One-Dimensional Test

The correct identification of test structure is an essential step in creating test 

summaries that can be validly interpreted. Numerous studies highlight the errors that 

result from misidentifying test structure for the purposes of summarizing student 

performance (e.g., Sireci, Thissen, & Wainer, 1991; Tate, 2004; Walker & Beretvas, 

2003; Gitomer & Yamamoto, 1991; Zenisky, Hambleton, & Sireci, 2002), and also for 

estimating certain item (e.g., IRT parameters) and test parameters (e.g., reliability). In 

addition, certain test analysis procedures depend upon the correct identification of the 

dimensionality of the test, including those associated with parameter estimation in item

Test Summary Measure

Items
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ANNs and Test Structure 3

response theory (IRT) such as BILOG and LOGIST as well as procedures for detecting 

differential item functioning, such as SIBTEST.

Figure 1.2. The Relationship between Item-level Performance and Test Summary 

Measures in a Two-Dimensional Test

Items

Test Summary Measures

Given the crucial role of test structure in test interpretation and the consequences 

resulting from its incorrect specification, it is no surprise that many measures exist for its 

determination. In large scale standardized testing contexts, these methods are often 

focused on an assessment of the appropriateness o f a unidimensional model for test 

performance. These methods include factor analysis of tetrachoric correlations (e.g., 

Gessaroli & de Champlaim, 1986; Hambleton & Rovenelli, 1986; McDonald, 1967,

1982; Mislevy, 1987), tests of local independence (e.g., Hattie, 1985; Nandakumar, 1994; 

Stout, 1987; Stout, Habing, Douglas, Kim, Roussos, & Zhang, 1996; Zhang & Stout,

1999), and even traditional measures of reliability such as KR-20 (Kuder & Richardson, 

1937). These methods are often employed to gamer support for the use of traditional 

unidimensional scoring models such as those described for unidimensional item response 

theory, or the total score model advanced by classical test theory.
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ANNs and Test Structure 4

Though conceptually fundamental to test quality, the above-described 

unidimensional models can not adequately characterize test structure for many 

contemporary educational measurement applications. Inferences about examinee 

achievement are desired that go beyond the traditional standardized score or percent 

correct (e.g., Gitomer & Yamamoto, 1991; Mislevy, 1996; Mislevy, Almond, Yan, & 

Steinberg, 2000; Tatsuoka, 1983, 1990, 1995; Yamamoto, 1987; Yamamoto & Gitomer, 

1993), more complex often interactive tasks are being used in assessment contexts 

(Stevens, Johnson, & Soller, 2005; Stevens, Sober, Cooper, & Sprang, 2004; Stevens & 

Palacio-Cateyano, 2003; Stevens, Ikeda, Casillas, Palacio-Cayetano, & Clyman, 1999) 

and computers being used to implement automated scoring algorithms (Williamson,

Bejar, & Sax, 2004; Rudner & Liang, 2002; Williamson & Bejar, 2000; Williamson, 

Bejar, & Hone, 1999). The valid interpretation of performance for all of these new 

applications requires the accurate specification of test structure. Methods to determine 

test structure developed under the assumptions of unidimensionality of test performance 

may not be appropriate for these new testing contexts. In particular, the notion that 

examinee performance is best represented by points on a unidimensional scale may not be 

valid. Alternative models could include multiple dimensions (e.g. Ackerman, Gierl, & 

Walker, 2003; Ackerman, 1994,1996), subscores (e.g., Hamilton, Nussbaum, 

Kupermintz, Kerkhoven, & Snow, 1995; Nussbaum, Hamilton, & Snow, 1997), clusters 

or classes (e.g., Bolt, Cohen, & Wollack, 2001; Brown, 2000; Haertel, 1992; Sireci, 1995; 

Sireci, Robin, & Patelis, 1997), even hierarchies of cognitive ability states (e.g., Buck & 

Tatsuoka, 1998; Leighton, Gierl, & Hunka, 2004; Tatsuoka 1995; Tatsuoka, Corter, & 

Tatsuoka, 2004).
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ANNs and Test Structure 5

Given this range of possible test structures, methods to determine these test 

structures that are exploratory in nature may be helpful. This is due mainly to two 

factors. First, the structure of examinee performance on a test or assessment may not be 

known with certainty. As mentioned above, the failure to correctly identify test structure 

could result in errors in estimation of both test parameters and of student achievement.

An exploratory method may be able to help identify candidate structures that could be 

subsequently evaluated for fit. Second, many of the methods mentioned above are 

limited in the range of possible structures that could be identified. For example, factor 

analytic methods and traditional methods of reliability assume that test structure is best 

described by the number of latent dimensions. A description of student performance 

based on, for example, membership in one of a small number of classes is not supported 

by such methods. Alternative methods that have minimal assumptions about the range of 

test structures and the power to detect key relationships in test performance would 

address these two factors. But, what type of method could be used?

A starting point in identifying potentially useful methods is to examine proven 

methods from other disciplines that effectively solve similar analytical problems. One 

class of methods that has been shown to be particularly powerful in finding dominant 

relationships in complex data is known as artificial neural networks (ANNs).

This thesis is an investigation of the utility of one type of ANN, the Kohonen 

Self-Organizing Map (SOM) in the determination of test structure (Kohonen, 1983, 1990, 

2001). The SOM is a particularly promising method for this purpose as it has been 

shown to be able to detect and represent relationships in complex data in a more 

simplified form: a projected, map-like space. A characteristic of this space that could be
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ANNs and Test Structure 6

important in its role as a method for determining test structure is that it is topology- 

preserving. That is, the SOM represents the probability density of the original data and 

also produces a continuous, ordered representation of it. This characteristic may be 

important to educational measurement because it suggests that the dominant, relevant 

aspects of examinee performance may be reflected in the topology of the SOM.

Therefore, when applied to educational data, the organization of the map may reveal test 

structure and therefore, is worth investigating.

The organization of this thesis is as follows. First, a review of exploratory 

methods designed to determine test structure is undertaken. Chapter 2 discusses methods 

according to their usefulness in determining the number o f dimensions in test data. 

Chapter 3 focuses specifically on those methods designed to classify performances into 

one of a finite number of categories. Chapter 4 introduces Artificial Neural Networks, 

specifically focusing on the SOM. Chapters 5 through 7 detail a series of experiments 

designed to test the capabilities o f SOMs in detecting test structure. Chapter 8 interprets 

the results from those experiments and discusses their implications for educational 

measurement and suggestions for future research. Through this research, it will be 

argued that with a clear understanding of the conditions that support their use, SOMs 

could be an important and appropriate tool for determining the test structure in certain 

educational measurement applications.
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Chapter 2 -  Methods to Determine Test Structure 

Overview

As introduced in Chapter 1, identifying test structure is a critical step in creating a 

valid interpretation of test performance. The identification of this structure is predicated 

on determining the relationships among performance on items and tasks and these 

relationships, in turn, inform the type of measure appropriate for summarizing test 

performance as a whole. Furthermore, it was argued that exploratory methods may be 

helpful in contemporary measurement contexts (e.g., assessments involving performance 

tasks) since the data derived from these contexts may be more complex than those for 

which traditional methods of test structure analysis were developed (e.g., Levy &

Mislevy, 2004; Stevens, Johnson, & Soller, 2005; Williamson, Bejar, & Sax, 2004).

There are several of these exploratory methods used in educational measurement and the 

present and following chapters examine prominent examples. The examples in the 

present chapter have in common their description of test structure in terms of continuous 

dimensions. These may be contrasted with a class of methods outlined in Chapter 3, 

those that describe test structure as comprising a finite number of ability categories or 

classes. An analysis of both classes of methods, the dimensional methods in the present 

chapter and categorical methods in the following chapter will be helpful in providing a 

deeper understanding as well as a balanced evaluation of the artificial neural network 

approach.

Dimensional-Based Methods for Determining Test Structure 

Dimensional test structure methods describe examinee performance in terms of a 

location on a continuous scale. From the psychological perspective, these scales can be
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thought of as representing hypothetical latent traits, such as ability or achievement. The 

amount of this trait possessed by examinees is assumed to be continuous (and often, 

normally distributed) throughout a population of similar examinees. The amount of the 

trait possessed by a given examinee is the object of measurement for the test. For 

example, student performance on an achievement test is often a single number equal to 

the total number of items answered correctly. Ideally, this number represents an 

individual student’s possession of the trait measured by the test as a whole.

From a statistical perspective, dimensions are manifest to the extent that common 

variance is present across various measures. In particular, when performance on 

independently functioning items is found to be related to a small number of statistical 

factors, the factors are interpreted as explanatory variables for that performance. For 

example, if  strong positive correlations are found between performances on items, this 

may be interpreted as evidence for a variable such as ability underlying performance on 

the items.

In this chapter, the characteristics of several exploratory dimensional accounts of 

test performance are reviewed, particularly from the perspective of their similarities and 

differences. First, characteristics common to each dimensional account are discussed 

followed by the review of several prominent methods designed to create such accounts. 

The methods reviewed are factor analysis, multidimensional scaling (MDS), and a 

nonparametric procedure using conditional covariances known as DETECT.

Several characteristics define dimensional accounts of examinee performance.

First, these accounts involve data reduction. That is, all dimensional methods presented 

here use a small number of dimensions to describe data from a large multidimensional
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space, usually responses to test items. The dimensions chosen are those that, from a 

statistical perspective, best represent the data as a whole. A high-quality dimensional 

account of exam performance depends upon the fit of the small number of dimensions to 

the data from the larger space.

A second characteristic common to dimensional methods is the determination of 

relatedness among observations. In many methods to determine test structure, this 

relatedness is derived from correlations or covariances between items. This is because it 

is assumed that essential information about test dimensionality is contained in the 

correlation or covariance among items (e.g., McDonald, 1982). Other means to 

determine relatedness include those applied at the level of examinee and not item 

performance. For example, a matrix of similarity between different examinee’s responses 

could serve as the basis for determining test structure. In the present chapter, item 

relatedness is the basis of similarity for factor analysis and DETECT, while examinee 

relatedness is used for the application of MDS.

Third, dimensional methods lead to the identification of dominant or principal 

directions of variation in the matrices described above. The means by which various 

methods accomplish this vary considerably. For example, factor analysis can proceed by 

applying a variety of statistical techniques to the principal directions problem, such as 

principal components analysis (PCA), or maximum likelihood estimation (MLE). 

Multidimensional scaling typically uses an iterative approach to determine dimensional 

co-ordinates of individual observations that best preserve between-observation distances, 

and the DETECT procedure uses a genetic algorithm to help determine the optimal 

partition of items into dimensionally homogeneous sets.
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The last characteristic of these methods is that they typically involve an evaluation 

of the fit of the low-dimensional representation produced by the method to the data as a 

whole. In factor analysis, this can be accomplished by examining the variance accounted 

for by all factors, while in MDS the value of a stress index (e.g., Kruskal, 1974) can be 

examined. The DETECT procedure also features its own index of multidimensionality 

based on the structure of conditional covariances between item pairs (Stout, Habing, 

Douglas, & Kim, 1996). Each of these characteristics is examined below in the context 

of their respective methods.

Factor Analysis

Factor Analysis is a method used to account for variance in a set of observed 

variables in terms of underlying hypothetical or latent factors (unobserved explanatory 

variables). For example, in educational measurement, it is important to know whether 

students’ scores on math test items (observed variables) can be explained in terms of 

more basic variables such as students’ overall mathematics and spatial ability (latent 

factors). These more basic variables are the dimensions upon which student ability or 

achievement may vary and therefore can form the basis of a summary of test 

performance.

To see this more clearly, consider a test that is designed to be unidimensional, that 

is, a single latent dimension is assumed to account for differences in examinee test 

performance. Factor analysis could be applied to correlations among examinees’ item 

responses to determine if  this assumption is correct and thus only a single dimension is 

identified. Suppose that after factor analysis, it was discovered that two independent 

factors account for variance in the responses. From this result, the test developer could
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determine that the use of a unidimensional scoring model such as IRT may be 

inappropriate and that a multidimensional version would be preferred.

How Does Factor Analysis Work?

Conceptually, factor analysis proceeds by partitioning the variance from each 

observed variable (e.g., a test item) into that which is shared with other observed 

variables (e.g., remaining test items) and variance unique to itself. When variance is 

shared across many items, it normally indicates the presence of an explanatory factor.

The factor solution containing the fewest number of interpretable factors accounting for 

the greatest amount of variance is typically adopted as the factor analytic solution (e.g., 

Kim & Mueller, 1978; McDonald, 1985).

More technically, factor analysis begins with a correlation or covariance matrix of 

the observed variables. Then, one of several statistical procedures (e.g., maximum 

likelihood estimation, principal components analysis) is employed to create candidate 

factor models that are able to account for the correlations or covariances with a minimum 

of error. These models specify both the number of common factors needed and weights 

or coefficients that quantify the extent to which each of the observed variables is 

dependent on the factor, as indicated in the following formula:

R = FPF, + U (2.1)

where R  is the correlation matrix of observed variables, F  is a matrix that represents the 

weighting of each observed variable in the definition of each common factor (e.g. 

eigenvectors), P  is a diagonal matrix that represents the dominance of each factor in the
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data (e.g., eigenvalues), and V  is a matrix of the unique variance in each observed 

variable. The weights in F  can be used to plot each observed variable on a space whose 

co-ordinate axes are defined by the factors in the solution. Further, to aid in the 

interpretability of the factor solution, axes can be rotated to improve the interpretability 

of the factor structure (see Figure 2.1).

Figure 2.1. Unrotated versus rotated factor solutions..
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Determining test structure in terms of the number of underlying dimensions is an 

important application of factor analysis in education measurement (e.g., Hambleton & 

Rovenelli, 1986; Nandakumar, 1994; Gessaroli & De Champlain, 1996). Correctly 

identifying dimensionality is of particular importance for IRT models where the accuracy 

of parameter estimates (i.e., item difficulty, discrimination, and examinee ability) 

depends upon the local independence of items. If all the dimensions of examinee ability 

that predict performance on the test are not accounted for, the local independence 

assumption may be violated. This could result in inaccurate parameter estimates. Since 

IRT has been shown to be a variant of non-linear factor analysis (NLFA, e.g., McDonald,
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1982; Takane & deLeeuw, 1987; Knol & Berger, 1991), NLFA is seen to be particularly 

appropriate for identifying underlying factors (e.g., Hattie, 1985; Hattie, Krakowski, 

Rogers, & Swaminathan, 1996; Gessaroli & De Champlain, 1996).

How sensitive is factor analysis in detecting the dimensionality of data? Gessaroli 

and De Champlain (1996) address this question by comparing a % statistic based on 

NLFA with Stout’s (1987) T statistic (DIMTEST). The NLFA/ x2 approach differs from 

DIMTEST in that the former tests the null hypothesis that the conditional correlations 

between item pairs is zero after variance due to identified factors is removed while the 

latter compares the average variance accounted for by total test score between 2 subsets 

of items: those thought to be representative of the test as a whole with those thought most 

likely to be multidimensional. Though NLFA had been favourably compared with 

various methods of dimensionality assessment (e.g., linear factor analysis, Mislevy, 1986; 

Hambleton & Rovenelli, 1986; DIMTEST, Nandakumar, 1994; Hattie, Krakowski, Rogers, 

& Swaminathan, 1996; Mantel-Haenszel, Nandakumar, 1994), no clear criteria had been 

established for the sufficiency of a given factor model (i.e., when a given factor accounts 

for enough variance to be included in the factor model). Thus, Gessaroli and 

deChamplain (1996) conducted a simulation study to evaluate the x statistic based on 

NLFA as a criterion for determining this sufficiency and also to compare its sensitivity 

with Stout’s T.

The simulated data sets in this study varied along several dimensions: 

dimensionality (1, 2), sample size (500, 1000), number of items (15, 30, 45), test 

reliability (“weak”, “moderate”, “strong”), and for 2 dimensional tests, the proportion of 

items loading on each dimension (50:50, 80:20). One hundred replications were
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performed for each of the above 54 conditions. In general, the performance of the %

statistic and thus the sensitivity of NLFA to dimensionality was at least as good as, and in

2 , .

some cases, better than Stout’s (1987) T. In particular, the performance of the % statistic 

was markedly better for the 2 dimensional data sets that had 15 items, weak reliability, 

and an unequal proportion of test items reflecting each dimension.

The study by Gessaroli and De Champlain (1996) shows that factor analysis is an 

effective tool in the determination of the dimensionality of responses to test items. Given 

the close relationship between the non-linear version of factor analysis employed in this 

study and IRT, this result shows that NLFA is a valuable tool for determining the 

appropriateness of ability parameters from a unidimensional IRT model as a summary for 

test performance.

Several caveats about the use of factor analysis as a method to determine test 

structure are worth noting. First, the determination of the number of factors in the 

solution is somewhat arbitrary. Gessaroli and De Champlain (1996) highlight this 

limitation, as the lack of definitive criteria in determining dimensionality motivated their 

research. Second, the interpretation of a factor analysis solution can be ambiguous. A 

particular version of this problem is the interpretation of a rotated solution. Two different 

rotations can yield different, but still plausible interpretations of the factor structure. A 

classic example of this ambiguity is Thurstone’s (1934) reinterpretation of Spearman’s 

(1904) g, or single general intelligence factor based on a rotation of co-ordinate axes. 

From this rotation Thurstone argued for the multi-faceted nature of intelligence and thus 

set the stage for a debate that continues to the present day.
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In summary, factor analysis is a technique of statistical data reduction that accounts 

for the variance in a data set with a large number of observed variables in terms of a 

much smaller number of common factors. For the purpose of determining test structure, 

a factor analysis can identify the number of underlying dimensions on which examinees’ 

performance differ, a critical step in determining an appropriate summary of 

performance. However, the number of dimensions identified by factor analysis is not 

always unequivocal, as are possible interpretations of the factor structure. As shall be 

seen in the section to follow, multidimensional scaling addresses some of these 

limitations and thus offers an alternative to factor analytic models in creating a 

dimensional account of test structure.

Multidimensional Scaling

Multidimensional scaling (MDS) is a statistical method that uses “distance-like” 

measures between observations in a data set to create a lower-order spatial (i.e., map-like) 

representation of its essential structure (e.g. Davison, 1983; Kruskal & Wish, 1978).

Thus, MDS, like factor analysis, is a method of data reduction.

A key advantage of MDS for educational measurement is the interpretability of its 

solution. That is, it can reveal variables or dimensions (e.g., requisite abilities, content 

areas, item difficulty) that influence student’s test performance and display them in a 

highly interpretable spatial format. How does MDS accomplish this?

Take, for example, a geography test comprising 50 items. Before analysis, each 

item could be viewed as a separate dimension on which examinees are scored. However, 

when these items are analyzed using MDS, suppose it is found that two dimensions are 

sufficient to represent a large proportion of variance from the original 50 items. Given
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the strength of these dimensions, the map-like representation that MDS provides will 

likely be straightforward to interpret by inspection. For instance, easy and hard 

geography items could be located at either end of the first dimension, while the second 

dimension could differentiate items involving reasoning with maps from those not 

involving maps. As an educational researcher, this information could be used as evidence 

for the importance of knowledge and skill in geography as a key factor in test 

performance, as well as the perhaps unexpected importance of item format. This may 

lead to the adoption of a scoring scheme that reflects the importance of each component: 

knowledge of geography and facility with maps.

How Does MDS Work?

MDS works by deriving a mathematical function that relates distances between 

observations from the original high dimensional space to distances between those same 

observations in a space with much smaller dimensionality (Kruskal & Wish, 1978). The 

goal of this function (called the Stress function) is to minimize the difference of the 

distances between same observations in the two spaces. This function is defined as 

follows,

where d y  is the distance between pairs of observations i  and j  in the original 

multidimensional space and d y  is the distance between those same observations in the 

new space created by MDS. It is possible for MDS to achieve very good match between

Stress = (2 .2)
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distances in the two spaces when there are common dimensions that underlie 

performance on many of the observations. When this is the case, the common 

dimensions will likely form the axes of the MDS solution.

MDS has been used extensively in the educational measurement literature. 

Prominent applications include determining the dimensional structure of items (e.g., Bolt, 

2001; deAyala & Hertzog, 1991; Meara, Robin, & Sireci, 2000; Oltman, Strieker, & 

Barrows, 1990; Sireci & Khaliq, 2002) and providing evidence of content and construct 

validity (e.g., Deville, 1996; Sireci & Geisinger, 1992, 1995; Sireci, 1998).

The study by DeAyala and Hertzog (1991) provides an illustrative example of how 

MDS can be used to determine dimensional structure. In this study, MDS was used to 

recover the number of dimensions in simulated test data, data that varied with respect to 

the number of underlying dimensions (1,2), the proportion of items tapping into each 

dimension (50/50, 64/36), and the correlations among those dimensions (0.01, 0.10,

0.60). The performance of MDS in recovering the dimensionality of the data relative to a 

factor analysis of tetrachoric correlations was the specific focus of this research.

The data serving as input to MDS were various distance measures between vectors 

of scored responses to items. Five measures were investigated, Euclidian distance, 

squared Euclidian distance, cosine, block distance, and Chebychev distance. For each 

analysis, the value for the stress index was examined relative to Kruskal and Wish’s 

(1978) criteria1 and with respect to the prominence of the ‘elbow’ in stress plots. The 

factor analysis solutions were evaluated by examining the percentage of variance 

accounted for by each factor, a chi-square measure determining the fit of each factor

1 The criteria states that an elbow above a stress value o f 0.10 should only be accepted for the one
dimensional solution, and only if  it occurs at stress less than 0.15.
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solution, the number of factors for which eigenvalues were greater than one, and the 

prominence of the elbow in scree plots o f the eigenvalues.

DeAyala and Hertzog concluded that factor analysis produced equivocal results for 

both the one-dimensional data and for two-dimensional where the dimensions were 

highly correlated. In particular, the one-dimensional data were not unanimously 

identified as such by all methods, and the second factor in the highly correlated two- 

dimensional data was not clearly identified by factor analysis. In contrast, when MDS 

was used with Euclidian and squared Euclidian distances, the dimensionality of all data 

sets was correctly identified. As a result, DeAyala and Hertzog concluded that MDS 

using these distance measures could play an important role in determining the 

appropriateness of a unidimensional versus multidimensional IRT model for a given set 

of data.

The above example highlights several essential characteristics of MDS analysis, 

particularly in comparison to factor analysis. Similar to factor analysis, MDS creates a 

dimensional account of test structure. In factor analysis the primary task is to extract 

those dimensions from correlations among items, while the primary task in MDS is to 

preserve distance relationships between vectors of examinee’s responses to test items. 

Last, MDS provides a map-like representation of the examinee data which was 

subsequently interpreted in terms of the number of dimensions. However, as with factor 

analysis, determining the precise number of dimensions in the data is somewhat arbitrary 

as it depends upon the specific criteria employed.
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DETECT

The DETECT method (Kim, 1994, Zhang & Stout, 1999) produces an index of the 

dimensionality of test data based on the structure o f conditional covariances between item 

pairs. In particular, the procedure looks for clusters of items whose item pairs have 

similar covariances after variance due to the total test score has been factored out. After 

the test has been optimally partitioned into multidimensional item clusters, test 

developers can determine the overall multidimensionality of the test, the extent to which 

dimensions on the test approximate simple structure, and the specific items that 

correspond to each unique dimension. Knowing which items belong together in clusters 

can lead to understanding about the substantive nature of the dimensional structure and 

inform decisions regarding future test design and scoring summaries.

Take for example, a test containing several passages of text that students are to read 

and upon which they answer a number of questions. The DETECT procedure could 

determine whether the passages induced multidimensionality in student responses by 

first, factoring out the variance due to the total score, then examining the remaining inter

item covariance matrix. Suppose that clusters of items containing only those relating to 

specific passages had the most similar covariances, while items from separate passages 

had covariances that were very different. Since the items that defined the clusters all 

relate to certain passages, the test developer would have evidence that the existence of 

sets of items all based on the same passages leads to multidimensionality in the test. The 

value of the DETECT index, DMa%, would help the developer determine whether the 

extent of the multidimensionality was of concern and adjustments needed to be made in 

terms of the scoring scheme or test design.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ANNs and Test Structure 26

How does DETECT work?

The DETECT procedure comprises three main steps. First, test variance due to the 

dominant dimension is factored out. Second, covariances for all item pairs are calculated. 

Third, an optimal partition of the test into item clusters is made using a combination of 

hierarchical cluster analysis (HCA) and a genetic algorithm. Two indexes can then be 

calculated; DMax reveals the strength of multidimensionality present on the test, while r^ax 

determines the extent to which the test approximates simple structure.

The first step in the DETECT method is accomplished by separating test scores into 

rii cells, where each cell contains responses from examinees who answered the same 

number of items correctly. Then, an average covariance for each item pair i , j  across all 

sum score levels is calculated and weighted by the number of students achieving each 

score point. This value is known as the conditional covariance of item pair i,j. The third 

step requires a partition of items into clusters based on the similarity of their covariances. 

As a result of the process that partials out variance due to total test score, covariances of 

item pairs that belong to the same cluster are positive, while those belonging to different 

clusters are often negative. A consequence of these differences in sign is that when an 

optimal partitioning of the test is achieved, covariances of items from different clusters 

subtracted from covariances of items in the same clusters will reach a maximum value 

for that test. Since determining the optimal partition for the test can involve evaluating 

an inordinately large number of possible partitions, Zhang and Stout used an optimization 

technique well proven in other domains: a genetic algorithm. The algorithm begins with 

a provisional partition of items into cluster based on HCA, then “mutates” the clusters by 

changing the cluster membership of several items. Solutions based on these mutations
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that lead to higher values of the DETECT index are kept, and characteristics of these 

successful mutations are used as the basis of subsequent mutations. The procedure is 

complete when no further improvements in the Dmox index are observed. To determine 

the amount of multidimensionality present, the value of Dmox is typically compared 

against benchmarks produced by Stout et al. (1996).

Zhang and Stout (1999) tested the efficacy of the DETECT procedure on items 

from the Analytical Reasoning section of the GRE exams. They used data from 2477 

examinees on 19 items that corresponded to four different passages on this test. Using 

the DETECT procedure, they found that the optimal partition of the test into 

homogeneous clusters that revealed the greatest amount of multidimensionality was that 

which clustered items according to passages. Furthermore, the value of the DETECT 

index for this partitioning was very large, indicating a significant amount of 

multidimensionality present.

In summary, the DETECT method represents an innovative approach to 

determining the structure of test data. It relies upon the expected nature of the covariance 

structure of data once the overall direction of best measurement has been accounted for. 

Then, a search for the optimal partition relies upon a method imported from other 

computational and information processing domains: the genetic algorithm. Its success in 

the DETECT context underscores the potential value of incorporating methods from such 

domains to problems in educational measurement. It is perhaps notable that the present 

research applying Artificial Neural Networks to determining test structure represents an 

approach similar in kind.

2 More recently, Gierl, Leighton, & Tan (in press) demonstrate that approximation to simple structure is a 
prerequisite for correctly interpreting the DETECT index and consequently offer additional guidelines in 
terms of both D Max and rMax.
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Summary

All of the above methods use statistical relationships in test data to identify test 

structure in terms of a small number of continuous dimensions. The relationships 

capitalized upon vary from method to method: variance extracted from correlation 

matrix; fitting of inter-item “distances” to a smaller dimensional space; identification of 

clusters of homogeneous items based on conditional covariance. These methods provide 

critical information in terms of the latent structure of responses and test items and 

therefore can provide support for particular types of dimensionally-based scoring models. 

An important question in educational measurement is whether the latent structure of the 

test is most closely related to dimensional structure or whether there are other candidate 

models that can better account for the latent structure of the test.

In the next chapter, latent class models as methods to determine test structure are 

discussed. These models are important because they offer alternatives to dimensionally- 

based models and therefore provide test designers with different models of test 

performance.
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Chapter 3 -  Latent Class Accounts of Test Structure

In Chapter 2, methodologies describing test structure in terms of underlying 

continuous dimensions were reviewed. In Chapter 3, the review of these methodologies 

continues, but changes focus to consider those that describe test structure in terms of 

latent states. These models imply that performance is best described by examinee 

membership in one of a small number of classes, rather than the possession of an 

‘amount’ of a latent trait implied by dimensional methods. Important for educational 

measurement, membership in a specific class could represent the possession of a 

particular set of skills and knowledge underlying test performance. For example, on a 

test involving subtraction of mixed fractions (Mislevy, Yan, Almond, & Steinberg, 2000), 

one class could represent those students that are able to subtract fractions with the same 

denominator and separate the whole number from the fraction, but are unable to simplify 

a mixed number. If the identified classes have clear interpretations in terms of 

achievement, latent class methods could identify important states of mastery on the test.

From a statistical perspective, the existence of latent states is equivalent to the 

existence of conditional distributions in the test data. That is, a group of examinees 

belonging to the same latent class will have propensities to respond to test items in 

similar ways, and this similarity in responses will manifest itself as a distribution in the 

test data. The entire test data is then simply the composite of each class conditional 

distribution, with each distribution represented by the number of examinees belonging to 

it. To take the mixed fraction example from above, when a student possesses all skills 

but the ability to reduce fractions, he should be able to perform well on items that do not 

demand this missing skill, and poorly on those that do. If other examinees have a similar
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set of skills, the expectation would be that they would perform similarly to each other 

across all items on the test. This similarity in performance, in turn, implies the existence 

of a distribution comprising these examinees’ responses.

As mentioned above, latent classes could manifest in test data as a mixture of 

individual class distributions (Everitt & Hand, 1981). From this conception, it would 

follow that regions of high probability density would emerge at the centres of the 

distributions, provided that different class distributions did not overlap too much. In the 

left-hand panel of Figure 3.1 two adjacent distributions, classes one and two are 

represented, as well as the probability distribution resulting from their overlap. In this 

case, it can be seen that the highest regions of probability density in the mixture 

distribution correspond to the centres of the distributions of each class. In contrast, the 

right-hand panel shows a mixture distribution composed of two class distributions that 

overlap considerably. In this case, the centre of the mixture distribution is somewhere 

between the two class distributions. In this case, probability density alone may be 

insufficient to detect the two underlying distributions. However, other information, such 

as the form of the underlying class distributions, could help identify the test structure.

The two test structure methods reviewed in this chapter differ in their use of 

probability density as a marker for the existence of a latent class. The first method 

reviewed, cluster analysis, relies on probability density to define a cluster structure for the 

data. The second method, latent class analysis, assumes a parametric form of each class 

distribution and therefore tries to model the shape of the composite distribution by 

specifying parameters of the distributions that compose it. The use of these two methods 

and the implications of their use for correctly identifying test structure, are reviewed next.
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Figure 3.1. The Shape of Mixture Distributions According to Degree of Overlap of the 

Underlying Class Distributions

 C lass One
 C lass Two
 Mixture

>«

Total Score

 C lass One
 Class Two
 Mixture

Total Score

Class-Based Accounts fo r  Determining Test Structure

Cluster Analysis

Cluster analysis assigns individual observations into categories based on their 

geometric similarity to other observations in the data set. In general, the goal of cluster 

analysis is to identify clusters for which each observation is most similar to other 

observations in the same cluster and most different from those in other clusters. A test 

structure definition based on cluster analysis therefore is composed of homogeneous 

classes, each with unique characteristics. A test structure definition derived from cluster 

analysis would therefore differ from those derived from dimensional procedures in that 

rather than assigning observations to a scale location indexed by continuous dimensions, 

each observation is assigned to exactly one cluster in an all-or-none manner.

Consider the following example. Suppose that a prominent model of learning 

explains the development of a particular math skill in terms of five discrete stages of 

increasing mastery. Also, suppose that the attainment of a higher stage depends upon the 

attainment of each previous stage. According to this model the primary predictor of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ANNs and Test Structure 36

performance is the student’s stage in the achievement trajectory and hence, there is good 

reason to expect that the data from students learning this skill would be both categorical 

and hierarchical. Now imagine that a cluster analysis was performed on a test comprising 

40 items equally representing each stage that was administered to a group of students at 

various stages in the trajectory. If it was observed that the best-fitting solution from 

cluster analysis comprised five clusters, this could be interpreted as evidence that students 

are performing as predicted by the model. Furthermore, an analysis of the items 

answered correctly and incorrectly within each cluster in relation to the stage for which 

the item was designed, would provide further evidence for the correctness of predictions 

derived from the model. Last, a test administrator could use the cluster analysis solution 

to assign individual students to steps of mastery in the skill.

There has been a considerable amount of research involving the application of 

cluster analysis to different areas in educational measurement. These areas include the 

classification of items to dimensions leading to an assessment of test dimensionality (e.g., 

Roussos, Stout, & Marden, 1998; Tay-lim & Stone, 2000; Stout, Habing, Douglas, Kim, 

Roussos, & Zhang, 1996), classification of items on the basis of content (e.g., Beller, 

1990; Corter, 1995) and defining categories of achievement based on test performance 

(e.g., Sireci, 1995; Sireci, Robin, & Patelis, 1999).

Fundamentally, cluster analysis works by grouping individual observations into 

classes (i.e., clusters) on the basis of similarity. Since regions of high probability density 

are those in which responses of different examinees are similar, it is more likely that 

cluster centres will be located in such regions. The precise method by which the 

grouping is accomplished differs between the different cluster analysis variants. The
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grouping methods of the two most common variants of cluster analysis, hierarchical 

agglomerative and AT-means, are cases-in-point.

In hierarchical agglomerative cluster analysis (HCA) each individual observation is 

initially designated as a separate cluster. In a stepwise fashion, the most similar clusters 

are combined into larger units, ending when there exists one super-cluster containing all 

observations. The solution at each step can then be evaluated for its respective fit to the 

data typically using a chi-squared procedure. In contrast, AT-means cluster analysis starts 

with the user identifying the number of clusters desired in the solution, and the centroids 

(cluster means) for each. Each individual observation is compared with the values of 

each centroid and assigned to the cluster with which it is most similar. The values of the 

centroids are recalculated after comparison with all observations. The process is 

complete when, after a complete pass through the dataset, no re-assignments are made. 

Like HCA, candidate solutions comprising different numbers of clusters can be compared 

on the basis of their fit to the observed data.

One significant study involving cluster analysis was the recent work by Sireci 

(1995) to inform the setting of cut scores for standard setting. Though the study was not 

directly focused on determining test structure, the motivation for using cluster analysis 

was to determine whether the data from the writing skills assessment from the tests of 

General Educational Development (GED) naturally formed clusters which could be used 

as the basis for identification of different levels of achievement. Therefore, test structure 

information would form the basis of the classification into these levels.

Sireci used AT-means cluster analysis to cluster student performances on 4 subscales 

of the GED, separately for two distinct administrations of the test. Three of the subscales
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measured different components of knowledge about writing, while the fourth was the 

evaluation of a writing sample. Candidate cluster structures comprising 2 through 8 

clusters were evaluated by examining correlations between student’s pass/fail status 

implied by the cluster analysis to actual pass/fail status based on coursework. Examining 

in this way data from two consecutive years, it was determined that the best-fitting 

solution involved 5 clusters. In this solution, three of the five clusters represented 

students that performed significantly below average, average, and significantly above 

average on each of the four subscales. Notably, this set of clusters could be seen as 

consistent with a unidimensional structure for the test as a whole. The remaining two 

clusters represented deviations from a unidimensional structure, either average 

performance on the writing component and below average performance on the remainder 

of the test or average performance on the writing component and above average 

performance on the remainder. These clusters therefore represented selective proficiency 

at the subscale level.

Two observations from Sireci (1995) are central to understanding cluster analysis as 

a potential method to determine test structure. First, an analysis of the cluster structure 

was made in terms of a pattern of proficiency across each of the subscales and not in the 

possession of an amount of a latent trait. Examinees belonging to each cluster could 

therefore be characterized as possessing certain competencies for each element of the test. 

For example, one group of students comprising a cluster could be described as having 

average competency on the writing sample, but below average competency on each of the 

other subscales. The second observation is that the relationship between the clusters can 

be used to make judgments about the test structure overall. That is, examinees who
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performed well in one subtest tended to perform well in others. The exception was 

performance on the writing section for which performance did not predict performance 

very well on other subscales. Therefore, it could be argued that the test has at least two 

abilities that underlie performance, overall writing ability (comprising knowledge about 

writing and writing skill) and selective skill in writing. These two observations will be 

crucial to understanding how neural networks will be interpreted as a possible method for 

determining test structure.

Several limitations are important to note regarding the use of cluster analysis as a 

method to determine test structure. One central problem is the determination of the 

number of clusters best describing the data. Both HCA and /f-means cluster analysis can 

produce many solutions for a given problem but neither procedure provides information 

about the quality of the solutions that they identify. Typically, some criteria must be 

available to provide selective support for some cluster solutions over others. There are 

many procedures to choose from (see e.g., Milligan, 1981) and many of them select a 

solution that maximizes the between cluster distance while minimizing within cluster 

distances. Furthermore, cluster analysis will never fail to find a solution for a given 

dataset, even when no natural categories exist. Thus, other analyses (e.g., graphical, 

correlational) must be undertaken to determine whether a categorical interpretation is 

appropriate for the data. Last, cluster analysis uses probability density to identify clusters 

in data. As shown above, when individual class distributions are close together, 

probability density alone may not be sensitive enough to detect them. The method 

reviewed next, latent class analysis, attempts to overcome this limitation by making
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parametric assumptions about the underlying distributions, then deriving values for those 

parameters.

Latent Class Analysis

Latent Class Analysis (LCA) is a statistical and computational procedure that 

describes data in terms of underlying discrete latent classes. Like cluster analysis, this 

description contrasts with that derived from latent trait approaches such as factor analysis 

in which data are described in terms of their relationship to an underlying continuous 

latent trait or traits. In essence, LCA answers the question, “What is the most likely class 

structure that could have given rise to the observed data?” Since the number of classes is 

typically much smaller than the number of items, LCA could be considered a form of 

data reduction (e.g., Clogg, 1995).

As an example, imagine a social studies teacher that analyzes student responses to a 

recent unit test on China with latent class analysis. Furthermore, imagine that the unit 

test was constructed to incorporate two primary topics, geography and culture. Suppose 

that after analysis, the best fitting model consisted of two latent classes that upon 

inspection correspond to the primary topics. That is, one class identified students who 

did well on geography but not in culture, and the other identified the reverse pattern. The 

teacher could use the analysis to provide evidence that her test did tap into the skills she 

intended and also to provide remedial exercises to students to correct their specific 

weaknesses.

How does LCA work?

As in other latent variable methodologies (e.g., factor analysis) two types of 

variables are assumed in LCA, (a) manifest or observed variables and, (b) latent or
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hypothetical variables. LCA proceeds by deriving parameters of the latent variables 

given the values of the parameters for the observed variables. In the most common 

parameterization of LCA, the manifest variables are the empirical probabilities of a 

specific response pattern across a set of indicator variables (see Table 3.2). These 

indicator variables are nominal or ordinal variables, either dichotomously or 

polytomously scored. The corresponding latent variables are the class conditional 

probabilities of each score category for each item, plus the overall probabilities of 

belonging in each of the latent classes (see Table 3.3). In an early example of LCA, the 

values of the latent parameters were derived in closed form using systems of equations 

(e.g., Lazarsfeld & Henry, 1968, chaps. 2 and 3), assuming the true values of the 

observed parameters were known. Since this assumption rarely holds true and because 

solving systems of equations with many variables is often intractable, later approaches to 

LCA involved maximum likelihood estimation (MLE) of the latent variables (Goodman, 

1974, 1979). The method that Goodman developed is in common use today.

Types o f  Models in LCA

LCA provides maximum likelihood estimates for parameters of latent class models 

given the observed values on indicator variables, such as test items. From where do these 

LC models originate and what do they comprise? Like K-means cluster analysis, the user 

must specify the number of classes in a hypothetical latent class model. This 

specification can be made either from an exploratory or from a confirmatory perspective, 

or more precisely, on a continuum between exploratory and confirmatory. In the 

exploratory mode, the user can specify a range of candidate models with a varying 

number of classes. Each of the models can then be assessed for its fit of the data,
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typically using chi-square (j^) and likelihood ratio chi-square (L2) criteria. Certain 

restrictions other than just the number of classes can be made on the models. For 

example, our social studies teacher might have the prior belief that the number of students 

mastering the geography items is greater than the number of students mastered culture 

items. Limiting the values of parameters in the model to be estimated operationalize this 

constraint. By providing these constraints, specific hypotheses about the class structure 

in the data can be tested.

Table 3.2. Manifest Joint Probabilities for 3 Dichotomous Items

Response Pattern Manifest Probability

111 0.220

110 0.160

101 0.060

100 0.160

Oil 0.060

010 0.060

001 0.060

000 0.220

Total 1.000

N ote. From “Latent Structure A n a lysis,” b y  P. F. Lazarsfeld and N . W. Henry, 1968, 

p.37. Copyright 1968 by Houghton Mifflin.
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Table 3.3. Latent Parameters Leading to Manifest Joint Probabilities in Table 3.2.

Class Conditional Item Probabilities

Class Class Probability

0.5 0.8 0.9 0.6

0.5 0.4 0.1 0.2

Note. From “Latent Structure Analysis,” by P. F. Lazarsfeld and N. W. Flenry, 1968, 

p.36. Copyright 1968 by Houghton Mifflin.

Determining Test Structure

As mentioned above, the fit of each hypothesized latent class model to the data is 

assessed through the % test. For the case where there are 4 indicator variables, i, j, k, and 

1, the formula test is:

X2='L(fm -Fm)1IF,lM (3-0

where f  are observed values for the highest order joint probability. Fm are the same
i j k l  J

joint probabilities calculated using the maximum likelihood estimates. When the chi- 

squared value at the appropriate degrees of freedom is significant, this indicates that there 

is a statistically significant difference betw een  the observed and estim ated values, and 

thus that the latent class model is not fitting the data well. Often in LCA, the critical 

question is not if  a single model does or does not fit the observed data but which of
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several models provides the optimal fit. In this case, the L2 likelihood ratio test [formula

(3.2)] is often used.

(3.2)

The advantage of this statistic is that it can be partitioned (e.g., McCutcheon, 1987) and 

therefore allows the comparison of fit between different models. For example, one could 

compare the fit of two 3 classes models to a data set, one unrestricted (i.e., the values of 

latent parameters were not constrained) and one restricted (i.e., the values of particular 

parameters constrained to particular values). If the restricted model offered similar fit to 

the unrestricted model, it may be accepted as the most appropriate since it required the 

estimation of fewer parameters.

Why LCA works

In the most basic form of LCA, the assumption of conditional independence enables 

the derivation of unobserved parameters of latent classes from observed probabilities, 

(e.g., Lazarsfeld & Henry, 1968; Goodman, 1974; McCutcheon, 1987, Clogg, 1995). The 

assumption states that within a latent class, there is no statistical relationship between 

responses to different items. Under these conditions, the joint probability of correctly 

answering multiple items will equal the product of each individual probability, expressed 

as:

j

(3.3)
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where 7tx{t) is the probability that a randomly chosen examinee belongs to the class t , 

and J Z j \ X T is the probability of correctly answering item j, given that the examinee is a 

member of class t. This expression thus allows the expression of the manifest probability 

in terms of the latent probabilities. Conceptually then, LCA separates data into latent 

classes using the criteria that in the resulting classes, the manifest joint probabilities, that 

is f  , should equal the product of the class probability and the class conditional

probabilities for each item, as in (3).

Estimation o f Latent Parameters -  MLE

As mentioned above, determining the proportions correct of each item within each 

class amounts to solving a system of equations or maximum likelihood estimation 

(MLE). Though a detailed discussion of MLE is outside the scope of this thesis, a brief 

description of how the method works is instructive, particularly as it applies to LCA. In 

general, MLE is used to derive the value of unknown parameters from a set of observed 

values. To take a simple example, one could use maximum likelihood to determine the 

most likely values for the mean and variance (latent parameters) of a population given 

certain sample values (observed scores). Two methods are generally used to derive these 

values; the first is a closed solution based on differential calculus and the second is an 

iterative numerical estimation procedure called expectation maximization ([EM], 

Dempster, Laird, & Rubin, 1977). The first approach requires that the first derivative be 

taken of the likelihood function, that is, the function describing the likelihood of 

particular latent parameters estimates being the true values given the observed data. The 

first derivative provides the value of the slope of the function at the parameter values. 

Since the maximum of the function will always have a slope of zero, the first derivative is
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set to zero and the values of parameters in the resulting equation are determined in the 

solution of the equation. In the case of complex functions with many variables the 

iterative EM approach is used. In the approach pioneered by Goodman (1974), starting 

values for the parameters of the latent classes (i.e., class probabilities [7tx(t)] and class 

conditional probabilities for each item [7tj|x(t)]) are provided in order to calculate the 

expected values of the manifest variables. In turn, the values of the latent parameters are 

re-calculated from both the expected and observed values of the variables, the so-called 

maximization step. This process continues for a number of iterations until each 

subsequent iterative step produces no significant change in the solution. Goodman 

(1974) shows that, provided a solution exists, this method will converge on the maximum 

likelihood estimates for the latent class model. Of course, the fit of the MLEs must then 

be assessed using methods mentioned previously.

To summarize, the basic steps taken in a LCA analysis are as follows. First, data 

from a number of indicator variables is collected. Second, a series of candidate LC 

models are specified. Next, MLE estimates are generated for each model and analyzed 

for their fit to the observed data using %2 criteria, and then using L2 to compare fit among 

competing models. Once a model has been chosen, respondents can be classified to 

states identified in the model by choosing the state to which they most likely belong, 

given their response to the test items.

3 Technically, K-means cluster analysis is also a form o f expectation-maximization. The expectation step 
classifies observations to clusters based on their closeness to the interim cluster centres. The maximization 
step is the recalculation o f the cluster centre from the mean o f all observations assigned to the cluster.
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Table 3.5. Observed data presented in Goodman (1974).

Row Item Observed Frequency

A B C D

1 + + + + 42

2 + + + - 23

3 + + - + 6

4 + + - - 25

5 + - + + 6

6 + - + - 24

7 + - - + 7

8 + - - - 38

9 - + + + 1

10 - + + - 4

11 - + - + 1

12 - + - - 6

13 - - + + 2

14 - - + - 9

15 - - - + 2

16 - - - - 20

Totals 171 108 I l l 67 216

p-values .792 .500 .514 .310 1.0
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LCA demonstrated: Goodman (1974)

In order to see how the above steps work in a real example, let us take a moment to 

review the analysis procedure by Goodman (1974). In Goodman’s example, the data are 

from 216 survey respondents on 4 dichotomous items all assumed to measure the same 

dimension. The data for all respondents are presented in Table 3.5. For the sake of 

simplicity, the present demonstration will focus on 3 competing LC models: (a) a one- 

class baseline model, (b) a two-class unrestricted model and, (c) a two-class restricted 

model imposing the constraint that certain class conditional probabilities be equal.

Since the models have been specified, the next step in LCA is to derive MLE 

estimates for all the latent parameters in each model. For the one class model, no 

parameters will need to be estimated since these parameters will not vary from class to 

class. Rather, the “class conditional” parameters are simply the p-values for each item. 

Thus, the chi-squared test is simply a test of the difference between the observed joint 

probabilities (i.e., the observed frequencies from Table 3.5 divided by 216) and the 

product of the item probabilities corresponding to the response pattern in each row of 

Table 3.5. For example, the estimated probability of the fifth row based on the one class 

model equals 0.792 x (1 - 0.500) x 0.514 x 0.310, or 0.063. Notice that the observed 

probability for the fifth row is 6 / 216, or 0.028 indicating that for this row at least, the 

one class model appears not to fit well. The %2 (10, N = 216) value for this model is 

104.7, p_<0.001 and thus, the one class model overall provides a poor fit to the observed 

data.
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Table 3.6. Class Probabilities and Class Conditional Probabilities for Each Item for both 

Restricted and Unrestricted Two Latent Class Models

Latent

Class

P(Xt) p(Ai|Xt) p(B.|Xt) p(Ci|Xt) p(Di|Xt)

Unrestricted 1 .279 .993 .940 .927 .769

2 .721 .714 .330 .354 .132

Restricted 1 .279 .993 .933 .933 .771

2 .721 .732 .342 .342 .132

For the two-class unrestricted model, the parameters first must be calculated using 

MLE. The parameters so estimated are presented in Table 3.6. Examining the class 

conditional probabilities for each item, it appears that the first class represents those 

respondents that responded ‘correctly’ to each of the test items whereas respondents 

assigned to Class 2 represented those that responded ‘incorrectly’. Examining the fit of 

this model can help determine whether these two latent classes account for the response 

data. To calculate the % value for this model, one compares the same observed joint 

probabilities from the first model with the products of the class probability and the class 

conditional probabilities for each item summed for each class. Note that this precisely 

reflects the definition of local independence. Within a given class, the probability of a 

given response pattern is the product of the probabilities for each individual item. The 

predicted probability for the fifth row given the two class unrestricted model is:

(0.279 x 0.993 x [1 - 0.940] x 0.927 x 0.769) + (0.721 x 0.714 x [1 -  0.330] x 0.354 x
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0.132), or 0.028, an exact match to three digits of the observed probability. The x2 value 

reflecting the overall fit of the two class model is x2 (6, N = 216) = 2.720, p > 0.05 

indicating very good model-data fit.

The last model to be assessed is a restricted two-class model, reflecting the 

expectation that the class conditional probabilities for some indicators will be equal. The 

specific restrictions imposed for this model was the equivalence of p(Bi|Xi) = p(Ci|Xi) 

and also p(Bi|X2) =p(Ci|X2). This restriction has the effect of limiting the number of 

parameters to be estimated increasing the degrees of freedom and consequently is a more 

parsimonious model than the two-class unrestricted model. The MLE values for this 

model are presented in the bottom half of Table 3.6. As can be seen, the restrictions 

make little absolute differences to the values in the unrestricted two-class model and thus, 

little difference to the chi-square statistic is expected. This was indeed the case, x2(8, N = 

216) = 2.838, p > .05. With regard to the comparison in fit between the two-class 

restricted and unrestricted models, the difference between the likelihood ratio statistics 

for each model is examined. Doing this, it is found that L (2, N = 216) = 0.166, p > .05, 

indicating no significant difference in model-data fit. Thus, considering the greater 

parsimony of the restricted model and no reduction in fit, the restricted two-class would 

be chosen.

An application o f LCA to Educational Data

Haertel (1989) defined a restricted class model known as the binary skills model in 

an attempt to determine (a) whether data from a reading achievement test could be 

adequately described using latent classes and if so, (b) what was the skill structure 

underlying the test. Haertel applied the binary skills LC model to the analysis of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ANNs and Test Structure 51

responses to 37 items from a reading comprehension test. Because LCA requires that a 

tabulation of each possible response pattern be provided, the number of items that can be 

analyzed is limited. Therefore, Haertel analyzed 18 subsets of 6 items each and 

determined the parameters of best fitting model for each subset. When items were 

consistently identified as belonging to the same latent class they were gathered together 

into clusters. This process continued until a skill map could be identified across the 

entire test. The final step in the process was the substantive interpretation of each latent 

class.

Haertel (1989) showed that 28 of the 37 items were clearly associated with one of 

five latent classes. That is, items for which performance was similar could be grouped 

together into subsets, thus leading to the formation of a class structure of the test. 

Subsequently the items that defined each cluster were analyzed to determine if  there were 

skills that were common to all. Skills were identified by Haertel, two of which 

corresponded to particular reading passages in the test, with the remaining three described 

as sentence comprehension, inference, and sophisticated inference. Furthermore, the 

clusters themselves and the items that composed them were ordered such that mastery of 

a particular class implied the mastery of all previous classes. This suggested that, at least 

for 28 of the items, states of competence were ordered unidimensionally, and therefore 

the test had a unidimensional structure.

The preceding research demonstrates the key advantages of latent class analysis for 

the determination of test structure. First, Haertel (1989) showed that performance on a 

significant portion of the test can be well described by a small number of latent classes. 

Second, the classes appear to be ordered, and therefore an overall structure for the test
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can be specified. In this case, the overall structure appeared to be unidimensional. Last, 

the classes themselves can be examined to determine what types of item responses 

comprised them, and therefore what a description might be in terms of test content.

Several challenges with using LCA for test structure analysis are worth noting. The 

first challenge involves the choice of LCA model. Like K-means cluster analysis, the 

number of classes must be specified for an analysis to be conducted, but the addition of 

constraints makes the number of candidate models for consideration large, particularly 

when the number of items and potential latent classes is large. For example, Lindsay, 

Clogg, & Grego (1991) demonstrated that under a strict set of assumptions, latent class 

models needed approximately half the number of classes as test items to adequately 

model simple item characteristic curves. In a more exploratory framework, determining 

the adequate number of classes with appropriate set of constraints could prove intractable. 

In fact, Uebersax (2001) demonstrates that local maximum solutions are more likely as 

the number of latent classes in the model increases. Consequently, the use of LCA when 

the number of potential classes is large is questionable.

In summary, Latent Class Analysis is a method by which parameters of hypothetical 

latent class models can be derived from observed data. Since the fit of these parameters 

for the observed data can be assessed statistically, LCA allows the determination of the 

best fitting of a number of candidate models. For educational test data, a well-fitting 

model could be considered equivalent to identifying the test’s structure.

Summary

From the above review of latent state methods, it is clear that such accounts can 

provide key information about test structure not available from latent trait methods. In
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particular, these methods may reveal specific characteristics of both the individual test 

taker and of the states of competence underlying test performance as a whole. This type 

of information may be particularly useful when categorical judgments are required from 

test performance such as standard setting. However, the type of information provided by 

latent state test structure methods is not in conflict with those from dimensional account. 

Rather, the types of information from the two classes of methods are complementary. 

Indeed, dimensional accounts may provide a kind of organizing framework for latent 

states. In the next chapter, a class of analytical tools known as artificial neural networks 

is described. It will be argued that these networks may have application in educational 

measurement as a method for determining test structure incorporating aspects of both 

dimensional and latent state accounts.
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Chapter 4 -  Artificial Neural Networks 

Thus far, two general classes of methods to determine test structure have been 

reviewed. The first methods, those reviewed in Chapter 2, described test structure in 

terms of a small number of continuous dimensions. The descriptions generated from 

these methods were based upon statistical relationships between performances on test 

items, and presumed that variations in examinee performance were a result of variations 

in the possession of a latent psychological trait.

The methods in Chapter 3 presumed that the essential characteristics of test 

performance are captured in examinee membership in one of a finite number of 

categories, or classes. The classes identified by these methods could then be examined to 

determine the specific characteristics that defined them, and the relationships among the 

classes could shed light on the overall structure of the test.

The goal of this chapter is to motivate the investigation of artificial neural networks 

(ANNs) as a third method to identify test structure. It will be argued that a type of 

network known as the Self-Organizing Map ([SOM], Kohonen, 1982, 2001) is 

particularly appropriate for this purpose because it has the potential to combine many of 

the advantages of both latent trait and latent state accounts of test structure. To 

demonstrate this, the chapter is organized as follows. First, an overview of ANNs will be 

provided in order to acquaint the reader with the general classes of networks and how 

they work. Then, the SOM will be described in detail, focusing on the assumptions that 

underlie its use and its capacity both to create latent trait and latent state descriptions of 

data. Last, an application of SOMs in educational measurement will be reviewed. As a 

result of this review it will be argued that an empirical study, focused on variables of
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known importance to educational measurement, is needed to determine the conditions 

under which SOMs are appropriate for determining test structure.

What are ANNs?

ANNs are functional models of some essential features of neural processing 

(Rumelhart, McClelland, & the PDP Research Group, 1986). They consist of many 

simple processing elements, analogous to neurons, whose function is to sum incoming 

‘activation,’ mathematically transform it, and then propagate the result to other 

processing elements. The level of activation contributed to an element by a single 

connection is determined by the activity of the element preceding the connection 

multiplied by a weight. It is the value of the weights in the network that determines the 

relationship between inputs and outputs.

The advantages of these networks for educational measurement are twofold: 

computational power and the ability to abstract interpretable relationships between 

variables. More specifically, ANNs learn to create connections between large numbers of 

input and output variables based on mathematical and statistical relationships between 

them. The nature o f this relationship can then be determined by examining the structure 

of the network (e.g., Carbonaro, 2003; Dawson & Zimmerman, 2003; Leighton & 

Dawson, 2001). Note that this is analogous to what all methods that determine test 

structure do: extract the fundamental relationships between item-level performance 

(input) and test-level inferences (output) which are then examined for their structure.

This similarity suggests that ANNs may be a useful method to determine test structure.

To better conceptualize what ANNs are, it is helpful to consider them in relation to 

a standard statistical procedure, linear regression. Figure 4.1 shows how regression
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would be represented as an ANN. As can be seen, the network comprises two separate 

‘types’ of units: those representing independent variables (input units) and those 

representing dependent variables (output units). In network terminology, the input units 

(independent variables) are multiplied by their respective connection weights (regression 

coefficients), summed by the net input function, and transformed by the linear activation 

function to determine the activation of the output unit (the dependent variable).

Figure 4.1. Neural Network Representation of a Linear Regression Equation

(R egre

0 »  •  •  f j Input U nits
(Independent V ariables)

C on n ection  W eigh ts  
(R egression  C oeffic ien ts)
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Figure 4.2. Three Layer Artificial Neural Network

Input U nits

C o n n ect io n

W eig h ts
H idden  U nits

N o n - l in ea r  
act ivation funct ion

Output U n its

Networks most often differ from linear regression in several essential ways (see 

Figure 4.2). First, neural networks often feature an additional layer of units between 

input and output known as hidden units. These units are considered feature detectors and 

are necessary when the relationship between inputs and outputs is complex, for example 

when simultaneous activation of two or more units is necessary to ‘activate’ an output 

unit. Second, the activation of a given unit is not restricted to a linear function of its 

inputs. The function can also be non-linear, for example, logistic (e.g., Rumelhart, 

Williams, & Hinton, 1986) or Gaussian (e.g., Dawson & Schopflocher, 1992). Last, in a 

regression equation, the value of the dependent variable is known when the regression 

weights are calculated. This is not a precondition for all A N N s. A s  shall be seen in the 

next section, supervised networks require the value of the output whereas unsupervised 

networks do not.
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Supervised ANNs

As mentioned above, for supervised networks the target output is known a priori for 

each input pattern. In the process of learning, this type of network calculates the 

difference between the target and actual output then adjusts the values of its weights over 

many iterative steps to minimize this difference. This compares to linear regression 

analysis where the difference between the predicted and observed values of the dependent 

variable is minimized by finding suitable values for the regression weights. The result for 

a supervised network is that, given sufficient computational power (typically, a sufficient 

number of hidden units), the ANN can produce the correct output for a given input.

Generally, there are two types of applications for supervised networks in 

educational measurement, generalization of rules and problem analysis. In applications 

involving generalization, a network is trained using a subset of possible input data. The 

ability to predict the value of the outputs (dependent variables) from input data not in the 

training set tests the generality of the relationship abstracted by the network. When 

prediction is good, the network is considered to have learned relationships that relate to 

the domain as a whole rather than to the specific instances in the training set. Examples 

of this kind of research in educational measurement include the prediction of item 

difficulty from item features (Carbonaro, 2003; Perkins, Gupta, & Hammana, 1995).

In applications involving problem analysis, connection weights and hidden unit 

activations of a trained network are analyzed to determine what features or combinations 

of features in the input layer predict certain outcomes. This is analogous to determining 

which independent variables are statistically significant in a regression equation. 

Applications relevant to educational measurement include the derivation of knowledge
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states in Tatsuoka’s (1983, 1995) rule-space model from the Q-matrix (Hayashi, 2003), 

determining the computational resources required to generate responses in the Wason 

(1966) reasoning task (Leighton & Dawson, 2001), and discovering rules that could 

govern performance on the balance scale task (Dawson & Zimmerman, 2003).

In summary, the advantages o f supervised networks lie in their ability to learn 

associations between inputs and outputs when the target outputs are known. Specific 

advantages are the capability of classifying input patterns into categories by abstracting 

and generalizing rules. Also, supervised ANNs can help identify the specific features that 

predict the outcome, thus providing greater insight into the nature of the problem being 

solved by the ANN. However, in the exploratory determination of test structure, the 

output depends upon whatever structure is inherent to the data and therefore the target for 

that output is not known. In this situation, unsupervised networks, discussed next, may 

prove to be helpful.

Unsupervised ANNs

In contrast to the supervised case, unsupervised networks serve the function of 

uncovering the structure of the data, reflecting the probability density of the inputs (e.g., 

Kohonen, 2001; Hinton & Sejnowski, 1999; Rumelhart & Zipser, 1985). Since the target 

output is not known for each set of inputs, the goal of unsupervised networks is to assign 

an output to a given input pattern. In general, it is the similarity among input patterns that 

determines the network output. This property makes the processing from unsupervised 

ANNs conceptually similar to cluster analysis.

Unsupervised ANNs work by allowing output units to compete for activation. That 

is, only the connection weights associated with the outputs unit(s) of highest activation
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when a given input pattern is present will change. Since different input patterns will 

activate different output units, the effect of training is to make specific output units 

selectively sensitive or tuned to particular input patterns. When there are an equal 

number of unique input patterns and output units, each output unit could become tuned to 

a single pattern. When the number of input patterns exceeds the number of output units, 

units will become tuned to clusters of patterns such that similar patterns will tend to 

activate the same output unit. It is in this way that unsupervised networks come to reflect 

the structure of the input patterns.

In the next section, a type of unsupervised ANN will be reviewed that could provide 

specific information regarding not only the cluster structure of the data, but also what the 

arrangement o f the clusters reveal about test structure. This ANN is known as the self

organizing map (SOM).

Kohonen’s SOM

The SOM is an unsupervised ANN with several unique features, namely, that it 

produces a map-like representation of the input patterns that is both ordered and weighted 

by frequency (Kohonen, 1982, 1990, 2001). A representation of a SOM is presented in 

Figure 4.3. The SOM is map-like in the sense that the structure of the data is projected 

on a lattice of output units, usually in two dimensions. Each point of the lattice has a 

corresponding model vector, essentially the geometric mean or centroid of all input 

patterns that activate it. The model vectors essentially play the role that weights play in 

other neural network models; they provide a means by which each element in the input 

vector biases the selection of best-fitting unit at the subsequent layer, in this case, units of 

the SOM. The lattice is ordered in the sense that the model vectors, “tend to attain values
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that are ordered along the axes of the network” (Kohonen, 1990, p. 1467). Though this 

ordering is difficult to formalize in a network for which there are many input units (i.e., 

when input vectors are multidimensional), for the case in which input patterns are scalars 

and the output layer (i.e., the SOM) is a one-dimensional array of points, the values 

corresponding to the points are ordered sequentially, either descending or ascending 

(Kohonen, 1982). Last, the SOM is weighted by frequency in that similar observations 

that occur more frequently in the dataset are allocated more space in the map. In this 

way, the SOM could be considered to reflect the probability density of the input patterns.

Figure 4.3. Architecture of the Kohonen Self-Organizing Map
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How might the essential properties of the SOM, that it produces a map-like, 

ordering o f  m odel vectors (centroids) that reflect probability density, be usefu l for the 

determination of test structure? First, like latent trait accounts of test structure, the map

like ordering of model vectors could reveal a dimensional facet to test performance. By 

determining the basis for the ordering of vectors in the SOM, both the number of
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dimensions and the substantive interpretation of them may be revealed. Second, like 

latent state accounts of test structure, the model vectors themselves could be examined to 

determine their characteristics in terms of item- or subtest-level variables. The 

characteristics may help define the most prevalent latent states of examinees.

Table 4.1. Interpreting Model Vectors from a 2 x 2 SOM

X-Coordinate

Y-Coordinate 1 2

1 (1,1, 1,1) (1 ,1 ,0 , 0)

2 (0, 0 ,1 ,1 ) (0 ,0, 0, 0)

A simple example o f a possible SOM representation of test structure is revealed in 

Table 4.1. In this table, each cell represents a location in the SOM, and a possible state of 

mastery on a hypothetical test, say a unit test on Chinese geography and culture. By 

examining the organization of the map, it can be noted that the diagonal from (1,1) to 

(2,2) could be seen as representing some continuous dimension of overall ability on the 

test. The diagonal orthogonal to the first [from (1, 2) to (2,1)] could represent deviations 

from expected performance given overall ability and therefore may suggest that the test is 

manifestly two-dimensional. By analyzing the model vectors in each cell, insight into the 

nature of examinee performance giving rise to these model vectors can be gained. Let’s 

assume that the first two items require knowledge of Chinese geography and the last two 

require knowledge of Chinese culture. A possible interpretation of the second dimension 

would therefore be that it represents selective ability in either culture or geography.
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The mechanics o f self-organization

Training a SOM consists of positioning model vectors so as to minimize the 

difference between each input vector and its associated model vector. This difference is 

usually operationalized in terms of the Euclidian distance between vectors4, i.e.,

= VOi - m c \ f  + (x2 ~ mc2)1+.. .+(x„ -  mcnf , (4.1)

where xn is the nth element of the input vector x s Rn and mcn is the nth element of the 

model vector ntc that most closely matches x, that is, the winner. When a set of model 

vectors is found that minimizes the above distance for all input vectors simultaneously, 

these model vectors form a representation of the cluster structure in input space in a 

resolution defined by the number of units in the output layer (i.e., the size of the SOM).

How do the model vectors attain these best-fitting values? First, because the 

algorithm underlying the SOM is iterative, small adjustments to the value of the model 

vectors are made following many presentations of the input patterns. However, for a 

given presentation of an input, only the model vectors that most closely match the input 

vector are updated. Note that the Kohonen SOM updates not only the winning output 

unit but also those in proximity to it, that is, in the winning unit’s neighbourhood. This 

characteristic will be discussed in detail in the following section. The winning vectors 

are updated according to the following rule:

4 The inner or dot product has also been used to define the differences, or more precisely, the similarity 
between input and model vectors. This method more closely resembles the net input function in most other 
neural network models. In this case, normalization o f all vectors is necessary after each updating step, 
greatly increasing the computational requirements o f the SOM. For the purposes o f the present paper, only 
the SOM that defines differences in terms o f vector norms will be reviewed.
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mc(t + 1) = mc(t) + a(t)[x(t) - mc(t)]

67

(4.2)

where t is a measure of time, or the step in the iterative process, and a(t) is a scalar,

0 < d(t) < 1 that decreases monotonically with increasing t. Equation 4.2 has the effect of 

moving the winning model vectors ‘closer’ towards the input vector. All other model 

vectors remain unchanged. Because a(t) decreases over time, the magnitude of change in 

the winning model vectors tends to decrease as the network learns. This is done because 

as the SOM becomes more finely tuned to the data, only small refinements are necessary 

to improve its precision. Large changes later in learning are undesirable because they 

may lead to ‘over-shooting’ o f the ideal correction. Finally, two choices exist for the 

timing of updating the model vectors, (a) following the presentation of each individual 

input pattern, or (b) following the presentation of a set of patterns. The latter case avoids 

the unnecessary fluctuation of model vectors due to unsystematic variation in the input 

vectors.

As mentioned above, a feature unique to Kohonen networks is that model vectors in 

a neighbourhood of mc, the winning unit, are all subject to change in the direction of the 

input vector x while vectors outside this neighbourhood are left unchanged. The 

neighbourhood Nc is defined in terms of the size of the radius around mc. Figure 4.4 

shows two such neighbourhoods defined in terms of unit of the SOM; all units within the 

circular boundaries constitute the neighbourhood. The purpose of the neighbourhood is 

to facilitate the ordering of the model vectors over the surface of the SOM. Kohonen 

(1990) states that by making the initial radius of the neighbourhood large (up to one-half 

of the radius of the entire SOM), the network learns a coarse coding of the input space.
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Then, by subsequently decreasing the size of Nc as the network learns, individual regions 

of the SOM become more finely tuned to corresponding regions of input space but the 

entire SOM retains its global ordering.

Figure 4.4. Two Neighbourhoods Defined on a SOM.

The amount that model vectors in the neighbourhood are changed as a result of 

learning depends on the choice of neighbourhood function. Two functions suggested by 

Kohonen (2001) are the (a) binary and (b) Gaussian functions. The binary function 

simply applies the same a(t) from equation (2) for all model vectors in the neighbourhood 

of mc. No changes are made to model vectors outside the neighbourhood. In the 

Gaussian case, a function hcj(t) is substituted for a(t), for example,

Winning unit

Neighbourhood 1

Neighbourhood 2

(4 .3 )
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where rc is the location of mc and r, is the location of some other model vector, m,.

||rc - ri||2 is thus the distance between mc and m, and a  is the parameter that determines the 

range over which the neighbourhood function is operating. Equation 4.3 thus defines a 

neighbourhood function whose effect diminishes smoothly as distance from mc increases.

Using the SOM

The following are the steps that could be followed in using the SOM to analyze 

data. First, the parameters of the network must be established. This includes choosing 

(a) the size of the map and its respective dimensions, (b) the measure of difference 

between input and model vectors, (c) the neighbourhood function, (d) a starting value for 

a, (e) the rate of decay for both the size of the neighbourhood and the value of a, (f) the 

number of cycles between updating the model vectors, and (g) the number of cycles over 

which the network will run. (See Kohonen, 2001, for rules of thumb regarding the 

settings of these parameters.) Next, the model vectors are set to random values in [0, 1] 

and the inputs are presented successively to the network. After the network runs for the 

designated number of cycles, the network can be analyzed to determine the values of each 

of the model vectors. This analysis will help determine both the cluster structure of the 

data and its organization.

Applications o f SOMs in Educational Measurement

SOMs have been employed in several areas in educational measurement. These 

include automated scoring (Williamson & Bejar, 2000; Williamson, Bejar, & Sax, 2004), 

on-line assessment in computer-based tutorials (Mullier, 2003), and in assessment of 

complex performance tasks (Kanowith-Klein, Stave, Stevens, & Casillas, 2001; Stevens, 

Ikeda, Casillas, Palacio-Cayetano, & Clyman, 1999; Stevens, Johnson, & Soller, 2005;
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Vendlinski & Stevens, 2002). These studies have focused primarily on the capacity of 

SOMs to differentiate between qualitatively different types of solution strategies on 

complex problems.

To take an example, Stevens et al. (1999) used SOMs to analyze the development of 

competence in computer-based performance assessments. The performance assessments 

examined in this study were unstructured problems in two disparate domains, high school 

genetics and case-based medical reasoning. Each of these problems requires the 

examinees to request information that they believe would lead them closer to solution of 

the problem. For example, in the high school genetics problem called True Roots, the 

examinees’ task is to request specific genetic tests to help determine whether two babies 

had been mistakenly switched at birth. Optimal use of the information provided by the 

tests required both an understanding of the genetic principles underlying the tests as well 

as an ability to use the information to move closer to the goal state.

Of primary interest to Stevens et al. were the paths to solution exhibited by the 

examinees. That is, what information did examinees request in the process of solving the 

problem and when did they request it? Information requests were represented in a vector 

having one element for each unique piece of information. Stored in this vector was 

whether or not each piece of information was requested and the order in which requested 

information was called for. In particular, each element stored the next-requested piece of 

information. For example, if  an examinee requested consecutively the 4th, 10th, and 13th 

pieces of information, the 4th element of the examinee response vector would contain the 

number 10, and the 10th element would contain the number 13. In this way, the entire
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solution path could be represented in the vector and the choice of solution path (i.e., 

identity and order of information requests) could be faithfully represented.

The Kohonen net developed for each problem had one input unit for each element 

in the vector. The size of the output layer, that is, the map itself varied between the two 

applications, 5 units by 5 units for the True Roots problem and 10 by 10 for the medical 

case study. The sizes were informed by the complexity of the respective problems. After 

examinee solutions were obtained for each of the problems, the network was trained.

For the True Roots problem, the key research questions were to determine how 

competence developed over time and whether the SOM could represent qualitative 

differences between states of mastery. The training set for this problem consisted of 

solutions from undergraduate students (n = 156). Since most examinees solved the True 

Roots problem it was anticipated that important differences in performance would be 

captured by the type and identity of information requests in their solution. In order to 

identify the most effective solutions, each examinee performed the task up to three times. 

The assumption was that later attempts would be of higher quality than earlier ones. The 

analysis of differences between attempts showed that several types of sub-optimal 

strategies characterized early attempts, such as the reliance on only one type of 

information (e.g., pedigree but not blood type data) or exhaustive but unsystematic 

information gathering. Later attempts showed a much more targeted approach with few 

redundant or superfluous information requests.

Grade 10 students, for whom the True Roots problem was designed, were also 

categorized using the SOM trained with data from undergraduates. Not surprisingly, the 

majority of their first solutions activated output units indicating inefficient performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ANNs and Test Structure 72

Subsequently, these students were given specific instruction in critical thinking and 

problem solving strategies. Though no information regarding the performance of a 

control group was provided, the percentage of these students correctly solving the 

problem increased, from 33% to 64%. Most interestingly, the output units activated by 

the data from later performances were the same units that indexed more advanced 

problem solving ability in undergraduates.

The medical case assessment was designed as part of a battery that tested the 

readiness of would-be doctors to practice medicine unsupervised. As such, the case study 

was much more complex than the True Roots problem, having over 2300 possible 

information requests. One hundred randomly sampled performances served as the 

training set for the SOM. After training, 20 clusters were identified and each was scored 

according to pre-established criteria for the problem. The National Board of Medical 

Examiners (NBME) set these criteria using subject matter experts (see Clauser, Subniyah, 

Nungester, Ripkey, Clyman, & McKinley, 1995, for detail on the establishment of the 

performance criteria). Interestingly, it was found that model vectors associated with high 

quality solutions had the greatest number of examinees classified to its corresponding 

cluster. This concordance of quality with frequency suggests that a small number of 

specific solution paths are associated with developed competence and conversely, and 

that a larger number of others are characteristic of pre-competence states. In this 

problem, and likely in many others, there are few ways to perform well and many ways to 

perform poorly.

The research by Stevens et al. (1999) highlights some of the characteristics of 

SOMs in determining test structure. Their work shows that examinee solution paths that
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are similar tend to be assigned to a similar location in the SOM. These locations appear 

to represent latent states of competence in the problem-solving domain. Furthermore, the 

model vectors associated with these locations were analyzed to determine the 

characteristics of the responses that lead to their activation. In the Stevens et al. case, this 

type of analysis led to the identification and order of information requests in the True 

Roots and medical reasoning problems. When this analysis was conducted for each 

location in the map, it defined a kind of population of competence states for the 

assessment.

Second, the SOM representation of examinee performance was interpreted in terms 

of the quality of their responses. In particular, the SOM solution was combined with 

other analyses, for example, comparison of high school examinee performance with 

undergraduates, using pre-established criteria to describe SOM locations in terms of the 

quality of medical reasoning. This allowed interpretation of examinee performance in 

terms of the content domain. One potential advantage germane to the application of 

SOMs to determining test structure is the capacity of these networks to impose order on 

the set of model vectors. Ideally, this order would represent the quality of solutions in the 

SOM, and could be compared to and corroborated with other criterion measures. 

However, it appears as though the specific characteristics of the examinee data in this 

problem-solving environment did not permit such ordering. Specifically, geometrically 

similar solutions were not always similar in quality.

Third, examinees’ performances were associated with specific ability states 

identified by the SOM. That is, the characteristics of the cluster in terms of solution 

quality were ascribed to the examinee who was assigned to that cluster. This is
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tantamount to the SOM informing a scoring model for performance on the task. Quality 

of task performance was assessed based on the comparison of the locations activated 

from a given performance and performances of other examinees whose ability was 

known.

Stevens’ work is revealing about the utility of SOMs to analyze the development of 

competence on complex tasks, but also highlights specific questions with respect to the 

identification of test structure. That is, the use of the SOM in their work was innovative, 

but left questions about general principles regarding its appropriate use. First, one of the 

central characteristics of the SOM is its capacity to create an ordered representation of 

data that mirrors the probability density of the data set. However, the SOM in Steven’s 

work did not appear to be ordered in any meaningful way. An important question when 

using SOMs for educational measurement is therefore, what characteristics of the data are 

necessary to create an ordered, interpretable representation? A second related issue 

concerns the characteristics of the SOM. It was mentioned that two sizes of SOMs were 

used, 5 x 5 for the True Roots problem and 10 x 10 for the more complex medical 

reasoning problem. No precise rationale for this decision was provided. Without a 

systematic investigation of the conditions that support the creation of SOMs with desired 

characteristics and the robustness of the SOM with respect to deviations from these 

conditions, inferences derived from their use may be inappropriate or misleading. In 

particular, the precise characteristics of the data and the configuration of the SOM are of 

central importance. Therefore, an important question for applications of SOMs in 

educational measurement is to determine what those characteristics and configurations 

are, and what the potential consequences are of not choosing maps with appropriate
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characteristics. Clearly, these issues must be systematic addressed if  a balanced 

evaluation of the utility of SOMs for educational measurement is to be made.

The remainder of this thesis describes research executed to accomplish such 

evaluation.
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Chapter 5 - Experiment One: SOM Representation of Ordered Classes

The present research is devoted to understanding how well Self-Organizing Maps 

(SOMs) represent the test structure from simulated educational test data that comprise 

ordered classes. Simulated test results were chosen so that the ability of the SOM to 

recover known properties of data could be evaluated. Ordered classes are examined 

because they represent important characteristics of educational data. First, ordering of 

the simulated data reflects differences in student competency and enables the comparison 

of the ordered representation created by the SOM with the simulated differences in 

student competency. The extent to which the ordering in the SOM reflects the order of 

the data constitutes evidence for the appropriateness of SOMs in the educational 

measurement context. Second, the simulated data were composed of classes since a 

trained SOM defines a centroid for each point in the map. Each centroid may reflect 

defining characteristics o f the examinees belonging to its corresponding cluster. If the 

characteristics revealed by the centroids in the SOM match the characteristics of the 

simulated classes, this would be evidence that the SOM can preserve class features of 

examinees’ performance.

Evaluating the potential of the SOM in representing ordered classes also involves 

a consideration of the boundary conditions under which characteristics of the original 

data are preserved. If the SOM is capable of providing useful information only about 

data that are in a form not commonly encountered in educational measurement, (e.g., very 

high item discriminations), then the appropriateness of SOMs to these applications will 

be limited. Furthermore, characteristics of the SOM may play a critical role in the 

accurate representation of the underlying data. For example, faithful depiction of the data
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by the SOM may only be possible when certain parameters of the map (e.g., map size) are 

appropriate for the data.

In the present experiment, three levels of item discrimination are crossed with two 

levels of SOM size to shed light on the specific conditions under which the SOM is 

appropriate for the analysis of educational data. Item discrimination is the strength of 

relationship between item level performance and the ability level of the examinee and is 

an index of item quality in educational measurement. This variable represents the 

amount of uncertainty or randomness in predicting item level performance from the 

ability of the examinee. This is an important variable because it determines how much 

noise the SOM will tolerate while still producing an accurate representation of the data. 

The size of the SOM will determine how specific the representation of the data will be, 

and whether this representation is true to the original data. Because each model vector 

will represent non-overlapping regions o f the original data, the average number o f data 

points represented by each model vector will decrease in a large map, resulting in an 

increased selectivity of each vector. As a result of this increased selectivity, extraneous 

characteristics of data may be prominent in the map at the expense of its overall structure. 

It is therefore an important question for the present experiment to shed light on the 

appropriate size of the map to accurately render the structure of the original data.

Method

Characteristics o f the Data

A program written in Microsoft Excel in Microsoft Visual Basic for Applications 

(VBA) by the author generated all data (see Appendix A). Characteristics of the data for 

Experiment One are listed in Table 5.1. Four steps are required to generate the data sets,
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(1) specifying the test structure, (2) specifying the distribution of ability in the simulated 

examinees, (3) specifying the distribution of item difficulty, and (4), determining the 

correctness of the responses. These steps are described below.

Test Structure

The first step in determining the responses of simulated examinees is to specify the 

test structure. The data in the first study consisted of 4 unidimensionally ordered classes. 

These defined the possible states of mastery to which a simulated examinee could be 

assigned as well as the states of mastery to which individual items were targeted. Each of 

these states was then defined in terms of the specific ability level of the simulated 

examinee and the difficulty level of the items. From these values, the probability of a 

correct response could be generated. For example, a given item might have a difficulty 

value of 1.0, and if the simulated examinee possesses an ability of 1.0 or greater, he is 

likely to answer this item correctly.

Examinee Characteristics

The second step in the simulation process is to specify the distributions of 

knowledge states within the population of simulated examinees. In each condition, 

examinees were first described in terms of the class to which each belonged and then the 

ability level that represented that state. Specifying these values enabled direct 

comparison of item and examinee characteristics in order to determine the correctness of 

a given response.

An equal number of examinees were simulated to be at one of nk levels of ability, 

where nk is the number of latent classes in the condition. The ability level (0) of the 

examinee was determined by finding the z-score of the cumulative probability defined by
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(2k -  1) / 2nk, where k is the latent class. For the present study, 125 examinees were 

simulated for each class and their 0-values were defined as the z-score associated with a 

cumulative probability of 0.125, 0.375, 0.625, and 0.875. These probabilities 

corresponded to 0-values o f-1.15, -.32, .32, and 1.15, respectively.

Item Characteristics

The third step in this simulation is to specify the distribution of item characteristics. 

In order to specify items that were ‘targeted’ to a particular latent class, the difficulty 

parameters of the items were set to be equal to the 0-values corresponding to each class. 

As shall be seen in the section describing how the responses are determined, this is 

equivalent to setting to 0.5 the probability that examinees belonging to a given class 

answered correctly items belonging to that class. Three items were targeted to each 

class.

Determining the Responses

The last step is to run the simulation, the end result of which is a complete data set 

representing correct and incorrect responses for each simulated examinee on each item. 

Whether or not a given item was answered correctly for a given simulated examinee 

depended on the comparison of the item and examinee characteristics. For the present 

study, this was carried out using the two-parameter logistic (2PL) IRT model. The 

equation for determining probability correct from the characteristics of items and 

examinees is:

P(u = \\0) =
1

(5.1)
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where u =1 is a correct response, 0 is examinee ability, b is the item difficulty parameter 

and a is the item discrimination parameter. Three values for item discrimination were 

chosen (2.0, 1.0, 0.5), and therefore three complete sets of data were generated for the 

present experiment. In order to determine whether the response to the item was scored as 

correct, a random number between zero and one was generated and compared to the 

probability calculated from the above formula. If the value of the random number was 

equal to or lower than the number calculated from the formula, the item was scored as 

correct and incorrect otherwise. This last step in the procedure was carried out for each 

simulated examinee and for each item until each complete data set was generated. 

Training the SOM

As with the data generation program, the author created the SOM program in 

Microsoft Excel using Microsoft Visual Basic for Applications (see Appendix B).

Network Architecture

Two sizes of SOMs were used in the first study (4x4 [16 units], 8x8 [64 units]).

The number of input units corresponded to the number of test items, in this case 12. The 

training sets were one of the 3 sets of 500 patterns generated using the parameters 

mentioned in the previous section.

Training Method

Recall from Chapter 4 that each of the output units has a model vector whose 

number of elements is equal to the number of units in the input layer. Training proceeded 

stepwise as follows. First, the difference between the current input pattern and each 

model vector was calculated to determine the unit with the smallest root-mean squared 

error for the pattern. This is equivalent to choosing the model vector closest in Euclidian
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space to the input pattern. Model vectors for all units within a given radius (i.e., the 

neighbourhood) of the winning unit were then changed to lessen the difference between 

each element of these model vectors and the corresponding element in the current input 

pattern. Vectors were changed according to:

where mi is a model vector for units within the neighbourhood of the winning unit, x(t) is 

the current input pattern, t is time, and a(t) is the value of the learning rate parameter. 

Model vectors for all other units in the SOM remained unchanged. The procedure by 

which a value for a  is set is discussed below.

Training patterns were presented in a random order without replacement for 10000 

or 40000 iterations for small (4x4) and large (8x8) maps, respectively. Following 

Kohonen (2001, p. 114), the starting radius of the neighbourhood function was defined as 

one half of the radius of the map, which in the present case was calculated as one half the 

average of the length and width of the map, that is:

where X som is the width of S O M  and Y som is the length of S O M . Following Kohonen 

(1990), the learning rate a  was changed in two phases: the ordering phase (iteration < 

2000) and the fine-tuning phase (iteration > 2000). During the ordering phase, a

m i{t +1)  =  m,(t)  +  a(t)[x(t)  — m ,-(*)] 5 (5.2)

1 4 ( X s o m  +  Y  s o m ) / 2 (5.3)
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decreased linearly from 1 to 0.04 and during the fine-tuning phase, a  decreased linearly 

from 0.04 to 0.005. Last, 100 replications of the simulation are conducted to determine 

the stability of the SOM solution (e.g., deBodt, Cottrell, & Verleysen, 2002).

Table 5.1. Characteristics of the Training, Data, and the Self-Organizing Map for 

Experiment One.

Variables Values for Variables

Number of Latent Classes 4

Number of Items per Class 3

Number of Examinees

Class 1 (0 = -1.15) 125

Class 2 (0 =-0.32) 125

Class 3 (9 = 0.32) 125

Class 4 (0=1.15) 125

Dimensions of SOM -  

Conds. 1-3 (Height, Width) 4, 4

Dimensions of SOM -  

Conds. 4-6 (Height, Width) 8, 8

Number of Iterations 

Conds. 1-3 10000

Number of Iterations 

Conds. 4-6 40000

Iterations Before Update 1
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Number of Replications 

Simulated Items Probabilities 

Conditions 1,4 

Item Discrimination = 2.0 

Class 1 (6 = -1.15)

Class 2 (0 = -0.32)

Class 3 (0 = 0.32)

Class 4 ( 0 =  1.15) 

Conditions 2, 5 

Item Discrimination =1.0 

Class 1 (0 = -1.15)

Class 2 (0 = -0.32)

Class 3 (0 = 0.32)

Class 4 ( 0 =  1.15) 

Conditions 3, 6 

Item Discrimination = 0.5 

Class 1 (0 = -1.15)

Class 2 (0 = -0.32)

Class 3 (0 = 0.32)

Class 4 ( 0 =  1.15)

86

100

0.50, 0.50, 0.50, 0.06, 0.06, 0.06, 0.01,0.01, 0.01,0.00, 0.00, 0.00

0.94, 0.94, 0.94, 0.50, 0.50, 0.50, 0.06, 0.06, 0.06, 0.01, 0.01, 0.01

0.99, 0.99, 0.99,0.94, 0.94, 0.94, 0.50,0.50, 0.50, 0.06, 0.06, 0.06

1.00,1.00,1.00, 0.99, 0.99, 0.99, 0.94, 0.94, 0.94, 0.50, 0.50, 0.50

0.50, 0.50, 0.50, 0.20,0.20, 0.20, 0.08, 0.08, 0.08, 0.02, 0.02, 0.02 

0.80, 0.80, 0.80,0.50, 0.50, 0.50, 0.20,0.20, 0.20,0.08, 0.08, 0.08 

0.92, 0.92, 0.92, 0.80,0.80, 0.80, 0.50, 0.50, 0.50, 0.20, 0.20, 0.20 

0.98, 0.98,0.98, 0.92, 0.92, 0.92, 0.80,0.80, 0.80, 0.50, 0.50, 0.50

0.50, 0.50, 0.50, 0.33, 0.33, 0.33, 0.22, 0.22, 0.22, 0.12, 0.12, 0.12

0.67, 0.67, 0.67, 0.50, 0.50, 0.50, 0.33, 0.33, 0.33, 0.22, 0.22, 0.22

0.78, 0.78, 0.78,0.67, 0.67,0.67, 0.50, 0.50, 0.50,0.33, 0.33, 0.33

0.88,0.88, 0.88, 0.78, 0.78, 0.78, 0.67, 0.67, 0.67,0.50, 0.50, 0.50
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Analysis o f SOM Performance

Two main questions guided the analysis of the SOM performance:

1) What can Self-Organizing Maps reveal about the essential characteristics of 

test data comprising ordered classes?

2) What are the conditions under which Self-Organizing Maps succeed and fail 

to reveal these characteristics?

Further, each of the above issues is examined from three perspectives:

a) statistical, in which key indexes of the SOM representation of the input data 

will be analyzed across conditions,

b) qualitative, where SOM’s derived from specific replications will be 

graphically inspected for the faithfulness of their representation of the ordered 

classes, and

c) interpretive, in which the characteristics of model vectors are examined to 

better understand the representational capabilities of the SOM for educational 

measurement.

The results are organized around these three perspectives, as follows. In the first 

section, statistical analyses are conducted on three measures, quantization error (QE), 

topological preservation (TP), and correlation among distances (Rdist)- QE reveals the 

extent to which vectors in the input data are different from their corresponding 

representation in the SOM. TP and Rdist show how well spatial interrelationships between 

points in the original data are preserved in the SOM. The second section focuses on the 

qualitative perspective and consequently, replications from each condition are visually 

examined in order to shed light on how class information is preserved in the SOMs. The
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last section uses multi-dimensional scaling to interpret the dimensions of the SOM in 

terms of item and test variables. Taken together, these analyses provide an examination 

of the SOMs in representing the structure of simulated test data.

Map-Data Fit: Quantization Error

One of the characteristics of a SOM is that its organization reflects the probability 

density of the input data. This characteristic is reflected in SOM organization in two 

ways: a) the location of the model vectors, and b) the concentration of each of these 

vectors in space of the input data. Consider the data presented in Figure 5.1. In the left 

hand column are two scatterplots of two-dimensional data that could be analyzed by a 

SOM. The first of these scatterplots has approximately uniform probability density 

across both the X and Y dimensions while the second has an approximately normal 

probability density across the X dimension and uniform across the Y dimension. Both 

scatterplots have an identical number of points. The right hand column displays these 

same data with model vectors and receptive fields from a hypothetical analysis with a 2x3 

SOM. Recall that the receptive fields designate the regions in which all points are closest 

to a single model vector. In the figure, the dark circles represent the location of the 

model vectors after analysis and the lines represent the boundaries of the receptive field 

for each model vector.

Note the locations of the model vectors in each of the two scatterplots. For the 

top one, the model vectors, like the data, are approximately uniformly distributed across 

the surface demarcated by the data. In the second, these vectors are uniform across the Y 

dimension, but are more centrally concentrated in the X dimension also reflecting the 

density of the underlying data. This organization, too, reflects characteristics of the
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underlying data. This simple demonstration shows how the placement and concentration 

of these model vectors can represent characteristics of the probability density of the data 

in each of the scatterplots. How does the SOM come to place model vectors in ways that 

reflect this density? And how can the faithfulness of the representation of probability 

density be evaluated objectively?

Figure 5.1. SOM Representation of Probability Density.

Probability Density Scatterplot Scatterplot with Model 

Vectors and Receptive Fields 
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X - Uniform 

Y -  Uniform

°© o ° o o  
© ° 0 ° © ° 0

0 * © ^ 0 ©

o 0 ° ° 
o

0 0 0 o 0 
0 ° 0 o o • 0 °

° ®» ©
O 0 o o

• • * "

•• o ® © 
o o ° o

o ° ° •e° 0 °O e
0 o 

0 °
© © 0 © °

© o v 

0

.  •  •

•
° ©

o

> o 0
o

•  •  \

X -  Normal 

Y -  Uniform

o
© °  °

© °  °

0

o 0 o °  o °  °  
o

© °  °  o®
0 o

© © °  °
°  o °  © ©

„ o ”o °  °  
o o _

©
© o 

o _ „ •  .  o» 
o

o ® eP °  © 

o o

0 °  o 
0 0

o
© °

0 °  0 
o O °  ©

o
0 o

°m
© °  © 
0

o n

°  © °

•* .  •
o 0 e o  •

©
©

o o 

“o •°  © o 
o

© o
u u o 

© c  cP

• •  =

o

o * ©

o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ANNs and Test Structure 90

Recall that the locations of the model vectors are the end product of training the 

SOM. The goal of this training is to minimize the average Euclidian distance (equation 

4.1) between each model vector and each of the data vectors in its receptive field. Since 

this average distance defines how successfully a network is trained, it is a critical measure 

of the overall quality of the SOM. This measure is referred to as Quantization Error 

since it defines the expected amount of error when the model vector is used to ‘stand in’ 

for individual data; that is, when a data vector is quantized to the nearest model vector. 

But how does a well-trained map (i.e., one for which QE is a minimum) for a given set of 

data faithfully reflect the probability density of those data? To see this, consider that a 

heuristic for minimizing QE is to place each model vector in a location where in its own 

receptive field, there are many data vectors close to it and few that are far away.

Returning to Figure 5.1, it can be clearly seen that the model vectors in the figure adhere 

to this heuristic; they are close to as many such vectors as possible, and far away from 

few. Since it has been noted that the placement of the model vectors in the figure does 

reflect the probability density of the data, this is suggestive of a connection between 

minimizing QE and faithfully representing probability density.

The existence of this connection implies that examining QE for sets of model 

vectors, that is, those derived from several ‘runs’ of a SOM, would be effective in 

comparing the map-data fit of these runs. Suppose that the model vectors in the middle 

and right-hand panel of Figure 5.2 were presented as candidate SOM representations of 

the data in the left-hand panel. It can be determined using the above heuristic that the 

vectors from the right-hand figure do not represent well data of uniform probability 

density; as compared with those from the middle panel, more data are farther away from
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the model vectors (i.e., those on the extreme right- and left-hand sides of the panel) and 

fewer are close within each model vector’s receptive field. QE in this scenario would be 

non-optimal, and greater than the QE derived from the model vectors displayed in the 

middle panel. The importance of this comparison for the present research is that it will 

help determine the run with the best map-data fit.

Figure 5.2. The Position of Model Vectors and Resulting Quantization Error.
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Thus far, the meaning of differences in QE for SOMs derived from the same set of 

data has been a point of focus. Consider the situation where identical SOMs are trained 

on two different sets of data. What would differences in QE reveal about the structure of 

each respective set of data? Assuming that QE is a minimum for each SOM, smaller QE 

implies that the data comprise regions of greater and lesser probability density. To see 

why this is so, consider again the data presented in Figure 5.1. The data in the top part of 

the figure have essentially uniform probability. In contrast, the data in the bottom part of 

the figure shows regions of high and low probability density and thus is more
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differentiated. Using the previous heuristic, it can be surmised that this more 

differentiated data will have lower QE; as compared with the scatterplot in top part of the 

figure, more data are close to the model vectors in the bottom part of the figure and fewer 

are far away. This characteristic will also be important for the present research in 

understanding how data with different characteristics are represented by a SOM.

In summary, an important characteristic of a SOM is to represent the probability 

density of data. A key measure of the success of the map in representing this probability 

density is Quantization Error. Using a simple heuristic, it has been shown that, given the 

same data and SOM, low QE reflects the placement of model vectors where they are 

closest to the most data, that is, in regions of high probability density. Thus, comparing 

QE from several runs of a SOM is an effective way of determining which of the runs best 

represents the probability density of the data. Furthermore, comparing the QE from the 

same SOM of two different sets of data can reveal which data set is more differentiated 

with respect to probability density.

Projection

The effectiveness of the SOM to maintain order relationships that are present in the 

test data is reflected in several measures of projection. Since the simulated test data are 

scored responses to 12 hypothetical test items, points representing these data could be 

considered to populate a 12-dimensional space. This larger space containing the scored 

responses will be referred to as the metric space. Because the SOM is typically two- 

dimensional, significant reduction in the complexity of the data in the metric space is 

likely to occur for it to be represented in the map. Maintaining relationships in the 

mapping of points from the metric space to the SOM means that despite the reduction in
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complexity, the map is representing well the ‘dominant’ dimensions in the test data.

High values on measures of projection imply that relationships among points are not lost 

when data are projected from the high- to low-dimensional space.

Two facets of the relationship among points are the focus of measures of projection, 

adjacency and distance. The preservation of adjacency relationships implies that when 

co-ordinates in the SOM are adjacent, their respective receptive fields in the metric space 

ought to be adjacent also. The preservation of distance holds that the representation of 

distance between points in the SOM is a good approximation of the distances between the 

model vectors, and thus the points that comprise them. This implies that there ought to 

be a strong positive correlation between distances between co-ordinates in the SOM and 

the corresponding distances between the model vectors they represent.

In Figure 5.1, the model vectors and the points in the SOM are not differentiated; 

they are presented as the same. Of course, model vectors populate the metric space and 

points in the SOM populate a co-ordinate space. It is the relationship between these two 

spaces and the points that populate them that is fundamental to the notion of projection.

In order to see more clearly the relationship between the two spaces, Figure 5.3 presents 

model vectors and SOM co-ordinates as disengaged. In the left-hand panel, model 

vectors presented as numbers are shown as populating the metric space. In the middle 

panel, co-ordinate points representing each model vector are shown on a SOM. Note that 

the location of these co-ordinate points is appropriate; their relative placement in the 

SOM reflect the relative placements of the model vectors in the metric space. More 

concretely, the points that are adjacent in the SOM correspond to model vectors whose
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receptive fields are adjacent in the metric space. Also, distance between points in the 

SOM is a good analogy for distance between their corresponding model vectors.

Figure 5.3. Projection Quality of Model Vectors in the Metric Space as a Function of the 

Placement of Corresponding Co-ordinates in the Self-Organizing Map
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In contrast, the location of the co-ordinate points in the SOM shown in the right- 

hand panel is a poor representation of the data in the metric space. Fewer points that are 

adjacent in the SOM have corresponding model vectors whose receptive fields are 

adjacent in the metric space. For example, in the SOM, point 6 is adjacent to point 2, 

whereas the receptive field corresponding to model vector 6 in the metric space is not 

adjacent to the receptive field belonging to model vector 2. Furthermore, distances 

betw een points in  the right-hand panel do not represent w ell the distances betw een  

corresponding points in the metric space. For example, the ordering of model vectors in 

increasing distance from model vector 1 is 2 and 3 (equal), 4, 5, and 6. In the poorly- 

fitting SOM, this same ordering of distances is 4 and 5 (equal), 3, 2, and 6. Note that for
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each SOM in Figure 5.3, the QE could be the same; the expected, or average distance 

between each data point and its respective model vector in the metric space is not affected 

by the how the co-ordinates in the SOM are arranged. Said another way, QE relates only 

to the metric space, not the SOM space. However, since the model vectors represented 

by each location in the map have changed, the faithfulness of the SOM’s projection of 

those data is affected.

As mentioned above, measures that quantify projection are focused on two facets of 

the relationship among points between the metric space and co-ordinates in the SOM, 

adjacency and distance. In first measure, following Villman, Der, Herrman, and 

Martinetz, (1997), the two closest model vectors to each data point are determined and 

their corresponding co-ordinates in the SOM are examined for their adjacency. The 

proportion of all points in the data for which the two closest model vectors map to 

adjacent points in the SOM defines a measure called Topological Preservation (TP). 

Applying this method to the SOM in the right-hand panel in Figure 5.3 it can be seen that 

a significant proportion of points in the metric space will have model vectors with 

adjacent receptive fields, but not adjacent points in the corresponding SOM (e.g., those 

for whom model vectors 5 and 6 are the two closest). All such points will highlight the 

inaccurate projection of the input data on the SOM and consequently will contribute to a 

diminished value of TP.

Maintaining distance relationships is evaluated by the correlation of distances 

between analogous points in the two spaces. For this measure referred to here as Rdist, a 

matrix of distances is created between co-ordinates in the SOM and between all the 

model vectors in the input data. Each distance in the SOM is matched to its analogous
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distance in the metric space by matching the points of the SOM to their respective model 

vectors. A correlation analysis is then performed on all corresponding distances. If the 

correlation is large and positive, it can be concluded that distances in the map are a good 

representation of distances in the input data. In other words, the input data are projected 

well on the SOM. Noting that correlation between sets of data is closely related to the 

similarity in ordering between those data, the example above describing the poor ordering 

between distances between model vectors and corresponding distances between SOM co

ordinates highlights the effectiveness of this measure for projection.

In the present research, the preservation of adjacency and distances reveal not only 

how well the SOM represents the original data, but also how easily the data can be 

rendered in a lower-dimensional space. These two characteristics, the ability of the SOM 

to represent data and the characteristics of the data that allow them to be well represented 

are evaluated below.

Results

Section I  — Statistical Results 

Quantization Error

In order to see the effect of the various conditions in Experiment 1 on QE, a 2 x 3 

(SOM Size x Item Discrimination) analysis of variance (ANOVA) was conducted. The 

interaction between these factors was highly statistically significant, F(2, 594) = 637.3, p 

< 0.001, indicating that the mean values of QE were not predicted by each main effect 

alone. However, the large differences between means in relation to the small standard 

errors show that the significant interaction mainly reflects only small absolute deviations 

from the strong main effects and results from a large amount of statistical power. In this
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context, post hoc tests are difficult to interpret and therefore are not provided. The two 

main effects were also significant, for SOM size, F(l, 594) = 117616.2, p<0.001, and for 

Item Discrimination, F(2, 594) = 141224.8, p<0.001. QE was consistently smaller for 

larger maps implying that a larger number of points provide a higher resolution of the 

original data. In addition, QE consistently decreased as item discrimination increased 

which indicates that the SOM can more precisely fit model vectors to each point in their 

receptive fields when the class distributions are more discrete and thus the data are more 

differentiated with respect to probability density.

Table 5.2. Mean (Standard Error) Quantization Error by Condition

Item Discrimination 

Map Size 05  LO TO Ah

4x~4 1.21 (0.000) 0.95 (0.001) 0.63 (0.002) 0.93 (0.014)

8 x 8  0.92(0.001) 0.63 (0.001) 0.25(0.002) 0.60(0.016)

All 1.06 (0.010) 0.79 (0.011) 0.44 (0.013) 0.76 (0.012)

Projection I: Topological preservation 

An ANOVA comprising the same factors as the analysis of QE was conducted on 

TP, the measure reflecting the preservation of adjacency relationships. The Item 

Discrimination by Map Size interaction was statistically significant, F(2, 594) = 34.0, 

p<0.001, indicating that differences in TP due to Item Discrimination depended on the 

size of the SOM. An examination of the means presented in Table 5.2 suggests that this 

significant interaction resulted from a floor effect for TP in the large map and the Item
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Discriminations of 0.5 and 1.0. As in the analysis of QE, the specific comparisons 

implied by this interpretation are difficult to test statistically because the small standard 

errors and large sample size imply a large amount of statistical power. The main effects 

for both Item Discrimination and Map Size were statistically significant, F(2, 594) = 

447.1, p<0.001 and F(l, 594) = 13231.8, p<0.01, respectively. These results show that 

higher values of Item Discrimination have a positive impact on projection, while large 

maps have a negative effect.

Table 5.3. Mean (Standard Error) Topological Preservation by Condition

Item Discrimination 

Map Size 05  TO 1 0  AH

4 x 4  0.65 (0.004) 0.75 (0.004) 0.83 (0.005) 0.74 (0.005)

8 x 8  0.24(0.003) 0.27(0.005) 0.35(0.008) 0.29(0.004)

AU 0.45 (0.015) 0.51 (0.017) 0.59(0.018) 0.51 (0.010)

Projection II: Correlations o f distances

A 2 x 3 (Map Size x Item Discrimination) ANOVA was conducted on the 

Correlation of Distances to determine how it was impacted by the different conditions. In 

all analyses involving Rdist, Fisher’s (1915) z-transformation of the correlations was first 

performed to create a linear scale more appropriate both to creating averages and 

performing the ANOVA. All means reported are transformed back into the correlation 

metric. A statistically significant interaction on the transformed values was found, F(2, 

594) = 67.9, p<0.001 and appeared to result from a ceiling effect across Item
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Discrimination values of 1.0 and 2.0 affecting both conditions of map size (see Table 

5.3). Like the two previous analyses, this interaction is difficult to confirm statistically 

because of the small standard errors and large amount of statistical power involved. The 

results from the two main effects on Rdist reflect the same pattern as seen with TP. The 

main effect of Item Discrimination was statistical significant, F(2, 594) = 666.7, p<0.001, 

and shows that the positive impact on projection of higher discriminations. There was a 

statistically significant main effect of Map Size (F[l, 594] = 6220.4, p<0.001), revealing 

that larger maps have lower values of Rdist-

Table 5.4. Mean (Standard Error) Correlations (Rdist) between Distances in Metric Space 

and Associated SOM Co-ordinates by Condition

Item Discrimination 

Map Size 05  LO ZO AH

4 x 4  0.71 (0.003) 0.76 (0.001) 0.75 (0.002) 0.74 (0.002)

8 x 8  0.53 (0.002) 0.63 (0.002) 0.64 (0.002) 0.60 (0.003)

Ah 0.63 (0.007) 0.70 (0.005) 0.70 (0.004) 0.68 (0.003)

Discussion

It is clear from the above results that both SOM Size and Item Discrimination 

have significant impact on the representation of data structure. In general, the 

representation was more accurate with higher values of Item Discrimination resulting in 

lower values o f QE and higher values for both TP and Rdist- This was not the case for 

SOM Size, however, as more units resulted in less QE, but lower values for the measures
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of projection. This may have occurred since a larger number of units imply that there is a 

lower probability that any two units will be adjacent. A qualitative examination of the 

SOMs in each condition presented in the following section will shed light on this finding.

It is unclear how to interpret the absolute values of QE but their consistency 

within conditions as revealed by the small standard errors in Table 5.2 suggests that they 

are approaching a minimum. The magnitude of TP and Rdist reveal that the projection 

capabilities of the SOM for unidimensionally ordered classes in this research are 

somewhat limited. The preservation of adjacency relationships as indexed by the 

measure of TP appears to be reasonable for the best condition (SOM Size = 4 x 4 ,  Item 

Discrimination = 2.0), with an average of 83% preserved. However, the mean correlation 

between distances in the original data and the SOM in this same condition was 0.75, or 

on average, just over half of the variance accounted for. As would be expected, equal or 

lower values on these measures were observed for all other conditions. One explanation 

for these small values is the difficulty of a two-dimensional SOM representing essentially 

one-dimensional data. This possibility is discussed in a following section.

Section I I -  Qualitative Examination o f  the SOM

In examining the model vectors from each replication, an important characteristic of 

the SOMs representing dichotomous data is revealed. This characteristic is that the 

model vectors comprise the unit conditional item probabilities. That is, the value of each 

element of a model vector converges to the proportion of correct responses to the 

associated item for the simulated examinees classified to the given unit. To understand 

why this is so consider that before the end of training, the neighbourhood function 

decreases in size to include only a single unit. Under this condition, each model vector
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becomes a centroid, or multidimensional average for the set of data it represents. Since 

the test data are dichotomous, this average is simply the number of correct responses 

divided by the number of respondents, i.e., the proportion of correct responses.

To see this result more clearly, consider the two model vectors presented in Table 

5.5. The first model vector represents performance of high achieving examinees. This 

follows from the observation that elements of the vectors are the probabilities of 

answering each item correctly. Viewed in this light, it can be seen that each examinee 

classified to this unit had correct responses for items 1 through 5, and for number 12. No 

examinee had a correct response for item 10. All other items were correctly answered 

according to the probabilities listed. The second model vector represents low achieving 

examinees. These examinees responded incorrectly to items 4, 5 and 8 through 12, but 

had correct responses for items 2 and 6. Furthermore, summing all item probabilities 

together provides the average total score achieved by all examinees classified to the unit. 

These average scores are 10.25 and 3.71 out of twelve for examinees classified to units 1 

and 2 respectively. This result, that model vectors comprise unit conditional item 

probabilities, provides important information for the interpretation of the model vectors 

themselves, and the interpretation of the whole SOM.

Table 5.5. Two Sample Model Vectors

Item

M odel V ector 1 2 3 4 5 6 7 8 9 10 11 12

1 1.00 1.00 1.00 1.00 1.00 0.96 0.91 0.88 0.96 0.00 0.54 1.00

2 0.70 1.00 0.94 0.00 0.00 1.00 0.06 0.00 0.00 0.00 0.00 0.00
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Extremes o f TP

By visually inspecting the SOM solutions, a better sense of how the SOM is 

organizing the data can be gained. For this purpose, the replications with the highest and 

lowest values of TP are displayed in Figure 5.2. The numbers in the figure denote the 

class that is most often classified to each unit in the map. The size of the number is 

proportional to the number of observations classified to that point in the map.

Figure 5.2. Most Frequent Intended Class Membership for Two Self-Organizing Maps in 

Experiment One (Condition = Small Map, Item Discrimination 2.0).

High TP Low TP

Several features of these maps are noteworthy. First, all units representing a 

single class tend to be grouped together. When adjacent units represent different classes, 

in most instances the class numbers differ only by one, reflecting a smooth ordering of 

the model vectors. There are no instances where units representing Classes 1 and 4 are 

adjacent. Where adjacent units do not represent consecutive classes, the number of 

observations tends to be small. Last, there is little to differentiate highest and lowest 

values of TP for Condition 1 by visually examining the maps.
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Typical Maps for each Condition

The effect of Item Discrimination on the structure of the maps is examined in 

Figures 5.3 and 5.4. Figure 5.3 displays ‘typical’ maps for each of the small map 

conditions. Figure 5.4 displays these maps for the large map conditions. A typical map 

was determined by selecting randomly from those replications whose values of QE, TP, 

and Rdist were within one standard deviation of the mean. The values for Item 

Discrimination for the maps in Figure 5.3 and 5.4 are, from left to right, 2.0,1.0, and 0.5. 

For the typical 4 x 4  maps, the same characteristics as mentioned for the maps of highest 

and lowest TP (Figure 5.2) also apply. Namely, regions representing the same class are 

contiguous; the large majority of adjacent units that are not the same class have class 

numbers that differ by one while those that differ by more than one have small numbers 

of members. Again, there is little in the visual structure of the map to differentiate 

between conditions. This is significant. The data that were used to generate these maps 

differed considerably in their discrimination. This suggests that the quality of visual 

interpretation of data from unidimensionally ordered classes is robust against variation in 

item discrimination, at least for the values in these conditions.

Despite this robustness, there must be differences in how homogeneous the 

individual units in the map are with respect to the classes of their members. This is true 

because as item discrimination decreases, more overlap is introduced between the class 

distributions. One way to determine the homogeneity of class membership is to 

determine how accurate classification performance is if it is assumed that all members of 

a particular unit are categorized as belonging to the most frequent intended class. The
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percentage of matches for the entire map is the average percentage that the members of a 

unit belong to the modal class.

Figure 5.3. Most Frequent Intended Class Membership for Typical Self-Organizing 

Maps in Experiment One, Small Map Conditions

Item Discrimination

2.0 1.0 0.5

To examine this homogeneity, average classification performance was examined 

across each the three conditions represented in the above figure. The means and standard 

deviations for these conditions (maximum 500) are presented in Table 5.6. For the 

conditions representing high, medium, and low Item Discrimination, the respective means 

were 403.6 (80.1%), 316.9 (63.4%), and 257.2 (51.4%). For the replications depicted in 

Figure 5.3, the frequency of matches was 397, 319, and 255, very close to the mean 

values. Thus, it appears that despite wide variation in the homogeneity of the underlying 

classes in the present experiment, the 4x4 SOM projects data comprising 

unidimensionally ordered classes similarly.
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Table 5.6. Mean (Standard Deviation) Number of Matches between Intended Class and 

Modal Class by Condition (Maximum = 500)

Item Discrimination 

Map Size 05  TO 2d) All

4x~4 257.16(6.42) 316.90 (4.90) 403.57 (6.95) 325.88 (60.52)

8 x 8  292.81 (5.66) 346.30(4.80) 422.69(3.12) 353.93 (53.59)

All 274.99 (18.86) 331.60(15.51) 413.13 (10.99) 339.91 (58.81)

For the larger maps, this variation in homogeneity does affect the visual 

interpretation of the SOM. Figure 5.4 displays typical maps for Conditions 4, 5, and 6. 

The characteristics of the typical maps from Conditions 1, 2, and 3, namely, the 

contiguity of regions representing the same class and the overwhelming tendency for 

adjacent units to be of identical or differing by one class holds for the typical map from 

Condition 5. The Condition 4 map fails to display these characteristics only because of 

the significant number of units to which no observations were classified. If it were 

decided that these ‘vacant’ units were members of the classes to which they are adjacent, 

the properties of other typical maps would be manifest. Interestingly, these vacant units 

also must at least partially account for the low values of TP for Condition 4; fewer 

possibilities for adjacency relationships can exist for units adjacent to vacant units.
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Figure 5.4. Most Frequent Intended Class Membership for Typical Self-Organizing 

Maps in Experiment One, Large Map Conditions

Item Discrimination

2.0 1.0 0.5

Like Condition 4, the map representing a typical replication from Condition 6 fails 

to display the characteristics of maps from typical replications of Conditions 1 through 3. 

In this case, the lack of contiguity and the increased prevalence of non-identical and non- 

consecutive class units appears to reflect the increased overlap of the class distributions 

comprising items of low discrimination. Why would this difference be seen in only the 

large map condition? One explanation is that although the ordering of units in this map is 

proper in that the Euclidian distances between model vectors are smaller for closer units, 

the degree of class overlap is sufficiently extensive that the modal intended class is not a 

reliable measure of the likely class for individual units. The proportion of each intended 

class at each unit was intended as a proxy for population class conditional probability. 

However, when the map becomes so large that the number of observations classified to 

some units become very small, the possibility increases that this proportion does not 

accurately reflect the population class conditional probability. When this inaccuracy is 

significant enough to change the modal intended class, misclassification of a unit will 

result.
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Section I I I -  Interpretation o f  the SOM

Dimensions o f the SOM

From visual inspection of typical maps it can be seen that in most conditions, the 

SOM orders model vectors according to their most probable intended class. This is 

important because it demonstrates that the SOM reveals the key characteristic o f the 

simulated data. However, as encouraging as this ordering is, it is at odds with the low 

values for measures o f projection. How might these two seemingly disparate findings be 

reconciled? One way that this issue might be addressed is to note that although visual 

inspection of the typical replications reveals an ordering of classes, this ordering is 

manifest in only one direction of the map. Since measures of projection will take into 

account both dimensions, knowing on what basis the SOM orders model vectors in the 

direction orthogonal to the intended class could illuminate the low values for projection.

To address this issue, it is essential to be able to determine what characteristics of 

examinee responses each unit represents. When this is known, each dimension of the 

map may be describable in these terms. One way to approach this is to project the model 

vectors into a metric space using multidimensional scaling (MDS). Analyzing each of 

the dimensions revealed by MDS may provide insight into the basis by which the SOM is 

organized.

Each of the typical replications from above was analyzed using ALSCAL (Takane, 

Young, & deLeeuw, 1977). Since the primary interest is the projection of the model 

vectors in two dimensions, MDS analyses are reported for one and two dimensions only. 

The values of stress and the variance accounted for (VAF) in each replication for one and 

two dimensions are listed in Table 5.7. Two trends emerge from these results. First, as
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item discrimination decreases, values of stress increase and the dispersion accounted for 

decreases. This is predictable, as decreases in item discrimination is synonymous with 

increases in random error. Second, for the same number of dimensions in the MDS 

model, larger maps are more difficult to fit, as evidenced by the larger values of stress 

and lower dispersion accounted for as compared with the smaller maps.

Table 5.7. Stressl and Variance Accounted For (VAF) in One- and Two-Dimensional 

MDS Analyses on Typical Replications in Each Condition

MDS Analysis

One-Dimensional T wo-Dimensional

Condition Stressl VAF Stressl VAF

1 (4x4, a = 2.0) 0.130 0.944 0.088 0.968

2 (4x4, a = 1.0) 0.205 0.862 0.119 0.928

3 (4x4, a = 0.5) 0.333 0.655 0.189 0.797

4 (8x8, a = 2.0) 0.214 0.865 0.130 0.931

5 (8x8, a = 1.0) 0.289 0.750 0.199 0.814

6 (8x8, a = 0.5) 0.440 0.427 0.292 0.535

Table 5.8 displays the correlations between the total expected score associated with 

the unit and the co-ordinates for each dimension and for each unit in each SOM. In all 

conditions and for both the one- and two-dimensional analyses, the first dimension co

ordinates were highly correlated with total score. This implies that the distances between 

model vectors are well predicted by the sum of their individual elements. This result
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follows directly from the essential unidimensionality of the simulated data. Since two 

dimensions in the MDS projection are orthogonal to each other, the second dimension 

must be sensitive to variance not captured by total score. In other words, the Dimension 

Two must be sensitive to item performance not predicted by the examinee’s total score.

Table 5.8. Correlation between Dimensional Co-ordinates of Each SOM Unit in MDS 

Analyses and Total Expected Score for Unit Members, Performed Separately for Typical 

Replications of Each Condition

MDS Analysis

Condition

One-Dimensional T wo-Dimensional

Dim 1 Dim 1 Dim 2

1 (4x4, a = 2.0) 0.999 -0.997 -0.190

2(4x4, a = 1.0) 0.999 -0.998 -0.069

3 (4x4, a = 0.5) 0.988 -0.996 0.043

4 (8x8, a = 2.0) 0.998 -0.999 0.237

5 (8x8, a = 1.0) 0.995 0.996 -0.007

6 (8x8, a = 0.5) -0.967 -0.988 0.124

To determine which items and which model vectors were flagging these deviations 

from unidimensionality, the co-ordinates from the second dimension of the MDS analysis 

were correlated with the unit conditional item probabilities for each model vector in the 

first ten replications of Condition One. Table 5.9 displays these correlations by item. 

Overwhelmingly, these correlations fail to meet statistical significance at the p<0.05
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level. Since by chance alone, 6 out of 120 correlations are expected to be statistically 

significant and 3 were observed, there is no indication of a relationship between item- 

level performance and the second dimension from the MDS analysis. Because the data 

were simulated only according to a unidimensional model, this inconsistency is not 

surprising. However, the appropriateness of using a multidimensional model (i.e., the 

two-dimensional SOM) to represent these unidimensional data given this inconsistency 

questionable.

Table 5.9. Correlation between Dimensional Co-ordinates and Unit Conditional Item 

Probabilities from Ten Replications of Condition One.

Item Number

Replication 1 2 3 4 < 6 7 8 9 10 11 12

1 -0.15 -0.48 -0.34 -0.42 -0. 14 -0.07 0.10 0.04 0.20 0.48 0.24 0.27

2 -0.36 -0.25 0.15 0.05 -0. 18 -0.41 -0.42 0.17 0.28 0.49 0.37 0.08

3 -0.02 -0.41 -0.22 0.10 -0. 12 -0.45 -0.24 0.14 0.48 0.43 0.46 0.23

4 -0.44 -0.24 -0.18 -0.03 -0.26 -0.23 0.40 0.26 -0.11 0.49 0.35 0.23

5 -0.21 -0.31 -0.44 -0.47 0.07 -0.05 -0.03 0.47 0.13 0.21 0.21 -0.12

6 -0.26 -0.17 -0.33 0.03 -0. 15 -0.47 0.16 0.06 0.25 0.31 0.18 0.38

7 0.01 -0.32 -0.19 -0.22 -0.08 -0.34 ■ 0.06 -0.01 0.12 -0.02 0.32

8 -0.08 -0.18 -0.19 -0.14 -0..17 ma 0.02 0.18 0.18 0.44 0.29 0.32

9 -0.26 -0.42 -0.16 -0.39 0..07 -0.20 -0.32 0.12 0.25 0.40 0.46 0.44

10 0.06 -0.07 -0.12 0.05 -0. 14 m -0.36 0.25 0.27 0.39 0.43 0.19

Note: Highlighted values indicate statistical significance at the p<0.05 level.
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General Discussion

According to the results of Experiment One, the usefulness of the two-dimensional 

SOM to represent unidimensionally ordered classes is unclear. On the positive side, there 

is evidence that across replications, the SOM finds a set of model vectors that approach a 

minimum error. This is evidenced by only small variations in Quantization Error across 

replications within the same condition, despite random starting values for the model 

vectors. With respect to projection, a visual inspection of typical replications within each 

condition demonstrates that the abilities of the simulated examinees are being represented 

in the placement of the model vectors. In particular, by using the modal intended class as 

a means of assigning classes to locations in the map, it can be seen that the SOM creates 

an ordering of model vectors that to some extent mirrors the ordering of examinee ability. 

In addition, this ordering was robust for the typical replications in each small map 

condition and suggests that under certain circumstances, the SOM can tolerate a 

considerable amount of random error to reproduce the essential characteristics of the data. 

Last, the result that the model vectors are the unit conditional item probabilities is 

intriguing. By examining the elements of the vector, an interpretation of the 

characteristics of the examinee responses classified to the unit can be made, both at the 

item and total score levels. Furthermore, this summary of examinee performance can be 

used to optimally classify new respondents to units in the map. That is, the likelihood of 

an examinee “belonging” to each unit can be evaluated by Bayesian classification. The 

maximum value of this likelihood given the examinee’s responses determines the most 

probable unit for the examinee.
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On the negative side, the capacity of the SOM to preserve properties of the original 

data in Experiment One is limited. For most conditions, and particularly in the large 

maps, topological preservation was low, which indicates that the basis for adjacency in 

the original space was not well identified by the SOM. Several factors could account for 

this. First, for the large maps, the number of units implies that any two units are less 

likely to be adjacent. Furthermore, the mean distance between adjacent units in the large 

map is less than that for the smaller map. This in turn implies a stricter criterion for 

adjacency in the large versus small maps; two units the same distance apart may be 

adjacent in the small map but not adjacent in the large map. Second, concerning the 

correlation of distances measure, recall that the model vectors in SOM are located only at 

whole number co-ordinates. Given this, the correlation of distances measure will be 

maximized only when adjacent model vectors in the metric space are similarly spaced. 

Since this is not the case, the lower values for this measure are not surprising.

Last, there is clearly a mismatch between the essential dimensionality of the data 

and the dimensionality of the SOM. The unidimensionality of the data was by design and 

it is reflected in the analysis using MDS. Specifically, total score was very closely 

related to Dimension One of all MDS analyses of each SOM. Dimension Two of these 

analyses could not be consistently interpreted and appeared to reflect performance on 

different items in each replication. This suggests that no systematic variance determines 

the placement of model vectors in the dimension orthogonal to intended class. This raises 

an important concern regarding the application of SOMs in educational measurement, as 

to this author’s knowledge, two-dimensional SOMs are used exclusively (e.g., Stevens, 

Ikeda, Casillas, Palacio-Cayetano, & Clyman, 1999; Stevens, Johnson, & Soller, 2005;
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Williamson, Bejar, & Sax, 2004). Kohonen (2001) and others (e.g., deBodt, Cottrell, & 

Verleysen, 2002; Villman, Der, Herrman, & Martinetz, 1997) show that “folds” in the 

SOM representation of the data will occur when the dimensionality of the data and the 

SOM do not match. In the case that the SOM has a larger number of dimensions than the 

data, a linear sequence of model vectors will be maintained only by folding the string of 

adjacent vectors onto itself in an attempt to occupy the vacant space of the map, much 

like putting a chain into a box. Since this folding could alter both adjacency and 

proximity relationships between from the original data, this mismatch may be a primary 

factor in the low values of projection in the present experiment. Moreover, this 

hypothesis, if true, would recommend against the apparently common practice of using 

two-dimensional SOMs for data projection in the absence of information about the 

intrinsic dimensionality of the data. Evaluating the role of data and map dimensionality is 

therefore of key importance in assessing the usefulness of SOMs to represent the 

structure of educational data.

To determine the importance of the match between the dimensionality of the two 

spaces in the representation of test structure, a second experiment was conducted, and is 

reported in the next chapter. In this experiment, the dimensionality of the map is 

maintained, but the dimensionality of the simulated data is increased to two. If the SOM 

is able to better represent these more complex data, this will be evidence that the match of 

the dimensionality between the two spaces is an important factor in representing the 

structure of educational data.
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Chapter 6 - Experiment 2: SOM Representation of Classes Ordered in Two Dimensions

In Experiment One, it was determined that a two-dimensional SOM was limited in 

its capacity to represent one-dimensional simulated educational test data. Primarily, this 

limitation was seen in the less than faithful projection of the test data onto the SOM.

There were limits in how well the structure in the original data was maintained in the 

SOM evidenced by, a) the incomplete preservation of adjacency and distance 

relationships from the metric space to the SOM and, b) the inability to interpret the 

second dimension both in visual representations of the SOMs and in the analysis of the 

model vectors using multi-dimensional scaling. It was concluded that these shortcomings 

might be in part attributable to the difference in dimensionality between the data and the 

SOM.

To explore the legitimacy of this conclusion, the dimensionality of the simulated 

test data in the present experiment is increased to two. This change addresses the main 

concern following from the first experiment, that the mismatch of their respective 

dimensionality restricted the ability of the SOM to faithfully represent the test data. 

Furthermore, this change represents a change in the complexity of the data; the SOM will 

have to incorporate data with more complex structure in its representation. As a result, 

Experiment Two can be seen as a test of the hypothesis that the mismatch in 

dimensionality decreases SOM representation ability; if performance improves from 

Experiment One to Experiment Two, it will do so despite increased complexity of the 

data.
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Method

Experiment Two follows the same general form as Experiment One. As mentioned 

above, the dimensionality of these data has been increased from one to two. This was 

accomplished by adding 12 items to the original 12 from the first experiment, with the 

additional items loading on the second dimension. The total number of items for the 

present experiment is thus 24, with each item loading on one and only one dimension.

The responses of the simulated examinees to the additional 12 items represent four 

ordered classes in Dimension 2, precisely the same way as the responses to 12 items from 

Experiment One represented four ordered classes of Dimension 1.

The class membership of the simulated examinees for each dimension was 

determined in the same manner as Experiment One. An equal number of examinees were 

assigned to each of four classes by setting their ability levels equal to the difficulty of the 

items representing the ordered class. However, since the class represented by Dimension 

Two was unrelated to that from Dimension One, there were 16 equiprobable classes 

representing a complete crossing of four classes from each dimension. All other 

parameters for Experiment Two are identical to that of Experiment One.

Results

The issues addressed in the present chapter are the same as those in the previous 

one now in the context of two dimensional data, a) the ability of the SOMs to reveal 

essential characteristics of the test data and, b) the boundary conditions under which these 

characteristics are revealed. These issues are examined from the same three perspectives 

that were used in the previous chapter: a) statistical, b) qualitative and, c) interpretive.
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The analyses conducted in each of these three sections also parallel those in Experiment 

One. The results from those analyses are presented below.

Section I  ~ Statistical Analysis

Map-Data Fit: Quantization Error

A 2 x 3 (SOM Size x Item Discrimination) analysis of variance (ANOVA) was 

conducted to determine how well the SOM represents the simulated test data in terms of 

quantization error. The interaction in this analysis was statistically significant, F(2, 594) 

= 251.7,p <  0.001, indicating that levels of each main effect were not sufficient to 

statistically predict QE. As in Experiment One, the practical significance of this result 

does not follow from its statistical significance given the overwhelming statistical power. 

An examination of the cell means and standard errors in Table 6.1 underscores this 

assertion as little deviation from the trend in the main effects are observed in the simple 

main effects. Both main effects are were also statistically significant, for SOM size, F (l, 

594) = 751015.l,p<0.001, and for Item Discrimination, F(2, 594) = 1406731.2,/K0.001. 

The interpretation of these results is consistent with Experiment One; QE decreases with 

increases in SOM size and with increases in Item Discrimination.

Table 6.1. Mean (Standard Error) Quantization Error by Condition

Item Discrimination

Map Size 0.5 1.0 2.0 All

4 x 4 1.96(0.000) 1.68(0.000) 1.34(0.001) 1.66(0.015)

8 x 8 1.70(0.001) 1.42(0.000) 1.06(0.000) 1.39(0.015)

All 1.83 (0.009) 1.55 (0.009) 1.20(0.010) 1.53 (0.012)
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Projection

The effect of Item Discrimination and Map Size was examined for the two 

measures of projection, topological preservation and correlation of distances. Means and 

standard errors for each measure are presented in Tables 6.2 and 6.3. As has been 

consistently seen, interactions were statistically significant, F{2, 594) = 1358.9,p<0.001, 

and F(2, 594) = 21.5, p<0.001 for TP and R COit, respectively. The interpretation of this 

effect for the two measures is quite different, with little improvement in TP being seen 

with increases in Item Discrimination in the large maps. The same comparison in the 

small maps reveals large increases in TP, approaching the maximum (97.7%) with Item 

Discrimination equal to 2.0. In contrast, the interaction effect for R cotr can be attributed 

to a ceiling effect encountered for both large and small maps at the highest level of Item 

Discrimination, where R corr approached 1.0 (0.96 and 0.94 for small and large maps, 

respectively).

Table 6.2. Mean (Standard Error) Topological Preservation by Condition

Item Discrimination

Map Size 0.5 1.0 2.0 All

4 x 4 0.64(0.003) 0.83 (0.003) 0.98(0.002) 0.82(0.008)

8 x 8 0.25 (0.002) 0.27 (0.003) 0.28 (0.003) 0.27 (0.002)

All 0.44(0.014) 0.55 (0.020) 0.63(0.025) 0.54(0.012)
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Table 6 .3 .  Mean (Standard Error) Correlations (Rdist) between Distances in Metric Space 

and Associated SOM Co-ordinates by Condition

Item Discrimination 

Map Size 05  LO 2iO AU

4 x 4  0.75 (0.003) 0.90 (0.004) 0.96 (0.004) 0.90 (0.006)

8x  8 0.58 (0.002) 0.82(0.005) 0.94(0.000) 0.83 (0.009)

AU 0.68 (0.006) 0.87 (0.004) 0.95 (0.002) 0.87 (0.005)

Both main effects for TP were also statistically significant, F[ l, 594] = 2106.6, 

/K0.001, and F[\, 594] = 53679.2,/?<0.001 for Item Discrimination and Map Size, 

respectively. The same main effects were statistically significant for R COrr, E’fl, 594] = 

4545.7,p<0.001 (Item Discrimination), and F[ 1, 594] = 991.0,/?<0.001 (Map Size). As 

in Experiment One, projection was improved when Item Discrimination was higher.

Also like the first experiment, there was a difference in TP favouring small maps over 

large although this difference was particularly large in the present experiment. This same 

difference was smaller for Rcorr but reflected a similar pattern. The most notable 

difference between the two experiments was the size of the values for both measures of 

projection. In the best condition, (small map, high item discrimination) values of TP and 

Rcorr (0.98 and 0.96, respectively) approached their maximums (1.00), indicating that 

proximity and distance relationships derived from the original data and model vectors, 

respectively, to the SOM were well preserved. High values for TP were also observed for 

the small map with Item Discrimination = 1.0 ( X ^  i o = 0.83), and for Rcorr for both map 

sizes in the two highest Item Discrimination conditions.
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Discussion

The pattern of results in Experiment Two followed closely that of Experiment One, 

again reflecting the impact of map size and item discrimination on the representation of 

data structure. In general, more discriminating items produced more accurate maps both 

in terms of model-data fit and projection. The beneficial effect of larger maps was only 

observed for map-data fit, as smaller maps outperformed larger ones on both measures of 

projection. The explanation for this is similar to the explanation presented in Experiment 

One; more units provide greater resolution of the data and thus greater map-data fit. 

However, the greater number of units in the large maps also decreases the overall 

likelihood that any two units will be adjacent even when adjacent in the metric space. 

Small numbers of data points in each receptive field in the larger map also means that the 

locations of the centroids may be affected by spurious variance in the data. To the extent 

that this variance in uncorrelated to the two dominant dimensions in the data represented 

by the co-ordinate dimensions of the SOM, its presence could result in smaller 

correlations of distance between the two spaces.

Quantization Error across all conditions of Experiment Two was larger than the 

corresponding values in Experiment One. This may reflect the increased complexity of 

the two-dimensional versus one-dimensional data. In effect, it may be a sign that the 

original data in Experiment Two populates a greater dimensional space than those in 

Experiment One, and consequently that each cluster must represent a larger region.

Large values on the measures of projection in Experiment Two provide evidence for the 

hypothesis generated from Experiment One; SOMs better represent the structure of data 

when there is a match between the dimensionality of those data and of the map. This is
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evidenced particularly for the small map, high item discrimination condition but was also 

evident in the comparisons of cell and marginal means for TP and Rdjst between the two 

experiments; improvements in projection were seen in Experiment Two for all but one 

comparison. This is further evidence for the central role of dimensional match in creating 

interpretable SOMs.

Section I I — Qualitative Examination o f the SOM

Visual Examination o f SOM Solutions

The interpretation of the statistical results presented in Section I is enhanced by the 

visual examination of SOMs from each condition. Figure 6.1 displays the modal class 

for each unit and for each dimension for two replications of the small map, high item 

discrimination condition with the highest and the lowest values for TP5. In order to 

clearly show how the two data dimensions were represented in the SOM, each map shows 

the modal class for data dimensions one and two in the left- and right-hand, respectively 

for each replication. The size of the numbers representing each model class is 

proportional to the number o f observations classified to that unit.

One striking feature of the SOM having high TP is the clarity with which it renders 

the structure of the data. The simulated classes in each dimension are grouped together 

and the classes are ordered from lowest to highest across the surface of the map. 

Furthermore, the orthogonality of the dimensions is preserved in the map; Dimension 1 is

5 There are two ways to calculate modal intended class for each unit for the purposes o f these figures. The 
first is to determine which o f the sixteen simulated classes was most frequently classified to the unit. Each 
o f these 16 classes is uniquely identified by one o f four classes in each dimension, and these are the values 
included in the figure. For example, the modal class for unit 7 (3,2) on the High TP was class 10. This 
class was simulated to be o f Class 3 on Dimension 1 and Class 2 on Dimension 2 and thus for unit 7, the 
numbers 3 and 2 appear in the left- and right-hand figures o f  the High TP replication in the above figure. 
The second way is to determine the modal class separately for each dimension, ignoring the class o f the 
other dimension. In this case, the decision for the modal class o f each dimension is between four, not 
sixteen classes, but two separate decisions are made. Though the two methods lead to similar results, the 
first method was used exclusively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ANNs and Test Structure 122

ordered from left to right whereas Dimension 2 is order from top to bottom. This figure 

indicates that under these conditions, the SOM can create representations of simulated 

test data that are clearly interpretable. Interestingly, though derived from the same data, 

the two replications presented here differ considerably in their interpretability. Though 

Dimension 2 from the replication with low TP is well ordered in the map, it fails to 

clearly display the simulated structure of the Dimension 1. This demonstrates that the 

SOM cannot be relied upon to consistently produce faithful reproductions of the test data. 

However, it is worthy of note that this replication was highly atypical of this condition. 

Only two replications had topological preservation less than 0.95, the low TP replication 

above (0.77), and one other (TP = 0.89). It therefore may be argued that in the large 

majority of replications, good solutions will be obtained.

Figure 6.1. Modal Simulated Class Membership for Two Self-Organizing Maps in 

Experiment Two, Small Map, Item Discrimination = 2.0.

High TP (0.994) 
Dimension 1 Dimension 2

Low TP (0.770) 
Dimension 1 Dimension 2

1 Hî Ĥ 1 1 1 1

; 1 ■HHH1 _____
1 m m 1 1111

Examining typical replications from each condition further illuminates the capacity of the 

two-dimensional SOM to yield interpretable representations of two-dimensional data. 

Figure 6.2 displays SOMs from one typical replication that was randomly chosen from 

each condition, 1 through 3. The definition of typical replication remains the same from
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that as Experiment One; a replication is considered typical if its associated values for QE, 

TP, and Rcorr are within one standard unit from the mean of the condition.

Figure 6.2. Most Frequent Intended Class Membership for Typical Self-Organizing 

Maps in Experiment Two, Conditions One, Two, and Three.

Condition One (4x4, 2.0) 

Dim. 1 Dim. 2

Condition Two (4x4, 1.0) 

Dim. 1 Dim. 2

Condition Three (4x4, 0.5) 

Dim. 1 Dim. 2
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H U  H i 1

i 1 1- B

The SOM representations of the typical replications from the three conditions differ 

markedly with changes in Item Discrimination. In Condition One, the structure of the 

input data is very clearly depicted. Classes within each dimension are represented by 

contiguous units, adjacent units belong to either the same class or to a class representing 

the next most or next least able examinees, the classes are correctly ordered, and the two 

orthogonal dimensions in the data are represented by orthogonal dimensions in the map. 

Condition Two reveals many of these properties, but less consistently. Assuming that 

each column in Dimension One and each row in Dimension Two represents a single class 

within its respective dimension, there are a total of seven deviations from the ideal pattern 

exhibited in Condition One. The map from the typical replication of Condition Three 

reveals little of the simulated structure of the data. Dimension 1 appears to be somewhat 

preserved, as Classes One and Four are separate and occupy the extreme top and bottom 

of the map. Beyond the contiguity o f Class One, the representation of Dimension 2 is
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very limited. No ordering is evident, classes of neighbouring ability are not consistently 

adjacent in the map, and single classes do not occupy contiguous regions.

Figure 6.3. Most Frequent Intended Class Membership for Typical Self-Organizing 

Maps in Experiment Two, Conditions Four, Five, and Six.

Condition Four (8x8, 2.0) 
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Note: Map locations are blank for which more than one modal class was possible.

As in the small map conditions, large maps vary in interpretability with item 

discrimination. Condition Four (Item Discrimination = 2.0) has the most clearly 

interpretable structure, very similar to Condition One. Each dimension is represented by 

a co-ordinate axis in the map along which the classes are well ordered. Condition Five 

(Item Discrimination = 1.0) has some discemable ordering as in general, classes 

representing the extreme ability groups were located far away from each other. 

Interestingly, the ordering within the dimensions seems to be most prevalent along the 

diagonal as opposed to the co-ordinate axes. Also, approximately 20% of the map 

locations have no clear modal class, possibly due to the small number of observations in 

each receptive field. Condition Six (Item Discrimination = 0.5) has many of these class- 

indeterminate map locations and less overall discemable structure. The left- and right-
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hand regions of Dimension One seem to correspond to Classes One and Four, 

respectively although these classes are not restricted to these regions. Top and bottom 

regions in Dimension Two also appear to represent extreme classes while Classes Two 

and Three are interspersed throughout the SOM.

Discussion

There were clear improvements in the interpretability of maps in Experiment Two 

versus Experiment One. First, co-ordinate axes from SOMs in Experiment One did not 

exclusively represent one dimension in the data. However, this was clearly observed in 

Experiment Two, particularly in small map and high item discrimination conditions. 

Second, the linear ordering of classes was represented linearly in maps from Experiment 

Two. In Experiment One, even for the most favourable conditions (small map, high item 

discrimination), class order was often folded in the map. Both of these points support the 

critical role o f dimensional match in generating interpretable maps.

Section III -  Interpretation o f the SOM

In Experiment One, Multi-Dimensional Scaling (MDS) was used to identify the 

characteristics of test- and item-level performance that were represented by the SOM. 

This analysis was of particular interest since measures of projection and visual 

examinations of the SOMs showed that the co-ordinate axes of the map did not and could 

not clearly represent the dimensional characteristics of the data. In the present 

experiment, the co-ordinate axes appear to have a clear interpretation; each axis seems to 

represent performance on each of the two ability dimensions in the data. MDS for the 

present experiment will therefore be used to provide further evidence for this
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interpretation of the SOM solution.
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Table 6.4. Stressl and Variance Accounted For (VAF) in One- and Two-Dimensional 

MDS Analyses on Typical Replications in Each Condition

MDS Analysis

One-Dimensional T wo-Dimensional

Condition Stressl VAF Stressl VAF

1 (4x4, a = 2.0) 0.376 0.543 0.040 0.989

2 (4x4, a = 1.0) 0.422 0.441 0.067 0.969

3 (4x4, a = 0.5) 0.407 0.460 0.156 0.829

4 (8x8, a = 2.0) 0.407 0.509 0.079 0.964

5 (8x8, a=  1.0) 0.409 0.501 0.147 0.877

6 (8x8, a = 0.5) 0.506 0.280 0.281 0.552

As in Experiment One, each of the typical replications from Section II was analyzed 

using ALSCAL. The values of stress and the variance accounted for (VAF) in each 

replication for one and two dimensions are listed in Table 6.4. The interpretation of these 

data are much the same as in Experiment One; higher item discrimination leads to better 

fit, larger maps are more difficult to fit than smaller ones, and two-dimensional solutions 

are better-fitting than one-dimensional solutions.

The question of what the dimensions identified by MDS reflect about the SOM 

solution is addressed in Table 6.5. Here, the correlation of average score for observations 

at each unit with the MDS co-ordinates is presented. For the one-dimensional analysis,
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the correlations presented are between the average total score and the MDS co-ordinates 

at each unit. The correlations presented for the two-dimensional solution are between the 

subtest scores for each group of 12 dimensionally coherent items and the MDS co

ordinates for each unit for each dimension. In order to maximize the interpretability of 

these co-ordinates in terms of the dimensions in the data, MDS co-ordinates were rotated 

to yield the maximum absolute correlation with the subtest scores. These correlations are 

the values presented in Table 6.5.

Table 6.5. Correlation between Dimensional Co-ordinates of Each SOM Unit in MDS 

Analyses and Total Expected Score for Unit Members, Performed Separately for Typical 

Replications of Each Condition

MDS Analysis

Condition

One-Dimensional T wo-Dimensional

Dim 1 Dim 1 Dim 2

1 (4x4, a = 2.0) 0.719 0.997 -0.997

2 (4x4, a = 1.0) 0.950 -0.899 0.879

3 (4x4, a = 0.5) 0.170 0.967 -0.967

4 (8x8, a = 2.0) 0.738 0.875 0.874

5 (8x8, a = 1.0) 0.764 -0.991 -0.987

6 (8x8, a = 0.5) 0.199 -0.760 0.724

From Table 6.5 it can be seen that the two-dimensional MDS co-ordinates are very 

closely related to the 12-item subtest scores for each unit. The large values of these
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correlations indicate that the placement of the model vectors is almost entirely 

determined by the two-dimensional structure of the data represented by the subtest scores. 

Therefore, the MDS analysis reflects the clarity of the SOM’s representation of the test 

data, despite changes in map size and item discrimination.

It is notable that correlations of the one-dimensional co-ordinates with the total test 

score were also large. This can be explained by noting that only a subset of units require 

two dimensions to fully describe their performance; for example, extremely high average 

scores can only result from high values on each of the two simulated classes. By way of 

analogy, there is only one combination of scores from two dice that yields a score of 

twelve; the sum of the die faces uniquely identifies the value shown by each die. 

However, a score of seven does not reveal the results at each die. Similarly, a total test 

score between the two extremes does not contain information to determine the 

combination of classes that produced it. Therefore, though the correlations are high for 

one dimension, this single dimension is insufficient to represent the complexity of the 

data. Two dimensions are needed to clearly depict the structure of the data.

General Discussion

This experiment was designed to test the hypothesis that a match between the 

dimensionality of the SOM and the test data being analyzed could maximize the 

conformity of the SOM representation with the characteristics of the original data. This 

experiment can be interpreted as evidence for the correctness of that hypothesis. Despite 

an increase in the complexity of the data in the present experiment when compared with 

those of Experiment One, the essential characteristics of the data appear to be more 

clearly rendered. This conclusion follows from evidence from each of the three
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perspectives presented, statistical, qualitative, and interpretive. The statistical evidence 

consists of larger absolute values on measures of projection, particularly for the small 

map condition. This seems to indicate that the two-dimensional SOM is preserving 

relationships of the original data better when they themselves are two-dimensional. 

Qualitative evidence follows from the visual inspection of specific SOMs; regions of the 

maps appeared to be more tuned to individual classes than in Experiment One. 

Furthermore, since the map was the same dimensionality as the data, it was a natural 

medium to represent the data; each of the co-ordinate axes in the map came to represent 

performance on each dimension. Last, MDS analyses revealed the inherent 

dimensionality of the set of model vectors. The two-dimensional nature of the 

representation of the test data was strongly present in this analysis, indicating that the 

SOM was selectively sensitive to it.

Though all these sources of evidence are consistent with the hypothesis, there are 

several caveats in this interpretation that bear mention and that can be addressed 

empirically. First, in the research presented thus far, only the two-dimensional SOM has 

been considered. If the hypothesis is a general one, it ought to apply to SOMs of 

dimensionality other than two. Second, no direct statistical evidence was provided for the 

superiority of maps with the same dimensionality as the test data versus those with 

different dimensionalities. Furthermore, in the case of mismatches, only the case where 

the dimensionality of map exceeds that of the data has thus far been considered. The 

opposite case, where the dimensionality of the data exceeds that o f the SOM has not been 

examined.
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In order to address these potential shortcomings, a further series of simulations and 

subsequent analyses were undertaken, and are reported in the next chapter. These 

simulations examine more completely the issue of dimensional match between SOM and 

test data by employing one-dimensional SOMs to represent both one- and two- 

dimensional data. Adding these further simulations, an additional factor can be 

considered in statistically analyzing the results of Experiments One and Two: 

dimensional match. This statistical analysis should provide more compelling evidence 

for the critical role of this factor in using SOMs to represent test data.
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Chapter Seven -  Experiments 3 and 4: One-Dimensional SOMs

The results from Experiments One and Two indicate the importance of a match of 

dimensionality between data and SOM in order to create ‘better’ maps. The appearance 

of higher values of projection and more interpretable maps in Experiment Two versus 

One demonstrates this. This has direct implications for using SOMs as a method to 

determine test structure; dimensional structure of a test will be most clearly represented 

with a map of the same dimensionality. Experiment Three is designed as a direct test of 

this hypothesis.

In order to more definitively determine the role of the dimensional match, a 

statistical analysis is conducted comparing the dependent measures under conditions of 

match versus non-match. Before this analysis is conducted, however, the results from 

Experiments One and Two will be extended by the inclusion of one-dimensional maps. 

Since the data in the previous two experiments were one- and two-dimensional, a 

complete analysis of these data from the perspective of dimensional match must include 

both one- and two-dimensional maps. The goals of Experiment Three are therefore 

twofold. First, it is designed to better understand the capabilities of a one-dimensional 

SOM in representing simulated educational test data in light of the potentially important 

role for dimensional match. This is an important goal in itself as it is often an explicit 

goal of test developers to build unidimensional tests and if  dimensional match is 

important then one-dimensional SOMs ought to represent those tests most effectively. 

The second goal is to test statistically the impact of dimensional match for the 

representation of the structure of educational test data. This will be accomplished by
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coding all one-and two-dimensional data and maps in terms of dimensional match and 

using this coding to predict the three measure of SOM quality: QE, TP, and Rdist- 

The first part of Experiment Three follows the same form as the two previous 

experiments; examined are a) the ability of the SOM to reveal essential characteristics of 

the test data and, b) the boundary conditions under which those characteristics are 

revealed. These two issues are again examined from the statistical, qualitative, and 

interpretive perspectives, in separate sections. These analyses are first done with one

dimensional maps and one-dimensional data, and then repeated with one-dimensional 

maps and two-dimensional data. The final section of this chapter features a statistical 

analysis of the specific role for dimensional match using data from all previous 

experiments. At the conclusion of this chapter a role for dimensional match is discussed.

Experiment 3: Data and Method 

The same data used in Experiment One were used in Experiment Three. The SOM 

comprised 16 units, the same number as in Experiment One, but the units were organized 

as a 16 by 1 array rather than a 4 by 4 array for the small map condition, and as a 64 by 1 

rather than an 8 x 8 array for the large map condition. Otherwise, training proceeded in 

the same manner as Experiment One.

Results

Section I  -  Statistical Analysis 

Quantization Error

A 2 x 3 (SOM Size x Item Discrimination) analysis of variance (ANOVA) was 

conducted on QE. The interaction between these factors was statistically significant, F(2, 

594) = 1314.2, p  < 0.001, indicating that differences in QE resulting from map size varied
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with item discrimination. In general, greater differences in QE were observed between 

large and small maps when item discrimination was greater. Main effects were also 

significant for SOM size, F (l, 594) = 187554.6, p<0.001, and for Item Discrimination,

F(2, 594) = 238035.8, p<0.001 revealing a familiar pattern of larger QE for smaller maps 

and higher item discriminations. Means for all conditions are presented in Table 7.1.

Table 7.1. Mean (Standard Error) Quantization Error by Condition

Item Discrimination 

Map Size 05  LO 2d) All

1 x 16 1.21 (0.000) 0.94 (0.000) 0.61 (0.001) 0.92 (0.014)

1 x64  0.92(0.001) 0.63 (0.001) 0.23 (0.001) 0.59(0.016)

All 1.06 (0.010) 0.78 (0.011) 0.42 (0.014) 0.76 (0.013)

Projection

An ANOVA with the same factors was also conducted for both TP and Rdist (means 

are presented in Tables 7.2 and 7.3). Both analyses revealed statistically significant 

interaction effects, F(2, 594) = 72.2,p<0.001, and F(2, 594) = 25.4, p<0.001 for TP and 

Rdist, respectively. Both interactions are interpreted similarly; differences in projection 

between small and large maps decrease as item discrimination increases. Main effects for 

each measure were also statistically significant. The main effect of map size shows that 

projection is better for smaller maps than larger ones (F(l, 594) = 347.5, p<0.001, and 

jFXI, 594) = 1514.3, p<0.001 for TP and Rdist, respectively) while the main effect of item 

discrimination shows that high item discriminations have positive effects on measures of
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projection (F(2, 594) = 667.0,/><().001, and F(2, 594) = 6128.9, /><0.001 for TP and Rdist, 

respectively). This pattern o f results is the same as observed in the previous two 

experiments.

Table 7.2. Mean (Standard Error) Topological Preservation by Condition

Item Discrimination

Map Size 0.5 1.0 2.0 All

1 x 16 0.50 (0.005) 0.58 (0.006) 0.64 (0.007) 0.57 (0.005)

1 x 64 0.37 (0.003) 0.46 (0.005) 0.63 (0.007) 0.49 (0.013)

All 0.44 (0.005) 0.52 (0.006) 0.64 (0.005) 0.53 (0.005)

Table 7.3. Mean (Standard Error) Correlations (Rdist) between Distances 

and Associated SOM Co-ordinates by Condition

Item Discrimination

in Metric Space

Map Size 0.5 1.0 2.0 All

1 x 16 0.58 (0.006) 0.83 (0.004) 0.91 (0.001) 0.81 (0.009)

1 x64 0.44 (0.006) 0.71 (0.005) 0.86 (0.001) 0.71 (0.010)

All 0.51 (0.006) 0.77(0.005) 0.89(0.002) 0.76(0.007)

The results above show that map size and item discrimination have a similar effect 

with one-dimensional as with two-dimensional maps. In particular, they show that larger 

sized maps lead to lower values of QE whereas for measures of projection, smaller maps
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are superior. High item discriminations lead to higher quality maps, regardless of the 

measure examined.

Section II  — Qualitative Examination o f SOMs

Visual representations of the maps shed further light on the nature of the 

representation of one-dimensional data with a one-dimensional SOM. Figure 7.1 shows 

such representations from typical replications of each of the small map conditions. This 

figure corroborates the results from the statistical analysis of projection; when item 

discriminations are high, better maps are produced. This can be clearly seen from the 

superiority of the first map in rendering the test structure as compared with the second 

and third maps. The first map represents classes in precise order from lowest- to highest- 

achieving, from left to right. The second map has clear order, with one exception; the 

third unit from the left represents Class 2, while its neighbours both represent Class 1. 

The third map, representing a typical replication from the condition of the lowest item 

discrimination, has many such misplaced units. Importantly, and unlike the maps 

produced in Experiment One, visual representations of maps with high item 

discriminations are clearly represented as unidimensionally ordered.

Figure 7.1. Most Frequent Intended Class Membership for Typical Self-Organizing 

Maps in Experiment Three, Small Maps Only.

Item Discrimination Map Representation
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In contrast, even with high item discriminations, large maps do not as clearly 

represent the test structure for these data as do small maps (see Figure 7.2). Of the three 

conditions, the map trained with the data of the highest item discrimination shows most 

clearly the intended unidimensionally ordered structure but many units are either vacant 

(i.e., no observations were found in their receptive fields) or were misplaced (i.e., were 

deviations from the strict ordering). As item discrimination decreases, less vacant units 

are observed, but more misplaced units appear, as well as those whose intended class is 

indeterminate (denoted with a ‘?’). In addition, for the typical replication with the lowest 

item discrimination, overall ordering of the data in the map appears to break down in the 

extreme right of the SOM. That the structure of the data is not well represented by these 

large maps may reflect over-fitting of the data; too few data points are represented by 

units in the maps.

Figure 7.2. Most Frequent Intended Class Membership for Typical Self-Organizing 

Maps in Experiment Three, Large Maps Only.

Item Map Representation
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Section III -  Interpretation o f  the SOM

From visual inspection of typical maps it can be seen that in some conditions, the 

SOM clearly depicts the dominant dimension in the data. This can be seen by observing 

that the ordering of model vectors is consistent with the order of the simulated classes. 

What remains to be determined is how well the SOM has extracted the dominant 

dimension from the data and also the extent to which the ordering reflects properties of 

the data directly related to class membership.

Table 7.4. Stressl and Proportion of Variance Accounted For (VAF) in One- and Two- 

Dimensional MDS Analyses on Typical Replications in Each Condition

MDS Analysis

One-Dimensional T wo-Dimensional

Condition Stressl VAF Stressl VAF

1 (16, a = 2.0) 0.092 0.972 0.074 0.979

2 (16, a = 1.0) 0.153 0.923 0.108 0.948

3 (16, a = 0.5) 0.336 0.654 0.227 0.716

4 (64, a = 2.0) 0.175 0.908 0.119 0.945

5 (64, a = 1.0) 0.293 0.745 0.205 0.805

6 (64, a = 0.5) 0.439 0.428 0.294 0.521

To address these questions, each of the typical replications from above was 

analyzed using MDS. As in the previous experiments, the primary interest is the 

projection of the model vectors in two dimensions and therefore MDS analyses are
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reported for one and two dimensions only. The values of stress and the proportion of 

variance accounted for (VAF) in each replication for one and two dimensions are listed in 

Table 7.4. Two trends emerge from these results. First, as item discrimination decreases, 

values of stress increase and the variance accounted for decreases. Second, larger maps 

are more difficult to fit, as evidenced by the larger values of stress and lower amount of 

variance accounted for as compared with the smaller maps. It is interesting to note that 

the results from the MDS correspond well to the quality of visual representation from 

Section II; the most clearly interpretable visual representations (i.e., small map conditions 

with item discrimination = 2.0, 1.0, and large map condition with item discrimination = 

2.0) had the lowest values of stress and the highest values of VAF.

To interpret the dimensions identified by MDS in terms of test and item 

performance, a correlation analysis was performed between the co-ordinates determined 

by MDS and the average total score on the test for all examinees in the same receptive 

field (see Table 7.5). Recall that this average was computed by summing together the 

elements of the model vectors. Correlations approaching 1.0 were observed in every 

condition. This analysis shows clearly that the most dominant dimension represented by 

the model vectors and identified by MDS corresponds unequivocally to a dominant 

dimension in the data.

From the above results, it appears that one-dimensional maps represent well one

dimensional data, particularly in the small map and high item discrimination conditions. 

This is evidenced by high values of projection, interpretable visual representation, and 

clear representation of the dominant structure in the data for maps in these conditions. 

However, this conclusion remains tentative before direct comparison with other
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conditions in which dimensional match does not hold. The following section examines 

such data, those resulting from the analysis of two-dimensional data with the one

dimensional SOM.

Table 7.5. Correlation between Dimensional Co-ordinates of Each SOM Unit in MDS 

Analyses and Total Expected Score for Unit Members, Performed Separately for Typical 

Replications of Each Condition

MDS Analysis

Condition

One-Dimensional T wo-Dimensional

Dim 1 Dim 1 Dim 2

1 (16, a = 2.0) -0.999 -0.998 -0.255

2 (16, a = 1.0) 0.999 0.998 0.004

3 (16, a = 0.5) -0.993 -0.993 -0.006

4 (64, a = 2.0) 0.999 0.996 0.512

5 (64, a -  1.0) 0.996 0.998 0.080

6 (64, a = 0.5) -0.946 0.974 0.189

Experiment 4: Data and Method 

The same two-dimensional data as used in Experiment Two were used in 

Experiment Four. The SOMs comprised 16 and 64 units for the small and large map 

conditions, respectively. These were the same as in Experiment Three. Otherwise, 

training proceeded in the same manner as Experiment Two.
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Results

Section I Statistical Analysis

Quantization Error

In order to determine the impact of analyzing two-dimensional test data with a one

dimensional SOM, a series of 2 x 3 (SOM Size x Item Discrimination) analyses of 

variance (ANOVA) were conducted. Like the previous experiments, the first of these 

analyses focused on QE, the measure of map-data fit. For this measure, the interaction 

between the factors was statistically significant, F(2, 594) = 121.8,/? < 0.001, indicating 

that differences in QE resulting from map size were slightly larger with increases in item 

discrimination. Main effects were also significant for both SOM size, F( \ , 594) =

593032.8,p<0.001, and for Item Discrimination, F(2, 594) = 1143476.0, /K0.001 

revealing that QE was larger for smaller maps and lower item discriminations. Means 

and standard errors are presented in Table 7.6.

Table 7.6. Mean (Standard Error) Quantization Error by Condition

Item Discrimination

Map Size 0.5 1.0 2.0 All

1 x 16 1.96(0.000) 1.68(0.000) 1.34(0.000) 1.66(0.015)

1 x 64 1.70(0.001) 1.42(0.001) 1.06(0.000) 1.40(0.015)

All 1.83 (0.009) 1.55 (0.009) 1.20(0.010) 1.53 (0.012)
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Projection

Means for the ANOVAs for TP and Rdist are displayed in Tables 7.7 and 7.8, 

respectively. The ANOVA for TP revealed no statistically significant interaction between 

map size and item discrimination (F(2, 594) = 1.202, p=0.301), while this interaction was 

significant for Rdist, F(2, 594) = 72.0, ̂ <0.001. For TP, the lack of interaction 

demonstrated no differential effect of map size over levels of item discrimination, while 

for Rdist, the significant interaction was due to a narrowing of difference between small 

and large maps as item discrimination increased. This seems to reveal some kind of 

ceiling effect, around the low value of 0.6. Both main effects for both measures were 

statistically significant. The main effect o f map size for TP and Rdist (FT 1, 594) = 1623.8, 

/K0.001, and F (l, 594) = 1114.0,/K0.001,respectively), shows that small maps represent 

relationships between data better than large maps. The significant main effects of item 

discrimination (F(2, 594) = 763.3,p<0.00l and F(2, 594) = 773.9,/K0.001 for TP and 

RdiSt, respectively) shows projection is improved when item discriminations are high.

Table 7.7. Mean (Standard Error) Topological Preservation by Condition

Item Discrimination

Map Size 0.5 1.0 2.0 All

1 x 16 0.49(0.003) 0.53 (0.004) 0.64(0.004) 0.55 (0.004)

1 x 64 0.37 (0.003) 0.43 (0.003) 0.51 (0.003) 0.44 (0.004)

All 0.43(0.005) 0.48(0.004) 0.57(0.005) 0.49(0.004)
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Table 7.8. Mean (Standard Error) Correlations (Rdist) between Distances in Metric Space 

and Associated SOM Co-ordinates by Condition

Item Discrimination 

Map Size 05  TO 21) All

1 x 16 0.54 (0.003) 0.59 (0.004) 0.61 (0.002) 0.58 (0.002)

1 x 64 0.41 (0.002) 0.52 (0.003) 0.57 (0.002) 0.50 (0.004)

AU 0.48 (0.005) 0.56 (0.004) 0.59 (0.002) 0.54 (0.003)

The most notable characteristic of the two analyses of projection is that, relative to 

other experiments, the measures of projection are uniformly low. This may indicate the 

negative effect of the mismatching of dimensionality between data and map, a possibility 

explored further below.

Section I I -  Qualitative Examination o f SOMs

The visual representation of two-dimensional data with a one-dimensional map 

helps further highlight the impact of the dimensional mismatch. Figure 7.3 shows these 

representations from typical replications of the small map conditions. The most striking 

characteristic of this figure is the apparent lack of consistent ordering in the SOM for 

each of the dimensions. Looking more closely, however, it can be seen that some local 

ordering exists, since in the two conditions of highest item discrimination, adjacent units 

always represent classes that follow each other in ability. Even in the condition of lowest 

item discrimination there are only two pairs of adjacent units that represent classes whose 

difference in number is two. However, this local ordering does little to elucidate the test 

structure.
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Figure 7.3. Most Frequent Intended Class Membership for Typical Self-Organizing 

Maps in Experiment Four, Conditions One, Two, and Three.

Figure 7.4. Most Frequent Intended Class Membership for Typical Self-Organizing 

Maps in Experiment Three, Conditions Four, Five, and Six.

The lack of ordering is more dramatic for large maps. With the exception of when 

item discrimination is 2.0, it is difficult to determine any regularities and any relationship 

of map structure to test structure. In the condition with high item discrimination, there 

are some contiguous regions where class remains consistent, but even here there is little 

discemable order.
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Section III -  Interpretation o f the SOM

Given the limited ability of the one-dimensional SOM to represent visually the 

structure of two-dimensional data, an interpretation of the test structure implied by the 

SOM is of limited value. However, if the SOM is still able to shed light on the 

dimensionality of the data through the placement of the model vectors, it could be argued 

that the SOM may still be informative about test structure, even when there is 

dimensional mismatch. That is, the location of the model vectors themselves and not 

their association with co-ordinate locations in the SOM may be central in evaluating the 

dimensionality of the test.

Table 7.9. Stressl and Proportion of Variance Accounted For (VAF) in One- and Two- 

Dimensional MDS Analyses on the Model Vectors from Typical Replications in Each 

Condition in Experiment 4

MDS Analysis

One-Dimensional T wo-Dimensional

Condition Stressl VAF Stressl VAF

1 (16, a = 2.0) 0.375 0.556 0.036 0.991

2 (16, a = 1.0) 0.394 0.509 0.074 0.964

3 (16, a = 0.5) 0.439 0.407 0.160 0.827

4 (64, a = 2.0) 0.391 0.549 0.082 0.962

5 (64, a = 1.0) 0.424 0.468 0.141 0.888

6 (64, a = 0.5) 0.475 0.340 0.261 0.613
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In order to address this possibility, each of the typical replications from above was 

analyzed using MDS. The values of stress and the proportion of variance accounted for 

(VAF) in each replication for one and two dimensions are listed in Table 7.9. The most 

significant finding from this analysis is the much improved fit of the two-dimensional 

analysis. This clearly indicates that the model vectors represent well the dimensionality 

of the data, despite the one-dimension map.

Table 7.10. Correlation between MDS Dimensional Co-ordinates of Each SOM Unit 

and Total Expected Score by Subscale for Unit Members, Performed Separately for 

Typical Replications of Each Condition in Experiment 4

MDS Analysis

Condition Dim 1 Dim 2

1 (16, a — 2.0) -0.999 -0.999

2 (16, a = 1.0) 0.999 -0.999

3 (16, a = 0.5) -0.991 -0.989

4 (64, a = 2.0) -0.997 -0.997

5 (64, a = 1.0) -0.995 -0.996

6 (64, a = 0.5) -0.973 -0.963

To determine whether the dimensions identified by MDS relate to the 

characteristics of the items, a correlation analysis was performed between the co

ordinates determined by the two-dimensional MDS analysis and the mean subtest scores 

for all examinees in the same receptive field (see Table 7.10). MDS co-ordinates were
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rotated in order to obtain the maximum correlation. The correlation between subtest 

scores and the rotated MDS co-ordinates approached 1.0 for each dimension in every 

condition. This analysis shows clearly that the dominant dimensions represented by the 

model vectors are the dominant dimensions in the data. This is notable, since the map 

itself was one- and not two-dimensional. It appears as though the fit of the model vectors 

to the data depends very little upon their actual arrangement in the map.

Discussion -  Experiments 3 and 4

Experiments Three and Four seem to demonstrate that a match of dimensionality 

between data and SOM has a significant impact on projection. The lower values for TP 

and Rdist and the lack of discemable order in the visual representations of typical 

replications in Experiment 4 appear to demonstrate this. Less clear is the impact of 

dimension match on map-data fit. Since QE appears to be dependent on the complexity 

of the data, a determination of the effect of dimensional match on this aspect of SOM 

quality must also await a comparison between conditions that have equally complex data, 

but differ on dimensional match.

In the last section of this chapter, an analysis of data from all four experiments 

presented thus far is undertaken. In particular, a comparison is made between all 3 

statistical measures of SOM quality on the basis of dimension match. Two outstanding 

issues are intended to be addressed by this analysis. Measures of projection appear 

improved when there is dimensional match but this apparent improvement has not yet 

been confirmed statistically. Second, the role of dimensional match is unclear for 

Quantization Error since no direct comparison has been made when the complex of the 

data and the size of the map are held constant. These two factors appear to be the most
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salient determinants of QE. By combining data across all conditions, these two issues 

can be directly addressed.

Combined Analysis o f All Experiments

Quantization Error

A 3 x 2 x 2 (Item Discrimination x Map Size x Dimensional Match) ANOVA was 

conducted to determine the role of each factor in the prediction of QE. Table 7.11 shows 

the cell means for each combination of factors, and Figures 8.5 and 8.6 display these 

means for small and large map conditions, respectively. No interactions were 

statistically significant, indicating that the differences in QE between small maps and 

large maps did not depend on levels of item discrimination. Examining the main effects, 

Item Discrimination and Map Size were statistically significant, F(2, 2388) = 537.0, 

pO.OOl and F(l,  2388) = 354.7, p<0.001, respectively. The main effect of dimensional 

match was not statistically significant. This is corroborated by Table 7.11 and Figures 

7.5 and 7.6; no differences by dimensional match are apparent.

Table 7.11. Mean Quantization Error across All Conditions by Map Size, Item 

Discrimination, and Dimensional Match

Map Size

Item Discrimination

0.5 1.0 2.0

4 x 4 No Match 1.58 1.31 0.98

Match 1.58 1.31 0.98

8 x 8 No Match 1.31 1.03 0.66

Match 1.31 1.02 0.65
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Figure 7.5. Mean Quantization Error by Item Discrimination and Dimensional Match for 

All Small Map Conditions.

m a tchn o  m a tch

Figure 7.6. Mean Quantization Error by Item Discrimination and Dimensional Match for 

All Large Map Conditions.

matchno match
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Topological Preservation

A 3 x 2 x 2 (Item Discrimination x Map Size x Dimensional Match) ANOVA was 

conducted to determine the role of each factor in the prediction of TP. Table 7.12 shows 

the cell means for each combination of factors, and Figures 7.7 and 7.8 display these 

means for small and large map conditions, respectively. Each of the interaction effects 

and main effects were statistically significant. The 3-way interaction of all factors (F(2, 

2388) = 3.4,p<0.05), indicates that the difference between match and non-match 

conditions depends upon both map size and item discrimination. Focusing on the 

interaction of Match and Item Discrimination (F(2, 2388) = 11.8,p<0.001), it can be seen 

that TP is greater for match than for non-match conditions for item discrimination 1.0 or 

greater. For lower item discrimination, match appears to have little effect. The 

interaction between Map Size and Match (F (l, 2388) = 8.7,p<0.005) reveals that 

increases in TP due to match are more modest for large than for small maps.

Table 7.12. Mean Topological Preservation Across All Conditions by Map Size, Item 

Discrimination, and Dimensional Match

Map Size

Item Discrimination

0.5 1.0 2.0

4 x 4 No Match 0.57 0.64 0.73

Match 0.57 0.70 0.81

8 x 8 No Match 0.30 0.35 0.43

Match 0.31 0.37 0.46
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Figure 7.7. Mean Topological Preservation by Item Discrimination and Dimensional 

Match for All Small Map Conditions.

matchno match

Figure 7.8. Mean Topological Preservation by Item Discrimination and Dimensional 

Match for All Large Map Conditions.

□ 0.5

matchno match
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Correlation o f Distances

An ANOVA using the same predictors as above was conducted to determine their 

respective roles in the prediction of Rdist- Table 7.13 shows the cell means for each 

combination of factors, and Figures 7.9 and 7.10 display these means for small and large 

map conditions, respectively. As with TP, each of the interaction effects and main 

effects were statistically significant. The 3-way interaction of all factors (F(2, 2388) = 

5.3,p<0.005), indicates that the difference between match and non-match conditions 

depends upon both map size and item discrimination. The interaction of match and item 

discrimination, F(2, 2388) = 577.8,p<0.001, shows that dimensional match leads to 

greater increases in Rdist when item discrimination is larger. The weak interaction 

between match and map size, F( 1, 2388) = 6.165,p<0.05 shows that differences between 

match and non match conditions are greater for large maps, despite smaller cell means for 

all conditions. Last, dimensional match was the strongest main effect, F (l, 2388) =

3313.8, p<0.001, underscoring its importance in the accurate projection of test data.

Table 7.13. Mean Correlation of Distances Across All Conditions by Map Size, Item 

Discrimination, and Dimensional Match

Map Size

Item Discrimination

0.5 1.0 2.0

4 x 4 No Match 0.63 0.69 0.69

Match 0.67 0.87 0.94

8 x 8 No Match 0.48 0.58 0.61

Match 0.52 0.77 0.91
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Figure 7.9. Mean Correlation of Distances by Item Discrimination and Dimensional 

Match for All Small Map Conditions.

matchno match

Figure 7.10. Mean Correlation of Distances by Item Discrimination and Dimensional 

Match for All Large Map Conditions.

matchno match
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Discussion -  Combined Analysis

The results from the combined analysis are strong evidence for the importance of 

the dimensional match in using the SOM as a data projection method. The superiority of 

match relative to non-match conditions was most notably seen in the analysis of Rdist 

which reflected the SOM’s capacity to preserve distance relationships from the test data. 

This analysis demonstrated superior projection across all conditions for maps whose 

dimensionality matched that of the data to those that did not.

Results from the analysis of Topological Preservation followed a similar pattern, 

but were more equivocal. The superiority of dimensional match was observed for 

conditions of item discrimination 1.0 and higher, but was not evident when item 

discrimination was equal to 0.5. This would seem to indicate a certain threshold of item 

quality in order to preserve adjacency relationships.

Last, Dimensional Match plays no apparent role in the minimization of 

Quantization Error. This finding is not unexpected. Since QE is equivalent to the 

expected error when using a model vector to represent a data point, only two factors 

should influence this measure: the number of model vectors and the complexity of the 

data. Since the number of model vectors was equal in each condition, the complexity of 

the data should entirely predict the variation in QE.
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Chapter 8 -  General Discussion 

The preceding experiments examined the capability of Self-Organizing Maps to 

represent the structure of certain educational data. In particular, specific characteristics 

of the data, the maps, and the relationship between the two were varied to determine the 

effects on the statistical, qualitative, and interpretive characteristics of SOM 

representation of test structure. Certain conclusions about the capacity of SOMs in this 

regard can now be made, and a number of interesting implications result for both the 

future use of SOMs in this context, and for future research. These will be discussed in 

the present chapter.

First, the effect on test structure representation with respect to the characteristics of 

the data and the SOM are discussed. Next, the role of dimensional match in rendering 

test structure is discussed both with respect to map-data fit and projection. The 

conception of the SOM as a statistical, possibly latent class model for complex data is 

discussed, as are the implications for optimal map training and design. In particular, the 

notion of a sufficient SOM will be considered in light of the present results and criteria 

applied to other test structure methods. Last, the application of the SOM to certain 

educational measurement problems will be reviewed, and analyzed with respect to its 

appropriate use.

Using the SOM to Determine Test Structure - Considerations 

Characteristics o f Data

SOMs represent test structure best when the items composing the test have high 

discrimination. This is evidenced by both lower QE and higher values on measures of 

projection for those maps whose data had higher values of discrimination. This is not
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surprising since in the present research, item discrimination, or more precisely the lack 

thereof, was a surrogate for the presence of random error. This finding is therefore 

tantamount to saying the SOMs represent test structure better when there is less random 

error in the data, a tautology.

A more specific question is how much random error SOMs can tolerate before the 

representation of test structure becomes significantly degraded. Though no specific 

criterion was used in the present research, highly visually interpretable maps were 

obtained in most conditions with item discrimination = 2.0. Interpretable maps, though 

often significantly compromised, were also observed at discrimination levels of 1.0, 

while levels of 0.5 generally produced maps with little evident structure.

It may be, however, that a more important variable for the generation of visually 

interpretable SOMs may be the reliability of the test as a whole rather than the 

discrimination of the individual items. Reliability is a measure of how consistently 

individuals having the same ability will receive similar test scores. In the SOM context, 

receiving a similar test score could be considered equivalent to the classification or 

assignment of individual observations to the same receptive field, or cluster (e.g., deBodt, 

Cottrell, & Verleysen, 2002). Since individual data were simulated as belonging to one 

of a finite number of classes, the role of reliability could be addressed by determining 

how consistently observations derived from the same latent class ended in the same 

cluster. Using similar logic, an alternative measure of this reliability is the homogeneity 

of class composition of each cluster. In Experiment One, it was shown that this 

homogeneity decreased with decreases in item discrimination and therefore some support 

for the role o f reliability was demonstrated. As further evidence, a traditional measure of
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test reliability could be calculated for the test data and compared with the interpretability 

of the SOM solutions. KR20 (Kuder & Richardson, 1937), one such index of reliability 

was calculated for each unidimensional dataset (i.e., the simulated test data used in 

Experiment One and Experiment Three) and is displayed in Table 8.1.

Table 8.1. KR-20 reliabilities for each unidimensional dataset.

Item Discrimination 

05  TO TO

KR20 Reliability 0.569 0.798 0.885

The pattern shown in Table 8.1 appears to match the interpretability of SOMs 

across the three levels of item discrimination, across conditions. Therefore, test 

reliability and not necessarily item discrimination may be at the root of the differences in 

map interpretability. Since increasing the number of similar items on a test will increase 

the reliability for that test even when the discrimination of individual items is low (e.g., 

Spearman-Brown Prophecy Formula), a future experiment could compare SOMs from 

tests with different item discriminations but the same test reliabilities. Neither KR20 nor 

the Spearman-Brown formula is likely to perfectly anticipate improved performance of 

the SOM since these conceive of reliability only in terms of the consistency of the total 

score while the SOM will classify examinees based on Euclidian distances and the 

location of units in the map. However, the principle of reliability could help account for 

how well SOMs represent the structure of educational data.
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Characteristics o f  the SOM

In general, smaller maps created better projections of the data structure, while larger 

maps had lower quantization error. The increases in projection for small maps does not 

imply that, in general, ‘smallness’ is a pre-requisite for good projection, rather that 

smaller maps seemed to be better suited for representing these particular data. Since the 

data comprised 4 latent classes when one-dimensional and 16 when two-dimensional, it is 

reasonable to assume that the large map comprising 64 units was not a natural medium 

for the projection of these data. Consequently, when item discrimination was high, the 

map appeared to attain some kind of order overall, but many locations in the SOM had 

receptive fields with no data. This resulted in lower values of topological preservation as 

compared with smaller maps because no adjacency relationships exist when adjacent 

fields are empty. When item discrimination was low, the projected data did not represent 

well the simulated structure. Though examination of typical large maps from each 

experiment (i.e., Figures 5.4, 6.3, 7.2, and 7.4) might suggest that the SOM is limited in 

its ability to order data appropriately, it is more likely that the data were ordered well 

enough, but the relationship of that ordering to the simulated class was degraded by the 

low discrimination. That is, the low item discriminations induced so much overlap 

between class distributions that many regions in the metric space did not reliably 

represent any particular class. In this case, the poor ordering with respect to simulated 

class apparent in the SOM is consistent with the properties of the data.

In general, the poorer representation of test structure from the use of large maps 

seems to result from the over-fitting of the data. That is, the large number of model 

vectors coupled with the relative small sample size means that some receptive fields will
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be tuned to irrelevant characteristics of the data, insofar as the overall structure is 

concerned. This is an especially acute problem when there are a lot of ‘irrelevant 

characteristics’ in the data, such as would be the case when item discriminations are low. 

From this perspective, lower Quantization Error observed in the large map conditions 

may not reflect a higher quality of representation of the test data. Rather, each model 

vector is representing smaller regions of the data overall but these small regions are 

representing spurious characteristics of the data.

This over-fitting problem could be partially mitigated in several ways. First, model 

vectors would be more likely to represent ‘true’ characteristics of the class distributions if 

the sample size was increased. This would limit the effect of over-fitting by ensuring that 

certain receptive fields did not emerge strictly by an under- or over-representation of 

certain regions of the class distributions. Second, by increasing the above-mentioned 

reliability of the test data, the systematic characteristics of the data would become more 

salient and thus the SOM is more likely to becoming organized around those 

characteristics. Third, the selection of map size could be based on certain statistical 

criteria, such as those presented by deBodt, Cottrell, and Verleysen (2002), explained 

below.

deBodt and colleagues (2002) presented a method by which a certain type of 

reliability of classification is evaluated across replications of a SOM. In particular, they 

were interested in how consistently pairs of observations were adjacent in multiple runs 

of a SOM and also, how this consistency was affected by varying map size. When 

specific pairs of observations were consistently adjacent, it was argued that this adjacency 

represented true characteristics of the data. Furthermore, it was demonstrated that above
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a certain map size, the consistency of adjacency relationships drops rapidly, much like 

‘elbows’ are observed in scree plots of eigenvalues in a principal components analysis. 

deBodt, Cottrell, and Verleysen argued that the map size immediately preceding this drop 

should be adopted as the appropriate size, as it represents the best trade-off between the 

complexity of the data and over-fitting. This type of method could be fruitfully applied 

to educational data much like those presented in this thesis and is a promising topic of 

further research.

Dimensional Match between Data and Map

One of the foci of the preceding experiments was the role of a match in 

dimensionality between the SOM and the data in accurately identifying the dimensional 

structure of test data. The results demonstrated that this match was a necessary 

precondition for high quality projection, both from the perspective of topological 

preservation and correlation between distances in the map and metric spaces. This can be 

seen in Figures 7.7 through 7.10 where higher values were almost universally obtained 

for both of the above measures in conditions of dimensional match. This result was 

corroborated by the finding that from the qualitative perspective, maps generated in 

match conditions were more interpretable in terms of their dimensional structure and the 

classes that composed them. On the other hand, dimensional match appeared to have no 

significant impact on the quantization error in the map. Instead, maps comprising the 

same number of units had highly similar quantization error, irrespective of the 

dimensional structure of the map. This was seen most clearly in the Figures 7.5 and 7.6.

What these findings seem to indicate is that dimensional match does not 

significantly affect the locations of the model vectors in multidimensional space; only the
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arrangement of these vectors in the SOM is influenced. Since QE is a measure of how 

well the model vectors represent the probability density of the space, no differences in 

QE between SOMs having the same number of units suggest that the model vectors in 

both represent the density equally well, despite the difference in the dimensionality of the 

map. If this assertion is true, then other properties of the sets of model vectors, 

irrespective of the dimensionality of the map from which they were generated, ought not 

to give away the dimensionality of the map. One such property is the dimensionality of 

the model vectors as revealed by MDS analysis. Comparing Table 5.7 with 7.4, one

dimensional data, and Table 6.4 with 7.9, two dimensional data, no systematic differences 

in Stressl values were observed; in the one-dimensional case, the match conditions had 

lower Stressl values 7 times out of 12 (58%), and in the two-dimensional case, the match 

conditions had lower values 5 of 12 times (42%). Though this was a small sample, the 

results do not suggest any role for dimensional match in the placement of model vectors 

and therefore, does not suggest any advantage of dimensional match for quantization 

error, either.

The selective improvement in projection but not quantization error for conditions of 

dimensional match has several implications for using SOMs to determine test structure. 

First, the SOM ought to be considered to reflect test structure only when the 

dimensionality of the map and data are the same. This could be determined in much the 

way as presented here; different SOMs with varying number of dimensions could be used 

to analyze the same data. The SOM chosen would be that with the highest values of TP 

and Rdist- Complicating matters is the fact that dimensional match is not the sole 

determinant o f projection; map size plays an important role. Determining the best
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combination of dimensions and map size could be a kind of titration process, ending 

when values for projection begin decreasing with further systematic changes in 

parameters. A second implication concerns the use of the SOM as a tool to reveal 

qualitative properties of the data. Using adjacency and proximity in the SOM as an 

analogy to the same properties in the test data are only recommended when TP and Rdist 

are maximized, that is, under conditions of dimensional match. Later in this chapter, a 

specific application of a SOM in an educational measurement context will be evaluated 

with respect to this criterion. Last, an optimally-projected map is not the only source of 

test structure information provided by the SOM. The model vectors themselves contain 

information about the underlying dimensional structure of the data that can be extracted 

using other analytical techniques such as MDS. Adopting well-established criteria 

regarding the use of MDS in determining the number of dimensions could be applied 

(e.g., Kruskal & Wish’s [1978] criterion). This procedure would have the advantage of 

bypassing the need to determine the dimensionality of the SOM in parallel with the 

dimensionality of the data. Instead, a SOM comprising any number of dimensions could 

be generated and the dimensionality implied by the MDS analysis could then inform the 

dimensionality of the SOM to create the optimal projection of the data. What remains to 

be determined is how robust each of these processes (i.e., projection- and QE-based 

approaches to determination of dimensionality) is with respect to variables important for 

educational measurement. These variables include correlation between dimensions, 

simple versus complex structure, strength of secondary dimensions, and number of items 

representing these dimensions. Of course, this is an area for future research.

SOMs as statistical models
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Until this point, the capacity of SOMs to determine the overall dimensional 

structure of data has been the primary focus. What remains to be addressed are the 

conditions under which SOMs produce optimal representations of the data with which 

they are trained. From the data presented here it is clear that map size plays a significant 

role in the clarity with which the map reveals the underlying dimensional structure and 

therefore, a critical examination of the role of map size could have important implications 

for creating such optimal representations. Interestingly, other statistical methods and 

criteria used in educational measurement may have important implications for addressing 

this problem. These methods and their implications are explored in the next section.

As mentioned above, the optimal number of units in the map relates to the 

complexity of the data overall. Recall that Stevens et al. (1999) used complexity of test 

data as a justification for increases in map size. To this author’s knowledge, clear 

rationale for the choice of map size has largely been missing from applications of SOMs 

in educational measurement. Even deBodt, Cottrell, and Verleysen (2002) used only 

square maps in evaluating appropriate size. In the two real-data examples they present, 

6 x 6  and 7 x 7  maps were chosen as best representing their data, an increase of 11 and 13 

units over the next best-fitting maps, respectively. Though these map parameters were 

deemed necessary for good fit of the data, little or no emphasis was placed on 

determining the sufficiency of these maps for the data they represent. As an example, 

maybe only 5 additional units were sufficient to achieve optimal fit rather than 11 or 13.

In the present study, the number of latent class distributions in the data could be 

considered an index of data complexity. Since the number of latent classes was never 

larger than the number of units and it was consistently found that smaller maps better
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represented the data in terms of projection, it was argued in a previous section that the 

smaller map conditions better match the complexity of the data. But how many units 

might be sufficient to represent those data? For instance, could a single unit adequately 

represent a class distribution? One source of support for this notion is that the ‘unit 

conditional’ item probabilities were obtained from the SOM (see Chapter 5, p. 19), and 

these could relate directly to the class conditional item probabilities featured in most 

latent class models. Since a single set of class conditional item probabilities combined 

with the class probability defines the entire set of parameters necessary to estimate a 

latent class model, it may appear that an integration of class (unit) prevalence in the SOM 

is all that is needed to convert a SOM into a latent class model of the type pioneered by 

Lazarsfeld and Henry (1968). However, there are several important differences between 

units in the SOM and the classes as defined in LCA. First, in LCA individual 

observations are assigned to latent classes based on a Bayesian classification rule; the 

SOM makes this assignment based on Euclidian distance. The Bayesian rule features two 

components that determine class membership, likelihood and prior probability. The first 

component, likelihood, determines a probabilistic weight that individual observations 

‘belong’ to each class. This is determined by the product of individual class conditional 

item probabilities for a given observation (see Chapter 3, p. 13). This is similar to the 

calculation of proximity in the SOM with one important difference; the calculation of 

likelihood in LCA takes into account the unique variance of the class conditional 

distributions in multiple directions. Using Euclidian distance for all class assignments 

implies that the variance in each direction of each component distribution is the same.

The second component of the Bayesian rule is an explicit modeling of the prior
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probability of belonging to each of the latent classes. SOMs model only the probability 

density of regions in the composite distribution.

Because of these properties of the SOM, Kohonen (2001) asserts that the SOM 

must have a many to one, units to class distributions relationship in order to optimally 

represent the topology, or latent structure of the data. Furthermore, unlike the Bayesian 

framework in LCA, the SOM itself is not meant to be a classification tool; it is a method 

to reveal overall structure in data. To optimize the classification function of the map, 

Kohonen argues that supervised training known as Learning Vector Quantization (LVQ) 

is necessary. The result of LVQ is to position the model vectors so that the resulting 

decision boundaries best approximate the Bayesian, or optimal boundary.

In principle, however, there is nothing preventing the importation of components of 

Bayesian classification for use in the SOM. In particular, the calculation of distance used 

by LCA models could be used as the training rule for SOMs. Moreover, the prior 

probability of each class could also be explicitly included in the training formula, 

weighting the likelihood of classification of individual patterns. If successful, SOMs 

could be used as an additional computational method to creating latent class accounts of 

test structure. This method could be considered an Expectation / Maximization (EM) 

approach and bears close similarity to K-means cluster analysis, also an EM method.

Why would a SOM-based method of latent class analysis present an advantage for 

analyzing educational data? First, the projection capabilities of the SOM could augment 

an account of test structure derived from LCA. That is, the ordered representation of 

latent classes generated by the SOM could provide a layer of interpretation not currently 

available in LCA models. More fundamentally, this method could represent a means of
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representing student performance both in terms of dimensional and latent class structure. 

That is, student performance could be viewed, not only from the perspective of the 

dominant abilities underlying performance on the test and therefore the possession of a 

hypothetical latent trait, but also in terms of specific patterns of correct and incorrect 

responses and what those patterns might imply about the states of mastery for particular 

examinees. From the results discussed above, it is clear not only that a dimension-based 

account of test structure is possible from the SOM, but also what are some of the features 

essential to optimizing that account. Creating a latent class account of test structure using 

SOMs, to this author’s knowledge, has yet to be systematically investigated. However, 

from experience with other latent class methods such as cluster analysis and LCA, some 

of the essential criteria of such an account are already known. Primary among these is a 

means to determine the sufficiency of the latent class model for representing the data.

The variant of LCA pioneered by Lazarsfeld and Henry (1968) uses the criteria of 

conditional independence of item responses to determine the value of latent class 

parameters. Those parameters could then be used to determine how well the values of the 

latent parameters reconstruct the observed data (see Chapter 3, p. 15). These same 

criteria could be applied to determine the optimal number of units for a SOM, with one 

important caveat; because they are empirically- and not parametrically-defined, the 

values of so-called conditional probabilities in the SOM are themselves observed and not 

latent variables. This implies that, instead of determining how well latent parameters for 

distributions are able to reconstruct observed data such as is the case in LCA, the SOM 

approach would require an examination of the statistical properties of the observed 

conditional probabilities. That is, in order to determine if  a SOM is ‘sufficient’ to
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represent a set of data from the latent class perspective, the unit conditional probabilities 

would be evaluated with respect to statistical criteria, such as conditional independence. 

This could be accomplished in much the same way as is done in the DETECT procedure 

(see Chapter 2, p. 14); the correlations between performance on items could be calculated 

separately for each unit, and then aggregated together noting the strengths of these 

conditional relationships. When the number of units is sufficient to achieve conditional 

independence to a specific criterion, (see, for example, Stout, 1987), the SOM variant of 

LCA could be considered sufficient.

The uniqueness of the SOM notwithstanding, using implicit or explicit latent class 

models as a conditioning variable is common procedure in educational measurement. In 

fact, determining whether data meets a criterion of conditional independence is 

predicated on the definition of latent classes in the data. Like the DETECT procedure, 

item response theory (IRT) models use implicit definitions of latent classes to determine 

the dimensionality of the assessment. For these models, a latent class is defined by the 

total number of items answered correctly; all examinees that answer the same number of 

items correctly constitute that class. When statistical independence is achieved within 

each such group, (essential) unidimensionality is concluded. Moreover, the use of latent 

classes to define IRT models is not limited to the determination of dimensionality. In 

particular, latent class models with ordinal constraints have been used to define the 

parameters of IRT models themselves (e.g., Croon, 1990, 1991; Lindsay, Clogg, &

Grego, 1991; Vermunt, 2001). These models and SOMs both make explicit that strictly 

trait-based accounts of performance are fundamentally related to class-based accounts.
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This acknowledgement lends further support to the exploration of SOMs in the 

representation of test data.

The fundamental difference between the use of implicit latent classes in educational 

measurement (such as those used in IRT models) and latent class derived from a SOM is 

in the treatment of class-level information. In the IRT context, latent classes are used as 

tools to determine dimensionality, and the specific characteristic of interest is the 

correlation or covariance between items. In the SOM context, the class could become a 

different source of information, one that reveals general characteristics of the response 

patterns elicited from members of each class. This type of class could still be examined 

for dimensionality in the same manner as total score based latent classes, but could also 

be used to create more substantively based descriptions of test performance. Just as in 

LCA, class conditional item probabilities could be examined to determine ‘typical’ 

patterns of performance for subgroups on the test defined not by the number of items they 

answered correctly, but by the specific patterns of correct and incorrect responses on the 

test. This same type of information has been used in numerous diagnostic models, with 

considerable success (e.g., Leighton, Gierl, & Hunka, 2004; Mislevy, 1996; Tatsuoka, 

1990,1995). Further investigation of LCA-based SOMs could help more clearly 

determine the potential of SOMs for educational measurement in this regard.

In summary, an implication of the present research for applications of the SOM in 

educational measurement is that it provides a latent class account of test performance. 

These classes could serve as the basis for certain dimensionality assessment procedures in 

which a conditioning variable is necessary. A further enticing application is the use of 

the latent class structure to develop a substantive interpretation of the test’s latent space.
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This kind of interpretation becomes possible when the patterns of correct and incorrect 

responses implied by the unit conditional item probabilities are interpretable in terms of 

test content. Examining this possibility is a priority for future research.

An Evaluation o f a Current Application o f SOMs in Educational Measurement

The present research has several important implications for the appropriate use of 

SOMs in educational measurement. One, in order to maximize the meaningfulness of the 

SOM topology for interpretation of the data, the intrinsic dimensionality of data and the 

number of dimensions of the SOM must match. When this characteristic does not hold 

adjacency and distance relationships between the map and metric space are compromised, 

leading to potential errors in interpretation. Two, map size plays a key role in 

determining the quality of representation of the data in the SOM. Three, item 

discrimination, or perhaps test reliability, is an important variable in generating well- 

fitting and interpretable maps. These three characteristics shall be used to evaluate a 

recent application of a SOM in educational measurement, Stevens, Johnson, and Soller 

(2005).

The recent research by Stevens, Johnson, and Soller (2005) continues in the theme 

of using SOMs to elucidate performance on complex tasks, an approach Stevens and his 

colleagues have pioneered. The basic approach follows that of Stevens et al. (1999) 

outlined in Chapter 4, p. 69. In the present case, SOMs were used for the, “categorization 

of common strategies by artificial neural network clustering (p. 44)” for several genetics 

simulations. The particular purpose of the SOMs in this research was to inform the 

identification of performance states and to later model using Markov processes the 

trajectory through those states that come with increases in competence. The network
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chosen to accomplish this was 2-dimensional, typical of Stevens’ previous work. They 

describe the functioning of SOMs as follows, “The mathematics behind self-organizing 

neural networks is such that groups of similar performances appear on an output 6 x 6  

grid of classifications as physically near each other (Kohonen, 2001). ANNs yield a 

‘topological map’ of similar performances in which the geometric distance between 

nodes is a metaphor for similar solving strategies (p. 45-6)”.

No specific information is provided regarding the intrinsic dimensionality of the 

data, and therefore, it is not known whether the distance in the ‘topological map’ will, in 

fact, be a good metaphor for performance similarity. A figure is provided that helps 

address this question, a representation of which is presented below as Figure 8.1. In this 

figure, five performance states are identified, presented as increasing in sophistication 

from state 1. In Chapter 5, two criteria were used to evaluate the qualitative 

representation of the data by the SOM, the contiguity of regions representing the same 

class, and the smoothness of ordering of the classes across the projected space. These 

criteria are applied to the representation of performance states in Stevens, Johnson, and 

Soller (2005).

The map shows limited contiguity of the states portrayed in the map. Contiguous 

regions exist for some states and not others. Only one state has all its units together 

(State 2) but it only has two units in the SOM. Smoothness of ordering of classes in the 

SOM would reflect the importance of Euclidian distance in defining similarity of 

performance quality. Clearly, this distance played a limited role in determining the 

competence of individuals working on these tasks since ordering was not evident in the
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map. Based on these criteria, it is questionable whether the ordering property of SOMs is 

insightful into the quality of task performance in this research.

Figure 8.1. Representation of performance states derived from self-organizing neural 

network in Stevens, Johnson, & Soller (2005).

An interpretation of the map is offered in the article, but not with respect to 

performance quality. Rather, map location seemed to be more closely linked to the 

selection of particular pieces of information. For example, they indicate that a certain 

region of the map, “ .. .is where students select a large number of items, but no longer use 

the Glossary. These strategies are represented on the right-hand side [of the map]

(p.46)”. Other regions, “ ... illustrate another qualitative difference in which there is 

predominantly a usage of enzyme assays (p.46)”. Similarities between strategies and not 

either the overall dimensional structure or the relationship of the SOM representation to 

performance quality appeared most important in their analysis.

Based on this analysis and the results from this thesis, several conclusions can be 

made about the appropriateness of the use of SOMs in the work by Stevens and his
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colleagues. First, it was not apparent that the characteristics identified as important by 

the present research were embodied in their work. In particular, no identification of the 

dimensionality of the responses data was made and no particular justification was offered 

for the selection of a 6 x 6 map. This does not in itself invalidate the use of the SOM in 

this context, as the purpose of its use was not creating dimensionally-based 

interpretations of test structure. That similar strategies occupied similar regions in the 

SOM appeared to provide some helpful information in determining the performance 

states underlying the task. However, the fact that performances classified as similar in 

quality did not always occupy similar regions in the map undermines the utility o f the 

SOM in determining these states. Instead, it appeared that substantive considerations 

trumped the analysis of similarity performed by the SOM. The choice of a 6 x 6 map to 

represent these data seemed to be somewhat arbitrary. Since it was discovered in the 

present thesis that map size plays a significant role in the representation of the structure, 

it could be that different states would be identified by maps of different size. Last, the 

importance of item discrimination or test reliability did not seem to readily apply to this 

context. That is, since the map in this research was organized around the selection of 

particular pieces of information in the performance tasks and not in responses to test 

items, measures of the quality of test items, that is item discrimination, are not 

transparently relevant. Therefore, little insight into the importance of this variable for 

Stevens’ work can be gained. However, the discovery of a consistent trajectory through 

the performance states in this research indicates a relationship between competency and 

the type of strategy employed. This could be interpreted as evidence for the relevance, if 

not reliability of the data collected for the classification generated.
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Conclusion

The research presented in this thesis demonstrates that, when used appropriately, 

SOMs are capable of revealing the structure of test data. A clear understanding of the 

boundary conditions under which it is capable of doing so, however, is a question for 

future research, as is its performance relative to existing methods for determining test 

structure. Important and potentially exciting applications for SOMs appear to reside in 

creating latent class accounts of test performance. Though current applications of SOMs 

in educational measurement focus on their use in alternative assessments such as complex 

performance tasks and automated scoring, the present research points to future potential 

of the method in more mainstream applications. Should this potential be realized, the 

application of Kohonen Self-Organizing Maps in educational measurement may become 

more extensive and wide-ranging. Should that be the case, it is hoped that this thesis, and 

research that follows from it, will have helped to provide insight in determining its 

effective utilization.
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Appendix A -  Data Generator: User Form and Visual Basic Code

Figure A1. Form to Specify Data Generation Parameters
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Visual Basic Code 

Code fo r  Form Controls

176

Private Sub CreateData_Click() 'All subs in Data_Generator module

Initialize
GetAbility
Quantize
SetltemParameters 
GenerateltemResponses 
UserForml.Hide 
Sheet2.Activate 
UserForm2.Show

End Sub

Private Sub Sample500_Click()

Current.SampleSize = 500 

End Sub

Private Sub SamplelOOO_Click() 

Current.SampleSize = 1000 

End S u b

Private Sub FourStates_Click() 

Current.NumberOfStates = 4 

End Sub

Private Sub EightStates_Click () 

Current.NumberOfStates = 8 

End Sub

Private Sub ThreeItems_Click() 

Current.ItemsPerState = 3 

End Sub

Private Sub SixItems_Click() 

Current.ItemsPerState = 6 

End Sub
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Private Sub Title_Click() 

MsgBox (Current.SampleSize) 

End Sub

Private Sub ItemDiscrimPoint5_Click() 

Current.ItemDiscrimination = 0.5 

End Sub

Private Sub ItemDiscrimOne_Click() 

Current.ItemDiscrimination = 1.0 

End Sub

Private Sub ItemDiscrimTwo_Click() 

Current.ItemDiscrimination = 2.0 

End Sub

Private Sub UserForm_Activate() 'Populate Listbox in UserForml

Dim ListArray(4) As String

ListArray(l) = "equal"
ListArray(2) = "normal"
ListArray(3) = "custom"

DistList.List() = ListArray

End Sub

Private Sub DistList__Click ()

Dim j As Integer 
Dim z () As Double

Select Case DistList.Listlndex

Case 1
ReDim Current.Outpoints(Current-NumberOfStates)
If Current.NumberOfStates = Null Then GoTo EnterValues 
For j = 1 To Current.NumberOfStates

Current.Cutpoints(j) = j * Current.SampleSize / Current.NumberOfStates

'Divides examinees into equal size classes

Next j

Case 2
ReDim Current.Cutpoints(Current.NumberOfStates)
ReDim z(Current.NumberOfStates)

If Current.NumberOfStates = Null Then GoTo EnterValues

For j = 1 To Current.NumberOfStates
z(j) = (-3+ (j * 6 /  Current.NumberOfStates))

'loop counter
'holds z-values for conversion to probabilities
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If z(j) = 3 Then
Current.Cutpoints(j) = Current.SampleSize

Else
Current.Cutpoints(j) = Current.SampleSize * (1/(1+Exp(-1.7 * z(j)))) 

End If

'divides distribution {-3, 3} into chunks of equal standard score size, 
'based on logistic approximation to cumulative normal distribution

Next j

Case 3 'file will manually specify values for all parameters

inputfile = InputBox("Enter filename")
Open inputfile For Input As #1

Input #1, Current.NumberOfStates 
Input #1, Current.SampleSize 
Input #1, Current.ItemsPerState

ReDim Current.Cutpoints(Current.NumberOfStates)
For j = 1 To Current.NumberOfStates 

Input #1, Current.Cutpoints(j)
Next j

Close #1

End Select

Exit Sub

EnterValues:
MsgBox ("Enter Number of States first.")

End Sub

Data Generator module

Option Explicit

Type Data

SampleSize As Integer 
NumberOfStates As Integer 
StateDifficulty() As Double 
ItemsPerState As Integer

ItemDiscrimination As Double

ItemDifficulty() As Double 
Responses() As Integer 
Cutpoints() As Integer

'Characteristics of simulated data

'number of simulees 
'number of knowledge states 
'the 'b' value of each knowledge state 
'number of items for each above state 
'NOTE: NumberOfStates * ItemsPerState = Number of 

Items
'the 'a' parameter NOTE: This could be an array 

for more detailed sims 
'the 'b' parameter 
'simulee response data 
'the index of 1st examinee in new group

End Type

Public Current As Data
Public SimuleeResponses() As Integer

Public Const regular As Integer = 1 
Public Const gaussian As Integer = 12

'the active simulation 
’the observed responses by examinee

'regular random number
'normally distributed random number
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’SUBROUTINES

Public Sub Initialize() ’Clear all data from Worksheets

Sheet1.Cells.ClearContents 
Sheet2.Cells.ClearContents 
Sheetl.Activate

End Sub

Public Sub GetAbilityl)

Dim i As Integer 
Dim sum, mean, sd As Double

For i = 1 To Current.SampleSize

Sheetl.Range("simdata").Cells(i).Value = GetRandom(gaussian)

'returns random value from an appromixately gaussian distribution 
'and puts in column 1 of Sheetl

'NOTE: simdata defines a data range on Sheetl: Column 1 

Next i

mean = WorksheetFunction.Average(Sheetl.Range(Cells(1, 1), Cells(Current.SampleSize, 1) 
sd = WorksheetFunction.StDev(Range(Cells(1, 1), Cells(Current.SampleSize, 1)))

For i = 1 To Current.SampleSize

Cells(i, "A").Value = (Cells(i, "A").Value - mean) / sd

'standardizes values

Next i

Range("simdata").Sort (Columns("A"))

End Sub

Public Function GetRandom(TypeOfData As Integer) As Double

Dim result, num, sum As Double 
Dim i As Integer

Select Case TypeOfData 'gets a random number
Case regular

result = Rnd()

Case gaussian 'Creates approximately normally distributed data
For i = 1 To 12 'by summing random values

Randomize 
num = Rnd() 
sum = sum + num 

Next i
result = sum 

End Select 

GetRandom = result 

End Function

'This sub creates a standardized, normally 
'distributed dataset in order to provide b- 
'parameter values for items and theta- 
'parameter values for class ability

’loop counter
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Public Sub Quantize() 'Sets all theta values within a class

Dim i, j, n, index As Integer

ReDim Current.StateDifficulty(Current.NumberOfStates)

For j = 1 To Current.NumberOfStates

Current.StateDifficulty(j) = Range("simdata").Cells(Int((index + 
Current.Cutpoints(j)) / 2)).Value

'Sets the category score to the theta value of the simulee 
'in the middle of the category

For i = index + 1 To Current.Cutpoints(j)
Range("simdata").Cells(i).Value = Current.StateDifficulty(j) 

Next i

index = Current.Cutpoints(j)

Next j

End Sub

Public Sub SetltemParameters()

Dim i As Integer
Dim NumberOfItems As Integer

NumberOfItems = Current.NumberOfStates * Current.ItemsPerState

ReDim Current.ItemDifficulty(NumberOfItems)

For i = 1 To NumberOfItems
Current.ItemDifficulty(i) = Current.StateDifficulty(1 + Int((i - 

Current.ItemsPerState))
1) /

'Assigns difficulty value to the item based on item number, 
'number of states, and number of items per state.

Next i

End Sub

Public Sub GenerateltemResponses()

Dim i, j, NumberOfItems As Integer

NumberOfItems = Current.NumberOfStates * Current.ItemsPerState

ReDim Current.Responses(Current.SampleSize, NumberOfItems)

For i = 1 To Current.SampleSize 
For j = 1 To NumberOfItems

Current.Responses(i, j) = 1
If (GetRandom(regular) > IrtProb(i, j)) Then Current.Responses(i , j) = 0 
Sheet2.Cells(i, j).Value = Current.Responses(i, j)

'Compares random number between 0 and 1 to IRT based probability 
'response. If egual or greater, returns 'correct' for that item.

of correct

Next j 
Next i

End Sub
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Public Function IrtProb(ByVal simulee As Integer, ByVal item As Integer) As Double

Dim prob As Double

prob = 1 / (1 + Exp(-1.7 * Current.ItemDiscrimination *
(Worksheets("Sheetl").Cells(simulee, 1).Value _

- Current.ItemDifficulty(item))))

'Using 2PL IRT model to generate probability that examinee at particular level 
'of theta would answer item correctly

IrtProb = prob

End Function
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Appendix B -  SOM Engine: User Form and Visual Basic Code 

Figure B l. Form to Set SOM Parameters
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Visual Basic Code 

Code for Form Controls
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Private Sub UserForm_Activate() 'Sets system variables to values in text boxes

XText.Value = run.XofMap 
YText.Value = run.YofMap 
SizeofMapText-Value = run.SizeOfMap 
CyclesText.Value = run.cycles 
EpochText.Value = run.EpochSize 
FileText = run.FileStem

End Sub

Private Sub Replications_Click() 'Sets value for number of replications

simnum = InputBox("Enter number of replications: ”)
ReplicationsText.Value = simnum

End Sub

Private Sub EnterCycles_Click() 'Sets value for number of cycles

run.cycles = InputBox("Enter number of cycles: ")
CyclesText-Value = run.cycles

End Sub

Private Sub EnterEpoch_Click() 'Sets value for number of cycles before updating
’model vectors

run.EpochSize = InputBox<"Enter Number of Cycles per Epoch: ")
EpochText.Value = run.EpochSize

End Sub

Private Sub EnterX_Click() ’size of x dimension of map

run.XofMap = InputBox("Enter the width of the map: ")
XText.Value = run.XofMap
run.SizeOfMap = run.XofMap * run.YofMap
SizeofMapText.Value = run.SizeOfMap

End Sub

Private Sub EnterY_Click() ’size of y dimension of map

run.YofMap = InputBox(”Enter the height of the map: ”)
YText.Value = run.YofMap
run.SizeOfMap = run.XofMap * run.YofMap
SizeofMapText.Value = run.SizeOfMap

End Sub
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Private Sub FileName_Click() 'Sets value for name of file stem

FileText = InputBox("Enter Name of the Data File Stem: ")

End Sub

Private Sub RunSimulation_Click() 'What to do when user clicks the RUN SIMULATIONS
'button

Sheetl.Activate
ReadlnputFile (FileText & ".dat")

For runs = 1 To simnum 
Initializestuff 
RunSOM
run.FileStem = FileText & runs 
CalculateMeasures 
SaveData 

Next runs

End Sub
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SOM Engine Module

Public Const GATE = 1 
Public Const GAUSSIAN = 2 
Public Const Test = 0 
Public Const PI = 3.1415927

Type Simulation

FileStem As String 
SampleSize As Integer 
NumberOfItems As Integer 
SizeOfMap As Integer 
XofMap As Integer 
YofMap As Integer 
cycles As Long 
EpochSize As Integer

End Type

Type unit

'The SIMULATION class has properties of the 
'data, SOM, and simulation parameters.

-file handle
-number of simulated examinees in data 
-number of dichotomous items in data 
-number of units in the map (entered by user) 
-width of map (entered by user)
-height of map (entered by user)
-number of iterations
-number of cycles before updating model vectors

'The UNIT class contains properties of each unit 
’of the SOM

locationx As Integer 
locationy As Integer 
vector() As Double 
PatError() As Double

CycleError() As Double

'X-coordinate in SOM 
’Y-coordinate in SOM 
'element of model vector (
'(euclidian) difference between each element 
'of model vector and pattern 
'total error at each element over 
'all patterns in an "epoch"

End Type

Public patterns() As Integer 
Public run As Simulation 
Public runs As Integer 
Public layer() As unit 
Public simnum As Integer 
Public target As Integer 
Public winner As Integer 
Public second As Integer 
Public SOMadj, TE As Integer

'array storing current input pattern
'current simulation parameters
'number of replications
’array of units in map
'index for replication number
'the index for the input data to be matched
'the closest unit to pattern in metric space
'the second closest unit to pattern
'are two units adjacent (l=yes, 0=no)

Public Sub ReadlnputFile(file As String)

Dim i, j As Integer 'loop counters
Dim line As String 'input data

Open file For Input As #1 
Input #1, run.SampleSize 
Input #1, run.NumberOfItems

ReDim patterns(run.SampleSize, run.NumberOfItems + 1)
'+1 so that array can store index number as well

For i = 1 To run.SampleSize 
Input #1, line
For j = 1 To run.NumberOfItems

patterns(i, j) = Mid(line, j, 1)
’dichotomously scored data fills "patterns" array

Next j
patterns(i, j) = i 'index stored so pattern can be identified

'as belonging to a particular class
Next i 

Close #1 

End Sub
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Public Sub InitializeStuff()

Sheetl.Cells.ClearContents 
Sheet2,Cells.ClearContents 
Sheet3.Cells.ClearContents 
ModelsRandomlni t 
ClearErrors 
SetLocations

grid

'Clear Model Vectors Sheet
1 Clear Measures Sheet
'Clear Data and Classification Sheet
'Initialize Model Vectors to random locations
'Initialize Error associated with each model vector
'Assigns SOM locations to units, based on co-ordinate

End Sub

Public Sub ModelsRandomlnit()

Dim 1, v As Integer 'loop counters

ReDim layer(run.SizeOfMap)

For 1 = 1 To run.SizeOfMap 'the number of units in SOM

ReDim layer(1).CycleError(run.NumberOfItems) 
ReDim layer(l).PatError(run.NumberOfItems) 
ReDim layer(1).vector(run.NumberOfItems)

For v = 1 To run.NumberOfItems 
Randomize
layer(1).vector(v) = Rnd 

Next v 
Next 1

'-number of elements in each model vector 
'-seed the random number generator 
'-inserts random number between 0 and 0.999 
' for each element of each model vector

End Sub

Public Sub ClearErrors() 'initialize error for each unit in the map

Dim 1, v As Integer

For 1 = 1 To run.SizeOfMap
For v = 1 To run.NumberOfItems 

layer(1).PatError(v) = 0 
Next v 

Next 1

End Sub

Public Sub SetLocations() 

Dim x, y, i As Integer

'sets locations of each of the units in the map 
'based on a rectangular map (not hexagonal)

i = 1
For x = 1 To run.XofMap

For y = 1 To run.YofMap
layer(i).locationx = x 
layer(i).locationy = y 
i = i + 1 

Next y 
Next x

End Sub
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Public Sub RunSOMO 

Dim weight As Double

Dim 1, v As Integer ' loop counters
Dim t As Long 'iteration number

TE = 0

'This Select... Case statement determines which input pattern to train with 
'and also randomly orders all the input vectors (Scramble Patterns)

For t = 1 To run.cycles

Select Case (t Mod run.SampleSize)
'finds the index of the 
'current input pattern

Case 0 't must be a multiple of the total number of
'patterns therefore, present pattern number "n"

target = run.SampleSize

Case 1 'We are just beginning a new presentation of the
'entire set of patterns

ScramblePatterns 'randomize pattern order
target = t Mod run.SampleSize

'Actually, by definition, this must be the first 
'pattern in the set

Case Is > 1
target = t Mod run.SampleSize

End Select

Compare (target) 'identify closest model vector to
'current pattern, by unit number

For 1 = 1 To run.SizeOfMap
weight = NghbrWt((t), winner, (1))

'each unit in the map will have its own 
'"neighbourhood" weight indicating how much the 
'model vector will be moved in the direction of 
'the input pattern.

For v = 1 To run.NumberOfltems
layer(1).CycleError(v) = layer(1).CycleError(v) + weight * 

layer(1).PatError(v) 
layer(1).PatError(v) = 0

'accumulate error for all units into 
’.CycleError(v), then reset .PatError(v) for next 
'pattern

Next v 
Next 1

'TIME TO UPDATE THE MODEL VECTORS

If (t Mod run.EpochSize) = 0 Then
'if Epoch (user-entered) is complete, update model 
'vectors.

For 1 = 1  T o  r u n . S i z e O f M a p
For v = 1 To run.NumberOfltems

layer(1).vector(v) = layer(1).vector(v) + (layer(1).CycleError(v) / 
run.EpochSize)

'NOTE: CycleError has already been scaled by alpha 
' (& radius if GAUSSIAN)

layer(1).CycleError(v) = 0
'reset .CycleError(v)

Next v 
Next 1
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End If

Next t 'Do next training cycle

TestAllPatterns 'When training is over, test all patterns 
'and create statistics.

End Sub

Public Sub ScramblePatterns() 'Stolen from Dawson, public stuff

'This routine takes all the input patterns in an epoch and randomizes their order.

Dim Curlndex As Long 
Dim Newlndex As Long 
Dim TmpValue As Integer

For Curlndex = 1 To run.SampleSize - 1
Newlndex = IntlRnd * (run.SampleSize - Curlndex + 1) + Curlndex)

For v = 1 To run.NumberOfltems + 1 
TmpValue = patterns(Newlndex, v) 
patterns(Newlndex, v) = patterns(Curlndex, v) 
patterns(Curlndex, v) = TmpValue 

Next v 
Next Curlndex

End Sub

Public Sub Compare(inp As Integer)

'Determines the closest and 2nd closest model vectors to the presented pattern,
'i.e., the winning unit(s). The winner determines the centre of the neighbourhood,
'and the second and first together allows calculation of topological preservation (TP).

Dim 1, v As Integer 'loop counters
Dim CurrentError() As Double 'total squared error in current pattern
Dim xwin, ywin, xsec, ysec As Long 'co-ordinates of winner and second in the map

ReDim CurrentError(run.SizeOfMap)

'FIRST, find the WINNER (the closest model vector to the input pattern)

winner = 1 'initialize winning unit to UNIT 1

For 1 = 1 To run.SizeOfMap
For v = 1 To run.NumberOfltems

layer(1).PatError(v) = patterns(inp, v) - layer(1).vector(v)

Dim v As Integer ’loop counter

Swap the Items

'note that PatError is the simple 'difference 
'between input and model (not 'RMS or ~2) since 
'the index "v" stands 'for the element of each 
'vector

CurrentError(1) = CurrentError(1) + layer(1).PatError(v) " 2

'This step squares PatError (i.e., 
'distance along dimension v) and adds it 
'to the total

Next v
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If ((CurrentError(1) A 0.5) < (CurrentError(winner) A 0.5)) Then 
winner = 1

'after error (distance) is calcuated to 
’unit 1, determine if distance is less 
'than distance to current winning unit.
'If Y, make new winner.

End If
Next 1

'SECOND, find the SECOND (the second closest unit to the input vector), 

second = 1
If winner = 1 Then second = 2

For 1 = 1 To run.SizeOfMap
For v = 1 To run.NumberOfltems

layer(1).PatError(v) = patterns(inp, v) - layer(1).vector(v)
CurrentError(1) = CurrentError(1) + layer(1).PatError(v) A 2 

Next v
If ((CurrentError(1) A 0.5) < (CurrentError(second) A 0.5)) And Not (winner = 1)

Then
second = 1

End If

Next 1

'THIRD, find the co-ordinates of the WINNER and the SECOND, 

xwin = winner Mod 4
ywin = (winner - (winner Mod 4)) / 4

If xwin = 0 Then 
xwin = 4

Else
ywin = ywin + 1 

End If

xsec = second Mod 4
ysec = (second - (second Mod 4)) / 4

If xsec = 0 Then 
xsec = 4

Else
ysec = ysec + 1 

End If

'FOURTH, calculate ADJACENCY. Note that two diagonally units adjacent qualify.

SOMadj = 0
If (Abs(ywin - ysec) A 2 + Abs(xwin - xsec) A 2) < 4 Then SOMadj = 1 

End Sub

Public Function NghbrWt(time As Long, winner As Integer, OtherUnit As Integer) As Double

’This function calculates the amount that a particular model vector will be adjusted 
'given its proximity to the winning unit.
'Arguments:
' TIME cycle number

WINNER the index of the winning unit
OTHERUNIT the index of the unit whose weight is being calculated

Dim StartingRadius, radius As Double 'the radius of the neighbourhood decreases
'over time
'StartingRadius is the maximum radius
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Dim xDist, yDist, distance As Double 'distance in each co-ordinate direction, and
'overall

Dim result As Double 'placeholder for weight
Dim alpha As Double 'learning rate, which also decreases over

' time
Dim RadiusType As Integer ’could be GATE or GAUSSIAN, see const

'declar.

'LEARNING RATE STUFF 
If time < 2000 Then

alpha = 1 - 0.00048 * time
Else

alpha = 0.005 + 0.035 - (time - 2000) * (0.035 / run.cycles)
End If

' From Kohonen (1990), pg 1470

'The following code is for a logistic learning rate
'alpha = 0 . 0 1  + 0.99 * (Exp(5 - (time / 1000)) / (1 + Exp(5 - (time / 1000))))

xDist = (layer(winner).locationx - layer(OtherUnit).locationx) * 2 
yDist = (layer(winner).locationy - layer(OtherUnit).locationy) A 2

distance = xDist + yDist 'according to 3.4, p 111, distance is the
'Euclidian norm SQUARED, i.e., the sum of 
'xDist and yDist

'RADIUS OF NEIGHBOURHOOD FUNCTION

RadiusType = GATE 
'RadiusType = GAUSSIAN

StartingRadius = (run.XofMap + run.YofMap) / 4
'rule of thumb, Radius should start 
'as half of diameter of SOM (p 112)

Select Case RadiusType
'If RadiusType = GATE, the same learning 
'rate is applied to the entire 
'neighbourhood.

Case GATE
If (4 * time < run.cycles) Then

radius = StartingRadius * (1 - 4 * time / run.cycles)
Else

radius = 0 'Update only the winning unit for the last
'phase

End If

If (radius A 2 < distance) Then 
result = 0

Else
result = alpha 

End If
'If RadiusType = GAUSSIAN, learning rate 
'decreases smoothly from the centre of the 
'neighbourhood.

Case GAUSSIAN
radius = 0.5 + StartingRadius * (Exp(5 - time / 500) / (1 + Exp(5 - time / 500))) 
result = alpha * Exp(-distance / radius A 2)

End Select

NghbrWt = result 

End Function
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Public Sub TestAllPatterns()

'The following code outputs the index, the winning unit, and the unit error 
'of all input patterns

Dim t, v, 1 As Integer 'loop counters

For t = 1 To run.SampleSize 'This time, we only need to check each
pattern once.

Compare (t) 'get the winner and second for each pattern

For v = 1 To run.NumberOfltems + 1
'+1 so that index is outputted also 
'outputs the input data to XL sheet 

Sheet3.Cells(t, v) = patterns(t, v)
Next v

Sheet3.Cells(t, (run.NumberOfltems + 2)) = winner
'outputs winning unit 

Sheet3.Cells(t, (run.NumberOfltems + 3)) = GetError((t), (winner))
'outputs error of winning unit

For 1 = 1 To run.SizeOfMap
'now, get the error for each unit 

Sheet3.Cells(t, (1 + run.NumberOfltems + 4)) = GetError((t) , (1))
Next 1

TE = TE + SOMadj 'This calculates the total number of
'patterns where WINNER and SECOND are 
'adjacent. TP = (TE / run.SampleSize)

Next t 

End Sub

Public Function GetError(Patlndex As Integer, Unitnum As Integer) As Double

'This function returns the Euclidian Distance between the input pattern and the 
'model vector associated with the unit indexed by unitnum.

Dim v As Integer 'loop counter
Dim Error, CurrentError, result As Double

For v = 1 To run.NumberOfltems
CurrentError = (patterns(Patlndex, v) - layer(Unitnum).vector(v)) * 2 
Error = Error + CurrentError 

Next v
'Error is the SS error for each model 
'pattern with the given input pattern

result = Error ~ 0.5 

GetError = result 

End Function

Public Sub CalculateMeasures()

'This code determines the classification agreement, ratios of variance within and between
'clusters, mean QE

Dim WithinGroupSS() As Double 'Variance of all patterns assigned to a
'given unit

Dim AvgWGSS, WeightedAvgWGSS As Double 'Average of WithinGroupVar across all 16
'units, non-weighted and weighted by number 
'of patterns

Dim GroupCount() As Integer 'Number of patterns assigned to a given unit
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Dim firstO, last() As Integer 'indexes of all patterns assigned to a
’single unit

Dim r, i, j As Integer 'counter variables
Dim start As Integer

ReDim WithinGroupSS(run.SizeOfMap), GroupCount(run.SizeOfMap), first(run.SizeOfMap), 
last(run.SizeOfMap)

For j = 1 To run.SizeOfMap
For i = 1 To run.NumberOfltems

Sheetl.Cells(j, i) = layer(j).vector(i)
'Outputs all Model Vectors to Sheetl

Next i 
Next j

'This sorts all patterns according to WINNER
Sheet3.Activate
Range(”A1:AF500").Select

Range("AF500").Activate
Selection, sort Keyl.- =Range ("N1") , Orderl.-=xlAscending, Header:=xlGuess, _

OrderCustom:=1, MatchCase:=False, Orientation:=xlTopToBottom

GetTrueCCPs
Classify
GetBayes
getdistances

j = 1
first(j) = 1
For r = 1 To run.SampleSize

Sheet3.Cells(r, 16) = Sheet3.Cells(r, 15) A 2
'square the euclidian distance as a step to 
'get SS within cluster 

If Cells(r, 14) > Cells(first(j), 14) Then
'Find the place where next unit 
'takes over

last(j) = r - 1
GroupCount(j) = last(j) - first(j) + 1
j = j + 1
first(j) = r 

End If
If first(j) > 1 Then

If Cells(r, 14) = Cells(first(j - 1), 14) + 2  Then 
first(j) = 999 
last(j) = 999 
GroupCount(j) = 0  
j = j + 1 
first(j) = r 

End If 
End If 

Next r

last(run.SizeOfMap) = run.SampleSize
GroupCount(run.SizeOfMap) = last(run.SizeOfMap) - first(run.SizeOfMap) + 1

Sheet2.Cells(18, 1) = WorksheetFunction.Average(Range(Sheet3.Cells(1, 15),
Sheet3.Cells(run.SampleSize, 15)) )
Sheet2.Cells(18, 2) = TE / run.SampleSize

'Puts mean quantization error on Row 18, 
'Column 1 of Sheet2
'Puts t o p o logical e rror on row 18, col 2 of 
'sheet2

For j = 1 To run.SizeOfMap
If first(j) = last(j) Then 'first(j) = last(j) means cluster with n={0, 1) 

WithinGroupSS(j) = 0
Else

WithinGroupSS(j) = WorksheetFunction.Sum(Range(Sheet3.Cells(first(j) , 16),
Sheet3.Cells!last(j), 16)))

'this gets us within gp SS, necessary for 
'the Calinski & Harabasz (1974) index

End If
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Sheet2.Cells(j, 3) = WithinGroupSS(j)
Sheet2.Cells(j, 4) = GroupCount(j)
AvgWGSS = AvgWGSS + WithinGroupSS(j)
WeightedAvgWGSS = WeightedAvgWGSS + WithinGroupSS(j) * GroupCount(j)

Next j

AvgWGSS = AvgWGSS / (run.SampleSize - run.SizeOfMap)
WeightedAvgWGSS = WeightedAvgWGSS / run.SampleSize

Sheet2.Cells(17, 7) = AvgWGSS 
Sheet2.Cells(18, 4) = WeightedAvgWGSS

'Avg within group and avg weighted within 
’group variance outputted here

For j = 1 To run.NumberOfltems
Sheetl.Cells(18, j) = WorksheetFunction.Average(Range(Sheetl.Cells(1, j),

Sheetl.Cells(16, j)))
Next j

’this code calculates the centroid of the 
’map

For i = 1 To run.SizeOfMap
Sheetl.Cells(i, 14) = WorksheetFunction.SumXMY2(Range(Sheetl.Cells(18, 1), _

Sheetl.Cells(18, 12)), Range(Sheetl.Cells(i, 1), Sheetl.Cells(i, 12)))
Next i

’this code calculates the distance between 
1 the centroid and each individual point

Sheet2.Cells(17, 6) = WorksheetFunction.Sum(Range(Sheetl.Cells(1, 14), _
Sheetl.Cells(16, 14))) / (run.SizeOfMap - 1)

’outputted is the variance of each unit to 
’the centroid in the map

Sheet2.Cells(18, 6) = Sheet2.Cells(17, 6) / Sheet2.Cells(17, 7)

End Sub

Public Sub GetTrueCCPs()

’This sub calculates and stores the Class Conditional Item Probabilities

Dim r, class, item As Integer 
Dim classsum() As Integer 
Dim tempclass As Integer

ReDim classsum(4, run.NumberOfltems)

For r = 1 To run.SampleSize

Select Case Sheet3.Cells(r, 13) 'This determines the intended classification
’since Class 1 simulees were the first 
■125/500, etc.

Case 1 To Round((run.SampleSize / 4), 0) 
tempclass = 1

Case Round((run.SampleSize / 4), 0) To Round((run.SampleSize / (4/2)), 0) 
tempclass = 2

Case Round((run.SampleSize / (4/2)), 0) To (run.SampleSize _
- Round((run.SampleSize / 4), 0)) 

tempclass = 3 
Case Else

tempclass = 4

End Select

For item = 1 To run.NumberOfltems
classsum(tempclass, item) = classsum(tempclass, item) + Sheet3.Cells(r, item)

Next item
’Determines the number of examinees in each 
’class that got each item correct
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Sheet3.Cells{r, 35) = tempclass 'Column AI gets SIM classification

Next r

For class = 1 To 4
For item = 1 To run.NumberOfltems

Sheetl.Cells(class + 20, item) = classsum(class, item) / 125 
Next item 

Next class
'Outputs Class Conditional Item Probability

End Sub

Public Sub Classify()

'This sub gives the SOM "classification" by determining the simulated class most often 
'associated with a given SOM unit.

Dim bin(16, 4) As Integer 
Dim WinningClass(16) As Integer 
Dim row, class, unit As Integer 
Dim CD, CC As Integer

For row = 1 To run.SampleSize
CU = Int(Sheet3.Cells(row, 14))
CC = Int(Sheet3.Cells(row, 35)) 
bin(CU, CC) = bin(CU, CC) + 1

Next row

For unit = 1 To 16
WinningClass(unit) = 1 
For class = 2 To 4

If bin(unit, class) > bin(unit, WinningClass(unit)) Then WinningClass(unit) =
class

Next class 
Next unit

'Determine Class that won most often for 
'given unit.

For row = 1 To run.SampleSize
Sheet3.Cells(row, 36) = WinningClass(Cells(row, 14))

Next row
'Column AJ gets S O M  classification

End Sub

Public Sub GetBayes()

'This function calculates the BAYESIAN classification, i.e., based on the SOM derived 
'CCP's, determines the likelihood of each input pattern being a perturbation of the CCP's 
'for each simulated class.

Dim row, class, item, BayesClass As Integer
Dim ClassProb() As Double
Dim CPProdO As Double
Dim mostlikely As Integer
Dim agreement() As Integer

ReDim ClassProb(4, run.NumberOfltems)
ReDim CPProd(4), agreement(3)

For row = 1 To run.SampleSize
For item = 1 To run.NumberOfltems

'Following code calculates likelihood for 
'each input pattern and each class.

If Sheet3.Cells(row, item) = 1 Then 
For class = 1 To 4

Sheetl.Cells(40 + class, item) = Sheetl.Cells(20 + class, item)
Next class

Else

'WINNER
'Simulated Class
'Increment counter for bin indexed by 
'WINNER, Simulated Class
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For class = 1 To 4
Sheetl.Cells(40 + class, item) = 1 - (Sheetl-Cells(20 + class, item))

Next class 
End If

'Determines most likely class for each input 
'pattern

Next item 
mostlikely = 1 
For class = 1 To 4

CPProd(class) = WorksheetFunction.Product(Range(Sheetl.Cells(40 + class, 1), _ 
Sheetl.Cells(40 + class, 12)))

If CPProd(class) > CPProd(mostlikely) Then 
mostlikely = class 

End If 
Next class
Sheet3.Cells(row, 37) = mostlikely

Next row
'The following code calculates the agreement 
'between the three classifications: 
'simulated, SOM-derived, and Bayesian.

For row = 1 To run.SampleSize
If Sheet3-Cells(row, 35) = Sheet3.Cells(row, 36) Then 

agreement(1) = agreement(1) + 1  
End If
If Sheet3.Cells(row, 35) = Sheet3.Cells(row, 37) Then 

agreement(2) = agreement(2) + 1 
End If
If Sheet3.Cells(row, 36) = Sheet3.Cells(row, 37) Then 

agreement(3) = agreement(3) + 1  
End If 

Next row

Sheet2.Cells(17, 
Sheet2.Cells(18, 
Sheet2.Cells(17, 
Sheet2.Cells(18, 
Sheet2.Cells(17, 
Sheet2.Cells(18,

9) = "sim / sort"
9) = agreement(1)
10) = "sim / bayes”
10) = agreement(2)
11) = "som / bayes" 
11) = agreement(3)

End Sub

Public Sub getdistances()

'This code gets the correlation between distances between model vectors and distances in 
'the map

Dim rl, r2 As Integer

For rl = 1 To run.SizeOfMap
For r2 = 1 To run.SizeOfMap

'FIRST, calculate distances between model vectors

Sheetl.Cells((50 + r2), rl) = (WorksheetFunction.SumXMY2(Range(Sheetl.Cells(rl, 1), _ 
Sheetl.Cells(rl, run.NumberOfltems)), Range(Sheetl.Cells(r2, 1), _
Sheetl.Cells(r2, run.NumberOfltems)))) A 0.5

'SECOND, calculate distances between corresponding map locations
Sheetl .Cells (70 + r2 , rl) = ((layer (rl). locationx - layer (r2).locationx) A 2 + __ 

(layer(rl).locationy - layer(r2).locationy) A 2) A 0.5

Next r2 
Next rl

'Output correlation between distances on 
'Sheet2

Sheet2.Cells(18, 3) = WorksheetFunction.Correl(Range(Sheetl.Cells(50 +1, 1), _ 
Sheetl.Cells(50 + run.SizeOfMap, run.SizeOfMap)), _

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ANNs and Test Structure 196

Range(Sheetl.Cells(70 +1, 1), Sheetl.Cells(70 + run.SizeOfMap, _ 
run.SizeOfMap)))

End Sub
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Public Sub SaveDataO 'Saves various format data files

Dim 1, v As Integer
Dim text, XLSFile, TextFile, sumfile As String

XLSFile = run.FileStem & ".xls”
TextFile = run.FileStem & ".out" 
sumfile = Left$(run.FileStem, 9) & ".dat"

Open TextFile For Output As #1 
Open sumfile For Append As #2

For 1 = 1 To run.SizeOfMap
For v = 1 To run.NumberOfltems

text = layer(1).vector(v)
Write #1, text 
text = ""

Next v 
Next 1

For 1 = 1 To 12
text = text & Str(Sheet2.Cells(18, 1))

Next 1

Write #2, text 

text = ""

ActiveWorkbook.SaveAs (XLSFile)
Close #1 
Close #2

End Sub
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