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Abstract 

Classical thermoelastic analysis within the framework of classical elasticity and Fourier’s 

heat conduction cannot meet the increasing demand with the rapid development of new 

technologies and new materials. Fourier heat conduction theory indicates the speed of thermal 

propagation is infinite, and any disturbance should be felt everywhere instantaneously, which is 

obviously unphysical as heat dispersion will indeed require a certain time to propagate in the 

material. The classical Fourier heat conduction is inapplicable particularly for heat conduction 

involving a very small characteristic length (10-8~10-6 m), very short time scale(10-11~10-15 s), or 

very low temperature (1-10 K), where the time lag between the heat flux and temperature rise 

becomes significant. Therefore, non-Fourier heat conduction models have been proposed to 

account for the time lag between heat dispersion and temperature change, such as the hyperbolic 

heat conduction theory, dual-phase-lag (DPL) model. Besides, with the wider applications of soft 

materials, the viscous effect should be taken into consideration in the thermoelastic analysis of the 

cracked media to characterize the thermal stress concentration induced fracture of the material. 

Moreover, in the past decades, advanced materials or devices have been downsized to 

micrometer/nanometer scales. In these scales, the effective thermal and mechanical properties 

differ significantly than bulk materials, and neither the Fourier heat conduction nor classical 

continuum mechanics can explain these discrepancies.  

Taking the aforementioned, unclassical problems into account, the non-Fourier heat 

conduction, nonlocal heat conduction, and nonlocal elasticity are introduced in the thermoelastic 

analysis in this thesis. The main contributions are summarized as follows:  



                                                                                                 iii 

 

(1) A thermo-viscoelastic model is developed for the crack problem in an infinite, 

functionally graded half plane under a thermal shock. 

(2) A thermoelastic analytical model is established for a functionally graded half-plane 

containing a crack under a thermal shock in the framework of hyperbolic heat conduction theory. 

(3) By extending the fractional calculus to DPL heat conduction theory, the transient 

thermal-mechanical response in cracked viscoelastic materials under thermal shock is analyzed. 

(4) A modified nonlocal DPL theory is formulated to account for the heat conduction at 

the nanoscale. Both the temporally and spatially nonlocal effects are considered in heat conduction, 

which are verified experimentally by the size-dependent thermal conductivity of silicon nano-films 

and the transient temperature variation during the femtosecond laser heating of gold films. A 

generalized, uncoupled, nonlocal thermoviscoelastic theory is hence proposed. 

(5) The interface crack problem between a functionally graded coating and the 

homogenous substrate is analyzed within the framework of the nonlocal continuum theory. The 

nonlocal elasticity is extended to interface crack problems under thermal loading for the first time 

to eliminate the stress singularities at the crack tips and address size effects on the thermoelastic 

response. 
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Preface 

This thesis is organized in a paper-based format. 
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Stresses, 42(8), pp.993-1010. 

 

A version of Chapter 4 of this thesis has been published as: 

Yang, W. and Chen, Z., 2020. Investigation of transient thermal-mechanical behavior of a 
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Chapter 1: Introduction 

1.1 Motivations 

Thermoelastic analysis is a classical fundamental branch in solid mechanics, which 

investigates the heat conduction within various solid materials and the resulting stress/strain fields 

[1-3]. As an extension of classical elasticity, thermoelasticity takes the effect of thermal expansions 

into account via adding a temperature relating term to the stress-strain constitutive law. Classical 

thermoelastic analyses are usually based on the classical elasticity and Fourier’s heat conduction 

law [4-5], which offers the fundamental understandings in many industrial applications in 

aerospace, mechanical, civil and nuclear engineering.  

Many machine components working in the high temperature environment, like thermal 

shielding components in the aerospace industry, would suffer from intense thermal stresses, which 

may lead to the failure of the material. In order to assure the lifetime, safety and reliability of these 

components, the analyses of heat transfer and internal thermal stress distributions are of 

importance. Particularly, microcracks may develop in the manufacturing of materials or during the 

thermal or mechanical loading process, and the concentration of thermal stresses and high 

temperature gradients would occur around the cracks. As to the thermoelastic analysis of crack 

problems in various materials, there have been extensive theoretical researches. Based on classical 

Fourier’s heat conduction and assuming the properties of the nonhomogeneous material following 

an exponential law, Noda and Jin [4-8] conducted a series of theoretical analysis of the 

thermoelastic behaviors of functionally graded materials containing a Griffith crack and presented 

the influence of nonhomogeneity on both thermal and thermal stress responses. Utilizing the finite 

difference method, the coupled, thermoelastic problem of an infinite solid containing a penny-

shaped crack was solved by Noda et. al. [9]. In a separate study, Nied and Erdogan [10] solved the 

dynamic thermoelastic problem for a circumferential edge crack in a hollow cylinder cooled from 

inside. Nabavi and Ghajar [11] derived a general weight function to evaluate the thermal stress 

intensity factors for elastic cylinders containing circumferential cracks. Wang et. al. [12] 

investigated the dynamic response of noncollinear cracks in a graded composite material plate 

subject to dynamic thermal loading. Bao and Wang [13] studied the crack driving force for multiple 
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cracks in functionally graded ceramic/metal coatings. Ueda [14-19] performed a series of 

investigations into thermo-electro-mechanical fracture behavior of cracked piezoelectric materials. 

All these works were based on Fourier’s law and neglected the effect of thermal wave speed. 

With the rapid development of new technologies, fast-growing usage of new materials, and 

increasing demand for high accuracy in engineering problems, the thermoelastic analysis within 

the framework of classical elasticity and Fourier’s heat conduction cannot meet these requirements 

and the unclassical effects should not be neglected anymore. Some examples are listed here. (1) 

With the rapid development of ultrafast laser heating technology, the processing time of heating is 

shortened to the level of femtoseconds or picoseconds [20-22], where the classical Fourier heat 

conduction breaks down. (2) Due to the advanced nanotechnologies, micro-electromechanical 

systems (MEMS) and nano-electromechanical systems (NEMS) have been widely applied in 

engineering. In these highly integrated devices, high thermal density would be generated and 

accurate analysis of the heat conduction and thermal stress distributions becomes a necessity. 

Under these circumstances, the scale effect would become significant, and both the classical 

continuum mechanics and Fourier heat conduction are inapplicable [20]. (3) In the past several 

decades, many soft materials, such as polymer matrix composites, nanocomposites hydrogels and 

soft elastomers, have been invented and used extensively in a broad range of applications. Classical 

elasticity does not apply to the new, synthetic composite materials and cannot describe the creep 

or stress relaxation phenomena caused by the rheological properties. In the fracture risk of these 

materials, the viscoelastic properties need to be concerned.  

This thesis work was motivated by the existing challenges in dealing with non-classical, 

thermomechanical behavior of advanced materials. It focuses on introducing non-Fourier heat 

conduction theory in thermal analysis, as well as time-dependent, viscoelasticity theory and non-

local theory into the mechanical analysis to facilitate a comprehensive framework for advanced 

thermal stress analysis of materials. It can be used to deal with the thermomechanical behavior of 

materials and structures with heterogeneous microstructure or soft matter under extreme thermal 

loading conditions, and other non-classical problems. 
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1.2 Statement of non-classical problems 

In this section, the non-classical theories considered in this thesis are presented in detail. 

1.2.1 Non-Fourier heat conduction 

As a very general internal energy transfer in various solids, liquids, and gas, heat 

conductions are usually taken place by numerous microstructure collisions of energy carriers, like 

molecules, phonons, or free electrons. Heat always flows spontaneously from hotter areas to cold 

areas and the flow rate varies with the temperature difference (temperature gradient). The 

relationship between the flow rate and the temperature gradient within a material can be described 

by an empirical law, which was formulated by Fourier in 1822. In most classical engineering 

problems with the macro spatial and temporal scales, the Fourier Law performs satisfactorily [20], 

which is shown as: 

( , ) ( , )t k T t= − q x x                                                    (1.1) 

where q  is the heat flux vector, T  is the temperature, t  is time, x  is the position, and k  is the 

thermal conductivity. When the inner heat source is negligible, the conservation of local energy is 

expressed by: 

                                                               p

T
c

t



−  =


q                                                          (1.2)                                                             

where 
pc  is the specific heat, and   is the mass density. Incorporate Eq. (1.1) and (1.2), there is 

the governing PDE: 

2 1 T
T

t


 =


                                                           (1.3)  

where   is the thermal diffusivity. However, this parabolic heat conduction theory implies thermal 

waves can propagate in the media at an infinite speed [23], and any thermal disturbances can be 

felt at infinity instantaneously. Obviously, this indication contradicts physical facts and admits the 

heat signal travel faster than light, which is inadmissible in the framework of relativity. In some 

applications with micro/nano spatial and temporal scales, this unphysical deficiency becomes more 

pronounced and the classical analysis cannot satisfy the requirement of the accuracy anymore. 
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Typical examples include, but not limited to, heat conduction (1) at very low temperature [20]; (2) 

under intense heat flux or very high temperature gradient [20-22]; (3) within materials with 

micro/nano scales inner structures [20]. Actually, experimental evidence has shown the failure of 

Fourier’s Law at some specific applications. Peshkov [24] investigated the heat conduction in 

helium at very low temperatures (down to 0.38 K) and confirmed the finite thermal wave speed. 

Narayanamurti [25] measured the second-sound velocity in the semimetal bismuth in the 

temperature range of 1.2 to 4 K. By experiments performed in the thin gold films under 

femtosecond laser irradiation, Brorson et. al. [26] found the heat transport speed is close to the 

Fermi velocity of electrons in Au.  

From the microscopic viewpoint, this non-Fourier effect in heat transfer can be attributed 

to the approaching of the characteristic physical length or processing time to the level of the mean 

free path or mean free time of energy carriers, respectively [20]. The mean free path is defined by 

the averaged distance over sufficient collisions of the energy carrier, and the mean free time is 

defined by the averaged time for each collision. Usually, the mean free time of energy carriers is 

in the order of 100 femtosecond to 101 picosecond, and the mean free path is in the order of 101  to 

102 nanometer [20].  For the widely applied ultrafast laser heating techniques, the processing time 

can be shortened to the level of femtoseconds, where the finite speed of thermal waves and the 

time-lagging behaviors cannot be neglected anymore. As to the heat conduction in helium at 

extremely low temperatures, the delayed responses are very obvious since the finite time required 

to activate the inert energy carriers to an energy level for efficient heat conduction [20]. 

(1) Hyperbolic (single-phase-lag) heat conduction 

In order to avoid this unphysical deficiency and incorporate the finite speed of thermal 

wave into heat conduction, the thermal wave model  (or C-V model) was proposed by Cattaneo 

and Vernotte [27-28] through introducing the “thermal relaxation time 
q ”, which denotes the time 

lag in the thermal wave propagation, as follows: 

 
( , )

( , ) ( , ).q

t
t k T t

t



+ = − 



q x
q x x                                         (1.4) 
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The relaxation time, 
q  is a material constant, usually related to the collision frequency of the 

molecules within the material, and the finite thermal wave speed can be calculated as 

/ ( )T p qC k c = , where 
pc  is the specific heat, and   is the mass density. When the finite speed 

is neglected, 
q  will equal zero and the Eq. (1.4) will be degenerated to the classical Fourier’s Law. 

Consider the conservation of local energy in Eq. (1.2), there is the hyperbolic-type governing PDE: 

2
2

2

1 T T
T

t t



 

 
 = +

 
                                                       (1.5) 

If the relaxation time is regarded as the time lag between the temperature gradient and heat flux, 

Eq. (1.4) can be expressed as:  

( , ) ( , )qt k T t+ = − q x x                                                (1.6) 

which indicates the temperature gradient at one material point will proceed the resulting heat flux 

by a time lag 
q . Mathematically, the Eq. (1.4) can be obtained by the Taylor series expansion of 

Eq. (1.6) to its first order. 

(2) Dual-phase-lag heat conduction 

Following the hyperbolic heat conduction theory, Tzou [20] proposed a more generalized 

dual-phase-lag (DPL) model as: 

 ( , ) ( , )q Tt k T t + = −  +q x x                                          (1.7) 

where T  is the time lag of the temperature gradient. Unlike the assumption that the temperature 

gradient always proceeds the heat flux in single-phase lag theory, for 
T q  , DPL theory 

indicates the heat flux at one point will proceed the temperature gradient, which means the heat 

flux could be the cause and the temperature gradient is the result. This more generalized model 

can capture the transient effect when the response time is comparable to the thermalization time 

needed for the microstructural interaction to build the thermodynamic equilibrium [20-21]. 

According to Tzou [20], the two thermal lags are intrinsic thermal properties of the materials. As 

to the composites with complex internal structures like porous media, which always require finite 
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times for the material to reach thermal equilibrium, the thermal lags could become the structural 

properties. Unlike the thermal wave model, which is the macroscopic description over many grains, 

the DPL model considering the more pronounced microstructural effect which requiring finite time 

to achieve local thermal equilibrium. For metals under the ultrafast laser heating, the thermal lags 

are caused by phonon–electron interactions. As to the porous media or composites, the energy 

carriers will follow the more conducting path and dissipate the energy to the neighbor phases, 

which is the cause of thermal lags. Due to these advantages, the DPL model has a satisfactory 

performance in small-scale and fast transient processes and agrees well with the ultrafast laser 

heating experiments in metal films [22].  

(3) Fractional heat conduction 

As an extension of the integer order in partial differential equations, fractional calculus 

has been widely discussed in various applications like fluid mechanics, viscoelasticity and 

biological engineering [29-32]. Mainardi [33] extended the fractional calculus into the study of 

some basic physical phenomena like relaxation, diffusion, oscillation and wave propagation. 

Unlike the integer order, the most important aspect of time fractional differential is their nonlocal 

properties and memory effects, which implies the next state of a system depends on both the current 

input as well as the historical states. Povstenko [34] proposed the quasi-static uncoupled 

thermoelasticity theory based on the heat conduction equation with a time-fractional derivative. 

Sherief et. al. [35] introduce the fractional calculus into the thermal wave model, shown as: 

( , )
( , ) ( , )q

t
t k T t

t







+ = − 



q x
q x x                                           (1.8) 

where  

0

1 ( , )
( ) , 0 1

( , ) (1 )

( , )
, 1

t
f

t d
f t

t f t

t








  

 



−
 

−  
  − 

= 
 

= 


x

x

x
 

Using the Taylor series expansion of Eq. (1.6) to its fractional order of  , Ezzat and EI-

Karamany [36-37] proposed the fractional single-phase heat conduction theory: 
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( , )

( , ) ( , )
!

q t
t k T t

t

 








+ = − 



q x
q x x                                      (1.9) 

The extension of fractional calculus to heat conduction theory has yielded promising results 

[36-37]. The sharp thermal wavefront which implies infinite thermal gradient in hyperbolic heat 

conduction theory was eliminated [38] using fractional models, and the enhanced fractional heat 

conduction theory fits very well with the experiment and shows the fractional order is a powerful 

characteristic parameter for non-continuous materials like composites [39]. Similar, introducing 

the fractional calculus into the DPL model, the fractional order DPL heat conduction law is studied 

by Ezzat [40] and Xu [41] with the form as: 

 

2 2

2
( ), 0 1

! (2 )! !

q q Tk T T
t t t

    

  

  


  

  
+ + = −  +   

  

q q
q                  (1.10) 

(4) Nonlocal heat conduction 

The aforementioned part focuses on the lagging behaviors in time to account for non-

Fourier heat conduction. Moreover, the classical Fourier’s Law cannot meet the requirement 

spatially for heat conduction within nano sized materials or devices. Experimental measurements 

of the thermal conductivity of nano-structural materials such as silicon nanofilm or nanowires, 

graphene sheets, is size-dependent, which is remarkably different from bulk materials [42]. These 

findings show the spatially nonlocal effect in heat conduction of nano size and the Fourier Law 

breaks down to describe these steady-state heat conductions. 

To incorporate the spatially nonlocal effect in heat conduction, different mathematical 

models have been proposed. Based on the linearized Boltzmann equation for the pure phonon field, 

the well-known Guyer-Krumhansl model was proposed in [43-44]. Considering the mass, pressure, 

and inertial force of the phonon gas [45], the thermomass model can also characterize the nonlocal 

effect in heat transport. Stemming from the analogy with the integral form of the nonlocal elasticity, 

an integro-differential equation governing the nonlocal effect was proposed by Xu [46-47]. 

Obviously, there is still no common agreement on the spatial nonlocality in heat conduction [48-

49]. Parallel to these works, Tzou et. al. extended their DPL model by introducing a nonlocal 

length to accommodate the spatially nonlocal effect [50-51], shown as:  
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( , ) ( , )q Tt k T t + + = −  +q x ξ x                                      (1.11) 

in which ξ  is the vector relating to the spatial nonlocality of the heat flux vector. The advantage 

of this theory is the macroscopic unification of both the temporally and spatially nonlocal effects 

in a simple form, especially for some engineering analyses without sufficient knowledge of the 

phonon dynamics. By Taylor series expansion to the first order of space dimension, and neglecting 

all terms involving time, the steady state form of this theory:  

(1 ) ( ) ( )k T+  = − ξ q x x                                              (1.12)  

was verified by the experimental results of thin nanowires as it captured the linear dependence of 

the effective thermal conductivity on their radiuses [50].  

1.2.2 Thermoviscoelasticity 

In the past decades, with the developments of advanced manufacturing techniques, more 

and more advanced soft materials like hydrogel, elastomers, and polymers-based composites are 

designed and put into engineering applications. Unlike elastic materials, these materials always 

exhibit significant creep and stress relaxation under room temperatures and the stress and strain 

depend on their time variations. Moreover, these behaviors always become more severe in the high 

temperature environments. Thermoviscoelasticity offers the basis for studying these complicated 

phenomenological behaviors and designing the flexible materials. The constitutive law of 

thermoviscoelasticity can be formulated as [52-53]: 

1

0

2

0 0

( , , )

( , , ) 3 ( , , )

t
ij

ij

t t

kk
kk

de
s G x y t d

d

d dT
G x y t d x y t d

d d

 



     

 

= −

= − − −



 

              (1.13) 

with  

                                                 ,

1 1

3 3
ij ij kk ij ij ij kk ijs e     = − = −  

where 
ijs ,

ije are deviatoric components of the stress and strain tensors, T  is temperature, 1( , , )G x y t

and 2 ( , , )G x y t  are the shear and the bulk relaxation functions, ( , , )x y t is the thermal relaxation 
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function. Recently, there has been some work focusing on thermoviscoelasticity. Ezzat et. al. 

extended heat conduction with the memory-dependent derivatives [54] and fractional relaxation 

operators [55] into thermoviscoelasticity and calculated the responding temperature variations and 

thermal stresses distributions in one-dimensional cases. Li et. al. [56] considered the effect of 

fractional order strain in the thermomechanical analysis of a thick viscoelastic plate. With the help 

of mapping of Kirchhoff’s transformation, the thermoviscoelastic analysis of an infinitely long 

hollow cylinder with variable thermal conductivity was conducted by Ezzat and Ei-Bary [57]. 

However, these works were only focused on the one-dimensional heat transfer in uncracked 

materials. There are very few works investigating the thermal fracture behavior of viscoelastic 

materials. As to cracked viscoelastic materials, the heat conduction would always be two-

dimensional since the existence of a crack could disturb the temperature field. The transient 

fracture behavior in viscoelastic materials under non-Fourier heat conduction remains unknown. 

With the increasing application of soft composites, the viscoelastic fracture analysis under thermal 

loading has become an important topic 

1.2.3 Nonlocal Elasticity 

       Considerable progress has been made in nanotechnology during the past decades. Since the 

discovery of carbon-nanotubes, much attention has been attracted to nano-structural materials 

owing to their excellent multifunctional performance in mechanical, electric and optical 

applications [58-59].  Some high-performance nanostructures like nanowires, nanotubes, 

nanofibers, are believed to be promising materials to build nanodevices, such as 

nanoelectromechanical systems (NEMS) [60-61]. In the design or safe operation process of 

sophisticated, expensive NEMS, accurate analysis of inherent stress, strain, and heat conduction 

becomes an inevitable necessity. However, many experimental evidences have shown the intrinsic 

properties of nano-structural materials differ notably with that in bulk materials [62], which is 

greatly attributed to the scale effects, such as the diameter of nanowires or the thickness of thin 

films [62]. Due to the very small characteristic dimensions, mechanics in these nano-structural 

materials or systems will be significantly affected by the forces in molecular or atomic scales, 

where the applicability of classical continuum models is questioned [63]. 

       In order to bridge the gap between the classical continuum mechanics and the mechanics 

at the nanoscale, several modified, size dependent, continuum theories have been proposed, such 
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as the strain gradient elasticity theory, couple stress theory, and nonlocal elasticity theory [64–69], 

of which the nonlocal theory has been widely applied to research at the nanoscale. Initiated by 

Eringen et al. [65-66], the stress-strain relation is expressed in an integral form:  

( ) (| |) ( ) ( )ij ijt X X X X d X 


  = −                                        (1.14) 

In which 
ijt  is the nonlocal stress, 

ij  is the classical local stress, (| |)X X −  is the kernel 

function characterizing the long-range interactions between molecules or atoms. Compared with 

the classical continuum, nonlocal theory indicates the stress of one spatial point does not depend 

uniquely only on the strain at that point, but also on the strains in a surrounding space, and thus 

building the connections between macroscopic mechanical behaviors with the microscopic, 

molecular or atomic interactions.  In 1983, the equivalent, partial differential form of nonlocal 

theory was proposed by Eringen et al. [70] for some specific, physically admissible kernels 

expressed as:  

2 2

0(1 ( ) ) ij ije a t −  =                                                     (1.15)  

where 0e  is a constant depending on materials, a  is an internal characteristic length, and 2  is the 

Laplacian operator. Compared to the integral form, the differential form of nonlocal theory has 

gained more popularity among researchers due to its simplicity [71]. Until now, the nonlocal 

continuum has been widely applied in various areas [72-75], such as fracture mechanics, 

dislocation mechanics, wave propagation in composites, etc. Nonlocal theory has seen many 

applications in fracture mechanics. Using nonlocal theory, Eringen [72,77-78] obtained the non-

singular stress fields around the tip of a Griffith crack under uniform tension, shear, or anti-plane 

shear. As the nonlocal theory leads to a finite stress field around the crack tip, fracture criteria 

based on the maximum stress can be built to simplify the application of fracture mechanics in 

mechanical design. Many researchers further extended the application of nonlocal theory in 

various crack problems under different loading conditions. For example, Zhou et al. [79-83] 

employed Schmidt’s method to investigate various crack problems based on nonlocal theory. 

Using nonlocal theory, Liu et al. [84-85] studied the three-dimensional crack problem in 

piezoelectric and magneto-electro-elastic materials. Jamia et al. [86-87] studied the crack problem 
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of a functionally graded, magneto-electro-elastic and piezoelectric material, respectively, using 

nonlocal theory.  

Until now, all research works on the application of nonlocal theory in fracture mechanics 

were only focused on the crack problem under mechanical loading, and the nonlocal analysis of 

crack problems under thermal loading has yet been reported. The thermoelastic investigation of 

cracked media by nonlocal theory will be introduced in this thesis. 

 

1.3 Methods and Objectives 

The objective of this thesis is to obtain a comprehensive understanding of the non-

classical problem’s influence on the thermoelastic response by mathematical modelling related 

to the following issues: 

(1) Non-Fourier heat conduction in cracked viscoelastic media and related thermal stress analysis. 

(2) Nonlocal heat conduction and the associated thermoviscoelastic response. 

(3) Extension of nonlocal elasticity in dealing with thermoelastic response of cracked media 

under thermal loading. 

The main theoretical methods of integral transform and singular integral equations, are 

utilized to deal with the governing equations of both the transient thermal fields and dynamic stress 

fields. In order to solve the unclassical thermoelastic problems in cracked media, Fourier transform 

is used to convert the partial differential equations to ordinary differential equations, while Laplace 

transform is efficient in avoiding the time dependence by analyzing the mathematical problem in 

Laplace domain. With the help of boundary conditions, the problems are finally reduced to singular 

integral equations or dual integral equations, and then solved numerically to display the 

concentration of thermal stresses and high temperature gradients around the cracks.  

  



                                                                                                 12 

 

1.4 Organization of the thesis 

This thesis is organized as follows. After this brief introduction to the topics, a 

thermoviscoelastic analysis is conducted for a cracked, functionally graded half-plane under a 

thermal shocking load. In the third chapter, the non-Fourier, CV heat conduction equation is 

introduced in the thermal analysis of a cracked half-plane to reflect the influence of thermal waves 

on the thermomechanical, fracture behavior of functionally graded materials under thermal shock 

loading. In chapter 4, the time-dependent, viscoelastic behavior is combined with the non-Fourier, 

fractional dual-phase lag heat conduction model for thermal stress analysis of soft materials under 

transient thermal loading. In chapter 5, the non-local, dual-phase-lag theory is verified by 

experimental data based on thermal conductivity of silicon nanofilms and femtosecond laser 

heating of gold films, and a generalized nonlocal thermoviscoelastic theory is built to analyze the 

thermomechanical response of a thin film. In chapter 6, non-local thermal stress analysis is further 

extended to an interface crack problem to illustrate the influence of microstructure heterogeneity 

on interface debonding. Conclusions and some perspectives for future work are provided in chapter 

7. 
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Chapter 2: Thermo-viscoelastic response of a cracked, functionally graded 

half-plane under a thermal shock 

A thermo-viscoelastic model is developed for the crack problem in an infinite, functionally 

graded half plane under a thermal shock. The moduli are assumed to be separable forms of both 

spatial coordinates and time, and two types of relaxation function of viscoelasticity are considered 

in this chapter. By employing the Fourier transform and Laplace transform, coupled with the 

singular integral equations, the governing partial differential equations under mixed thermo-

mechanical boundary conditions are solved numerically. The results show that the variations of 

stress intensity factors (SIFs) in viscoelastic functionally graded materials (FGMs) are 

significantly different than those in the elastic ones, which cannot be neglected in designing FGMs. 

2.1  Introduction  

  Over the last few decades, with the aid of developed manufacturing techniques like 3D 

printing, various soft materials such as hydrogels, elastomers, polymers and other composites [88-

89] have been invented and put into use in a broad range of applications such as biomedical, 

aerospace, tissue, automotive, mechanical, drug delivery, civil, and nuclear engineering. Among 

them, polymer-based functionally graded materials (FGMs) are currently receiving much attention. 

To avoid severe thermal stresses and improve the structural integrity, FGMs always possess 

gradual change in composition and microstructure so as to achieve continuous variations in 

physical and mechanical properties spatially.  

For polymer-based FGMs, materials may exhibit significant creep and stress relaxation 

even under room temperature. Unlike elastic materials, deformation in viscoelastic FGMs is a 

time-dependent process, and both stress and strain depend on their time variation. Moreover, in 

the framework of classical, linear viscoelasticity, materials will show more significant creep and 

stress relaxation under elevated temperature, and therefore, viscoelasticity cannot be neglected in 

designing polymer-based FGMs. 

   FGMs can help reduce mechanical and thermal stresses to avoid catastrophic failure of 

structures, especially for the stresses around the cracks. There has been extensive research about 
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the crack problems in FGMs under mechanical or thermal loading [6, 13, 90-95]. Noda and Jin 

[96] pointed out that the stress intensity factors are still applicable in fracture problems of FGMs 

and their singularity and angular distribution in crack tip fields are the same with the homogenous 

materials. Following these works, a number of analytical or semi-analytical models are introduced 

to solve the crack problems, such as the piecewise linear or exponential models [97-98]. However, 

compared with the elastic problems, there are only a few investigations focusing on the crack 

problem in viscoelastic FGMs. For example, by solving the governing equations directly, 

Schovanec et al. [99-103] studied the stationary and dynamic mode I and mode III crack problems 

in nonhomogeneous, viscoelastic materials. In a separate study, Paulino and Jin [104-107] 

extended the elastic-viscoelastic correspondence principle to FGMs under the assumption that the 

relaxation functions can be written in separable forms of space and time, which greatly simplified 

the analytical solutions. Using this correspondence, they analyzed a crack problem in viscoelastic 

FGMs strip under in-plane loading and anti-plane loading. Wang et al. [108] solved the viscoelastic 

crack problem using their piecewise-exponential model. However, the correspondence principle 

can only be used in simple problems, in which one can turn the final elastic solutions to viscoelastic 

ones directly by corresponding substitutions. When the problems become complex, such as the 

thermal-viscoelastic problems, or when dimensionless variables exist, it is difficult to get the 

correct solutions by this correspondence.  

    In this chapter, we aim to establish a thermo-viscoelastic analytical model for a cracked 

half-plane under a thermal shock in FGMs. By employing Laplace transform, the convolution in 

viscoelastic constitutive equation is avoided to simplify the derivation process. The partial 

differential equations are solved by Fourier transform, and the boundary conditions on crack faces 

are reduced to a set of singular integral equations. The Lobatto-Chebyshev method [109] is 

employed to solve the singular integral equations numerically, and the Laplace inversion [110] is 

used to get the results in the time domain. 
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2.2  Statement of the problem and basic equations 

         As illustrated in Figure 2.1, a semi-infinite, nonhomogeneous, viscoelastic plane containing 

a crack of length 2c under plane stress condition is considered. The crack is parallel to the free 

boundary, and is assumed to remain completely thermally insulated, so the temperature field will 

be disturbed by the presence of this crack. The whole temperature is set to be zero initially, and a 

thermal shock is suddenly applied on the free boundary at time 0t = . Inertia and body forces are 

neglected. 

 

Figure 2.1 Crack geometry and coordinates 

 

In viscoelastic, nonhomogeneous materials, the moduli are functions of both spatial 

coordinates and time. To simplify the theoretical derivation, separable forms of the properties are 

assumed as:     
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   
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 

=

= +
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=

                                    (2.1) 

where  ,  ,  ,  are material constants; , , ,E k   and   are the Young’s modulus, Poisson’s 

ratio, thermal expansion coefficient, heat conductivity and thermal diffusivity; ( ) ( 1, 2,3)im t i =  

are the relaxation functions in viscoelasticity with no loading applied on the material before 0t = . 

In the present work, two classical relaxation functions [111] are employed as: 
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(1) Heat conduction 

The heat conduction when the heat generation is negligible is:    

2 1 1 T
T k T

k t


 +   =


                                                 (2.3)  

By introducing the following dimensionless variables,  

2

0/ , / ( / ), ( , , ) ( , , ) / ,T T T t t c x y h x y h c c  = = = =                       (2.4) 

Considering the material properties in equation (2.1), the governing equation for heat conduction 

can be reduced to: 

2 T T
T

y t

 

 + =
 

                                                           (2.5) 

Here and after, the hat of the dimensionless variables has been omitted for simplicity. The initial 

and boundary conditions for heat conduction in dimensionless forms are: 

0, 0, ( 0)
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0, ( )
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
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
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= →


= = 



= 

 
= 
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                                    (2.6) 

(2) Thermal-viscoelastic field equations 

The equilibrium equations for plane stress problems without considering the inertia effect 

are:  
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                                   (2.7) 

The strain-displacement relations are: 

1
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  
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= = = +
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                              (2.8) 

The compatibility equation for two-dimensional problems is:  

2 22

2 2
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                                                (2.9) 

The constitutive law of viscoelasticity can be expressed as: 
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        (2.10) 

with  

                                                      ,

1 1

3 3
ij ij kk ij ij ij kk ijs e     = − = −  

where 
ijs ,

ije are deviatoric components of the stress and strain tensors, T  is temperature, 1( , , )G x y t

and 2 ( , , )G x y t  are the shear and the bulk relaxation functions, ( , , )x y t  is the thermal relaxation 

function.  

The relations between these functions and the relaxation function of Young’s modulus *E  

and Possion’s ratio *  in the Laplace domain are expressed as [52]:  

* *
* * * * *

1 2 2* *
, ,

1 1 2

E E
G G pG

p p
 

 
= = =

+ −
                           (2.11) 

where p is the Laplace transform variable. Here and after, the superscript “*” denotes the variables 

in Laplace domain. By using the Laplace transform, the above equations can be reduced to:  



                                                                                                 18 

 

* * * * * *

*

* * * * * *

*

*
* *

*

1
( )

1
( )

1

x x y

y y x

xy xy

p p T
pE

p p T
pE

p

pE

    

    


 

= − +

= − +

+
=

                                           (2.12) 

Combined with equation (2.1), the following equations are obtained as: 
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  (2.13) 

where *( ) ( 1,2,3)im p i = are the Laplace transform of ( ) ( 1, 2,3)im t i = . 

Let 
*U  is the Airy stress function, in terms of which the stress can be expressed as: 
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Substitute the above equations into equation (2.9) and (2.13), the governing equation is obtained: 
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(2.15) 

Besides (2.4), we introduce the following dimensionless variables, 
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                                (2.16) 

The governing equation can be reduced to:                                                          
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(2.17) 

And the dimensionless constitutive equations are reduced to:  
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        (2.18) 

Similar with equation (2.5), the hat of the dimensionless variables has been omitted for simplicity. 

In this problem, the mechanical boundary conditions can be expressed as: 
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                                         (2.19)                                              

2.3  Thermal stress 

  We assume the thermal-viscoelastic coupling effect can be neglected, and the stress field 

will not influence the temperature field. By employing Laplace transform, the solution of (2.5) 

subjected to conditions (2.6) are given as [6]: 
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Where  
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  is the Fourier transform variable and ( , )D p  is associated with the density function of 

temperature, which can be calculated from the singular integral equation in [6]. In the Laplace 

domain, substituting the solution of temperature distribution (2.18) into the following governing 

equation for thermal stresses: 
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the general solution of Eq. (2.21) can be expressed as: 
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       (2.22)                   

where 
1 2, 3 4, 1 2, , ,A A A A B B  can be derived from the boundary conditions (2.19), and  
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and the following equations can be obtained by the particular solution of (2.20),  
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(2.23)     
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From constitutive equation (2.18) and the corresponding boundary conditions, the jumps of the 

displacement on the line 0 y = are: 
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              (2.24)                       

The stress components can be obtained from solution (2.22) combined with equation (2.14). 

Substituting the stresses and temperature jump into (2.24), we have:                                   
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Following the procedure in [109], introducing two dislocation density functions as: 

                     ( ) ( )
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By applying the second mechanical boundary condition on crack faces in equation (2.19), the 

following singular integral equations can be obtained as: 
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The kernels are given by: 
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and  
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Where the expressions of 
1, ,ij ijf g h can be found in the Appendix. 

Using the Lobatto-Chebyshev method [109], the above singular integral equations can be 

transformed to algebraic equations: 
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The stress intensity factors (SIFs) are defined as: 

* * * *

2 1( ) (1, ), ( ) (1, )
4 4

I IIK p F p K p F p
 

= − = −                          (2.34)        

To get the SIFs in time domain, the inverse Laplace transformation has to be employed for above 

solutions. Since analytical inversion is difficult, the numerical inversion by Miller and Guy [110] 

will be used. 

2.4  Numerical results and discussions 

      The SIFs in the time domain can be obtained after the inverse Laplace transform. To begin 

with, the following standard linear viscoelastic relaxation function: 

                                         0

0 0

( ) (1 )

t

tE E
m t e

E E

−
 = + − , with 

0

0

0.5, 1
E

t
E

 = =                               (2.35) 

is considered [111], and the results of SIFs are shown in comparison with the corresponding elastic 

solutions. The elastic solution for the same thermal shock and same boundary conditions can be 

obtained when we assume the relaxation function to be  ( ) 1m t = . In the following figures, the SIFs 

for comparison of elastic and viscoelastic materials and a series of parametric investigations are 

plotted versus dimensionless time. In all the cases, the distance between the boundary and crack 

faces, h , is assumed to be 1. It is worth noting the nonhomogeneous parameter   has no influence 

on the SIFs since it has been eliminated in the governing equations. Besides, from the singular 

integral equations (2.27), It’s easy to find that only the relaxation function 3 ( )m t  in the thermal 

expansion coefficient will affect the results of SIFs. From a physical standpoint, this can be 

explained by the space independence of relaxation functions. All three relaxation functions are 

assumed to be independent with space coordinates, however, T  (change of temperature) is a 
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variable dependent on the space coordinates in this problem, which leads to the fact only the 

relaxation function of thermal expansion will heighten the nonhomogeneity of thermal stresses, 

thus bringing the variation of SIFs. 

 

Figure 2.2 Comparison of SIFs (a) IK  (b) IIK  in viscoelastic and elastic materials, when

( , , ) (1,1, 0.1)   =
. 

As shown in the Figure 2.2, IK  is positive while IIK  is negative in the select values of the 

nonhomogeneous material parameter. Compared to IK , the magnitudes of IIK are much higher in 

both elastic and viscoelastic materials, more than five times of IK , which implies Mode II fracture 

plays a predominant role under thermal shock in both elastic and viscoelastic FGMs. Significant 

discrepancies are shown between elastic and viscoelastic results: the elastic SIFs increase from 0 

at t=0 to a steady state around t=1.5, while the viscoelastic SIFs increase from 0 at t=0 to a peak 

value around t=0.3~0.5, after which the SIFs start to decrease dramatically, even approaching 0 at 

t=3.0, which indicates that although there is no much difference in the maximum of SIFs, the 

fracture may occur at a much more earlier stage in viscoelastic FGMs under thermal shock if the 

stress intensity factors exceed the fracture toughness.  
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Figure 2.3 Variation of the cleavage stress versus angle   at time 0.5, 2.0t t= =  in elastic and 

viscoelastic nonhomogeneous materials when ( , , ) (1,1, 0.1)   = . 

 

Figure 2.4 Variation of the maximum of cleavage stress versus time in elastic and viscoelastic 

nonhomogeneous materials when ( , , ) (1,1, 0.1)   = . 

To give a clearer comparison and illustrate the dynamic stress field around the crack tip, 

the variation of cleavage stresses   : 



                                                                                                 26 

 

1 3 1 3 3 3 3
[ cos( ) cos( )] [ sin( ) sin( )]
4 2 4 2 4 2 4 22

I IIK K
r



   




 
= + + − − 

 
                 (2.36) 

versus angle   are shown in Figure 2.3 when the nonhomogeneous material parameters

( , , ) (1,1, 0.1)   = . Two different times 0.5, 2.0t t= =  are considered for both elastic and 

viscoelastic materials. All curves show the cleavage stresses reach their maximum at the same 

angle, no matter the materials are elastic and viscoelastic, which indicates the crack propagation 

direction will keep the same at different times. Compared with elastic materials, the cleavage 

stresses in viscoelastic materials in later stage will be significant decreased. In fracture mechanics, 

the maximum of cleavage stresses can characterize the crack initiation under mixed mode facture, 

and their variations with time are depicted in Figure 2.4. The results show that the main difference 

between elastic and viscoelastic materials are the maximum of cleavage stress reach its peak value 

at a much earlier time than the elastic one. 

 

Figure 2.5 The effect of the graded parameter   on the SIFs (a) IK (b) IIK  when 1, 0.1 = = . 
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Figure 2.6 The effect of the graded parameter   on the SIFs (a) IK (b) IIK  when 1, 0.1 = = . 

 

Figure 2.7 The effect of the graded parameter   on the SIFs (a) IK (b) IIK  when 1, 1 = = . 

 

In the Figure 2.5, 2.6 and 2.7, parametric investigations are conducted to illustrate the 

nonhomogeneous parameters’ influence on SIFs. Figure 2.5 shows the effect of the graded 

parameter   on the SIFs when 1, 0.1 = = . It’s obvious that   has very little influence on IIK  

but has a great impact on IK . When 1 = , the IK  is positive, which means the crack faces are 



                                                                                                 28 

 

under tension. When 1 = − , the IK  is negative, which indicates the contact of crack faces would 

occur. As mentioned above, the Mode II fracture would play a predominant role in this article. It 

seems the variation of IK  will have limited effect on the fracture behaviors, however, the contact 

of crack faces will increase the friction and make the heat transfer easier [6], besides, the crack 

contact also influence on the Mode II fracture as reported by [112-114]. Therefore, a detailed 

discussion considering crack contact problem in nonhomogeneous viscoelastic material may be 

consideres in future work. 

The effect of the graded parameter   on the SIFs is illustrated in Figure 2.6.   has a great 

influence on both IK  and IIK . When   is decreased from 1 to -1, the peak value of IK  increases 

to fourfold, while the peak value of IIK  is doubled, which greatly heighten the fracture risk. 

Therefore, an increase of the gradient of thermal conductivity in viscoelastic FGMs can 

significantly lower the thermal stresses and stress intensity factors. Compared with the 

nonhomogeneous parameters   and  , the graded parameter   in thermal expansion has almost 

no influence on the fracture behaviors, which can be found in Figure 2.7. 

Another power law relaxation function is also considered as  

0
0

1
( ) ( ) , , 1.

2

qt
m t q t

t
= = =                                             (2.37) 

Variations of SIFs with dimensionless time are compared with the standard linear viscoelastic 

material under the same nonhomogeneous parameters, as shown in Figure 2.8. For IK , the 

magnitude of peak values in viscoelastic material with power law’s relaxation is a little higher than 

that in standard linear one, and the rate of decay is slower. Compared with IK , significant 

difference is illustrated for IIK . For Mode II fracture, the magnitude of peak values in viscoelastic 

material with power law’s relaxation is much higher than that in standard linear one, and the decay 

of rate would be much slower. At time 3.0t = , the value of IIK  in standard linear viscoelastic 

material has approached to zero, while the one in viscoelastic material with power law’s relaxation 

is still much higher than zero. All these results indicate the detailed type of relaxation function is 

vitally important for designing the viscoelastic FGMs. 
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Figure 2.8 Comparison of SIFs for two different viscoelastic relaxation functions when 

1, 1, 0.1  = = = . 

2.5 Conclusions 

In this chapter, the transient SIFs and the thermal stresses under a thermal shock in FGMs 

are investigated when the crack is parallel to the free boundary of infinite half plane. Two classical 

types of relaxation function of linear viscoelasticity are considered and the moduli of FGMs are 

assumed to be forms of both spatial coordinates and time. By employing the Fourier transform and 

Laplace transform, coupled with the singular integral equations, the governing partial differential 

equations under mixed thermo-mechanical boundary conditions are solved numerically. The 

results show that significant discrepancies of transient SIFs exist between nonhomogeneous elastic 

and viscoelastic materials. The fracture risk occurs at a much earlier stage in viscoelastic FGMs 

under thermal shock than the elastic ones. An increase of the gradient of thermal conductivity in 

viscoelastic FGMs can lower the thermal stresses and fracture risks. The materials’ intrinsic 

viscoelastic relaxation properties are vitally important for designing the viscoelastic FGMs. All 

the results show that the viscoelastic properties should be concerned in designing FGMs, especially 

the “soft” polymer-based FGMs.  
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2.6 Appendix  
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Chapter 3: Investigation of the thermal-elastic problem in cracked semi-

infinite FGM under thermal shock using hyperbolic heat conduction 

theory 

A thermo-elastic analytical model is established for a functionally gradient half-plane 

containing a crack under a thermal shock in the framework of hyperbolic heat conduction theory. 

The moduli of FGMs are assumed to vary exponentially with the coordinates. By employing the 

Fourier transform and Laplace transform, coupled with singular integral equations, the governing 

partial differential equations under mixed, thermo-mechanical boundary conditions are solved 

numerically. For both the temperature distribution and transient stress intensity factors (SIFs) in 

FGMs, the results of hyperbolic heat conduction model are significantly different than those of 

Fourier’s Law, which should be considered carefully in designing FGMs. 

3.1  Introduction  

Over the past decades, considerable researches have been conducted on FGMs due to their 

increasing application in heat engineering, such as high temperature chambers, heat exchanger 

tubes, thermoelectric generators, gas turbines etc. Compared to homogenous composite materials, 

FGMs possess gradual changes in composition and microstructure with spatially continuous 

variations in physical and mechanical properties. Invented as a thermal shield to sustain very high 

temperature gradients in thin structures [115], one primary advantage of FGMs is their excellent 

performance in improving bonding strength and reducing residual and thermal stresses. Fracture 

failure of cracked material may occur when the crack propagation is induced by the external high 

thermal load, such as thermal shock. To investigate the thermal stress concentration around cracks 

and the potential fracture failure in high temperature environment, numerous studies have been 

devoted to the crack problem under thermal loading in FGMs [4-9, 116]. 

However, in the previous studies, almost all the analyses of heat conduction are based on 

the classical Fourier’s Law, 

( , ) ( , ),t k T t= − q X X                                                      (3.1) 
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where q  is the heat flux vector, T  is temperature, t  is time, X  is position and k  is thermal 

conductivity. Fourier’s Law implies the thermal wave can propagate instantaneously in the media 

at an infinite speed, which contradicts physical facts. Although Fourier’s Law is practical in many 

engineering applications, the negligence of the finite speed of heat propagation would be 

unacceptable with the increasing demanding of accuracy in engineering problems, especially under 

some extreme conditions, such as the heat conduction in micro or nano scale, or the extremely low 

or high temperature conditions etc. [109]. In these situations, the measured results showed 

significant discrepancy with the temperature predicted by Fourier’s Law [109, 117], which 

indicates that the finite speed of thermal wave has to be taken into consideration. To incorporate 

the finite speed of thermal wave into heat conduction, the hyperbolic heat conduction model was 

proposed by Cattaneo and Vernotte [22-28] by introducing the “thermal relaxation time 
q ”, which 

denotes the time lag in the thermal wave propagation, as follows 

 
( , )

( , ) ( , ).q

t
t k T t

t



+ = − 



q X
q X X                                        (3.2) 

 The relaxation time, 
q  is a material constant, usually related to the collision frequency of 

the molecules within the material, and the finite thermal wave speed can be calculated as 

/ ( )T p qC k c = , where 
pc  is the specific heat, and   is the mass density. 

For crack problems, application of the hyperbolic heat conduction model on homogeneous 

material has been reported in some recent literature. Chen and Hu [109, 118] analyzed the transient 

SIFs around a crack parallel to the free surface under a thermal shock impact in an infinite half 

plate, and a cracked substrate bonded to a coating. Hu and Chen [119] investigated a partially, 

thermal insulated crack in a strip under a thermal shock. When the crack is perpendicular to the 

surface of the strip, the temperature field will not be disturbed, as reported by Chang et al [120] 

and Wang et al. [121]. By assuming the time-varying temperature field and stress field will not be 

affected by the existence of crack, with the help of weight function, they investigated the crack 

problem by both maximum local stress criterion and maximum stress intensity factors criterion. 

The fracture behavior of a thermoelastic solid cylinder subjected to a sudden temperature change 

on its outer surface using hyperbolic heat conduction model are investigated by Fu et. al. [122] for 

a circumferential crack and Wang [123] for an infinitesimal penny-shaped crack. Zhang and Li 
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[124] introduced the fractional calculus into the hyperbolic heat conduction model and investigated 

the fracture problem for a circumferential crack in a hollow cylinder under thermal shock.  

The material-dependent thermal relaxation time 
q  plays a vital role in the hyperbolic heat 

conduction theory, usually in the order of picoseconds for most engineering materials [123], which 

means this theory cannot be neglected only in extreme engineering problems like extremely high 

rate heating. However, the relaxation time 
q  can be up to the order of 10 s  in some functionally 

graded materials as reported the experiment results in [125], and the order of 
210 s  in some 

biology materials [122], where non-Fourier effect would play a significant role in the thermoelastic 

behavior even under no extreme conditions.  With the increasing application of FGMs, especially 

the polymer-based FGMs in bio-medical engineering, it is necessary to extend the hyperbolic heat 

conduction to thermoelastic study of FGMs. For example, the hyperbolic heat conduction in a 

functionally graded sphere and cylinder is investigated by Babaei and Chen [115, 126], where all 

material properties except for the thermal relaxation time vary continuously along the radius of the 

structures in a power law. In a separate study, Keles and Conker [127] analyzed the non-Fourier 

hyperbolic heat conduction analysis for heterogeneous hollow cylinders and spheres made of 

functionally graded material (FGM) with exponentially-varying properties.  

To the authors’ best knowledge, the transient crack problem in FGMs under thermal 

loading using hyperbolic heat conduction model has only been investigated by Eshraghi et al [128]. 

They assumed the circumferential crack does not disturb the temperature field and studied the 

fracture behavior in a functionally graded hollow cylinder with the help of weight function. In this 

article, we aim to build a thermo-elastic, analytical model for an FGM half-plane containing a 

crack under a thermal shock impact using the hyperbolic heat conduction theory. The crack is 

parallel to the free surface and assumed to be thermally insulated, so its disturbance to the 

temperature field could not be neglected. By employing both Fourier transform and Laplace 

transform, the governing, partial differential equations subjected to thermal-mechanical boundary 

conditions are reduced to a set of singular integral equations, which is solved numerically by the 

technique from [129] and Lobatto-Chebyshev method [109]. Finally, the numerical, inverse 

Laplace transform [110] are performed to obtain the results of temperature field and SIFs in the 

time domain. 
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3.2  Formulation of the problem and basic equations 

          As shown in Figure 3.1, assume a crack of length 2c  parallel to the free surface is located 

in a nonhomogeneous, functionally graded half-plane and is subjected to a thermal shock impact 

0 ( )T H t on the free surface at time 0t = , where ( )H t is the Heaviside step function. The crack is 

assumed to be completely, thermally insulated so the redistribution of temperature field must be 

taken into consideration.  At time 0t = , the temperature of the entire half-plane is initially a 

constant, without loss of generality, which is set as zero. For simplicity, inertia effect and body 

forces are neglected.  

 

Figure 3.1 Crack geometry and coordinates  

The nonhomogeneous properties of the FGM are assumed to vary exponentially with y-

coordinate, expressed as: 

0

0

0

0

0

exp( ),

(1 )exp( ),

exp( ),

exp( ),

,

E E y

y y

y

k k y



   

  



 

=

= +

=

=

=

                                          (3.3) 

where   is graded material constant for Young’s modulus and Poisson’s ratio,   is graded 

material constant for Poisson’s ratio,   is graded material constant for thermal expansion 

coefficient and   is graded material constant for thermal conductivity; , , ,E k  and   are the 

Young’s modulus, Poisson’s ratio, thermal expansion coefficient, heat conductivity and thermal 

diffusivity, respectively. 
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(1) Heat conduction equations 

         Usually the heat conduction is assumed to be governed by the classical, parabolic, Fourier’s 

law, in which the speed of heat propagation is infinite. In this article, as described in equation (3.2), 

the thermal relaxation time 
q  is introduced for the hyperbolic the heat conduction model. When 

the inner heat source is negligible, the conservation of local energy is expressed by: 

.p

T
c

t



− =


q                                                         (3.4) 

 Considering the gradient of thermal conductivity in equation (3.3), coupled with (3.2) and (3.4), 

the governing equation of the temperature field in FGMs can be obtained as:  

2
2

2

1
.

T T T
T

y t t




 

  
 + = +

  
                                               (3.5) 

By introducing the following dimensionless variables, 

2

0/ , / ( / ), ( , , ) ( , , ) / , ,T T T t t c x y h x y h c c  = = = =                     (3.6) 

then equation (3.5) is converted into the following dimensionless form: 

2
2

2 2
.

T T T
T

y t c t



  

 + = +
  

                                               (3.7) 

Here and after, the hats of the dimensionless variables have been omitted for simplicity. The 

dimensionless initial and boundary conditions for temperature field are: 

                                        

0, 0, ( 0),

( , ) 1, ( 0, ),

0, ( ),

0, ( 0, 1),

( ,0 ) ( ,0 ), ( 1),

( ,0 ) ( ,0 )
, ( 1).

T
T t

t

T x h t x

T y

T
y x

y

T x T x x

T x T x
x

y y

+ −

+ −


= = =



− =   

= →


= = 



= 

 
= 

 

                                        (3.8) 
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(2) Thermal stress field equations 

In the following, we assume the functionally graded half plane is under plane stress 

condition. Thus, 0zz zx zy  = = = . Without considering the body force and inertia effect, the 

equilibrium equations are: 

0, 0,
xy xy yx

x y x y

     
+ = + =

   
                                    (3.9) 

the strain-displacement relations are: 

 
1

, , ( ),
2

x y xy

u v u v

x y y x
  

   
= = = +
   

                                 (3.10) 

the compatibility equation is:  

2 22

2 2
2 ,

y xyx

y x x y

   
+ =

   
                                            (3.11) 

and the thermal-elastic constitutive equations are: 

1
( ) ,

1
( ) ,

1
.

x x y

y y x

xy xy

T
E

T
E

E

   

   


 

= − +

= − +

+
=

                                          (3.12) 

Let U  be the Airy stress function, thus the plane stresses can be expressed as:  

2 2 2

2 2
, , .x y xy

U U U

y x x y
  

  
= = = −
   

                                   (3.13) 

Incorporating equations (3.11), (3.12), (3.13), considering material properties in equation (3.3), 

the governing equation of elastic stress field in FGMs can be obtained as: 

2
2 2 2 2 2 2

0 02
2 ( ) exp(( ) )( 2 ) 0.

U T
U U E y T T

y y y
      
  

  −  + + +  + + =
  

      (3.14) 
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Besides (3.6), introducing the other following dimensionless variables, 

  

2

0 0 0 0 0 0

0 0 0 0

/ ( ), / ( ),

( , ) ( , ) / ( ), / ( ),

( , , ) ( , , ) ,

ij ij

ij ij

E T U U E T c

u v u v c T T

c

   

   

     

= =

= =

= 

                                      (3.15)                                       

then the governing equations can be reduced to dimensionless forms:  

2
2 2 2 2 2 2

2
2 ( ) exp(( ) )( 2 ) 0.

U T
U U y T T

y y y
     
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  −  + + +  + + =
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    (3.16) 

Similarly, the hat of the dimensionless variables is omitted for simplicity. And the boundary 

conditions for mechanical conditions are: 

           

( , ) ( , ) 0, ( ),

( ,0) ( ,0) 0, ( 1),

( ,0 ) ( ,0 ), ( 1),

( ,0 ) ( ,0 ), ( 1),
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+ −

− = − =  

= = 

= 
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                                    (3.17) 

 3. 3  Solution of the temperature field  

The Laplace transform is employed against time variable, thus the governing equation (3.7) 

and the corresponding boundary conditions can be transformed to:  

2 2

2

*
* * *,

T
T pT p T

y c





 + = +


                                          (3.18) 
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*( , ) 1/ , ( ),

* 0, ( ),

*
0, ( 0, 1),

*( ,0 ) *( ,0 ), ( 1),

*( ,0 ) *( ,0 )
, ( 1).

T x h p x

T y

T
y x

y

T x T x x

T x T x
x

y y

+ −

+ −

− =  

= →


= = 



= 

 
= 

 

                                     (3.19) 

Here and after, the superscript “*” denotes the variables in the Laplace domain, and p  is the 

Laplace transform variable. 

         By applied Fourier transform to (3.18), the solution of temperature field subjected to (3.19) 

in the Laplace domain can be obtained as: 

 

2

2
1

1 2

1
*( , , ) ( , ) exp( ) exp( ( )), 0,

( , )
*( , , ) 1 exp( 2 ( )) exp( )

exp( 2 )

1
exp( ( )), 0,

T x y p D p m y ix d q y h y
p

m D p
T x y p m h y m y ix d

m m mh

q y h y
p

  


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

−



−

= − − + − + 

= − − + − −
− −
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

             (3.20) 

where 
2 2

2 2 2

1 2, , , ,
2 2 4 2 4

m m m m m p Bp q p Bp
    

= − = + = + + + = + + +   
2

,B
c


=  

and ( , )D p  is unknown and will be determined by the following density function: 

*( ,0 , ) *( ,0 , )
*( , ) .

T x p T x p
x p

x x


+ − 
= −

 
                                (3.21)                                           

Incorporating equations (3.20) and (3.21), by employing Fourier inverse transform, there is 

1

1 2

1

[ exp( 2 )]
( , ) *( , )exp( ) .

4

i m m mh
D p p i d

m
    


−

− −
= −                        (3.22) 

From the condition of continuity in (3.19), it is clear that 



                                                                                                 39 

 

1

1

*( , ) 0,x p dx
−

=                                                    (3.23) 

*( , ) 0, ( 1).x p x =                                                (3.24) 

Substituting equation (3.22) into the temperature distribution (3.20), by using the boundary 

condition on the crack faces in (3.19), the following singular integral equation is obtained: 

1

1

1 2
*( , )[ *( , , )] exp( ), 1,

q
p k x p d qh x

x p


   


−

+ = − 
−                                (3.25)                                              

and the kernel function is given as: 

                2 1 2

0

[ exp( 2 )]
*( , , ) 1 sin[( ) ] .
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k x p x d

m
   




 − −

= + − 
 
                          (3.26) 

The numerical technique in [129] is employed to solve the integral equations (3.23) and (3.25), 

and the following algebraic equation is obtained: 

1

1 1 2
*( , )[ *( , , )] exp( ), 1,

n
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                  (3.27) 
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where 
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2
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−
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Once the integral equations are solved, the temperature field in the Laplace domain can be obtained. 

The numerical technique in [110] is used for the Laplace inverse transform, thus the temperature 

field in the time domain is obtained. 
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3.4  Solution of thermal stress field 

Once the temperature field in the Laplace domain is obtained, the general solution of 

equation (3.16) satisfying the regular condition at infinity can be obtained as: 

1 2 2 1 2

1 2 3 4 1

21 22 1

*( , , ) ( ) exp( ) exp[( ) ] ,
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    (3.30) 

where 1 2 3 4 1 2, , , , ,A A A A B B  can be derived from the boundary conditions (3.17), and  
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     (3.31) 

Then the plane stresses can be obtained easily from equation (3.13) and (3.30) by taking some 

derivatives. Similar to the density function (3.21) in the solution of temperature field, two 

dislocation density functions are introduced here: 

      ( ) ( )1 2

[ *( , )] [ *( , )]
* , , * , ,

u x p v x p
x p x p

x x
 

 
= =

 
                  (3.32) 

where [ *( , )]u x p , and [ *( , )]v x p  are the displacement jumps across the crack faces. Considering 

the mechanical boundary condition on crack faces in equation (3.17), the following singular 

integral equations can be obtained as: 
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The Fredholm-type kernels are given by: 
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and  
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where the expressions of ( ), ( ) ( , 1, 2)ij ijf h i j  =  and ( ) ( 1, 2, 3, 4)ig i =  can be found in the 

Appendix. The solutions of the above integral equations can be expressed as: 

        
2

*( , )
*( , ) , ( 1, 2), 1.

1

i
i

G x p
x p i x

x
 = = 

−
                             (3.37) 



                                                                                                 42 

 

Using the Lobatto-Chebyshev method, the above singular integral equations can be transformed 

to algebraic equations: 

11 1 12 2
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where       
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From reference [6], the stress intensity factors (SIFs) in the Laplace domain can be obtained as: 

2 1*( ) *(1, ), *( ) *(1, ).
4 4

I IIK p G p K p G p
 

= − = −             (3.40) 

The dynamic stress intensity factors in the time domain can be obtained by the Laplace inverse 

transform via equation (3.40), 
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where “Br” stands for the Bromwich path. In the following section, the numerical algorithm of 

Laplace inverse transform proposed by Miller and Guy [110] will be used to obtain the SIFs in the 

time domain.  
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3.5  Numerical results and discussions 

The temperature field distribution in the time domain can be obtained after taking the 

inverse Laplace transform of equation (3.20). Since the crack is assumed to be thermally insulated, 

the existence of crack parallel to the free surface will disturb the temperature field. At the 

beginning, the temperature variations of the mid-points of crack faces versus dimensionless time 

are investigated under the influence of 
2

B
c


= , which plays a vital role in the hyperbolic heat 

conduction theory.  

From [125], the thermal relaxation time for nonhomogeneous FGMs could be up to the 

order of 10 s . If we take the typical crack size as 1mm , the parameter B  can be up to 10 according 

the experiment results, which is much larger than that in homogenous materials,  

 

                                                       (a)                                                                               (b) 

Figure 3.2 The effect of parameter B on the dimensionless temperature variation versus dimensionless 

time for (a) mid-point of upper crack face; (b) mid-point of lower crack face. 

such as metals. As shown in Figure 3.2 (a) and (b), the “UF” and “LF” in these figures denote the 

temperature of mid-points of upper and lower crack faces, respectively. As expected, the 

temperature in the upper face is much lower than that of lower face due to thermal insulation of 

the crack. All curves increase from around zero at time 0t =  till a steady value eventually. For the 

case of 0B = , when the hyperbolic heat conduction theory is reduced to the classical Fourier’s 

Law, the temperature of both “UF” and “LF” will increase gradually until approaching the steady 
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state values without any fluctuations. The introduction of thermal relaxation time brings 

fluctuations, and the temperatures for both crack faces need more time to reach the steady state 

values. With the increase of “B”, the oscillation amplitudes will also increase, so will the time to 

reach the peak value of temperature. At the lower crack face, the temperature of the mid-point may 

even reach 1.4 when B=10, which is much higher than the applied thermal shock on the free surface. 

This is the so-called overshooting phenomenon. Although FGMs have a good performance in 

reducing thermal gradient, the numerical results show the significant difference in transient 

temperature variation and the obvious temperature overshooting when the speed of heat transport 

 

                                                 (a) t =0.5                                                                        (b) t =1 

 

                                                (c) t =2                                                                          (d) t =5 
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(e) t =inf 

Figure 3.3 Dimensionless temperature on crack faces and extension line, with material constant 1 =  and

2 =  under different time instants (a) t =0.5; (b) t =1;(c) t =2; (d) t =5; (e) t =inf; while the parameter 

B=0.5. 

is considered. Therefore, extra consideration is required to accommodate this overshooting in 

designing FGMs structures for dynamic thermal disturbances. 

The transient temperature distribution on crack faces and their extension line is shown in 

Figure 3.3 for hyperbolic heat conduction with the parameter B=0.5 at different time instants.  The 

peak value of temperature always appears at the mid-point of crack faces except when t = 0.5, in 

which case the peak points are around the crack tips. The temperature jumps across the crack faces 

are evident for all cases; and the jump increases at first and then decrease after t =1, until it reaches 

a steady state in case (e) (“inf” denotes a long enough time). From equation (3.20), it is easy to 

find that only the material parameter   has significant effect on the temperature distribution, and 

its influence is also shown in these figures. A larger  , i.e., increasing the gradient of thermal 

conductivity of FGMs, can always reduce the temperature jump across crack faces and lower the 

temperature along the crack extension line under a thermal shock except at the very early stage 

(such as that of t = 0.5). 

The effect of parameter “B” on the variations of SIFs is shown in Figure 3.4 when 

1, 1, 0.1  = = = . The curves of B=0 corresponds to the classical Fourier’s Law, where the 

thermal relaxation time, 0q = . Like the temperature variations in Figure 3.2, the SIFs show 

similar fluctuations. In the case of Fourier’s Law, the SIFs will increase smoothly till a steady 
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value in a short time, whereas the introduction of “B” brings significant oscillations in all SIF 

curves. A larger B, i.e. larger thermal relaxation time 
q , corresponds to more time needed to reach 

the steady-state value and a higher oscillation amplitude. Compared to IK , the magnitudes of IIK  

are always much higher, around four times of IK , which implies Mode II fracture would play a 

dominant role in FGMs under thermal shock. The fracture behavior under the framework of  the 

hyperbolic conduction model would be highly dependent on the value of the parameter 
2

B
c


= . 

When “B” is large enough, like “B=10”, the peak value of IIK  calculating from hyperbolic heat 

conduction model is twice of the steady value of Fourier’s Law, which implies a much higher risk 

of fracture failure. All results show that consideration of hyperbolic heat conduction model in 

FGMs brings not only significant temperature overshooting, but also much higher magnitudes of 

transient SIFs.  

      
1 3 1 3 3 3 3

[ cos( ) cos( )] [ sin( ) sin( )]
4 2 4 2 4 2 4 22
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 
               (3.42) 

 

Figure 3.4 The effect of parameter B on the variations of SIFs with time  



                                                                                                 47 

 

 

Figure 3.5 Variation of the cleavage stress versus angle  ( , )   −  

at time 3, 15t t= =  when 1, 10B B= = . 

To give a better illustration of the transient dynamic stress field around the crack tips, the 

variation of cleavage stresses (see equation (3.42)) versus angle ( , )   −  is shown in Figure 

3.5.  Two different time instants, 3, 15t t= =  are considered when 1, 10B B= = . It can be easily 

found the cleavage stresses reach their maximum at the same angle, which means the direction of 

the possible crack propagation will always be the same at different time instants independent of 

the thermal relaxation time. In this premise, we give the time variation of the maximum cleavage 

stress under different thermal relaxation time. Similar to the variation of stress intensity factors, 

significant oscillations are observed when the thermal wave speed is considered, and the 

amplitudes of the oscillations increase with increasing B . In addition, the variation of the cleavage 

stress versus time may lead to fatigue failure of the structure. Therefore, it would always be 

conservative and necessary to take the hyperbolic heat conduction model into consideration in 

designing FGMs.  

In FGMs, the nonhomogeneous material constants play a vital role as they affect the SIFs 

significantly according to the literature. As a result, the parametric investigations are conducted 

under the framework of hyperbolic heat conduction theory when 0.5B = . From the singular 

integral equation in thermal stress field, the Poisson’s ratio would have no influence on the stress 
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intensity factors, only the material constants , ,    will affect the SIFs. The results of parametric 

investigations of , ,    are shown in Figure 3.7-3.10. Figure 3.7 shows the effect of the gradient 

parameter   on the SIFs when 1, 1, 0.5B = = = . The results show the parameter   has 

almost no influence on IIK , whereas it has a very limited influence on IK . An increase of the 

gradient of thermal expansion can reduce the peak value and the oscillation of IK , but not 

significantly. Compared with  ,   has a significant influence on both IK  and IIK , as shown in 

Figure 3.8. With the increasing gradient of thermal conductivity, the amplitude of stress intensity 

factors and the oscillation would decrease significantly. As to the gradient in Young’s modulus, 

the value of   has little effect on IIK , but its influence on IK  could be significant. When 0   , 

IK  is negative, and when 0   , IK  is positive, which agrees with the result in [6]. With an 

increasing   in Young’s modulus, the peak value of IK  would also be increased. Similar 

phenomena can be observed in Figure 3.10. To analyze the fracture risk, the most important aspect 

is the peak values of the stress intensity factors. From above analysis, it is ,   rather than   that 

have a significant influence on the peak values of the SIFs. The variations of the peak values with 

the gradient parameters ( 2,2)  −  and ( 2,2)  −  are shown graphically in Figure 3.10. It is 

noted the negative values of  IK  indicate crack faces would be under compression. The contact of 

the crack faces would make the heat transfer easier, and IIK  would also be influenced by the crack 

closure [113-114], which is beyond the scope of this article. To make our discussion reasonable, 

the   was confined to be positive.    
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Figure 3.6 The effect of parameter B on variation of the maximum of cleavage stress versus time 

  

.   

Figure 3.7 The effect of the gradient parameter   on the SIFs when 1, 1, 0.5B = = =  
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Figure 3.8 The effect of the gradient parameter   on the SIFs when 1, 0.1, 0.5B = = =  

  

                

Figure 3.9 The effect of the gradient parameter   on the SIFs when 1, 0.1, 0.5B = = =  
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Figure 3.10 The variation of peak values of stress intensity factors with: (1) the gradient parameter 

( 2,2)  −   when 1, 0.1 = = . (2) the gradient parameter ( 2,2)  −   when 1, 0.1 = = . 

 

3.6  Conclusions 

In this paper, the transient SIFs and the thermal stresses of an FGM half-space with a 

crack parallel to the surface have been investigated under a thermal shock in the framework of the 

hyperbolic heat conduction theory. By employing the Fourier transform and Laplace transform, 

coupled with the method of singular integral equations, the governing partial differential equations 

under mixed thermo-mechanical boundary conditions have been solved. The results show that 

significant discrepancies of both temperature distribution and transient SIFs exist between the 

hyperbolic heat conduction model and Fourier’s Law. Although FGMs have good performance in 

reducing thermal gradient and thermal stresses, significant temperature overshooting and much 

higher transient SIFs are observed when the finite speed of heat wave is considered. The present 

work confirms that for FGMs with relatively high “thermal relaxation time” in the transient heat 

processes, hyperbolic-type heat conduction models should be employed in designing structural 

components to account for the dynamic overshooting in order to avoid  potential fracture risk.           
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3.7 Appendix 
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Chapter 4: Investigation of transient thermal-mechanical behavior of a 

cracked viscoelastic material using time-fractional dual-phase-lag theory 

 In the past decade, viscoelastic materials (like polymer composites, biological tissues, 

rubber, etc.) have been increasingly used in a variety of industries due to their excellent 

multifunctional properties. In this work, by extending the fractional calculus to DPL heat 

conduction theory, the transient thermal-mechanical response in cracked viscoelastic materials 

under thermal shock is analyzed. With the aids of Fourier and Laplace transform, the thermal-

viscoelastic problem is converted into a system of singular integral equations with Cauchy kernels 

of the first kind, which are then solved numerically. The parametric study is performed and the 

numerical results of temperatures, intensity factors of temperature gradient (IFTG) and stress 

intensity factors (SIFs) around the crack tips, are shown graphically to illustrate the effects of time 

fractional order, thermal lags and viscoelastic relaxation on the thermoelastic response.  

4.1  Introduction 

Due to the excellent multifunctional and rheological properties, viscoelastic materials [88-

89], such as polymer matrix composites, biological tissues, rubber, composite propellant, 

nanocomposites hydrogels, soft elastomers, are becoming more and more popular and promising 

in many industrial applications, like aerospace, drug delivery, biomedical, mechanical, civil and 

nuclear engineering. Viscoelastic materials usually exhibit both elastic and viscous characteristics 

when undergoing deformation. In particular, the rheological property shares the time-dependent 

features in the mechanical response, which is functions of not only the current input but also the 

historical process [52-53]. To describe these specific characteristics, like delayed strain recovery 

or creep under constant loads, the linear viscoelastic response can usually be characterized by the 

hereditary integral [52]. 

One common but important aspect to evaluate the viscoelastic materials is their 

performance under thermal loading [54-55]. It is of great importance to figure out the detailed 

mechanism of thermo-viscoelasticity in some applications. In recent years, highly increasing 

attention has been paid to the generalized thermoviscoelasticity, in which a variety of Non-Fourier 
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heat conduction theories are concerned with. The classical Fourier law of heat conduction is the 

conventional approach which was extensively employed especially in engineering problems. 

However, one main drawback of this parabolic theory is the neglection of thermal wave speed, 

which implies the heat propagation speed is infinite [20]. To address this problem, the hyperbolic 

heat conduction theory, also known as C-V theory, is established by Cattaneo and Vernotte [27-

28], who introduced a thermal relaxation time q ,  shown as ( ) ( )qq t k T t+ = −  , which indicates 

it requires a delay time q  to build the heat flux after the temperature gradient of a point is built at 

time t. To some extent, this theory provides a promising tool to consider the effect of thermal 

inertia in heat conduction. However, it assumes a macroscopic thermal behavior averaged over 

many grains and discernible discrepancies are observed between theoretical predictions and 

experiment results [130], which leaves the model open for debate [131]. On the other hand, the 

phenomenological, two-step model proposed by Anisimov [132] achieved success in describing 

the temperatures of election gas and the metal lattice during short pulse laser treatment [133]. To 

incorporate the microscopic effects (like electron-phonon interaction) into a macroscopic 

description, Tzou [20] proposed the dual-phase-lag (DPL) model, shown as 

( ) ( )q Tq t k T t + = −  + , where T  is the thermal lag of temperature gradient. The DPL model can 

capture the transient effect when the response time is comparable to the thermalization time needed 

for the microstructural interaction to build the thermodynamic equilibrium.  The generalized 

thermoviscoelasticity is of significant importance for some applications like the microfabrication 

of medical stent design using femtosecond laser, especially considering the thermal lags can reach 

the order of 1~10 second for some viscoelastic composites and biological tissues [122,134]. 

Mohamed et. al. [135] proposed the generalized, thermo-viscoelastic plane wave theory with two 

relaxation times. The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity 

with thermal relaxation were proved by Ezzat et al. [136]. The state space formulation for thermo-

viscoelasticity with two relaxation times was introduced by Ezzat et al. [137]. Mohamed et al. [138] 

proposed the basic theory for generalized thermo-magneto-viscoelasticity in isotropic and 

electrically conductive space. The solution of generalized thermo-viscoelasticity for an isotropic 

medium with variable thermal conductivity and fractional-order heat transfer are given in [139]. 

Recently, a generalized, thermo-viscoelastic analysis with fractional strain in a thick plate is 

investigated by Li et al. [56]. 
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The aforementioned research about thermo-viscoelasticity mainly focused on the transient, 

one-dimensional heat conduction and the governing equations were usually solved by Laplace 

transform. Non-Fourier heat conduction shares the wave-like behaviors and overshooting 

phenomena [109], which is believed as a result of interference of two thermal waves. Heat 

conduction would become more complicated in cracked media, considering the wave-like thermal 

propagation, interference of thermal waves, and the disturbance induced by the thermally insulated 

cracks. Besides, the overshooting temperature in cracked media raises more concerns about the 

safety of structures under thermal disturbances, especially for sophisticated microdevices. 

Overshooting temperature in cracked media may elevate the thermal stress to the level for crack 

propagation. Nowadays the Non-Fourier thermal-mechanical research in cracked media mainly 

focuses on elastic materials. Chen and Hu [109,119] firstly extend Non-Fourier heat conduction to 

crack problems in a half plane and a long strip, respectively. Chang et al. [120] and Wang et al. 

[121] investigate the transient crack problems in a half plane under thermal shock when the crack 

is perpendicular to the free surface, where the crack will not disturb the temperature field. Zhang 

et al. [124,140] extend the fractional, CV heat conduction theory to thermo-elasticity in cracked 

media. In these researches, the materials are assumed to be pure elastic and the viscoelastic 

relaxation is neglected. However, the viscous effect of many materials would become significant 

under elevated temperatures. For some viscoelastic materials, experiments show their fracture 

toughness is temperature-dependent and would decrease with the increase of work temperature 

[141-143]. With the wide applications of viscoelastic composites, the thermal-mechanical 

behavior of these materials under thermal shock and the associated safety problem becomes an 

essential necessity.  

Although DPL heat conduction theory has been widely applied in the theoretical and 

numerical works, some unphysical results have been reported [144-146]. Similar unrealistic 

phenomena can be observed in the non-Fourier heat conduction in cracked media [147]. Take the 

results in [147] for example, when the initial dimensionless temperature was assumed to be 

dimensionless zero and the applied thermal temperature on the surface was all positive, negative 

temperatures were observed in the early stage of temperature history. Although the crack would 

disturb the heat flux and thermal waves may interfere with each other, the appearance of negative 

dimensionless temperatures indicates some heat flux flowed from cold areas to hot areas, which 

obviously violates the second law of thermodynamics. Compared with conventional integer 
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differential order, fractional calculus has been used successfully to modify many models of 

physical processes [29, 32].  The most important aspect of time fractional differential is their 

nonlocal properties and memory effects, which implies the next state of a system depends on both 

the current input as well as the historical states. The extension of fractional calculus to heat 

conduction theory has yielded promising results. The sharp thermal wavefront which implies 

infinite thermal gradient in hyperbolic heat conduction theory was eliminated [38] using fractional 

models, and the enhanced fractional heat conduction theory fits very well with the experiment and 

shows the fractional order is a powerful characteristic parameter for non-continuous materials like 

composites [39].  

In this study, the time fractional differential is extended to DPL heat conduction model to 

investigate the heat transfer in a half-infinite space with an embedded crack which is parallel to 

the free surface under thermal shock. The viscoelastic relaxation is considered to analyze the 

mechanical response and fracture behavior of the cracked half-space. By using Laplace and Fourier 

transforms, the governing equations subjected to thermal-mechanical boundary conditions are 

reduced to singular integral equations, which are then solved numerically. Finally, the numerical 

inversion of Laplace transform is employed to present the results of temperature, IFTG and SIFs 

in the time domain.  

4.2  Problem formulation and basic equations 

As shown in Figure 4.1, consider a semi-infinite, isotropic, viscoelastic space with a 

Griffith crack heated by a sudden thermal shock. The crack of length 2c  is parallel to the free 

surface and assumed to be thermally insulated completely. Initially, the temperature of the space 

is assumed to be equal to 1T  uniformly. The thermal shock 0 ( )T H t  is applied on the free surface 

at 0t =  and keeps to be constant afterwards, where ( )H t  is the Heaviside step function. In this 

research, the uncoupled, thermo-viscoelasticity and quasi-static problem are assumed, in which 

only the temperature field influences the viscoelastic stresses, whilst the stress will not affect the 

temperature field. In addition,  the inertia effect is neglected. 
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Figure 4.1 Geometry of the crack problem 

Considering microstructural interaction, in order to eliminate the aforementioned negative 

effect coupled with integral order DPL model [147], the time fractional DPL model is employed 

to govern the heat conduction in this research, where the thermal lags in composites can be treated 

as structural properties. Using Taylor series expansion, the fractional DPL theory shows:  
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where q is heat flux, T  is temperature rise with respect to the reference temperature, 
q  is the time 

lag of heat flux, T  is the time lag of temperature rise, k is thermal conductivity,  is gradient 

operator, and the Caputo fractional derivative of order   is defined as: 
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  Coupled with the energy conservation /pc T t− =  q , where   is the mass density 

and pc  is the specific heat, the governing equation of temperature field reads:  
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where / Pa k c=  is the thermal diffusivity.  For simplicity, some dimensionless variables, such 

as 1 0 1( ) / ( ),T T T T T= − −
2/ ( / ),t t c a= ( , , ) ( , , ) / ,x y h x y h c= 2/ ( / ),q q c a =

2/ ( / ),T T c a =  

are introduced, and thus the thermal governing equation is reduced to:  
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Here and after, the hats on the variables are neglected for simplicity. Besides, the dimensionless 

forms for the initial and boundary conditions of temperature field are: 
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In this research, the viscoelastic relaxation of material will be focused on. Unlike the elastic 

materials, the viscoelastic stress-strain relationship is always time-dependent and highly depends 

on the history. The basic phenomenological mechanical models, such as the Maxwell and Kelvin 

models, are composed of two elements: a spring for elastic behavior and a damper for viscous 

behavior. More realistic mathematical models to represent the actual stress-strain response are the 

generalized Maxwell or Kelvin models. With the help of Boltzmann Superposition Principle and 

considering the rheological properties of the volume, the Hereditary Integral is employed to 

characterize the constitutive equations. Isotropic viscoelastic materials usually behave distinctly 

different in shear and dilatational deformation, so the constitutive equations of thermo-

viscoelasticity are expressed separately. Assuming there is no strain history before time t=0, in 

order to take the history effects into account, the linear viscoelastic constitutive law is expressed 

in the form of convolution integral [52]: 
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with  

                                                     
,

1 1

3 3
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where 1( )G t , 2 ( )G t  are the shear and the bulk relaxation functions, ( )t  is the thermal relaxation 

function, and ijs , ije  are deviatoric components of the stress and strain tensors. The Laplace 

transform is employed to convert these convolutions. Assume viscoelasticity can be well 

represented by the generalized Maxwell model in this research, the viscoelastic properties would 

be: 

  0 1 0 2 0 3( ) ( ), ( ) ( ), ( ) ( )E t E f t t f t t f t   = = =                                     (4.7) 

where ( ), ( ), ( )E t t t   are Young’s modulus, Poisson’s ratio and thermal expansion coefficient, 

respectively, 0 0 0, ,E    are the initial constants, and  

( )

1 2 3

10

1
( ) ( ) ( ) ( )i

tn
t

i

i

f t f t f t E e E
E

−



=

= = = +                                     (4.8) 

are the relaxation functions with no loading applied on the material before 0t = . iE  and it  are the 

spring constants and the relaxation time of the i-th Maxwell element, E is the modulus when the 

time approach to infinity.  Considering the following relationships [50] in the Laplace domain: 

* *
* * * * *

1 2 2* *
, ,

1 1 2

E E
G G pG

p p
 

 
= = =

+ −
                                  (4.9) 

where p  is the Laplace transform variable, the superscript “*” denotes the variables in the 

Laplace domain, and thus Eq. (4.6) can be reduced to:      
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                     (4.10)    

where *( )if p  are the Laplace transform of ( ) ( 1,2,3)if t i = . Then substituting the strains in Eq. 

(4.10) into the compatibility equation and introduce the Airy stress function, one can obtain the 

governing equation of the stress field: 

2 2 * 2 * * 2 *

0 0 1 3( ) ( ) 0U E p f p f p T  +  =                                      (4.11) 

where *U  is the Airy stress function in the Laplace domain. In addition to the previous 

dimensionless variables, some other dimensionless forms, 
*

*

0 0 0/ ( ),ij ij E T  =  

* * 2

0 0 0/ ( ),U U E T c=  
* * * *

0 0( , ) ( , ) / ( ),u v u v c T=
*

*

0 0/ ( )ij ij T  =  are introduced as well. 

Similarly, dropping the hat of non-dimensional variables, we can simplify the governing equation  

as: 

2 2 * 2 * * 2 *

1 3( ) ( ) 0U p f p f p T  +  =                                               (4.12)  

The related boundary conditions of Eq. (4.12) can be expressed by: 

( , ) ( , ) 0, ( )

( ,0) ( ,0) 0, ( 1)

( ,0 ) ( ,0 ), ( 1)

( ,0 ) ( ,0 ), ( 1)

( ,0 ) ( ,0 ), ( 1)
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xy y
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xy xy

y y

x h x h x

x x x

x x x
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u x u x x

v x v x x

 

 

 

 

+ −

+ −

+ −

+ −

− = − =  

= = 

= 

= 

= 

= 

                                          (4.13) 
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4.3  Theoretical solutions 

4.3.1 Solutions of temperature field  

The governing Eq. (4.4) is converted to the following form by Laplace transform to 

eliminate the time dependency, 

 

2

2 1 2 1(1 ) ( )
! ! (2 )!

q qTT p p p p T

 
  

 

  

+ + + = + +                               (4.14) 

Considering the boundary conditions of the temperature field, the solution of equation (4.14) can 

be obtained after Fourier transform, 

 

*

*

1
( , , ) ( , ) exp( ) exp( ( )); 0

( , )
( , , ) exp( ) exp[ (2 )] exp( )
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−
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+ − + 



             (4.15) 

where 2m R = + , q R= , (R is shown in Appendix),   is the Fourier transform variable. The 

unknown coefficient ( , )D p  can be determined by the mixed boundary conditions on crack faces. 

Introduce a temperature density function: 

* *
* ( ,0 , ) ( ,0 , )
( , )

T x p T x p
x p

x x


+ − 
= −

 
                                       (4.16) 

From the boundary conditions, it is clear that: 

1

*

1

*

( , ) 0

( , ) 0, ( 1)

x p dx

x p x





−

=

= 


                                                       (4.17) 

Combining Eqs. (4.15) and (4.16), it is easy to find the relationship between the unknown 

coefficient and the temperature density function: 
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=                                    (4.18) 

Since no heat flux can pass across the crack, from the boundary condition on crack faces 

/ 0, ( 0, 1)T y y x  = =  , one can obtain the following singular integral equation: 

1

* *

1

1 2
( , )[ ( , , )] exp( ), 1

q
p k x p d qh x

x p


   


−

+ = − 
−                       (4.19)                                              

and the kernel function is: 

                *

0

[1 exp( 2 )]
( , , ) 1 sin[( ) ]

m mh
k x p x d   




 + −

= − − 
 
                          (4.20) 

This singularity integral equation under the single-value condition (4.17) has the following form 

of the solution: 

*
*

2

( , )
( , ) , 1

1

x p
F x p x

x


= 

−
                                                      (4.21) 

where 
*( , )F x p  is bounded and continuous on the interval [-1, 1]. To solve the integral equations 

(4.17) and (4.19), the numerical technique in [129] is employed to convert it into the following 

algebraic equations: 

* *

1

1 1 2
( , )[ ( , , )] exp( ), 1

n

k r k

k k r

q
F p k x p qh x

n x p


 
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                     (4.22) 

*

1

( , ) 0
n

k

k

F p
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


=

=                                                              (4.23) 

where 
(2 1)

cos , 1,2,...,
2

k

k
k n

n




−
= = ;  cos , 1,2,..., 1r

r
x r n

n


= = − . 

Once the algebraic equations are solved, the values of 
*( , )x p  can be substituted into Eq. 

(4.18), and thus the temperature field expressed in Eq. (4.15) can be obtained after the numerical 

inversion of Laplace transform. 
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4.3.2 Intensity factors of temperature gradient   

Proposed by Tzou [148], the temperature gradient around the macrocrack tip would be 

qualified to assess the energy bearing capacity of the solid media. The temperature gradient 

illustrates in which direction and how much the heat flows around the crack tip resulted from the 

abrupt change of the geometrical curvature. Therefore, the intensity factor of temperature 

gradient (IFTG) is introduced to quantify the dynamic thermal energy around the crack tips. From 

the expression of temperature field in Eq. (4.15), the temperature gradient is firstly obtained as: 

 
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    (4.24)                    

 
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   (4.25)                  

Singularity of the temperature gradient can be examined from the asymptotic behaviors 

of the integrands in Eqs. (4.24) and (4.25) for the large values of the variable  , with the help 

from the procedure in [144] and using the asymptotic formula in [150], 


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1
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     (4.26)           
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The singular temperature gradient could then be derived as: 
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Where the subscript “ , j ” represents the gradient in the corresponding direction; ( , )r   denotes 

the polar coordinates whose origin locates at the crack tip: 

1 cos , sinx r y r = + =                                                (4.29) 

The intensity factors of temperature gradient in the Laplace domain can then be defined 

as: 

* *

,
0

(1, )
( ) lim2 |

2
T r

r

F p
K p rT  =−

→
= =                                               (4.30)                                         

Obviously, the transient temperature gradient shows a r  singularity at the crack tips, 

which is the same as the stresses in linear elastic fracture mechanics. By employing the numerical 

inversion of Laplace transform, the IFTG in the time domain can be obtained.  

4.3.3 Solutions of viscoelastic stresses field 

In the present work, the uncoupled, thermo-viscoelasticity theory is employed,  where only 

the temperature field will affect the stress field, but not vice versa. Once the temperature field in 

the Laplace domain is found by Eq. (4.15), the transient viscoelastic stresses can be acquired by 

solving the governing equation (4.12): 

2 2 * 2 * * 2 *

1 3( ) ( )U p f p f p T  = −                                                (4.31)  

Fourier transform is employed to get the solution of Eq. (4.31): 
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                  (4.32) 

where 
1 2, 3 4, 1 2, , ,A A A A B B  is related to the boundary conditions in Eq. (4.13), and 

1 21 22, ,C C C  will 

be determined by the obtained temperature field from Eq. (4.15), as shown in Appendix.  

 The existence of crack results in the discontinuity of not only the temperature field but also 

the displacement field and stress field. Considering the boundary conditions and the dimensionless 

variables, the jump of the displacement components in the Laplace domain at the line 0 y =  can 

be obtained from Eq. (4.10), which is shown as: 
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                                                 (4.33) 

where “[ ]” denotes the jump of a field variable across y = 0. By employing the relationships

* 2 * 2 * 2 * 2 * 2 */ , / , /x y xyU y U x U x y  =   =   = −   , the stress components 
* * *, ,x y xy    can 

be obtained. Substituting the stress components into Eq. (4.33), one can have: 
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Defining two dislocation density functions as:  
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                        (4.35)                  

Considering the mechanical boundary conditions on crack faces, ( ,0) ( ,0) 0, ( 1)xy yx x x = =  , 

the following singular integral equations can be obtained: 
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where 
*( , ), ( , )ij ik x W x p are given in Appendix. Similar to the previous manipulation for 

temperature field, the singular integral equations subjected to Eq. (4.37) have the following form 

of solutions: 
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The Lobatto-Chebyshev method is employed to transform the above singular integral equations 

into the algebraic equations: 
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  where                                     
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The stress intensity factors (SIFs) in the Laplace domain are defined as: 

  * *

2 (1, )
4

IK F p


= −        mode I  

  * *

1 (1, )
4

IIK F p


= −         mode II                                         (4.41) 

Again, the SIFs in the time domain can be obtained through numerical Laplace inversion of Eq. 

(4.41), and the results will be discussed in the following section.  

4.4  Numerical results and discussions 

In the previous section, the theoretical solutions for both temperature distribution and SIFs 

in the Laplace domain have been acquired by transforming the PDE and applying boundary 

conditions to the singular integral equations. To obtain the corresponding results in the time 

domain, the numerical inversion of Laplace transform proposed by Miller and Guy [110] is 

employed in this research. 

The dimensionless temperature (which is expressed as 1 0 1( ) / ( )T T T T− − ) distributions are 

obtained firstly. The dimensionless temperatures along crack faces and the extension line are 

shown in Figure 4.2, where “UF” indicates the temperature of the upper crack face, while “LF” 

represents the temperature of the lower face. Since the crack faces are assumed to be completely 

insulated, temperature jumps can be observed in all curves. Different Non-Fourier heat conduction 

theories are employed and the predicted temperature distributions are compared with each other at 

four time instants 0.4, 0.8,1.2,t =  , where the red lines ( 0T = ) denotes the numerical results of 

conventional hyperbolic model, the blue lines give results of conventional DPL model, and the 

orange lines represent the results of fractional DPL model when the time fractional order 0.8 = .  
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                  (a)                                                                                 (b) 

 

                                    (c)                                                                                  (d) 

Figure 4.2 Non-dimensional temperature distributions on crack faces and the extension line based on 

different Non-Fourier heat conduction models at different time instants 

(a) t =0.4; (b) t =0.8;(c) t =1.2; (d) t =∞. 

It should be noted that since all temperatures are assumed to be 1T  initially and a hot, 

thermal shock is applied at the free boundary, the dimensionless temperature (rise) 

1 0 1( ) / ( )T T T T− −  should always be nonnegative. Any appearance of negative dimensionless 

temperature indicates the heat flow from cold areas to hot areas happened, which violates the 

second law of thermodynamics. Obviously, the conventional hyperbolic heat conduction model 

gives the least accurate results with negative dimensionless temperatures appearing at all four 

instants, although this model takes the finite speed of thermal wave into consideration. Another 
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unphysical phenomenon could be observed in Figure 4.2, where the temperature of the upper crack 

face can be higher than the lower crack face. The temperature of the lower crack face definitely 

should be higher due to the fact that the hot thermal shock is applied to the lower free boundary.  

 

Figure 4.3 Non-dimensional temperature’s variation of the midpoints of crack faces under influence of the 

ratio between two thermal relaxation lags, when time fractional order 1 = . 

Compared to the hyperbolic model, both conventional DPL and fractional DPL models 

give much more realistic results. However, some differences can still be easily observed between 

them, especially for the temperature distribution at earlier stages. In Figure 4.2(a), conventional 

DPL model still gives some negative temperatures. Compared with the conventional DPL model, 

introducing time fractional order leads to nonnegative temperature (rise). Besides, the fractional 

model decreases the temperature jumps, as indicated by Figure 4.2 (b).  

In order to figure out more clearly how the temperature varies with time, the temperatures 

of the midpoints of crack faces are plotted in Figure 4.3-4.5, where “UF” indicates the temperature 

of the midpoint of the upper crack face, while “LF” represents the temperature of the midpoint of 

the lower crack face. The solid lines labeled as “Fourier” in the figures is the temperature history 

calculated by the classical Fourier’s law, where two thermal lags 0T q = = .  The Fourier’s law 

always indicates the temperature of both the upper and lower midpoints will increase gradually 

from zero to a steady state, whereas the DPL models bring significant wave-like oscillations.  
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Figure 4.3 illustrates the temperature history corresponding to the conventional DPL model when 

1 = . The temperature fluctuates even at the very early beginning and then increases to its peak 

value before decreasing to a steady state value with significant oscillations.  Drastic oscillations 

and very high overshooting can be observed, and the peak point reaches almost twice of the 

temperature on the free surface. In addition, obvious negative temperature appears during the early 

stage of the temperature history, which takes a very long time to reach steady state value when 

/ 0.5T q  = . Compared to Fig. 4.3, the introduction of fractional calculus gives much better results. 

With the decrease of fractional order   from 1 to 0.5, the wave-like oscillations are decreased, 

which results in the decrease of the peak point of the temperature history. This can be explained 

by the memory effects caused by the fractional calculus, i.e., the next state of the system depends 

on not only the current state but also the historical states. When   decreases to 0.5, the wave-like 

oscillations almost disappear and the temperatures of the early stage are all positive. The “LF” 

curves always increase from zero to the peak point and then decrease to the steady state, where the 

peak point is only slightly higher than the applied temperature on the free surface. The “UF” curves 

will take a finite time to start increasing, then reach the steady state value smoothly. Both the 

steady state values of “LF” and “UF” curves are very close to the steady state value of Fourier’s 

law, which supports the necessity of introducing fractional calculus. In addition, the influence of 

the ratio between two thermal relaxation lags is investigated. Unlike the disturbing regularity in 

the conventional DPL results, the results of fractional DPL models (from Figure 4.4 & Figure 4.5) 

show that with the increase of the ratio of thermal lags /T q  , the peak values of the temperature 

history are reduced and the values of steady states increase a little. Besides, the time instant 

corresponds to the peak point will be delayed with the decrease of the lag ratio.        

In order to evaluate the effect of two thermal lags in the fractional DPL theory, the 

temperature distribution along 0x =  at three time instants are plotted in Figure 4.6 with 0.5 = . 

A clear temperature jump can be found at the crack midpoint corresponding to 0y = . The model 

reduces to fractional CV theory when / 0T q  = . Significant difference in the results between 

fractional CV theory and fractional DPL model can be observed in all three figures. Compared 

with the moderate temperature change predicted by the fractional DPL model, the temperature 

changes dramatically along the y-axis in front of crack ( 0y  ) when the thermal lag of heat flux 
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T  is not considered, while the temperature behind the crack ( 0y  ) almost stays around zero, i.e. 

no heating happens across the crack at all three time instants, which raise the doubt on the accuracy 

of this model.  A similar trend can be found for the temperatures at all three time instants behind 

the crack,  i.e., the thermal penetration depth would be larger and the temperature level would be 

higher with the increase of the lag ratio /T q  .  This observation justifies the same conclusion “The 

effect of microstructural interactions is absorbed in the phase lag of the temperature gradient T ” 

in [21]. However, compared with [21], the very sharp thermal wavefront which implies an infinite 

temperature gradient does not appear here due to the introduction of time fractional order 

derivative. The temperature in front of the crack shows quite different trends at different time 

instants, and the overshooting appears in Figure 4.6(b) will be weakened with the increase of the 

lag ratio /T q  , which is consistent with the results in Figure 4.5. 

The transient IFTGs can be obtained once the algebraic Eqs. (4.22-4.23) are solved 

numerically and the numerical inversion of Laplace transform is performed. Figure 4.7 illustrates 

the variation of IFTG with time for different heat conduction models. Characterizing the 

temperature gradient, IFTG has quite different behaviors based on different heat conduction 

models. The classical Fourier model indicates the IFTG will increase from zero to its peak value 

smoothly, and then decrease a little to its steady state. The CV model still leads to significant 

oscillations in IFTG fluctuating all the time within the considered time range. All DPL models, 

including the fractional ones, show the IFTGs vary similarly to the curve of the Fourier model. 

Besides, the steady state values of the DPL models coincide exactly with the Fourier’s result.  With 

the decrease of fractional order  , the peak values of IFTG decreases and the corresponding time 

is delayed, which indicates the fractional order weakens the temperature gradient as well. 

The temperature field will eventually determine the thermal stresses and SIFs. The 

reasonable temperature history obtained from the fractional DPL theory would be beneficial to 

obtaining the accurate fracture behavior. For simplicity and better comparison, we assume 1n =  

in the relaxation function, which resulted in the standard linear viscoelastic Maxwell model [111]:  

0

0 0

( ) (1 )

t

t

i

E E
f t e

E E

−
 = + −                                                 (4.42) 
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 Figure 4.8 shows the dynamic SIFs between viscoelastic and elastic materials are 

significantly different without considering the Non-Fourier effect by letting 0T q = = . This is 

for better understanding the viscoelastic SIFs without the interference from the non-Fourier wave-

like thermal behaviors. Besides, the parameters in the viscoelastic relaxation function are 

investigated to show their influence on the fracture response. For the elastic materials, both IK  

and IIK  increase gradually from zero to their steady state values, while both SIFs in viscoelastic 

materials will increase to their peak values and then drop dramatically. The peak points of SIFs in 

viscoelastic materials appear much earlier than elastic materials. The peak values of viscoelastic 

SIFs increase with increasing value of 0/E E , and can even be higher than the corresponding 

values in elastic materials, which should be acknowledged in designing the viscoelastic materials. 

The relaxation time 0t  will not influence the peak values but the rate of decay, which is consistent 

with the physical meaning of the viscous element. 

Figures 4.9-4.11 illustrates the effects of fractional order   and the thermal lag ratio /T q   

on the SIFs in viscoelastic materials considering the non-Fourier effect. When 1 = , the 

conventional DPL theory predicts the SIFs increase to their peak values and then decrease rapidly 

with significant fluctuations all the time within the time range considered, similar to the wave-like 

behaviors of temperature history in Figure 4.3. The peak values of both IK  and IIK  increase with 

the decrease of the thermal lag ratio. The corresponding times of peak points of IK  and IIK  are 

delayed with the decrease of lag ratio. The wave-like behaviors and fluctuations are weakened as 

the fractional order decreases, and completely disappear when 0.5 = . Figure 4.11 shows quite 

sharp pulses at the early stage of the history of IK  and IIK , and their steady state values approach 

to each other under different ratios of thermal lags. Compared to the results in Figures 4.9-4.10, 

the time to reach peak points in IK  will not be significantly influenced by the thermal lag ratio, 

and the peak values of both IK  and IIK are obviously lower when 0.5 = , which indicates the 

fractional order derivative weakens not only the thermal wave propagation but also the SIFs. 
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Figure 4.4 Non-dimensional temperature’s variation of the midpoints of crack faces under influence of the 

ratio between two thermal relaxation lags, when time fractional order 0.75 = . 

 

Figure 4.5 Non-dimensional temperature’s variation of the midpoints of crack faces under influence of the 

ratio between two thermal relaxation lags, when time fractional order 0.5 = . 
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        (a) t=1 

 

       (b) t=2 
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         (c) t=3 

Figure 4.6 The temperature distribution along 0x =  at time instant (a) t=1; (b) t=2; (c) t=3 under the 

influence of the ratio of thermal lags /T q   in fractional DPL model when 0.5 =  . 

 

Figure 4.7 The dynamic IFTGs for different heat conduction models 
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Figure 4.8 The parametric investigation of dynamic SIFs  

 

Figure 4.9 Transient SIFs under the influence of the ratio of two thermal lags /T q  ,  

when the fractional order α=1. 
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Figure 4.10  Transient SIFs under the influence of the ratio of two thermal lags /T q  , when the 

fractional order α =0.75. 

 

Figure 4.11 Transient SIFs under the influence of the ratio of two thermal lags /T q  , when the fractional 

order α =0.5. 

4.5  Conclusion  

In this study, the crack problem under thermal shock is investigated within the framework 

of a more generalized, thermo-viscoelasticity by extending the fractional calculus to dual-phase-

lag (DPL) heat conduction theory, and considering the viscoelastic relaxation phenomena at high 
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temperature. The time fractional order shows great potential to predict a more reasonable 

temperature field by weakening the thermal wave propagation, leading to the removal of the 

unphysical fracture behavior and weakened oscillations in temperature history. The thermal 

penetration depth would be larger and the temperature level would be higher behind the crack for 

a higher value of the lag ratio /T q  , which is consistent with the prediction in [21]. However, the 

temperature level would be quite different in front of the crack. The SIFs show quite different 

behaviors between viscoelastic and elastic materials, as a series of the parametric study shows. 

The fractional DPL model predicts the viscoelastic SIFs with a very sharp pulse in the early stage 

of fracture response, which should be considered carefully in viscoelastic material design.  
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Chapter 5: Nonlocal dual-phase-lag heat conduction and the associated 

nonlocal thermal-viscoelastic analysis 

A modified extension of the nonlocal dual-phase-lag (DPL) theory is proposed to account 

for the heat conduction at nanoscale. Both the temporally and spatially nonlocal effects are 

considered in heat conduction, which are verified experimentally by the size-dependent thermal 

conductivity of silicon nanofilms and the transient temperature variation during the femtosecond 

laser heating of gold films. A generalized uncoupled nonlocal thermoviscoelasticity is hence 

proposed, which is applied to a one-dimensional analysis of a finite plate under sudden thermal 

shock. Non-dimensional numerical analyses are performed to illustrate the effects of both nonlocal 

heat conduction and nonlocal elasticity on thermal propagations and thermoviscoelastic responses.  

5.1  Introduction 

Initiated by Eringen et al. [65-66], the stress-strain relation is expressed in an integral form:  

( ) (| |) ( ) ( )ij ijt X X X X d X 


  = −                                       (5.1) 

In which 
ijt  is the nonlocal stress, 

ij  is the classical local stress, (| |)X X −  is the kernel 

function characterizing the long-range interactions between molecules or atoms. Compared with 

the classical continuum, nonlocal theory indicates the stress of one spatial point does not depend 

uniquely only on the strain at that point, but also on the strains in a surrounding space, and thus 

building the connections between macroscopic mechanical behaviors with the microscopic, 

molecular or atomic interactions.  In 1983, the equivalent, partial differential form of nonlocal 

theory was proposed by Eringen et al. [70] for some specific, physically admissible kernels  

expressed as:  

2 2

0(1 ( ) ) ij ije a t −  =                                                    (5.2)  

where 0e  is a constant depending on materials, a  is an internal characteristic length, and 2  is the 

Laplacian operator.  
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        Nano-structural materials always work in various thermal environments. Heat conduction 

in solids has been treated as a diffusive process in many engineering problems, especially for those 

at macro temporal and spatial scales. The governing equation, namely Fourier’s law, established 

on the macroscopic level, implying the speed of thermal propagation is infinite. However, it has 

been well recognized that Fourier’s law breaks down for heat conduction at the nanoscale [46]. 

When the heat conduction enters nanoscale, the individual behaviors of thermal energy carriers 

(like phonons) and their interactions become pronounced, as the heat transport time is approaching 

their mean free time, or the length scale of nanomaterials is comparable with their mean free path. 

To address these concerns, several constitutive laws of non-Fourier heat conduction were proposed, 

such as the Cattaneo-Vernotte (CV) model [27-28], thermomass model [45], dual-phase-lag model 

[20], and the temperature wave theory based on the inertial entropy theory [151]. In particular, by 

introducing two thermal lags, the DPL model gives a simple and user-friendly macroscopic 

formulation of the heat transfer at microscopic levels, which enables engineering analyses with 

sufficient accuracy. The DPL model can be expressed as: 

                       ( , ) ( , )q Tt k T t + = −  +q x x                                              (5.3) 

where 
q and T are the thermal phase lags of heat flux vector and temperature gradient, 

respectively; k  is the thermal conductivity,  is the gradient operator and T  is temperature. DPL 

model can capture the transient heat propagation behaviors accounting for the interactions of 

microscopic thermal carriers verified by experiment results [20,152]. Although the DPL model 

characterizes the temporally nonlocal behaviors, i.e., the thermal lagging, the nonlocal effect in 

space, a necessity for heat conduction at the nanoscale, is neglected. Experimental evidence 

showed the thermal conductivity of nano-structural materials, such as silicon nanofilm or 

nanowires, graphene sheets, is size-dependent, which is remarkably different from bulk materials 

[47]. However, the DPL model is unable to accommodate the size-dependency of thermal 

conductivity. 

 In this paper, aiming at taking the spatially nonlocal effect into consideration, the 

extension of nonlocal DPL model based on Tzou’s work [50-51] is employed, and both the 

stationary and transient responses of the model will be verified by the experimental results. A 

generalized, uncoupled, nonlocal thermoviscoelasticity theory is proposed based on the nonlocal 
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DPL model and Eringen’s nonlocal theory. The one-dimensional, numerical analysis of thermal 

response is performed for a plate with finite thickness under a sudden thermal shock.  

5.2  Nonlocal DPL model 

To incorporate the spatially nonlocal effect in heat conduction, different mathematical 

models have been proposed. Based on the linearized Boltzmann equation for the pure phonon field, 

the well-known Guyer-Krumhansl model was proposed in [43-44]. Considering the mass, pressure 

and inertial force of the phonon gas [45], the thermomass model can also characterize the nonlocal 

effect in heat transport. Stemming from the analogy with the integral form of the nonlocal elasticity, 

an integro-differential equation governing nonlocal effect was proposed by Xu [46-47]. Obviously, 

there is still no common agreement on the spatial nonlocality in heat conduction [48-49]. Parallel 

to these works, Tzou et. al. extended their DPL model by introducing a nonlocal length to 

accommodate the spatially nonlocal effect [20,50-51], shown as:  

( , ) ( , )q Tt k T t + + = −  +q x ξ x                                            (5.4) 

in which ξ  is the vector relating to the spatial nonlocality of the heat flux vector. The advantage 

of this theory is the macroscopic unification of both the temporally and spatially nonlocal effects 

in a simple form, especially for some engineering analyses without sufficient knowledge of the 

phonon dynamics. By Taylor series expansion to the first order of space dimension, and neglecting 

all terms involving time, the steady state form of this theory,  

(1 ) ( ) ( )k T+  = − ξ q x x                                                   (5.5)  

was verified by the experimental results of thin nanowires as it captured the linear dependence of 

the effective thermal conductivity on their radiuses [50]. In order to interpret the correlations to 

the thermomass model, the extension of the model with transient terms was given by including the 

least numbers of terms in Taylor series approximation [50-51]: 

( , ) ( , )
( , ) ( ) ( , ) [ ( , ) ]q T

t T t
t t k T t

t t
 

 
+ +  = −  +

 

q x x
q x ξ q x x                  (5.6) 

In the above extension, the spatial derivative of heat flux ( ) ( , )tξ q x represents the spatially 

nonlocal term. However,  Eq. (5.6) is not the exact Taylor expansion of Eq. (5.4). Here, in order 
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to verify the transient response, the full extension of Eq. (5.4) to the first order of its Taylor 

expansion, is considered as:  

( , ) ( , )
(1 )[ ( , ) ] [ ( , ) ]q T

t T t
t k T t

t t
 

 
+  + = −  +

 

q x x
ξ q x x                (5.7)  

Compared with Eq. (5.6), an additional mixed-derivative term 
( , )

( )q

t

t



 



q x
ξ  in Eq. (5.7) will 

also contribute to the spatial nonlocality in heat conduction. It would be difficult to determine 

which extension is better to represent the transient response of spatial nonlocality based on pure, 

theoretical discussions. Therefore, validation of the new model will be performed based on 

experimental results. To this end, both the steady state and transient response based on the 

extension of nonlocal DPL model will be compared to the experimental results. 

5.2.1 Effective thermal conductivity of nanofilms 

 

Figure 5.1  Schematic diagram of nanofilms 

 

One obvious phenomenon that the Fourier’s law breaks down is the size dependent thermal 

conductivity of nanostructures, where the mean free path of phonons is comparable with the 

characteristic lengths. The effective thermal conductivity (ETC) of silicon thin films or nanowires 

is reduced significantly from that of the corresponding bulk material as the size of nanostructure 

decreases, which has been demonstrated by many experiments [153-158]. For instance, Ju [157] 

experimentally showed that ETC of silicon layers at 20 nm can be dropped to around 30 Wm-1K-1 

compared to 148 Wm-1K-1 of bulk material at room temperature. The low ETC raises the concern 

to remove the excessive heat in nanodevices. In order to figure out the mechanism behind this 

problem, different simplified mathematical models have been developed to predict the size 

Phonon Boundary Scattering
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dependent ETC [159-162]. Tzou [50] developed a theoretical model based on the steady state form 

of nonlocal heat conduction and captured the linear dependence of ETC on the radius of nanowires. 

In this paper, we will re-examine the steady state form of nonlocal heat conduction model, i.e., Eq. 

(5.5), and compare the predicted ETC to the experimental results in silicon nanofilms.  

Figure 5.1 illustrates a nanofilm that carries one-dimensional heat transport in the x-

direction. Assume there is a constant temperature gradient applied in the x-direction and the size 

in x and y directions are large enough to omit the associated spatial nonlocalities. Therefore, the 

spatially nonlocal effect is uniquely decided by the nanoscale thickness h in the z direction and 

accompanying boundary scattering of phonons. Obviously, the nonlocal, characteristic length 

vector ξ  will be different in the upper and lower half plane due to the fact the boundary scattering 

always occurred in different directions. Here, we assume the nonlocal length is decided by the 

mean free path of phonons [20], the nonlocal vector ξ  would be 
p xl− e  in the upper half plane and 

p xl e  in the lower half plane, where 
pl  denotes the mean free path of phonons. Only the upper half 

plane will be considered here because of the symmetry. Considering ETC is pertinent to the steady 

state of heat transfer in nanostructural materials, the governing equation of the steady state heat 

transport in the x direction can be expressed as:  

 (1 )p x

dT
l q k

z dx


− = −


                                                 (5.8) 

Introducing non-dimensional variables: 

, ,
/

px
n

lq z
q z K

k dT dx h h
= = =
− 

                                          (5.9) 

where nK  is the Knudsen number [161]. Then the partial differential equation (5.8) is reduced to: 

(1 ) 1nK q
z


− =


                                                   (5.10) 

The general solution can be obtained as: 

1
exp( ) 1

n

q C z
K

=  +                                             (5.11) 
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where C is a constant depending on the boundary conditions. To determine the heat flux 

distribution, the Matthiessen rule [161] is used to account for the wall condition. Here, the effective 

mean free path of phonons from [163] is adopted, such that  

1
( 0.5)

1

p effective

p n

l
q z

l K

−
= = =

+
                                       (5.12) 

Then the heat flux profile is obtained as 

1
exp( ( 0.5)) 1

1

n

n n

K
q z

K K

−
= − +

+
                                     (5.13) 

and the ETC can be expressed as:  


0.5

0

2

1
2 exp( ( 0.5)) 1

1

2 1
1 [1 exp( )]

1 2

eff n

n n

n

n n

k K
z d z

k K K

K

K K

 −
= − +

+

= − − −
+


                         (5.14) 

Although the governing equation would be (1 / ) /p xl z q k dT dx+   = −   in the lower half 

plane, the accompanying boundary condition would also change to ( 0.5) 1/ (1 )nq z K= − = + , and 

thus the same expression for Eq. (5.14) can be obtained. The ETC based on the nonlocal heat 

conduction model is compared with the experimental data [154-157] and the results based on 

simplified thermotical models [159-160]. In the calculation, the mean free path of phonons is 

selected as 220 nm [164] and the thermal conductivity of bulk material is 148 Wm-1K-1 for silicon 

at room temperature. Figure 5.2 clearly shows that the results of the new model is in good 

agreement with the experimental data and outperforms the other two theoretical models for both 

the ballistic transport region ( 1nK  ) and diffusion region ( 1nK  ). 
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Figure 5.2 Comparison of thermal conductivity models and experimental data  

for nanofilms at room temperature 

 

 

5.2.2 Femtosecond laser heating of gold films 

The transient response of nonlocal DPL model will be examined here by the experiment of 

ultrafast laser heating. Ultrafast laser processing of nanomaterials has been a commonly-used 

method in nanotechnologies. Here, the experiment of ultrafast laser heating on thin gold films 

performed by Brorson [26] is selected for validation of the current nonlocal DPL model. The 

samples were heated by an intense laser beam, and the temperature of the surface was obtained by 

the probe beam measuring the reflectivity change of the sample surfaces. In this paper, three 

different mathematical models are selected for theoretical predictions of the one dimensional 

transient temperature variations [20, 50-51]: 
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                (5.15) 

According to [20], the laser heating source can be expressed as:  

0 0( , ) exp{ ( / ) [ | ( 2 )] | / }, 0.94[(1 ) / ]p p pS x t S x a t t t S R t J =  − − − = −           (5.16) 

Consider the energy conservation in the presence of heat source, 

p

q T
S c

x t

 
− + =
 

                                                   (5.17) 

The governing equation of the heat conduction in gold films controlled by the full extension of 

nonlocal DPL model would read as follows: 

2 3 2 2 2 3

2 2 2 2

1 1
{ } ( ) ( )T q q q q

T T S S S T T l T T
S

x x t k t x x t t t x t x t
      

 

        
+ + + + +  = + + +

            
 (5.18)  

while other two models in Eq. (5.15) can be treated in a similar manner. Assume the initial 

condition of gold films subjected to laser heating is stationary, then: 

0

( ,0)
( ,0) , 0

T x
T x T

t


= =


                                                        (5.19) 

Usually, the processing time is too short, thus the heating loss from the front or back surface is 

negligible, then: 

(0, ) ( , )
0

T t T L t

x x

 
= =

 
                                                      (5.20) 

To continue the analysis, Eq. (5.18) is solved by Laplace transform:    

*

0

( , ) ( , ) e ptT x p T x t dt



−=                                                  (5.21) 
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Hereafter,  p  is the Laplace transform variable and the superscript “*” denotes the variables in the 

Laplace domain. The solution of Eq. (5.18) in the Laplace domain satisfying the initial conditions 

and the boundary conditions can be obtained as: 

1 2* /

0 1 2 3( , )
r x r x xT x p T Ae A e A e −− = + +                                   (5.22) 

where   
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                   (5.23) 

To get the temperatures in the time domain, numerical inversion of Laplace transform [165] 

is performed. The normalized temperature, max/ ( )T T  at the front surface is plotted against time 

as shown in Fig. 3. Obviously, the results of the new, nonlocal DPL model agree well with the 

experimental data. Moreover, the new model has a better performance than Tzou’s extension. This 

can be explained by the more accuracy brought by the added effect of the cross derivative 
2

q

q

x t




 
. 

If we assume the nonlocal length is related to the relaxation time 
q  by the finite speed c of the 

energy carriers, i.e., ~ qc  , then 
2 2

2~q q

q q
c

x t x t
 

 

   
, which appears as the second-order effect 

of  2

q  in the governing equation. 
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Figure 5.3 Normalized temperature change in the femtosecond heating of gold films (from Ref. [20] 

based on experimental data in [26])and predictions from different theories, 

3200 , 13.4 / ,L nm J Joule m= = 15.3 ,nm = 100 , 1.88, 90 , 8.5 ,p T qt fs a ps ps = = = =

0.93, 15.3 , 0.1 .R nm L = = =  

 

5.3 Generalized nonlocal thermoviscoelasticity 

With the wider application of soft materials like polymer thin films, the viscoelastic 

relaxations of materials need to be considered in thermal stress analysis. In this section, a 

generalized, uncoupled nonlocal thermoviscoelasticity is formulated by taking into account both 

the previous nonlocal DPL heat conduction and Eringen’s nonlocal theory. The influence of strain 

field on the temperature field is neglected for simplicity. The fundamental equations for 

thermoviscoelastic materials are expressed as follows.  

The viscoelastic constitutive equations [166]: 

Laser Beam
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0
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( )

( 3 )
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t
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v

e
S R t d

e T
R t d

 


 
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


= −



 −
= = −







                                    (5.24) 

where  
, ,

1
( )

2
ij i j j iu u = + , , kke = , 

3

kk
ij ij ijS


 = −  and ( ), ( )vR t R t  are the 

relaxation modules functions, shown as:  

   0( ) 2 (1 ( )), ( ) (1 ( ))vR t Af t R t K A f t= − = −                           (5.25)  

where 2 / 3K  = +  is the bulk modulus, 1

1( ) ( ) tf t f t e t − −= =  and 0, , ,A A   are empirical 

constants. 

With the help of Eq. (5.2), the nonlocal stresses are obtained as:  

 2 2

0 0

( )
( 3 )3(1 ) ( ) ( )

t tij ij
T

ij ij v

e
e T

t R t d R t d

 


     
 

 −
 −

−  = − + −
                    (5.26) 

where 0e a =  is the nonlocal characteristic length.  

The equation of motion:  

  

,
2 ,

, ,2 2

2

0 0

( ) ( 3 )3(1 ) ( ) ( )

j
t tij j ij

j T ji
ij v

e

e Tu
R t d R t d

t

  
      

 

 −  −
−  = − + −

           (5.27)          

The equation of heat conduction neglecting heating source and effects of deformation: 

  
2

2(1 )(1 )( ) [ ]q e T

T T
c k T

t t t
  

  
+  + = −  +

  
ξ                      (5.28) 

5.3.1 Formulation of the problem 

Now consider a homogeneous isotropic viscoelastic plate with finite thickness L subject to 

a transient thermal shock on its left surface, which is initially quiescent. The whole plate is initially 

at room temperature rT . At time 0t = , a sudden thermal shock 0 ( )T H t  is applied on the left 

3
ij ij ij

e
e  = −
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surface while the right end is keep fixed, where ( )H t  is the Heaviside function. Assume the 

dimension in y and z directions are much larger than that in x direction and the spatial nonlocality 

is uniquely decided by the x direction. Obviously, all physical variables are only dependent on 

spatial coordinate x and time t. The displacement vector has the following form: 

( , ), 0, 0x y zu u x t u u= = =                                             (5.29) 

 

Figure 5.4 Schematic diagram of a viscoelastic plate under transient thermal shock 

 

The initial conditions are: 

( ,0)( ,0) ( ,0)
( ,0) 0, ( ,0) 0, 0

ij

ij

t xu x T x
u x t x

t t t

 
= = = = =

  
               (5.30) 

The left surface is traction free and the temperature of the right end is assumed to keep unchanged, 

the boundary conditions are: 

0(0, ) ( ), ( , )

( , ) 0, (0, ) 0

r

xx

T t T H t T L t T

u L t t t

= =

= =
                                         (5.31)  

The governing equations for this one-dimensional problem are:  

2 2

2 2
(1 )(1 )( ) [ ]q e T

T T T
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x t t x t x
   
     

+ + = − +
     

                           (5.32) 
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                      (5.33) 

and the nonlocal stresses can be expressed as: 
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Then introduce the following dimensionless variables: 

 

2

0 0 0 0

0

( , , , ) ( , , , ), ( , , ) ( , , ),

3 ( )2
, , ,

3

q T q T

ijv T r
v ij

r

x u c x u t c t

tR T TR
R R t T

K K K T T

         



= =

−
= = = =

−

                  (5.36)  

Equations (5.32)-(5.35) can then be reduced to the dimensionless forms (the overbar will be 

dropped here and after for convenience): 

2 2
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T T T

x t t x t x
  
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where the relaxation moduli are reduced to: 

1

0 1 1

4
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t

vR t Af t R t A f t f t f t e t
K
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5.3.2  Analytical solutions by Laplace transform  

          Performing Laplace transform to both sides of Eqs. (5.37)-(5.41), one can get: 

2 *
*

2
(1 )(1 ) (1 )q T

T
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x x
  
 
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                               (5.42) 
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Since the effect of deformation on temperatures has been neglected, so the governing equation of 

temperature field can be solved directly using boundary conditions expressed in Eq. (5.31). The 

temperature field in the Laplace domain is expressed as: 

2
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=                                                      (5.47) 
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Substituting Eq. (5.47) into Eq. (5.43), the general solution of displacement field can be obtained 

as: 
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The two unknown coefficients 3 4,B B  need to be determined by the related boundary conditions. 

Substitute solution Eq. (5.47) and (5.49) into Eq. (5.44), one can obtain: 

2 4 2
2 * * * *
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xx v i i v i

i i
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                                (5.51) 

The particular solution of the PDE (5.51) is: 
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Applying the boundary conditions * *(0, ) ( , ) 0xxt p u L p= =  to Eq. (5.52), we have: 
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Solving the algebraic Eq. (5.54) to obtain the two unknown coefficients 3 4,B B , we can obtain the 

displacement field 
*( )u p  and nonlocal stresses *( )xxt p . Similarly, the other two nonlocal stresses 

can be obtained as:  
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Until now, all analytical solutions have been obtained in the Laplace domain. To obtain the results 

in the time domain, a numerical inversion method [160] based on the fast Fourier transform is 

applied to the expressions of 
* * * * *, , , ,xx yy zzT u t t t  in the above equations.   

5.4  Results and discussions 

In this section, the main emphasis is on the effects of both nonlocal DPL heat conduction 

and nonlocal elasticity on the thermal and mechanical responses. A series of parametric 

investigations are performed. The viscoelastic, polymethyl methacrylate material is selected for 

numerical analysis with material parameters listed in Table 1 [56]. The non-dimensional finite 

thickness of the plate is assumed to be  L=1 and the two non-dimensional thermal lags are specified 

as 0.04, 0.02q T = = . 

The resulting temperature distributions along the thickness direction at t=0.05 are shown in 

Figure 5.5 based on different non-Fourier heat conduction models. The C-V model predicts a 

temperature profile with high temperature gradient, which can be eliminated by the DPL models. 

The nonlocal DPL model always predicts a faster propagation of temperature than the conventional 

DPL model, and the propagation speed will increase with increasing nonlocal characteristic length 

  of heat conduction, which is consistent with the findings in  [50-51]. 

 

Table 5.1 Material parameters of polymethyl methacrylate [56] 

7 2453.7 10 /kg ms =   
7 2194 10 /kg ms =   0 2200 /c m s=  

3 31.2 10 /kg m =   0.55 /k W mK=  9 25.25 10 /E N m=   

4 11.3 10T K − −=   31.4 10 / ( )Ec J kgK=    
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Figure 5.5 Temperature distributions along the thickness direction at t=0.05. 

 

Figure 5.6 Distributions of the non-dimensional nonlocal stress xxt  along x coordinate at t=0.05 

under the influence of different combinations of nonlocal lengths 

 

The transient mechanical response would be complicated by the transient, non-Fourier heat 

conduction, the relaxation properties resulted from viscosity of the material, and the nonlocal 

elasticity. In this research, we are interested in the transient, nonlocal stress distribution, which   
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directly relates to the safety of materials under a sudden thermal shock. As shown in Figure 5.6, 

the distributions of the non-dimensional nonlocal stress xxt  along x coordinate are plotted at t=0.05 

under different combinations of nonlocal lengths. The nonlocal length   significantly affects the 

nonlocal stress distribution, and the introduction of nonlocal elasticity removes the sharp spatial 

jump of stress profiles. The nonlocal length   in heat conduction also influences stress distribution, 

although the effect is not as significant as the nonlocal length  . Almost all stresses are negative, 

indicating the compress stresses are the dominant response at the early stage after a thermal shock 

is applied to the plate.  

 

     (a)                                                                                   (b) 

Figure 5.7  The evolutions of non-dimensional nonlocal stress xxt  profile 

for (a): without considering nonlocality (b) considering nonlocality 

 

Figure 5.8 The time history of non-dimensional nonlocal stress xxt  at the right end (x=L) 
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In order to quantify the influence of the two nonlocal lengths on the mechanical response, 

the distributions of the non-dimensional, nonlocal stress xxt  at different instants are presented in 

Figure 5.7. A comparison is performed between classical local analysis and the nonlocal analysis. 

Nonlocal theories will remove the sharp jump in stress profiles at all time instants. When the time 

elapsed is long enough, the classical stress and the nonlocal stress profiles will coincide with each 

other, reducing to a linear distribution along the thickness direction. To illustrate the effect of 

nonlocal lengths on the dynamic stress, the time history of nonlocal stress xxt  at the right end of 

the plate is displayed in Figure 5.8. The stress starts from a compressive stress, increasing to the 

peak value of tensile stress before subsequent fluctuations about the steady state values. The peak 

values will decrease with time elapsed. Similar fluctuations can be found between two curves but 

the nonlocal analysis presents higher peak values, especially for t<20. Therefore, the nonlocal 

analysis is essential to the safety of nanodevices. Both responses in the long term will converge to 

the steady state value, which verifies the results in Figure 5.7. 

Figure 5.9 displays the distribution of 
yyt (or zzt ) at t=0.05 predicted based on different 

combinations of nonlocal lengths. Similar effects of nonlocality on xxt can be observed with these 

two stress components, where both nonlocal lengths will influence the stresses clearly, and the 

nonlocal length   plays a more significant role. Besides, the nonlocal length   will remove the 

sharp jump in the distribution of 
yyt . The time history of 

yyt  shown in Figure 5.10 also displays a 

similar trend as that of xxt , where the nonlocal analysis gives higher peak values of stresses. In 

addition, both the peak and steady state values of 
yyt  and zzt  are smaller than those of xxt . The 

influence of nonlocality on the distribution of displacement and strain field is illustrated in Figure 

5.11 and 5.12, respectively. It indicates the nonlocal length   still plays a dominant role in the 

results. However, different from its effect on stresses, the nonlocal length   shows a negligible 

effect on the displacements and strains.  
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Figure 5.9 Distributions of the non-dimensional nonlocal stress 
yyt  along  x coordinate at t=0.05 

under the influence of different combinations of nonlocal lengths. 

 

 

Figure 5.10 The time history of non-dimensional nonlocal stress 
yyt  at the right end (x=L) 
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Figure 5.11  Distributions of the non-dimensional displacement u  along x coordinate at t=0.05 

under the influence of different combinations of nonlocal lengths 

  

 

Figure 5.12  Distributions of the non-dimensional strain xx  along x coordinate at t=0.05 

under the influence of different combinations of nonlocal lengths. 
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5.5  Conclusions 

In this chapter, the full extension of nonlocal DPL model to the first order of the Taylor 

expansion is considered to account for the heat conduction at nanoscale, which is verified 

experimentally by the size-dependent thermal conductivity of silicon nanofilms and the 

femtosecond laser heating of gold films. The nonlocal DPL model is then employed in the 

generalized, nonlocal thermoviscoelasticity to investigate the transient, thermoviscoelastic 

response of nano-structural materials. Parametric studies are conducted considering both the 

nonlocal DPL model and Eringen’s nonlocal theory to illustrate the effect of nonlocality on the 

transient response in a viscoelastic plate of finite thickness under a sudden thermal shock. The 

results show the nonlocal DPL model predicts a faster thermal propagation speed, and the nonlocal 

lengths can remove the spatial jump in mechanical responses. In addition, the nonlocal analysis 

predicts higher peak values of thermal stresses. 
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Chapter 6: Nonlocal fracture analysis of an interface crack between 

functionally graded coating and homogenous substrate under thermal 

loading  

In this chapter, the thermoelastic response of an interface crack between a functionally 

graded coating and the homogenous substrate under thermal loading is investigated using the 

nonlocal continuum theory to eliminate the stress singularities at the crack tips and address the size 

effects. The differential form of nonlocal theory is utilized to obtain the governing equations of 

the thermal stress field, whereas the integral form is employed for the boundary conditions. Finally, 

the mixed, boundary-value problems are reduced to two pairs of dual integral equations using 

Fourier transform. The Schmidt method is adopted to solve the dual integral equations numerically. 

The numerical results confirmed the finite values of thermal stresses at the crack tips, which enable 

us to establish a straightforward maximum stress-based criterion instead of the traditional, stress 

intensity factor- or energy-based fracture criterion. In addition, the location of maximum stresses 

is found to be slightly away from the crack tip, which is determined by the nonlocal characteristic 

length. Parametric studies are conducted to investigate the influence of nonhomogeneous 

properties on the thermal fracture behavior of the interface crack.  

6.1  Introduction 

In high-temperature engineering applications such as jet engines, diesel engines and gas 

turbines, thermal barrier coatings (TBCs) are usually developed to provide high thermal resistance 

so as to protect the mechanical components [167-168]. The most commonly used material that 

makes up TBCs is ceramic yttria stabilized zirconia. However, the ceramic always possesses 

absolutely different thermal-mechanical properties than the metallic substrates (such as steel), 

which often results in high thermal stress concentration at the interface or even delamination and 

failure of the entire structure. In order to avoid the property mismatch leading poor interfacial 

bonding strength, functionally graded materials (FGMs) are introduced as TBCs which can 

effectively reduce thermal stresses and enhance the heat resistance. By mixing ceramic and metal 

alloys in various volume ratios, FGMs can achieve gradually variations of microstructure and 
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thermal-mechanical properties [169-170]. Other superior advantages of functionally graded 

coatings include improved wear resistance and bond strength, and elevated thermal fatigue life and 

fracture resistance. Very recently, with the rapid development of nanotechnology, FGMs have 

attracted considerable attention in developing ultra-small systems such as microelectromechanical 

system (MEMS) or nanoelectromechanical system (NEMS) [171]. 

Interfacial cracks in multiphase composites can be developed in the manufacturing process 

or under external loading. In designing the functionally graded thermal barrier coatings, a thorough 

understanding of the thermal fracture behavior of interface cracks is a necessity to assure the 

lifetime and reliability of the structure. Lee and Erdogan [172] considered the plane strain thermal 

stress problem for two interfacial, symmetric edge cracks between a homogenous substrate and a 

graded coating. Later, Jin investigated the effects of thermal property gradients on the edge 

cracking in an Al2O3/Si3N4 graded coating bonded to a homogeneous substrate subject to a thermal 

shock [173]. Rangaraj and Kokini studied the thermal fracture behaviors in a functionally graded, 

yttria stabilized zirconia-NiCoCrAlY bonded thermal barrier coating using mean field 

micromechanical model to predict the effective thermoelastic and viscoplastic properties [174]. 

Yildirim et al. examined the three dimensional, semi-elliptical surface crack in a functionally 

graded coating subject to mode I mechanical or transient thermal loading [175]. The thermal 

fracture resistance of a functionally graded coating with an array of periodic edge cracks under 

thermal shock loading was studied by Jin and Feng [176]. Choi and Paulino analyzed a coupled, 

plane elasticity problem of crack/contact mechanics for a functionally graded coating/substrate 

system, where the rigid flat punch slides over the surface of the coated system with a crack [177]. 

Although there has been a lot of researches concerning the thermal fracture of interface 

cracks in FGMs coating/substrate systems, they were all based on stress intensity factor- or 

energy-based fracture criterion. These criteria always are always developed based on the stress 

field around the crack tip of 
1/2r −

 singularity (where r is the distance from the crack tip). The 

singular stress field around the crack tip based on classical elasticity theory implies an infinite 

stress at the crack tip, which is problematic physically according to the observation of material 

rupture. The experimental study has shown the strain would be finite at the crack tips, and the 

maximum value is not exactly on the crack tip but locates on a short distance from the crack tip 

[178]. Another important issue associated with classical elasticity is the disability in accounting 
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for the size effect, which would be pronounced in the multiphase composites, nanostructured 

materials, or nano-sized devices like NEMS. Taking size effect into consideration, a recent 

research [179] has shown a higher fracture risk for a vertical surface crack in a homogeneous half 

plane than classical analysis. Both issues can be perfectly addressed using the modified, size-

dependent continuum mechanics, such as nonlocal elasticity, strain gradient theory or couple stress 

theory. By means of nonlocal elasticity, Eringen has shown the finite stress at the crack tip in an 

isotropic, elastic plate subjected to uniform tension, shear, and anti-plane shear [72,77-78]. 

Alfantis [180] validated that adopting the strain gradient elasticity will remove the strain 

singularities in the results. Later, Zhou et. al. [80-82,181-182] employed the Schmidt method to 

investigate various crack problems under mechanical loadings based on nonlocal theory. However, 

till now, there exists no report of thermal fracture analysis that eliminates the stress singularity at 

the crack tip and takes the size effect into consideration. In order to develop a better understanding 

of the thermal fracture behavior in compositionally graded, thermal barrier coatings/substrate 

systems, the nonlocal continuum theory is utilized in this article.  

        Compared to classical continuum theory, the nonlocal theory no longer treats the stress at 

a point to be influenced uniquely by the strain at the same point. Instead, the nonlocal theory 

assumes the stress would be determined by the strains in a surrounding area, thus taking the size 

effect into consideration and building the connections between the classical continuum with the 

mechanics at the nanoscale. In this work, the nonlocal theory is employed to investigate the thermal 

fracture behavior of an interface crack between an FGM coating and a homogenous substrate. 

Fourier transform is employed to convert the governing partial differential equations (PDEs) into 

dual integral equations. Finally, the dual integral equations are solved by the Schmidt method 

numerically, and the finite, thermal stress fields around the crack tip are obtained. 

6.2  Mathematical formulation of the problem 

A bimaterial composed of an FGM coating and a homogeneous substrate is considered as 

shown in Figure 6.1. The FGM coating for to the substrate except for an interface crack of length 

2c , which is partially, thermally insulated. Assume the crack is very small compared to the whole 

size of the biomaterial, both the FGM coating and the substrate are treated to be semi-infinite 

planes. For simplicity, a Cartesian coordinate system is established with its origin at the center of 
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the crack. A steady state, remote heat flux of intensity q  is applied at infinity and the crack is 

free of traction. It is presumed the material properties vary exponentially in the y-direction. The 

Poisson’s ratio 
p  is a constant throughout the bimaterial for variation of Poisson’s ratio is 

believed to have a negligible influence on the fracture behaviors [183]. The remaining thermo-

mechanical properties are modeled as: 

0 0 0, ,y y y

T Te e e       = = =                                            (6.1)  

where , , T    are the shear modulus, thermal conductivity and coefficient of linear expansion, 

respectively. 0 0 0, , T    correspond to the values of the homogeneous substrate and , ,    are 

the nonhomogeneity parameters.  

 

Figure 6.1 Geometry of the interface crack between FGM coating and homogeneous substrate 

 

The governing equation of the heat conduction is: 

2 2
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                                       (6.2) 

The corresponding thermal boundary conditions are: 
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                                            (6.3) 

where 0 1k   is the dimensionless variable of heat conductivity of the crack. 0k =  and 1k =  

represent the complete insulation and perfect conduction of the crack, respectively. The plane 

elasticity equations based on the nonlocal elasticity theory, without considering body force are: 

0, 0
xy xy yyxx

t t tt

x y x y

  
+ = + =

   
                                            (6.4) 
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                                   (6.5)  
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                            (6.6) 

where 
ijt  is the nonlocal stress, 

ij  is the classical local stress, 
ij  is the strain, 3 4 pk = − , 1k =  

are applied for the plane strain conditions and (3 ) / (1 )p pk  = − + , 1 pk = +  are applied for the 

plane stress conditions. Different from the classical continuum, nonlocal theory assumes the stress 

at one point is determined by all the strains in the surrounding area, shown as: 

       ( ) (| |) ( ) ( )ij ij

V

t dV   = −x x x x x                                              (6.7) 

where (| |) −x x  is the kernel function of the distance between the point of interest and its 

neighboring point, characterizing the long-range interactions between molecules or atoms. In this 

study, a widely used kernel function by Eringen [77] and Zhou [80-82,181-182] is adopted as: 
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2 21
(| |) ( ) exp[ ( ) ( )( )]

a a

 



  − = − − −x x x x x x                               (6.8) 

where   is a constant determined by experiments [181-182], and a  is an internal, nonlocal 

characteristic length. In 1983, a more popular, equivalent, partial differential form of the nonlocal 

theory is proposed by Eringen et al. [70]: 

2 2

0(1 ( ) ) ij ije a t −  =                                                     (6.9)  

where 0e  is a constant depending on materials, and 2  is the Laplacian operator. By means of the 

differential form, the equilibrium equation (6.4) would be equivalent to the following form, which 

is the result found in Eringen [77] and Zhou [181-182] after a detailed analysis of the stress 

conditions across the crack face, expressed as: 

         0, 0
xy xy yyxx

x y x y

     
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                                   (6.10) 

For concision, defining the following dimensionless variables, 
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           (6.11)         

Considering the nonhomogeneity in FGM coating, then the Eq. (6.6) and Eq. (6.8) are simplified 

as:  
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Here and after, asterisk “*” of the variables is neglected for simplicity. Substituting Eqs. (6.12-

6.13) into Eq. (6.10),  the dimensionless governing equations for the thermal stress field are 

expressed as: 
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                  (6.16) 

The corresponding dimensionless thermal-mechanical boundary conditions are: 
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6.3  Solution procedures 

6.3.1 Solutions of temperature field  

Considering the nonhomogeneity in thermal conductivity, the governing equations of heat 

conduction become: 
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                                           (6.19) 

Fourier transform is applied to transform the above PDEs to the following form: 
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In which   is the Fourier transform variable. Considering the thermal boundary conditions, the 

solutions are obtained as: 
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With the help of thermal boundary conditions on the crack  (y = 0) and its extension along x-axis, 

we have: 
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( ) 0, ( 1)x x =                                                    (6.24)  

Substituting Eq. (6.21) into Eq. (6.22), after performing inverse Fourier transform, we have: 
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Finally, the partially thermal insulation of the interface crack leads to the following singular 

integral equation: 
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where the kernel function is: 

 1 2

2 10

2
( , ) (1 )sin[ ( )]

( )

m m
K x x d

m m
   





= + −
−                               (6.27) 

The Lobatto–Chebyshev numerical integral technique is employed to convert the integral 

equations (6.23) and (6.26) to the following algebraic equations: 
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Once the above algebraic equations are solved, the temperature field can be obtained numerically 

by incorporating Eq. (6.21) and (6.25) and evaluating the infinite integrals.  

6.3.2 Solutions of the thermal stress field 

Employing Fourier transform, the governing PDE (6.15-6.16) is converted to:  
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The general solution of above PDEs subjecting to the regular condition at infinity shows as: 
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where ( ), ( ), ( ) ( 1,2,3,4)i i iA B i    = are unknown functions to be determined, and ( 1,2)i i =  are 

the two negative roots of the characteristic equation. Substituting Eq. (6.32) into (6.30), we have: 
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Substitute Eq. (6.33) into Eq. (6.31), the following characteristic equation is obtained: 

4 2 2 42 0   − + =                                                  (6.37) 

whose dual roots are | | . Considering the regular condition at infinity, the positive dual root 

2 | |m =  is selected here. In addition, there is:  
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In which ( )i   can be determined by the particular solution accompanied by the temperature field 

as shown in Eq. (6.21), expressed as: 
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where 1 1n m= + and ( ) ( 1,2,3,4)ia i = are shown in the Appendix. With the help of the 

constitutive equations, the local thermal stresses can be obtained as: 
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where , ,i i ijq g g  are shown in the Appendix. Thus far, ( ) ( 1, 2,3, 4)iA i =  are the unknown 

functions, which can be determined from the mechanical boundary conditions. To solve the present 

problem, the jumps of displacements across the crack surfaces are introduced as the function of 

coordinate x: 
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Applying the Fourier transform to the above equations and using the boundary conditions, one can 

have: 
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where the unknown terms 1 2 1 2 3 4, , , , ,G G G G   are shown in the Appendix. From the integral form 

of nonlocal stresses Eq. (6.14), we have: 
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  (6.44) 

Using the following relations [77]: 
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In which ( )z  is the error function, defined as: 
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Then the nonlocal stress components can then be derived as:  
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where  

            

2 2
1

1

2 2

2

2 2
2

( )

( )4 41
1

( )

( )4 4

2
1

/42 2
2

2

21
( , ) [1 ( )]

2 2

21
( , ) [1 ( )] ( 1, 2)

2 2

21
[1 ( )]

2 2

2 2 1
[1 ( )]

4 22

( )

i

i

n

n yp p

yp pi
i

m y

m y py p

n py
e y e e e

p

py
d y e e e i

p

m py
N e

p

m py m py p
N e e e

p pp

p
a

 



  

 






 






+
−

+

+
−

+

− −

− − −
= −

− − −
= − =

+
= −

+ +
= − −

=

 

Until now, the only unknown functions are 1 2( ), ( )f f  . Substituting the nonlocal stresses into 

the remaining boundary conditions on crack faces, “ ( ,0) ( ,0) 0, ( 1)xy yyt x t x x= =  ”, then the 

problem finally is reduced to two pairs of dual integral equations: 
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where 
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where 10 1 20 2 10 1( , 0), ( , 0), ( , 0)d d y d d y e e y  = = = = = = and the remaining ijs  are shown in the 

Appendix. The unknown two functions 1 2( ), ( )f f  can be obtained after solving the above two 

pairs of dual integral equations. However, as discussed by Eringen [72], for this kind of problem, 

the dual integral equations cannot be transformed to a Fredholm integral equation of the second 

kind. In this paper, the Schmidt method [181-182] is employed to solve the integral equations. The 

jumps of displacements are expressed by a series of Jacobi polynomials: 
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where ,n na b  are unknown coefficients and 
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where ( ), ( )nJ n  are the Bessel and Gamma functions, respectively. Substitution above equations 

into Eq. (6.49-6.50), we find that Eq. (6.50) is automatically satisfied. while Eq. (6.49) gives: 
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For a large  , the integrands in the above equations would decrease to zero, so the infinite 

integrations can be evaluated directly. Then the coefficients ,n na b  can be determined by the 

Schmidt method. Introducing a set of orthogonal functions satisfying, 
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which can be constructed from ( )nG x  by: 
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Then the Eq. (6.55) can be rewritten as: 
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Substituting the above equations into Eq. (6.49) yields: 
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Finally, the coefficients nb can be determined as 
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6.4  Numerical results and discussions 

 

Figure 6.2 Dimensionless temperature distributions on crack faces and the extension line with the 

variation of nonhomogeneous parameter in thermal conductivity when k*=0.1. 
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Figure 6.3 Dimensionless temperature distributions on crack faces and the extension line varied with 

partially insulations parameter when 𝛿 = −1. 

 

Serving as thermal barrier coatings, FGMs always are exposed the side of heat resistive 

ceramic to high temperature environment while another side of metallic materials is connected to 

the homogenous substrate so as to avoid the properties mismatch. Usually, material properties such 

as Young’s modulus, thermal expansion coefficient and thermal conductivity of ceramics are lower 

than those of the metallic phase in FGMs, for example, Rene-41/Zirconia functionally graded 

composites [184]. Therefore, the nonhomogeneous parameters , ,   are selected as negative 

values in this article. The following numerical results are calculated for plane strain condition and 

Poisson’s ratio is set to be 0.33. Due to the introduction of dimensionless variables, the crack 

locates between the interval [-1,1].  

The temperature distributions are calculated using Eqs. (6.28) and (6.29) and displayed in 

Figures 6.2 and 6.3. Figure 6.2 shows the effect of nonhomogeneous parameter of thermal 

conductivity   on the temperature distributions along the crack line (y=0), while Figure 6.3 gives 

out the influence of the partially insulating parameters *k , where “UF” denotes the temperature 

on the upper crack face and “LF” refers to the lower crack face. The temperatures on the crack 

extension line (out of the interval [-1,1]) are continuous, satisfying the boundary conditions in Eq. 
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(6.17). Obviously, the temperature jump across the crack increases with increasing  . With the 

increase of the partially insulating parameters *k , the temperature jumps decrease reasonably.  

After solving the two pairs of dual integral equations, the coefficients ,n na b  are known and 

the displacement jumps can thus be expressed by a series of the Jacobian polynomials. In fracture 

mechanics, the stresses along the crack line play a dominant role in determining the crack 

propagation. The thermal stresses can be obtained numerically by:  
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Figures 6.4 and 6.5 illustrate the thermal stresses distribution along the crack extension line 

for two groups of arbitrarily selected parameters , , , , *k     to examine the Schmidt method, 

where / 2a c =  is the term from Eq. (6.8), whose values are found from reference [181-182]. 

The results show this numerical method performs effectively as the stresses between the interval 

[-1,1] are very close to zero except minor numerical fluctuations, which is satisfying the boundary 

conditions on the crack faces. The existence of xyt and yyt  confirm this interface crack problem 

between FGMs coating and homogenous substrate is equivalent to a mixed-mode fracture problem. 

The most valuable finding is that both thermal stresses xyt and yyt  are finite values at the crack tips 

(-1,0) and (1,0), which eliminates the stresses singularities in the classical, local analysis. Yielded 

from this nonlocal solution, the finite values of thermal stress around the crack tip allow us to build 

a more straightforward fracture criterion built on maximum stresses in assessing the risk of thermal 

fracture. For example,  a fracture criterion can be built for the material stating that rupture will not 

occur before the maximum value of von Mises stress around the crack tip reaches the value of 

cohesive stress that holds the atomic bonds of lattice [181-182]. By substituting the displacement 

jumps into Eq. (6.48), Figure 6.6 displays the whole thermal stresses field distributions around the 

crack tip (1,0), where the parameters are the same as those used in Figure 5. Clearly, the peak 

values do not occur exactly at the crack tip but slightly away from it, which has been thoroughly 
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illustrated by Eringen. Due to the nonhomogeneous, graded properties in the y direction, the 

distribution of  
yyt  is not symmetric about the x-axis anymore.  

 

 (a)                                                                              (b) 

Figure 6.4 Dimensionless stresses: (a) txy (b)tyy along crack faces and the extension line when

0.001, 0.5, * 0.1k   = = = = − = . 

 

      (a)                                                                          (b) 

Figure 6.5 Dimensionless stresses: (a) txy (b) tyy along crack faces and the extension line when

0.0005, 1, * 0k   = = = = − = . 
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(a)                                                                              (b)   

Figure 6.6 Dimensionless thermal stress distributions: (a) txy (b) tyy around the crack tip (1,0) when

0.0005, 1, * 0k   = = = = − = . 

 

(a)                                                                               (b) 

Figure 6.7 Dimensionless stress distributions (a) txy (b) tyy along the crack line varied with 

nonlocal characteristic length 

         For a better understanding of the thermal fracture behavior concerning the size effect in the 

interface crack problem, how the material properties influence the peak values and the 

corresponding locations of thermal stress will be of vital importance. Figure 6.7 presents the stress 

distribution along the crack extension line influenced by the nonlocal characteristic length. The 

results show the nonlocal characteristic length plays a dominant role in determining the thermal 

stress field in the vicinity of the crack tip. With a decreasing nonlocal length, both the finite stress 
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on the crack tip and the peak values will increase, and the location of peak value moves towards 

the crack tip. When the characteristic length is reduced to zero, the results will reduce to the local 

results, where the peak value will be infinite and locates exactly on the crack tip. The nonlocal 

results reveal the finite thermal stress around the interface crack, and indicate the fracture risk 

would be much higher in systems with a smaller characteristic length, which should be the main 

concern in designing composite structures especially those adopted in NEMS with extremely small 

characteristic length. Figure 6.8 shows the influence of partially insulating parameter *k on the 

thermal stresses. Obviously, with a higher ability to transfer heat across the crack, there will be 

less fracture risk, and moreover, this parameter has no influence on the locations of peak stress. 

Figures 6.9-6.11 give the effect of nonhomogeneity parameters , ,    on the thermomechanical 

 

(a)                                                                                (b) 

Figure 6.8 Dimensionless stress distributions (a) txy (b) tyy along the crack line varied with 

partially insulations parameter 

 

 response. Basically the nonhomogeneity parameters will influence the thermal stress level 

significantly, such as the value at the crack tip and the peak values. However, their influence on 

the location of the peak value of stress is negligible. An interesting phenomenon is that the shear 

stresses are always much higher than the normal stresses, which means the in-plane shear is more 

likely to happen than tensile failure for the current problem. Detailed comparisons are conducted 

to demonstrate the relationships between peak values of thermal stress and the nonhomogeneity 

parameters, as shown in Figures 6.12-6.14. A higher value of   leads to a higher value of 
xyt but 
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lower value of 
yyt . With the increase of  , the peak value of 

xyt  increases but the peak value of 

yyt  decreases.   exhibits a minor influence on the peak values of 
yyt , but an increase of it will 

result in a significant increase of 
xyt . 

 

(a) (b) 

Figure 6.9  Dimensionless stress distributions (a) txy (b) tyy along the crack line 

for different values of  β . 

 

    (a)                                                                      (b) 

Figure 6.10 Dimensionless stress distributions (a) txy (b) tyy along the crack line 

for different values of  𝛿 . 
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    (a)                                                                       (b) 

Figure 6.11 Dimensionless stress distributions (a) txy (b) tyy along the crack line 

for different values of  𝛾 

 

Figure 6.12  Peak values of the stresses along the crack line with the variation of  . 
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Figure 6.13  Peak values of the stresses along the crack line with the variation of  . 

 

Figure 6.14 Peak values of the stresses along the crack line with the variation of  . 

6.5  Conclusions   

In conclusion, the interface crack problem between a functionally graded coating and the 

homogenous substrate subject to remote heat flux is solved by nonlocal theory. The size effect is 

considered to remove the stress singularities at the crack tips. By utilizing the Fourier transform 

and the Schmidt method, the problem is solved numerically and finite stress distribution around 
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crack tips can then be displayed. Results show the nonlocal characteristic length is vitally 

important in eliminating the unreasonable infinite stresses at the crack tip yielded from the classical 

continuum analysis, and moreover, it determines the peak values and their locations. Parametric 

studies are conducted to investigate the influence of nonhomogeneous properties on the thermal 

fracture behavior of the interface crack.  

6.6 Appendix 
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where D is determinant of the matrix in Eq. (36) and 
ijD  is the cofactor. 
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Chapter 7: Conclusions and Future Perspectives 

7.1 Conclusions 

In order to overcome the drawbacks of classical thermoelasticity in thermal stress analysis 

of materials with time-dependent mechanical behavior or heterogeneity in microstructure under 

extreme thermal loading, non-classical thermomechanical analysis has been conducted for a series 

of non-classical, thermomechanical problems in this thesis. Nonlocal theory is combined with non-

Fourier heat conduction theories to provide a comprehensive theoretical framework for the thermal 

stress analysis of advanced materials under extreme thermal loading. Through this work, major 

conclusions are summarized as follows. 

(1) Significant discrepancies of transient stresses intensity factors exist between functionally 

graded elastic and viscoelastic materials. Fracture occurs at a much earlier stage in 

viscoelastic FGMs under thermal shock than the elastic ones based on the predicted stress 

intensity factors. An increase in the gradient of thermal conductivity in viscoelastic FGMs 

can lower the thermal stresses and fracture risk. 

(2) Within the framework of the hyperbolic heat conduction model, the significant temperature 

overshooting and much higher transient SIFs are observed in FGMs. Designing 

structural components using the hyperbolic heat conduction model would be more viable 

and conservative. 

(3) By extending the fractional calculus to the DPL model, the time-fractional order model 

predicts a more reasonable temperature field by weakening the thermal wave propagation, 

leading to the removal of the unphysical fracture behavior and weakened oscillations in 

temperature history. The thermal penetration depth is larger and the temperature level is 

higher behind the crack but lower in front of the crack for a higher value of the lag ratio, 

/T q  , between the phase lag of temperature gradient and heat flux. 

(4) The full extension of the nonlocal DPL model to the first order of the Taylor expansion is 

considered to account for the heat conduction at the nanoscale, which is verified 
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experimentally by the size-dependent thermal conductivity of silicon nanofilms [154-162] 

and the femtosecond laser heating of gold films [26]. The nonlocal DPL model predicts a 

faster thermal propagation speed, and the nonlocal characteristic length can remove the 

spatial jump in mechanical response. In addition, the nonlocal analysis predicts higher peak 

values of thermal stresses in viscoelastic media than the traditional DPL results. 

(5) Nonlocal theory is adopted to solve the interfacial crack problem under thermal loading for 

the first time. Consideration of the size effect can remove the stress singularities at the 

crack tips. Nonlocal characteristic length is vitally important in determining the peak values 

of thermal stresses and their locations in the vicinity of crack tips.  

There exist some limitations of this thesis because of the theoretical nature of the work. 

The mathematical modelling cannot solve the problems with complex geometries, which may be 

common in engineering applications. As to chapter 6, although Schmidt method gives accurate 

thermal stresses, it takes much more computation time than the method employed in solving the 

singular integral equation. In order to build the transient thermoelastic fracture model based on 

nonlocal theory, it is necessary to develop a more efficient method. 

7.2 Future Perspectives 

For the investigations of thermoelastic analysis in cracked media, due to the fact that crack 

would always disturb both the thermal fields and stress fields, the pure mathematical models 

cannot solve the problems with complex geometry. With many devices are downsized to micro- 

and nanoscale as well as increasing applications of soft materials, the coupled problem of non-

Fourier heat conduction, nonlocal effect and time-dependent rheological process would be strongly 

nonlinear. Besides, some material properties, such as thermal conductivity, are temperature-

dependent, which further increases the mathematical difficulty in theoretical modeling.  

Combination of theoretical work with some numerical simulations would be the focus of future 

work. In particular, the emerging peridynamics which considers the nonlocal effect and models 

the continuous body by discrete particles, would be very promising in dealing with small-sized, 

thermoelastic analysis and fracture mechanics involving large deformations and multiphase 

composites.  
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