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Absgstract

Asymptotic Ray Theory (ART), a technique in which the
amplitude of the total body wave field is expanded into an
infinite ray series, has become a powerful tool ian the
numerical solution of both the direct and inverse problem .n
seismic oil exploration and crustal seismology. However,
thus far only the zero order term has been used in practice.
In order to meet the current demands of seismic oil
exploration and crustal seismology, the need to study the
higher order terms in the ray series has become ever more
pressing.

A systematic and detailed treatment of the higher order
approximations to ART, and a rigorous mathematical analysis
of the first order approximation to some typical problems in
particular are discussed. in addition to the presentation of
the basic theoretical formulae, numerical examples are given
in order to demonstrate the importance of the first order
terms in the ray series., It is our experience that they
should be used whenever ART is applied to inhomogeneous
media, because the first order amplitudes become larger as
the inhomogeneity of media increases. In the thesis we
present the first order correction to the zero order
approximation for PS and PP waves reflected from the free
surface. The dependence of the first order correction on the
depth of the explosive point source is demonstrated in

several numerical examples. Our synthetic seismograms show,

iv



in particular, that the ampli:ude of the first order term in
the ray series is sensitive to the depth of the source, and
to the ratio of P and § wave velocities in the medium below
the free surface. The first order approximation of ART for
transmitted and reflected waves due to a spherical wave
incident on a boundary between two elastic media has also
been investigated with the help of synthetic seismograms.
The numerical examples suggest that the first order
corraction should be included for the trzasmitted and
reflected PS waves because of the high amplitudes of their
additional components at normal incidence that can be as
great as 10% of the total amplitude of the converted PP

waves.
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1. Introduction

Problemns in elastic wave propagation, sometimes called
forward problems, are of paramount importance in various
branches of seismology. This usually means that the wave
field at any given posi;ion is of interest and computed when
the scurces and the structures of models are known, By
comparing synthetic seismograms for different models with
recorded seismograms, it is possible to investigate the real
structures and sources. Unfortunately, analytical solutions
to the wave equations governing wave phenomena, in terms of
physical quantity &(r,t) where r is a position vector, and t
is time, are known for only a few relatively simple medium
types, which generally do not closely resemble real
structures.

Consequently, two different approaches for computing
synthetic seismograms for a given model, approximate and
highly accurate numerical methods which are based on the
direct numerical solution of the elastodynamic equations,
have been achieved and developed. For instance, the finite
difference method is a numerical implementation of the most
general accurate numerical solution (Alterman and
Loewenthal, 1972; Boore, 1972; Alford et al., 1974; Kelly et
al., 1976). The Alekseev-Mikhailenko Method (Mikhailenko,
1973; Alekseev and Mikhailenko, 1976, 1977, 1978, 1979,
1€80) which combines the use of finite differences with the

finite integral transforms is another example of a highly



accurate numerical method, Derived in a similar manner as
geometrical optics (Kline, 1951), Asymptotic Ray Theory
(Babich and Alekseev, 1958; Karal and Keller, 1959; Alekseev
et al, 1961; Cerveny, 1972; Hron and Kanasewich, 1971;
Cerveny and Hron, 1980; Hron, 1984), is an example of an
approximate method,

Recently Asymptotic Ray Theory (ART) has gained wide
acceptance for use in seismic modeling because it is fast,
efficient, and adaptable enough to be applied to a variety
of geological structures, including three-dimensional models
with arbitrary curved interfaces and both vertical and
lateral inhomogeneities,

The basic theory of ART assumes that the solution of
the basic elastodynamic wave equation (sometimes known as
the Navier-Stokes equation) characterized by Lame
coefficients A=A(r), u=u(r) and the density p=p(r) as

2%u

(1.1) p = (A+u)V8 + uVZu + VA + 2(Vu-V)u + Vux(Vxu)
ot?

in the form of a ray series as follows:

(1.2) ul({r,t) = § Wk (r) Fo(t-r(r))

where 6=V-u, and W'*’(r) are amplitude terms represented by
complex vectors independent of time, t, and F,(%) are
generally complex functions of a real variable §, F.(§) =
f.(8) + 1 g, (%), satisfying the relation F,'(§) = F,_,(%),

and where 7 is an arrival time at the location with position



vector r in a given coordinate system which may be generally
curvilineal.

It is understood that'oﬁly one part, either the real or
the imaginary part of the complex valued vector W(r,t) in
(1.2), represents the actual displacement associated with a
given ray path. Complex variables are used in order to
simplify the algebra, and to utilize the powerful theory of
complex functions.

Understandably the displacement W(r,t) in (1.2)
representing a given ray path must, according to the
principal of superposition, also satisfy the basic
elastodynamic equation (1.1).

Writing the Cartesian components of the amplitude term

w(k) as Wj(k)' i.e.

and defining W( -2’ = w(-') = 0, and inserting (1.2) to
(1.1), a recurrence system of equations can be obtained as

follows:
(1.3) N(W(K)) = M(WERk-1)) - L(wik-2)), k =0, 1, vou...

The vector operators N, M, and L are given by the

following formulae:

N(u)

(A+p) (u-V7r)Vr + [u(Vr)Z-plu

(1.4) M(u) (A+u)[6Vr+V(u-V7)] + p[2(Vr)2du/dr + (VZ7)u]

+ VA(V7-u) + V7 (Vu-u) + (Vr-Vu)u



L{u) = (A+u)V8 + uViu + 6VN + 2(Vu-V)u + Vux(Vxu)

It is of note that the ART solution allows for the inclusion
of as many terms (k‘= 0, 1, 2, ...) as are required for the
problems at hand.

For the most part, the zero order term (k=0) is
sufficient to supply an accurate description of ordinary
body waves, However, attention should be paid to some of the
more sensitive areas of solution where the zero order term
produces unaccountable inaccuracies when compared to a
highly accurate numerical solution. For example, two special
effects have been found by Drs. Hron and Mikhailenko in 1981
when they used the Alekseev-Mikhailenko Method (AMM) to deal
with the following special model, named model #1 in this
thesis (see Fig., 1.1). In computations of synthetic
seismograms for model #1, the following source -pulse was

used:
(1.5) f(t) = expl-(27avt/v)?] sin(2wvt)

where v, the predominant frequency of the pulse, was chosen
as 1 Hz. The damping factor y was set equal to 4.0.

The vertical components of the displacement vector
computed using the Alekseev-Mikhailenko Method for model #1
is shown in Figufe 1.2. For the sake of simplicity, units of
time and distance were expressed in terms of periods and
wavelengths. A wavelength is defined as the ratio of the

compressional wave velocity in the halfspace to the
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Figure 1.1 Model #1. A point source was buried a small

distance (0.25 WL) from the free surface in homogeneous
elastic half-space. To minimize the contribution of the
Rayleigh wave the receivers were placed at depth z=3 WL

below the free surface.
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displacement vector were computed for the depth z = 3 WL at

all epicentral distances. The P source was buried at the

depth h = 0,25 WL. The ratio of S to P velocities was taken

to be f/a =

0.5.



predominant frequency of the source pulse. As we can see
from Fig. 1.2, two effects have been found as follows:

(1) There is a nonzero vertical component of the
converted PS wave reflected at normal inc¢idence from the
free surface,

(2) At large epicentral distance we can see the S¥ and
PS waves are already well separated from one another,

Our next guestion addresses the behaviour of the zero
order solution of the Asymptotic Ray Theory for the same
model, The zero order approximation solution of ART for
model #1 is shown in Figure 1.3 .

The most noticeable difference between the two methods
(other than the existance of the Rayleigh wave and the
nongeometrical S* arrival in the AMM seismograms) was the
obvious inability of the zero order ART approximation to
explain the presence of a vertical component of the PS
reflected arrival from the free surface at vertical
incidence. This difference can be seen clearly by
comparision of the zero order ART solution (Fig. 1.3) with
the original results of AMM (Fig. 1.2). Thus, it is becoming
increasingly important to include effects of the higher
order terms in the computation of synthetic seismograms.

This thesis will be devoted to derive mathematical
formulae suitable for calculations of the higher order
effects of ART, and to investigate the nature of them,
Special attention will be paid to investigating the effects

of the first order term of ART. The solution including the
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first order effects will be often compared with the zero
order approximation solution, and with results obtained from
the Alekseev-Mikhailenko Method. Various computational

| topics related to it will be described in detail in the next
chapters. They will be supplemented by many numerical

examples,



2. Higher Order Terms of ART in a Continuous Elastic Medium

In this chapter we shall investigate expressions for
the higher order terms as functions of the lower order terms
in a continuous elastic medium, Since the formulae for the
zeroth order terms for many different models have been
presented in many authors' works, we shall use them without
derivation., However, appropriate references to the more

detailed literature will always be given.
2.1 The Zeroth Order Approximation in The Ray Series

In the zeroth order approximation the ray displacement
vector W(r,t) in (1.2) is represented only by the leading

term in the ray expansion:
(2.1) W(r,t) = W (r) fo(t-7(r))

Noticing that M(W'-')(r)) = L(W(-2)(r)) = 0, the recurrent

relations (1.3) become:
(2.2) N(WY) = (N+p)(Vr-Wwi®)Vr + [(Vr)2pu-plw(®’ = 0
Using a matrix formulation (2.2) may be rewritten as

(2.3) [(7\'*'#)3;3,' + 5ij(#(VT)2"P)]W(°) =0
where

Bi(j) = 371/0%: (), i(3) = 1, 2, 3;
are frequently called the slowness vector (slowness is equal

10



1R

to the inverse of the speed of wave propagation). Assuming
Wi°l20 in (2.3) a zero value of the determinant of the above

system is then required, i.e.
(2.4) [u(Vr)2-pl2L(A\+2u)(Vr)2-p] = 0

which leads to the following eikonal equations for the

P-wave and S-wave:

|V | [o/(Z+2u)]'/2,

(p/u)'’?,

1/a
1/8

(2.5)
||

The corresponding orientation of the displacement vectors
W'°) in the zeroth order approximation can be easily found,
remembering that B in (2.5) represents the phase speed of
transverse (shear) elastic S waves, whereas « in (2.5)
stands for the phase speed of longitudinal (compressional) P
waves,

Writing the leading term in the ray series expansion

for the P wave displacement vector as

(2.6) weer = pto)

and applying the vector product (Vrx) to (2.2) yields:
(2.7) Vrx[(A+u) (Vr-P(°2)Vr + ((Vr)Zu-p)P‘°’] = 0,
so that we must have:

(2.8) P(%)xVr = 0,

which means the zero order approximation for the amplitude
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of the P wave, P'°’, must be oriented along the ray.
In the same way, writing the leading term in the ray

series expansion for the S wave displacement vector as

(2,9) weer = gto)
and applying the scalar product (Vr:) to (2.2) yields:

(2.10)  Vr-[(A+u)(Vr-8°)Vr + ((Vr)2u-p)8t°’] = 0,

so that
(2.11) Vr-§(°) = 0

which means the zero order approximation for the S wave
amplitude, $‘°’, must be oriented perpendicularly to the
ray.

The zero order approximation expressions of the
displacement vector for various differential models can be
found in Hron and Daley's work (1984). Basically, it is
assumed that seismic energy travels through an elastic
medium along well-defined paths termed rays. The geometry of
these paths is governed by Snell's law. This definition;
however, gives no information on energy properties
(amplitudes). For this, it is necessary to turn to the law
of conservation of energy. This states that the energy flux
across the wave front must be equal at all times as long as
the elastic parameters of the medium are continuous. Thus,
if a value for the displacement is known at some reference

point on the ray, (ro), it is a simpie matter to compute
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displacement at any other point, (r), along the ray by
comparing surface areas of the wave fronts, velncities and
densities at these two points plus the effect of energy
partitioning at interfaces. For example,

(1) In the case of homogeneous media, the seismic ray
is a straight line, and the amplitudes for P and S waves are

given respectively by:

(2.12a) PO (p)

P (r,) / L(r)

(2.12b) s8¢ (r) = 8‘°)(ry) / L(r)

where ro, and r express the reference point position and the
receiver point position, respectively, and the geometrical

spreading, L(r), is given as the following:
(2.13) L(r) =r / ro

(2) In the case of a vertically inhomogeneous medium
with constant speed gradient g, i.e. V(z)=Vo+gz, the seismic
rays are plane curves, If we assume that we know the
time-distance curve t=t(r) of the wave under consideration,
the amplitude coefficients of P and S waves reached at time
t are given respectively by:

pltolalty) 1
(2.14a) P (t) = PO (ty) [———]""2
p(t)alt) L(t)
p(to)B(to) 1
]1/2

(2.14b) 8'°)(t) = 89 (t,) [ ——
p(t)B(t) L(t)

where a and B are speeds of P and S waves, respectively. The
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N -

Figure 2.1 An elementary segment between two points S and R
on the ray situated on two different wavefronts t, and t in
a vertically inhomogeneous medium. Due to the usual practice
cf making the region in the vicinity of the source
homogeneous, the geometrical spreading L(t) is given in

(2.15).
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geometrical spreading L(t) between the receiver at R, on the
ray reached at time t (t=0 corresponds to the explosive
source 0) and the point, S, on the unit distance from the
source reached at time to=1/V, (see Fig. 2.1) is given by:

v(t)

(2.15) L(t) = 1 + shig(t-1/V,)]

9

where V(t) is the phase speed at the receiver point on the

ray reached at time t, which is equal to

(1+a) explg(t-1/V,)]

(2.16) V(t) = V, '
1 + a expl2g(t-1/V,)]

where a = tan?(¢o,/2) with ¢, being the take off angle, and

Vo the phase speed at a unit distance from the source.

2.2 Additional Components of Higher Order Terms

Let us write the ray series for the P wave displacement

as

‘ (2.17) Wg(r,t) = § Wg“‘)(r) F(k)(t—f(r))

The recurrence relations (1.3) then can be rewritten as
(2.18) N(W, ‘%)) = M(w, (%~ 1)) - (W, ‘% -2)), k=0, 1,...

which makes it possible to derive formulae for all the
amplitude terms of P waves.
Since no assumption has been made about the vector

W, %) besides the requirement that it is carried by a P
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wavefront, we have to assume that we may write W,'“’ as the

sum of the vector components P‘*’ and p‘¥’,

(2.19) W% = pt¥) 4 pt)

=P(k)ég +p(k)é¢' k=0' 1,000000

where eé. and e, are the unit vectors along the ray and in
the normal plane of the ray, respectively. In -(2.19) the
component normal to the wave front surface, P‘¥’, is termed
the principal component while the component tangent to the
vave front surface, p‘'*’, is called the additional
component. Analogous definitions exist for S waves,

We may write the recurrent relations (1,3) for S waves

as
(2.20) N(W, (%)) = M(w, (%-1)) - L(w,(k-22), k=0, 1,...
and we must assume that

(2.21)  w, %) = gtk) 4+ gti)

S(k)é¢+s(k)é=' k=0, 1’000000

where S‘%’ and s‘*’ are called the principal and the
additional components, respectively.
Using the above concepts of principal and additional

components, we can rewrite the results obtained from section

2.1 as follows:

(2.8'") pP(o)(r) p(ela. + 0 &,

(2.11') 89 (r) = s(%)g, + 0 é.
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which means that in the zero order approximation the
additional components of P or S waves always equal to zero
for any kind of media.

However, the higher order additional components p‘“’
and s'*’ should be different from the zeroth order
additional components even through the medium is an elastic
isotropic homogeneous one, Let us first derive general
expressions for p'*’ and s‘%’, respectively.

In the case of P rays, applying the scalar product

operation (é.-) to (2.18) yields:

(2,22) N, (W, (<) = M, (W, ‘%" 1)) = L, (W, k-2)),

N’(w!(k)) = é¢'N(Wg(k))
where M, (W, (¥ 1)) = g, -M(W, (k- 1))

L‘(w‘(k-Z)) = é"L(WQ(k—Z))

Substituting (2.19) into (2.22) and using (1.4), we may

obtain, after some vector operations:

(2'23) N.;(Wg(k)) - p(ﬁz_aZ)p(k) / aZ

P(k-‘) 1
(2.24) M. (W ) = (A+) [V(——)], + 2uP* ")
o a U,
2u dplk-1)
+ + uVir ple-1) 4
«? dr
(k-1) plk-1)
+ ———— [Vu]. + —————[VA],

a a
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where r, is the radius of curvature of the ray segment, Then

we can write

uz
(2_25) p(k) =W[M+(Wt(k'”) -L‘(w‘(k-z))]
p ~a

Taking k=1 in (2.25), noticing that L,(W,¢-"’) = 0 and
using (2,24), we may obtain the following general formula

for the first order additional component of P waves:

az

(2.26) p'") = —————— M, (W 9}
p(B%-a?)
az P(O)
= ——— {(\+u) [V(
p(B%-a?) a
1 p(O)

+ 2up'®’ + [VAl.}
a 'y o

)], +

It may be easily seen that for an elastic isotropic
homogeneous medium, (2.26) becomes p‘'’ = 0, since the

values of [VP(° ] =vp(®).&,, [VA] and [1/r,] are all equal

to zero in this instance.

In the case of S waves, applying the scalar product

operation (é.:) to (2.20) yields:
(2.27)  N_(W, ‘%) = M. (W, ‘%)) - L.(W,'%"2)), k =0,1,...

N.(W, (%)) = & N(W,(K))
where Mo (W, (%-1)) = &_-M(w, (k-1))

L.(W,(%-2)) = &_-L(wW,(k-2))
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Substituting (2.21) into (2.27) and using (1.4), we have,

after some vectorial operations:

(2.28) N.(W,'%Y’) = p(a®-B2)s'*’ / B2

(2.29) M. (w,(x-1v)) =

+ ) [V(—)]}. - ———— ¢+

[VAl.

B

2[{vu]. [Vu].
+ s(k—l) +

B B

+

s(k-l) + us(k-‘)vzf‘ +

Sn(k-l)

where as before ry is the radius of curvature of the ray

segment. We can then write
Taking k=1 in (2.30), noticing that L.(W,¢ " '’) = 0 and using

(2.29) we obtain the following general formula for the first

order additional component of S§ waves:

BZ
(2.31) ") = ———— M. (W, ¢9))
pla?-B82)
B? (A+u) 2u S,'°?
= { v-(§¢°)é,) - —m—oon +
pla?-Bg%) B B r,
(Vul,
+ Ss'°}

B
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For an elastic homogeneous medium Eq. (2.31) becomes:

(2.32) s (r) = B S (r) V-6,

Equation (2,32) shows that the first order additional
component of S waves, s‘'’ is generally not equal to zero
even though the elastic medium is isotropic and homogeneous.
When a point source is placed in elastic isotropic
homogeneous medium, the pure P or S rays are all symmetrical
and radiological, As a result the evaluation of V-é, and
V-é. can be easily carried out in a spherical coordinate

system as follows:

cotan(6)/r

[1-33
]

AV
(2.33)
v-

+*

2/r

[3:

where 6 is the angle between the Z direction and the given
ray, and r the ray length.

Finally the following expressions for the first order
additional components of P or S waves in an elastic

isotropic homogeneous medium may be summarized as follows:

p‘'(r) 0

(2.34)
st (r) = B S§'°)(r) cotan(8) / r
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2.3 Principal Components of Higher Order Terms

We have shown how to determine the formulae for the
additional components of the higher order terms in the last
section, In this section it is therefore very useful to be
able to find formulae for the principal components of the
higher order terms, P‘*’ and S‘%’,

Let us first concentrate on the case of P waves,
Assuming W,‘%’ = P‘¥)a_ + p*’3, and applying the scalar

product operation (é.-) to (2,18) yields:

(2,35) N (W, ‘%)) = M_ (W (%-1)) = L_(W, k-2,

where:
(2.36) N.(w.‘%?) = 0, K =0, 1, 2,00000s

Then (2.35) can be rewritten as:

(2.37) M_(P(k-128_) - M.(p%-128,) + L.(W (*-2)),
k=0,1'0."..
where:

(2.38) M. (Plk=-1)a_ ) = plk-V[gp V-&. + &. -Vi{ap)]

dp(k-1)
+ — 2ap
ds
-2u e, Vu
(2.39) M.(p'*-"e,) = ptk-1)] + ]+

ar, a
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(A+u)

+ p(ll-l) V,é‘ .

o

Here r, is the radius of curvature of the ray segment.
Thus (2.37) should be rewritten in the following
recurrent forms:
dp(k—i)

(2040) ————— Zap = - P(k-1)[ap V'é: + éz-'V(al))]
ds

- M_(pt*-"a,) + L. (w,(x-27)
k=0' 1, 2' LI I B ]

The principal component of the first order terms can be

derived from (2.40) by setting k=2 in:

dp(1)
(2.41) 2ap = - P " [ap V-&. + é&. V(ap)]
ds
- M.(p‘'’é,) + L.(P'°¢.)
where
dZP(O) dP(O)
(2.42) L.(P'9)) = e (A\+2u) + [(A+u)V-&. +

ds? ds
+ é:'(V)\*‘ZVu)] + é=-[Vux(vxp(°))] +

d(v-e.) K
+ PO (A\+p)————— + (8. -VN)V-&.- —]
ds re?

In the case of elastic isotropic homogeneous media,
(2.41) becomes:
dp'’(r) V-ée. d:p‘°’(r) «a

(2.43) —— = - p¢Vi(p) + +
dr 2 dr? 2
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drP‘°(r) (A+u) (A\+u) d(v-e.)
+ V-é. + PO (p)
dr 2ap 2ap dr

From the above equation it can be seen that for a pure
P wave produced by a point source and propagating in elastic
isotropic homogeneous medium, with V-é. given by (2.33), and
the zero order term determined by (2.12a), (2.43) can be
further simplified to yield:
ap¢t)(r) 1 A

(2.44) —_— = = pUV) () - plo)(p)
dar r apr?

which has the following general solution:

A Co
PO (p) +
apr r

(2.45) p(1)(r) =

where Co is a constant determined by the initial conditions.

Defining the ratio of S to P wave speeds to be
(2.46) Q= —
which implies (MN/ap) = (1-2Q%)a, (2.46) may be rewritten as:

1 Co
(2.45') PO (p) = (1 - 2Q2) @ — PO (r) +
r r

To determine the constant C,, we compare (2.45') with the
following classical formula under the condition that u=0

(Alekseev, Babich and Gel'chinskiy, 1958):

(2.47) pt1)/pto) = 4/r
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As a result, Co in both (2.45) and (2.45') must be equal to
zero, and the principal component of the first order term of

a pure P wave in homogeneous medium has the final

expression:

A
plo)(r)

(2.48) P (r) =
apr

Secondly, we shall consider the principal component of
higher order terms for S waves. Applying the scalar product

operation (é,-) to (2.20) yields:
(2.49) N, (w, %)) = M, (W, % ")) - L, (W,'*"2)), Kk =0,1,...

Substituting (2.21) into (1.4), we can obtain, after some

vectorial operations:
(2.50) N, (w,‘%) =0, k =0, 1, 2,00000s
Then (2.49) becomes:

(2.51) M,(S(k=128,) = - M,(s'%-1@_) + L,(w, (k-2))
k=0' 1’ 2".'...

where:
ds(k-1) 2# u
(2.52) M,(S‘k-1Yg,) = + §lk-1)g_.g(—r1) +
dr B B
u
+ S(k-1) V,é=,
B

and
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‘ ' 1 1
(2.53) M, (s'*""@.) = (A+u)s'*- 1@, V(=) + — g(k-Vg, .V
B B

2u
Br,

+ glk-1), k=0, 1, ...
Thus (2.51) can be rewritten in the following recurrent
form:

ds(k-l) 2u

u o
(2.54) = - st [a. - V(—) + — V-8,] +
dr B B B

- M (81 8L) + (W, ),

k=0, 1, 2,cec0..

After setting k=2 in (2.54) we have:

ds(1) zu u u
(2'55) _— 5(1)[é=’V(_) + — V'é:] +
dr B B B
- M, (s'"a_.) + L,(s'%%,),
where:
ds(o)
(2.56) L.(s(%%¢,) = 2 Vu-é. + §(OV[(V-&,) (&, -VA) +
dr
A X u
+ (A+p)eé, -V(V-é,) - - uT?] +
r12
dZS(O)
+ g —— 4+ @, -Vux(VUx§0)),
dr?

Here T is the rotation of the ray segment.
For the case of an elastic isotropic homogeneous

medium, (2.55) can be further simplified to yield:
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as¢'(r) V-é. as°i(eg) B
(2.57) —_— = - 5§ (p) + +
dr 2 dr? 2
(\+u)pB
+ 8§19 (p) ——— &, V(V-8,)
2u

For a pure S wave produced by a point source and propagating
in elastic isotropic homogeneous medium, with V-.é. and V-é,
given by (2.33), and the zero order term $‘°’(r) determined

by (2.12b), (2.57) can be simplified as follows:

as¢'(r) 1 1
(2.58) —_— = = §0T(p) — + BS9(p) —
dr r r?

which has the following general solution:

St (r) Co

(2.59) s (r) = - B +
r r

In Chapter 4, higher order effects of ART in some
complex models will be considered in details. In that case
the expressions for the first order terms of reflected or
transmitted P and S waves will have more complex forms, even
though they are all generated from the general formulae
derived in this chapter.

In the next two sections, the first order effects of
ART in vertically inhomogeneous elastic media will be
investigated based on the general formulae (2.31) and (2.55)
for the first order P waves. To do so, some fundamental

formulae, describing the kinematic and dynamic



27

characteristics of a seismic ray in vertically inhomogeneous

elastic media, are going to be given in the next section.

2.4 Fundamental Formulae in Vertically Inhomogeneous Elastic

Media

One medium type which lends itself easily to
calculations discussed in the previous sections is a
vertically inhomogeneous medium, If we specify that the P

wave speed is given by
(2.60) a(z) = ap + gz

where ao, is the initial speed at the point source, and g the
velocity gradient. Both of them will be assumed constant.
The vertical coordinate Z 'is chosen such that its
orientation is positive downwards into the medium.

For this type of medium we shall use the relations for
the other elastic parameters in terms of the P wave speed as

given by Gardner et al. (1974), viz.,

B(z) a(z) / V3
(2.61) plz) = a'’/*(2) V3
MNz) = ul(z) = a®’%(2) / V3

The use of compa..t analytic expressions for the elastic
parameters allows easy differentiation which simplifies
matters when the vector operators N, M, and L in ART are

evaluated.
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Formulae suitable for computations of the higher order
terms for these types of media will be derived in this and
the next sections., In this section some fundamental formulae
shall be derived first.

Rays emanating from a point source are circular arcs in
a common plane in vertically inhomogeneous media (Nettleton,
1940). Based on Snell's law, the ray parameter, p, is
constant along the whole ray so that

singo, sing(s)

(2.62) p = = .
do al(z)

It can be conveniently introduced into the computations of
the travel time t, and of the range R=(x%+y?)'/?, which is
the imaged length of the ray segment in the horizontal

plane. Thus

pa(z) dz
(2.63) dR = tan¢(s) dz =
[1 - pza2(z)]1/2
dz dz
(2.64) dt = =

a(z)cos¢(s) i a(z)[1 - p%a?(z)]'/?

Here ¢(s) represents the acute angle made by the ray with
the vertical direction, and a(z) the wave speed along the

ray. Thus using (2.60) and integrating (2.63) yields:

z plao + gz) dz
S

(2.65) R

o [1 - p?(ap+gz)2]'/?

1

{(1-p2a°2)'/2 - [1-p2(ao+p2)2]'/2}
pPg
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Noticing pao = sin¢, the above equation becomes:

Qo Qo Qo
R & ————— = [(——)% = (— + z)2]'/2
g tanéo g sing, g
or
(2.66) (R-Ry)2 + (2 - 2,)% =1,%
where:
ao (1 - p2a°2)1/2
Ry = =
g tango P g
Qo
(2.67) 2y = =
g
[+ &+ 1
ry = =

g singo P g

Equations (2.66) and (2.67) describe a circular family of
rays with the same source point and different ray
parameters, Each circular ray path has different centre
(Ry,2:) and different radius of curvature r;.

To obtain a convenient equation describing wavefront
surfaces produced by a point source in vertically
inhomogeneous media, we apply (2.60) and integrate (2.64) as

follows:

dz

(2.68) t =/
0 (ao+92)[1'p2(ao+gz)2]”2

1 1 + gz/ao + [(1+gz/a)?-sin%¢(s)]'/?
= 1n
g 1 + cos¢(s)




30

Taking the exponential of the above expression yields:

gt
(2.69) e [1+cos¢(s)] = 1+gz/ao*+[(1+g2/ao)*-sin2¢(s)]'/?
which can be rewritten as

1 + gz/eo - chigt)
(2.70) cos¢(s) = .
sh(gt)

Thus, due to the relationship of cos?¢(s)+sin?¢(s)=1 we

have:

[2(1+gz/ao)ch(gt) - (1+gz/ao)? - 1]'/%

(2.71) sin¢(s) = .
sh(gt)

Noticing pa(z)=sin¢(s) (2.65) becomes:

[a?(z)-s5in?¢(s)ao?]'’? - a(z)cose¢(s)

(2.72) R = .
g sin¢(s)

Substituting (2.70) and (2.71) into (2.72) yields:

ao?[2(1+gz/aos)ch(gt) - (1+gz/ae)? - 1]

(2.73) R?
2

9

Qo Ao
- {2 - —I[ch(gt)~11}% + [— sh(gt)]?
g g

which can be rewritten as R?=X%?+Y¥? in the following manner:

(2.74) X?2 + Y2 + (2 ~2,)% =1r,°%

where:
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do[Ch(gt) - 1]

Z3 =
9
(2.75)
Qo sh(gt)
r3 = —————
9

Equation (2.74) shows that the desired wavefront surfaces
are a family of spherical surfaces with the centre
(0,0,z,(t)) and a radius of curvature r,(t),

Due to the fact that in an isotropic medium the ray
segment is always perpendicular to the wavefront surface, it
is convenient to use the wavefront surface equation (2.74)
to find expressions for V-é. and V-e&,, where &. and &, are
the unit vectors along the ray and in the plane normal to
the ray, respectively (see Figure 2.2).

The form of th. wavefront surface equation (2.74)
indicates that we choose the following spherical coordinate

system (r;,6,x) to work in:

X =r, sinf cosx

(2.76) Y = r, sinf siny

Z =r, cosf + 2z,

in which the scale factors are:

€I
- N
"
a
nN

and

m
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it
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Figure 2.2 Relationships among the ray segment, é., €., and

the wavefront surface in vertically inhomogeneous media.
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Thus we are able to calculate

R 1 0(r,2 sing) 2

(2078-1) V'e: = =

r.? siné ar, rs

1 o(r, sinb) cotané

(2.78-2) V-e, = =

rzz siné 06 r:
with

2 - 2z,

(2.79) cotané

= [x2+Y2]‘/2

where r, and z, are given in (2,75).

An interesting fact which should be pointed out here is
that we are able to get the expressions of V-é. and V-é, in
homogeneous media from (2.78) and (2.79), which will be the
same as those given in (2.33), by taking the velocity

gradient g=0 in (2.75). In the case of g=0, (2.75) becomes:

[Sh(gt)ao]'
r.(g=0) = | (g=0) = aot =
g'
(2.80)
[Ch(gt)—1]'(¥o
z2(g=0) = |(g=0) = 0
g'
where r = (X% + Y% + 22)'/2

Substituting (2.80) into (2.78) yields:

2
Vé. = ——
r

(2.81)
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cotané
r
with
Z - 23(9=0) A

(2.82) cotané = =
[xZ+Y2]1/2 [xz +Y2]1/2

Here 6 is the acute angle between the ray segment and the
direction, and r the length of the ray segment in
homogeneous media. Thus we once again see the same result as
shown in (2,33),

It should be emphasized here that Egs. (2.78-1),
(2.78-2) and (2.79) will often be used when we derive the
expressions of the higher order terms for vertically
inhomogeneous media in the next section,

The values of the useful expressions VxP(°’) and Vx§(©°?
may also be easily found using the above spherical
coordinate system and also will be often used in the next
section. In the above coordinate system we have

P‘®=(P‘°(r;),0,0), $‘°’=(0,8‘°’(r;),0), and the following

guantities:

[V"P(O)]1 =0
[(Vxp!°’], =0
[(Vxpi®)], =0

or

(2.83) Vxp!o) = 0,

which means that the zero order term of the P wave
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physically describes a non-rotationai wave,

In the similar matter we have:

[vxs(®’], = 0
[vx8(®’]; =0
[vxs¢®2]; = §¢°) /r, + 38¢°) /3r,
or
S(O) ds(o)
(2.84) wxs'®) = [ + 1B

ra drz

where b = é. x @,. The above expression indicates that the
zero order term of the S wave describing some rotational
characteristics of a wave field is totally different from

the zero order term of the P wave,

2.5 First Order Terms in Vertically Inhomogeneous Elastic

Media

Based on the results produced in the last two sections,
the first order terms in a vertically inhomogeneous elastic
medium will be discussed in detail for the following two
cases.

(1) First, we shall concentrate on the case of a pure P
wave propagating in vertically inhomogeneous media.
Recalling the general formula of the additional component of
the first order terms for P waves, (2.26), and taking into
consideration the common relations of the elastic parameters

(2.61) for a vertically inhomogeneous medium, we have:
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1 al(z)
(2,85) p''’(s) = - — P°)(sg)[Va)], = —— P(°)(5)
8 ry
Noticing
(2.86) [Va]. = - g sin¢(s)
and
Qo al(z)
(2.67) ry = =

g sindo g sin¢(s)

we finally have the additional component of the first order

term in this case as follows:

7
(2.87) p''(s) = - — g sing(s) P’
8

To obta’n the expression of the principal component of
the first order term P‘'’, we recall its general formula

(2.41) which after taking (2.61) into consideration yields:

ap¢") V-é. 59 cos¢ M.(p‘'e.)
(2.88) = - pt1I] + ] - —
dr 2 8a 2ap
L.(pP{°’¢.) i
+t —_— .
2ap

In (2.88) M.(p‘'’e.) is going to be obtained from its
general formula (2.39) using the simplifications (2.60),
(2.61) and (2.67) to yield:

-M.(p‘'’e.) 17g sing¢ 1 :
(2.89) = [ - v-é, ] p'"»

2ap 24« 3
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11992 sin3¢

7
= PO —— g sing V-, -
24 192«

At the same time, L.(P!°’8.) is obtained from (2.42)
using the simplifications (2.60), (2.61), (2.67), (2.75) and
(2.83) as follows:

L.(P(°¢.) 4a®*p'°) «a dp‘®’ qV-é. 9g cos¢

(2090) = + [ + ] +
2ap dr? 2 dr 3 8
3g cos¢ V-é. g?sin?g 2g? chlgt)
+ P(O)[ - - ].
8 6a 3ap sh?(gt)

Substituting (2.89) and (2.90) into (2.88) yields:

dp(‘l) dP(O) de(O)
(2.91) = F,P'") + F,P{°) + F, + Fy
dr dr dr?
where:
1 5 g cos¢(s)
F1 =T —— Vé= -
2 8 a(z)
7 3
F, = — g sin¢(s) V-é, + — g cos¢(s) V-é. +
24 8
(2.92)
151 g? sin?¢(s) 2 g? chlgt(s)]
192 a(z) 3  ao sh?[gt(s)]
1 9
F; = — a(z) V-é. + — g cos¢(s)
3 8
1
Fy = — a(z)

2

The quantities V-é. and V-é, have been given by (2.78-1) and
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(2.78-2), respectively,

If the kinematic properties of a pure P wave
propagating in a vertically inhomogeneous medium have been
successfully computed by a ray tracing technique, the above
functions F,, F,, F; and F; will be known, Equation (2.91)

can then be solved by choosing the following boundary

condition:

(2.93) P'Y(1) = Al Pt (1)

3
where a(,;, is the speed of the P wave at the intersection
point of the unit sphere with the ray. The reason for
choosing (2,91) as the boundary condition is due to
traditional assumption that the region about the source,
within a unit sphere, is homogeneous even in a generally
inhomogeneous medium., Taking r=1 in the relevant formula
(2.45) results in the above equation (2.93).

In Chapter 3, some applications of (2.91) in the
investigation on the first order effects for vertically
inhomogeneous media shall be shown.

An interesting fact should be mentioned here. If g = 0
is taken in (2.92) by using (2.33) instead of V-é. and V-e,.,
according to the case of a pure P wave propagating in

homogeneous media, (2.92) becomes:
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2&0
Fs = -
3r?
(2.94)
Zﬂo
F; =
3r
Qo
FB = —_—
2

then substituting (2.94) into (2.91) yields:

ar‘ 1 (r) 1 ao
(2-95) — = - —_p(‘)(r) _____p(O)(r)
dr r 3r?
1 A
= - — P (r) - P (r) .
r aoprz

This is the same as equation (2.44), which describes the
principal component of the first order terms of a pure P
wave propagating in homogeneous media.

(2) second, we concentrate on the case of a pure S wave
propagating in vertically inhomogeneous media. The general
formulae of the additional component of the first order
terms for é waves, (2.31), can be simplified in this case
using (2.61):

1 3v3

(2.96) st (s) = s'°)(s)[B(z)(V-&. - ) - g sing¢(s)]
r; 8

where r; is given by

a(z)
(2.67) ry = ————— .
g sing(s)
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Finally we have:

17vV3
(2.97) s (s) = §‘°(s)[B(2)V-&, =~ —— g sing(s)]
24
To find the expression for the principal component of
the first order term of a pure S wave propagating in
vertically inhomogeneous media, we recall the general

expression (2.55) for S''’ which is as follows:

as‘!’ V-é. 5 g cos¢(s)
(2.98) = - (1] + ]
dr 2 8a
B(z)M,(s''’¢.) B(z)L,(s¢°’¢,)
- +
2u 2u

Here M.(s‘'’é.) will be obtained from its general formula
(2.52) by using simplifications (2.60), (2.61), (2.67) and
(2.87) as follows:

-BM+(S(1)é=) 7 1
(2.99) = - g sing s{'’(s)
2u 8 o
[119V3 73

g?sin?¢ - —— gsing¢v-é,]s(°’,
192a 24
The quantity L.(S‘°’é,) will be obtained from its
general formula (2.56) by using the simplifications (2.60),
(2.61), (2.67) and (2.84) as follows:
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v BL.(S'°’@a,) a3%s‘°’ g as‘°’ 3¢y3 a
(2.100) = + (2 - —m———)-
2u ds? 2 ds 8 xoch(gt)
3vV3 3vY3

‘gcos¢ + SO

gcos¢ - — gsing¢(V-aé,) +
Brz 8

: 1
+ Be, V(Vv-é,) - —— g?sin?¢] .
68

Substituting (2.,99) and (2,100) into (2.98) yields:

ds(‘) ds(O) dZS(O)
(2.101) = F,8‘") + F,8(9) + F, + Py ——
dr dr dr?
with
V-e. 5¢/3 1
Fy = - - g cos¢(s)
2 24 B(z)
29 1 2v3
F, = — o g? sin?¢(s) - —— g sing(s) v-e, +
64 B(z) 3
(2.,102)
3v3 1
+ — g cos¢(s) + B(z) e, -V(V-e.)
B r,
3vY3 a
F3 = — (2 - —————) g cos¢(s)
8 Qo Ch(gt)
B(z)
Fu =
2

where V-é., V-é, and r, have been given by (2.78-1),
(2.78-2) and (2.75), respectively.

If the kinematic properties of a pure S wave
propagating in a vertically inhomogeneous medium have been

successfully computed by a ray tracing technique, the above
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functions F,, F,, Fy and F, are easily determined., Choosing
a suitable boundary or initial condition in this instance
for equation (2.101) shall be more difficult.

An interesting fact that should be pointed out here is
if setting g=0 in (2.102) and using (2.33) instead of V-é.,
the above problem becomes a pure S wave propagating in

homogeneous media, and (2.102) reduces to:

F|=—__
r
F2=0
(2.103)
F3=0
Bo
Fa=

Substituting (2.103) into (2.101) yields:

as‘¢'’(r) 1 stoi(r)
(2.104) ————— = = — S (p) + By ———,
dr r r?

which is the same as equation (2.58), which describes the
principal component of the first order term of a pure S wave

propagating in homogeneous media.



3. Relationships between Inhomogeneity of a Medium and The

Higher Order Effects of ART

When investigating higher order terms in ART, a very
interesting question presents itself: What are the
relationships between the higher order effects and the
inhomogeneity of media? In this chapter we shall use the
mathematical results obtained in Chapter 2 to study the
first order effect for two models, called model #2 and model
#3 in this thesis,

Model #2, shown in Figure 3.1, is a set of five
perfectly elastic isotropic halfspaces of differing constant

vertical velocity gradients as follows:

A: V,(z) = 2.0 (km/s)

B: V,(z) = 2.0 + 0,02 z (km/s)
(3.1) C: Vi(z) = 2.0 + 0,2 z (km/s)

D: V,(z) = 2,0 + 0.3 z (km/s)

E: Vs(z) = 2.0 + 0.5 z (km/s)

In all models the constant velocity ratio «/B=y3 was
assumed. Five seismic rays a, b, ¢, d and e are alsoc shown
in Figure 3.1. Note that ray a, which corresponds to the
constant velocity model, is a straight line segment with
zero curvature. This is required by Fermat's principal. For
comparative purpose, all rays have the same source-receiver
confiquration, consisting of the same starting point S

(x=0km, z=0km), where the unit sphere around a point source

43
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Figure 3.1 Model #2. (a) Schematic velocity-depth structures
for longitudinal waves in the five models represented by the
vertically inhomogeneous half spaces of five different
velocity gradients "g". (b) Ray paths of the direct
longitudinal rays from S to R. The individual ray paths are

drawn to scale and labelled according to the text.
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intersected with the rays, and the same receiver location
buried at R (x=5km, z=3km)., If we could obtain dynamic
properties such as the amplitude coefficients of P‘°’(r),
p‘'’(r) and P‘'’(r) along the total length of rays with
different velocity gradients, it will be possible to
extrapolate some relationships between the inhomogeneity of
media and the higher order effects.

To study dynamic properties of the above five rays in
Model #2 we have to determine their kinematic properties
first, i.e. we have to consider first the so-called two
point seismic-ray tracing problem, The two point seismic-ray
tracing problem has been discussed in detail in Zheng
(1985). To avoid unnecessary duplication, only the final
equations obtained in that work will be given here to aid in

the solution of our present problem.

3.1 Two Point Ray Tracing in Inhomogeneous Continuous

Elastic Media

Two point seismic ray tracing equations in a three
dimensional inhomogeneous elastic continuous medium have

been given in the form of the first order differential

system:
Y,' = YgY,,
Y,' = YgV[oU/0x - G(Y)Y.],
Ya' = Yg¥,,
(3.2) Yy' = YgV[oU/3y - G(¥)Y¥.], 0 <t <1
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¥Ys' = Yu¥s,

Ye' = YgV[3U/32z - G(Y)Y¥e],
Y;' = Ya0U,

Yo' =0,

where U is the slowness of the medium (i.e. U=1/V), and
G(Y)=U,Y,+U,Y,+U,Y¥s., The prime "'" in (3.2) denotes
differentiation with respect to ¢. The variable ¢ is
identified with a ratio of the local ray length s to the
total ray length § (i.e. {=s/S). After indroducing ¢, a
particle moving from the starting point (Xo,¥e,20) to the
receiver (x,,y;,2,) will produce a change in ¢ from 0 to 1.

So the corresponding boundary conditions to (3.2) are:

Y](O) = Xo.,
Ya(O) = Yoo
YS(O) = 2o,

(3.3) Yy(]) = X4,

Y3(1) = Y.
Y5(1) = 24,
Y7(0) = 0.

where
(3.4) Y = (x,dx/ds,y,dy/ds,z,dz/ds,t,S) .

Solving (3.2) with the boundary conditions (3.3) will give a

solution for the two point ray tracing problem in 3-D space.
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In the case of a two dimensional inhomogeneous medium
we need only consider the two point ray tracing problem in

the x-z plane, Introducing the variables

(3.5) Y= (Yq,Yg,Yg,Yn,Ys) = (X,Z,\ll,s,t) '

the two point ray tracing equations may be obtained from

(3.2) in the simplified form

Y,' = YycosY¥,,
Y,' = Y45inY¥,,
(3.6) Y,' = Y,V[U,cosY; - U,sinY,], 0 ¢ <1
Y,' = 0,
Y' = Y,U,

where the travel angle y(s)=0.57-¢(s) was clearly shown in

Figure 2.2. The corresponding boundary conditions are:

¥,(0) = xo,
¥.(0) = zo,
(3.7) ¥,(1) = x,,
Y2.(1) = z,4,
¥s(0) = 0.

Solving (3.6) with its boundary conditions (3.7) will give a
sclution for the two point ray tracing problem in two
dimensional (2-D) space.

Mathematically, two point seismic-ray tracing equations
(3.2) with (3.3), or (3.6) with (3.7) are usually called the

nonlinear two point boundary value problems. Because the
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differential equation (2.91) with its boundary condition
(2,93), describing the principal component P!’ of the first
order terms for a pure P wave propagating in vertically
inhomogeneous media, is also a nonlinear boundary value
problem, it may be useful to briefly outline the algorithm
which was used in Zheng (1985) to deal with two point ray
tracing problems and which will be employed to find the

first order terms of ART in this work.

3.2 An Adaptive Finite Difference Solver for Nonlinear
Boundary Value Problems

A convenient numerical method used to solve two point
seismic ray tracing problems is based on an adaptive
difference solver for nonlinear boundary value problems
described by two mathematicians V. Pereyra and H. B, Keller
and a seismologist W, H., K. Lee in 1980, which has been
known as the Lentini-Pereyra Method. The mathematical
details of this solver can be found by interested readers in
the following mathematical papers: H. B. Keller
(1968,1969,1974); V. Pereyra (1967,1968,1973); M. Lentini
.and V. Pereyra (1974, 1975, 1977); A. Bjorck and V. Pereyra
(1970).

We are interested in developing usable software for
nonlinear boundary problems for an n-dimensional system of
the form:

Y'(¢) = F'(£,Y(8))

(3.8) t e [0, 1]
g(Y(0), ¥(1)) =0



49

with the assumption that (3.8) has an isolated solution
¥*(t), We assume also that F is smooth, so that all the
necessary derivatives of Y*'(¢) exist.

Let the mesh m= {{(y, +veve., £n.1} be a general

partition of the interval [0, 1] satisfying:

0=51<£z<-----o < Ensq =1
(3.9) hi = EI#] - Eil h = max hi, ﬁ = min h|
h/h = K

with K a given positive constant. The condition (3.9)

implies
(3.10) 1/n £ h < K/n

and we can use h and 1/n interchangeably as equivalent
asymptotic scales.
The basic finite difference approximation considered is
the trapezoidal rule:
Uj.1 ~ U, F(¢&i.,ui04) + F(E,uy)

Qm(U)i = - = 0
h; 2

(3.11)
glu,,u,.:) = 0, i=0,1, «e., n

As usual, the local truncation error is defined by applying

the operator &, to the values of the exact solution ¥*'(f) on

the mesh m. Using a Taylor expansion we get: '

-t (21) h,?t

T
(3.12) Tm(Y‘i) = z Fi~1/2
t=1 22v-1(2¢+1) (2t)!

+ O(h2t¢2)
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t = 1, 2, LI ) n

where:

(2¢) d*t
Fioi/2 = —— F(E,¥(8))|E=t,+h /2
d£2!

We shorten (3.12) for further reference to

T
(3.13) Tm(Y';) = ? D((zi) h|2‘ + O(hz'oz)

t=1

Let 7n,« be the mesh function obtained by adding up the
first k terms in the asymptotic expansion (3.12), and let
Sm‘“’(¥*) be an o(h?**?) approximation to 7m, .

It is well known that i~ u'*-') ig an 0(h?*) discrete
approximation to ¥*(f{) on m, and if (u‘*-'’ - ¥*) has an
asymptotic expansion in even powers of h, then §,¢%)(u‘«-1?)
is an o(h?**?) approximation to 7, .. The operators Sn‘%’
can be readily constructed via numerical differentiation,
and they are the basis of the deferred correction algorithm.
They are also used in the dynamic monitoring of the global
error e‘¥) = (u'%) - y*),

We hope it will be clear from the context that we are
speaking of vector mesh function on m, i.e., that an

expression such as the one above means

e;(E) = u; 0 (E) - ¥t (8))
(3.14) j=1,2, ..., d

£, ¢ mesh m
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Another important fact we shall need later is that the

method is stable in the infinite norm ||-]|}|, i.e.
(3.15)  [|e' || < c[|rm'*]]

where the constant ¢ is independent of the mesia m. The mesh
function 7,'%’ represents the local truncation error after
the kth correction has been performed.

We recall now the deferred correction algoriihm.
Letting Sn¢°’(u’-'’) = 0, solve successively for k = 0, 1,

2' * 9 o 000

Pm(u) = Sut*) (ui*-17)
(3.16)

g(u,,u,.y) =0
We define u‘*’ as the solution of (3.16) (closest to Y'(t)).
The main features of the deferred correction procedure are:
(a) solutions of increased accuracy are obtained on the same
mesh (compare with the Richardson extrapolation procedure);
(b) the same system of equations is solved all the time
(with different right-hand sides).

Under certain conditions, the successively corrected

solutions will satisfy on the mesh
Ile(k)H = llu(k) - Ys” = o(h2%*2)

An asymptotic estimate for e‘%’ can be found by solving for

A from the (linear) variational equation

(3.17) @' m(u)) A = S, % (ul*-1)) = 5,0k 1) ()
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where ¢',(u‘*’) is the Jacobian matrix of &, evaluated at

u'*’, 1f A‘%) is the solution of this linear problem, then
(3.18) A(“) = e“‘) + o(thtO)

Observe that if (3.16) is being solved by Newton's
interaction method, then ¢',(u‘%*’) will be available, and
since Sm‘%’, Sn'**'’ are also available, the cost of the
estimate (3,.,18) is just that of one Newton step, i.e. the
solution of a sparse system of linear equations,

For the automatic mesh placement algorithm, we will be
interested in having an o(h?**"%) estimate of the leading
term in 7,'%’, For this purpose, it is necessary to use in
Sm'*’) formulae with a higher order interpolation error than
is necessary for the rest of the process, In fact, we will

insist that
(3.19) Sut¥2(¥*) = 7, (¥*) + o(hZ¥k*¥)

i.e., the numerical differentation formula will be two
orders more precise than before.

The features of this method, consisting of an automatic
procedure for choosing a nonuniform mesh, have been shown in
zheng (1985) for many numerical examples. The principal
component of the first order term, P''’, for vertically
inhomogeneous elastic media can also be solved using it. As
the relevant equation (2.91) with its boundary condition
(2.93) is also a nonlinear boundary problem. Numerical

results will be discussed in the next section.
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3.3 Numerical Results for Model #2 and Model #3

In this section numerical results for two models, Modei
#2 and Model #3, will be presented for the zero and first
order approximations. These results are essential in view of
the rather complicated form of the theoretical formulae.
They also provide insight into the practical implications of
the theory and their application to the current needs of
seismic exploration and crustal seismology.

Presented here first are the numerical results for
Model #2. Using Lentini-Pereyra Method to solve (3.6) with
its boundary condition (3.7), the kinematic properties along
four curved rays b, c, d and e for four inhomogeneous models
B, C, D and E in Model #2 may be obtained numerically. All
of the kinematic characteristics such as the ray length
(LNGH), the travel time (TIME) and the travel angle y(s)
(ANGLE) measured in radians at positions (X(s), 2(s)) along
the ray have been summarized in Tables 3.1, 3.2, 3.3 and
3.4, respectively.

The geometrical spreading L(s), which will be employed
to compute the amplitude coefficients of the zero order
term, have been calculated by (2.15) based on the above
kinematic data and have been summarized in the above
mentioned tables under the column denoted G-SP. The
amplitude coefficients of the zero order term P'°’(s) and
the additional component of the first order p‘'’(s) then can

be calculated using expressions (2.14a) and (2.87),
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respectively. Once again using the Lentini-Pereyra Method to
solve the differential equation (2.91) with its boundary
condition (2.93) the value of the principal component of the
first order P''’(s) may be obtained. All of the results of
P‘°)(s), p''’(s) and P''’(s) have been arranged in Tables
3.1, 3.2, 3.3 and 3.4 according to the different velocity
gradients 0.02, 0.2, 0.3 and 0.5 under the columns P(0),
SP(1) and LP(1), respectively.

The main results for Model #2 are shown in Figure 3,2
where the amplitude-distance curves of all three individual
terms (P‘°’, p‘'’ and P''’), comprising the first order
approximation to Asymptotic Ray Theory are presented for the
4 inhomogeneous models in this data set.

In Figure 3.2, the labelling is consistent for all
models with "1" denoting plots of the zero term P‘°’, Label
"2" is used for curves pertaining to the first order
principal component |P‘'’|/2%, whereas, "3" indicates the
amplitude-distance properties of the first order additional
component |p‘''|/2m. Label "4" is used for curves depicting
the relative amplitude of the combined first order terms
with respect to the zero order term. Mathematically, this
dependence is expressed by the square root of the ratio
[(PEY))2+(pt17)2]/[4n2(P'°’)2], plotted as a function of the
distance from the starting point S along the ray.

Fig. 3.2 shows clearly that with increasing
inhomogeneity (i.e. with increasing values of the vertical

velocity gradient) the importance of the combined effect of
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Figure 3.2 Magnitudes of the individual terms in the ray

series for the four cucved P rays in Model #2. With a

positive increase in inhomogeneity of thes media th@

importance of the first order effects increases steadily

(see label 4).
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both first order terms P''’ and p''’ increases steadily.

In Model #2 all values of the velocity gradients are
positive, If the velocity gradients are negative, the
inhomogeneity of media will be negatively increasing. What
about the first order effects in this case? For this purpose
a new model with negative velocity gradients, named Model #3

here, is introduced to be compared with Model #2 as follows

(see Figure 3.3):

A': Vy(z) = 2,0 (km/s)
0.02 z (km/s)

(3.18) C':s Vi(z) = 2.0 0.2 z (km/s)

0.3 z (km/s)

D': V,(2) = 2.0
0.5 z (km/s)

E': Vs(z) = 200

In Figure 3.3 the rays a', b', ¢', d' and e’,
corresponding to gradients 0.0, -0,02, ~0.2, -0.3 and -0.5
respectively, are arranged to have the same starting point §
(x=0km, z=0km) and the same receiver R (x=5km, z=3km) as
Model #2.

All numerical results along four curved rays b', c', a'
and e' in Model #3 have been obtained by the same way
dealing with Model #2, and have been summarized into Tables
3.5, 3.6, 3.7 and 3.8, respectively. The main results are
graphically shown in Fig 3.4 where the amplitude-distance
curves of all three individural terms (P‘°’, p‘!') and P(1))
comprising ;he first order approximation of ART are plotted

for the 4 inhomogeneous models in this data set.
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Figure 3.3 Model #3. (a) Schematic velocity-depth structures
for longitudinal waves in the five models represented by the
vertically inhomogeneous half spaces of five different
velocity gradients "g". (b) Ray paths of the direct
longitudinal rays from S to R. The individual ray paths are

drawn to scale and labelled according to the text,




62

In Fiqure 3.4 the labelling is consistent for all
models with "1" denoting plots of the zero term P‘°’, Label
"2" is used for curves pertaining to the first order
principal component |[P‘'’|/27, whereas, "3" indicates the
amplitude-distance properties of the first order additional
component |p‘'’|/2w, Label "4" is used for curves depicting
the relative amplitude of the combined first order terms
with respect to the zero order term. Mathematically, the
dependence is expressed by the ratio
[(PC")2+(p'1?)2]/[an?(Pf°’)2], plotted as a function of the
distance from the starting point S along the rays.

Figure 3.4 clearly shows that with a negative increase
in the inhomogeneity of media the importance of the combined
effect of both first order terms P‘'’ and p‘'’ also

increases steadily.
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Figure 3.4 Magnitudes of the individual terms in the ray

series for the four curved P rays in Model #3. With a

negative increase in the inhomogeneity of the media, the

importance of the first order effects also increases

steadily (see label 4).
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3.4 Synthetic Seismograms for Model #2 and Model #3

In the computation of synthetic seismograms, we shall
assume that the form of the signal of the wave under
consideration is known at a point of the ray 7=7, and
denoted by f(t). In the case of a point source, the function
f(t) may represent the time dependence of the source
function. As the wave progresses along the ray, the form of
the signal f(t) remains the same if the phase shift does not
change, As soon as the phase shift changes, the form of the

signal also changes.

To compute the phase function f,(t-7(r)) for k21 (see
Eqg.(1.2)), we must first evaluate the Hilbert transform of
f(t), denoted by g(t). The Hilbert transform may be
evaluated in an approximate computation if we take a certain

source time function f(t) as follows:
(3.19) fo(t) = cos(2mvt) expl-(27vt/v)?]

where v, the predominant frequency of the pulse, and v, the
damping factor. For large v (y 2 4), we can obtain

approximately (Cerveny et al, 1977):
(3.20) go(t) = -sin(2nvt) expl-(2nvt/y)?]

It should be noted that the above mentioned approximate
formula for Hilbert transform (3.20) has been used by some
authors for the computation of theoretical seismograms for a

lonc time with satisfactory results. In the applications to
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theoretical seismograms we must remember that the "zero"
time corresponds to the middle of the impulse, not to the
first arrivals.

The computation of the functions f,(t-7(r)) for k 2 1
in the ray series (see Eq.(1.2)) can be accomplished, when

fo(t-7(r)) is known, That is

£4(8)
£2(%)

J fo(X)dx
J £.(n)dn = 1 dn J fo(x)dx

(3.21)

From this, we can write the following formulae for g, and

gz.

I go(X)dX
J gy(n)dn = J dn | go(x)dx

91(5)
g, (&)

(3.22)

Finally the source pulses which have been used in our

computations of synthetic seismograms are:

fo(t) = cos(2navt) expl-(2mvt/v)?]

go(t) = -sin(2nvt) expl-(2wvt/v)?]
(3.23)

£,(t) = sin(27vt) expl[-(27rt/y)2%] /(2nv)

g, (t) = cos(2nvt) expl-(2nvt/v)?) /(2nv)

To plot synthetic seismograms at the receiver R(x=5km,
z=3km) for the five rays (a, b, ¢, d and e) in Model #2, the
basic parameters have been builted in Table 3.9. Table 3.10
contained the basic parameters of the five rays (a', b', c',
d' and e') for Model #3 at the same receiver location

R(x=5km, z=3km). Both Tables 3.9 and 3.10 numerically show
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that the stronger the inhomogeneity of the medium, the
larger the higher order effect,

Synthetic seismograms along the vertical and horizontal
directions are shown in Figures 3.5 and 3.6, respectively.
The comparisons of zero order ray theory synthetic traces
(1), traces computed by the first order approximation
presented in this thesis (II), and the effect of the first
order term only (III) for the different velocity gradients
(g=0.0, 0.02, 0.2, 0.3 and 0.5) have been given in the above
two Figures, The seismograms in (I) and (II) are displayed
with the same plotting scale factor whereas the plotting
scale factor used in (III) is 10 times than that used in (I)
and (1I).

For Model #3 synthetic seismograms along vertical and
horizontal directions are shown in Figures 3.7 and 3.8,
respectively. The comparisons of zero order ray theory
synthetic traces (I), traces computed by the first order
approximation presented in this thesis (II1), aand the effect
of the first order term only (III) with different velocity
gradients (g=0.0, -0.02, -0.2, -0.3 and -0.5) have been
given in the above Figures. The seismograms in (I) and (II)
are displayed with the same plotting scale factor whereas
the plotting scale factor used in (III) is 10 times than
that used in (I) and (I1).

From Figures 3.5 through 3.8 we can see clearly that
the first order effect is dependent on the inhomogeneity of

the medium. It is also shown that generally the stronger the
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inhomogeneity of the medium, the larger the first order
effect,

In the region near the source, the effects of higher
order ART terms should be considered carefully as they
should be strong enough to affect accuracies of the results.
Figures 3.9 and 3,10 should be helpful to understand this
point, In Figures 3.9 and 3.10, ornly the first order effect
traces at two receiver points P(x=1km, 2=0,6km) and R(x=5km,
2=3km) in Model #2 and Model #3 are displayed. The labels
"P-V" or "R-V" ("P-H" or "R-H") indicate traces along the
vertical (horizontal) directign at the point P or R. All
traces are displayed at the same scale. Comparing the
synthetic traces "P-V" and "P-H" obtained at point P with
the traces "R-V" and "R-H" obtained at point R, it is clear
that the first order terms should be used in the
computations for more accurate results whenever the
Aymptotic Ray Theory is applied to inhomogeneous media. The
addition of the first order terms to the soiution required
to produce these results may seen cumbersome and unwic .y.
They are not essential for reasonably accurate results in

the region far removed from the source.
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4. Higher Order Effects of Reflected and Transmitted Waves

It was mentioned in Chapter 3 that in Hron and
Mikhailenko (1981), two phenomena were indicated in
synthetic seismograms of a reflected wave for a point
explosive source buried a small distance from the free
surface in a homogeneous, ideally elastic isotropic
half-space (Model #1). As the zero order approximation of
ART does not produce very accurate results for this problem,
we are going to employ the first order approximation to
study it once again and to see how these results compare to
the highly accurate (numerically) results produced using the
AﬁM. In this chapter we shall pay special attention to
investigating higher order effects of the reflected and
transmitted waves on both sides of a interface.

To discuss the propagation properties of reflected or
transmitted waves on both sides of a interface, it is first
necessary to make some basic assumptions and define the
notation to be used. Then some basic formulae for the
general boundary conditions bf two solid media in welded

contact shall be given.
4.1 Boundary Conditions of Two Solid Media in Welded Contact

The intersection of the plane of incidence of the ray
(i.e. the plane determined by the tangent to the ray and the

normal to the surface I at the point of incidence) with the

80



boundary Z is shown in Figure 4.1. The upper medium (layer
#1) into whiéh the 2Z-axis is oriented along the noimal to
the interface I at the point of incidence o, has elastic
parameters Ay, u; and p, and contains the incident and
feflected P and S waves whereas the lower medium (layer #2)
having Lame parameters Xz, u, and volume density p. contains
the transmitted ( P and S ) waves,

We assume the surface I is smooth in the vicinity of
the point of incidence O allowing the construction of a
tangent plane intersecting the plane of incidence in the
X-axis (the case of normal incidence is considered
separately). We choose the positive crientation of the

X-axis in such a way that

A

(4.1a) Vr-éx > 0

The direction and orientation of the third Cartesian axis Y

is then given by

A A

(4.1b) é, = &, x &,

In the singular case of normal incidence the choice of
X and Y axes is arbitrary as no converted phases related
with them are generated upon the incidence of the ray at O.

We will write a ray series for each of the rays in the

form of

(4.2) Wylr,t) = zk: Wy k) (r) fr(t-74(x))

where the subscript d has the following values:
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0: incident ray (in layer 1)

= 13 reflected P ray (in layer 1)
transmitted P ray (in layer 2)

= 3: reflected S ray (in layer 1)

2 o o 2 o
]
N

= 4; transmitted S ray (in layer 2).
For each ray two unit vectors n,y and 1, are defined in
the plane of incidence., ny = VyVr, is along the ray where V,
is the wave speed. 1, is perpendicular to the ray (i.e.
1,-Vry = 0) so that 1,-8, > 0. If the third vector is

defined as my = &, we can write each vector W ‘%’ in (4.2)

as

(4,.3) We () = Ny 0y + To01, + Vy'imy

= Wy‘“)-n, is the component along the ray.

b4

a
-
x
-
|

T,(%) = Ww,%?.1, is the component perpendicular to the
ray in the plane of incidence.

Ve¥) = wy'%)-m, is the component perpendicular to the
plane of incidence and also perpendicular to the ray.

The boundary conditions for two solid media in welded
contact require that the components of the total
displacement vector U and those of the stress tensor o,;; are
continuous on the boundary at the point of incidence.

If we write the total displacement in layers 1 and 2 as

U1 wo+w1+w3

(4.4)
U, = W, + Wy



8¢

The boundary conditions imposed or the displacement vector

are

(4.5) U, = U

(4.6) 0,;(U,) = a;,;(U;), i, =1, 2, 3,
These boundary conditions must be complemented by the
boundary condition for the phase function 74 in (4.2)

requiring on Z at O that:
(4.7) Tea = To

In our coordinate system (x,y,z) in Fig. 4.1 this leads
immediately to the requirement:
aTd a‘ro

(4.8) =
ox 0x

which is a formuvlation of Snell's Law as follows:

sinéq sinf,
(4.9) =
Va Vo

with 8¢ being the acute angle between the ray 4 and the
normal direction to I at the point of incidence. The
remaining two components of the vector Vry at O on Z are

then easily determined as

aTd

oy
(4.10)

0T 4 cosfy
(_1)d+1
0z Vg




8%

It should be noted however that for

aTo 0T4 1

X X Ve

corresponding to the incidence angle, 6o, which satisfy

Vo

sinf, >
Vy

the angle 6, becomes complex resulting in sinf, > 1 anrd
there are two complex conjugate functions 74(x,y,2)
satisfying the fourth condition in (4.7). The uniqueness of
the solution may sometimes be achieved by implementing the
radiation condition reguiring an exponential decrease of
f£,(t-74) in the direction normal to the boundary.

Once the directions of the reflected and transmitted
rays at O on I have been established using (4.9) and (4.10),
the scalar components of Wy‘%’ in (4.3) in our local

coordinate system (x,y,z) can be written as:

de(*) = Nd(k)Sined + Td(*)cosed
(4.11) Wu, %) = v, k), d=20,1,2, 3, ¢
Wap, %) = (-1)9*'Ny¥)coshy + (-1)°T, *’sind,

Thus the boundary condition (4.5) requiring the continuity
of the displacement vector across the boundary can be
written in terms of scalar components (see 4.,12a, b and c

for x, y and z components of vector equation, respectively)

as:
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(4.123) z (N,‘“’sined + TQ(k)Cosaﬂ) s

d=0, 1,3

z (N, % ’sin6, + T4 '“’cosf,)

422, 0
(4.12b) T V% = T V%
d=0, 1,3 d=2, 0
(4,12¢) , 021 3[(-1)“‘N,“"cos€, + (=1)°7, % sin6,]) =

d=

Z ; [(“1)d“Nd(k)C°59¢ + (-1)7T, % )sinb,]

The boundary condition (4.6) for the continuity of the

stress tensor components across the boundary requires some

additional consideration. First of all the validity of

Hooke's Law is assumed., This linear stress-strain

relationship is given by:

1 U,

au,

(4.13) 0|j(U) = R8|JV'U + 2“[ (
2 axl

The stress tensor components related to
(W, in (4.2) a=0,1,2,3,4) are evaluated

after omitting most of the intermediate

(4.146) 0:1(Wd) Zo [kdv'(Wd(k)fk) +

k =

K=-1

where

Z fk¢g(wa(k"), wd

+ )]

ax|
the individual rays
below. We have,

algebra:

2uda(wdz(k)fk)/aZ]

(k))



(4.14b) W, (Wa ¥ *1), Wet¥)) = [NV W% + 2u,0W,,. % /02)

()‘.,'*Zu,,coszed) udsinZGd
_[Nd(tol) -Td(kol)
V, Vd

Here, as well as in all subsequent formulae we have

A A, My #a, for a=20,1, 3,

and

Qs
[}
N

-
&

Ao = Az, My 2, for

Similarly we have

3 (Wy, (¥ 2£,)/0x]

+

(4.158) Qn(wd) = Ud[a(wdx(k)f&)/az

L}
b .3
" M
o

I e Te(wg it w0

where
awdx(k) awdz(k)
(4.15b) Tu(Wga'k*1), Wy ) = py{l + ]+
8z 0x
sin28, cos260y4
+ (_1)d[Nd(k+1) +Td(k*1)_______]}
Vd Vd
and

pe[3(Way % 2E,) /02 + 3(Wy, %2£,)/3y]

1
™

(4.163) Uyz(wd)

k=0

3

k? 1 fk @k(wd(k+l), wd(k))

where

87
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awd (k) aw‘ (k)
(8.16b) & (Wy %* ", W %)) = py{ [m——m + ) +
0z oy
cosfy

+ (_1)dvd(ko1)
Vs

Applying the derived formulae to the resultant
displacement vectors on both sides of the boundary at the
point of incidence O, the requirement of the continuity of
the stress tensor components 0,,, 0y, and o,, yields the

following three scalar equations:

sin26, cos26 4
(4.176) p2 u‘{(-1)d[Nd(k*1)__+Td(I(«l) ]+
d=0, 1,3 V1 v1
Bde(") awdz(k)
+ [ + 13
0z ox
sin2éy cos28
= z uz{[Nd(kol)_________ + Td(k¢1)_____] +
d=2,8 v, v,
awdx(k) awdz(k)
+ [ + 13
0z X
cosb 4 MWy, (%) . AWy,
(4.17b) . u[(=1)dytke)d + +
d=0,1,3 V‘ az ay
cosfq Wy, ) W, , (%)
= Z ua[Vylke? + +
d=2 ., 8 Vz az ay

A +2u,c08%8,
(4.17¢) £ {- Ngx*V[ ]+ A Veu, )+
» d=0,1,3 ’ \,1

u,sin2é, awdz(k)
+ Tyt VD o] + 24,
V1 ¥ A
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k3+2ugcos’6¢
= T {- N‘(ktl)[ ] + kgV'Wd(“’ +
42,86 Vz
u:Sfﬂﬁgd BW,,(“’
S IR eniinds RRPIR
Vs 02z

Obviously the two sets (4,12) and (4,17) can be combined
into one set of six inhomogeneous linear egquations for six
principal components N,‘*’ (reflected P-wave); N;‘*’
(transmitted P-wave); T3‘%’, V(¥ (reflected S-wave) and

Ty %), Vo) (transmitted S-wave). The system is (4,18) as

follows: '
(4.18-1):

2 [
d§1 (_1)de(k)sined + d§3 (_1)de(k)cosed =

2
z ('1)60()‘1N¢(R)Sined + Z (‘1)"()‘1Td(k)cosed
d=0,3,4 d=0

2 4
L Ny'%lcosfy - I T4q'%’sinby =
=1 d=3

2
z (-1)1+()Nd(k)cosed + Z ('1)() Td(k)Sined
d=0, 3, & d=z0

cos28,
, iy P (k) = @, (k)
Vg

2 SinZGd
(4.18-3) T pyg —— Ny +
=1 v d
d

"M

'In this section the character set () arising in superscript
means Dirac function 84o0.



(¢,18-¢):

2 Aat2u4yc08%6, o 8in2éby
Z (-1 Ng (¥ + 2 (1) e
d= 1 Vd d=z 3 - v‘

[} H
(4.18=5) T (-1)°0v,(¥) = FT (=1)d+O 1y (&)

d=3 d=0

90

 JALRIIF ST

(4,18-6):
I cosb 4 2 cos64 4
T Ug Vd(k) = T (_1)10()ud Vd(k) + X (_1)d0()01
d=3 Vd d=0 vd d=0
awdy(k-l) awdz(k-l)
‘ugl + ]
0z oy
k = 0, 1' 2, ev e e
where
(4.19):
sinzé, 2

$,(% = z (=1)" O e NG+ T (1)

d=0,3,48 v d=0

d
cos264 s ) PALEAREE) P ERR
Tl 0 e B (1) Oy . ]
Vg 4=0 0z ox

and
(4.20):

4 awdz(k-l) 2
Qz(k) = 5 (‘1)d+()[de'Wd(k-1) + 2u, ] +C (_1)d+()

d=0 3z d=0

Sinzed k¢+2udc0529d
p Td(k) + b (_1)64()41[ ]Nd(k)
Vd d=0,3, 4 Vd
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In the case of two dimensional problems the system
(4.18) simply becomes one consisting of (¢.18-1), (4,18-2),
(4.18-3), and (4,18-4), in which the first two equations

describe the continuity‘of displacements, and the second two

the continuity of stresses.

4.2 Determination of Amplitude Coefficients for Model #1

As mention above Model #1 is an elastic isotropic
homogeneous half-space with a P wave point source buried in
the half-space. Based on the formulae for the higher order
terms of ART for an elastic isotropic homogeneous medium
derived in Chapter 2, and the basic formulae for the
bounda:v conditions given in the last section, we shall be
able to investigate the higher order effects of ART for
Model #1 in detail now.

The so called free surface mathematically means that at
an interface with a vacuum, the three stress components
(0,2, Oxz, Oyz) are all zero, and this is effectively the
case also for the surface of the Earth or the oceans, since
the elastic constants for the afmosphere are several orders
of magnitude less than the elastic constants of rock or the
bulk modulus of sea water. The case of (0,,, 0x., 0y.) = (0,
0, 0) at z=0 is referred to as the "free-surface boundary
condition" at z=0.

For an elastic homoyeneous half-space with a free

surface, noticing Az=Ay=u,=u4s=0, Ao=A3=A3, and po=u,=g3, the
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boundary conditions (4,18-3) and (¢,18-¢), describing the

continuity of stresses, become:

sin26, cos28,
(4.21)  uy N{¥) + py——T§) = (%)
Vi V,
sin263 k1+2U1C05201
(4,22) py———TEk) = [ INGRY = @i%?

Vs \'L

where ®{%’ and &{*’ were given by (4,19) and (4.20)
respectively. |

‘In accordance with the definition of Model #1, the
above two boundary conditions may be further simplified for

the zero order approximation as follows:

co0s26, sin26,
(4,23) —— 8§59 = ———— [p§{°) - P{°’]
' ' B B
sin26, A\, +2u,c08%6,
(4.24) ——— 8§° =[ J[Pé°? + P{°Y)
B TR

Defining A=\,, u=u, and the ratio of S wave speed to P

wave speed as follows:

(4.25a) @

B/«

we have

u = pip = Q%a?p
(4.25b)
A

(e® - 28%)p = (1 - 20%)a?p

Solving the set consisting of (4.23) and (4.24), and

using (4.25) in the solution, the amplitude coefficients of
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the zeroth order term at the reflected point may be obtained

as follows:

5in260,5in20,0%~-(1-2R%s5in%6y)cos26,

(4.26) P{%)(1o) = P§°7 (o)
8in26,5in25,0%+(1-20%s5in%6,)co0526,

ﬂsin200[93°’(co) - PgO)(Lo)]

(4.27) §{%) (o) =
c0s528;

Note that the angles 8, and 6, are known as functions of the
incidence angle 6, and the ratio  using Snell's Law, and
that to, expresses the distance from the source point to the
reflection point,

The amplitude cofficient of the zeroth order term for
the incident P wave, P§°’, can be directly written from
(2.12a) and (2.13) as follows:

PéO)(ro) Lo 1

(4.28) P{°(r) = =
r r

where r, stands for the distance from the source point to
the reference point,

The formulae suitable for the zeroth order terms of the
reflected P{°’ wave and the reflected S§°’ wave have been

given by Cerveny and Ravindra (1971) as follows:

P€°)(Lo) to

(4.29) P{®)(r) =
r

Séq)(to) to
(4.30) s{°’(r)

L.(r)
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where the geometrical spreading of the reflected S, wave,
L,(r), is given by
h1 th h1 9 hz

(4.31) L.(r) = cos8,[( + ) ( + )]'/2
cosé, cosf, cos’f, cos’f,

where h, and h, are the vertical distances from the source
point and the receiver point to the free surface,
respectively. -

The principal component of the first order incidence P

wave, P§'’, can be obtained from (2.45') as follows:.
(4.32) P&V (r) = (1-20%) a P§%(r) / r

Also, the additional component of the first order incidence

P wave can be obtained from (2.34) as follows:
(4.33) péV(r) =0

Noticing that the expressions V-é. and V-é&., needed by
the reflected P wave have forms similar to the case of the

incident P wave:

V-é.(1) =2/ 7
(4,.34)
v

= cotané, / ¥

>
+
~
-
~
!

where y=to+r stands for the total length of the ray from the
source to the receiver via the reflected point. To find the
expression of the principal component of the first order

reflected PP wave, we integrate (2.43) by substituting
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(4.34) into it, and finally obtain:

to

A
+ —[P{°)(7)-P{°'(¢s)]
8/ apy

(4.35) P{'"(y) = P{" (o)

where P{'2(t,) will be determined from the boundary
conditions of the first order terms which will be discussed
later in detail. The additional component of the first order

term for the reflected PP wave can be directly produced from

(2.26) as follows:

(4.36) pi"(y) =0

Now let us concentrate on the reflected PS wave
reflected from the free surface in Model #1. The key in the
investigation of the first order terms of the reflected S
wave is how to evaluate V-é,(3;, and V-é.(3) in this case,
because we have to employ their values in the general
expression (2.32) for the additional component s{'’, or
(2.55) for the principal component S§'’, respectively.

Wavefront surfaces of the reflected PS wave in three
dimensional space expressed as functions of time t in
Cartesian coordinates (X(t), ¥(t), 2(t)) should be
transformed to the following set of equations, by choosing
I', 6, and ¢ as three independent parameters (explained in

Figure 4.2) instead of X(t), Y(t) and Z(t).

X = cosy sin6; I’
(4.37) Y = siny sinf; '
Z = cosf; I' - h1C0593/[92—5in2(93)]1/2
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Figure 4.2 Signs and notation used to evaluate V-é.(;) and

V-e,(s, for the reflected PS wave in Model #1.
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vhere f=8/a. Lame's coefficients according to the above

transformed coordinate system are:

H(r) = 1
(4.38) H(y) = sin(6,) I'
[h1sin63(1-92)]2 Zh,Fsin293(1-92)
H(6;) = [F%+ + 1172
(92_51n263)3 (Qz_sin293)3/2

Then it is easy to show that:

(1,0,0)
(0,1,0)

(e(I'),e(83),e(y))
(e(I') ,e(63),e(y))

é:(a)
(4.39)

€. (3)

Finally we have the following expressions necessary to

compute the reflected PS wave:

1 ' + B Sin93
V-é.(3) = +
r (r2+B2+2I'esinf,;)
(4.40)
cotan(63;)
V-é.(3) =
(r2+p2+2I'resing,)'’?
where
h1Sin63(1-92) h1tan60 hz
(4.41) B = r = +
(Q2-sin?%9,)3’2 sinf, cosf;

Now we are able to present the additional component of
the first order reflected PS wave from its general

expression (Z.32) as follows:
(4.42) s$'(y) = B S{°(y) V- &, (3,

For the special case when the incident P wave is
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perpendicular to the free surface, in another words, when

fo=63=0, (4.42) becomes:

489

(4,43) s§{'"(h;) = —————,
(h,+h,Q)?

where hy and h; indicate the perpendicular distance from the
source and the receiver to the free surface, respectively.
To determine the principal component of the first order
reflected PS wave, substituting (4.40) into its general
expression (2.55) yields the following differential
equation:
as§'’ (r) V-é.(3) da2s{°’(r) B

(4.44) —_—— = = 8§ (r) +
dr 2 dr? 2

The general solution of the above differential equation can

be obtained after some tedious mathematical operations as:

(4,45)
B(E+F) [F(F2+2FA+B%)'/%2]'/?
S{V(y) = [8§"7(eo)+S5°0(1y) ] +
4EF RBR
B(EF)'/2 1BI (F+E+2r)
+ 85°7 (o) [ - ]
4 2RBR [(E+r)(F+r)]3/?
where
RBR = {(F+r)[(F+r)2?+2(F+r)A+B%]'/2}1/2
(F+E+2r) 2(F+r)%+3A(F+r)+B?
IBI = dr

[(E+r)(F+r)]3/2.RBR-[(F+r)2+2(F+r)A+BZ]‘/2
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to

Q

cos?f,
E=F ——
cos?f,

B siné,

3>
"

and B given in (4.41).

Here y=t(o+r once again stands for the total length of the
reflected S ray from the source point to the receiver via

the reflected point,

When the incident P wave is perpendicular to the free
surface, or equivalently when 6,=6;=0, due to S§{°’(¢,)=0 and
B=0 in (4,45), the principal component of the first order

reflected PS wave now is given by:

F

(4.46) S§V(v) = 85" (o)
F+r

Here S$'’(to) in both (4.45) and (4.46) stands for the

boundary value of the principal component of the first order

reflected PS wave at the reflected point, which will be

determined by the boundary conditions of the first order

terms.

Next we shall show how to evaluate the principal
components of the first order reflected P and S waves,
P{1(¢,) and S§'’ (o), at the reflected point in Model #1.
Substituting k=1 into the gene;al boundary conditions (4.21)

and (4.22) yields the first order boundary conditions as
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follow:
c0826, sin2é,
(4.47) 4 =——— 85" (tg) + y ———— P{"V(1o) = &§"(1y)
B o
5in26, A\+2ucos?6,
(4.48) p ———— 8§V (tg) = [—————=IP{" 7 (1o) = 5" (1o)
B o

where ®{'’(to) and &{'’(¢,) are obtained from (4.19) and

(4,20) after some tedious algebraic operations:

s§in26, sinZG; 3?%“
(4.49) @V (1o)=ui- P{' ) (to)————5§") (to)+2 cosb,
o B ox
3s§o’ 350" 540
+ - 25iné; -9 }
dr 0x to
4B*Ro-a?{1+Ro 1) cos?8, 0P§°’
(4,50) &5V (vo)=p{ +282(1-Ro 1) :
to? sinf, dx

+2B82c0S5%6555°'V &, (3, +(a-2B2Qsin?0,)P5"’

sin?6; 9s{®’ dasie’
-2B8% . +2B%tané ;-
cosf; 0x ar

}

where Ro1=P{°’(t,)/P§°’(to) denotes the reflection
coefficient of the reflected PP wave.
For the sake of simplicity we introduce AAA and BBB

defined by:
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(4.51)
1
BBB = — &' (o)
p

Notice that when the incident P wave is perpendicular to the

free surface, i.e. when 8,=6,=03=0, the above (4,51)

becomes:

i
o

AAA(Lo) =

(4.52) 4(29'1)32
BBB(to) a-P§V (o) + —
hf

Then equations (4.47) and (4.48) may be rewritten as

follows:
(4.53) co08(263)85" 7 (to) + 05in(29)P{" ' (1o) = AAA
(4.54) Bsin(2603)S5' (1o) = a(1-209%sin%6,)P{' (i) = BBB

By solving the above set of equations we are able to
find the values of the principal components of the first
order reflected PP and PS waves at the point of incidence on

the free surface boundary. They are:

AAAQasin26; - BBBcos26;,

1

(4.55)
AAA - 985in26,P{ " (o)

551)(¢o)
cos826,

At vertical incidence, where 6,=0,=6,;=0, we will take the

following values instead of the ones given above:
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A 4(292-1)98

aph? hi

P{1 (¢o)
(4.56) |

L[]
o
*

sg‘)(to)

Finally substituting the above values into either (4.35) or
(4.45) will give the principal components of the reflected
PP or PS waves along whole relected rays.

Up until now the derivation of expressions for the zero
order and the first order approximations to ART for Model #1
have been done analytically. In the next section the
numerical implementation of these formulae will be

presented,

4.3 Synthetic Seismograms Related with Model #1

Based on the formulae obtained in the last section we
are now able to compute synthetic seismograms including the
first order effects for Model #1. Many of the synthetic
seismograms computed using ART will be compared with those
computed using the Alekseev-Mikhailenko Method (AMM).

A wavelength is defined as the ratio of the
compressional wave velocity in the half-space to the
predominant frequency of the source pulse. The predominant
frequency v, of the source pulse was chosen as 1.0
wavelength/period. The time dependence of the source pulse

used in all synthetic seismogram computations is:
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fo(t) = expl~(2nvt/y)?] sin(2nvt)
go(t) = expl-(2mvt/v)?] cos(2mvt)

(4.57) £,(t) = - expl-(27vt/v)?] cos(2wvt) /(27v)
g:(t) = expl-(27vt/y)2] sin(27vt) /(27v)

wvhere the damping factor v, was chosen as 4. For the sake of
simplicity all distances and times were measured in terms of
the predominant wavelength WL, and period T, respectively.
The velocity ratio of S wave to P wave was taken to be
Q=B/a=0.5 .

Two cases in Model #1 shall be discussed in this
section. In the first case, the P source was buried at small
distance, h=0.25 WL, from the free surface in homogeneous
isotropic half-space. For this situation the vertical
components of the displacement vector obtained from the AMM
for a receiver depth z=3 WL at 12 epicentral distances are
shown in Figure 4.3, The solution of the zero order
approximation of ART is shown in Figure 4.4. If we consider
not only the zero order but also the first order effects,
the corresponding solution of ART shown in Figure 4.5 should
match that computed using the AMM more closely. From Figure
4.5 we can see that even in the case of normal incidence a
nonzero vertical component of the converted PS wave exists
as predicted by the AMM's results, To clearly show only the
first order effect a set of synthetic seismograms shown in
Figure 4.6 is helpful in understanding that the higher order
terms of ART should be considered when computing the wave

fields in the region near vertical incidence in order to
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Figure 4.3 Vertical components computed using the

Alekseev-Mikhailenko Method for Model #1. Vertical

components of the displacement vector were computed for

depth z=3 WL at all epicentral distances. The P source was

buried at the depth h=0,25 WL, The ratio of S to P

velocities was taken to be B/a=0.5 .
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Figure 4.4 Vertical components computed using the zero order

approximation of ART for Model #1. Vertical components of

the displacement vector were computed for the depth z=3 WL

‘at all epicentral distances. The P source was buried at the

depth h=0.25 WL. The ratio of S to P velocities was taken to

be B/a=0.5 .
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Figure 4.5 Vertical components computed using the formulae
derived for the first order approximation of ART for Model
#1. Vertical components of the displacement vector were
computed for the depth z=3 WL at all epicentral distances.
The P source was buried at the depth h=0.25 WL. The ratio of

S to P velocities was taken to be B8/a=0.5 .
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Figure 4.6 Vertical components including the effect of the
first order term only in ART for Model #1. Vgrtical
components of the displécement vector were computed for the
depth 2=3 WL at all epicentral distances. The P source was
buried at the depth h=0.25 WL. The ratio of S to P

velocities was taken to be B8/e¢=0.5 .,
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Figure 4.7 Horizontal components obtained from the
Alekseev-Mikhailenko Method for Model #1. Horizontal
components of the displacement vector were computed for the
depth z=3 WL at all epicentral distances. The P source was
buried at the depth h=0.25 WL. The ratio of S to P

velocities was taken to be B/a=0.5 .
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Figure 4.8 Horizontal components computed using the formulae
derived for the first order approximation of ART for Model
#1. Horizontal components of the displacement vector were
computed for the depth 2z=3 WL at all epicentral distances.
The P source was buried at the depth h=0.25 WL. The ratio of

S to P velocities was taken to be B/a=0.5 .
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Figure 4.9 Horizontal components computed using the zero
order approximation of ART for Model #1. Horizontal
components of the displacement vector were computed for the
depth z=3 WL at all epicentral distances. The P source was
buried at the depth h=0.25 WL. The ratio of S to P

velocities was taken to be B8/a=0.5 .
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Figure 4.10 Horizontal components including the effect of
the first order term only in ART for Model #1. Horizontal
components of the displacement vector were computed for the
depth z=3 WL at all epicentral distances. The P source was
buried at the depth h=0.25 WL. The ratio of § to P

velocities was taken to be B/a=0.5 .
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obtain more accurate results.

We will now consider the relative horizontal
components. Figure 4.7 shows the AMM's solution for Model
#1, whereas the solution of the first order approximation of
ART is shown in Figure 4.8. The similarity of these two
Figures clearly indicates that the first order result of ART
for Model #1 is more acceptable. To express the difference
in horizontal components between the zero order and the
first order approximations of ART we have shown both
instances in Figures 4.9 and 4.10, respectively.

In the second case we take the source depth in model #1
from 0.25 WL (case 1) to 0.125 WL to see what effect this
has on the results?

The vertical components in this case obtained from the
AMM are shown in Figure 4.11, whereas the solution of the
first order approximation of ART is shown in Figure 4.12,
The similarity between Figures 4.11 and 4.12 once again
indicates that using the first order approximation of ART to
deal with Model #1 may gives a more acceptable solution. For
the sake of comparison the results of the zero order
approximation and the effect of the first order terms only
of ART have been shown in Figures 4.13 and 4.14,
respectively.

The relative horizontal components of the first order
result, the zero order result and the effect of the first
order terms only are shown in Figures 4:15, 4,16 and 4.17,

respectively.,
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Figure 4.11 Vertical components computed using the

Alekseev-Mikhailenko Method for Model #1. Vertical

components of the displacement vector were computed for the

depth z=3 WL at all epicentral distance. The P source was

buried at the depth h=0.125 WL. The ratio of S to P

velocities was taken to be B/a=0.5 .
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Figure 4.12 Vertical components computed using the formulae
derived for the first order approximation of ART for Model
#1. Vertical components of the displacement vector were

computed for the depth z=3 WL at all epicentral distances.
The P source was buried at the depth h=0.125 WL. The ratio

of S to P velocities was taken to be ﬁ/a=0.5 .
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Figure 4,13 Vertical components computed using the zero
order approximation of ART for Model #1. Vertical components
of the displacement vector were computed for the depth z=3
WL at all epicentral distances. The P source was buried at

the depth h=0,125 WL. The ratio of § to P velocities was

taken to be B/a=0.5 .



1186

o 4’
o
- J\'—/\,‘
Oo] ‘“’“‘V
I—
wm
—_— -
D
Z
ON
m o v
-
=z W\ —An
5
=¥
mo
m
Z A%
2
-/
L -.A_‘ v\~ )
o
- N \
—
~ ~ V\/

| v | 1

c 4 8 :E 1% 20
TIME IN PERIODS

Figure 4.14 Vertical components including the effect of the
first order term only in ART for Model #1. Vertical
components of the displacement vector were computed for the
depth z=3 WL at all epicentral distances. The P source was
buried at the depth h=0,125 WL. The ratio of S to P

velocities was taken to be B/a=0.5 .
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Figure 4.15 Horizontal components computed using the
formulae derived for the first order approximation of ART
for Model #1. Horizontal components of the displacement
vector were computed for the depth z=3 WL at all epicentral
distances. The P source was buried at the depth h=0,125 WL.

The ratio of S to P velocities was taken to be B/a=0.5 .
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Figure 4,16 Horizontal components computed using the zero
order approximation of ART for Model #1., Horizontal
components of the displacement vector were computed for the
depth z=3 WL at all epicentral distances. The P source was
buried at the depth h=0,125 WL, The ratio of § to P

velocities was taken to be B/a=0.5 .
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Figure 4.17 Horizontal components including the effect of
the first order term only in ART for Model #1. Horizontal
components of the“aisplacement vector were computed for the
depth 2=3 WL at all epicentral distances. The P source was
buried at the depth h=0,125 WL. The ratio of S to P

velocities was taken to be B/a=0.5 .
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From all of these figures we may once again reach the
same conclusion as obtained before for case 1, that the
first order effects have to be taken into consideration in
the wave fields near vertical incidence.

It should be noticed that the nonzero effect of the
converted PS wave in the normal incidence case is related to
the source depth if we carefully study the results of the
above two cases in model #1, Now we choose a set of
different source depths in Model #1 and employ AMM and ART
to investigate this case in detail,

All traces were computed for the same receiver location
(x=0 WL, z=3 WL) but different source locations. The traces
A, B, C and D in Figs, 4.18 to 4.21 correspond to the source
depths 0.125 WL, 0.25 WL, 0.5 WL and 1,0 WL, respectively.
Figure 4.18 shows the vertical components computed using the
AMM, whereas Figure 4.19 gives the results of the first
order approximation of ART. The results of the zero order
approximation and the effect of the first order terms only
of ART are shown in Figures 4.20 and 4.21, respectively.

Figure 4.21 shows that the smaller the source depth in
model #1, the larger the nonzero vertical component of the
converted PS wave reflected from the free surface. To more
clearly express this phenomenon, a plot of the converted PS
waves versus the source depth is displayed in Figure 4.22,
in which the solid line indicates the first order effect

only, while the dashed line the zeroth order effect.
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Figure 4.18 A nonzero vertical component of the converted PS
wave reflected from the free surface at normal incidence
computed by the Alekseev-Mikhailenko Method. All traces were
computed for the same receiver location (x=0WL, z=3WL) but
different source locations. The source depths corresponding
to the individual traces from a to d were equal to 0.125WL,

0.25WL, 0.5WL, and 1.0WL, respectively.
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Figure 4.19 A nonzero vertical component of the converted PS
wave reflected from the free surface at normal incidence
computed by the first order approximation of ART. All traces
were computed for the same receiver location (x=0WL, z=3WL)
but different source locations. The source depths
corresponding to the individual traces from a to d were

equal to 0.125WL, 0.25WL, 0.5WL, and 1.0WL, respectively.
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Figure 4.20 A zero vertical component of the converted PS
wave reflected from the free surface at normal incidence
computed by the zero order approximation of ART. All traces
were computed for the same receiver location (x=0WL, z=3WL)
but different source locations. The source depths
corresponding to the individual traces from a to d were

equal to 0.125WL, 0.25WL, 0.5WL, and 1.0WL, respectively.
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Figure 4.21 A nonzero vertical component of the converted PS
wave reflected from the free surface at normal incidence
computed by the only first order terms. All traces wvere
computed for the same receiver location (x=0WL, z=3WL) but
different source locations. The source depths corresponding
to the individual traces from a to d were equal to 0.125WL,

0.25WL, 0.5WL, and 1.0WL, respectively.
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We have seen from the above figures that the first order
effect in Model #1 is related to the point source depth. In
fact the higher order effect is also related to the medium
in which the converted waves are propagating. Although this
point of view has been mentioned before in Chapter 3, it
could be more helpful to understand it if we considered a
new example by investigating the relation between the first
order effect and the velocity ratio @=8/a in Model #1.

For this purpose we set the point source in Model #1 to
be at a fixed depth (X=0WL, 2=0.125WL) and set the receivers
all at the same depth of 2=3WL, whereas the velocity ratio @
is varied from 0,2 to 0.7 by an increment 0.1. Graphically
drawing the magnitudes of the zero order and the first order
approximations versus the epicentral distances for each
value of @ (0.2, 0.3, 0.4, 0.5, 0.6 and 0.7) gives a set of
6 figures, which have been arranged in Figure 4.23. In
Fig.4.23 the solid lines express the zeroth order magnitudes
PS{®)(¢), and the dashed lines the combined magnitudes of
the zeroth order and the first order terms, which is
mathematically equal to PS(°’(y) +
[Ps¢ V) (y)2+PS ') (y)2]1'/ 2 /27,

Figure 4.23 generally indicates that the greater the
velocity ratio 9=8/a, the greater the higher order effect.

So far a lot of attention has been paid in discussing
the higher order effect for Mcdel #1. Before ending this

section some major conclusions should be summarized as

follows:
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the first order effect only.
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indicate the zero and the first approximation, respectively.
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(1) The first order approximation of ART can give a
more acceptable result wvhich is similar to AMM's for Model
#1,

(2) The first order terms of ART should be considered
in the computation of the reflected wave field in the region
near the relection point,

(3) The shallower the source depth in Model #1, the
larger the nonzero vertical component of the converted PS
wave reflected at normal incidence on the free surface.

(4) The PS reflection response is strongly dependent on
the velocity ratio € in such way that the larger the

velocity ratio, the greater the first order effects.
4.4 Model #4 and Related synthetic Seismograms

In the synthetic seismograms computed using
Alekseev-Mikhailenko Method (AMM) for Model #1, there are
two interesting phenomena:

(1) There is a nonzero vertical component of the
converted Pé wave reflected at normal incidence from the
free surface.

(2) At large epicentral distances we can see S* and PS
wave are already well separated from one another,

although the first phenomenon has been found in results
computed using the first order approximation of ART, we have
not found the S* wave in them at all. To more clearly show

the first order effect and avoid the confusion due to S*
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wvave, a new model named Model #4 is introduced into this
thesis (see Figure 4.24). In Model #4, both the source and
receivers were set at depth 2,5 WL, as the S# arrival decays
exponentially with the depth of the source (Hron and
Mikhailenko, 1981; Daley and Hron, 1983a, b, 1985) and the
direct P arrival does not make any contribution to the
vertical components of the synthetic traces. The ratio of
B/a was chosen as 0.6. The Model #4 chosen for discussion is
similar to that used in the paper of Daley and Hron (1987),
in which a high-frequency first order Saddle Point
Approximation (SPA) was derived and used to compute the PP
and PS reflected disturbance. The main purpose of
introducing Model #4 is to produce synthetic seismograms
computed using three different approaches (AMM, SPA and ART)
for the same model. It should be helpful to confirm some
conclusions we have obained in the last section.

The time dependence of the source pulse used in all

synthetic seismogram computations is

folt) = expl-(2nvt/y)?] cos(2mwvt)

go(t) = - expl-(27vt/v)?] sin(2mvt)
(4.58)

£,(t) = expl-(2avt/v)2] sin(2nvt) /(27p)

g,(t) = exp[-(2nvt/y)?] cos(2mvt) /(2m»)

where the predominant fregquency » of the source pulse was
chosen as 1.0 and the damping factor 7y was chosen as 4.
It should also be mentioned that there is no

contribution from the direct P arrival to the vertical
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N -

Figure 4.24 Model #4. Both the source and receivers were
chosen at depth 2.5WL, such that both effects of the Sx wave
and the direct P arrival on the vertical direction can be

neglected.
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component of displacement, so that only this case will be
considered for Model #4 in this section,

A comparison of zero order Asymptotic Ray Theory
synthetic traces (a), traces computed using the Saddle Point
Approximation (SPA) for the first order correction (b), and
the Alekseev-Mikhailenko Method (AMM) traces (c) for Model
#4 is presented in Figure 4.25, The synthetic traces
computed using the formulae for the first order
approximation of ART derived in this thesis are presented in
Figure 4.26, whereas the zero order ART synthetic traces are
shown in Fiqure 4.27. The effect of the first order
approximation is well demonstrated, as there is a very good
match with the AMM's and the first order SPA's results.

From this set of synthetic seismograms we may once
again understand that if the first order terms in ART are
considered into the synthetic seismogram computation, the
results will be much better, although the zero order terms

are usually reasonably accurate results at all offsets.
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Figure 4.25 A comparison of zero order ART synthetic traces
(a), traces computed using the Saddle Point Approximation
(spa) for the first order correction (b), and
Alekseev-Mikhailenko Method (AMM) traces (c) for Model #4.
Only the PP and PS arrivals are present here, and WL =

wavelength (with a'ithor's permission).
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Figure 4.26 Vertical components computed using the first

order approximation of ART for Model #4.
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4.5 Model #5 and Related Seismograms for the Transmitted

Waves

In this section, we benefit from the high accuracy of
the Alekseev-Mikhailenko Method against which we will check
the suitability of our first order approximation of ART to
the transmitted PP and PS arrivals due to highly
concentrated sources adjacent to interfaces between elastic
media. More precisely, we will investigate a case of a P
wave point explosive source located less than onehalf of a
predominant wavelength from the interface in a medium, whose
compressional.(P) and shear (S) velocities are higher than
those on the other side of the interface, where a receiver
is located. We will call it as Model #5 in this thesis (see
Figure 4.28). |

Since our investigations are based on the method
discussed in great detail in earlier sections, we will
restrict ourself to the discussion of results produced in
our numerical experiments. A brief derivation will be
presented for our first order approximation of ART to a wave
field transmitted across a plane interface from a
high-velocity elastic half-space into a medium of lower
velocity, after being radiated from a point explosive source
adjacent to the interface.

In Figure 4.28, a cylindrical coordinate system (r,¢,z)
is centered at the point O directly below the impulsive

point source situated at $ = (0,0,-h,) in the upper
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Z

Figure 4.28 Model #5. A cylindrical coordinate system
(r,0,2) is centered at the point O directly below the
impulsive poinﬁ source situated at S = (0,0,-h,) in the
upper half-space medium. The properties of the upper (medium
1) and lower (medium 2) media are characterized by a,, the
compressional velocity, B;, the shear velocity and p,, the
volume density (i=1,2). The total transmitted wave field
will be evaluated at the receiver location in the lover
half-space (medium 2) at point R = (r,0,h;). a,=1.3355 WL/T,
B:1=0.771 WL/T, a,=1.000 WL/T, B.=0.577 WL/T, p,=p.=1.0

gm/cc, h,=0.25 WL and h,=5.0 WL.
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half-space medium, The properties of the upper (medium 1)
and lower (medium 2) media are characterized by e;, the
compressional velocity, B, the shear velocity and p., the
volume density (i=1,2). The total transmitted wave field
will be evaluated at the receiver location in the lower
half-space (medium 2) at point R = (r,0,h;). Further, it
will be assumed that a«, > az > B; > B, and that the depth of
the source h, amounts to only a fraction of the predominant
wavelength of the source pulse.

We shall evaluate the zero order approximation of ART
for the transmitted PP and PS waves first in Model #5.
Taking k=0 in the general boundary conditions (4.18-1),
(4.18-2), (4.18-3) and (4.18-4) finally yields the following

set of equations as the zero order boundary conditions:

sin6,P{° - sinf,PL%’ + cos63S5°) - cos8,S{°’ = -sinfoP¢°’
cos6,P{° + cos8,PL{% - 5in6,S5°’ - sind,S{°’ = coshoP§°’
(4.59)

B,Qsin291P§°) + Bzﬂsin292P§°) + B1C05263S§°) +

+ B,c0826,S§°’ = B,Nsin26,P§°’

(2QB1sin261—a1)P$°) + (az-ZQBZSinzez)Pém + ﬂ,sin2935§°)

- stin29u83°) = (a1—29315in290)P(()°)

where §, the ratio of B/«a.
Solving the above set of equations will produce the
values of the zero order reflected and transmitted waves at

the point of incidence on the interface boundary, P{°’(¢o),
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$§°2(1o), P§® (o) and S22 (to).

The transmitted PP and PS waves in the zero order
approximation, P$°’(r) and S{°’(r), are determined by the
following formulas gived by Cerveny and Ravindra (1971):

P§°)(¢o) to
P{®)(r)

Loz(r)
(4.60)

S£°)(¢°) to
§{°(r)

Loa(l’)

where Lo2(r) and Los(r) indicate the geometrical spreadings

of the transmitted PP and PS waves, respectively.

cosfy, a3h, azhz (!1h| dzhz
Loz(r) = + ) ( + )11/
a, cosfo cosf, cos3f, coslf,
(4.61)
cosfo aih, Bzh; aqhy Bzh:
Log(r) = [( + ) ( + )
g cosf, cosf, cos38, cos?6,

Now let us investigate the first order approximation of
the tansmitted waves. The principal component of the first
order incidence P wave, P§'’(r), is similar to (4.32) as

follows:
(4.62) P{'(r) = (1-292) a« P{°'(r) /

The additional component of the first order incidence P wave

is similar to (4.33) as follows:

(4.63) pé'’(r) =0
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To determine the first order terms for the transmitted
PS wave, we have to evaluate V:é.(4) and V-é, (4, on the
transmitted wavefront surfaces, where @.(s) and é.(q) are
the unit vectors along the rays and in the plane normai to
the rays for the transmitted PS wave, respectively. The
wavefront surfaces of the transmitted PS wave in three
dimensional space may be expressed in a special transformed

coordinate system (I'y,6,,¥) in the following way (see Figure

4,29):
X = cosy sinf, Ty
(4.64) Y = siny siné, Iy
72 = cosf,y - hycos8,/[A*-sin?(8,)]'/2

where A = B,/a,. Lame's coefficients according to the above

transformed system are:

H(ra) = 1

(4.65) H(\ll) = Sin(eu) Fu

[h15in6a(1-A2)]2 2h1ru5in26a(1'A2)

H(6,) = [Ii+ +
(A%2-sin?8,)? (A%-5in%6,)3’?

1/72

Then it is easy to show that:

(1,0,0)
(0,1,0)

(e(T'y),e(64),e(y))
(e(I'y),e(8;),e(y))

i}

- (u)
(4.66)

€. (u)

Finally we have the following expressions necessary to

compute the transmitted PS wave:
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N -

Figure 4.29 Signs and notation used to evaluate V-é.(s) and

V-&,(4) for the transmitted PS wave in Model #5.
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1 'y + C Sineo

V-é.(u) = +
| (F§+Cz+2FaCSin0¢)
(4.67)
cotané,
v'éo(ﬂ) =
(T2+C2+2l',Csinf,) /2
where
h1Sinou(1’A2) hitané, h;
(4.68) C = Ty = +
(A%-sin®6,)3/% siné, cosf,

Based on the similarity between the transmitted PS and PP
wavefront surfaces, we are able to write the following

expressions for the transmitted PP waves:

1 ', + D siné,
V-€.(z2) = +
I, (ré¢+p%+2r,nsinég,)
(4.69)
cotanéf,
V'é~(2> =
(F§+D2+2F2D51n62)1/2
where
h]Sin92(1-Hz) h,tanf, hz
(4.70) D= ', = +
(nM?-sin?p, )32 siné, cosf,

with 11 = a;/ay.

The additional components of the first order
transmitted PS and PP waves then can be presented from their
general formula (2.32) and (2.34) as follows:

s{i'(y) = B S{® () V-&. (4
(4.71)

p:s'’(y) =0
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To determine the principal component of the first order
transmitted PS wave, substituting (4.67) into its general

expression (2.55) yields the following differential

equation:

dS.‘,”(t) V‘ég(a) dzs.(,"’(r) ﬂz
(4,72) —m——— = = 8{""(r) +

dr 2 dr? 2

The general solution of the above differential equation can

be obtained after some integrating operations as:

(4.73)

B.(E+F) [F(F%+2FH+C?)'/2]'/2
{1 (y) = [8§ (o) + S§°7 (ey) ]

4EF RCR
B.(EF) /2 IPS F+E+2r
+ 5897 (1g) 1 -
4 2RCR [(E+r)(F+r)]'/?
where
RCR = {(F+r)[(F+r)2+2(F+r)H+Cc2]'/2}1/2
PCP = (RCR)-[(F+r)?+2(F+r)H+C?2]'/?
(F+E+2r) 2(F+r)2+3H(F+r)+C?
IPS = § . dr
[(E+r)(F+r)]3/2 PCP
[ A
F =
B2
cos?6,
E=F ———
cos?8,
H=2C¢C Sineu

and C given in (4.68).
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Here ¥ = to+r denotes the total length of the transmitted PS
ray from the source point to the receiver via the
transmitted point, and S{'’(¢,) the principal component of
the first order transmitted PS wave at the transmitted point
which will be determined later by using the first order

boundary conditions.
When the incident P wave is perpendicular to the free
surface, or equivalently when 6,=6,=0, the principal

component of the first order transmitted PS wave is given

by:

1 F F

(4.74)  S{"(v) = 8{%(o)B2-1[ - I +8{" (o) —
F+r (F+r)? F+r

To determine the principal component of the first order
transmitted PP wave, substituting (4.69) into its general
expression (2.43) yields the following differential

equation:

api® (1) Ve | a0
(4.75) ~———— =~ P{')(r) M ' *
dr 2 ar? 2

dp$°’ (r) a}-B3 a3-B% a(v-é.(2))

V-é.(2y * P§%(r)
dr 203 2a¢; dr

+

The general solution of the above differential equation can

be obtained after some tedious integrating operations as:
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(4.76)
o, (E+F) [F(F2+2F1+4D2)'/2)"/2
P{V(y) = [PEM (o) +Pi% 7 (1o) ) +
4EF RDR
a,(EF) /2 IPA (F+E+2r)
+ P9 (¢p) [ - ] +
4 2RDR [(B+r) (F+r)]3¥/3
a3-B% (EF)'/?
- P22 (o) . (IPB +IPC -2IPD +2IPE +41PF)
. 4(!2 RDR
where

RDR = {(F+r)[(F+r)2+2(F+r)1+D%]'/2}1/2

RER = [(F+r)2+2(F+r)1+p2]'/?

(F+E+2r) 2(F+r)%+3I1(F+r)+D?
irPa = J . dr
[(E+r) (F+r) 13’2 RDR - RER
(F+E+2r) RDR
IPB = | dr

[(E+r)(F+r)]3’2. F+r

(F+E+2r) (F+r+1)(F+r)'/?

IPC = J dr

[(B+r)(F+r)]*/%?  RER®’?

1 1

IPD = | dr

(E+r)1/2 (RER)3/2

1 (RER) '/ ?

IPE = J dr

[(E+r)(F+r)]1/2' (F+r)3/2

(F+r+1)?2 1
dr

IPF = | .
(E+r)'/%2 (RER)7/?
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Qitlo

F =
a2
Coszez

E = F c—
cos28,

I =D Sinea

and D given in (4,70),

Here 7 = (o+r denotes the total length of the transmitted PP
ray from the source point to the receiver via the
transmitted point, P§'’(te) the principal component of the
first order transmitted PP wave at the transmitted point
which will be determined by using the first order boundary
conditions later,

When the incident P wave is perpendicular to the free
surface, or equivalently when 6,=6,=0, the principal

component of the first order transmitted PP wave is given

by:

2B%-a? F 1
"Péo)(to) [ = ]
F+r a, (F+r)? F+r

(4.77) PS'(v) = P{V (1)

The boundary values of the first order reflected and
transmitted waves at incidence point on the interface
boundary, P§{'’(to), S§'"'(to), P$'7(to) and S§{'’(to), will be
determined together by using the first order boundary
conditions, which is given by substituting k=1 into the
general expre;sions of the boundary conditions (4.18-1),

(4.18-2), (4.18-2) and (4.18-4). That means we have to solve
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the following first order boundary equations:
(4.78)
~8in6P{' ) (1o)=co80355' (1o)+8ind,P{" (1o)+c086,S§' (to) =

8inBoP§ '  (1o)+8infys§ ' (1o)-8inbsss'’ (1o)

COSG1P$1)(00)'Sine3sg‘)(Lo)+COSGzP§1)(io)-Sinausg')(Lo) =

c080oP§ " (1o)-co80388 ' (to)-cos8,si' (o)

B? 3
s§in26,P{' 7 (1o) + B1c082603S5" (o) + 5in260,P5 " (o)

[« & asz
+ B2C05293581)(Lo) = ¢§‘)(Lo)

a?-2B%sin?6,
- Pg’)(bo) + B15iﬂ2935§1)(to) +
a4
a§'2B§Sin202
+ pé‘)(to) - stin29055')(to) = ¢§1)(Lo)
az

where ®{'’ and &{'’ are given by (4.19) and (4.20).

By solving the above set of equations we are able to
evaluate the values of the principal components of the first
order transmitted and reflected waves at the point of
incidence on the interface boundary. Then substituting the
boundary value S§'’(¢o) into (4.73), or P{'’(io) into (4.76)
will finally give the principal components of the
transmitted PS and PP waves aldng whole transmitted rays.
The first order boundary values of the reflected waves,

P{" (o) and S§'’(to), will be employed later when we

discuss the principal components of the first order terms
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for reflected waves in Model #5.

Up until now the derivation of expressions for the zero
order and the first order approximations to ART for
transmitted waves in Model #5 have been done analytically.
The numerical implementation of these formulae will be shown
in Figures 4.30, 4.31 and 4.32.

Figures 4.30 and 4.31 compare the vertical synthetic
seismograms computed using the first order approiimation of
ART and the Alekseev-Mikhailenko Method. The receivers are
located 5 WL below the interface in medium 2, so as to
remove any possibility of Stonely wave.arrivals being
detectéd in the Alekseev-Mi:. .ilenko seismograms. The time
dependence of the source pulse used is given by (4.57). To
detect the nonzero vertical components of the transmitted PS
wave at near vertical incidence, only those epicentral
distances in the high-frequency case, for which all arrivals
of S* do not appear at all, are presented. On viewing these
two figures, it is obvious that a generally good fit was
obtained. The zero order ray theory synthetic traces
presented in Figure 4.32 should be helpfﬁl to understand the

difference between the zero order and the first order

approximations to ART.
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Figure 4.30 Vertical synthetic seismograms of the first
order zpproximation of ART for the transmitted waves in
Model #5. Source is at 0.25 WL into medium 1 while the

receivers are located 5.0 WL into medium 2.
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Figure 4.31 Vertical synthetic seismograms of the
Alekseev-Mikhailenko method for the transmitted waves in
Model #5. Again, source is at -0.25 WL and receivers at 5.0

WL,
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Figure 4.32 Vertical synthetic seismograms of the zero order
approximation of ART for the transmitted waves in Model #5.
The nonzero vertical components of PS wave disappear. Again,

source is at -0.25 WL and receivers at 5.0 WL.
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4.6 Model #5 and Related Seismograms for the Reflected Waves

In this section an investigation of the higher order
effects of ART for reflected waves in Model #5 will be
undertaken, The converted waves reflected from a free
surface in Model #1 have been discussed in great detail in
earlier sections, and as a result all formulae employed in
studying Model #1 can be used directly for Model #5 except
the boundary conditions which require different expressions.
The boundary conditions of the reflected waves have been
evaluated together with those of the transmitted waves in
the previous section for the zero order and the first order
terms. The total wave field, including the direct P and
reflected PP and PS waves at the receiver location,
R=(r,0,-h;), in the upper half-space (medium 1) in Model #5
may now be evaluated without any mathematical difficulties,
We will restrict ourself to the discussion of results
produced in our numerical experiments.

In Figure 4.33 the vertical components of displacements
computed using the first order approximation of ART for the
receiver depth h,=3 WL at 6 epicentral distances are shown,
The solution of the zero order approximation of ART is given
in Figure 4.34. To clearly show the first order effects
only, a set of synthetic seismograms are shown in Figure
4.35. It is evident from viewing these Figures that the
first order terms of ART should be included in the
expressions for the wave field at near vertical incidence in

order to produce more accurate results.
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Figure 4.33 Vertical synthetic seismograms of the first
order approximation of ART for the reflected waves in Model
#5. Source is at h,=0.25 WL and receiver is at h;=3.0 WL
into medium 1, a,=1.3355 WL/T, B,=0.771 WL/T, «.=0.5 WL/T,

B.=0.2885 WL/T and p,=p.=1.0 gm/cc.
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Figure 4.34 Vertical synthetic seismograms of the zero order

o

approximation of ART for the reflected waves in Model #5.
Source is at h,=0.25 WL and receiver is at h;=3.0 WL into
medium 1. «,=1.3355 WL/T, B:=0.771 WL/T, «,=0.5 WL/T,

B.=0.2885 WL/T and p,=p.=1.0 gm/cc.



S0
!

G- 1

G° 1

HLINTT3ABM NI 30NULSIQ
0°¢
(

S*¢
1

—

I T T

0 4 8 62 JS 20
TIME IN PERIODS

Figure 4.35 Vertical synthetic seismograms including the
effect of the first order terms only in ART for the
reflected waves in Model #5. Source is at h;=0.25 WL and
receiver is at h,=3.0 WL into medium 1. «,=1.3355 WL/T,
B:=0.771 WL/T, a,=0.5 WL/T, B,=0.2885 WL/T and py=p.=1.0

gm/cc.
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5. Conclusions

A more systematic and detailed treatment of the so
called higher order approximations of Asymptotic Ray Theory
was discussed. Due to the rather unwieldy character of the
general expansions for higher order terms, a rigorous
mathematical analysis of the first order approximation of
ART to some typical problems has been especially derived.

In addition to the presentation of basic theoretical
formulae, many demonstrations were given on the importance
of the first order terms in the ray series, suggesting that
they should be used whenever Asymptotic Ray Theory is
applied to inhomogeneous media.

The first order correction to the zero order
approximation of the vertical component of the PS and PP
arrivals due to a P wave incidence on a free interface at
near vertical incidence was computed. Basic properties of
the nonzero vertical component of PS wave at vertical
incidence, such as its linear polarization and strong
dependence on the source depth and on the velocity ratio
B/a, were shown in a series of computed synthetic
seismograms. The accuracy of our formulae has been compared
against the synthetic seismograms produced by the
Alekseev-Mikhailenko Method. Numerical results show that our
first order approximation was quite appropriate as it
preserves the appearance of a nonzero vertical component of

PS displacement at vertical incidence which is not predicted
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by the zero order approximation‘of ART or Cagniard's method
where no more than the zero order term is taken to
approximate the disturbance.

The problem of a spherical wave incident on a boundary
between two elastic media displaying many of the same
properties observed in the fairly simple case was also
considered in this thesis., Only the complexity of the
derivations differs. The simplification of the problem may
be made by dividing the range of incident angles into
‘regions and focussing attention on the variables which most
affect the solution in each of the regions. This is due to
the fact that, from the mathematical point of view,
transmitted and reflected wave fields are analogous as both
are carrying energy away from the interface on which the
incident wave impinged.

The first order approximation of ART expresses a
significant contribution to the understanding of the nature
of spherical waves, since it confirms the basic predictions
of the Asymptotic Ray Theory on the polarization of higher

order terms in the ray series.
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