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AB ST RACT

(@

The interpretation of spectral band shapes in terms
of the rcwﬁx‘icﬁﬂifnffi(dnzll motion of the absorbing species
has proven to be a powerful method for studying inter-
molecular interactions and reorientational motions of
molecules in the liquid and the gascous state. 1In this
thesis the infranod band shapes of gascous and liquid
mixtufcs of methane and the ESR ]jnowidfhsaﬂfvanadyi com-
plexes are intcerpreted in terms of the reoricntational
motion of the absorbing moleculos. A

In Chapter 11 an cxtended rotational diffusion in-
terpretation of Gordon's semiclassical band shape theory
is dévcloped and this modified theory is used to inter-
pret the infrared band shape due to the Vi modg of
methdne. The angular momentum correlation times, Tyr
obtained from this analysis were in very close agreement
with those obtai?ed from an analysis using the classical
model. This result indicates that the commonly used
procedure of studying reorientational motion in terms
of the Fourier cosinc transform of the band shape is
justified. Thjs'thecfy proves to be of limited applic-
ability duc to the details of the calculations.

In Chapter III a "true" semiclassical extended
rotational diffusion theory is developed. The memory

function approach is used to simplify the computation

of reorientational correlation functions and spectral

densities. This semiclassical theory is used to inter-



g
pret the infrared band shapes of methane duec to Vs and

Vy- The angular momentum correlation times obtained

from the two different infrared bands and those obtained

from an independent nuclear magnetic resonance Tl study

4

on closcly related systems show 3 similar density de~

’

pendence indicating that the values of Ty assigned by

the extended rotational diffusion theories have physical

J

The ESR spectra of a series of vanadyl complexes

significance and that 1, is not a meaningless parqmoter.
in various solvents were obtained. These spectra are in-
terpreted in terms of the Kivelson linewidth theory. A-
procedure for fitting the MZdependent part of the line-
width using the Kivelson theory is introduced.. . This ’
procedure is more reprosentative~of the Kivelson theory
than the previous proced&fe of considering the M2 con~‘
tribution to the linewidth because each of the éarameters
of the Kivelson ﬁodel are considered according to their
contribuﬁion to the linewidth. It is demonstrated that
the Kivelson theory giQes better agreement with expéri~
ment if each spectrum is studied_separately ratherwthan
%f all the spectra for a given-cémplex/solveht system

ére studied simultaneously and tge»Stokes~Einstein,re~
lation is used to relate the reorientational correlation
time, Ty to the temperature and viscosity of the solvent.
This result indicates that possibly the Stokes-Einstein
relation is the cause of the disagreement beéwcen pre-

dicted and experimental results,

vi
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INTRODUCTTION

CHAPTER I

The conventional spectroscopic method of studying
a system is to assign the observed spectral frequencies
to transitions between the various quantum states of =ﬁe
system. Because of its emphasis on énefgy levels, this
approach might be‘:eferred to as the Schrodinger 1 pic-~
ture of spectroscopy. The Schrddinger picture, with its
emphasis on transition frequenéies, yvields information
about the environment of the absorbiﬁg species. ‘Thié
information includes such things as bond lengths, bond
strengths, electronic environment and chemical inter-
actions with solVent,éééUies and can in general be des-
cribed as dealin ith the time-independent or time-
averaged characteristics of the systems. if a time-
dependent parame£er of a system causes the absorption
frequency of a given molecule to vary with a frequency
mp between’twé.values separated by Aw, then by time-
independent  .we mean wp,<< Aw, while by time averaged
we mean wp'>> Aw. When mp << Aw the two lines will bc
resolved and the two Qalues of the parameter can be
calculated but when Wy > Aw only a single line is
bbserved.and.an average value of the parameter can be
determingd. In the region when wp = Aw the spectral
line‘will be very broad and little can be said about.

the parameter. In most liquids and dense gases, the



Schrodinger picture does not present the most'offoctivo
description of the observed spectra because the indiviéual.
spectral lines are blended together to form a continuous
band. This broadening and coalescence of the spectral
lines 1is due to time-~depondent interéctions within tﬁe
system.l’2 |

The Heisenberg formulation of quantum mechanics
allows us to rephrase the Schrddinger expressions for
spectral absbrption so as to emphasize the time develop-
ment of the system.l’2 The Heisenberg formulation of
quanfum mechanics places the time dependence of thé sys—
tem into the operators and the wave functions are time
independent. The Schrédinger formulation on the other
hand uses time depende£€vwave functions and time inde-
pendent operators. The\Heisenberg picture of spectros-
copy with its emphasis on the time development of the
quantum states has proved to be a powerful tool in the
interpretation of spectral band shapes in which the iq4
dividual transition lines are not rosolved.4‘lo In
addition the Heisenbery approach to spectroscopy pro-
vid- an easily visualized picture of how time dependent
interactions influence observed band shapes.2’4’6'8'9

In the freguency region above 1000 cmyl, where the
influence of stimulated emission is negligible, the spect-
ral band shape in the Schrédinger picture of spectros-

copy 1s expressed by 2,11 : .



I (w) ¥2£: pi<i|§|f>< EIV]id S (-~ EDA = wl, (I~1)
i,f
where the sum over. i and £ includes all relevant gquantum
states of the system, i indicating the initial and f the
final state involved in the transition. Py is the Boltzmannh
factor for the quantum state\li> and Ei is its energy; 6
is the Dirac delta function and w is the frequency of the
applied radiation. The operator, ;, represents the inter-
action being‘observed.' For example, in infrared absorp-
tion spectroscopy, ; is e.m’ which represents the inter-
action of’the electric.field of the incident radiation,
Z, with the vibrational transition dipole moment of a
molggule, m”. The Heisenberg equivalent of Eg. (I-1) cap

be obtained by replacing the Dirac delta function by the

egquivalent Fourier integral,

[e o)
s(x) = = [ at ™t (1-2)
2ns
where t is the Fourier variable and 7 = v-1l. Making this

substitution, we obtain

i 27,
i,f

Y

f><f|§]i2/fdt exp i ((B, - ;) /f-v)t]
- (I-3)

or in an equivalent form

TN

AN



¥ e i
I(w) = égp/bt e‘lth : p Cilvedr]e T oye B oiy.
Zw i, f
(I-4)
L:VVE 'i:l/t
The guantity, e noye ® 1s the Heisenberg time de-

pendent operator whichwewill denote as Y(t). Then Eq.

(I-4) becones
I(w) = %ﬁ/c-lt e‘?"“’tzpiamm [£><E]Y(t) |i> . (I-5)
~w i,f ‘

BEg. (I-5) expreses the spectral density I(w) in the form

of the PFourier transform of a correlation function G(t)

defined by
G(t) = gi; pi<i Y (0) [E><E]Y (L) i) =2£; P Y (0¥, * (),

(I-6)
l_\
where the * Endicates the complex conjugate and‘Yif(t)
is the matrix-element <i|§(t)[f>.

The function, G(t), is the autocorrelation func-
tion for the quantity, Y, represented by the operator §.
Let us consider the meaning of the correlation function.
First of all we must note that the correlation function

gives a description of the ensemble as a whole and not of

an individual member of the ensemble. From Eg. (I-6)



we sce that the correlation function contains information
about the ensemble average of the i£dividual products of
Yif*(t) and Yif(o)' Let us consider a hypotheticai ex-
periment in which all of the quantities Yif.are the samce
for cvery molecule at time zero. The correlation funcfion
would then simply describe the result of the dephasing

as time érogressed, The dephasing ié due to the differ-
ing time dependence of the matrix elements, Yif(t), from
molecule to molecule in the ensemble. Tn magnetic reson-
ance spectroscopy; such an experiment cah be performed.

A pulse of incident radiation is used to give all tran-
sition magnetic dipoles of the ensemble the same phase at
time zero. The magnetization Vector,<which is the sum of
the transition magnetic dipoles, is detected. The magnet-
ization decays in timé and the decay curve is the cor-
relation functi@n for the transition magnetic aipole.

The only purposF of the pulse in this expériment is to
give all the tgansition magnetic dipoles the séme phase
at time zero yéhe time of‘the pulse) so as to produce

a phyéically ébservable guantity. Discussion of cor-
.relation fungtions is'still meaningful if the individual.
matrix elemghts, Yif’ are not in phase because the

product considered does not depend on a phase which is

universal ﬁo the system but depends only on the change

>



in phasc of Yif relative to its pﬁase at time zero.

The corrclation function is the vehicle through
which we can introduce the influence of molecular inter-
actions to the band shape. In all systems studied in
this thesis, the time dependence of the operétor, Q(t),
is' due to the.reorientationql motion of the absorbing
molecules. The correlation functions for Y in these
éystems will be referred to as reorientational correla-
tion functions.

A reorientation correlation function is character-

ized by a reorientational correlation time, Tt,, which

is defined as

‘}0 = Re{/dt G(t)} i (1-7)

)
Ty " - - measure of the time over which the molecule
"remem ‘s orientation in space i.e. the time re-
guirec o wolecule to reoricnt by ~1 radian. A .
second oru -1 time of importance in describing
reorie tat. - . ior s t. - angular momentum correla-
. . . . J
tion =imc. . : v be i.atceroreted as the avérage
. ) i ) Re '
time o.er w..». .ol¢L. . rc ins in the same rotation-
al state. Ti~- <. . -~relation -imes arc related, but
the exact detaiis o. is r .at:o>nship depend on the

nature of the reorientation ..oces. .

Reorientational mot_on affects various forms of



7.

épectroscopy in different ways. In magnctic resonance
spectroscopy the cnergy lcvelsvof'a spin system depend
on the orientation of the molecule relative to the
applicd magnetic field. Reorientation of the molecule
thus modulates these energy levels énd the .resulting
fluctuating encrgy levels give rise to liﬂewidth contri-
butions. In vibrational-rotational spectroscopy re-
orientation of the molecule changes only the magnitude
of the interaction between the incident‘radiation and
the molecule, but does not alter the transition fre-
quency. Rapid reorientation of the molecule causes the
reorientational correlation function for the dipole-
electric field interaction to decay rapidly. In terms
of the band sha?e this means that the individual lines
will be broadened. |

In order to further explore the influenée of re-
orientational motion on the band shape it is necessary
to. have a model to describe the reorientation of a
molecule. There are two basic views on molecular re-
orientation in liquids. One view suggests that a
‘liquid resembles a loosely structured solid in which
the individual molecules are restrictéd from moving
freely because of interactions between species. In

this theory reorientation comes about because of very
}

{

strong torques exerted on a molecule when it is in-



volved in a collision. This approach has been developed

12-~15

by O'Reilly But it has not been widely exploited.

Siwmilar appronches'have been suggested by Brown et gl_lG,

17,18

and by Kivelson ct al, as possibl solutions to

problemns dealing with hydrogen bonding solvents. The

i

scocond "view pictures a iiquid to be véyy similar to a
dense gas. Reorientation modcl; based En this picture
1assqu thatvreorientation takes place bﬁ rotational
steps intﬂm:periods between colli ”U?Ey/ These quels
are known as rotational diffusi¢n models. The word col-
lislon here and in subsequent uéage will be interpretéd
"as an event in which the angulaf momentum of a molecule
is altered. The models considered in this thesis ére
based on the dense gas picture for liquids. |
The first rotational diffusion podel was developed
by Debye 19 to interpret dielectric relaxation experi-
ments. In his model Debye assumed thattreorientation
took place by a series of short (<<l radiaﬁ) rotational
steps. The requirement of short rotational steps has
limited the applic?tion of the Debye theory to pola?
liquids.20 Another reorientation model based on
rotational steps is the perturbed free roﬁorvmodel.
In this model reorientation is'asshmed to take.place by'
long (>»>>1 radian)frotational steps. Again fhe'length
of the rotational step has restricted. the application

of this model and it has been used only in studies of



low pressure gasos.z

Recently Gordon 5 has devcloped a theory of moleccu-
"lar reorientation which ig not restricted by the length
of the rotational steps. In this approach, which is
referred to as the clasgical cxtended rotational diffusion
theory, the classical motion of the molecules is followed
in detail in the individual rotational diffusion steps
and the recorientational correlation function is obtained
by taking an ensemble average over these individual-.
steps. Gordon's theory.ﬁhich was -limited to linear
molecules hés becn extended by McClung to the more combli—
‘cated systems of spherical 6 and symmetric 8 top mole-
cules. The classical evtended rotational diffu;ion
theories have been successfully used to interpret a

7,22-25 26-28

considerable number of infrared Raman

and NMR 28-33 band shapes.

A{Jimitaﬁion of the classical extended rofational
diffusion theo' - is that its application is limited to
those systems vhich can be described by classical
mechanics and thus the use bf this theofy to interpret
asymmetric band shapes is often guestionable or impos-

¢ible. Gordon et al, 277%:33

proposed a semiclassical
theory to predict reorientational correlation functions.
This theory makes use of gemiclassical scattering theory

to describe collisions and has been used to interpret



lo.

the infrared spectra of CO/flo mixtures 36 and HCl/Ar

mixtures.

\

\

\\intcrprctntion of Gordon's semiclassical theory.

37

In Chapter II we davelop an extended diffusion
2,34,35

Ye have opted to pursue this approach rather than to use

\

semiclassical scattering theory for several reasons.

(1)

(3)

(4)

The Gordon approach using semiclagsical scottering
theory requires a good deal of preliminary
mathematics in order to calculate the collision
cross 'sections. These calculations are costly

and in this sense wake the theory of limited

use.

Semiclassical scattering theory requires the
knowledge of an intermolecular potential. This
in effect introduces another variable to the

model.

¢

The semiclassical scattering calculations have

been seriously questioned in the literature.36

The success of the classical extended rotational

diffusion theory 7422-33 suggests this picture

of a collision to be a reasonable approximation. ~

The band shapes predicted by this extended diffusion

interpretation of Gordon's semiclassical theory are



11.

compared with the infrared band shape of CH, 3 in
38

the pure liquid , i1 solutions of CH4 in liquid inert

due to v

gascs 38 and in gascous mixtures of CH4/He and CH4/N2 at
densities between 100 and 1000 amagéts.39

Application of this semiclassical theory was re-
stricted to band shapes which could be described by a
small number of transition frequencics (<40). For this
reason it was not possible to study the infrared band of

CH4 due to V4 because of the large Coriolis coupling con-

stant, c4, which splits each transition line into several

: 40
components.

In Chapter III we develop a "true" semiclassical
version of the classical extended gbtational diffusion
model. 'In this model the number of transitions is not é
limiting factor. The semiclassical extended rotational
diffusion model is then used to interpret the infrared

o+
band shapes of CH, due to v, un CH,/He and CH4/N2 gas
mixtures at densities between 100 and 800 amagats.39 In
addition, the gaseous systems studied in Chapter I. are
reanalyzed.
‘As pointed out abové, reorientational motion of

molecules in liquids can give rise to linewidth contri-

butions in magnetic resonance spectra because the

Pl

rotatronal modulation of anisotropic magnetic inter-

actions gives rise to relaxation of the spin system. In

/

/
Chapter IV, we describe the results of an experimental
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. b .
study of the ESR linewidths of several vanadyl-f-diketo-
nate complexes inavar' ¢ of solvents. Kivelson ct al,
41 have developed the theorectical relation betwoen line-
widths and the cor}elation times for molecular reorienta-
tion. Spin-rotational coupling also makes a contribu-~

42,43 have developed

tion to T, and T2.' Kivelson et al,
theoretical expressions for this contribution. Recent
investigations at low temperatures 18 and 1in hydrogen
bonding solvents 17, 44,45 suggest that the expression
fqr'thespin-rotationai contribution to T2’ and possibly,
the entire Kivelson theory are not adequate. The study
of vanadyl complexes described in Chapter IV was designed
to further test the Kivelson thec .~g in non-hydrogen

bonding sélvents.



SEMICLASSICAL BAND SUADY_TUEORY

NN i

CUADTER TT

M. INTRODUCTION

The reorientational motion o molecules can boe
studied by analysis of the infraved and Ramah band

i -—
2,4-6,8,9,46 In order to gxtract this informa-

shapes.
tion it is often necessary to make referehce to a model
for the molecular motion in the tlyld. A nuubeor of

5,6,8,9,18,47-49

thaories » baseq .on the hypothesis that

a liquid resembles a-densc gas, have proven quite suc-
éaﬁsful 1n aceounting for experimantal r@sults.5’7'lo'
22~ ‘These models are generally raferred to as rota-
tional diffusion models. Rotational diffusion models
consider reorientational motion to ponsiat of a series
of rotational steps which are terminated py "cbllisioﬁs".
The reorientation during the rotatjional step is des-
cribed by either free rotation of the molecule or by
votation executed under the influ. .o of a retarding
torgue. The latter description has Leen employed by
" Debye 19 in his theory of dielectric relavation. In
the Debye model, the moleculsr reovientation is assumed

50~52

to follow a rotational diffusion gguation and the

rotational diffusion coecfficient iv this eguation is
related to the bulk shear viscosity of the liquid by a

53

Stokes~Einstein hydrodynamic relationship. The

Debye theory is limited to systems in which the diffu-

13
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sive steps are very short (<<l radian). This is a par-
ticularly rcstricfivo condition for systems of spherical
molecules where the experimental results suggest that
rotational steps are often of the order of 1 radian.

A perturbed‘free rotor'model has been suggested for
low pressure gaseous systems.21 This approach, which
assumes that the free rotation steps are long (>>1 radian),
is a lifetime broadening interpretation of the band
shape. Tﬁis appro#imatioh neglects all but the first
‘collision 6 and the theory has proVed of limited applic-
abiligy even in low pressure gases.28

Recently Gorddn 5‘has suggested a rotational dif-
fusion model which is not restricted by the length of
fﬁe rotational step. In this approach, which ié referred
to as the classical extended rotational diffusion theory,
the classical motion of the molecule is folloﬁed in
detail in the individual rotational steps and the re-
orientational cor;elation function is obtained Ey taking
an ensemble average over all possible séquenceé of
rotation steps. In this modéi, a ”é&lli;ion" is viewed
as an instantaneous event in which the angular momentum
of a molecule is changed. Two limitiﬁg cases are con-
sidered: M-diffusion and J-diffusion. In the'J~diffu—
sion model, the magnitude of the angulat momentum
vector is randomléed.onto a Boltzmann distribution and

the orientation of the angular momentum vector is
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complctely randoﬁizod at every collision. Each colli-
‘sion raTdomiZCS only the orientation of the angular
momcntu; vector in the M-~diffusion limit, and the magni-
tudce of the angular momentum doces not change. A more
sophisticated approach A7 permits one to descri' - the
reorientation bf any desired combination of M- and J-
diffusion processes. Gordon's theary which was limited
to linear molecules has beén extended to the more com-
plicated systems of spherical 6 ang symmetric'B’49 top
molecules. The classical extended rotational diffusion
theories have been successfully used to interpret a

considerablelnumber of infrared 7,22-25 and Raman 26~28

band shapes and nuclear relaxation times.28~33

A disadvantage of the classical extended rotation-
al diffusion theory is that it is limited to those
systems whose rotational’motion can be descrih Y
clqssicél mechanics. The classical approach predicts
symmetrical band contours and the application of cl.. .-
sical extendedirotational\alffusion theory is ofiten
questionablg or impossible in systems with asymmetric
band shapes. Gordon 2s34,35 has proposed a semi-
classical theory to predict reérientational correlation
funetionsl This theory, which in many ways parallels
_ the modified BlOCh equation treatment of chemical
exchange used in magnetlc resonance 55, makes use of

semiclassical scattering theory 34,36 to describe
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collisions. Semiclassical scattering theory is a pro-
cedure which approximates dﬁantum mechanical Scdttering
theory by using ciassical scattecring theory and thé cor- .
respondence principle. In this procedurc a particular
intermolccular potential is adoj . and classical scat-~
tering theory is used to predict the trajectories of
particles beforc and after they have been involved in a
collision. The classical angular momentum of the particle
before and after the collision is determined and tﬁo
semiclassical scattering cross section is calculated by
rounding off the classical angular momenta to the near-

36,37

~est multiples of -A. Gordon et al, have used this

procedure to study reorientation in CO/He and HC1l/Ar mix-
tures at low pressures.

| In this chapter, we will develop an extended ro-
tational diffusion interpretation.vf Gordon's semi-
classical theory. 1In section II-B this semiclassical
band shape theory will be developed, and in section
II~C the theory will be applied to a study of‘the 93
infrared band of CH, in liquid and gaseous mixtqres.38"39
Section II-D will be devoted to a comparison of these
results with those obtained by application.of the
classical theory 6 and with the results of an independ-
study >6 on CH, in the dense gas phase. In

1 4
addition, the limitations of the theory will be dis-

ant NMR-T

cussed.
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B. ‘DEVELOPMENT OF SEMICLASSICAL BAND SHAPLE THEORY

1. The Gordon Semiclassical Thcory

The Fourier transform of the infrared absorption

band shape is the dipole reorientational correlation

function defined by 2,

G(t) =Z pi<i|;gv(o)|f><f|;gv(t) |i> =Zokdk*<o>dk(t)
' k

i,f
(Ir-1)

1

where Py is the Boltzmann factor for the rotational
state |i> and the sum over i and f is over the initial
and final states respectively. The subscript k used
here and i: the following equations replaces the pair
of subscripts i,f. The Heisenberg operator, %v(t), is

\»

the dipole operator at time t, and dk(t) is

a, (t) = <f,[fﬁ\)(t) iy . (II-2)

Equation (II-1) follows from Eq, (I-6) by replacing §
by the dipole operator, n”. In ogder to calcula£e this
correlation_function, it is necessary to know the time
dependence of dk(t). If the molecule is not involved
in collisions which cause changes in its angular mom-

entum (and .thus its reorientational motion) dk(t) is

readily calculated. Replacing the Heisenberg operator
%v(t) by the equivalent expression 3,
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~ ~

igut/ﬁ¢V - Y e /n
e . m (0)e » Eq. (II-2) becomes
5 Tw, t Tw, t
A = (Vo)) e * =a e K (II-3)

i

where @i is defined in terms of the rotational energies

E; and E¢ by

w, = (E, - E.J /A . (II-4)

In the absence of collisions the transition dipole
7w, t
moment dk(t) oscillates as e with amplitude dk(O)

and its tir -derivative is given by

dla, (t)]

——————e = . d, (t) . (I1-5)
dt kk

Egs. (II-3) and (II~S) are exact provided that the
molecule is not involved in collisions. If the molecule
is involved in collisions then the reorientational
motion‘of the molecule in the other angular momentum
states must also be included_in the calculation of dk(t).
One approach to this problem would be to follow the re-
orientational motion in each of the rotationdl states
which the molecule samples between time 0 and t then
dk(f) could be calculated as the statistical average‘
of all possible sequences of sampled states. This is

the procedurc employed in extended rotational diffusion
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theory and will be considered in Chaplter III. Gordon
has suggested an altc:nativc procedure which is similar
to the "jumping spin" trecatment of chemical exchange in
magnetic resonance spcctroscopy.55 Gordon suggests that,
instead of calculating the product in Eq. (II-1) for
each individual transition dipole momcnt,'the product
be calculated at time t for the sum of the transition

dipole moments of a particular form. He replaces Eq.

(II-1) by
*
G(t) = E dk dk(t)Ave . (IT-6)
. k
where dk' the intrinsic line amplitude, is the quantity
"V . ‘ .
<f|m [9 and'dk(t)Ave. is the sum over all molecules,
at time t, of the transition dipole moments of the form
<flmv]9 - The subscript, Ave., has been introducéd
to emphasize the "averaged character" of dk(t)Ave‘ and

to distinguish it from}dk(t) which refers to the transi-
tion dipole moment on a particular molecule. 1In order
tofclarify the wording in the development to follow,

dk(t)Ave will be referred to as the line amplitude of

-

the k-th spectral line.

Since, dk(t) is simply the sum at time t of

Ave.

matrix elements of the form <flmv]i> the time de-

péndence of dk(t) can readily be described simply

Ave
by adding transfer terms to the equations of motion
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tEq. (II-5)]. These transfer terms would account for
the collisional transfer of line amplitude from the k-th
spectral line to all-other. lines and for the transfer of
line amplitude to thek—th-spc&tral line from all other
lines. The time dependence of dk(t)Ave. can then be

expressed by,

9 1a
dat

= zw, d, (t)

k(t)Ave.] k 'k Ave, vrlkkdk(t)Ave.

+ Z 93 ave. (11-7)
1%k '

where the first term on the right represents the change

in dk(t)Ave

and third terms represent the transfer of line ampli-

duce to the free motion, while the second

tude out of thek-th line and the transfer of line ampli-
tude into thek~th ling respectively. Thus Hkk gives

the rate at which a unit amplitude in line k would de-
crease due to collisions, while ’nkl gives the rate at
which collisionswouldtrénsfer unit amplitude in line 1
into line k. The set of simultaneous differential eQua—
tions represented by Eq. (II-7) can be expressed in the

matrix form

—[d(t)

«

(igo ~U)g(t)Ave.

(I11-8)

Ave.
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where d(t)Avc is a column matrix whose k~th element is

(t) and w, is a diagonal matrix with kk~th element

k Ave

The matrix!} is defined above.

Eg. (I1-8) éan be solved subject to the boundary
condition that we start with an equilibrium distribution
of linc amplitudcs; i.e. dk(o)Ave. = dkpk’ where Pk is
the equilibrinm population factor for the k-th line and
dk is the intgiﬁsic line amplitude defined earlier.

Solving Eq. (II-8) subject to this initial condition, we

-obtain

9 e, = (30 [l “1)EDE.d (11-9)

where P is a diagonal matrix with kk-th element Pk and d

K-

The reorientational correlation function defined

is a column matrix with k-th element d

in Eq. (II~6) can now be expressed by

I

: +
G(t) é}i:dk*dk(t)Ave; g ‘?(t)Av

” €. (I1-10)

a" . exp [(fw  -1)t].p.d

I

+ e
where d 1is .the transpose of the matrix d. The corres-

ponding expression for the spectral density is obtained
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t + . —_
I(w) = Im{g c(wl - wy = 2I1) l.P.d} (X1-11)
where w is the frequency of the incident radiation and 1
is a unit matrix; Im{} implies the imaginary p. of
the quantity within the braces and ( )A1 implie. -

inverse of the matrix within the brackets,
1

2. Extended Diffusion Interpretation of the Gordon
oo eEra ROl O the Lordon

Semiclassical Theory
erliic-dassical Theory

36,37 have determined the matrix, JJ,

Gordon et al.
for the CO/He and HC1l/Ar systems using semiclassical
Scattering theory. Because semiclassical scattering
theory calculations are very costly and possibly un-
reliable 36, and because they require a detailed know-
ledge of the intermolecular .potentials in each particu-
lar system, we have opted to interpret 1 in terms of
the classical extended rotational diffusion,model.5'6
This might appear to be anvarbitrary decision, but we
feel that it is justifiable in terms of the success
achieved in the application of the classical extended
‘Yotational diffusion models.’’22733

In the classical rotational diffusion models °'°”
8'49, in which the rotations of the molecules are
treated using classical mechanics, collisional events

~

are assumed to occur at an average rate Ty v where T
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is the mean time belween events., Sincc‘EEEh coliisional
event destroys all correlation in the angular momentum
of, the molecule, the angular momentum correlation time
is Tse The "collisiqns" in the extended diffusion models
are assumed to randomize the direction of the rotational
angular momentum, and may randomize its magnitudé as
well. Analogous semiclassical -rotational di%quion
models may be constructed so that the discretencss of
the rotational levels may be taken into account, but
the basic intuitive*implicityof the diffusion picture
is~preserved. |
The rotational stateé of a spherical or symmetric
top molccqle.are described by three dJuantum nunbers:
the té§31 angular momentum quantum number J and the
projection quantum numbers on molecule-~fixed and space-~
fixed directions, K and M respectively. The semi~-
classical analogs of the classical rotational diffusion
models are models in which collisional events randomize
the projection quantum nﬁhbérs K and M in both M~ and
J-diffusion limits, ang randomize the dJuantum nunmber J
onto a Boltzmann distribution in the limit éf J-qif-
fusion. Since  the rotational States of a spherical
top molecule within a J-manifold are degenerate, energy
transfer can occur at the collisional events in J-

diffusion only. - In the semiclassical J~diffusion

model, the probability that a molecule initially in
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the state 'IJ,K,M> is put into the state |J', X', M'>
by é collisional event depends only on the Boltzmann
factor for the final state. 1In the semiclassical M~
diffusion model, the quantum number J is not changed
by collision, but’the quantum numbers M and K are
randomized. |

The tfansfer matrix g does not descriﬁe the rate
gf transfer of>molecules between rotational states, it
describes the rate at which intensity amplitude (tran-
sition dipole moment) is transférréd from one épectral.
line to another. One would expect, however, that the
rates of these processes are related. A molecule in
the rotation state [J,K,M> of the ground vibrational
state can absorg infrared radiation at as mahy as three
| distinct frequencices, l.e. it may give rise to absorp-~
tion lines in each of'the P, O and R branches of the
spéctrum. Consequently, the determination of the
rate of transfer of line amplitude from one -spactral
line to another is somewhat more complicated than the
detgrmination of the rate of transfer of systemsﬂfrom
one rotational level to another. In orde? to‘reléte
the rates of transfer of line amplitude between
spectral lines to the rate of transfer of molecules
between rotational levels, we make the argument that,
-although the individual molecules in the J~th rotational
level are associated with more than one ‘transition

moment (i.e. can absorb at more than one frequency),
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we can divide the molecules in the J-th rotational level
into groups associated with each of the possible transi%
tions. This assumption implies that if one molecule is
transferred out of the J-th rotational level, the P-,

C~ and R-branch lines, which are derived from this
rotational levél;lose intensity amplitudcsdJ(p)/B,dJ(é)/B
and dJ(R /3 respcctlvely,_where d is the 1ntr1nSLC ‘line
amplltude of the i-th llne in the spectrum. The 1nten—
sity amplitude which is lost by the i-th line when one
molecule is ‘transferred out of that line is di’ and the
intensity amplitude gained by the j-th line to which
transfervoccurs is dj In gehcral di varies from line
to llne in the vibration- rotation spectruin. Since the
fractloncﬁfcollisional events which transfer a molecule
from the J-th rotational level to the J'-th level, in
the J-diffusion limit, 1s given by the Boltzmann factor,
Pyrs for the J'-th level, the fraction which trénsfer
line amplitude from the i~th spectral line, which is
associated with the J-th level, to the i'-th spectral '
line, which is associated with the J'-th level, is pJ,/3.
By analogy to the classical rotational diffusion models,
we take the average rate of collisional events to be
TJ~l. Then the transfer matrix, I]J, which describes the

rotatlonal bchav1our of molecules undcrgOLng J-diffusion

has elements
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(l—Pi)/TJ i=j
Hij - o (I1-12)
—Pi(di/dj)/'rJ 1#7 '
where Pi is equal to one-third of the Bqltzmann factor
for the rbtat}onal level with which the i-th transition
1s associated.

The prescription for the elements of the transfer
matrix in the sémiclassical M-diffusion model is some-~
what different because the collisional evﬁnts are
assumed to randomize the direction of the angular momen-~
tum vector, but not change its magnitude. In this
limit, line amplitude is transfefred only bethen 1ines
in the different branches of the spectrum which origin-
ate in the same J~level. In thé absence of collisions,

the equations of motion for the line amplitudes of the

- transitions originating in a common J-state are not

coupled, so there is no reason to expect line amplitude

transfer between these lines unless collisions occur.

. ] M
We therefore assume that the transition matrix:, [I , in the

M-diffusion model has elements

-1 i;j

2 .
oM - 3 J (I1-13)
1J L. ja ¢ "l iAi i and j
3771737 g - assoclated with
common J-levels
0 i¥j, 1 and j

associated with
different J~levels.
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where Ty 1s the mean time between collisional cvents
just as in the J-diffusion model.

A further subdivision of the molecules in an en-
semble of spherical molecules like methane, which
contain several equivalent nuclei with nuclear spins,
is required because the molecules exist in different
nuclear spin isomers, analogous to the ortho and para
isomers of.hydrogen.40 Sinée the ratc of interconver-
sion of the nuclea£ spin isomers is several orders of
magnitude slower than the rate of rotational energy
transfer in methane 57, one must view the infrared
spectrum of methane as a superposition of subspectra
arising from ortho-CH, (symmetry F), para-CH, (symmetry

- E) and meta~CH, (symmetry a). The band shape of methane,

4
therefore, should be calculated in three separate com-
putations -~ one for each symmetry spebies ~ which allqy
transfer of line amplitude only between the lines of a

single nuclear spin isomer.

C. APPLICATION OF THE THEORY TO CH4 BAND SHAPES

;
¥

1. Calculations

The vibration~rotation spectrum of the v mode of

CH, in * - low pressure gas phase is well resolved and

4
exhibits some splitting of the lines arising from the

. 4
rotational levels with high J, by Coriolis interactions.38
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The observed absorption frequencies of ci, have been

reported by Plyer et gi.sg, and formulae for the

intrinsic line amplitudes, di’ have been given by
Childs and Jahn.60 The Boltzmann factors for the
rotational levels of the various nuclear spin isomers

of CH4 were computed using the weights given by Wilson

and Herzberg.10s61
Thé calculation of I(w) and G(t) for the v band

of CH4 with a given [] matrix was accomplished using

the diagonalization algorithm suggesteduby Gordon

ot al. 35,62

—— ——

This algorithm improves the efficiency
of the calculation of I(w) because it takes advantage
of the fact that the inverse of a diagonal matrizx, c,
1s the diagonal matrix whose elements .are the inverses
“of the elements of C. The G(t) calculation is simpli-
fied”by,noting that thé exponehtial of a diagonal
smatrix C is a diagonal matrix whose kk-th element is

exp[Cyy . Usipg these algorithms Eq. (II-10) and

Eg. (II-11) become

G(t) =d . S . explrt] . S

[Bav]
o
=
H

|
et
o

4

and

e N
g

I(w) :-Re{ g+ . S . (é-iwl)~l . -1 . . d}



29.

]
where Re{} implies the real part of the quantity within
the braces and the complex matrices S and A are defined

by
sTH L (Gw ) LS = A (11~16)

where 5 Es a diagonal matrix and §—l is the inverse of
-§. The calculations were performed on an IBM 360/67
digital computer using complex matrix inversion and
diagonaiiz?tion procedures throughout. A listing of
the Fortr;h“brogram is given in Appendix II-A. It was
found to be more efficient to calculate G(t) by nume;i—
cal Fourier transformation of I{(w) calculated fron
Eq. ({I~15)vthen to célculate both G(t) and I(w) inde-
pendently from Eq. (1I-14) and Eq. (II-15). This
<§gmérical Fourier transformation procedure was used
throughout and employed trapezoidal rule integration.
In a set of preliminary calculations the band
shape for the F—Spociés was calculated in two different
ways. In the first calculation, all 44 spectrai lines
asSbciated with the rotational states in the range
0 £ J< 7 were included. In the second approach, the
transition frequgncies associated with a given J-state
in a given branch werc averaged and the averaged fre-
quency was used in the band shape calculation.- This

method resulted in a band shape calculated from Only

21 lines. The nature of the averaging process used is
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indicated in Fig. 1 (a)~(b). The resulting spectra for a
Ty of 9 x 10—13 sec, representative of a CH4/HQ mixturc

at 100 amagats, were identical. Since the Coriolis split-
tings of the frequencies averaged in this latter calcu-
lations arc represcntative of those encountered in the
range 0 < J < lz’and because the correlation time is
representative of the lecast dense sample studied, it

is apparent that neglect of Coriolis coupling 1is amply
justified in thesc calculations.

In a second set of calculations the overall
methane band shape was calculated by superposition of
the component ortho~, para- and gggg—CH4 subspectra cal-
culated from frequencies averaged over the Coriolis
components of each as described above. In order to
assess the importaﬁce of the separation into subspectra,
a series of band shapes were computed by relaxing the
restriction that line amplitude be transferrcd only
between lines of the same nuclear spin isomer. In these
latter calculations, the Boltzmann factors for the
‘rotational levels wore taken to be the sums of the \///“
Boltzmann factors for the nuclear spin isomers, and the
absorption frequencies of the lines for each nuclear
spin isomer were used to construct an average absorp-
tion frequency {[see Fig. 1(b)-(c)]. Methané-band shapes
calculated using this proccdure are given in Fig. 2
as the dashed curves. Also included in Fig. 2 are the

corresponding band shapes for the individual nuclear



FIGURE 1

Construction of average frequencices for the P (9)

lines of CH4

(a) All multiplet lines in P (9).

(b) Average of Coriolis multiplets for each

nuclear spin isomer.

(c) Average of nuclear spin isomer frequencies.
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FIGURE 2

V4 band shapes of CHA computed from the semiclassical

J-diffusion model

(a) T = 9.0 x 10/13 sec, T = 295K
(b) T, = 1.5 x 10"13 sec, T = 117K.

~——— - Individual nuclear spin ilsomer spectra,
————— ~ spectra calculated using line frequencies
obtained by averaging all Coriolis multiplets of

all nuclear spin isomers. The vertical bars under
the computed band contours indicate the positions
and relative intensities of the iiné frequencies

used in each calculation. The solid curves in the
lowest section of the figure represent the normalized

sum [(5A + 2E + 9F)/16] of the three nuclear Spin

isomer spectra.
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-
spin isomerscﬁfmethane and the band shape calculated by
taking the weighted.sum of these isomer band shapes.

The band shapes in Fig. 2 (a) and (b) approximate the
observed spectra of a CH4/He mixture at 100 amagats

and the obsecrved spectra of liquid methane respectively.
It is clear that the éeparation of the band shape com-
putation into separate calculations for each'nuclear~
spin isomer is unnecessary, in the range of T of
interest, since the differences in the spectra calculated
by the two methods are insignificant. We have based
éubsequent calculations on a total thhane picture which
allows collisional transfer of intensity between lines
belonging to different nuclear spin isomers, since this
reduces computation time.

In Figs. 3 and 4, the band shapes calculated
with the J-'and M-diffusion limits of the semiclassical
diffusion model are given for a range of values of Tqe
Tt is clear that the two limits of the diffusion model
give similar results when T5 is long, but give signifi-
cantly different band shapes in the limit of motional
narrowing where T is short. Motional broadening of
the individual vibration-rotation lines in the dilute
gas limit, where Ty is long; is more efficient in the

J-diffusion model, for a given value of Tys than in

the M-diffusion model. This observation i§ readily



FIGURE 3

Vs band shapecs of Ch, computed with the secmiclassical

The angular

(a)

(b)

(c)

(d)

(e)

11.

J-diffusion model at 295K

momentum correlation times, T are

JI

10713 sec

lO_13 sec

lO—l3 sec

lO,—13 sec

lO-13 sec
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FIGURE 4

V3 band ShapCSthCH4 computed with the semiclassical

M-diffusion model at 295K

The angular mbmentum correlation times, TJ, are
(a) 11. x 10713 gec
(b) 7.0 x 10713 sec
(c) 4.2 x 10—;3 sec
(d3 2.0 % lOwl3'sec
-13

(e) 1.0 x 10 sec
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| 40.
undersfood when one considers the lines between which
intcnsity‘amplitude is transferred in the fwo models.

In the J-diffusion model, line amplitude can be tfano—
ferred between lines wi-hin a branch (spacings of 9 cm *
to 11 em V), while the M-diffusion model allows only
those transfers which are between lines associated with
the différent transitions from a éingle :otaﬁional level

L l). The amdunt of broaden-

(spacings of 8 cm © to 250 cm
ing of the lines is related to the spacing between them
as well as the magnitude of the off-diagonal elements of
I which connect them ~ the smaller the spacing and the
lafger the off-diagonal element, the broader the line.sé’
In the limit of motional nafrowing, the semiclasszgal M~
diffusion moc predicts a band shape with a sharp spike
in the region of maximum absorption just as the classical
extended M-diffusion model does.®’® . The J-diffusion.

models (both classical and semiclassical versions) give

a less rapidly:varying spectral density in this region.

2. Comparison with Experiment

~ In comparing experimental results with those
predicted by the semiclassical rotational diffusion
‘models, one may chobse to compare either the observed
band contours with spectral densities compﬁted from

Eq. (II-15), or one may compare the reorientational cor-
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relation functions obtained by Fourier transformation of
the band contours with theoretical correclation functions.
We have found that the correlation functions obtained in
our calculations were unreliable because we‘truncated the
rotation~vibration spectrwnatthose lines arising from
the J=12 rotational level. The neglect of the lines
associated with J>12 was necessary to maintain computa-
tional efficiency by keeping the order of I as small as
possible. It did however lead to some unreliability in
the spectral amplitudes in the wings of the spectral
band and this unreliability is transmitted and amplified
when the correlation function is obtained by Foﬁrier
transforming the computed band shape. We have chosen
therefofe to compare experimental and computed band
shapes rather than their Fourier transforms.

Examination of Eq. (II-10) explains this depend-
ence df G(t), at small t, on the wings of the spectral
density. The contfibutions to the correlation function
are determined by two factors: a damping term exp [~[It]
and a term exp[igot] which oscillates with frequency
90.' At short times the oscillating terms are nearly in
phase and thé contributions to G(t) reinforce each
other. As time\progresses these terms get out of phase;
the larger the difference in the frequencies of oscil-

lation. the greater the dephasing. Therefore the con-
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tributions from the transitions in the wings (large w)
are dephased much faster than the contributions from the
transitions near the center of the band (small w). Be-
cause of this dephasing the contributions to G(t) from
the wings of the spectral density soon cancel each other
as time increases and their:influence becomes negligi.le.

The fitting of_observed band shapes with those
calculated froh the semiclassical rotational diffusion
mg?els involves comparing experimental spectra with a
series of theoretical ones calculated with different
valges of Ty in both J- and M-diffusion models; In pre-
paring the calculated spectra for comparison with
observed ones, one must choose a procedure for normaliza-
tion of the spectral amplitudes. One can require the

Ri

calculated and observed spcctra to-match at the point
Aof méximum absorption (inténsity~norma}i;q}ibn),or;one
Qah require them to be normalized such that the afeds
under the calculated and observed curves are 'equal (area
normalization)., Intensity normalization tends toiweight
the central section of the band very strongly,‘while'
area normalization allows a more realistic weighting
‘over. the whole §pectral band and is the preferred-method.
AS~We have indicated abovey the Qings‘of our caléulated
spectra afe not tbo reliable becéuse we. have not in;4

cluded all of the weak transitions which would contribute
. . Y %

¥
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to the amplitude in the wings. We have chosegvto take
the spectral arca in a 120 cm * region symmetrical about
the frequency of maximum absorption as the area used in
the normalization. The best fits of observed spectra
with those calculated from the semiclassical diffusion
models were judged by visual comparison.

The infrared data for methane in high pressure
mixtures with inert gases werec obtained from Armstrong 39,
and those for liquid CH, and CH, in liqguid noble gases
were obtained from Cabana. >0 Equally satisfactory fits
of the observed high pressure gas spectra were obtained'
using the.M~ or J—aiffusion model. Representative‘
examples of the agreement between calculated and observed
Band shapes are given in Fig. 5. The valﬁes of the
angular momentum correquion time which were obtained
from the comparisons of calculated and bbserved'épectra
are given in Table 1. It should be noted that the
spectra were calculated using frequencies appropriate
to the dilute gas phase and agreement between calculated
T oactra andthoseobserved.in the dense gas can only be

'A;ded 1f *he whole of the calculated spectrum 1is

s1fted - cm” T to higher frequencies for the
gaseour sys nd 5-13 cm t to lower frequencies for
the 1i-1id sys' .ws. This is not too unexpected because

- we have only considered the broadening effects of



FIGURE 5

Comparison of the observed . band shapes of CH, in densec
3 — 4

— e —

gas mixtures at 295K with spectral band shapes calculated

with the semiclassical J-diffusion model

The band shapes are area normalized over a 120 cm—l region
about the center of the band. The intensity scale numbers

arc for comparison purposes only and are relevant only

within the figure. Obsecrves - r calculated - ~~-~-- .
(a) CH4/He, 96 amagats; T, = 12, x 10713 sec
(b)  CH, /N, 186 amagats; T, = 4.2 x 10713 sec
(c) CHq/He, 57" amagats; TJ = 2.9 x 10~l3 sec
(d) CH4/N2 463.amagats; TJ = 1.8 x 10\13 sec
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molecular collisions: Frequency shifts can also be pro-
duced by intermolecular interactions 63, but we have
made no attempt to include them. Our neglect of these
frequency shifts may account for the poorer quality of
the fits of the highest pressure gas spectra.

The spectra of CH4 in the liquid phase and in
dilute solutions in liquid rare gases were compared with
calculated spectra, and it was concluded that the best
agreement was obtained with the J-diffusion model for
the neat liquid, and with the M-diffusion model for the
liquid rare gas solutions. This is in accord with the
conclusions drawn in an earlier analyﬁis of these.spectra
using the classical extended diffusion modcls.7 More-
over, the estimates of the angular momentum correlation
times T which give best agreement between the observed
spectra and those calculated from the semiclassical
diffusion models are in close agreement with the correla-
tion times reqﬁircdix)obtain a satisfactory fit of the
symmetrical part of the observed band shape with the
spectral densities obtained from the classical extended
diffusion models.

The calculated band shapes disgpssed above have
been compared to expefimental'spectra assuming that the
experiments were performed under conditions in which

instrumental broadening of the bands was insignificant.
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Since the exact nature of the slit function of the
Spectrometer was not known, the effects of convoluting
theoretical absorbance spectra with a triangular slit
function of width 4.5 vw~l were studied. The band shapes
computed. in this way weri o compared with observed spectra,
and with the exception of the low density methane-helium
band shape, the slit function had very little effect on
the band shape, and had no effect on the asscssment of
the angular momentum correlation times obtained in these
comparisons. For the spectrum of CH, in helium at 96
amagats, the slit function had a significant effect on
the shape of the band, and the value of Ty whi~h yielded

best agrcement between theory and experiment was 12 x 1513

-sec, in contrast to the valuc of 9.0 x 10,13

sec obtained
neglecting instrumental broadening. Because the effects
of the slit function on the band shape are of the same
order of magnitude as the effects of collisional broaden-
ing in this low density gas mixture, the angular momentum
correlation time obtained in our analysis 1is subject to
large uncertainties.

The analysis of the gas phase épectra did not give
a clear cut distinction between M- and J-diffusion limits.
The reason for this is the similarity between M- and J-

diffusion spectra in the range of interest. The semi-

classical correlation times of the angular momentum from
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this analysis are given in Table 1 for both the M~ and
J-diffusion limits. Except in the cases of the very

.high pressure samples we see that the values are essen-
tially‘identical. In the high pressure samp;eé M~-Qif=
fusion exhibited motional narrowing effects which were

inconsistent with the experimental band shapes.
4

D. DISCUSSION
1. - Comparison of Semiclassical Results with Previous
Treatments

The magnitudes of the angular momentum correla-
tion times obtained by fitting the observed spectral
band shapes with band shapes calculated from the sémi—
classical rotational diffusion models can be compared
with those ébtained from the analysis of proton magnetic
relaxation times which are minated by spin-rotational
interactions. Since the only relevant experimental
data in the literature consists of proton relaxation
rates for methane gas at densities up to 550 amagats 56,
the angular momentum correlation times obtained from
the relaxation data are not strictly comparable to those
obtainédpin\tﬁis work becausec the conditions were not
identical. However, it is of interest to ascertain the
reaéonability of our estimates of 1_. Trappeniers

J
56 21

et al, used a perturbed free rotor model of re-

Orientation to analyse their data. As noted above,
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this implies that the effects of only the first
"collision" arec included and the anisotropic spin-rota-
tion contributions to the NMR relaxation times are
treated in an approximate fashion. We have reanalysed
their data using the classical extended rotational dif-

fusion thcory.6 The values of 1. obtained in this way

J
are shown in Fig. 6 together with the present Ty values
for CH4.in dense gas mixtures. Although, as mentioned
earlier, the numbers are not directly comparable because
of the difference in the perturbing species, we see

that the angular momentum correlation times obtained by
the different methods are very similar.

Since the general conclusions 5f the analysis of
the V3 band of methane both in liquid and high pressure
gas systemé by the classical extended diffusion and
semiclassical diffusion models are the same, it is of
interest to compare the band shape computed from the

6,7 with the sym-

classical extended diffusion model
metric portion of the band shape computed using the.
semiclassical rotational diffusion model.,; Several
representative examples are shown in Fig. 7 for the
J-diffusion limit. It is clear that, with the . ep-
tiSn of the rotational fine strUCtﬁrQ which app:« .rs

in the semiclassical spectra at long Ty the two

models give similar results for correlation times



FPIGURE 6

Density dependence of Ty determined by comparison of

oOobserved Vg band shapes with thosc computed using the

semiclassical J-diffusion model.
D A A

0 -~ CH4/He, A*CHA/N2, 0 -determined from proton

relaxation times in methane gas (ref. 56).
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. FIGURE 7.

Comparison of the symmetrical part of the Vg band shapes

of methane calculated from the semiclassical J-diffusion

model with the band shapes calculated from the classical

extended J-diffusion modgi

Semiclassical J-~diffusion -~ , classical J-diffusion -——---.

The angular momentum correlation times, Tyr are (a) 11. x

0'13 ~13 -13

1  (b) 7.0 x 10 , (¢) 2.9 x 10 , and (d) 1.0 x

lO—13 sec. The frequency scale is in reduced un:ts of

f inertia of CH4 and

"shapes are area normal-

— 1
2mc v (I/kT) ° where I is the moment

c is the speed of light. The ban

ized as in Fig. 5.
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greater than 2 x lO—13 sec. For correlation times less

than 2 x 10—.13

sec the semiclassical spectra begin to
'narrow mbre rapidly than the classical spectra. It
is interesting to note that the classical model produces
the "better" fit for high pressure samples. Onec must
conclude therefore that the asymmetry of the spectral
band is due to guantum mechanical effects, ;:t that the
symmetric part of the band contains enough information
ik
about the fép;ientation of the moleculess to permit study
usihg Ehé“giﬁbie cosine Foucrier tﬁénsform of the band
‘shape. This procedure has been applied by a numﬁéf éf
4,6,38,39,46 o

‘workers with little justification and the

results presented here establish its validity.

. *“
o8
Eh
e - ¢

2. Limitations of the Theory

In our semiclassical calculations we have used

intrinsic line amplitudes appropriate to a rigid

spherical rotor.6O Since vibrational-rotational coupling‘
40,58,60

.

1s important in methane this rigid rotor approx-

imation requires some justii.cation. In Fig. 8 we have
3 infrared spectra 2§ Cli, determined at
a density of 0.1 amagat, with the stick spectra cal-

compared the v
culated using the rigid rotor approximation. W see
that although’therigid rotor approximation préagcts

the varahch to be more intense than the P-branch the

reverse 1s true in the experimental spectrum. This

»
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observation has been reported previously ‘by Welsh,

Pashler and Dunn.64 Héwcver, the intersit. 3 of the R-
<)

branch llncs are grcatcr than those of thc b~ branch“at

higher dLnultleS (sce 'ig. 5), which is more compatible
§
' - . ‘: \

with {id rigid_ rotor line strengths. There is, there-
nyc,l?$t;ejustiﬁication ic.using intrinsic line ampli-
tudec;ﬂ}uﬁjthah those of the rigid spherical rotor un-
lesé‘aﬁmcre'exact treatment of the vibrational—rctational
«1nteractlon is "to be attempted Because of this failing
‘1n the calculated 1ntL1n,1c line amplitudes. the appll—
cation of this theory to the band shnpes of CH4 in low
density mixtures may be of dquestionable significancd?/ ¢
wé have used the extended rotational difgusion
picture of a . ision to define the colfisional trans-
yfet matrix, I, rather than semiclassicél scattering
theory because it drasticaiiy reduced the computation
time required to calculate a band shape and thus makes
the theory pract1Cal for "excry day” use. In addition,
we . felt that the apgllcatlon<3fscatter1ng theory with
an ill- deflncﬁ intermolecular potential merely served
_to obscure any 1nformatlon that copld &e realized from

36

" the experiment. Gordon et al. have fitted the infra-

.

red band shapes of the carbon monoxide molecule using

2,34

the sem1c1a551cal approach. They found that the

Wldth% of the¥vibrational~rotational lines perlCtLd
.Z’g )



by their calculation -+ 24 larger than the observed

widths of low densi v 1 mixtures. This‘discropancy; Wy
B W

was attributed to ei. Lnadequacies in the inEbrmodécu%
AR

lar potential used in their collisional cross scction
calculations ortopossible errors in their trajectory
calculation routincs.. At higher densities, the agrce-
ment between their calculated and obsecrved band shapes
was no better than ours. Clearly, from the success of
our simple theory relative to the success of the more.
qophisticatq% trecatment of Gordon, weJ?ust Concluae that
until more aé%urate intermolecular potentials become
available, the simple theory is adequate for the intég;
pretation of band shapes in terms of intermolccular
interaétionsﬁ‘ ‘ ’
' F

The semiclassical theory dcﬁgloped in section II-

B is restricted to band shapes which can bhe d@gdr}bed by

i

a limited number (<40) of tran:itions. ~This restriction

is due to the need to diagonalizc a complex matrix whose
order is the number of transitions included in the -cal-

3

all transitions arising from rotational states with

culation. For the v, band shape calculations we included

total rotational angular momentum gquantum number J<12.
Although this included approximately 96% of the CH4

molecules i;\thesystem, the predicted band shapes were

still inadcqé&te in the wings of the spectrum. Coriolis

o
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coupling is much more important in the Vg mode than the

v, mode of CH .40’ The laréér Coriolis splitting in the

3 4

Vg mode invalidates the averaging of the frequencies of

the lines within a branch arising from cach J-manifold

A

which we have used to simpljfy the Vs calculations.
Therefore, in order to include the same number of ground
rotational states as in the V3 study, approximately 200

, ,
transition lines would have to be considered. Thiﬁiis‘
far too great a number to handle efficiently by thé.
present procedure and still maintain reasonable coﬁputav‘
tion time. Similarly the application of the theory to

more massive molecules would ke impractical because

larger numbers of rotational states are poﬁglatéd.

In chapter III we will develop a "trué" semi-
classical version of the extended rotational diffusion
theory. This theory will not be so severecly restricted

to a limited number of rotational states and will be

used to study‘the Vg pand shape.



SEMICLASSICAL EXTENDED ROTATIONAT, DIFTUSION THEORY

————————— e

CHAPTER ITI v

A. INTRODUCTION

In Chapter II, we have developed a semiclassical
extended rotational diff&gfgnvi%terperation of Gérdon's
2,34 semiclassical band shape theory. Phis approach
adequately described the infrared absorption band shapes
of the v, mode of methane in gaseous and liquid mixtures,
however the application of the theory was restricted to
band shapes which could be describéd by a limited number
of transitions (<40). For this reason the v, mode of
methahz, in which Coriolis coupling is important, could
not be treated by this procedure nor could band shape#-
of larger molecules in which a greater pumber of rotation-
al states have significant populations. This restric—
tion to a minimal sez of transition lines.also~Tesulted \\\
in very poor agreement betwcen predicted and experimental
-results ;n fhe wings of the band shapeé of the Vg moders
6f CH4 and made %he predicted correlation functions
meanlngless at\hhort times. Becaus¢ the ‘classical
: theori%e cannot- %e USed to interpret bandwshapcs in
which Coriolis coup;;ng 1s significant and the previous
semlcla551gal thed;;‘;annot be used to treat systems in

which there are a large number of transitions, there

is a need for a semiclassical model which is nqt

W . 60
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severely restricted by the number of distihet transi-
tions included in the calculation.

The classical extended rotational diffusion theory

210,849 has becn widely used to interpret spoectral band

shapes and magnetic resonance linewidths in terms of

molecular reorientation.22ﬁ33 The versatlllty of this

theory lies in the fact that the individual steps in the
molecular roorientation'proceschs are followod in de-
tail. Thus the theory is not restricted by the length
of the rotational diffusion step as is the case for they,
bebye >4 and perturbed free rotor models.6’21’28 Because

of the versatility of the extended rotational diffusion

model one would OXpect that a s€§101a551ca1 interpre-
<)

'tatlon of this modcl would prové&-quite effective in -

treating band shapes in"Whieh Coriolis effects are

important. /

o

»

Recently Bliot et gl.65’66 have recognized the

potential of a memory function approach to the extended
_ rotational diffusion model. Berne and Harp 67 have
shown that the reorientational correlation function
G(t) and its associated memory function K(t) satisfy

the Volterra equation

o t
G(t) = ~fduK(u)G(t—u) . . (ITII-1)

O

where G(t) is the time derivative of G(t). Bliot



62.

.65’66 were able to show that, in the J-diffusion

et al
limit of the extended rotational diffusion model, the
memory function K(t) was 'related to KFR(t), the memory

function for molecules undergoing free rotaticn,by

K(t) = KFR(t)exP(~t/TJ) p (I11-2)

where TJ is the angular momentum correlation time. It

the free rotation correiation function GFR(t) and its
FR(t);Fan be cal~

time derdivative QFR(t) are known then K
culated using Eq. (III=L). Then-Eq. (III-2) can be used

iy

¢

to calculate k(t), the memory functién for a system of
molecules undeygoing rotational diffusion. -Once K(t)
Tis knowﬁ, G(t) can be readily calculated from Eq. (III-1).
Therefore, usind Egs. (IITI-1) and (III-2), and the
fpnctions GFR(t) and éFR(t), the reorientationa; cor-
~relation function G(t) can be calculated. All details
of the free rotational steps afe included in Gpg (8) and
1 éFR(t) and therefore all that is necessary tovggfine a
semiclassical vérsion of the extended rdtationél aif-
fusion model is to calculate the semiclassicél free
rotor corrélation function and its time derivative.
E In section B of this chapter, Eq. (III-2) will be
derived and the necessary relationships required for

the application of the memory function approach will

be developed. | In section C the numerical a. lysis
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brocedures used in tho application of the theory are
presented, while in soction p £he_model will be applied
&fo the calculation of the V3 and V4 band shapes of high
pfcssure mcethars, inert gas mixtures.39 Finally, in
section E, the TJ'S obtained from this analysis are dis-~
cussed and the present model is éompared to the model

bresented in Chapter 11.

B. THEORY

1. The Memory Function and Lxtended Rotational

Diffusion

The infrared absorption band shape can be expressed

by ?
0 ' > > ’L—; - x
I(w) = Ri/ndt exp[—ﬂwt]zij N <1]p.E(O)]i> <f¢p.E(t)ll>
) i,f
(I11-3)
. N

- _"'- c ]
where p is thé transition dipole moment vector and E (t)

is the electric field of the applied radiation, [i>
and [f> are the initial and final states of @ Vibrational-
rotational transition, Py is the Boltzmann factor for

state ]i> and w is the frequency of the incident radia-
->

-
tion. 1In Eg. (III-3), both p and E(t) are defined in a

molecular coordinate systemn. The time dependence of

-
E(t) arises from the Yeorientational motion of the mole-
=S

cule since the direction of E is fixed in the laboratory.
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The clectric field E(t), defined in the molecular coor-
dinate system, can be related to the electric field,ﬁlab,
of the laboratory coordinate system using the Wigner
rotation matrix, 33(1).68 The properties of the 4\ mat-

rices are discussed in Appendix I. Using the )\ matrix

lab (.~ (1)
:E ' A -
Ek(t) Em nk [Q(t)] (IT1-4)
m
where Ek(t) is the k-th spherical tensor component the

first order spherical tensor (a vector), E(t), defined

in the molecular coordinate system and Emlab 1s the m-~th

spherical tensor component of the spherieal tensor, glab’
Nl defined iﬁ the laboratory coordinate éystem. Q(t) repre-

sents the set of Euler angles describing the transforma-

tion from the laboratory to the molecular coordinate iy

system. Introducing Eq. (III-4) to Eq. (I11-3), we

obtain

: . | *
- . * kl l b l b
I(w) = R?/rdt eXp[—lmt]zi: piZE: P kaJvl) +kEmF Ema

O l,f k,k' .
m,m'
(1) : (1) *

1D one)  (f12 T e 1) | (1T1-5)

i

o

' wherea P_) are the spherical tensor components of the
transition dipolé moment defined in the principal axis

coordinate system (the coordinate system in which the



inertia tecnsor of themolecule is diagonal). For a spher-
ical top, the inertia tensor is diagonal in all coordin-
ate systems and the spherical tensor components of the
transition dipole moment can be taken to be the transi-
tion moments of the degenerate vibrational modes of the
molecules all of which are of equal magnitude. It should
be noted that in expressing I(w) in the form of Eq. (III-
5) we have assumed that the t%ansition dipole moment is
independent of the vibrational-rotational state of the
molecule. In Appendix I, it is demonstrated that ghe“
space average over the product of rotational matrices in
Eg. (III-5) vanishes except when m' = %Hand k": k.

Thus Eqg. (III-5) bdcomes

I(e) = Pfi/ dt QXP["iwt]E piE ' IPAKIQIEnl]abJ:z
1\,:-‘Lilf k,m

o}

)*

(1)
. 1) % .
x <ll!>mk [2(0)1]£) <f,ﬁ)mé [e(e)1]d ) . (111-6)

b

. . Tlab . .
The orientation of E 1s arbitrary so we average over

. . . % .
all possible orientations t6 obtain

|plab)2 €2 (111-7)

m

|
W~

SES\\

; ! - > “
where £ is the magnitude of Elab. Substituting Eq.

W3

(11147) into Eq. (III~§) and omitting all %%nsﬁant multi-
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plicative factors

I(w) = Rf/ dt exp[—'imtjz < (]) O(O)]Aﬂl]{(l)*[g(t”>
‘ k,m

(8]

(I11-8)

and the associated correlation function is given by
L

(t) Z<D- [0yt g } (111—9>~
K, R g

M?‘(

[y

In going from Egq. (III-6) to Eg. (III~-8) the sum over the
projection operator, |f><iﬂ, has been carried‘out and
the statistical average indicated by the weighted sum over
the expectation values <i] ¥]i> has been indicated by
the angular brackets. -

In the remainder of this section, a classical
description of reorientational motion will be used to
predict the,reorientational correlation function defined
by Eg. (III-9), and the relationship—betweén‘this cor-
relation function and its associated memory function
will be examined in order té derive the relationship of
Bliot et al.®'®® (mq. (111-2)]. The development of
the classical extended diffusion model has been chosen
here, rather than a somlcla551cal dpproach, because the

physics of the model is most clearTy conveyed in clas—

sical terms. . Because we are only concerned with the
.% ~ .
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memory function as a vehicle for simplifying the math-

ematical apparatus used to derive the expressions for

the reorientational correlation functions and spectral
densities, not as a statistical mechanical function

in its own right, we will develop the theory using the
classical description of reorientation and show 1 &

i
the memory function formalism leads to tI- same )Vuu1~:

as the detailed geometric approach does. e dar Mo

ment of the semiclassical model will then be madé\iii?b

the memory function approach.

A}

The extended rotational diffusion model describes

N

the reorientational motion of a molecule as a series of
rotational steps which are terminated by "colli$ions".
Two limiting types of "collisions" are cdnsidered: the
M-diffusion and J-diffusion limits.?’®/8 [, the y-qif-
fusion limit, the orientation of the angular momentum
vector and its magnitude are randomized onto a Boltzﬁénn
distribution, while in the M-diffusion limit, only
" the orientation of the angular momentum vector is ran-
idogizéd by "collisions"™. In both cases, the reorienta-
tional motion will be changed by the collision.

If we divide the ensemble into groups of mole-
cules which are in their n-th diffusive ste§ at time t
(i.e. have expericnced exactly n+l collisions at time

t) then the correlation function of the ensemble can

be expressed as
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[e o]
1 .
¢ (g) > pm,06P ;e (. 1)
n=1 :
where G(l)(n;t) is the correlation function for those

molecules which are in their n-th diffusive step at time

t, p(n,t) is given by the Poisson dictribution

- /)" exp -t/ )
(n-1)!

(ITI-11)
e,

)

2 4 .
ﬁggnd TJ is the angular momentum correlation time which is
the average time between "collisions". Fronm Eqg. (I11-9),
it is cler that the partial correlation function

G(l)(n,t) is given by
¢ (n, 1) :Z<U§m]§1> [2(0)] U)m}gl)*mn(t)>
_ km

where Qn(t) descri@es‘the orientation of the molecular
coordihate system of a molecule in its n-th diffusive
step at time t relative to a lab-fixed coordinate- sys-
tem.

Ve @ill‘now consider the classical reorienta-

tional motion of a spherical molecule undergoing cnanges

in its angular momentum due to collisions. It will be
assumed that the collisions have occurred at tines tl,
tyr --..s t 5 a@nd that the molecule rotates fraely

e
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->
about the direction of the angular momentum vector, J,

with angular frequency, 5, given by

-+ >
w=J/1 (ITI~13)

\
where T is its moment of inertia. The matriyx &)(l)[nl(h)]
describing the trénsformation from the laboratory coordin-
aﬁe system to the molecular coordinate system of the
molecule in its first diffusive step at time t can be
expressed as a product‘ofv¥} matrices 1in the fol;owigg

way \

|
S

A (1) (L), v in ()
DR (6)] A [yt D7 Loy rBys 01

* D Wree0,00 D M a g 07t
(III-14)

where %N(l)[QO] describes the-transforhétybn fraﬁ.the
laboratory to the molecular coordinate sygtem at time
zero, %N(l)[al,el,O] describes the trénéformation from
the molecular coordinate system, at time zero, to a
coordinate system in which the z-axis .lies alotyg thé
(1)

direction of the wngular momentum vector, N [wltl,0,0l

describéénﬁhe rotation of the molecule about this z-
| (1) ~1

axis through an angle wyt, and D [Ql,Bl,O] des~

cribes the transformation back to the molecular coordin-~

ate system defined at time zero.
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Equation (III-14) defines the transformation of a

v o*

first rank spherical tensor from the laboratory coordin-'" "

-3

ate system to thc molocular coordinate system of a mole-= A

‘cule which is in 1ts first dlffﬂslvc stcp at time t This

o

transformatlon for a molecule whlﬁh is in 1t$ )ccond_dif—

fusive step at time t is givcn by

wD g L0 = gy Mg o
A (1) " NC -1 |
X {\ Clwy(tety) 0,008 %,‘101
_ (1] (v, (-
= l} [9 ]J—\ L "31 J~ [0 t7,0,0]

. : : PAEY oD S
{f} ."ﬂ_l) ! \(l L
A 'x,‘{yr‘;[chelaol, ) (a +8,70]

/.,%; ’ e Lo
' k*fbiifthct £9),0,000 M a0, 0071

- :, ,"} ) ~ - )

, i
" X ) .
é‘“?,. s ‘ » (I1I-15)

,where Q)(ly[‘ (t )f\’oscrlbes the transformatlon from

/1'

p

the laboratory to the molecular coordlnate systems at

time tl’ the time of the first 0011151on, and

S 01 2 My -ty 0,000 W e o 07

»

*idescrlbeq the reorfeﬁtatlonal motlon durlng the second

- dif¥us. ve step in the perlod (t tl)' Similarly, for )

a molecule wthl‘lS in 1ts n-th diffusive step at time

2

t, , . P

o

=
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. , 3% ’
. ] Vel n
v (1) (1) () s
N[O ()= N Q] 77/ A [/ By 0]
~ ni%s ~ .O 1”:1 ~
' (1) ' (1) -1
Eé;\ [U)l(tl”tl"l)lo'O] [{T\ [al’Bl,O] R

,5:‘},‘ i , (I11-16)

e

where f77f 1nﬂ1cates an ordered”ﬁknnlng product from .

. &" "_ -

@W'
o

.. . Lo

121 ot ‘ g - u\ ‘ J‘ N

left to rlght in a5cend1ng order of‘¥’ and % the

e HJ«‘_

@
tlme at_whlchnthe i- th dlffusivy step termlnatcd The

angular momentum vector, J durlng %He 1~th GlfoSLVe

step has an orlentatlon (a ,D) w1th respes} to the
A

‘morecular coordlnate system at tlme t -1 and ml, the -
J\' «’" ? * S co
angular frequcncYcﬁfrotatlon b&uut the dlrecthn ;fﬁ} ‘
‘—)—: ) % ,‘"( ) r -

o i's glven by,Eq.‘(III—lBﬁ \fn o) (LlI-lG)“t and t
v ' - : RN Y o n
are associated.with 0”and t respebtively. ;Y F

Equation (III-16) descrihes the .transformation
from the laboratory to the molecular coordinate system

for a molecule whlch has undergone A parﬂlcular~serles

~

of n dlfoSlVe steps The parthl reorlentatlonal cor-

relation functlon G(l)

. ma o~ B

» <~l>* S R
X Lgb [aw,Bl,Ojemplaomlt1{ ap LGB+ 0]

(my t) can then be¥Wripten as
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N (1)* § ) (1) °
L ) xp e - A s B, 0] X —m=m
X Tae lagipyi0lexplicuy (ty=t)) ] g, oy 8y,0] §
(1) + % e
{ > P R — .
X l>uv [a *l,Bnil,O]th[LVHpTl‘tn_l tn~2)]
X . | )
(1) y - nmy
x , « _ v [ 2 o
Y v [an«1!3n~1'01 lixy [ﬁann/O]CYP[lywn(t tnfl)]
s~ [o B ,0] , ¥ o
*; ky e o :
‘ ','-.}/ ‘,. * v (111_17)
@ ¥ : i Ser
e AN E : - ! s T " A
¢ in wh#ch advantagewas takenygf the relatijonship .
P o T S &
N (L) o0 o o A SIE -
‘l‘ab“'[?’oxﬂ] expl z§¢] 6a,b ‘L (III 18) |
w; - o @‘b 0 T . . ' -4 1
and ‘4 - . W \ . ‘.L:q#.
¢ ® ' PN
) _l - ‘ "
. i | |
AN )
In Bg. (III-17) and subsequent Qquatiohs the Elnstein . .
: e B . ' } . . 5"
convention of implied summation over repeatedxindiccs is
. . ¥
. LR _
~  used. : g ‘ ‘ ) L
* The ensemble average over the initial orienta--

o, « .
tions Qd is independent of all other averages and in |

-~ .

Ut . '
the absence of a strong applied field all orjientations

are of equal probability so that 68

(1) (1) * | |
A N . 1o _
< U S0 P >p S Sy a (I11-20)
O

\l
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L . : Wi o
e The angle Uyreesey @S Bl, ceey Bn' which delnc the

orient: n of the angular mo éﬂvk

vector in: thegs.

molec coordinate system atrthe’ beginning of each

+ rotat. nal ‘'iffusion step, are randomi%ed at each col-

lision, thus statistical averages can be independently
. .

. ~ taken over each set of these angles. This statistical
. L ' 68
average is diven by

2 n ' (1) . (1)
(4 w)_”l[ daf df’ sin B ‘Aml,m [o, 8,00 L7  [a,8,0]

. . 2! '
f o - 5 . ‘& . R

L] B <+ : o
i : ’ \f) w

\

&

=2 s . L (1I1521)

APPlying thesé relationships to Eq. (IIT~17) we obtain

-’
-

G(}) {n,t) = <Z:7l/ {%}: exp[ziau)i(ti—’ti_l)]}

u
. . * Wyeo-w
. AL 4 "
“u L oo ) . ! ) (I11-22)
s o Te ) : ) . ' ) N )
whele the angular brackets(jimply a statistical avérage n
' . Kt , ' ' . ‘ ' . o
* o ...t “ves . - -
over tl’ 1 and wy W ; s

In the extended Fotétiopal diffusi6n model the 1

~ /

% N P i
-imes between. collisions are assumed to be independent

of th angular momentum state of the molecule, thus the

averages over the collision times t-,...,tn~lcan be

€

‘taken independently of the average over the angular



'3,.

Wyreeey mnf ‘It will be assumed that the

probabil ' , that a moleccule has experienced exactly n-1l

ﬁ{oquoncies,

0

collisions in the PCIlOdS tl’ tl—+Qtl; t2, t2 + dtz;....

. o 5 \ . i
t t o + dtn—l is given by (u-1)! dtldt2"'dtn'l/t

n~lz n-1

Taking the statistical average over the collision times,

[¥3

‘we obtain - ' - ;

(1) (n-1) ! - Fn“l , b2
G (Il,lt) = tn“‘l*“/ dt 1 dtn_z. ../ dtl
o o)
x ;7 E exp[xaw (ty-t, l)]}

i=F g v _ Wieool
- L C 1 n

B S t o

Mg

‘N—v "

o
4 [ TR
S

(ITI-23)

&
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.
’

n-

In order to perform the statigtical averagé over

wl’ﬁ"’wn it is neccessary to spécify either M- or J-
~ )

!

dlffu31on In the M~diffusdion limit, the magnmitude of

(IT11-24)
where the éngular.brackets indicate the statistical

)

Il

“,the angular momegtum vector is not changed 1n Q _collislo
t@ereforé mliz\wz = R =‘w;53w and Eq. (III*Z3) bg;
comes \ - |

. - © o
Ly s oo =l .

1




average over w and the free rotor correlation function

(1) . .
GFR [t,w] is glvgakby

. Vi, u) = -J:Zexp[iamt] ) (III-25)
a . : . ~

In the J—diffusion limit, the magnipﬁde of the angular
momentum is randomlzedontoa Boltzmann dlstrlbutlon at
~each, COlllSJ@S and the statlstlcal averaga OVETr b- mﬁst
bgthereﬁore be performéé 1ndependcnt1y for Lach dlfoSlVO
step. Thereforg ;n ‘the J—dlffu51on limit, Eq. (III-23)
becomes' o o | |

(l)
J FR[t "t

[

(III-26)

‘Where the free rotor correlation functien GJ_éé)(t) is

given'by ) ‘ - ' o
[ p

G‘J FR < E e.\p[%awt] > e ~ (III-27)

* . 4 . .

E— : ‘:;)f‘

4 . The reorientational corfeTation’functioné are
' \

then obtalncd by subst1tut1ﬂ§9ﬁp (ITI~24) or (III-=26)

into Eq, (I1II-10) and applylng Eq. (III-11). Thus

. ¢
K : . ! t “
(1) , ' ki —n+l .
GM (t? = <§» t7TJ]§: Ty d/~dtn~l';"

n=1 o

=

RS20

~
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‘-. 2 . ‘ . . )
Y| , (1), _ -
x ﬁtl .ﬁ‘{,cm [ty -t 1"“]£> (I1T-28)

L=1
o ‘ v/
and T .
..i‘le) . OO ~n+1 -t . .
GJ (t) = exp[*t/Tij\z TJJ” [ dt,n?l .. .. 1
" , . " n=1 o) Lo v ,
. t ) S : T : A ' o -
. 2 . L 4 ,
N (IR S o :
X : -t 5 (ITPL~
/ at, e ; JiTR e, i_l],g Lo ame2e)
o B 5 N o - PR
3 S

‘ The memory functlon K(t) can be convenlently ekples~.,@
sed 'in terms of the correlatlon functlon u51ng Laplace ' o

transforms j’By taklnq the Laplace transform of Eq (IIT~

1) and applylng,the‘convplutlon ‘cheorem‘g’9 of Laplace

- transform theory Wé;obtain : ﬁkuv, o ;E‘
. P - & .
e .l-sa(s) v
K(s) = =227 , (I11-30) .
@ G ( IS ) J: . ' ' l\_
e

where K(s) 'and GYs) are the Laplace\trqnsforms of ¥(t)

] ,/,

and G (t) rebpectlvely and s is the Lapla variable,

Using the extendedyrotatlonal dlffusg; xpression for

G(t) "and Eq. (III 30) we can agbtain expressions for

. K(s) in the extcndcd rotatlonal dlfoSlon mo&cl . First

consider the J-diffusion limit. Taking the Laplace

tfansformof Bq./(III729),we obtain %
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Lo

N 77,
¥
) n
= ) .\ _ C~ndl ) 0 (1) ] -1
Gy (s) “Z Yy J:rr (8 *“;,TJ )
n=1 i
=~ (1) 1
G (s + T ) .
~ ﬂﬁﬁﬁmﬁﬁ___,,,,iwxﬁa,v (TT1-31)
A (1 -1
g 7 Cy.pr (58 V15 )

where EJ(I)(S) is the Laplage_transform of GJ(l)(t) and

EJ:éé)(S + TJ'l)iS the Laplace transform of
exp(~t/1.)C (l)(t)' ~The convolution theorem of

J"TJFR ey
Laplace transform tigsas

,@gps uéed.in deriving- Eq. (III;7 
31) and the infiniteﬁsﬂﬁ%rﬁle for geometric progressions
was used to obtaln the sccond expression on the right |
hand 51de Substltutlng Eq. (III-31) into Eq. (III—30$

we obtain upon rearrangement

- -1, = (1) ~ =1

1 ~ (s + 1 )G (s + T ) '
J ‘,;J FR : J (III—GZ)
(S + Tj’ vl) 5 '\,\.‘“ » P B : ‘,

o1,
KJ (S) =

)

where E (Lﬁls) is the Laplace transform of* K (l)(t), the

J
memory function lin th€ J-dit fusion limit’r USing Eg. (III-
e
30) the memory function assoc1ated with GJ ééa(t) is
iven b 1 o '
g by . ‘ )
= (1)
— 1 -s¢G ' o
KJ}%;(S.) _ JPR (s ) o«  (III-33)
: c Cl)(s ' ‘
J:FR

Al

c .
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Comparison of Eqgs. (IiIﬁ32) and (IIXI-33) we sce that if

¢ we associate s' with s + %ﬁ thus K (l)(t) with
. (1) ,
hJ:FR (t) cxp[—t/TJ] then the cguatlond are the same.
This 1s the relationship givén in Eg. (111-2). DBliot

t al. 65,66 htained this relationship [Bq. (IT1-2)] }%ﬁ;

using statistical mechanical arguments and they deman-~
strated tha® it defined the extended J~diffusion model.
In the M-diffusion limit the tre;tment 1s more
involved because only thg‘orientation of the angular
momentum vector and not its magnitude is changed in a
"gollision". Thus molecules with diffgrenflangular fre-
lqpencies are treated as separate species éga there will
béba separate memory function equation for each species.
The development in the M-diffusion limit is analogous -
to the J-diffusion limit except GFél)
(l}(f,w) is obtained.
(1)

(t,w) 1s used

instead of GJ FR (t) and K:

order to calculate the ensemble functlon G

fﬁ(l)(t), an ensemple averagg over w. Just. be performed

a

M
(t) Ous

Vs
pe 1

”,.From the above devel&pment it 1s clear fhat all

< »

that is required to calculake the classical reorlentav

ional ¢~ rrelation fqnctlon for'the,extended rotatlonalW

~

ciLf ot model f% the free, rotor correlation function

!V—]\ . (l)
Gy pr L) ©or Gpg

-

(t,w) and thé'memory function re-
latinsnships given in Egs. (III-1) and (IfXI-2). The

(t) and KJ:FR(t)ihas,been derived
" for the-classical extended diffusion theory, however -

< o

' 1

relatienship between K
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the expressions arc determined by the dcescription of the
collision process and not by the description of the free
rotation step. Therefore the theory can be modified to

yield a semiclassical model simply by replacing the
(1)

v classical free rotor correlation functions GJ-FR (t) and

GFél)(t,m) by the dorresponding quantum mechanical func-
tions. In the next section, quantum mechanical {ree rotor

correlation functions will be considered and in later-

- sections these functions and their .time derivatives %}ll

L ‘\,\ . .
tional correlation functfq@s for

FSF o
rotational dlffu51on modo@@t >

*

be used to calculate SpC”tral densisies and reorient a-

memiclassical extended

-

2. Quantum Mechanical Free Rotor Correlation Functions

¥y

The relationships developed in the previous section

indicate that a semiclassical extended rotational dif-
fusion model is readily devéfyrgd R;ovideﬁnone can cal_
cnlate a quantum mechanical free rotor reorlentathral

correlatlon\;ynctlon and its flrst time derivative. In

\

\§h15 section, thesc functlons will be considered. \

From EJ. (§i1~9) we see that the quantum mcchanlcal

free rotor corre&atlon functlon is glvén by

.

1 : (lb*
Gré )(F) E E CifiDd - [Q(o)]{f> <iju>mk )[n(t
. . i,f ' :

(ITI-34)

- i . ,

NREY



*a rigid rotor, Y is; the rotational Hamiltogian.”/The

[

tA ’ , 80-

»

where N is the Boltzmann factor for the state [i) , Q(t)FR

represents the set of Euler angles describing the trans-
{i»mation from the laboratory o the molecular coordinate
System 68 of a freely rotatiﬁg molecule at time t. The
sums over i and f aré over the initial and final transition

states of themolecule and the sum over k is ovér the degen-

K}

orate vibrational modes of the vibrationdl transition of
interest while the sum over m is over arkit¥ary directions
in the laboratory coordinate system and can be ignored since

L J

it results 51mply in multlp@ﬁyatlon by a. o@ﬁgtant factor .
LI

The time dependence ofx$«(l)[ﬂ(t) ] is d%%kfmlneéwby

the motion of the free non-interacting molecule. Since

{?‘l)[g(t)FR] 1s a Heisenberg operator, its explicit time

dependence is givén by C | : ) N gﬁéﬁ%
- d
D o) 1 = expl L) 1 () (g0 janp L2ty |
~ 'y : A :
L U(‘ ; ®
) . T (ITI-35)
e oo T ~ K

4 &
whgre‘y is the Hamlltonlan of the system. 1In the cgse of
~ '] /".

- ~

*

A
free rotor correlation function can therefore be written

.v.

in the form
<1> (1)
<t>ﬂ»}: ZZ <L, 100y ) £ ¥ enp to, et (IT1-36)

where uif is the frequency f the transition.i - f.

»



. tinuously from 0 to <,
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It is clear from Eq. (ITI-36) that onc requires only
a knowledge of the ground vibration-rotation state Boltz-
mann factor p., the transifion moments (ilﬁ)(;i[ﬂ(0)1|f>
and the transition frequencies W, of the molecule in order
to determine the quantum meéhanical free rotdr correla-
tion function from which I (w) and G(ti can be determined
using the methods suggeéted;in the previous section and
which will be discussed ih detail in thgnfoilowing sec-
tions. In the next.sectionzabrief desgilption of the rota-

tional states of molecules is presentediand the semiclas- -

. sical ekxtended rotational diffusion deel~is.discuSSed.

@
. i o

<

3. Description of the Rotational Motion

In a classical rotor, théangular momentum vector

“

can take on any one of an infinite number of oriertatifons

with respect to a molecule-fixed coordinate system and

with respect to a space-fixed coordinate system: The

- . A 1Y
magnitude of the angular mdﬁéntumfvector can'vary con-

with the brobability'of a given

magnitﬁde and orientation following a Boltzmann distri-

\

bution.® “In the quan?um mechanical description ofﬁ;
- k. . , \
rotating molecules, the orientatidn and magnitude of the

angular momentum vector are no longer continuous

LT

variables ‘as they are in a classical top. There exist .

~

distinct rotational states, which we' shall denote

] -
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|3 K MD. The magnitude of the angular momentum vector
for a molecule in the state lJ'K M> 1s /I(J ¥~T)ﬁ,'

~while the projections of this vector onto the space-fixed

yt-
&y

z—axis and onto the m_oleciar symmetry axis are Mh ‘and
) .

* Kh respectlvely The.gua tum number J i1s a non-negative

T

Tl w'u.’

ar Lnteger and the guantum numbers M and K can take.on in-—- |

\tegral values from +J to -.T. It 1s clear that K and M
}f'J ,‘ i o't k]
kydeflne the spatial orientation of the. angular momontum

" vector -and J determlnes its magnltude. ‘The egu1llbr1um

'ions,of the rotatlonal states follow a Boltzmann'
s ~ .‘
fﬁ‘tlon just as the orientation and magni’ Ae of

v

. the angu ar, momentum vector‘in the cla551cal top does. -
2 ™ :

>
' In the “absence of eleemrlc and magnetlc fields, all.

: ' v ‘ N
rotational states with the same J and&K\ but different

- o }w

are degenerate. In 'linear molecules, “the angular
. N » .

1so that K = 0. For a symmetrlc top molecule, thewrota—
tional states wlth dlfferent values of ﬁK[ aré non- -
A “

degenerate, andﬁthelr energy dlfferences depend on the
relatlve magnltudes of the moments of lnertla about the
symmetry axis and,abOU' axes perpendlcular to 1t The
rotation Qtates ofwa spherlcal top molecule,Aw1th the
‘same value of J but dlrferent K values are degenerate,

because of the inertial isotropy of the molecule.

In the simplest version of thé classical extended

&



rotational diffusion theory S:6,3,49 a "collision" was

interpreted as an event during which the angular mom-

entum vector of a molecule was changed. In the J-dif-
fusionlimit,botn the orientation and magnitude of th%
angular momentum vector are randomized onto a Boltzmann

distripution a%wgvery collisional event. In M-diffustion, ~
. 6

" the magnltude og t%e angular momentum vector 1s un-~

changed by cofﬁ%51ons, and” only 1ts orlentatlon is

AV
rand nized. By analogy to this gla551qal extended ro-

tational diffusion picture, we‘sugéest that, in a semi- -

classical version of this model, "collisions" be'con~
324

sldcred as events whereln molecules undergo transltlons

from one rotatlonal state “to another duekto perturba—“ﬁ,-

tlons from nelghborlng molecules. In the semiclassical
- 9‘ H v ' .
erlfoSLOn model, COlllSlOﬂS will be'assumed to

- randomize all three quantum numbers J, K and M onto a

Boltzmann dlstrnbutlon of rotatlonal states, 1 e the
s'x} v

pTObablllty of a tranSLtlon to a state [J K M>

v

1 brought about by a colllslon" wlll be determlned by

i

'the Boltzmann faetor for that state and w1ll be 1nde~

pendent of the 1n1t1a1 rotatlonal state. Oﬂly transfers.
between levels with the same value of J w111 be allowed

\ . e
in the M~diffusion limit, where the guantumﬁg%mbers K ’
and‘'M will be randomized by collisions.' It,as clear
that in £hé M-diffusion limit, the molecyples in the

ensembIe are subdivided according to th&ir total

+
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angular momentum quantum numbers J and remain within such
‘a subdivision throughout the diffusion process. The
molecules within a given J-magnifold will therefore be
characterized in the Mvdiffusion limit by a unique re-~
orientational correlgtion function and séectral band
shape. The“cnsemblc corrclation function and band shépe
will, of course, be‘Weighted suns of these components.

4. Spectral Densities and Correlation Functions in the

) M~ and J«Diffusion Limits. |
T

The Fourjer rélationship [Egs. (I~5) and (I~6)]
bethen the spéttraldensityI(w) and the correlation

function G(t) is conveniently expressed using Laplace

transforms as
I(w) = Re<{5(iw)} , (III~-37)

where. G(Zw) is fhé”baélace transform of G(t) and 7w
is the Laplace variabie. Equation (III-37) ‘takes advant-~
age of the ti .. =symmetry of G(t), i:e. G(t)*lz G(-t). |
Equation (XII-J/) will prove a convenient meaﬁs.Of
calculating I (w).

| The computation of spectral densities and reorienta-
tional correlation:functions in the two limiting cases
of the extended rotational diffusion model differ only
in the ménner in which the ensemble av: age over the

rotational states of the molecule is pcrformed. 1In
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the J-diffusion limit, where colligsi i .' ~vents effect

transfer of molecules between al possihbl  rotational

states, the appropriate free rot v . oite’ tion function,

(1)
J:FR

over 1 cncompasses all rotational states, |A:JKM>

G (t). is given by Eq. (III-36, .i which the sum

of the lower vibrational level. The Laplace transform -

- (1) . :
of GJ:FR (t) 1is glvég\by

{
(1) 1 UB(l) f I2
- . o1 . .
Gl (te ¥ 1y ) —Z QJ*@TZZKA' TKM | . [00)]]F >
JKM -

f mk

X TJ/[l + Yw -~ wJK,f)TJ] >

(ITI-38

where pJKM is the Boltzmann factor for éh? state

[A:TKM > wJK,f is the transition frequency of the
trangition [A:TKM) — |[£> and A is a vibrational
guantum number. Thé\band shape in the J-diffusion

limit [see Eqgs. (ITI-31) and (III-37)] is
IJ(w) = Re {TJAJ(M)/[l“AJ(N)]}_ ’

(III-39)

where
_ -1 . -1 T
AJ(m) ~'TJ G ?R(zw + Ty )y . (ITI-40)

The reorientational correlation function in the J-dif-

fusion limit, GJ(l)(t), can be obtained from GJ.éé)(t)

3
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!

i, the memory function procedures to be described in

the next section.
In the M-diffusion limit, as indicated in the pre-
vious scction, all molecules with a commen total angu-

lar momentum quantum number J are characterized by a

(1)

unique reorientational correlatinsn function G (t;J)

and a uniqué spectral denéity I(m;J). The M~-diffusion

(1)
M

IM(w) are related to these J-manifold functions by

correlation function, G (t), and spectral density

and . CM (t) =Z 0 G (t;J)
J
Iél)(w) =:E:: o Icl)(m;J) ,
g (ITI-42)
,/—‘ ’
where
Py =Z P yxM
K,M
. (IT1-43)

The free rotor correlation function appropriate for

molecules in the J rotational manifold, GFél)(t;J) is
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(1) ~ (1) N
G '/ (t3d) = < AsIRM]| U (200 1]f >

K, 11 £ m, k

x CXP( w K, f t) o
(II1I-44)
wi. re
J
= P
Pru ke P ,
(ITI-45)

The Laplace transform of GFél)(t;J) Ls

= -1 J | (1) 2
O (ot Ty d) 22 : Prat E E RGN EAN IO I Y
K,M .
f m,k B

x T./[1 + 4 -
3 [ 7 (W wJK,f)TJ] >

(1I1I-46)

and the M-diffusion spectral density, IM(w), is given by

;
o (I1I-47)
@ <Y yre{ B @/ - B @}
where .J '
S (l) -1,
« BJ(m) =Ty Ger (fw + T, 3J)

(III-48)
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One could t'lculate the M-diffusion correlation function

(1)

pr (tid) via

the corresponding free rotor memory functions Kpél)

from the free rotor correlation functions G
(t:J)
for each J-manifold, but this would be rather impractical
if the number of J-manifolds were large. On the other
hand, one can compute IM(m),from Eq. (III-47) with little
difficulty, even for a large number of J—manifoldé, and
the correlation function can be computed by Fourier‘

A

transformation:

G}(ql) (t) = / IM(w) exp (~iwt) dw

-0

(III-49)

L |

C. NUMERICAL ANALYSIS PROCEDURES FOR IMPLEMENTATION

OF THE MEMORY FUNCTION EQUATION

The cpmputation of a reorientational correlation
fuhction using the Memory Function approach consists of:
two steps: ca1§W1ation of KFR(t) from GFR(t) and
éFR(t); and calculation.of G(t) from K(t) . The first
calcula:ion is carried out using Eqg. (I11-1). Once
KFR(t) is known, X (t) can be calculated for a given Ty
using Eg. (III-2). Equatién (ITI-1) can then be used
to calculate G(t)‘from K(t). In this ééction the

j
/

‘
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numerical analysis procedures used to perform these cal-
culations are described. Throughout this section, no
distinction will be made between M- and J-diffusion since

they differ only in the definition of\G (t). 1In the

FR
M~diffusion limit the G(t) of the ensemble can be cal- -

culated using Eq. (III-41).

(t) from G_._(t)

1. Calculation of KF FR

R

GFR(t) and éFR(t) can be readily calculated from
Eq. (III-36) or Eg. (III-44) depending on which limit is
desired. The numerical procedure 70 for generating
KFR(t) for t = 0, A,~~--,nA,~=—~~= + 1s based on a trapezoid-
al approximation to the integral in Eq- (III-1) and useés

the relations_

(o] e (III-50)

Kprl01 = -Gpp
_ =27 . . - o )
Keplal = #opr (2] KFR[OJGFR[AJ,,. (III-51) -
and
_\"‘_g - . . 5 .
KFR[nA]—- A Gpgp(ndl - KFR[O]CFR[nA]
n-1 ! :
-2 EE: KFR[QA]GFR[(nfﬂ)A].
2=1

(II1-52)

K(t) is obtained from KFR(t) by multiplying by exp(-t/TJ).
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2. Calculation of G(t) from K(t)

The procedure for computing G(t) at &t = 0, A, 28,---

-—=-n/ ,~=-~~=, given K(t)?at these values of t, is based on
trapezoidal approximations for the integrations in Eg.
(III-Y) given by,

. kS

G[na) = ~A{5l919l2§l £ KIAJG[(n-1)A] + ——=+K[(n-1)A]1G[b]
2

+ KInAlG[o]
2 7 (IT1~53)
and in the equation
, nA
GInA]l = G[(n-1)A] + du G (u)
- (n-1) A
= Gli(n-1)A] + A 3G[nA]'+ G[(n-l)A]; . (IXTI~54)
2 ’ :
In addition, the conditions
. . \
G[ol =1 |, © (ITI~55)
and o
G[0] =0 (ITI-~56)

are required. The first is just a normalization condition,
while the second determines the phase -of G(t) and is
required by the theory [see Eg. (III-1)].

Supstituting Eq. (III-53) into Eg. (III-54) and

¢
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imposing conditious (IIT-"5) and (III-56) we obtain

“ ) .2 » 2
GIpl = {1 - é—Km}/{l P K[o]} , (£11-57)
4 4

and from Eg.. (III~54) we obtain

. |
.

Gl(n=1)8] = ~G[(n~2)A] + 2(G[(n~1)4] ~ G[(n=2)A])

>0

(YII1~-58)

Substituting Eg. (III-53) into Eq. (III-54) andrs\olvihg
. . o

for G[nd] we obtain, ' -‘\\

: n-1
| G[nd] :{G[(n‘l)A] + 123 G[(n-1)A] - K[nA]—% Z K[(n—@)A]G[lA]}

9=1
/{1 . A;K[O]}

Therefore given the functions'GFR(t) and GFR(t), G(t)

(IXI-59)

can be calculated by simple numerical procedures involv-

ing the intermediate memory functions K__(t) and K(t). It

FR

should be pointed out that K__(t) need be calculated

FR
only once and can be employed to compute K(t) and G(t)

J

for the required values of 1. in later calculations. A
listing of the Fortran programs used to calculate

KFR(t) from GFR(t) and G(t) from KFR(t) are glvgn in

Appendix IIB and IIC respectively.
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R Inveétigation of the Stqpilitympf the Computarioq

-Procedures.

i

We have employed the trapczoidal appro:x’mation in
the numerical solutions to Eq. (III-1), rather th'n a
nore sophisticated numerical integration formula. T
test calculations using Simpson's rule formulac and
higher order Newton-Cotes approximations, it was found
.that the calculated correlation functions and memory
functions were much less stable than in calculations
performed with Egs. (IT1I-50) - (ITI-59) above. This
numerical integration procedure is also much more versa-
tile than the power series expansion proéedures used

65,66 This procedure consisted- of axpanding

previously.
K(t) and G(t) as power series in t and relating the
coefficients in these series using the Laplace trans-
form relationships. This procedufe broke down at times
dgreater than 4/T7ET seconds even when 100 or more terms
were included in the expansion.. The present procedyre

is stable at times as large'és 20V I/kT seconds and, if
longer times ére required, it is necessary to reduce only
the size of 4, the time increment to increase the range
of stabilitv. In our calculations, we were interested

‘in times in the raige 0 to 10/ I/KT. For this range of
times, we found that a-time inérement of 0.62/&T7ET was
more than adequate to assure numerical precision and

’

accuracy.
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The stabilitycnfthé nqmerlcalgmgphods wvere evalu-

ated using the following'prqéédhres. ?ﬁe mémory function
calculated from the frceviotoruborrciation function

usihy the methods developed in section III-C~1 was
compavred tovthat calculated using the power series ex-

pansion technique 63,66

(which is exact for small t).
This test indicated that the trapezoid;l}procedurc is
accurate over the range in whiéh the power Series \
approach is reliable. The gegeration of KFR(t) from
GFR(t) was also tested by applying the numerical pro-
cedure to the "corralation function" defined by
(1 + t/2)exp(-t/2) whose associated "memory function"
is defined by .QSexp(*i). The values of K(t) calculated
from this G(t) agree with those calculated from the
closed expression .25[exp(-t) ] to four significant
figures at t = 20 /I/kT. |

The numerical procedure'fpr calculating G(t)
from K(t) was tested by calculating G(t) using the
. methods of section III-C-2 when, Ty < - The
agreement between the function calculated in this way
and GFR(t) indicated that this procedure is very

accurate over the range 0 5 t 5 20 /I/KT.
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D. APPLICATION TO \)3 AND \)4 BAND SHAPES OF CII4

1. Calculation of Band Shapes of CII4

In section III-B-3, we described the propértics of
the rotational states of molecules, pertinent to con-
siderations in the rotational diffusion model, and devel-
oped these ideas in section IIT-B~4 into Formulac Ffor
ghe spectral densities and reorientational correlation
functions for molecules whose rotational behaviour was
approximated by the J- and M-~diffusion models. For
spherical top molecules like CH4, certain complicating
features arise which affect the populations of the
‘rotational levels and the vibration-rotation coupling in‘
the upper vibrational state, and these factors must be
taken into ac an The first complicatidn arises be-
cause the nuclc i spin wavefunctions of the equivalent
nuclei (e.g. the protons in CH4) combinevwith the
rotational wavefunctions in only :ertain ways, in order
that the total molecular wavefunction sétisfies_the
Pauli principle. Molecules which haQe rotational wavé~
functions which combine with a given'set of symmetry-~
adapted nuclear spinwavefunctions are‘offén designated
nuclear spin isomers. In the case of CH4, where the
four protons each have nuclear spin %; there are threg

nuclear spin isomers?\bgtho~CH4 (rotational and nuclear

spin wavefunctions of symmetry F),gara—CH4 (symmetry E)
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and TEEE’C”4 (;ymmetry A), which corrosponq to nuclear
spin triplet, singlet and quintet statns respectivély.
The éxpectcd 23 + 1-folad dcgangraéy of the J-manifolds

in the spherical tov due to the 2J + 1 allowed values of

K must be modified since a different number of nuclear.
spin wavefunctioné can be combined with the various K-
states within the J-manifold. The resulting dug;neracy
varies with symmetry type and has been calculated by
Wilson 61 using group theoretic methods. The symmetry-
adapted rotational.wavefunctionsﬁjJPSM)y where T desig-
nates the irreducible representation and é.is'a serial
index to distinguish linearly independent %unctions be-
longing to the same irreducible representation, are
linear combinations of the functions |[JKM)> with different
values of K, but with the same values of the‘quantum num-
‘bers J and M.

Since the réte of interconversion of nuclear spin
isomers is believed to be slow compared to thé molecular
reorientation process 57, the spectral baﬁd'shape is
really a superposition of the céntours for each nucléar
spin species. This implies that éalculations for each
of the isomefs must be performed separately and the
results combined at the end'to produce the composite
correlation function. ' %&

“ . . "
If one neglects very small effects due to centri-
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’

fugal dfstortion, all rotational states (J M> in a J-
"manifold of a spherical molecule in its ground vibra-

. . . M
tion state will be degencerate, but in an excited vibra-
tional state in which one or more degenerate yibrational
modes aro exciﬁed, thé degcneracies are lifted by the
interaction betwcen rotational and Vibrational 5h§ular
momenta.?8 This Coriolis interaction causes the degcnef;
acy of the states with different guantum numbers TS thg
identical quantum numbers J and M to be removed, §nd
each of these rotational wavefunctions combine with each
of the vibrational wavefunctions to préduce a: aany
distinct vibration-rotation states with a common symmetry
label Fs‘as there are components of -the degenerate: |
vibration. The magnitude of the Coriolis coupling there-~
fore varies with both rotational and vibrational guantum
numbers. If all rotational transitions, AJ = 0, +1
accompanying vibrational excitation wereAallowed, we
would expect sevefal lines to arise from each ground
state molecule w1th rotatlonal wavefunction |JT M>
However, a detailed analysis of the selection rules 40, 71
indicates that only One transition is allowed in caéh of
the P, Q and R branches 6f the infrared spectrum“of a
tetrahedral top with grbund state rotational wavefunction
jJPSM> , and the magnitud@s of the transition mom=nts

of the transitione in each branch arising from states
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within a given J-manifold are equal. The transition
moments are givén by Childs and Jahn.so

In section III-B-3 and III—B;4, we have expressed
the free-rotor correlation functions and their Laplace
transforms in terms of the transitién moméngs
:E%I <{A;JKM| QB(&;IQ(O)]|f>l2. From the above discussion,
$é conclude that all transitions arising from states
|A; TKMD, or morecorrectlylA;JFSM)>, within a single J-

60

manifold have transition moments which depend only on

the value of AJ for that transition. For AJ = +1 (R-

. branch)
i (1) : 2
E | <hsar m| 2 " [2(0)]]E D] = (27 + 3)/(23 + 1)
m .
m,k \
(ITI-60)
for A =0 ranch)
(1) 2.
Auha)
L 1< B oy =1
m, k
' (ITII-61)
and for AJ = -1 (P-branch)
N (1) 2
E | < Asar M| L . [Q0)1f >] = (27 ~1)/(23 + 1)
m, k ' (TTI-62)
With these transition méments and the observed 59,78 and

1,73

' 7 C s . . . .
calculated transition frequencies in each vibration-

rotation band, one can compute theoretical reorienta-
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tional correlation functions and spectral band shapes

which can be compared to those obtained from experimental

39
measurements.

a. v3 Band

The transitions inbthe V3 bénd of CH, are not sirongly
influenced by Coriolis effects becaﬁse the.Coriolis'
coupling constant is very small 40 so that the transi-
tions within a ‘branch of the séectrum which arise from
states within a given J-manifold are not widely separated
in frequency (<2 cm Y). The frequencies of the lines
'originéting in states in the J = 0 through J = 16 mani-
folds were obtained from the experimental results of |

Plyler et al. 59

,» and it was found that calculated cor-
relation functions and spectral densities based on fre-
quencies calculated from theo?etical formulae 40 which
do not include splitting of the lines from ]JFSM> for
different Fs were essentially identical to those based
on the e#act experimental frequencies. Since the
experimental frequencies wereknown only to J = 16, we
héve used caleulatgd freguencies for lines’originatin:
'in the J = 17 through J = 25 rotational levels. As

- we fQund in Chapter I (see Fig. 2) the spectral band
shapes and reorientational correlation functions computed

as superpositions of the functions for A, E and F nuclear

spin isomers, were virtually indistinguishable from the
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band shapes and correlation functions calculated Py
allowing "collisions" to bring about ﬁuclcar spin isomoer-
ization as well as rotational state transitions. The
results for V3 reported below are from calculations in
which the transition frequencies involving the rotational
states of all symmetry species are included in a single
computation, rather than separate calculationg, each

including only the transitions arising from rotation

levels of a single symmetry.

The free rotor memory function for the v3 band of

CH4 is shown in Fig. 9. It is to be noted that this
free rotor memory function is complex because the transi-
tion frequencies and intensities are not symmetrically

disposed about the fregquency of the band center and
(\

that the real part of the memory function closely re-

~

sembles the classical free rotor memory function for a
spherical rotor.74 The zerg of frequency for the tran-

4
sition frequencies Wyp ¢ Was chosen so that the free
SI

rotor correlation function at t = 0, GJ_éé)(O), was real

and equal to unity as required by Eq. (III-1). The

(1)

free rotor correlation function, GJ-FR (t), which is

als complex, is also shown in Fig. 9.
The J—diffusion reorientational correlation func-
tions G (

J
momentum correlation time, T shown in Fig. 10 were

l)(t) at 295K for varijious values. of the angular

calculated from KFR(t) using Edgs. (III-53) -~ (III-59).
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FIGURE 9. Free rotor correlation and memory functions

for the Vs band of CH4 at 295K. Time scale

. . 1
is in reduced units of t(kKT/I)% = 8.7 x lOl2t.

»

K(0) 1.95.
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FLGURE 10

J-Diffusion reorientational correlation functions

G(l)(t) for the v, band of CH, at 295K for various

J 3 4
values of Tge
—Re{Gél)(t)}, ~~~~~ Im{Gél)jt)}. For clarity,

successive correlation functions have been displayed
vertically by 0.2 units. Time is in reduced units

as in Fig. 9.
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The spectral densities I (w) at 295K for the same values
of TJ are shown in Fig. 11.

The spectral densities IM(m) at 295K, for various
values of the angular momentum correlation time TJ, ih
the M-diffusion limit were calculated using Eqs. (III~
46) - (III~48) and are shown in'Fig. 12. The correspond-
ing'reorientational correlation functions GM(l)(t) were
obtained by Fourier transformation of the spectral qen-
sities and are given in Fig. 13.

b. v4 Band

Coriolis coupling is very signif%cant in the v, band
of methane, and the splitting of the lines within a giVen
branch arising from molecules with ground rotational
strtes IJFSM> within a given {:manifold is very large,

cften large enough that the l&ﬁes from different J-mani~
F
72

folds ar. ' .~spersed. Tﬁe frequencies of the lines
in the Voo »*re calculated from the formulas given
by Moret- .. 1’73’75, although the off-diagonal ele-
ments of tj ‘on-rotat: coupling were ﬁéglected.
The frequenci. le 7 in t i way compare well with
the obsc:red .. .. 2= 3 Ir he calculatidns reported
below, all trorsi . “iiing Zi.m the rotational levels
with J = 0 to J - 2- bee’ inc'uded. In calculations

of the V4 spectral densicies or roric-tatiosnal correla~

tion functions, we calcula+ ! the function for each of



104.

1.3 psec

L ] d 1 !
2900 3000 3100 3200

wlcm™)

FIGURE 11. J-Diffusion spectral band shapes IJ(wi

for the V3 band of CH4 at 295K for various

values of Tye Intensities are normalized so

that the integrated intensity is constant for

all values of Tye
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2900 3000 3100 3200
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FIGURE 12. M-Diffusion spectral band shapes IM(w)

for the v3 band of CH4 at 295K for various

values of T Intensities are normalized

I
so that the integrated intensity is constant

for all values of T._.

RN



FIGURE 13

M-Diffusion reorientational correlation functjiong
V\A———*VWWVVVMNV\N‘—*M\MM\WWWV
(1)

Gy ~ (t) for the v, band of CH, at 295K for various
values of Ty
: —Re{Gél)(t)}, ~~~~~ —Im{Gél)(t)}. For clavrity,

successive correlation functions have been displayed
vertically by 0.2 units. Time is in reduced unlits

as in Fig. 9.
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the nuclear spin isomers and computed the composite func-
: )
tion' as a weighted average with weightings A:E:T = 5:2:9.
Calculations of Yy spectral densities and correlation
functions based on average transition frequencies (the
method employed in section III-D-1~a and iﬁ section
IT~-C-2 for the V3 band) gave results which were signifi-~
cantly different from_ those obtained in calculations
based on all of the accurately known transition fre-
quencigs for each nuclear spin isomer as described above.
These spectral densities are compared in Fig. 14 for
Ty = 0.3, 0.5 and 1.3 .picoseconds.

The free rotor correlation function and memory func-

tion for the v, band of‘meta-~CH4 (A symmetry) at 295K

4
are shown in Fig. 15. The corresponding functions for
ortho- and para-CH, closely resemble those for meta~-CH,
at short times, but differ gignificantly at long times.
This is not too surprisin~ since the wings of %he
spectra for the three nuclear spin isomers are very
similar; but the spectral intensities near the “and cen-
ters of each.isomer are dquite different. Since the
time~dependence of the borrelation function at short
times reflects the intensity in the wings of the
spectrum, and the iong—time behaviour reflects*the
inpensities near the band center, one would expect

significant differences in the free rotor correlation

and memory functions of the different nuclear spin



FIGURE 14

J-Diffusion spectfal band shape IJ(w) for the Vg

band of CH4 at 297K.

All transition frequencies considered ; average
transition frequencies considered:~~--- ;7 T, as

indicated.
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FIGURE 15. Free rotor correlation and memory

pand of CH, at 297K. Time

4 4
scale is in reduced uni?s of t(kT/I)% =

%
8.7 x 10%%t. K(0) = 0.60.

function for the v
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isomers only at long times.
The J-diffusion reorientational correlation functions
X GJ(l)(t) at 297K, for various values of the angular mom-

entum correlation time T_ shown in Fig. 16 were calcu-

J
lated from the cofrelation functions for each of the
.nuclear-spin isomers, which were in turn calcu -ed from
. the corresponding memory functions. Jhe spectrai densi-
ties IJ(w), at 295K, for the same values of T, are shown
in Fig; 17.

The spectral densities, IM(w), in the M-diffusion
limit, for various values of the angular momentum cor-
relation time TJ were calculated from the spectral densi-
ties for each nuclear spin isomer, which were calculated

using Egs. (III-46) - (III-48) and are shown in Fig. 18.

The corresponding reorientational correlation functions,
'~ (1)
GM

the spectral densities and are shown in Fig.

(t), were obtained by Fourier transformation of

2. Comparison with Experiment

In order to fit 6bserved band contéhrs of CH4 in
degse gas solutions 39 with those calculated from the
semiclassical M- and J-diffusion models, we havevnor—
malized observed and calculated spectra so that they
have the same integrated intensity (area normalization).

The value of the single variable parameter of the

models, TJ, was varied until the agreement between the .

-



FIGUORE 16

J-Diffusion reorientational correlation functions

Gél)(ti for the v, band of CH, at 297K for various

4 4

1 f .
values of rt..

—Re{G;l)(t)}, ~———— ~Im{G§l)(t)}, For clarity,
successive correlation functions have been displaced
vertically by 0.2 units. Time is in reduced units

as in Fig. 15.
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1.3psec

! ! 1

1225 1300 1400
w(cm'})

FIGURE 17. J-Diffusion spectral band shapes IJ(m)
for the v4 band of CH4 at 297K for wvarious
* >
values of TJ. Intensities are normalized so

that the integrated intensity is constant for.

all values of_TJ°
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FIGURE 18. M-Diffusion spectral band shapes IM(m)
f6r the v4 band of CH4 at 297K for various
values of TJ. Intensities are normalized so

that the integrated intensity is constant for

all values of TJ.



FIGURE 19

M-Diffusion reorientational correlation functions

Gél)(t) for the v, band of CH

3 at 297K for various

4

values of TJ.

(1)

M (t)}. For

_— - Re{GN(ll) ()}, ~-=--- -Im{G
clarity, successive correlation functions have
been displaced vertically by 0.2 units. Time is

in reduced units as in Fig. 15.
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calculated and observed spectral densities was satis-
factory as judged by vfsual comparison. Representative
comparisons of calculated and observed Vg band contours

are shown in Fig. 20, whi epresentative comparisons

for the Vy band contours are given in Fig. 21.
band shapes calculated with the M-diffusion modc
incombatible with those observed in the low pressu
CH4/He mixtures because the intensity of the Q-branc..
was too low (relative to the P- and R-branches) in the
calculated spectra for values of Ty where the broadening
of the rotational structure in the P- and R-branches of
calculated and observed spectra were comparable. At -
higher pressures, however, the band shapes calculated
with the M-diffusion model, with suitable values of Ty
agreed with the observed band contours as well as the
band shapes calculated with the J-diffusion model did.
The spectra shown in Figs. 20 and 21 are compared with
band shapes calculated with the J-diffusion model, since
this model apbearstx)be more compatible with the
observed spectra over the complete range of pressures.
The calculated band shapes discussed above have
been compared to experimental spectra assuming that
the experimen&s were performed under conditions in
which_iﬁstrumental effects on the band shapes were in-
significant. As pointed oﬁt in Chapter II, the éon—

volution of a 4.5 cm“l triangular slit function with
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CHy/ Ny, p=463 7;:=020psec"

I w)

CHg/He p=437 ;=035 psec

o

CHy/N, p=186 7,:0.40psec

! 1
2900 3000 3100 3200
w (cm'])
FIGURE 20. Comparison of observed band shapes

for the v; band of CH, in dense gas mixtures
at 295K and band shapes computed with the J-
diffusion model. The intensities are

normalized as in Fig. 18 and the indicated

s,
~

densities, p, are in amagats.

calculated, +++++ observed.




[Hw)

121.

CH,/He p=541

CHy /N, p=183

CH, /He p=434
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‘FIGURE 21. Comparison of observed band shapes
for the Vg4 band of Cﬁ4 in dense gas mixtureé
at 297K and band sh- esg computed with the J-

diffusion model. The densities are in amagats

and the band shapes are area normalized as in

Fig. 18. ,
calculated, +++++ Observed.
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calculated band shapes prpduced significant effects on
the band contours for the low pressure‘mixtures only.
It may be that the apparent incompatibility of the M-
diffusion model with low pressgre CH4/He mixtﬁres is
due only to our neglect of instrumental contributions
to the‘band shapes. Because tﬁe effects of @he_slit
function on the band shape are of the same order of
magnitude as the effects of collisional{broadening in
thisvlow»pressure region, and because the exact nature
of the slit function is not known, the angular momentum
correlation time obtained in our J-diffusion analysis
of these cases has a‘large uncertainty.

The values of Ty which gave the Best agreement

between observed:39aﬁd calculated spectral densities and
reorientational correlation functions for the V3 and V4
bands of CH4 in a large number of fluid media are given
in Table 2. Since the quality of the fits of observed
spectra with those calculated with the M~diffusion an.
with the J-diffusion model was not significantly dif-
ferent except at low pressures, we have included the
values of Tq which gave the best fits in each model.
The values of TJ,pbtained by fitting the vy data are
not significahtly different from those obtained in
Chapter II. -

it should be noted that.the agrecment between the

calculated and observed ‘3 band contours of CH4, parti-
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TABLE 2

Correlation Times Assigned Using the Semiclassical J-diffusion (SCF)

and Semiclassical M-diffusién (SCM) Models.®

System Band Tem~erature. Density TJ psec Ty Ppsec
(°K) (amagats) (s.py (SCM)
CH4/He‘ vy 295 96 1.3 b
437 0.35 0.35
544 0.30 0.30
L7450 . 0.20 ©0.20
v, 297 110 ‘\ 1.1 b.
134 1.0
156 . ....-0.90 0.80
178 0.80 0.80
200 0.78 0.80
208 0.70 0.75
222 0.73 0.78
242 . 0.65 0.75
“ _ 250 0.60 0.65
290 0.55 0.60
328 0.50 0.58
365 0.48 0.53
434 - 0.40 0.48
491 0.35 + 0.45
541 0.33 0.43
588 7 0.30 0.38
82 0.25 0.35
687 0.28 . 0.35
747 0.23 0.33
CH, /N, vy 295 186 0.40 0.45
243 0.33 0. 35

(continued....)
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TABLE 2 (continued)

System Band Temperature Density TJ psec TJ psec
(°K) (amagats) (SCF) (scM)
CH,/N, Vs 295 308 0.28 0.28
463 0.28 0.23
vé 297 82 0.65 0.70
93 0.65 0.70
104 0.60 0.65
114 0.58 0.65
138 0.50 0.58
161 0.45 0.53
183 0.40 0.45
203 0.35 0.44
222 0.33 0.38
239 0.30 0.36
276 0.30 0.35
303 0.28 0.33
cH AT v, 295 281 0.33 © 035

a Estimated error in value of TJ is + 0.05 psec.

No satisfactory fit with M-diffusion model.
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cularly in the wings of the spectrum is better than the
agreement between i he observed V3 band contours and those
calculated with the semicléssical model of Chapter II
(see Fig. 5 and 20). This is due, in large part, to tﬁe
inclusion of all lines arising from rotational manifolds
with J = 0 to J = 25 in the calculations reportea in the
present work} while computational efficiency demanded
that our previous calculations included onl& those tran-
sitions arising from the J = 0 to J = 12 maﬂifolds.

We have also compared the correlation functions cal-~.
culated by Fourier transforming the observed band cqg;//
tours 39 with the correlation functions qalculated from
the M- and deiffusian models. In making such cpméari—
Sons, one must be careful to choose the zero of frequency
for thé Fourier transformation of the spectral densities
in a consistent manner, since the correlation functions

are complex functions and the relative magnitudes of

the real and imaginary parts will decpend on the choice

‘the zero of frequency. In numerical Fourier transforma-

tion of experimgntal band shapés, it is most convenient
to choose the frequency at maximum spectral intensity
as the zero of frequency. However, in calculating the

J-diffusion- correlation functions using the memory

function technique described in section III—C‘above,

one requires that the correlation function be real and

| equal to unity at t = 0, and that the time-~derivative

©
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of'thécmrrelationfunction be gero at t = 0\ This

implies that the zero of freQuency in the calculated
spectrum is equal to the first moment, M(1l), of the
spectrum, - It has been shown 76,77,78 that the true

band origin w is given by

Ly = M(1) - 2B, (III-63)

where §bis the rotation constant of the molecule. This
bangd origin lies closer to the frequency of maximum
intensity than doas M(1l), ‘therefore choosing w, as the‘
zero of frequancy is more nearly in keeping with choos-
ing the frequency of maximum intensity as zero frequency
which is the common practice.7'10’11’25’38’39 We have
chosenltherefore,to compare the correlation functions

. Obtained by Fourjer transformation of observed band
contours with W, 3s the zero of frequency with calcu-
lated correlation functions rephased to this frequency
origin. Since the M~diffusion correlation functions
were computed by Fourier transformation of the calcu-
lated spectral densities, the choice of the frequency
origin was made in the same manner as that for the

correlation functions calculated from experimental

spectral densities.

=
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The comparison of calculated corvrelation functions
and Fourier transforms of observed V3 bang contours gave

essentially the same values of T_ as conmparisons of cal~

J
culated and observed band shapes. Unfottunataly the
points in the digitized v, Spectra of‘QH4 availahle 39
were too distantly spaced for computation of maaningful
Fourier transforms. We have therefore nat attampted to
compare calculated and experimental coxralation functions
for the Vy band.

E. DISCUSSION

~

The semiclassical rotational diffusion models
proposed in this chapter are similar to, but not identi-
cal to, those proposed in Chapter II wni¢h were based on

Gordon's-semiclassical theory.z’34

If we form the matriyx
products indicated in Eq. (II-14) we obtain the reorien- |

tational correlation function in the foym
G(t) = Z Wy expl)jt] (ITI~64)
i

where ) is a diagonal matrix containing the clgenvalues
of the matrix —g-+;90 as defined in Eg. (II~16§). the

weights, W,, are given by o

)\E | )
' wi = § dj Sji (S )iﬁpgkdff
o h| L (I11-65)
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and the columns of S are the eigenvectors of ~g + igo.
It is clear from Eq. (III-64) and (IT-15) that the re-
orientational correlation function is a superposition
of exponential functions with complex arguments, and
that the spectral density is a superposition of Lorentz
functions centréd at frequencies given by the imaginary
part of A, with widths given by the real part of 5.55

The réorientational correlation functions in the
present models appear, at the outset, to be significantly
different in form from those of the previous models.
However, if one employs the Laplace transform relation
in Eq. (III-31) using the ffee rotor expressions Egs.-
(III-38) or (III-46), one can easily show that the
Laplace transforms 6f the correlation functions in the
J-_ and M—diffusion‘limité are respectively

2
E : Poedy }(

te;lj]— - dwy,) + 5]

- ) 2'#2
GJ(S) - 2 1 ’
E Pkkdk[—w)k + s] ’l [(;; - ka.) + s}
k : k'#k ' v
(I1I1-66)
and

J 2 -;L - Zw, ")
E Pzz(dz) ’ l [(TJ Twy + s]
G (s) = p ‘
M J
J 2. . S S
| P E Pl (407 [1w + 5] ) l (G~ )+ s]

k'#k

>

k
(IT11~67)
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where the indices k and R in Eq. (III-66) represent the
collaction of lahals {J,K,M,k,f,m} in Eq.(III-38), and
thasa indices in fq. (111-67) represent the collection

{KIMIkIfIm} in Eqg. (IiI"Aé);

Py % Pogy - (I1I-68)
@)
dy = (d:owM| D ac0)1]g) (ITI-69)
and b
I
Ph S Py (III-70)

The sums over k and » in Eq. (11I-67) are restricted to
transitions associated with a particular J-manifold.
Since the Laplace transforms given in Eqs. (III-66) and

(111~67) are of tha form of ratios f(s)/g(s) of poly~- _

W
nomials in the Laplace variable s, with the polynomial

§(8) An tha denominator being of higher degree than the
palynomial £(s) in the numerator, the correlation func-
tdons themselvas must be. sumg of exponentiai functions
with arguments {Art}, with thé COefficients Ar being
the eoluiions,to the characteristic equation g(s) = 0.79
Thug the correlation functions in our previous and
present semiclassical representations of the M- and J-
diffusion models can be written as superpositions of
g¥pobential functions of t.

In order to investigate the similarities of the
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two models in greater detail, we have compared the expoii-
ential parametefs in the two approaches to the M-diffu-

sion limit of the extended rotational diffusion model. It
was found that both approaches gave identical exponential
parameters if the [[- matrix of the previous M-diffusion

model were specified by

!
(N

2 .
. (l*di)/rJ 1=
Hij = , | . (TYr-71)
'di/TJ 1% 7

rather than by Eq. (II-13) as in Chapter IT. Numerical
comparisons of the weights associated with each of the
exponential terms in the M-diffusion correlation functions
in the two models indiéated that, although the previous
approach could be modified to give the same exponential
parameters as the present model, the weights of the ex~
ponential functions were different in the two approéches,
and the differences between them varied significantly
with Ty A comparisén of the weights given by‘thé two
models, for several valués of Tv, for the three expon-~
entii: terms in the J = 1 manifold correlation function
for the V3 band of CH, is given in Table 3. |

The identity of the characteristic polynomials,
whose roots define the exponential parameters 1n the
correlation functions, in the two versions of the semi-~

classical M-diffusion model for the case of threa apectral

lines led us to investigate the characteristic polynomi~
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als in both M- and J-diffusion limits of the semiclassical
rotational diffusional models when a large number of linas
were included. The characteristic equation in the prasant

J-diffusion model is

§ : 2 . ~1 ] _
Pkkdk (s - ka) (s + TJ - ng) = 0 ,

k R4k ,
(IYY-732)
and can be rewritten in the determinantal form
A2 (smiw) ~(stT e i) (st gy . ~(st )
Pradp(smiwp) - (st 1 J 1 J 75
P, dl(s~iw) (sttleiwy . o o 0
2272877, J 2
P, d(s-iw.) 0 (st1teiw) . . . 0
3373 3 J 3
P dz(s~iw ) 0 0 (s+r"1»iw )
non n n J n
=0
(I11-~73)

Since the value of a determinant is unchanged when a
linear combination of any number of columhs is added to
any given column, one -an 80rearrange the determinant in

Eg. (III-73) by adding —P22d22 times column 2, ~P33d32 ﬁ;
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times column 3, ... and —Pnndn2 times column n to col-

umn 1 to obtain

s+(1—Plldi)/1J—£wl -(s+T;1~iml) ~(s+T31~iwl) ... ~(s+T31-iwl)
—Pzzdg/TJ (s+r31—iw2) 0 - 0
—P33d§/TJ 0 (s+T;1—im3) o 0
—Pnndj/TJ 0 0 C (st o)
J n
=0 (11I-74

In the derivation of Eq. (III-74) from (III-73) it has

been noted that

(ITI-75)
which is implicit in Egs. (III-66) and (I1I-67) also.
The determinant in Eq. (ITII-74) can be modified by
adding the first column to each of the other columns

to obtain
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2 . 2, , - 2
s + (1 Plldl)/rfwl Plldl/TJ e TP
~P dz/r g+ (A~P 62)/1 ~Thy . -p d2/T
22720 Y , 2207777y s 2272
-p g° o g2 o a2y,
Pnndn/TJ P{lndh/TJ ) st(1 Pnndn)/TJ tw
¥ 0
(II1-76)
which can ve vrivgen iu ghe form,
A A N S E TR
(I11-77)

hY

where 1 is a unit matpix, W, 15 a diagonal matrix cop-

taining tha frequencies of the trangsitions,

and the
matrix [T has elementg Yiven by
Q~F, 43) /1 RN
$i7y J ’
Ty < 2 £
Py 75
(II1-78)

The latter form of £g9, (£11-77) ig precisely the char-
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acteristic egpation whose roots éfé determine ih the dqiag~
‘onalization of the matrix (~ 10 + 1w ). Thus, prdvided wa
describe the matrlx elements of [T by Eq. (I111-78), *athar
than by Eq. (II-12) of the previous chapter, the charact- .
eristic equations of the present model [Eq. (III~72)]

and the previous model [Eq. (III-77)] are identical.

This implies that the two approaches yield correlation .
functions which are linear combinations of exponential
functions of time [EqQ. (III~64)] with the exponential
parameters of.the two approaches being ldentical. as
pointed out above, the weighting factors of the exponen~
tial functions in the correlation function.are not identi~
cal. The weights W, in Eq. (III~64) are given by Eq.
(III-65) for the matrix diagonalization technique employed
prev1ously, and by

' 2
Z 2092 7T(A +TJ ‘“”@')

- LD}

i . '
;E (l ~ (IT11-79)

k#1
with the present approach. The weighting factors in

Eq. (III-79) reduce to those given in Eq. (ITI-65) only
for large values of T where the dff—diaQOnal elements
of II are negligible. It should be noted that for the
case when all lines have identical intrinsic line ampii«
tudes d; = 1/3 , the model proposed in Chapter ITI will
have the same []-matrix as the model given in the pre~

~

sent work. In the classical limit, (large rotational
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quantum numbers) this case is indeed realized.

The major differences between the’piesent theory
and that given in Chapter II is the method of describing
the "collision" process. In this chapter, we have viewed
"collisions" as events which result in transfer of’
molecules between the aQailable rotetional'states, while
in Ehe previous theory, "eollisiOns" were viewed as events
wheéein line amplitude was transferred between spectral
- lines. This concept of transfer of line amplitude
between lines has some relevance in a classical interpfe—

2’34, but its relation

tation of rotational transitions
to transfer of molecules between guantum states is ob-
scured by the fact that molecules in a given state. can
undergo more ° 1 a single transition within the rotation-
vibration band of nterest. The approach in Chapter II

is based on the intuitive assumptiop that molecules with-
in a given quantum state could be subdivided so that |
eqﬁal numbers of molecules were associated with each of
the transitions originéting in that quantum state. The
present theofy does not require such assumptions.

2,34

Gordoh has pointed out that the line amplitude

transfer approach is expected to describe the time de
, N ’

pendence of the correlation functions at long times only.
However, with the semiclassical approach presentedehere,
\ .

no such limitation is apparent in th: mathematical de-

velopment of the model.
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The most importasut improvement in the semiclassi-
cal rotational diffusiob models preasantad hara is the
simplification of the mathematieal qascription of the
correlation functions Qﬁd spéatral danaitiesa, The treat-
ment in Chapter 11 waa af limitad applicabitity due to
its reliance on tha diagenalization of the c¢omplex non-
Hermitian matrix, - Q~+ig0/ whose order i egusl to the
number of spectral lines included iu the cslvulations.
This diagonalization procedure becuey probibitively
expensive when a very laryev buber of sphectral lines
(>40) are included. Iy the IphLIcAtIOn of tha theo;y
in Chapter IT to the vy band of CR,» computation costs
required us to limit oukr considaration ta’ tha linas
arising from the J ~ 0 to I a 12 rotational manifolds,
which means that Sa. 4% of tha matnana melecules which
occupy higher'rotatioﬁal lavals were oomplét@ly neglected.
In spite of this deficiency, wnich 1@d to giynificant
discrepancies between calculated ana‘obéngéd ypectral
‘densities.in the wings of the bevd, we Wore sble to
‘obtain satisfactory’agreement betweeh theory N experi~
ment. The application of the previous theory ﬁd the Yy
band of CH, was impractical sihee ona must inalade a
much larger number of transitions in thasa calenlations.
With the present theofy. no matrix Aiagonalization is
required since the resulta ara darived from a free rotor
memory function which is in tugn derived from g free

rotor correlation function, or.from the Laplace transform
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of the free rotor correlation function, We have therefore
been able to apply the models to the calculation of the
V4 band of CH4 where 363 transitions are included for
_ ortho-CH,, 120 for para~CH, and 121 for'gggg~CH4.

The avgular momentum correlation times, Tyr Obtained
from comparisons of calculated J~diffusion and observed
vy and V4 band shapes of CH4 in dqense gas mixtures, given
in Table 2, are plotted against gas density ih’Figi 22.
‘The values obtaineq from analysis of the vy and v, bands
do not differ significantly, and as was the case in Chapter
IT (see Fig. 6), tha vélues are comparaple to those
obtained by analysis‘vfnuclear relaxation times in high
pressure gaseous maﬁnane.56 It is felt ﬁﬁerefore that
the parameter TJ'iﬁ indeed a measﬁre of the time interval

during which the rotational state of the molecules remains
~1 '

g
non-zero intercepts..' This can be attributedOto our y

fixed. The 71 vs. p plots in #ig. 22 appear to have
neglect of instrumental broadeniﬁg since the Values'of'rJ
which we obtajned by cowparing calculated and observed
band shapes would be lower than the "true" Ty values in
the low density mixtures where instrumental effects could
contribute significahtly to the band shape.

It'has been found in thefanalysis'of spectral band

'7,22-28 28-33

shapes and nuclear relaxation times, that

the‘classical extendeq rotational.diffusion models

- account for a very laxge number of ohservations and are of
) : B,
, : ‘ S

I
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value in interrelating data from different kiﬂﬂg of
measurements. The model we have developedjjlﬁnig chapter
18 a semiclassical version of the extended~;oﬁationa1
Qiffusion model. This model can be applied effibiently
to the study of band shapes composed of a lar9d? Yumber

of transitions such as the v, mode of methane #%y ghould

N 4
prove useful in the analysis of spectra where vh% quantum
mechanical effects are large and rotational—vib§§ti0nal
coupling is important. The classical model onlQ be

invalid and of little value under these conditi“hs.



THE KIVELSON LINEWIDTH THEORY

CHAPTER 1V

A. INTRODUCTION

In Chapters II and III, we have developed models

3

for £he description of reorientational motion in systems
in which the angular momentum correlation time Ty and
the reorientational correlation times 1, are of the
same order of magnitude. Under these conditions, it
is necessary to follow, in detail, the reorientational
motion in.individual diffusive steps in order to des-~
cribe the reorientation of a molecule in terms of a
rotational diffusion process. In this chapter re-
orientational motion in liquid systems where Ty is much
shorter than Ty will be studied. Under these condi-
tions, molecules rébrient by very short rotational
steps and they sample a large number of\rotational
states in the period of time Tg+ For th.s rea on it
is.not necessary to follow the rotationzl Proce-ss in
each individual step and the reorientational motion can
be described using a rotational diffusion equation.
In the limit where T is much shorter than Ty the
extended J-diffusion model reduces to the model des-
cribed by the diffusion equation approach.

If W[Qo;t,Q] defines the conditional probabiiity

that a molecule has reoriented from an initial orienta~

142
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tional QO to an orientation Q in time t, the classical
rotation diffusion theory 52 leads to a description of
the time dependence of W[Qo;t,Q] in the form of a rota~

tional diffusion equation

3 . _ B
- 3¢ WIg,it,0) -2 :JaDa\BJBW[QO,t,Q], (1V-2)
a,B

where I is the dimensionless operator for the angular
momentum about the a-th axis and DaB is the wB-th com-

ponent of the diffusion tensor D given by

-

- lim 1 [ dEe e p(2,at)
aB  At>0 2 .
At

(Tv~2)

where At is a time increment which is much shorter than
the times of interest Tgr and p(g,At) givesrfhe prop-~
ability that the molecule reorients through a solid
angle ¢ in time At. In order to obtain Egq. (IV-1), one
applies the rotation‘operator exp[*ig.jl, Yepresenting
an infinitesimal reorientation ¢, to~tﬁe function
W[Qo;t,Q], expresses che result as a power series in
e and‘peglects all terms of order greate; than 52.

The solutions to the rotational diffusion equation
(Iv-1) for a molecule with an isotropic diffusion

tensor, D%, can bewritten in the form



144.

\

' (2) (2)*
wiagem =y L g Mg M,
© 87 km © km
£.k,m

X exp [-2(2+1)Dt] (IV~3)

where %)(2)[90] is the Wigner f@‘—matrix 68 which des-
cribes the reorientation of a'spherical tensor of rank
2 through the Euler’angles QO;'Thediffusion tensor D1
is usually defined in a coordinate system in which it
is diagonal andihsgenerally interpreted in terms of
the retarding torques aéfing on the molecule due to
the viscous drag of the solvent using the Stokes-

53

Einstein hydrodynamic relationship.> Debye first

proposed this type of relationship in his classic
treatment 3 of dielectric relaxation in polar liquid 19
and it was later used by Bloembergen, Purcell and

pound 20 to interpret the nuclear spin relaxation times
of the molecules in liquid water.

In addition to the study of Raman and inffared
band shapes described in Chapters II and III, and the
study of dielectric and nuclear relaxation phenomena
as noted above, one can also gather information about

molecular reorientation in liquids by studying electron

spin relaxation of paramagnetic species in dilute
liguid solutions. The interpretation of electron spin

relaxation times is a particularly useful technique

O
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provided that a suitable paramagnetic probe is available.

Lf the electronit Zeeman and‘nuclear~electronic
byperfivne interactions are anjgotropic then the tumbling
motion of the molecule modulates the strength of the inter-
actions between the ele.cron gpin, nuclear spin and
applied magnetic field aud gives rise therefore to a time
dependeht péfturbation ou the glectron spin levels.which
leads to transitions among thew or spin relaxation. For
dilute solutions of paramagnetic species, containing a
single unpaired electron and ohe Or more magnetic nuclei,
the transverse spinh relaxatioh time, T, is determined
by this rotational modulation of the spin levels. Since
T2 is inversely proportional to the observed sr *tral
linewidths, information about the reorientational motions
of the paramagnetic species 1s easily obtained from ex-
pariment provided a suitable qQeseription of the effect
of the'raorientatiénal motion an the anisotropic inter-
actions is available. |

The anisotropic electronic Zeeman and electfonic-
nuclear hyperfine interactiona are characterized by
second rank ;ﬁherical tensora, 50 that the reorienta-~
tional correlation time which describes the time cor-
relation of these tensors is the correlation time Tefz)
associated-with the -correlation function

‘ .
< 7 (2) (o] D ‘i) m]> . The rotational diffusion
km m

equation theory Jgives the result
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(2) (2)
x D[] W o[Q_;t,Q) = <IQ> [901|2>

km km
X exp-6Dt (IV-4)
4
so that (2)
L3 = 1/6D . (IV-5)
Following the Debye 19 and Bloembergen, Purcell and

Pound 20 approach, we assume the Stokes-Einstein >3 re-

lationship
D = kT/8nrO3n (IV~6)

.where k is the Boltzmann conétant, T the temperature, rQ

the hydrodynamic radius of the molecule and n the co~

efficient of shear viscosity of the solvent: so that

Te(z) = 4nro3n/3kT . (IV-~7)

~

The ESR spectrum of a paramagnetic species with
One unpaired electron and a single magnetic nﬁcleus of
spin I in a dilute liquid solution consists of 2T + 1
lines each.with a different linewidth. .The widths of

these lines AHM, depend on the nuclear spin quantum

~—“number, M, and can be expressed by the cubic function

AHM =-a' + a" + BM + YM2 + GM3 (IV~8)
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where the parameters a', a", B8, y, and § depend on the
species, temperature and solvent. Kivelson and Wilson
have obtained theorctical expressions for the contribu-
tion to the parameters o', B8, Y, and 6 from the relaxa-
tion process due to the rotational modulation of the
electronic Zeeman and hyperfine interaction using the

81,82

Kubo-Tomita formalism for relaxation. Other workers

83,84 have verified these expressions by deriving them

with Redfield's theory of magnetic relaxation. 2>~ 87
The linewidth parameters are related to the magnetic

parameters of the paramagnetic species and the electron

resonance frequency by

2) ,
2Bt (
a' = S 4 Boz(AY2 + 36Y2)
5/3 9584 9
a2 AYyB ba
+I(I + 1) ( 3B - o )
8 , 6w
(0]
2
B
-+11(-£L-[AY2 + 36v4]
3
7%  14c®  ba ; Sbf AYB,
+ I(I + 1) | — + - —_-< + ) !
8 3 Wy 8 6

(1v-9)



(2)

2ht
- 0 4 - afs 2
B = v —— 3 Bo(bAy + 4cdy) w0<9 (AyBO)
5/39080

: 2
-FE_P + 2T (T +]J]>
8 .

a |2 2
+ u(BO(bAy + 4cly) - — [§(AYB0) (1L + £)

w
(o}

b2
= 1+ I(T + 1)[1 + 7f]};})
4

(IV-10)

2) -

2hT ( 2 2

y = —9  J5b° | 10cT szBob(a/wo)
5'/-3—98 8 3 6

2 AyB
~uf By 2.2 &b (5 + 12f) -~ 2bf
8 3 w 6 8 ‘
(IVv-11)
and
'hre(z) 2
8 b (a/wo)[l + u(l + £)] (IV-12)
10/3g B
o O
where

g = l(g '+ g+ g) , (IV-13)
3 h

148.
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by = —~ (2qz 9 " g_) ’ (IV-14)

(IV-15)
RN . (Iv-16
’ (IV-17)
6~ A - A - (IV-18)
\ 4 x y ! . g
\
\
\ 2_(2)2 ] -1
v [ L w "ty , (IV-19)
and :
. 2 2
£ = w,” T, (IV-20)
gx,.gy, gZ and Ax’ Ay, Az are the principal values of

‘the electronic Zeeman and hyperfine interaction tensors
respectively, Bo is the Bohr magneton, W, the frequency
of the applied radiation and'qs igztgg applied magnetic

. ~ e
field. B3ll of these rametgf&k;w;th the exception of

(2)
8

: . ) \ .
SpPecles in liquid ayd solid solutibns. Therefore, a

T » <an be deter@ined fromvthg\ESR spectra of the

L .
study of the linewidth contributiohs due to motional

modulation of anisotropic dnteractions can yield measure-

ments of Te(2)~ ';
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The residual limewidth, a", found in Eq. (Iv-R)
can be determined by subtracting the a' term pradicted
by the theory of Kivelson and Wilson 41 from the ex-

perimentaily determined o' + " if-Te(z) is Known. From

a éareful investigation of possible relaxation mechan-
isms, Atkins and Kivelson 43 concluded that the o
contribution to the linewidth was domipated by wotionsl
modulation of the spin—rotational coupling., & theoreti-
cal expression for a" was obtained by a proceduly anals
gous to that used to obtain a, B, y, §. The meghitﬁde
of thevspin-rotational,contribution to the linewiqth

is determined by the magnitude of the components of the
spin-rotational coupling tensor and the angular momentun

correlation time T Since the.elements of tha apin~

3
rotational interaction tensor are not usually availaple,
Kivelson and co-workers 243 have used sacond order

perturbation theory to estimate these elements from the
elements of the g-tensor. Furthermore, they have -uged

Hubbard's relationship 88

Te(z)p]= I/6kT , (TV~21)

where T is the moment of inertia of the molecule k is
the Boltzmann constant, and t the temperature, to
.estimate TJ from r(z) Witk these assumptions, the %Dlh\

rotational contrlbutlon to the linewidth is
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Aazﬁﬁa 2 -1 (IV-22)

where 6g is defined by

39 = [(g, - 9% + (g, - 902 + (g. - g.)2)*
X & y e z e
| (IV-23)
and Ie is the free electron g-value (2.00231).

41,89 applied the linewidth theory

Kivelson et al.
describéd above to interpret the observed ESR %;ﬁe-
widths of §i§(2,4~pentanedionato)oxovanadiuﬁ(IV) [VOoaA]
in a series of solvents. They obtainéd excel;ent agree-
ment between'theory and experiment provided that Eq.
(Iv~7) was modified to the form

dnkr 3n

r6‘2)_= o . (TV-24)
3kT

\ here fo is the hydrodynamic radius of the solute mole-
cule determined from translational diffusion experiments
and k is a dimensionless parameter which theyvfound to
be temperature independent, but which varied with the
nature of the solvent agd solute molecules. Aftér care-
ful consideratigpfgf reorientation in a viscous fluid,

Kivelson et a1. .90

have defined K to be a tensor

given by

| 2
f = <Ti > - (1v-25)

ii
4r 2 . <F.2>
To . i
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wharea Ti and Fj are the i~th components of the torque
exerted on the molecule, and the intermolecular force
' experienced by the molecule respectively. So as not to

introduce additional parameters into the model the tensor

K is generally assumed to be a 5calar.l7’18’42

17,18,44,45

Recent investigations of the ESR line-

widths of V0aa and other vanadyl complexes in#solutions
3t low tewperatures and also in solutions in hydrogen
bondiny sleéhts have indicated apparent weaknesses in
the KiVelggqﬁiihewidth theory. Bdngerman and Jordan 44
studied the linewidths of VOaa in a number of alcohols
and noteq that the reorientationsl correlatioa time,
(2) '
S
different from that determined from the y parameter.

T , &%%igned from tHe analysis of the B parameter was
They attribhted this discrepancy to the high sensitivity
of B to axparimental error in the linewidths relative to -
the sansitievity of y, rather than to weaknesses in the
theory itaalf. They.also observed that the spin-rotation-
al aonﬁ;ibutiqn, a", was much larger than that predicted
by Rq. (i0322) in the ;egion of large n/T. Similar
observations were made by Chasteazn ?n& Hanna 45 in a study
of a series of vanadyl a—hydroxycaf;oxylate complexes in
aqueous solutions, by Huang and Kivelson 17 for tetra-
n-butylammonium bis (dimercaptomaleonitrile) nicgéﬁ(II)

4
-

[(H“C4H9)nN.NlS C (CN)4] in n-butanol and in CHCIB, and

474
by Hwang, ¥ivelson and Plachy 18 for VOAA in a number of

A
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nop—hydrogen bonding soi:ents ar low temperatures and at
high pressures.
In order to further investigate,theiralidity of

the Klvcfein theory, we have studied a serles of vanadyl

complexes of varying molecular size in toluene, carbon ‘

dlsulfrde, chloroform and‘drphenylmethahe (DPM) solutions.
-~ The complexes studied were bis (3,5-heptanedionato)oxovan-

adium(ig) [VODEi, Qig(l~phenyl—l,3—butahedionato)oxo—

vanadiumkiV) [VOPM], Qr§(2,2,6,6~tetramethyl—3,5~hepta§§v

dionato)oxovanadium(IV) [VOTB], and bis(1,3-diphenyl~1,3-

-~

’

propanedionaggﬁoxovanadiuﬁ(IY ve .
In sections B~E of this *hapter, the experimenta¥
- methods employed‘in obtaining =~ ata are descrlbed.
Tn section»F, the analysis of the data is bresented
wihile in section G the procedures used to.inﬁerpret theﬁﬁweJ
. , . :

data are assessed and the implications of the results
\‘ . : A . .

considered. ¥ a a If
‘B. PREPARATION AND CHARACTERIZATION OF VANADYIL COM-
* PLEXES, o , o

*;fThe four vanadyl complexes were prepared using

5
; varlatlons of the’ standard procedures QAVen in Inorganic .
s .
Xntge51s 91 for:the preparation of;%pAA.
1... Bis(3, 5—heptanedionato)ox0vanadium(IV) [VODE]

_;:i“, The VODE complex was epared by reflux1ng a le-

4
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ture of 0.5 g vanadium pentoxide (V205) (Fisher Scient-
ific) and 12.5 g of 3,5-heptancdione (Eastman Organic)
for 1.5 hours. The hot reaction mixture we filtered to

v

remove unreacted V,0. and the excess dike!.one was re-

275

moved under vacugm. Thé resulting“product was recrys-
tallizadtwfégf%gm acetone and su2§itted for microanaly-
sisf o ' . .

"%U?}yS;sF- calculated for C14H2205V:

\ m“ C, 52.33 ; H, 6.85

. FPound: ° C, 52.08 ; H, 6.78

o o h <

- e "

2. Bis(2,2,6,6—tetramg§§yl~3,5~heptanedionato)oxo—

vanadium(IV) [VOTB] - : -8 %

The VOTB complex was prepared by refluxing a mix-~
ture of 0.5 ¢ '5 and 18 g df 2,2,6,6—tetramethylj
yhe?tane73,5~dione (Rierce Chemical) for 4 hours. The
hot reaction mixturelwas fi1£ered to remove V,05 and
the excess diketone was pumped off. The resulting
product was recrystallized twice from acetone and sub-
mitted for microanalysis. -

iwAhalysiga' calculated for C22H3805V:

T C, 61.00 ; H, 8.80

Found: C, 61.02 ; H, 8.75

3. 'Bis(l~phenyl—l,3~butanedionato)oxovanadium(IV) [VOPM]

The VOPM,?omplex>was prepared by refluxing a mix-
5'9 ) " > , ‘ . -
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ture of 0.5 g VZOS and of 1.0 g l-phenyl~1,3-butane-~

dione (J. T. Baker) in - mls of benzene for 1 day. The. -
l

hot reaction mixtur 1ltered and the benzenc reT”’

moved under vacuum. The resultlng product was-® recf§§t£&—

lized three times from acetone and submitted for micro-

analysis.

Analysis: calculated for C20H1805V
C, 61.70 ; H, 4.63

Found: C, 61.87 ; H, 4.50.

\“‘ ¢

Bis(1,iﬁgiphenyl—l,3—propanedionato)oxovanadium(IV)

7

4.

<A

[VODP]
The VODP complex was prepared by refluxing 0.5 g

of V.O. and 0.5 g of 1,3-diphenyl-1, 3-propanedione

275
(Eastman Organic) in 5 mls benzene for 1 day. The hot

: : . g
action®mixture was filtered and the benzene removed

The resulting product wasﬁrecry%taflized

LN

under vacuum.

twice from acetone and submitted for microanalysisg.

Analysis: calculated for C30H2205V
c, 70.18 7 H, 4.29

Found: C, 70.30 ; H, 4.25.

C. SAMPLE PREPARATION

The solvents toluene (Allied Chemical reagent),
carbon disulfide (Matheson, Coleman and Bell), chloro-

form {Mallinckrodt Analytical reagent), and diphenyl

5P ' , :
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3

lmthane (Fisher Scientific) were all purified by vacuum
d;stillation and were stored‘over molécular sieves (BDH
type 4A) uncer vacuum. Solutionslof the vanadyl com-
plexes were prepared by weighing the comélex into a
vessel with a sidearm fitted With a 4 mm ESR Pyrex sample
tube. The solvent was than distfiled into. the vessel

on a grease free portion of a vacuum line. Any traces
of oxygen remaining in the sampleé were removed by
pumping on these solutions while they were maintéigéd’

at -95°C in a toluene sluéhyv The ;olutipns were then
poured into the sample tubes and sealed.gff uﬁder vacuum.

All solutions were 10—3 M.

L

D.  INSTRUMENTATION AND MEASUREMENT TECHNIQUES

The ESR spectra were recorded on a Varian V~4502

spectrometer equipped with a Varian V-4557 temperature
control accessory, and the temperature was measured
with a copper-constantan thermocouple The magnetic
field was‘caribrated‘with an Alpﬁa model]5093 digital
NMR gaussmeter. The cavify frequency Qgs determined
with a Hewlett Packard model X532B frequency meter.
The frequency meter was found to be accurate to 0.05%
using an aqueous solution of Fre;y's‘éalt‘zg =
~42.00550) .72 | h

| - The widths of the individual spectral lines were

determined by measuring the heights of the lines on a
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1 kG sweep and the width of the M = -3/2 line on a
narrower sweep (25 - 50 G). The lThes were as<umed to
be of Lorentzian shape so that the height, H, and the
widﬁh, W, were related through the familiar relatiPnship,
c = HW2, where C is constant for a given spectrum and
can be determined from tﬁéﬁﬁ%f&ht and width of the M =
-3/2 line. Preliminary investigation indicated that
the influence of line overlap on the measured line-
widths wés negligible even at low temperatures and
thus no corregtion was made for o&erlap. In order to
decrease the experimental error in the height the

/

average of four sweeps was used in each calculation.

N ﬁ / . . .
Tables of the observed spectral linewidths are given

A

in Appendix III for each complex/solvent system. s
E. ANALYSIS O®F THE ESR SPECTRA-OF VANADYL COMPLEXES
. AW ~

The spin Hamiltonién,;q, far a paramagnetic mole-
cule containing a single unpaired electron and a single

“magnetic nucleus is : e

> > -
.g.B, + 1 I.A.S (Iv-26)

A

A =B

e

e
LRV > 1

.-
. . [
R ;
, ‘y\

. g
. >
where S is the e

lectron.spin angular momentum operator,
T the nuclear spin,gqgukar momentum operator and go‘
the appliéd magnetic field. g is the electronic Zeeman

interaction tensor and A is the nuclear-electronic

hyperfine interaction tensor. Since the.majnetic field
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—> - I3 3
vector BO is fixed in the laboratory coordinate system

and the tensors g and é are diagonal in a molecular co-
.

ordinate system, the interactions are'dependent on the
orientation of the molecular coordinate system relative
to the laboratory coordinate system and thus the ESR
transition frequencies afe orientation dependent. If
we define wx, wy, wz respectively as the ESR transition
frequencies when the x, y or z axis of the molecular

coordinate system lies along theYdirection of the

applied magnetic field then these frequencies are givens#

by 93
g 8 B AC 2[I(T + 1) —MIzj
w = 429 4 a MI + ‘Tq
d X q Y. 4 g B8 B
. T{j g o o
C (IV-27)
where ‘ ;
c?=a+a?+n2_-a2 (TV-28)
q X g z q

and ¢ = x, y or z. In a solid solution the molecules
are randomly oriented, however the position of the
individual transitions can be identified and these
transition frequencies can be used ‘in conjunction with
Eqg. (IVv-27) to determine the individual components of
the g and % tensorg. In Fig. 23, the spectrum of VOTP

in a toluene glass is given and some of the transition

lines identified.

In a liquid solution where the molecule is tumbl-
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ing freely, the x, y, =z components of cach spectral

line are averaged to g.ve lines at the frequencies 41

]
.

B B 2
mo = go—9~ + ad + % a2 I(IB+B}% M
' , +H 9obo

Y

(IV-29)

where BO is the Bohr magneton, B the magnetic ficld and
95 énd a have been defined in Egs. (IV-13) and (IV-16)
respectively. The liquid spectrum consists of 2T + 1
lines whose positions'and widths are determined by the
averaging produced by the tumbling motion of the mole-
cule. It is this averaging process which is monitored
in studying the reorientational motion of molecules
using the linewidth of the ESR spectra. From an .itera-
tive procedure. using Eq. (IV-29) and the positigh of
the 8 lines of the liquid spectru: 95 and a can be
calculated. Although the g and A tensors cbuld be
determined frémvthe glass spectra, Wilson and Kivelson
suggest that'determining 95 and a from the liquid
spectrum, S gy, Az, and AX - Ay from tﬁe glqss
spectrum and combining these data to obtain the re-
maining parameters is the best approach. g, can be
determined from the posiﬁions of the + MI lines in the
z-spectra while 9 gy and Ax - AY can be determined
from the separ&tion of the x- and y-spectra of a given

MI transition (see Figs. 23,24).
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In Fig. 24 a section of the VODE/toluene glass
spectrum, in the region of the MI = 3/2 x and y tran-
sitions, is shown and the positions of the x and y
transitions are indicated.

The components of the g and hyperfine interaction
tensors determined from the glass and liquid spectra
using the procedures outlined above arc given in Table
4. These determinations were all carriedcnu:on tolu-
ene solutions of the complexes.

In Fig. 25, the region of the M_ = 3/2 x and y

I
transitions in the VOPM/toluene glass spectrum is
shown. Comparing this to the same region of the VODE
spectrum shown in Fig. 24, we see that therc appears
to be an additional transition in the region where
the y-transition is expncted. We have analysed this
specf%um in terms of the *+wo possible y-transitions

and obtained two sets of @ .rameters. VOPM can exist

as either the cis or trans isdmer. X-ray diffraction
studies indicaté that the cis isomer is the predominant
species in the solid state.g4 However ESR studies by
\Belford et al-94 on single crystals of bis(l-phenyl-
Kl,3—butanedionato)palladium -which hés.aig£§£§ geometry
doped with ﬂgﬁw\indicate the possible existence of

VOPM as the,%rans isomer, while the VOPM complex in
&

bis (1-phenyl-1, 3-butangdionato) zinc crysta@? (cis

N
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*

Magnetic Parameters of Vanadyl Complexes in Toluene

Complex
Parameter _ VODE VOPM " VOTB VODP
gx 1.983 1.982 1.984 1.988
g, | 1.980 1.982 1 .o . 1.983
gz @f 1.944 1.943 1.945 1.943
A, (10° sec™h)| “1.134  -1.117  -1.093 ~1.198
9 -1 B
Ay (107 sec ™) -1.172 -1.202 ~-1.188 -1.237
9 -1, b ! ‘
Az (107 sec ) -3.312 —3.289_ -3.306 -2.271
*
Estimated error: 9, + 0.002
9yrd, + 0.003
A + 13
z —_—
A_,A + 3%
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FIGURE 25. ESR spectrum of VOPMiin toluene at T = 90°K

=

in the region of M :§3/2 X, y~-transition.
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geometry) exists as the cis isomer. The g va' .o

assigned by Belford 9£'.§1‘94 to the cis (2Zn m.. 1 LX)
and trans (Pd matrix) isomer of VOPM are : .ilar to

those assigned from our analysis of the élass spectra
indicating the simulyaneous'éxistence of both the cis
and trans 1somers in the toluene glasg. Th values
réported in Table 4 for'VOPMvare an average ®f our two
sets of results and are sufficiently accurate for the
tpurpose of our linewidth analysis.

\A‘. A S
LRIV

F. ANALYSIS OF ESR LINEWIDTHS

The theoretical expréssions for the linewidth
‘parameters [Egs. (IV-9) - (IV-12)] can be combinea
with the expression for Te(z) [Eq. (IV-24)1 tco obtain
expressions for a', 8, vy and 8§ in terms of tﬁe ratio
n/T and the adjustablé parameter k. Provided ﬁ/T is
known, K can be determined from a nonlinear least
squares fit of thé»ﬁheoretical linewidth barameters to
those determined from experimental linewidths.

In previous applications of the Kivelson linewidth

17,18,41,43-45,89 K was determined fromﬂthevn/T

theory,
dependenrce of the Y parameter. The procedure had cer-
tain advantages, vy is nearly a linear function of n/T,

and k can be determined directly from the slope of

a plot of y vs n/T. The values of y are usually more
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precise than the values of B since 8 is determined
essentially from the differences in observed linewidths.
_Considefation 6f Y is also more pleasing in that the//
agréement betw%en theory and experiment is more satis-

.

factory than for B. On the ofher hand, considerdtion
of only the y parameter is not a stringcnt test of the
complete theory since only a portion of the theory is
being utilized. Secondly, the deviations between
experimental and predicted f's cannot be entirely
attributed to experimental uncertaintieé‘ Finally,
fitting one's data for only the parameter which givés

the best agreement is a guestionable procedure especi-
ally in the case of y, which is less sensitive to changes
in n/T than is f. It is for these reasons that we héve
adoéted the procedure of analysing the M-c ndent parts
of liﬁéwidths.yVWe defined the M—aependent part of tlhre
linewidths as the experimental linewidghs.ﬁinuS fﬂe\

a' + a" contribution obtained by a least SQuafésﬁfit

of the experimental linewidtﬁs to Eq. (Iv-8). It would
be more satisfactory to fit the entire linewidth using
all the linewidth parameters, however the theory ogk

the residual lirdewidths is still open to question in
view of recently reported results in regions of large

18,44

n/T A nonlinear least squares routine was used

to fit the M-dependent part of theilinewidth, obtained
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at several different-temperatures, to the theoretical
expression for BM +,yM2 + 6M3 employing Egs. (IV-10)-

(IVv-12) and (IV~24). Fortran IV listings of the com-~

puter routinés used in both the linear and nonlinear

‘least sguares analy31s are given in Appendlx IID. The
values of the product KT 3 obtained from the analyses of

the Mvdependent part of. the linewidth are given in

' Table 5. In Table 5, we have also ihcluded the values

" of Kr03 obtained from a nonlinear least squares fit of
g RN

1

[ ” \,

was not carried out on § because of the-large Kerl—
¢

men&al errors in thlstparameter < A study was O made

ﬁln whlch the experlmental B and Y S were 51multaneously

O

fitted to Eq (IV~lUT€§ﬂB Eq. (IV- ll)"'As eXpected,
" »\ Nar . . //

this latter approach ylelaed values of Kr03 between

those obtained from the separate B and Y “1ts and are

:not included in Tahle 5.° In'these'nonlinear least

squares analyses conv,“gence was determlned by mini-.
m171ng’therelat1ve residuals for the B, 'yand By fits
and by mlnlmlzlng the absolute residual for the flt

to the M~dependent part of the llnew1dths The con- .°

\ i

. f )
vergence of the llnear'least squares routine in fitting
8 .

Eq. (IV~8) was also dotermined by minimizing absolute
. o .

?
EER R

"

_the n/T dependence of experimental B8 an v's [deter-

‘mined by fitting the experimental line - o Eq. (IV-"
P _ ,

~8)1 to Eq. (Iv-10) or Eq (IV~ll) A s;yllar analy51s

%
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residuals. In these least squarés analyses several

. Mmethods of Welghtlng the data baseg Oon widths of the -

h;between*%ucce351ve llneS'%asM51gn1f1cant

P

- Cosities were calculated from standard formulae 95,96

spectral lines were examined however, these different
:l'

I

'Welghtlng procedures had anp insignificant effect’ on

the final result - In general the results obtained by
analysis of the Y Vs WVT data are 51m11ar to those

Obtained from the analyses of the M- dependent part of

-

the llnew1dths - The VODP/ emVWas not analysed

Because the very broad llnes 1n’the§e spectra made the if?
Cp . :;“}_'«
measurement oQ.tHe spectra dlfflcult 51nCe overlap ‘

vy

’ *%% In Figs. 26- 33 thes. B and vy pdrameters calcufated

w2

from Eqs (IV—LQ) and (IV~ll) uslng the values of KEOB

'fohtalned by ﬁitt}ng the M- dependent part of the llne—’ “}3}

UW1dths are compareﬁ w1th the experdmental values forn

the complexes in. toluene and }Q hhn dlsulflde It

Would beu oted that at high tem-- atures these com—

[
to decompose and that the scatter of

points in thig region'is possibly'attributable\to thls

.fact. No effort Was made to overcome ‘this problemn

! &
-

. Or to try to jobtain data ‘at hlgher.temperatures be-

[ , ; ;
* - X - i 3
cause viscosity data was not available in the region

’above the standard b0111ng p01nts of these llqulds

Data were not obtalned in the very low temperature

region because of the lack of v1sc051ty data. The vis-

\
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The region of temperature and n/T over which the vis-
cosity formulae are valid are given in Table 6.

From a consideration éf Fiés. 26-33, it is clear
that, in géneral} the agreement bbtween theory and ex-
periment is very good at hiéh temperatures and that it
becomes very poor at low temperatures., From examination
of Figs. 26-33 and simiiar figures for the chloroforn§89
and DPM solvent systems and the VOAA regulté of Kivel-

18,41 -

we conclude that in order of decreas-

.

ing "goodness" of fit the complexes ar§ﬁVOAA, VODE, oo

son et al.

VOPM, vODP, VOTB. With L‘he exception of VObP and VOTB
] P .

this order is also the order’of increasing molecular
weight and increasing molecular size.

The analyses of the expéfimentél‘data'gsing the

Kivelson theory yielaed Values for the product Kfo3.‘

Any assignment of the parameter Kk is dependent on the
magnitude of the, effective hydrcdynamic radius,iroo yd
7 . ’ . .

The determination of ro is sovmewhat uncertain, hbwever

- reasonable estimates -can be made from translational

‘diffusionexperimentsinterpreted using Stoke's law.

18,42

Such experiments weregnot performed because we areﬁ;

2

primarily interested in the relative values of k for a

givén complex in different solvents.  In order that
e .

our k's*bear some resemblance to those already appear- .

ing in the literature 42, we have adopted the following

procedure. An approximate hydrodynamic radius ré for
- e

a



179.

TABLE 6
3
Sources of Solvent Viscosities
Solvent Tempeféture range n/T range Source
(°C) ¥ (107> p/oK)
- 107 -, 2.8 - 0.7 Ref. 95
- 46 1.8 .~ 0.8 » Ref. 95
" Cy - ) N : ‘\
- 60 - 3.2 - 1.2 Ref. 95
c v
- 260 X % 45205 ¥ Ref. 96
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'%expected in v1ew of the lnterpretatlon of. « glven by
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-

each complex/solvent system was calculated from the
experimentally determined product Kro3 for that system

by assuming that the value of K was equal to the x for

VOAA in that solvent.‘42 An average hydrodynamic radius

ro for a given complex was obtained by taklng the aver-
age of. the Valuya‘of r ' for that complex. The values
© D

‘of -k determlnedftrom the average hydrodynamlc radii and

Py
the values ofw%o3 obtalned from the ana1y51s of the M-

depe: lent part of the llneW1dthsm along with the values

4

for VOAA in the same solvents are reported 1n Table 1.

We see that the K's for the dlfferent complexes 1n/\f
o [
a glven solvent are similar. - a result whlch is 1ndeed"”
\ @u

NN

"Eq. (IV-ZQ) ‘and the 51mllar rature of the complexes

studied. .
In the\vanadyl systems studied here,.the spin-

rotatlonal contrlbutlon to the llnGWLdth, a", cannot

oy

. bé calculated 1ndependently of the la;ger contrlbutlon

" .

- 'a' from the modulatlon qf the g and - hyperﬁ;ne 1nter—

’actlon tensors. An experlment?l"‘ " 1s calculated by

subtractlng ‘the value of a preﬁlcted by the Klvelson

‘theory from the o' + " term%obta;ned by flttlng Eq : .

EN

(IV-8) to the experlmental llnew1dths Unfortunately

thlS procedure results in the lnclu51on of all the

e erlmental error 1n a' + q" 1nto the muéh smaller a"
Xp 1l

v
term. -Secondly, any deficiency in " predicted by

\
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s

£ABYE Y

~w

values of k Assigned to Comblex~Solvent Systems

*

*

Solvent |
Complek "Toluene CHQ:l3 Csz' DPM
D N N U N N W e N T i e e ]
VODE 02647 0.822 0.678 0.479
VOPM 0.654 0.834 0.659 - 0.480
a/l .
VOTB 0.677, 0.731 0.702 0.482
VODP . - 0.652 0.8 . 0.664 ~
k-
VOAA , 0.642. 0.818 0.679 0.484

A

* . . .
Values indicate bhast £itv but probahl» significant to

10%.

*’*
From references 41,42,89.
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the Kivelson theory is included in the'experimental.a"
term. These two possible sources of error must be con-
sidered when comparing experimental and predicted val-
ues of d".. | ,

a” preéicted by Eg. (IVv-17) is compared with the
expeiimental a" in Figs. 34-35 for the cs, and toluene
systems. As was . he case £ B and y for these systems
there is excellent agreement etween-prediﬁiedvand ex-
perimental values in the regi?n of small n/T (high
temperature) and the{agreeﬁengkbecomes very poor in the
region of large n/T (low temperature). We noted that the
deviation betweén predicted ‘and experimental values |

//”“‘\qccurred at larger values of 1/T for the small complgxes

a\d for solvents withsmall «'s as was the case for the
and vy paramétérs. This consistency suggests the pos-

/sibility thn+ part of the diécrepancies betwéen predicted
and experiu;ntalvvalues of a' may be due to 'the failure .
of the Kivelson theory to correctly predict a' at low

temperature. - We will have more to say about this

point in the next section.

G. DISCUSSION

Zin the previous sections we have suggested that a
fit of the M-dependent part of the linewidths to the

corresponding theoretical expression is a more repre—



FIGURE 34

a" vs n/T for toluene systems
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- BN

. ) '\'




a” (GAUSS)

o

W

VOPM

ope
/_/\ ‘
A R S




FIGURE 3

a" vs n/T for carbon disulfide systems

Experimental - +, predicted by Eg. (IV-22) - ——,
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, L4 v
sentative test of the theory than is the previous method

of fitting only the, parametex y. Previous wdrkers have
justified the negiéét éf the R paramete; in £erms‘of

the sensitivity of‘B to exper}mental error. We have
/perfoimed £he fb%}dwing computar experiments in ordervES
evaluatetﬂmzsen51t1v1ty of aach parameter to exXperiment-~
al e;ror. Egq. (IV-8) was usad to generate a set of
linewidths from»gﬁgiven;set‘bf parameters. An errot
of + 10% was then added to these l1neW1dths and these
modlfied linewidths were fit to Eq. (Iv-8). The sign
of the error added to each linewidth was determined

. from a table of random number9.97 The first 8 digits
of tha table were associated with the 8 lines of :the
flrst spectrum, the next 8 with the lines of the
second spectrum and so on. When a digit in the range
0-4 waé encountered, an incrément,of -10% was added '
to the width of the line associated with this random

| digit, whilé, an increment of +10% was added if the
dlgit encéuntg;ed was in the range 5~9. The results

of the least sqggzég‘analyses of the modified line-
widthg are shown in Table 8.> The -threge sets of pafa»
meters selected are representative of.the parameters

in the low temperaturegregion‘ Also:iﬁcluded‘inaigble

8 are the results for systems in which the 19% incre-

mencs were all assigned the same sign.and the cases

where the sign of the error was determined Qy the sign
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The Effect of a Randomly Assigned Linewidth Error

on the Linewidth Paraméters |
=S pinewldth Parameters

Error (+10%)

(continued

6. :

_ A

« 8y '« B vy
LA LI S St SRR 9 9 11 9 9 9
e 11 13 10 11 11 11
- - - - ¥ +/+ + 1 31 5 2 28 4
FA+ oo 1 gy s 2 66 5
+ - -+ - 5 26 15 '5 24 186
-+t + + - - ¢ - 5 25 15 5 19 17
o+ 4+ + - 11 38 26 11 36. 31
T T T »13 21 14 14 16
tt-Ad -+ ~~ 1 5 6 15 4
e e w4 -y 2.7 2 3 4 o
+ + + - -~ -~ 4 - 3 1 .4_ 3 2 3
- - 4+ 4+ 4= 4 ._0 105 2 0 90 0
+ -+ - - g - 0 1200 3 'b‘ 12 4
e e+ 10 32 8 10 32 7
S-Sttt o 6 25 7 6 23 .6
-+ -+ - f\}\+4 4 .32 12 5 28 11

\ .
e
A" @ =13(53), 8 = 2.5(20, Y = 1.25(27). §

B o= 18(49), 8 = 4(22), y = 2(29)
C o =13(60), 8 = 2.5(23), y = .7(17) 5

)

- C .
« B x
10 8 10
0 8 10
2 42 g
2 42 g
5 29 26
4 21 25
10 35. 61
11 13 23
14 14
2 9 4
3 2 6
I 82 2
0 6 6
9 25 12
6 19 13
4 25 13

0.005(.3)

0.005(.2)

0.005(.4)
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TABLE 8 (continued)

1

Numbers in brackets indicate the percent contribution

of the parameter to the sum defined by

j{: { o+ Blérﬁt\YMz + §]M13}

M

' Numbers in the table represent the percent relative

error in the parameter resulting from the application
of the indicated random error. '
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of M. The system in which the sigﬁ of the erroiﬁw@él'r “{hwf‘
assignnd according to the sign of M géve relativglxix Qyﬁ
large errors in G and relatively small errorssiﬁ Y coﬁv
pared to those systems in which the sign of the'erfor
was determined randomly. nlthough the resdlts in Table
8 fépresent only a few of the very large number of
possible assignments of error it isclear froﬁ'an exam- .
ination éf the result§ that no binding'generalization'
can be made about the significance of experimenéal i
error in B and y. Although ¥ certainly appeérs to he
}leés.sénsitive to error than B8, thé‘errors in B are
nét.sufficient to wérrapt ignoring the parameter com-
pleéely. It is interesting to note the apparent
stability of o and also that paramefens which make
larger contributioné to the linéwidth appeér~to be.less-
sensitive to the error than those that‘make.smaller
.contributions. The stability of o is particularly gratif
fying since the procedure of subtracting a from the
linewidths to obtain the M-dependent component ad@s
aﬁy error in a to thé error in .the M-dependent compon-
ent. Thus it would abpear that the procedure of fitting
the M-dependent part of linewidths  provides the best
compromise between a B oer fit in that the iqportance
of\each term is considered. -

In order to study the correctness of Kivelson and

Wilson's expressions [Egs. (IV-10) - (IV-12)} independ-
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dently of ig. (IV-24), we have fit the M~dependent

parts of the linewidths from each spectrum to the cor-
A\ . .

)

hS responding theoretical expressions to obtain a value

(2)
9

to be temperature dependent. The 1

. *This procedure is equivalent té allowing «
(2)
3]

‘. for 1

’S‘détermined by

this procedure are plotted against n/T in Fig. 36 for

three of the complexes in carbon disulfide, also in-
(2)

)

- dicted by Eg. (IV-24) using the appropriate k from

cluded in this figure are the values of Tt pre-

Table 7. These plots are very similar in appearance
.to the vy vs n/T plots given in Figs. 26-33. We see
that Eq. (IV-24) is compatible with the observed re-

sults at high temperatures, but, at lower temperatures,

-~

marked deviations occur. The fact that the values of

(2)
To

dent part of the linewidths for a givc spectrum to

determined directly from a fit t. = M~depen-

4

the theoretical expressions~differ from the value of
18(2) obtained -when qu (IV-24) is employed suggests
that the requiremenf thatlthe validity of Eq. \(IV-24)
be assumed throughout‘givéé'rise to & disc&epancy bet-

‘'wean predicted and experimental values of the para-

(2)

meters., The values of 8 and y obtained from these Tg
have also been plotted in Figs. 26-33. From Figs. 26-

33 we see that the quality of the fit has been improved,

by neglecting the Stokes-Einstein relationship. This

-

.."



FIGURE 36

o .
Ta(z) vs /T for carbon disulfide systems

Predicted by Kivelson theory with the Stoke-

Einstein relations = ~. y predicted by Kivelson '
theory without Stpkes—Einstein relation, J -VobDbP,

X - VOPM, + - VODE.
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observation couid be accounted for in one of two ways:
eithc. Eq.’(IV—24) is not correct over the whole range
of n/T or that the temperature and viscosity data is in
error. Since the deviations generally occur in the
.'regions outside the fegion where the viscosity'formulae
arc valid the viscosity aata i1s certainly open to
question. ho&ever errors in the viscosity data would
not account for the dependence of this deviation on
the complex itself. For example considef the toluene
systems shown in Figst 26,28,30,32. For the VOTB and
VODP systems the theory appears to break down at n/f

1.4 - 1.8 x 10‘_5 poise/°K while for the VODE and VOPM

1K

systems the theory appears to be valid as far out as
n/T = 2.2—2.41x 107° poise/°K. .F i 1rly for the car-
bon disulfide systems, the VODP -nd VO 3 results are
compatible with the theory up to T=1.3-1.7 x 10-5
poise/°K while the VODE and VOPM are good out to

n/T = 1.7 - 1.9 x 1077 pﬁfge/°K.. Note that the upper
limits for a good fit ﬁearly coincide with the upper
limit of the viscosity formulae (sée Table 6), this

was also the case for the chloroform apd DPM systems.
This is;possibly pure coincidence since the VOAA/tolu-
~ne data already appearing in the literature 18,41,89
producé good fits in regions outside these limits.

The values of TG(Z) determined by analysing the
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N

data independent of Bq. (IV-24) were used with Eq. (Iv-
22) to predict new values of a", The overall agreement
between these a"'s and the experimental a"'s obtained

using the o' predicted by Eq. IV-9 and the new 16(2) is

- not significantly better than the agreement bétwaeﬁ pre-

dicted and "eXPerimentai" values when Te(z) was re-
stricted by the Stokes~EinStein relatiohship.

~Kivelson et gl.le

have considered anisotropic
rotational diffusion“as a possible explanation of the
discrepancy between 'predicted and experimental values
of a". However, for complexes“such as VOAA and those
considered in this study the value of re(z) for re-
orientation about the.V~b éxis should not différ by
more than a factor of 3 or 4 18 from that about axgs
p=rpendicular to the V-0 axis, and, since the contri-
butions to the linewidths from rotation about the V-0
axis invoive only quadratic énd bilinear terms in the
very small parameters ¢y and.-c, it is.very unlikely
that anisotropic diffusion could account for the
observed'disérepancies.

In this study we have attempted to pinpoint the
source of discrepancy betwéen xperimental linewidths

and those calculated from the Kivelson linewidth theory

assuming a modified Stokes~Einstein relationship. Our

results indicate that the Stokes-Einstein relationship

is'the main source of the discrepancy between the pre~
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dicted and experimental parameters 8 and Y. However,
‘this observation does not account for %he failure of
the theory to predict the spin—rotatidng% contribution.
to the linewidpp,'a". Thus we conclude that for lafge
values of n/T, thé Stles—Einstein relationship islnot
correct and that the simple description of the spin-
rotational contributions to the linewidths given in

Eg. (IV-20) is inadequate.



CON.CLUSTIONS

CHAPTER V . ' Y
\

Spectral band shapes contain a great deal of in-
formation about molecular dynamics and intermolecular

2,4-10. In order to extract this information

interactions.
from the band shape, one must predict the influence of
these factors on thé observed spectral band shape.“ In
this thesis, we have considered two different sources
of information aﬁout molecular réorientation. Chapters
IT and III hqve,beén concerned‘with.the‘extraction' of
reorientational information from infrared band §hapes,
while Chapter IV has been concerned with the extraction
of this informatibn from '‘electron spin resonance spectra.
The Fourier transform of the infrared band shape
is the reorientational correlation function of the

2.4 This cor-~

transition dipole moment of the molecule.
relation function contains information about how the
orientation of the moleculeXchanges in time,. The
éngular momentum of a molecule is changed by strong
torques exerted on the molecule due to the strong
intermolecular interactions of the colliding species,
during a collision. In principle, if the infermolecular
potential for the molecule in a fluid is known, then

the average rotational motion of the moleculeé and

thus the reorientational correlation function can be

predicted. This predicted correlation function can then

. 197
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be compared to the corresponding experimental corrélation
function rand the accuracy of the intermolecular potential

*assessed\34\37.

The aim of the work considereq in Chapters II and
III was to introduce a‘model of reorientationallmotion
thich could predict the infrared band shdpe of a reorient-~
ing molacule when that band shape was disported by quantum
mechanical intgractions.‘ The previously existing theor~
jes 215/6,8,34-36 were either only applicable to systems
in which tbe band shapes were nearly symmetrical or were
highly matbemstical theories, which were not easily
applied. We have develSped two semiclassical models: the
Eirst a moqification of Gordon's more sophisticated
sem?classioal théory 2'34’35, the secqndfa semiclassical
éxtended rotational diffusion theory.5’6’8

Goraon's semiclassical band shaée theory‘2’34'35
required explicit knowledge of thﬁ intermolecular pot-~
ential of the molecule in order to predlct the outcome
of a collisional event uSlng SeMlClaSSlcal scattering
theory. 1In Chapter II, Gordon's semlcla331cal theory
was modified by describ;ng colliéional events in terms
of ﬁhe M~ and‘J~diffusion limits of extended rotational
diffusion theory. This model was successfully used to
interpret the vy infrared band shapes of methane in

gaseous and liquid mixtures. This model is practical

only for band shapes which could be Yepresented by a
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small nﬁmber of ind%vidual transitions (<40) and for this
reason could not be applied to bgnd shapes of larger .

molecules where a significant number of rotational states
were populated, nor could it be applied to tﬁe V4 infra-

red band of methane in which Coriolis coupling caused

significant splitting of the transition lines.

.In Chapter III we developed a "true" semiclassical .

extended rotational diffusion model. This model is not
severely restricted by the number of individual transi-~
tions which could be included and was applied to the V4
infrared band shape of methane in gaseous mixtures.

The angular momentum correlation times,obtained

from the analyses of the Vj and Vy band shapes 39 and

those obtained from an independent'NMR—Tl study >6 show

a similar density dependence (see Figs. 6,12), which -
indicates thaé the Jalues of Ty determined from these
studies are ibdeed a measure oOf the time between strong
collisional é@ents. Recently Mafyott et al. 30 have

compared T , predicted from NMR-T, studies for several

]
J 1
. liquids inc%uding methane, with Teal the time between
collisions %redicted using either a cell like or gas like

liquid modé They reported that the ratio t /T al

varied beéween 1 and 2 for both models 1ndlcat1ng that
/

TJ is a reasonable measure of the time between collisions,

not a mganingless adjustable parameter of the theory.

In introducing the extended J-diffusion picture of a
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.

collision we have ignored the details of the inter-
molecﬁlar'potential in the liquid, however the agreement
between experimental and predicted band ;hapes for'the
Co/ﬁé system obtained by Gordon and McGinnis 36, employ-
ing/an assumed intermolecular potential in théir molecu-
lar dynamics calculations, is no better than ours using
the simpler deifquion picture. Thus we must conclude
thac until more accurate intermolecular potentials become
available our simple theory is adequate for the interg:e—
tatioﬁ of band shepes in terms of intermolecular inter- .

actions. :

Because we have relied on the picture of a collision
proposed by classical extended rotational diffusion in
5 :
Chapters II and III, 1%t s relevant at this time to very

briefly mention some of the e.wverimental evidence which

supports the J-diffusion mode! =s a reasonable interpre-

tation of reorientational motic: v:mpbell, Seymour
and Jonas 28 have investigated . hec iionship.bgtween
16(2) gnd4TJ predicted by the cl=ss *—diffusién
model. They studied the CF, ir the c-rse (A=nsi s
-range 9~120 amagats) and determined 1 ?; nucleacs
relaxation times and measured 13(2) lneat uoenzo fror

the Raman band shape. They found tha- t. ¢ ssical
J-diffusion theory correctly :elatéd these L 20rre. -

tion times throughout the entire density range studie..

98

Gillen et al, have obtained similar results i:
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the liquid region using CC14. The spin lattice relaxa-

tion time of 13C is dominated by spin-rotational relaxa-~

13

tion and T; can be calculated from the C relaxation

. : . L 35
times. The transverse relaxation time of the Cl

nucleus is dominated by quadrupole relaxation which

(2) (2)

depends on T so that values of Ty were determined

35

from the Cl relaxation times. They found that

classical-extended J-diffusion correctly prédicted the

relationship between 19(2) and T3 throughout the entire

liquid region of CCl4. Similar results for less sym-

metrical molecules have been obtained in the liquid

region.28'31’32 In addition, several researchers have

obtained excellent agreement between experimental and\\
predicted infrared and Raman band shapes using the A

classical rotatlonal dlffuzﬂon model. 7 22 28

The energy levels of £fhe spin states of the para-"’
magnetic species considered in Chapter IV are depehdent
on the orientation of the molecule relafive to the
magnetic field,ithus the)reorientational motion of the
mélecule modu;atesfthe energies of these spin states
and’ the observed ESR spectral linewidths can be inter-

preted in terms of the tumbling time Te(z) of the mol-

ecule. The spin magnetic moment of the molecule is

\\also weakly coupled to the rotational magnetic moment

\
of the molecg}e and thlS spin-rotational ﬂnteractlon

is modulated rapidly in the lquld systemé con51dered
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here since the rotational state of the molecule is
rapidly changed by interfiolecular interactidns. This
gives rise to a linewidth contribution (o") governed by

the angular momentum correlation time Ty ' L
. N .

The ESR linewidth approach does not yield informa-

~
by

tion about the intermolecular potentials directly althotigh

90

Kivelson=§E al. have indicated'thét the parameter «

does contain information about‘the'anisbtropy of the
intermolecular potential. The Teorientational correla-

tion time Te(z),which can be obtained from tﬁé linewidths,

is of direct interest since it indicates the nature of

the reorientational motion. Te(z)'s“determined from ESR

are often used to obtain information about the active

sites of enzymes.'99 A spin label (a moiecule'containing

a paramagnetic center) is allowed to bind to the active t

(2)
6

and from other changes in the observed spectrg,-informa—

site. From the ¢ 's of the bound and free spin label
tion about the nature of the binding to the active site
énd about the active site. itself may be obtained. For
example it is possible to diSfinguish a binding site
that firmly binds the spinllabel to the larger.molecu1e
from a bindiﬁg site in which.tﬁe bound spin label is
allowed considerable freedom for independent_moti&h,
The aim of the ESR work described inquapter Iv

was to further evaluate the Kivelson linewidth theory 41-43
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which rnterprets the linewidths of an observed ESR
spectrum in terms of the hodulation of the aniéotropic
electronic Zeeman, nuclear-electronic hyperfiﬁe and spin-
rotational lnteractlons by molecular motion. Several
workers 17, 18 44,45 have noted discrepancies between
experimental linewidths and those predicted by the
Kivelson theory. We have 1ntroduced the procedure of
analyzing the M- dependent part ofithe llnew1drhs in

terms Qf the Kivelson'theory rather than simply consider-
ing the contribution to the linewidth quadratic in

M which was the previous practice. We have justifiead
this procedure using computer experiments on test cases
~and feel that the results from studylno the M—dependent \>
part of the llnew1dth are much more representative of

the theory becauseeachparameter is Eonsidered in ternis
of its contribetiontxathe linewidth. We have also
analyzed single spectra and obtained values of T:e(?‘)
independent of the/Stokes—Einstein.hydrodynamic relation-
ship.81 These results indicate that i he Stokes-
Einstein relatioeship is ignored, then the agreemert
between,predicted and experimentel.results 1s improved.
Thus it appears thar the assumption of the Stokes-
Einstein-relationéhip is the main cause of the discrebancy
-be}ween predicted and experimental results, however it
idoes not explain the discrepancy between the predicted

and experimental o" which is much greater than that

' Y
e
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expected from experimental errcr. . Therefore,’we conclude
that although thedeficiency in the B and Yy parameters
could be accounted for in terms of the assumptions of

the Stokes-Einstein relationship, the simple theory pre~
adicting the linewidth contribution‘duB to the spib~

rotational coupling must be reconsidered.

63Cu diketo;

It would be interestingfto study thé
nate complexes corresppnding to those studied in Ch&gter

IV. The spin-rotational couplihy f@t‘copper‘is much

iarger than for vanadium and thus the " éontributisn

'to the linewidth would be proportionately larger for

the copper complexes., The q"'s qetermined from such a
study, being larger, would have a smaller relative
expefimental error and thus would provide a more'stringeht

test of the validity of the exprassiona used to predict

a"

™~

A R x
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APPENDTIX I

THE WIGNER D MATRIX AND ANGULAR MOMENTUM THEORY

In order to describe the effects of rotational
motion of molecules~on the interactions between the mole-~
cule and an external field, it is often necessary to
define a tensor in a given coordinate system in terms of
its components in another coordinate systeﬁ. For example
we are often interested in defining an electric field in
a molecular coordinate system in terms of its components
in the laboratory coordinate system. Throughout this
thesis, rotations have been described using the chveﬁ—~
tions of Rose.68 In this convention, the coordinate
systems are rotated and not the functions. The sense
of a rotation follows the right~hand screw ruie.iLg.
roations of a right;handed coordiﬁate“system +90° abouf
the z-axis rotates the x—axié onto the origipal positive
y-axis. The rotation of a coordinate system by an
amount a is equivalent to the rotation of a function
by an amount -a thus if the operator ﬁz(a) represents

the rotation of the coordinate system by an angle a

about the z-axis then //

R, (0)£(9) = £(¢-a) | (A-1)

where f(¢) is the function and ¢ is the azimuthal angle

of'polar coordinates. Performing a Taylor seéeries

213
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‘expansion of the function f(¢-a) we obtain’

/N

5 n
f(¢-—a)-:E 1 <—oc %) £(0) (A-2)
n!
_ )
= exp (—a-—-> £(¢),
9¢

~

thus the rotation operator Rz(a) is given- by exp <—a §%>_<

In spherical polar coordinafes, the reduced angular

~

momentum operator J, is given by

o 3
JZ— -1 a¢ '
thus the rotation operator is
Rz(a) = exp (—zan).. . (A-3)
Similar considerations yield
Rx(a) = exp (—iaJx) , - ’ (A-4)
and
R (o) = ex -tad_) | (A-5
v ) exp ( Ty )

~

where JX and J_ are the reduced angular momentum oper-
ators for the x and y components of the angular

momentum..

Any general transformation between two coordin-
ate systems can be represented by three successive

rotations. The Eulerian transformation is a most useful
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way of carrying out such a coordinate transformation. It
is defined in terms of the following three rotétions:

(1) the coordinate system (x, y,.z) is rotated through an
angle a about the z-axis to become (x',. v', z'), (2) the
céordinate system (x', y', z') is then rotated through

an angle B about. the y'-axis to bécome (x"; v", é"),

(3) the coordinate system (x", y", z") is then rotéted\
through an angle y about the z"-~ax.s to yiéld-the éesired
éoordinate systems (x"™ , y"™ , 2" ). The angles o, 8,

Y = @ are referred to as the Euler angles 6f.thé<trans— .
formation. 1In terms of the rotation operators defined

in Eqs. (A-3) - (A-5) the Eulerian transformation is

~

R(aIBIY) = RZ" (Y)Ryl (B)RZ (a)

A

exp (-1YJzn)er(—tBJy.)exp(—zan)“

i

(A-6)

It can be shown~lOO that the rotations, described in(Eq.

(A-6) about axes in different coordinate systeﬁs, can
be expressed as rotations about axes ip the initiél
coordinate, system, provided that the rotations are.
done in the reverse order. Thus}

E(a,B,y) = exp(—iagz)exp(—iBJy)exp(-inz). '(A—7)
,,/ '

The Wigner rotation matrix or-Q)—matrix’}s the
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matrix representation of.the rotation operator in angu-

e~

lar momentum space and is defined by
»

. (J)
R(a,8,v) [T, M) =E |3, M YDy (@,8,Y) . (A-8)
. .

: — |

where }J,M> i1s an angular momentum wavefunction. Sub-

stituting Eq.- (A-7) into Eq. (A-8) and premultiplying

1

‘by.<J,M'|‘, we obﬁaip .

(J) ~ “
Doy (@ B87) = (I,M[R(,B8,7)[I,M)

M'M
= exp(-7aM"') < J,M" | exp(_-_-'iBJy) IJ,M> exp (-ZYM),

- (3-9)
‘ \

where the operator Jz has been applied to <J,M'[ and
|3.m) .
From Egs. (A-6) - (A-9) the relationships [Egs.

(ITI-18) ,and (III-19)] used in Chapter III can be

g

obtained:
o~ (J) ~
A (a,0,0) = exp(-Za) § . _
MM | | M,M . (A-10)
~and \
@ 1 (3) |
D (@,B,Y) ~ = D (-a, -8, -Y)
M'M M'M
(J), ,
= N (a,Bry) (A-11)
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_ 100 ,
also it can be shown that

(J) * : M'-M (J) : .
D (alBlY) = (-1) fL\' (aIBIY) (A-12)
M'M . -M',-M .

The orthogonality relationships [Eq. (III-20) -
(ITII-21)]) are developed in detail by RoselOland will not
be given here since the development is extensive.
Wigner 102has shown that the D -matrices are propor--
tional to the rotational wavefunction for a symmetric

top, wJKM' This relationship is given by .

‘ % (J)

_ 2J+1 ( _

WJKM(Q,B,Y) = ( 8n2 ) l)_K_M (Q'BfY)z (A-13)
- 4

where the multiplicativé term is a nérmalizing constant.

The coupling of two angular moments is described

by the Clebsch-Gordon series defined by,

\

) .
|J,M> = E c(JlJZJ;Ml,M—Ml) le,Ml> |J2,M—Ml>
My

(A-14)

" where

J, + J (A-15)

1 2323, -7

2 1 2l
and C is the Clebsch-Gordon coefficient. The function
|J,M> is‘ the angular momentum wavefunction of the

coupled representation while ]Jl,Ml> and jJZ,M—Ml>
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are wavefunctions of the uncoupled representation.

Using Egs. (A-8) and (A-14) one can obtain 103

(3,) (3,
Doy D (Q) = C(J,J.J;K, K )C(J, T JT; M, M)
. 1 172 172 172
K,M K. M :
272 . 3
(J)
D (Q) . (A-16)
’ Ky +K, /M, +M,

This”telaﬁionship:hsoften useful in simplifying expres-
sions containing products of D -matrices.

If we define tensors so that they transform under
rotations in the same way as the angular momentum wave-
fuhctions db, thep all the relationships derived to
manipulate angular moﬁentum wavefunctions using the

N -matrix can be used to manipulate these tensors. ,
Tensors defined in this way.are referred to as spheri-

cal tensors. The components of a tensor operator TZ

of rank & satisfy the following comutator relation-

ships,lo4
-32, %luj ) u%ﬂu o (A-17)
:3+, ’I‘lu: = "/R(£+l)—u(’u+l) ’Tz,u+1' (A-18)
t&_, % m:j = V&(£+l)—u(u—l) Tg,u—l . (A—l?)

‘where J, and J_ are the raising and lowering operators.
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A first rank spherical tensor operator has components

Tio = T, (A~20)
C o "y 1<%+'$'> (;\21)
- — ’L -_
‘ 1l vz \ X— Y

~

where Tq, qﬂswgfy,z are the components of the correspond-
ing cartesian tensor operator. The angular momentum
operators used in Eqs. (A-17) - (A-19) can also be de-
fined in terms of the cartesian components.

In obtaining Eq. (III-6) in Chapter III, we have
assumed that the mixed products of D -matrices ‘in
Eg. (III-5) vanished when ensemble averages were per-
formed. - This will now be demonstrated usiné the rela-
tionships given above and the orthogonality relation-

101
ships given by Rose. The expression of interest is

the integral over all orientations,

(2)* (2)
kK =[ aa (IrM|D erjatkm )y (arm e KM ) .
km -~ k'm' '

(a-22)

Henceforth the argument Q of the ‘N -matrices will not
be shown explicitly since it is Q in all cases. Sub-
stituting Eq. (A-13) into Eg. (A-22) and using Eq. (A~l23

we obtain
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' V! (J)* () *
X ;/dg (2J+1) (23'+1) (~1)M' =K
(Bﬂz)z -K-M km
(") . (") (%) (J)
D D D D . (A-23)
T K'M! -K'-M"' k'm*" -K-M

After applying the'coupling expression [Eq. (A~16)] we

obtain -

k < (20+1) (23'+1) (_l)M'-—K'E C(I8dKK) € (I -mm)

(8n%)2 I, "

X C(J'J'J';K',—k')C(J'J'J';M'-M')C(RJJ";K',—K)C(lJJ";mQ—M)

e

(J) (J') (J")
/dQ D D D ' ) (a-24)
KM 00 K"y"
where X = -R+k = K" = -K+k' :
(A-25)
M = -M+m M" = —-Mim' .

‘The orthogonality rel%;ion for a triple product of -
matrix components given by RoselOIreduces the integral

in Eq. (aA-18) to f_

2

87 .
C(JJ'J”;K'O)C(JJ'J”;M'O)6 , 6, , .
27+1 . ¢ | K fO,K M'+0,M

\
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Thus the integral vanishes dnless K' = K and M' = M.

3
Combining these conditions with (Eq. (A-25) we find the
integral vanishes unless k = k' and m = m' which is the

' required condition assumed in Chapter III.
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APPENDTIZX IZX

This Appendix gives the FORTRAN computer pro-

grams used in the course of this work.

A. Semiclassical Band Shape Program (Gordon method).

B. Program to calculate the free rotor memory

function from the free rotor correlation function.

C. .~ﬁ;ogram to calculate. the correlation function

from the free rotor memory function.

D. Linear and non-linear least squares programs

used in Chapter IV.

A
on

1. Program to fit linewidths to a cubic
function in M.
2. Program to fit M-dependent-part of the

linewidth.

222
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SECTION A 223.

THIS PROGRAM CALCULATES SPECTRAL DENSITIES AND REORIENTATIONAL
CORBRELATION PUNCTIONS USING EITHER M OR J DIPFUSION

CARD #1 : TENPERATURE; TAUGJ; HEIGHT OP HEIGHT NORMALIZED '
SPECTRA; MAXIMUM J QUANTUH NUHBER (DEFAULT=9
: NAX=12); '
IPLOT ( CONTROL PARANETER) ; P8 ¥ OR J ?
TEMP <0.0 STOP.

pPM=1 100% N-DIF

PH=0 100% J-DIF
IPLOT 0--YES; 1-- NO
1. HEIGHT ?

2. G(T) ?

3. AREAR  PLOTS ?

CARD #2: TITLE TO APPEAR ON PLOTS AND OUTPUT
COMPLEX*8 SM(3,3),MLAN(3),DUNP3(3,3)
REAL OHO{(37),D (37) ,P(37) ,RI(345) ,0H0W(345) ,¥¥(191) ,BUFPER(1024),

# TITLE (22) ,XX (191 ..

COMPLEX*S S(37,37),SI§V(37,37) ,LAH(37),C1,SUMA,SUNB,A(37),B(37),
¥ RC (345),DUMNY (37,37 -

REAL NORM,DEG (13),XD(2)

LOGICAL INTH(37)

INTEGER INT (37),IPLOT(3)

DATA OMO/3028.740,3038.500,3048.180,3057.720,3067.240,3076.650,
3086.410,3095.190,3104.450,3113.430,3018.810,3018.640,3018.380,
3018.620,3017.470,3016.940,3016.510,3016.070,3015.610,3009.000,
2999.010,2988.920,2978.880,2968.630,2958.340,2948.060,2937.830,
2927.200,3122.75,3014.13,2916.72,3131.87,3013.29,2906.20,
3140.311,3012.44,2895.62/ . :

DATA TITLE,'INTE',*NSIT','Y ',*FREQ',*UENC','T = *,16%" vy

DATA D/1:0000000,0.7453560,0.6831300,0.6546536,0.6382847,
0.6276459,0.6201736,0.6146362,0.6103679,0.6069769,0.5773502,
0.5773502,0.5773502,0.5773502,0.5773502,0.5773502,.5773502,
0.5773502,0.5773502,0.3333333,0.4472135,0.4872500,035091750,
0.5222329,0.5310850,0.5374838,0.5423261,0.5461186,0.6042180,
0.5773503,0.5491696,0.6019293,0.5773503,0.5516773,0.6,0. 5773503,
0.5537749/

DATA DEG/5.0,9.0,25.0,77.0,117.0,121.0,273.0,285.0,357.0,513.0,

¢ 609.0,621.0,925.0/

DATA NORM/'RORHN'/

"N o % N W

5 W % % S o

-INITIATION OF PLOTS

REAL YD(2)/0.0,2.0/

Ic=0
YORIG=-10.0
X0RIG=17.0

XSIZE=14.9606
YSIZE=7.874 _
CALL PLOTS(BUFFER,UOQS)
CALL PLOT(2.0,2.0,-3)

1 READ (5,901,END=29) TENP,TAUJ,HEIGHT,J, (IPLOT(I),I=1,3),F8
IP (TEHP.LT.0.0) GO TO 29 .
READ (5,902) (TITLE(I),I=7,22)

N=28
IF (J.FE.D) N=J+J+J+1
333=J . - f

CALCULATION OF PDPULATIONS

DEG= ((2J+ 1) **2) (NUC.SPIN.FACTOR)
P=DEG*EXP (~E/KT) .
~E/KT=-7.51702%J % (J+1) /TENP

EPAC=-7.51702/TENP
P (1) =DEG (1)
SUM=DEG (1)
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po 2 J=2,10
TERK=DEG (J) *EXP (EPAC*FLOAT ((J-1)*J))
K=J+9
u=J+ 18 ¢
P (J) =TERH
P (X) =TERN
p (M) =TERN
2 SUr=SUM+TERN
IF (N.EQ.28) GO TO 4§
NJ=N/3
KKK=NJ+1
K2=28
po 3 - J=11,KKK |
K=K2+1
Ki=K+1
K2=K+2 _
TERM=DEG (J) *EXP (EFAC*FLOAT { (J-1) *J))
P (K) =TERH
P(K1)=TERH
pP(K2) =TERM
3 SUN=SUN+TERN
4 CONTINUE
po 5 J=1,N
5 p(J)=p(J)/Sun

SETTING UP S-MATRIX

‘DEN= (1.BBU96E11) *TAUJ

p(1)=3.0%P (1)

DO 6 I=1,N

po 6 3=1,%

DEL=0.0

IP (1.EQ.J) DEL=1.0

REALS=((DEL-0.3333333*P(J)*D(J)/D(I))/DEH)‘(PH-1.0)

IF (P(J) .EQ.P(D)) REALS=REALS- FM* (DEL- (D (J)/(3.0*D(I))))/DEH

COMPS=DEL*ONO (1) o
6 S{J,1)=CHPLX (REALS,COHPS)

p(1)=P(1)/3.0

DIAGONALIZATION
"IF (FA.NE.1.0) GO TO 15 -
N-DIFFUSION

po 10 IDIG=1,9

KX=XDIG+1

po 7 1=1,3

K=KK+9*% (I-1)

SH(I,1) =S(K,KK)

SM (I,2)=S (K,KK+9)
7 SM(I,3)=S{K,KK+18)

CALL ALLnAT(SH,HLAH,3,3,NCAL,DUHP3,DUHHY,A,B,INTH,IHT)

WRITE (6,903) NCAL -

PLACING INFORMATION BACK INTO S-MATRIX

po 8 I=1,3
K=KK+9* (I-1)
S (K, KK) =SB (I, 1)
S (K, KK+9)=5SH(I,2)
S (K, KK+18) =Sn (I,3)
8 LAM(K)=HLAN(I)
CALL CRINVS(S4,3,3)
po 9 I=1,3
K=KK+9* (I-1) .
SINV (K,KK)=SH(I,1) : .
SINV (K,KK+9)=58(I,2)
9 SINV (K,KK+18) =SH(I,3)
10 CONTINUE

224.
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LAM (1)=S (1, 1) N
S(1,1)=(1.0,0.0)
SINV(1,1)=(1.0,0.0)
IP (N.EQ.28) GO TO 17 \
KK=26 N
k=28
DO 14 IDIG=10,J3J3J
KK=KK+3
DO 11 I=1,3
K=K+1
SM(X,1)=5(K,KK)
SM(I,2)=S(K,KK+1)
11 SM(I,3)=S(K,KK¢2)
CALL ALLMAT (S4,MLAN,3,3,NCAL,DUNP3,DUNMMY,A,B, INTH, INT)
WRITE (6,903) NCAL
K=K-3
DO 12 1=1,3
K=K+1
S(K,RK)=SH (I, 1)
S(K,KK+1)=SH (I,2)
S (K, KK+2)=SH(I,3)
12 LAM(K)=MLAM(I)
CALL CHINVS(SH,3,3)
K=K-3 .
Do 13 1=1,3
K=K+ 1
SINV (K,KK)=SM (I,1)
SINV (K,KK+1)=SH(I,2) ,
13 SINV(K,KK+2)=SHN(I,3)
14 CONTINUE
GO TO 17
15 CONTINUR

J-DIFPFUSION

nnaon

CALL ALLHAT(S,LAH,N,37,NCAL,SINV,DUHHY,A,B,INTH,INT)
WRITE (6,903) NCAL

THIS SECTION INVERTS THE S-MATRIX

noo

DO 16 I=1,N

DO 16 J=1,N .
16 SINV(I,J)=S(I,J)

CALL CMINVS (SINV;N,37)
17 CONTINUE.

CALCOLATION OF LINE SHAPES

ann

C1=(0.0,1.0) .
c
C  DOT PRODUCTS

‘c

DO 19 J=1,H
SUMA=(0.0,0.0)
SOUNB=(0.0,0.0)
LAN(J) =LAN (J) *C1
DO 18 I=1,X
SUMA=SUMA+D (I) *S(I,J)

18 SUMB=SUBB+SINV (J,I) *P (I)*D (I)

. A(J) =SUNA ‘
19 B(J) =SUNB

c
C  ACTUAL CALCULATIOH OF BANDSHAPE
c . -
- OM=2844.0
DO 21 I=1, 345

oOM=0n8+1.0 s
SUNA=(0.0,0.0) :
DO 20 J=1,¥

20 SUEA=SUHA*A(J)tB(J)/(OH*LAH(J)i
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SURA=SOMA/(5.921T6E11) . 226.
RI (I)=AIRAG (SUMA) .
BRC (I) =SUMA
21 oMON (1) =
WRITE (6,9084) (TITLE(I),I=7,22)
WRITE (6,905) Fn
WRITE (6,906) TAUJ,TENP
WRITE (6,907) (OMOW (I} ,RC(I),I=1,385)
BNAX=RI (69)
DO 22 1=100,250
IF (BRMAX.GT.RI(I)) GO TO 22°
BMAX=RI (I)
WHAX=0NOW (I)
22 CONTINOE
BAT=HEIGHT /RMAX
DO 23 J=1,345
23 RI(J)=RI (3) *RAT
WRITE (6,908) HEIGHT
WRITE (5,909) (080w (I),RI(I),I=1,345)

PLOTS

DO 24 J=1,191
K=J+83
WH (J) =ONOW (K
24 XX (J)=RI (K)
XD{1)=uv (1)
XD (2)=WW (191)
IF (IPLOT(}).EQ.1) GO TO 25
CALL PLOTME(XSIZE,YSIZE,2,XD,YD,TITLE,.FALSE.,0.0,4)
CALL PLOTHME (XSIZE,YSIZE,191,WW,XX,TITLE,.TRUE.,0.0,4)
CALL RDORIG (IC,YORIG,XORIG)
25 CONTINUE
RATNOR=RAT
CALL DPCOR(OMOW,RI,WMAX,TITLE, TEMP,RAT,IPLOT)
ARAT=31.41593/RAT
REALA=RAT/RATNOR
TP=ARAT/ (HEIGHT*1.884956E12)
WRITE (6,910) REALA,RAT,TP
DO 26 J=1,19
26 XX (J)=XX (J) *ARAT
WRITE (6,911
WRITE (6,909) (WW(I),XX(I),I=1,191)
IF (IPLOT(2).EQ.1) GO TO 27
CALL RDORIG{IC,YORIG,XORIG)
27 CONTINDE
TITLE(22)=NORM
IP (IPLOT(3).EQ.1) GO TO 28
CALL PLOTME (XSIZE,YSIZE,2,XD,YD, TITLE,.FALSE.,0.0,4)
CALL PLOTME(XSIZE,YSIZE,191,W¥,XX,TITLE,.TEUE.,0.0,4)
CALL RDORIG(IC,YORIG,XORIG)
28 CONTINUER

GO TO 1 &
29 CALL PLOT(0.0,0.0,999) )
STOP

901 FORMAT (F10.0,E10.3,F10.0,13,5I1,F10.0)

902 PORMAT (' ', 16A4)

903 FORNAT (' NUMBER OF EIGENVALUES FOUND=*,13)

904 FORMAT (' v, 16A4)

905 PORMAT (' PRACTION OF K-DIPFUSION=',P5.2)

906 FORNAT (* CALCULATED INTENSITIES *,'J-DIPFUSION TAUJ=',E13.3,
#*SECONDS,TEMP="',F6.1//'FREQUENCY INTENSITLES (REAL,IMAGINARY)')

907 PORMAT (2(F10.1,2B20.6)) ' -

908 PORMAT ('1SPECTRA NORMALIZED TO MAXIMUM HEIGBT OF',F10.5)

909 FORMAT (S5(F10.1,F10.3))

910 PORNAT ('AKEA UNDER ORIGINAL SPECTRAL DEHSI;Y',EZO 6/'AREA UNDER
$ORMALIZED(HEIGHT) SPECTKAL DENSITY',E20.6/'REORIENTATION CORRELATI
#0N TIHME',E20.6,'/SEC®)

911 PORMAT (*'1 SPECTRA NORMALIZED TO AREA OF 10 PI')

END
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SUBROUTINE DPCOR(W,INT,WNAX,TITLE, TEMP,RAT,IPLOT)
LCOLATION OP DIPOLE CORRELATION PUNCTIONS
(K*T/I) **0.5 = ((0.2565E24)*TENP) **0.5

1.38E16 GRAN (Cl/SEC) **2
5.38E-40 GRAM(CH) **2

wonou

REAL INT (345),%(345),G(101),TT (101)
REAL SCALE(22),TITLE (22)

REAL SG(101)

DATA SCALE/! tLIG(T) ', ', ' VTINEY, 17%°
REAL XD (2)/0.0,7.6/

REAL YD (2)/0.0,1.0/

INTEGER IPLOT (5)
¥B=SQRT { {0.2565E24) *TEHKP)

o 1 Ix7,22

SCALE (I) =TITLE (I)

po 3 IT=1,101

RT=0.1*PLOAT (IT-1)

TT(IT)=RT

RT=RT/NB

. S5un=0.0

. CALL PLOTME (XSI1ZE,YSIZE,2,XD,¥YD,SCALE,.PALSE.,0.0,4)

901

4

#
902

SsuUM=0.0

PRT=1.88U4956E1 1*RT

DO 2 IN=1,345
SSUN=SSUN+INT (IN) *SIN (PRT* (R (IW) -WNAX))
SUM=SUM+INT (IW)*COS (FRT* (W (IN) -WNAX))

PI*SPEED LIGET = 1.884955592E1%

IP (IT.EQ.1) RAT=SUM
SG(IT)=SSUM/RAT

G (IT)=SUN/RAT

WRITE (6,901) WMAX, VB

WRITE (6,902) (TT(I),G{I),SG(I),I=1,101)
IF (IPLOT(2).EQ.1) RETURN
XSIZE=38.0%0.3937

YSIZE=20.0%0.3937 ‘ S

CALL PLOTME(XS1Z2E,YSIZE,77,77,G,TITLE,.TRUE.,0.0,4)

CALL PLOTME (XS1ZB,YSIZE,?7,TT,SG,TITLE,.TRUE.,0.0,4)

RETUORN
PORMAT ('1! DIPOLAR CORRBELATION PUNCTION CALCULATED

ABOUT' ,P10.1,* CHM-1'/* TIME IN REDUCED UNITS OF 1/0HEGABAB,

OMEGABAR="',E16.6)
FORMAT (4 (PS.1,2F7.48))
END

'/

227.
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SECTION B

THIS PROGRAM READS THE TIME(BREDUCED UNITS) AND

THE FREE ROTOR CORRELATION FUNCTION AND ITS PIRST
DERIVATIVE ON 3. IT WRITES TIME AND THE ASSOCIATED

MEMORY
NUCLE AR

TINE (50
TIME (50

PUNCTION ON 4.
SPIN SYMMETRY ORDER A,E,P

2) =ONEGABAR
3) =TENP

G (502)=AVERAGE FREQUENCY '

OR 5
CARD #1

GP (502)=K (0)

: NT; NUMBER OF INCREMENTS OF DEL T TO
BE CONSIDERED

COMPLEX*8 KA (502),KE(502),KF (502),G (502),6P(502)

REAL T

INE(503)

READ (5,901) HT

READ (
WRITE

3) TINE
(4) TINME

DELT=TINE (2)

READ (3) G

READ (3) GP

CALL GFKF(G,GP,NT,/KA,DELT)
KA (502)=G (502) ‘

WBITE

(4) KA

o

READ (3) G .
READ (3) GP

CALL GPKF(G,GP,NT,KE,DELT) .
KE (502) =6 (502)

RRITE

(4) KE

READ (3) G -

READ (3) GP ) .

CALL GFKF(G,GP,NT,KP,DELT) \
KF (502) =G (502) :

WRITE

(4) KF

RAW=REAL (KA (502))
REW=REAL (KE (502))
RPW=REAL (KF (502))

WRITE

WRITE

sTOP
901 FORMAT
902 FORMAT

$* F
903 PORMAT

END .

(6,902) TIME(S503) ,RAW,RENW,BP¥
(6,903) (TIHE (I),KA(I),KE(I),XF(I),I=1,8T)

‘

(14)

228.

(*3. PREE ROTOR MEMORY PUHCTIdNS FOR NU-4 IR BAND OP°,
¢' METHANE : 'TEMP=',P10.1,' DEG K'/'~ CALCULATED ABOOT ', *AVERAGE
¢ FREQUENCY OF THE STICK SPECTRA'/' A *',F10.3/°

',P10.3)

E

',F10.3/

(*- TIME(RED)',10X,'A-SYHMETRY',19X,'E-SYMMETRY',19X,
$'P-SYMMETRY' /(F8.2,3X,3(2E13.4,3X)}) :
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THIS SUBROUTINE CALCULATES THE PREE ROTOR .
MEHORY FONCTION FHOM THE FREE ROTOR PUNCTIONS

SUBROUTINE GFKF(GT,GP,ITINE,K,DELT)
COMPLEX*8 GT (502),G6P(502),K(502),C1
K{1)=-G6P (502) ‘
DELT2=DELT/2.0
K(2)=-(GP(2)-GP(1))/DELTZ-GT(Z)*h\i)

DO 2 N=3,ITIHNE :

NM1=N-1

Ci1=0.0

NPI=N#1

DO 1 M=2,NN1

C1=C14GT (NP1-M) *K (N)

CONT INOUE
K(N)=-C1-C1—(GP(N)-GP(1))/DELT2—GT(N)‘K(1)
CONTINUE .

RETURN

END

N

229,
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SECTION C 230.

CALCULATION OF REORIENTATIONAL CORRELATION PUNCTION FRON FREE
ROTOR MEMORY FUNCTION AND THE MEMORY PUNCTION EQUATION
K(T) =K (T) FR*EXP (~T /T AUJ)
FREE POTOR MEMORY FUNCTION READ IN ON 4
K (502) =AVERAGE FREQUENCY OP STICK SPECTR
TINE (502) =OMEGABAR; TIME(503)=TENP :
COMPLEX*B CPHASE(%01) ,CEXP,CMPLX,CA,CE,CP,CPHA (501),CPHF (501),
$  KAT(501),KET (501) ,KFET(501) ,GA(501),GE(501),GF (501)
COMPLEX*8 K (502),C1,6T(501) ,KP (501) ,C3,KA (502) ,KE(502) ,KP (502)
REAL TIME(503),BUFPER(1024) /KR(501) ,KI(501),TITLE(22),TITLEK (22)

INITIATION OF PLOT ROUTINES

CALL PLOTS (BUFFER,4096)

DATA TITLEK/' K(','T)/K',*'(0) *,* TI',"ME(R','ED) ', 16%" V4
DATA TITLE/® CLG(T) Y, *,' TI','ME(R','ED) *,16%? ry
REAL ¥YD(2)/0.0,1.0/

REAL YDK(2)/-0.5,1.0/ .

REAL XD (2)/0.0,7.6/

REAL XC(3),/0.0,4.0,7.6/
REAL YC(3)/0.0,0.0,0.0/
ICc=0

YORIG=-10.0 .
X0RIG=17.0

- XSIZE=14.9606
YSIZE=7.874
CALL PLOT (2.0,2.0,-3)
READ (4) TINE
READ (4) KA
READ (4) KB
READ (4) KP
WB=TINE (502)
WA=REAL (KA (502))
WE=REAL (KE (502))
WF=REAL (KF (502))
WPB= (5.0*WA+2.0*WE+3.0%WF) /10,0 E %
WA=WPB-WA .
WE=WPB-V¥E
WF=WPB-WP
TEMP=TINE (503)
DELT=TINE (2)
B1=5.194
CPHASE(1)=1.0
CPHA (1) =1.0
CPHF (1)=1.0
CA=CEXP(CHPLX(0.0,(B1OB1+HA)*DELT*1.885E11/?B))
CB=CEXP(CHPLX(0.0,(810816HE)*DELT*1.885E11/HB))
CF=CEXP(CMPLX(0.0,(B10810HF)*DELT‘1.885E11/WB))
DO 1 I=2,501
CPHA (I)=CPHA (I-1) *CA
CPHASE(I)=CPHASE (I- 1) *CE
CPHF (I) =CPHF (I-1) *CF
1 CONTINUE
DO 2 1=1,501 /

CPHA (I) =CPHA(I)*5.0 = - / - _

CPHASE (1)=CPHASE(I)*#2.0
CPHF (1) =CPHF (I)#3.0

2 CONTINUR
TAUJ (SEC) ; .
" THAX (RED) MAXIMUM TINE TO BE CONSIDERED
IPLTK PLOT K(T) ?

16 T G(T) 2

IPLTG PLOT G (T) ?

PAR=0 YES

PAR=1 ¥0
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3 READ (5,:901) TADJ, ITMAX,IPLTK,IG,IPLTG

IF (TAUJ.LT.0.0) GO TO 8
THAX=TIME(ITHAYX)

READ (5,902) (TITLE(I),I=7,22)
DO & I=7,22.
TITLEK(I)=TITLE(I)

CONTINUE

TJIRED=TAUJ*W¥B

MULTIPLYING. K(T)~FPR BY EXP(-T/TAUJ)

RATK=REAL(R (1))
R1=EXP(?DELT/TJHED)

R2=1.0

KAT (1) =Ka (1)

KET (1) =XE (1)

KFT (1) =KF (1)

PO 5 I=2,501

R2=R2*R1

RKAT (I)=KA(I)*R2
KET(I)=KE(I)*R2
KFT(I)=KP(I)*R2

CONTINUE [

IP (IG.EQ.1) GO TO 3

WRITE (6,903) (TITLE(I),I=7,22)
WRITE (6,904) TEMP,TAUJ,TIRED
WRITE (6,905)

A

¥RITE (6,906) |
CALL KG (KAT,GA,DELT,ITHAX,TINE)

E -

¥RITE (6,907)
CALL KG(KET,GE,DELT,ITMAX,TINE)

P ‘ [
¥RITE (6,908

CALL KG(KFT,GP,DELT,ITHAX,TINE)
GT (1) =5.0%GA(1)+2.0%GE (1) +3.0%GP (1)

BORMALIZING G(T) AND PHASING SO FIRST NOMENT
OF THE SPECTRAL DENSITY = 2 Bt

RRR=REAL (GT (1))
GT(1) =GT (1) /BRRR

3=0.5
D0 6 I=2,ITHAX
C1—(CPHA(I)‘GA(I)GCPHASE(I)'GE(I)fCPHP(I)*GP(I))/RRR
GT (I)=C1

C3=C3+C1
CONTINUE
TAUTHA=REAL (DELT* (C3-GT (ITHAX) /2.0)) /(3. ~REAL (GT (ITMAX)))
THB=TAUTHA/WB '
WRITE (6,909)
WRITE (6,910) (TIME(I),GT(I),I=1,ITHNAX)
WRITE (6,911) TAUTHA,TWB
IP (IPLTG.EQ.1) GO TO 3 ' )
J=IFIX (7.6/DELT) : r
IP (THAX.LT.7.6) J=ITHMAX
CALL PLOTBE (XSI2E,YSIZE,2,XD,YD TITLB,.PALSE.,0.0,Q)
IJ=J+1
Do ? I=1,1J
KB (I)=REAL (GT (I))
KI(I)=AINAG(GT (I))

7 COHTIHUB

231.
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CALL PLOTME(XSIZE,YSIZE,J, TIAE,KR,TITLE,.TRUE.,0.0,4)
CALL PLOTHE(XSIZE,YSIZE,d,TINE,KI,TITLE,.TRUE.,0.05,4)
CA¥L RDORIG (IC,YORIG,XQRIG)

GO/ TO 3
8 CALL PLOT(0.0,0.0,999)
STOp

901 FORMAT (E10.0,14,3I1)
902 FORMAT (16AU4)
903 PORMAT ('1',16A4),

904 FORMAT ('-°*, . .
$*REORIENTATIONAL CORRELATION FUNCTION CALCOLATED FROH',*' FREE ROTO

#R NMENORY FUNCTION'/* TEMP=',FB.2,' DEG K; TAUJ=',E10.3,*' SEC, =,
#E10.4," (RED) *). : . . :

%05 FORMAT (* CORRELATION FUNCTION CALCULATED FROM MEHMORY',* PUNCTION
$BY TRAPEZOIDAL RULE SQRT(G(T) *G(T)) & G(T)*G(T) )

906 FORMAT ('- A-SYMNETRY')
907 FORMAT ('1 E-SYMMETRY!)
908 FORMAT ('1 F-SYMHETRY ')

909 FORMAT ('1 GA,GE,GP: WEIGHTED SUM(S:2:3) ;PUASE SUCH THAT THE',
#' AVERAGE FREQUENCY IS WEIGHTED SUN OP WPA ,WpE,WpF')
910 FORNAT ('~ REORIENTATIONAL CORRELATION PUNCTIONS ADJUSTED SO,
¢' FIRST NOMENT=2B1=10.388 CM-1'/(2(F10.2,5%,2E15.7,10X)))
911 FORMAT ('-REORIENTATIONAL CORRELATION TIME= ¢,E11.3,¢ (RED) = ¢,
$E11.3,' SECY)
EED

THIS SOUBROUTINE CALCULATES G(T) FPROM K(T)

SUBBOUTINE KG(KP,GT,DELT,ITMAX,TINE) \7
CONPLEX*8 [P(501),GT(501),C3,KSUN(501),C1 -

REAL TINE(503)

¥B=T IME (502)

RC1=DELT*DELT/2.

RC2=REAL {1.0+RC1*KP (1) /2.})

C3=(-1.0+RCI*(KP(2) +KP (1) /2.)) /RC2

BC4=RC1/RC2

KSUM (1) =C3

ITHI=ITAAX-1 . Ao
DO 1 I=2,ITM1

KSUM (I) =RCU* (KP(I+1) ¢KP(I))

1 CONTINUE
GT(1)=1.0
GT(2)=(" -RC1*EP(2)/2.0)/RC2
WRITE (b6,:01) TINE(1),GT(1)

WRITE (6,901) TIME(2),GT (2)

"C3=GT(1) /2.0+GT (2)

DO 3 N=3,ITMAX

IF (TIME(N).LE.7.6) IJ=N

C1=-RSUH (N~1) /2. 7/
NB2=N-2

Do 2 J=1,NK2

C1=C1-GT (: ~ *KSUN(J)

2 CONTINUE
GT (N)=C1
C3=C3+¢C1
AAAA=CABS (GT (4})

AAAAA=AAAA®AARL :
WRITE (6,901) TINE(N),C1,AAAAR, AAARA . '

3 CONTINUE ‘
TAUTHA=BEAL(DELT*(C3-GT(ITHAX)/2.0))/(1.-REAL(GT(ITHAI)))
'WB=TAUTHA/WB X
WRITE (6,902) TAYTHA,THB
RETURN

901 PORMAT (F10.4,4E16.7)

902 FORNMAT ('-REORIENTATIONAL CORRELATION TIME= 'yE11.3,' (RED) = *,
$E11.3,' SEC') .
END .

.
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SECTION D -1

INTEGER ISKIP(8),MNT(8)

233,

THIS PROGRAN PITS OBSEBVED EXPERIHENTAL ESR

LINEWIDTHS TO A CUBIC FUNCTION IN N.

USES DR.

TO WEIGHT POINTS.

INPOT ON 5
180D, INT

CARD #1 :
- INOD=1 READS ISKIP ON 3

BIRSS'S LEAST SQUARES ROUTINE HODIFIED

INT=1 NEIGHTS POINTS AS 1/ (WIDTH#+*3)

=0 NO WEIGHTING .
TITLE UP TO 40 CHARACTERS
PPW,TC,ETA

CARD #2
CARD #3

PPW, PEAK TO PEAK WIDTHS IN GAUSS

- PPH(1)=0.0 STOP

PPW (1)=100.0

INPOT ON 3

ISKIP, INTEGER VECTOR

READS NEW TITLE CARD
TC=TEMPERATURE IN DEGREE C. '
ETA=VISCOSITY IN CENTIPOISE

IF ISKIP(I)=1 I~TH LINE NOT CONSIDEBED IN FIT

OUTPOT ON 9 SUKMARY OF PARAMETERS
QUTPDOT OR 6 LSQ OUTPUT

REAL D(11),A(10),PPH(8B),PP¥ (8)
REAL TITLE (10)

REAL INC (11) /' 't
REAL M (8)/-3.5,

NIC',9%" v/
.5,-1.5,-0.5,0.5,1.5,2.5,3.5/

REAL MB (8)/12. 25 6. 25 2. 25 0. 25 0.25, 2 25,6.25,12.25/

REAL MMM (8) /-42.875,-15.625,-3.375,~
DATA ISKIP/0,0,0,0,0,0,0,0/
IN(A)=IFPIX (0.25E6/ (A**¥3))
WRITE (9,901)
D(1)=1.0
READ (5,902) IMOD,IWT
GO TO 2

1 BEAD (5,903) (PPW(I),I=1,8),TC,ETA
IP (PPW(1).EQ.0.0) GO TO 11
IP (PPW {1).NE.100.0) GO TO 3

2 READ (5,904) ISOL,TITLE
WRITE {9,905) TITLE
GO TO 1

3 CONTINUE
"WRIT® ’F,906) TITLE
I¥ { © EQ.0) GO TO 5

4 REAT 07) (ISKIP(I),I=1,8)
GO TO

5 ISKIP(8) =0
IP (PPW (8).EQ.0.0) ISKIP(8)=1
6 CONTINUE
po 7 1=1,8
IFP (ISKIP(I).EQ.1) GO TO 7
D(2) =K (1)
D (3) =KK(I)
D (4) =KAM (I)
D (5) =PP¥ (I)
MRT (I)=I¥ (PP¥ (I))
IF (IWT.EQ.0) MNT(I)=0
CALL LSQSH (4,D,NNT (I))
7 CONTINUE

-125,.125, J 375 15.625,42.875/

.
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CALL LSQSV{(A)

A(1)=ALPHA
A(2) =BETA

A(3)=GAMHNA ] .
A(4) =DELTA

TK=TC+273.15
GOB=A (3) /A (2)
EOT=ETA/TK o -
WRITE (6,908) GOB,EOT,ETA,TC,TK TN

THEQRETICAL WIDTHS AND STD(PRON EXPERIMENT)

po 8 1=1,8 ]
8 PPH(I)=A (1) +A (2)*H (1) +A(3) *HN (I) ¢A (4) *HMH (I)
WRITE (6,909)
SUN=0.0
COUNT=0.0
DO 10 J=1,8
CAL=PPW (J)
THE=PPH(J)
DIF=CAL-THE
IP (PPW(J).EQ.0.0) GO TO 9
SUM=SU¥+DIF*DIP
COUNT=COUNHT. 0
GO TO 10
9 DIF=1.0E20
CAL=1.0E20 ~ :
10 WRITE (6,910) CAL,THE,DIF,INC(ISKIP(J)+1)
SUM= (SUM/COUNT)**0.5
WRITE (6,911) SuUA
WRITE (9,912) TK,EOT, (A(JJ),JJ=1,4),G0B,ETA
IF (IMOD.EQ.0) GO TO 1
GO TO 4
11 WRITE (9,913)
STOP
901 PORMAT (' TEHP DEG K ETA*/TENP', 6X,*ALPHA,9X, *BETA', 10X,
$'GAMBAY, 9X, 'DELTA',UX, " GAMMA/BETA *,4X,"BTA') . L
902 FORMAT (2I3) '
8903 FORMAT (10F7.0)
904 FORMAT (10A%) : :
905 FORMAT (' *,10AY) )
806 FORMAT {*1? 410A4) :

7907 FORMAT (8I1)

908 FORMAT (' GAMMA/BETA',E16.8/' ETA/TENP',E18.8/' ETA(CP) ',E18.8/
#' TENP(C) ',F18.2/' TEMP(K) ',FP18.2) . -

909 FORMAT ('-  CALCULATED THEORETICAL DIFFERENCE')

910 FORMAT (* *,F10.3,2F13.3,A4) o

911 FORNAT ('-RNS DIFFERENCE=',F10.5)

912 FORMAT (*.*,F8.2,E12.3,P13.3,2P14.4,F15.4,2P11.4)

913 FORNMAT (* ALL VALUES OF ETA IN 10 TO -3 CENTIPOISE')
END .
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SECTION D-2 : 2335,

THIS PROGRAM DOES A NONLINEAR LRAST SQUARRS P17 TQ THE
R-DEPENDERT PART QP THE LINEAIDTH TO KLVELSON'S EXPRZSSIOUS
WITH STOKES-BINSTEIN,

VARIABLE PABRANETER KabA#pwx) .

“USES KARL HALLINS'S DRIVER ROUTINE FOR BIRS5'S LINEAW PBOGRAﬂ.

ABSOLUTB RESIDURALS
INPOT

CARD #1 : AX,AY,AZ,GX,GY,GZ (A'S AND VO IN (1/SECQ) #§~ 9)
CARD #$2 : WO,BO (BO IN GAUSS)
CARD #3 : TITLE (E¥DFILE STOb)
CARD #4 : PPW,ETA,TENP, ALPHA (EXPERINENTAL) '
ppu(1)<o 51095 READING DADA
( THERR VILL P ONE OF THESE CARDS fOR EACH’ 5?BQTRUH)

INPLICIT REAL'B(D)
REAL»*4 TITLE(vo),TzuPV(aon

REAL*B D(11),DM(301),DA(10),DX(301),DY{301),pPY

'REAL*8 P,U,TR,VIR2, PPY (8) , ALPAA, DROT

DIHENSION an(301)

COMMON /NANE/ NT,MB,RPT,NPAR

COMBCN /PARDPY/ Y u, T8, WTR2 ’ .
DATA DS/0.0D0/, DOT/O ODO/,NP/O/

REAL*8 MVEC(8) /~3.5D0,~-2.5D0,~1. 3D0,~.5p0,.5p0, 1, suo,z SD0,3.5p0s
EXTERNAL DPY

NT=0 :/Ti‘}

NPT=0

CALL COMPOUT s

READ (5,901,END=8) TITLR

BIT=0 :

RPT=0

KPAR=1

DA (1)=64.0D0

WRITE (6,902) TITLE

Do 3 I=1,100

READ {5,903) PPW,ETA,TENP,ALPHA

IF (PPW(1).LT.0,0D0) GQ To 4

DEOT=DBLE(ETA/ (TENP+273.15)) Y

po 2 J=1,8

" IF (PPW(J).EQ-0.0D0) GQ To 2

Ve wNn

o

7

MPT=KPT+ )
DY (NPT).=PPW (J) ~ALPHA

DX (NPT) =DEOT

DS (NPT) =AVEC (J)

MUT{NPT) =1 .

TEMPV(RPT)=TENP .

CONTINUE ) hdd

CONTINUE /

WRITE (6,904) (X.DA(I),I= 1.!?&&)

CALL DERILV (D,DA,DX,DX,DY,AMT)

DO 6 IB=1,NPAR

DA(IB)= DA(IB)»D(IB)

WRITE (6,905) AT

WRITE (6,906) (I,DA(X),Y=1,HPAR)

DDDD=DA (1) **. 3333333 .

WRITE (6,907) DDDD

IF ((NIT.GT.O0) .AKD, (NT.LE.NIT)) 6O TO S

IF (MB.EQ.1) GO 70 5

WRITE (6,908)

DO 7 IC=1,NPT . ,
DPR=DPY(DX(IC),Dn(IC),Da.HPAB)

DEL=DY(IC)~DPR

DS=DS+DEL*DEL

DOT=DOT+DEL

WRITE (6,909) DX (IC).PY(IQ), DPR,DEL,MNT (IC),Dd (1) ,TRAPV (XIC) , 2R

3
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901
902
903
904
305
906
907
9508
909

.910

911
912

236.

DS=DSQRT (DS/DFLOAT (NPT-NPAR))
WRITE (6,910} DS,DOT

‘WRITE (2,901} TITLE

¥BRITE (2,9° ") DDDU,DS,DOT
DS=0.0D0 .
-DOT=0.0D0

“NT=0

NP=0

NPT=0

GO TO 1

WRITE (6,912)

STOP O -,

"FORMAT (10A4)

FORKAT ('1',10A4)

FORMAT (11F5.0) o
PORMAT (' LSQSM FIT : INITIAL GUESSES'/(*0DA(',I2,') = *,1PD12.5))
PORMAT ('OAFTER *,I2,' ITERATIONS THE PARAMETERS NOW ARE :')
FORMAT ('ODA(',I2,'}) = *,1PD18.8) .

FORMAT (! B (ANGSTRONS) = ',F10.3)

PORMAT ('-EOT,Y(EXP),Y (THE),E-T,NT,N,TENP,TR')

FORMAT (D11.3,3P10.2,15,2F6.1,D12.4)

FORKMAT ('OOBSERVED-CALCULATED STANDARD DEVIATION = *,1PD18.8/
#*0SUMMED DIFFERENCES = ',D18.8) .

PORMAT (3D20.7)

FORMAT ('ODATA EXHAUSTED ; ENDFILE ENCOUNTERED ON READ')

END :

REAL PONCTTON DPY#*8(DX,DM,DA,NPAR)
INPLICIT REAL#*8(A-H,0-Z)

REAL*B DA(1)

COMNON /LWP/ BS,B1T,B2T,GS,G1T,G2T,DS, W0
COMMON /PARDPY/ F,U0,TR,WTR2
TR=3.03439D~10*DX*DA (1)

" WTR2=(TR*WO) **2

U=1.0/(1.04WTR2)
F=U*WTR2 '

DPY= (BS+U% (B1T- P*BZT)O(GSOU*(GITOP*GZT)0DS‘DH*(1 L% (1. +P)))~gu)t
$ DN*TR . -

RETURN

END

SUBROUTIRE DERIV(D,DA,DX,DN,DY,NET)

IMPLICIT REAL*B8(A-H,0-12) ®

REAL*8 DA(1),D(1),DX(1),DH(1),DY (1)
INTEGER HWT (1)
COMNON /NAME/ NT,MB,NPT,NPAR
. COMNON /LWP/ BS,B1T,B2T,GS,G1T,G2T,DS, N0
COMHON /PARDPY/ F,U,TR,WTR2
EXTERNAL DPY
DO 1 IA=1,NPT
DMN=DM (IA)
DSDN=DS* DA
DXX=DX(IA) : .
DPR=DPY (DXX,DNY,DA, RPAR)
A= (BS+ (GS+DSDY) *DNN)
B= (B1T+ (G1T+DSDHN) *DHN) |
C= (~B2T+ (G2T+DSDM) *D1N)
D (1) =DAN*3.03439D-10%DXX* (A¢U* (B* (1.-F-F) +C*F* (3.-4. *P)))
D(2) = (DY (IA)-DPR) ;
CALL LSQSN(0,NPAR,D,HWT(IA),HA) -
CALL LSQSHM(1,NPAR,D,NA,NB)
NT=NT+1
RETURN : . .
END
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SUBROUTIRE. CONPUT

INPLICIT REAL*B8(A-H,0-Z)

COMMON /LWP/ BS,B1T,B2T,GS,G1T,G2T, DS, NO
READ (5,901) AX,AY,AZ,GX,GY,GZ

READ (5,901) WO,BO
ST0G=3.9390D-7/(GX+GY+GZ)

AX=AX*1.0D9

AY=1.0D9*RAY

AZ=AZ*1.0D9

WO=WO*6.28319D9 ]

WRITE (6,902) AX,AY,A2,GX,GY,GZ,%0,BO
B=.66666067* (AZ-.5% (AX+AY))

C=.25% (AX~-AY)

DDG= (GZ-.5% (GX+GY)) *8.7944D6*B0

DG=.5% (GX~GY) *B.794UD6*BO*C

BDDG=B*DDG

DDG2=DDG*DDG

BS=B#*B

CS=C*C

AOWO= (AX+AY+AZ) /(3. *¥0) }
B1T= (.2%*BDDG-. 13333333%DDG2*A0WO+.8%DG-.8375%BS*A0WO) *STOG
B2T= (AOWO* (.1333333*DDG2+5.5125*BS) ) *STOG

BETA (NS)=U* (B1T-FB2T)

GS=(.125%BS+. 6666666T+CS-.2333333%A0N0*BDDG) *STOG
G1T= (-.025%85-.166666%4BDDGXA0¥0~-. 13333333%CS) *5TOG
G2T= ({.125%BS-.4*BDDG) *AOWO) *STOG

GAMNA (NS) =U* (G1T+F*G2T)

DS=(.05% BS*AONW0) *STOG
BS=(.2666667%BDDG+1. oeé%s7*oG-Aouo*( 17777778%DDG2+. 8625*85))*STOG
RETURN .

901 FORMAT (6P10.0) €

8502 PORMAT ('1AaXx=*',D12.4/* AY¥Y=',D12.4/*% AZ=',D12.4/' GX='*,P12.3/

‘#' GY=',P12.3/' GZ=',F12.3/' WO=',B12.4/' BO=',F12.2)
END .



APPENDTIZX I I1I

The tables in the Appendix give the peak to peak
widths of-the lines of the ESR spectruﬁ. The fempera—
ture is givén_in °C and the viscositieé are in poise.
The peak to peak widths were,calculated from the peak
to peak heights of the observed ESR lines and the

width of the M = -3/2 line.a’b

a'Linewidths which could not\be determined due to the

noise in the spectrum are indicated by a,

Temperature quoted are accurate to + 0.5°C.

238
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