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Abstract 

The Indiana Bat (Myotis sodalis) population had decreased by 56% between 1967 

and 2006. In summer 2006, a mysterious disease called “White Nose Syndrome” 

was first identified.  Since then, the disease killed almost one million bats in 

North America. Many Biologists believe that both the population decrease before 

the appearance of the disease and WNS are associated with climate.  In a joined 

effort with Yellowstone Ecological Research Center (YERC), US Fish and 

Wildlife Service (USFWS) and NASA Terrestrial Observation and Prediction 

System (TOPS), our study is a partial population viability analysis which aims to 

establish a link between bat population dynamic and climate before the 

appearance of WNS. 
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Chapter 1 

Introduction 

1.1.  Problem Definition and Objective 

Bats are a vital element to the ecosystem. They are pest controllers, seed 

dispersers, and pollinators. Bat history goes back at least 65 million years. They 

can be found in almost any environment. Indiana bats are a small species found in 

the Northeast and Midwest USA, where they once numbered in the millions. In 

the past 40 years their population has declined 56 percent to 387,000. In 2006, a 

mysterious disease named White Nose Syndrome (WNS) appeared in a New York 

cave. Since then, it has been spreading to other caves in both the USA and Canada 

and has killed more than one million bats. It is believed that this disaster has 

caused the most abrupt wildlife decline in the past century in North America.  

Experts in the fields of bat biology, fungal ecology and environmental modeling 

are working together to explore the disease and to develop solutions to manage it.  

This study is a partial Population Viability Analysis (PVA) which aims to explore 

the association between bat population and climate covariates prior to WNS 

appearance in 2006 through:  

1. Investigation of the growth rate in each of the 222 caves   

2. Examining the growth rate in each cave to potential climate covariates 

This connection may facilitate the understanding of the disease and how and 

under what conditions the disease might spread. Ultimately, the models would be 

used to help devise appropriate management strategies for controlling it. 

1.2.  Gathering Data 

The Department of US Fish and Wildlife supplied a database of hibernacula 

survey population from 1950 to 2006. The database includes information on 450 

Indiana bats caves. The dimension of the data matrices that will be analysed is 
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450*56. One of the challenging issues in this data was cleansing it by inputting 

missing values, removing duplicates and invalid entries, deleting caves with few 

observations and grouping nearby cave populations. The final clean data is 

reduced to 222 cave time series. The Ecological Forecasting Lab at National 

Aeronautics and Space Administration (NASA) provided the 145 climate 

covariates for each cave population using Terrestrial Observation and Prediction 

System (TOPS).  

1.3.  Analysis 

The analysis consists of five steps. First, the model the growth rate of each of the 

222 caves‟ population time series. For each cave, two models are fitted and 

compared to test for any association between the growth rate and the size of the 

cave population (density dependence mechanism). Second, after choosing the best 

fitted model, the average growth rate for each cave is estimated and plotted 

geographically. Subsequently, any geographical pattern is easily detected. Third, 

using Spline Smoothers, we fit a smooth curve to each cave growth rate time 

series in order to capture singular trends/behaviours over time.  Next, the 222 

trends are compared to detect any similarity across nearby caves. Finally, the last 

and most important step of the analysis consists of establishing a link between 

each cave population growth rate and the surrounding climate covariates for the 

time between 1982 and 2007.  For each cave population, we regress the cave 

growth rate over 145 corresponding climate covariates supplied by TOPS, and 

then we select the minimum number of covariates that are highly correlated with 

the growth rate. The method is called automatic forward selection. Our aim is to 

choose the minimum number of covariates (2-4) that can predict the growth rate 

for a particular cave. For most caves, the set of selected covariates are not 

exclusive. Thus the next natural step is building frequency tables of the most 

selected climate covariates by region. The last step allows us to locate the most 

important climate factor associated with the bat growth rate for any region.  
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1.4.  Interpretation 

Our results and finding are communicated to Indiana bat specialists for biological 

interpretation. The result may be used as tool in species management planning, 

and probably shed some light in investigating the association between WNS and 

climate. 
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2. Chapter 2 

Indiana Bat Population Decline and White Nose 

Syndrome  

2.1.  Introduction 

Bats have been around for at least 65 million years. Their forelimbs are developed 

as wings and make bats the only true flying mammals. 1000 of the 4450 know 

species of mammals are bats (Fenton, 2003), and they are among the most 

successful and varied of all mammals. We can find them in almost every 

ecosystem, with the tropics home to the greatest density of bat species. The fastest 

bats can reach 25 km/h and some bats species weigh only 1.7-2 grams, smaller 

than many insects (Hill, 1984) . 

Bats are vital to many ecosystems and human economies. Bat droppings are a 

natural fertilizer considered a major natural resource in many countries. They are 

vital for pest control. They are the only major predators of night-flying insects and 

seventy percent of bat species feed on insects and play an important role in 

environmental balance (Fenton, 2003). Many bat species that feed either on fruit 

or on nectar also perform the vital functions of dispersing fruit seeds or 

pollinating flowers. Many tropical plants depend entirely on bats for the 

distribution of their seed (Hill, 1984). 

2.2.  Indiana Bat 

The Indiana Bat is a mid-sized bat (6-9 grams) of the genus Myotis (Indiana Bat 

(Myotis Sodalis), 2010), with brown hair and pink lips, and a life expectancy of 5 

– 10 years. In the US this bat lives in the forest and caves of the Northeast, 

Southeast and Midwest. Indiana Bat feeds on flying insects along shorelines, and 

in the trees of forests and floodplains (Indiana bat, 2010) 

. 

http://en.wikipedia.org/wiki/Pollinator
http://en.wikipedia.org/wiki/Flower
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Figure 1: Counties that have Summer and Winter records for Indiana Bat (Pruit, 2007) 

A social animal, the Indiana Bat migrates in spring to congregate in summer 

colonies where it roosts in trees and feeds on insects in preparation for winter, and 

again in fall to congregate in winter colonies where they hibernate in caves called 

hibernacula. It has strong homing instincts to its hibernacula. In experiments 

where biologists released 500 Indiana Bats 200 miles from their hibernacula, 

more than two-thirds returned (Pruit, 2007). This instinct seems much stronger 

along a north-south axis, the direction for migrating to and from summer roosts, 

than along the east-west direction. Winter hibernacula and summer roosts may be 

as much as 300 miles apart (Pruit, 2007). 

The Indiana Bat migrates to the hibernacula from late July to early October for 

mating. The adult female Indiana Bat stores sperm through the winter, with 

fertilization only occurring after spring emergence from hibernation. During fall, 

Indiana Bats stock up fat supplies as they forage in the neighbourhood of the 

hibernacula (Barbour, 1964). 

Indiana Bats hibernate in the same cave that they swarm. They hibernate in the 

same cave every year. Most enter hibernation by the end of November, usually in 

large, dense clusters ranging from 300 to 500 per square foot (Pruit, 2007). 

During hibernation, Indiana Bats may arouse naturally to move to a different spot 
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in the cave depending on cave microclimate factors. Even small changes in the 

temperature, barometric pressure, and humidity of a hibernacula can make it 

unsuitable for bats (Pruit, 2007). 

In spring the Indiana Bat emerges from hibernation. The female Indian Bat 

migrates hundreds of kilometres from her hibernacula to their maternity sites, 

although shorter migrations are known to occur (Pruit, 2007). Little information is 

available to determine habitat use and needs for Indiana Bats during migration. 

Reproductive females arrive at their summer habitats as early as mid-April 

(Fenton, 2003). Upon arrival, female Indiana Bats form maternity colonies which 

can vary greatly in size.  It was documented that maternity colonies may contain 

100 or fewer adult females (Harvey 2002). Maternity colonies are widely 

dispersed and difficult to locate. All efforts have found only a fraction of the 

maternity colonies presumed to exist based on population estimates. The 269 

maternity colonies identified only represent 6 to 9 percent of the 2,859 to 4,574 

maternity colonies assumed to exist. Therefore the geographic locations of the 

majority of Indiana Bat maternity colonies remain unknown (Pruit, 2007). 

 

Figure 2: Indiana Bat Chronology (Pruit, 2007) 

Female bats and their pups are poor thermo regulators Their growth may be 

controlled by the rate of metabolism and body temperature (Whitaker, 2004). 

Thus, it is believed that roost temperature is essential in the growth and 

development of young Indiana Bats. Kurta and Lacki suggest that roost 

microclimate is the primary selection factors of the roosting site where bats feed 
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on insects (Micheal J. Lacki, 2007). Indiana Bats forage in forested stands, along 

forest edges and hedgerows, and near or along open water and wetlands. 

2.3.  Decline in Indiana Bat Population 

The Indiana Bat population is in decline. In the past 40 years, it has been reduced 

from 883,300 to 387,300, a reduction of 56 percent (Pruit, 2007). Human 

disturbances, vandalism, killing and unsuitable attempts to protect bats in their 

winter hibernacula contributed to this decline. However, even after these 

problems were addressed, populations continue to decline. Biologist looked at the 

I-Bat‟s summer colonies, and found loss and degradation of habitat may be 

contributing to population decline (Indiana bat, 2010). Some biologist believed 

that climate change may be a determining factor. 

 

Figure 3: Indiana Bat Population Estimate (Pruit, 2007) 

2.4.  White Nose Syndrome 

Since 2006, White Nose Syndrome (WNS) has been associated with the deaths of 

more than a million different bats (White-Nose Syndrome in Bats, 2009). The 

affected animal has a distinctive ring of fungal growth around the muzzle and on 

the wings.   

http://en.wikipedia.org/wiki/Fungus
http://en.wikipedia.org/wiki/Hypha
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Figure 4: White Nose Syndrome ( (White-Nose Syndrome in Bats, 2009)) 
Originating in New York, in the last 4 years it has spread to Vermont, 

Massachusetts, Connecticut, New Hampshire, New Jersey, Pennsylvania, West 

Virginia and Ontario. Mortality rates have approached 100 percent at some sites. 

According to biologists, the disease has caused the steepest wildlife decline in the 

past century in North America (What We Do/ White-Nose Syndrome, 2010). 

Ultimately, bats across North America are at imminent risk. 

 

Figure 5: Path of the Spread of WNS (Cryan, 2010) 

Bat experts, biologists, and environmental scientists have been working to 

understand Indiana Bat population decline and to solve the mystery of WNS. Our 

study is an effort to explore the relationship between Indiana Bat population and 

climate prior to WNS.  
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3. Chapter 3 

Modeling Each Cave Population Time Series 

3.1.  Introduction 

In ecology, population viability analysis (PVA) is used to estimate the likelihood 

of a population‟s extinction and study the factors that may affect population 

dynamics. PVA output is used to develop recovery plans. As bat biologists 

believe that climate is a key factor in understanding Indiana Bat population 

dynamics, this study aims to establish a link between the population dynamics and 

climate variables. 

The key to this analysis is the modeling of each cave population‟s per capita 

growth rate. Per capita growth rate is the change in population size over time per 

individual, and it regulates the population size change over time. Assuming no 

migration, the population size can only be changed by birth or death. Population 

annual per capita growth rate is positive when more individuals are added than 

removed, negative when more individuals are removed than are added, null when 

the annual numbers of death and births are equal (Taper & Dennis, 1994). 

Biologists have developed mathematical models to study the per capita growth 

rate. The simplest model of population growth is the exponential growth model 

which assumes that the per capita growth rate stays constant independent of the 

population size (a Density Independent Growth Model).  Because a population 

growing exponentially will continue to grow infinitely, this model is usually not 

realistic. 

On the other hand, the logistic growth model allows the per capita growth rate to 

vary with population size. In fact, it assumes that the per capita growth rate is 

negatively proportional to the population size. 

For each cave population time series, we will check which of the two models isthe 

best fit.  A better fit of the exponential model may suggest the effect of climate on 

Indiana Bat population decline. Such a hypothesis needs to be confirmed by 
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investigating the existence of similar patterns in the growth rate across nearby 

caves using spatial or temporal plotting. If evidences support the climatic effect 

approach then the final step is linking each cave growth rate to surrounding 

climate. 

3.2.  USFW Cave Population Data 

The data provided by the USFW consisted of 450 records, one for each 

hibernaculum, each containing the population estimates from 1950 to 2006. For 

each hibernaculum, the population estimate was taken either annually or 

biennially. Many of the values for the population estimates were missing. After 

removing hibernacula with fewer than three values for population estimates, 222 

hibernacula remained. The missing values for the remaining hibernacula were 

imputed using linear interpolation. 

3.3.  Models  

Exponential Growth Model (Density Independent Growth Model) 

To model the per capita growth rate we will use a discrete version of the 

exponential and logistic growth models.  To build the two models, we start by a 

simple version of the exponential: the continuous case 

Continuous Case 

Let: 

 N: The density of the population 

 

 dN : Rate of change 
dt  
 

 dN : Per capita rate of change(Per capita growth rate) 
dt.N  
 

 b: Per capita birth rate is constant 

 

 d: Per capita death rate is constant 
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We assume that all changes in this population result from births and deaths and 

that b and d stays the same. We also assume that births are happening in a short 

time interval (dt) 

        r = b – d : Intrinsic rate of growth (stays constant) 

dN     : Per capita growth rate for continuous case         (1)  

dt.N     

 dN    =   b – d =constant (r)  
dt .N 
 

 dN    =   r  
dt .N 
 

Discrete Case  

For many organisms, birth occurs in well defined breeding seasons. 

Consequently, Dennis and Taper (Taper & Dennis, 1994) modified the per capita 

growth rate definition slightly to incorporate discrete time births. Indeed they 

approximate (1/n) dN/dt  by  d(ln N)/dt: 

Let: 

 Nt: Population Abundance at time t (censused, estimated) where t is 

discrete (0,1,2...) 

 We assume that the population is observed at the same time each year 

 X0 = ln(N0) 

 Xt = ln(Nt) 

 The definition of  the  per capita growth growth rate  Ln(Nt/Nt-1) is 

analogue to that of continuous time  d(ln N)/dt 

 The per capita growth rate over time is taken to be constant independent of  

the population size: 

                          ln(Nt/Nt-1)  =  b0   

 ln(Nt) - ln(Nt-1) = b0   
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Nt = Nt-1 .e
(b0) 

   (first order difference equation) 

 Integrating stochastic effects due to element of chance such as: Fire, 

storms. 

                        ln(Nt /Nt-1)  =  b0+ Et                     (4) 

                     Nt = Nt-1 . e 
(b0 + Et )

                (5)       (Discrete time Markov 

process) 

 Et ~ normal (0, 2): random shock due to unspecified stochastic forces 

 E1,E2...are independent,  

 N0,N1,...are dependent under this model. 

 The stochastic process Nt is a Markov process: Given population size 

attained Nt, the future distributions of the population depend only on Nt 

and not past sizes of the population.  

Logistic Growth Model (Density Dependent Growth Model) 

The per capita growth rate is changing linearly with the population size (Taper & 

Dennis, 1994) 

     ln(Nt/Nt-1)  =  b0 + b1 Nt-1                

                       ln(Nt /Nt-1)  =  b0 + b1 Nt-1 + Et           (6) 

                    Nt = Nt-1 .e
( b0+ b1 Nt-1 + Et )

                       (7)      (Discrete time Markov 

process) 

 Et ~ normal (0, 2): random shock due to unspecified stochastic forces 

 E1,E2...are independent,  

 N0,N1,...are dependent under this model. 

 The stochastic process Nt is a Markov process: Given that population size 

attained Nt, the future distributions of the population depend only on Nt 

and not on past sizes of the population.  



13 

 

3.4.  Analysis 

Testing Exponential Model vs. Logistic Model for Each Cave Population 

Time Series   

For each cave population time series we fit both the exponential model and the 

logistic one. Then we test the best fitted model using the likelihood ratio test 

proposed by Dennis and Taper (Taper & Dennis, 1994). The null hypothesis is 

that the population is undergoing stochastic exponential growth/decline. The 

alternative hypothesis is that the population is experiencing stochastic logistic 

growth/decline. The distribution of the test statistic under both hypotheses is 

obtained through parametric bootstrapping. The testing methodology used is 

illustrated by an example of three cave populations (Annex 1). 

The exponential model seems to fit better each cave population. In fact, the data 

shows enough evidence that individual cave population per capita growth rates 

are density dependent.  

Investigating Cave Per Capita Growth: Rate Spatial Correlation  

To investigate the existence of any spatial correlation trends among different cave 

population growth rates, it is essential to plot the average growth rate of each 

population for the time period 1982-2007 in the specific geographical location on 

the map, the check visually for any possible trend.  The procedure is detailed in 

the following steps. 

 Procedure 

1. Fitting the exponential model for each of the 222 cave time series 
2. Estimating b0: average per capita growth rate population per cave 
3. Average b0 for the caves that belongs to the same county 
4. Discretize the parameter b0 to simplify the plotting: 
               b0 < 0: Decreasing Population over Time 
  0 < b0 < 0.3: Slightly Increasing Population over Time 
  0.3 < b0 < 0.6: Moderately Increasing population over Time 
  0.6 < b0 < 1: Increasing Population over Time 
  1<b0: Highly increasing Population over time 
5. Plotting b0 geographically per corresponding county 
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6. Grouping counties per state for a total of 17 states where Indiana Bat 

resides 

Estimating Each Cave Population Growth Parameters    

The estimated average per capita growth rates for Missouri caves are illustrated in 

the following table.  The names and codes of caves and counties are removed. The 

rest of the tables corresponding to other 16 states are (Annex 2).         

Table 1: The Estimated Average Per Capita Growth Rates for Missouri Caves 

Cave State County
County 

FIPS
 Name    b0 Bo average per county sigma

122 MO(29) 0.503677928 0.119

123 MO 0.464253909 0.483965919 0.096

124 MO 0.847918981 0.059

125 MO 0.101644944 0.474781963 0.923

126 MO -0.08748 0.343

127 MO -0.11853763 -0.103008815 0.263

128 MO -0.03456613 0.260

129 MO -0.06842984 0.241

130 MO 0.272494969 0.056499667 0.494

131 MO 0.44854562 1.453

132 MO -0.03050378 0.209020921 0.751

133 MO 0.164702675 0.087

134 MO 0.35692367 0.759

135 MO -0.02713032 0.164832009 0.143

136 MO 0.443918364 0.946

137 MO -0.21684672 0.140

138 MO -0.00353738 0.164

139 MO 0.144130088 0.210

140 MO -0.05662024 0.507

141 MO -0.14916298 1.081

142 MO -0.0225223 0.259

143 MO -0.26826431 0.214

144 MO -0.08731484 0.723

145 MO -0.23669369 -0.099648043 0.225

146 MO -0.2752901 0.493

147 MO 0.463307569 0.255

148 MO 0.159391284 0.231

149 MO -0.68899486 1.118

150 MO 0.048173021 -0.058682617 0.154

151 MO -0.77642159 1.498

152 MO -0.07354407 0.367

153 MO -0.08874113 0.172

154 MO 0.047360974 1.111

155 MO -0.27569475 -0.105691632 0.188

156 MO -2.74367935 0.929
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Plotting the Average Per Capita Growth Rate (b0) per County 

Plotting of the average per capita growth rate is illustrated for Missouri. Similar 
plots are made for the other 16 states (Annex 3). 

 

Figure 6:   Plotting of the Average Per Capita Growth Rate (b0) for Missouri 

Comment 

Plotting the average per capita growth rate per county using bars plot reveals a 

systematic pattern in the growth rate values across space in Missouri. Negative 

growth rates are presented in red, whereas positive growth rates are either in green 

or yellow depending on their strength. 

The plots show that counties with declining populations are clustered in the 

interior (red), while those with increasing populations are located on the edge 

(green and blue). It also shows that the further the caves are from the cluster 

center , the healthier the population is. Similar patterns are seen in the other 16 

states (Annex 3).   



16 

 

Investigating Temporal Trends in Per Capita Growth Rates across Cave 

Populations  

In a second exploratory analysis, we use spline smoothers to capture the overall 

trend in each cave population per capita growth rate over time. The objective is to 

investigate any similar trends in neighbouring caves 

Spline smoothers are non-parametric curves. They are defined as piecewise 

polynomial. We will use penalized splines (Marx & Eilers, 1996) to fit a smooth 

curve through each cave per capita growth rate. The best smoother curve for each 

cave is selected through minimizing cross validation criteria (CV). 

We applied the smoothing method to each population time series across the 222 

hibernacula.  The technique is illustrated below using three neighbouring caves 

from Missouri. Two of the caves belong to the same county, while the third 

belong to a neighbouring county. First, the actual three cave population time 

series are plotted. Then, each cave‟s per capita growth rate over time scatter plot 

is smoothed. Finally the smoothers curves are compared to check for trend 

similarities. 

 

Figure 7: Populations vs. Time for the Three Complete Missouri Caves 
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Figure 8: B-Spline Smoothing for First Cave (Pop 127); the per capita growth rate (ln(Nt) – ln(Nt-1)) 

trend over time. 

 

 

Figure 9: B-Spline Smoothing for Second Cave (Pop 128); the Per Capita Growth Rate (ln(Nt) – ln(Nt-

1))  Trend Over Time is Smoothed. 
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Figure 10: B-Spline Smoothing for Third Cave (Pop 129); the Per Capita Growth Rate (ln(Nt) – ln(Nt-

1)) Trend Over Time is Smoothed. 
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Figure 11: Graphical Comparison of the Three Population Growth Trends; the Per Capita Growth 

Rate (ln(Nt) – ln(Nt-1))  Trend Over Time is Smoothed. 

Comment 

The blue curves represent annual per capita growth rates for each of the three 

caves. The red curves are the B-Spline smoothers.  The smoothers show that the 

three populations had been declining prior to 1997 (negative per capita growth 

rates), then starting from around 1998, their population started to increase 

(positive per capita growth rates). Furthermore the imputed values are clearly 
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distinguished in Figure10 between years 1962 and 1973. The trends comparison 

for these 3 populations is made only for the most recent years where the 

population values are real. For other populations with too many missing values, 

the comparison is ineffective. 

3.5.  Conclusion 

In the current chapter, we investigated the behaviour of Indiana Bat population 

dynamic over time. First, modeling the per capita growth rate for each of the 222 

cave populations showed that the exponential growth model holds. Second, 

plotting per capita growth rates per corresponding counties revealed spatial 

cluster. Third, comparing the per capita growth rate over time for complete data 

set population shows similar trends. In the next chapter, we will investigate a 

possible link between each cave per capita growth rate and surrounding climate 

covariates.  

 

4. Chapter 4 

Exploring Potential Link between Indiana Bat 

Per Capita Growth Rate and Climates 

Covariates 

4.1.  Objective 

Establishing a potential link between climate and Indiana Bat population dynamic 

is the core of this study. According to Indiana Bat experts, I-Bat survival and 

reproduction may be affected by several climate covariates such as: Temperature, 

Precipitation, sunlight, etc. For instance, in winter, Indiana Bats hibernate in caves 

that have specific climate conditions. In fact, they need cool caves with 

temperatures of around 40 degrees Fahrenheit and relative humidity between from 

66% to 95% (Indiana Bat-Myotis Soladis, 2010). In summer, Indiana Bat roost in 
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sunny areas. The sun seems an important factor for Indiana bat summer habit 

(First Descriptions of Indiana Bat Maternity Roosts in the Southern U.S, 2010) 

Our objective is to link each cave population per capita growth rate to potential 

surrounding climate covariates, then investigate if there a particular climate 

covariate that is associated with all or most of the cave populations per capita 

growth rate.  Firstly, Indiana Bat biologists define a set of possible climate 

covariates for each cave population. Then, NASA Terrestrial Observation and 

Prediction System (TOPS) provides the requested covariates based on the cave 

geographical coordinates. Next, among the suggested covariates, we use 

automated forward selection technique to select only the highly associated 

covariates with the per capita growth rate for the given cave. Next, a frequency 

table summarizes climate covariates that are associated with most of the 167 

caves. Such a step is necessary to explore the possible effect of a global climate 

variable on all the cave populations. Finally, a frequency table summarizes 

climate covariates that are associated with most of the caves state. 

4.2.  TOPS Climate Covariates  

USFW Indiana Bat biologists suggested five essential climates covariates that 

may be associated with the variation in each cave‟s population.  

 tmax (average daily maximum temperature, unit C)  

 tmin (average daily minimum temperature, unit C)  

 srad (average daily shortwave solar radiation, unit w/m^2)  

 vpd  (average daily vapor pressure deficit, unit Pa)  

 prcp (average daily precipitation , unit mm)  

 

For a given cave population, due to the migratory nature of the species (see 

Introduction - Indiana Bat Chronology), the major challenge is for which areas 

these covariates should be measured. For instance, in winter, the entire cave 
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population hibernates in the cave. Therefore, the area around the cave is the 

target. However, in summer, each cave population disperses into smaller groups 

of hundreds, and establishes summer colonies hundreds of kilometres from the 

cave. The exact locations are unknown. To capture the climate covariates 

affecting these summer colonies, measurement need to be taken at distances from 

the cave that cover all probable areas in which these colonies may exist. 

Based on the Indiana Bat annual cycle, for each cave, USFW biologist and YERK 

ecologists came to a consensus to investigate the 5 essential covariates during 11 

time periods of the year, within 4 radii. According to the biologists, the 11 time 

periods correspond to important cycles of activities for the Indiana Bat. Similarly, 

the 4 radii correspond to the probable locations of the bats during these time 

periods. 

NASA TOPS provided the requested climate data for each cave based on the 

geographical coordinates. TOPS data goes back only to 1982, and the data they 

provided covered the period 1982 – 2006. The following table describes the name 

of the data files provided, the time periods, radii and their corresponding climate 

covariates for each cave: 
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Table 2  TOPS ASCII: File Nomenclature, Periods, Radii and Number of Covariates 

 

Tops ASCII Files 

(11 files per location)  

 

Period 

 

mm/dd-mm/dd 

Radius 

r1= 16 km 

r2= 80 km 

r3= 160 km 

r4= 460 km 

Number  of Covariates 

(tmax, Tmin, Srad, Vpd, 

Prcp) 

 

1-Fall1 (swarming and mating) 

 

0815-0914 r1 5 

2-Fall2  

 

0915-1014 r1 5 

3-Fall3  

 

0815-1014 r1 5 

4-Winter1 (hibernation) 

 

0101-0131 r1 5 

5-Winter2  

 

0101-0228 r1 5 

6-Spring (Emergence /Migration) 

 

0401-0430 r1 to  r4 5*4 radiuses= 20 total 
covariates 

7-Summer1 (Reproduction) 

 

0401-0430 r1 to r4 5*4= 20 

8-Summer2 

 

0401-0531 r1 to r4 5*4= 20 

9-Summer3 

 

0501-0630 r1 to r4 5*4= 20 

10-Summer4 

 

0501-0831 r1 to r4 25*4= 20 

11-Summer5 0701-0831 r1 to r4 5*4= 20 

   Total number of covariates 

per location = 145 

 

In total, 145 potential climate covariates are suggested for a single cave 

population. Each covariate has one value per year from 1982 to 2006. The 

following algorithm summarize the procedure followed by TOPS to generate each 

cave population climate covariates 

For each year 

  average between year-day-x and year-day-y   

     for each point of interest(Cave) 

      get closest 8km pixel 
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      take all pixels in the given radius  

      average them within the radius 

      output the average to ascii file as one value 

   end for points 

end for years 

 

The output file is described as follows: 

Table 3  TOPS ASCII: File Data Structure 

 

The ascii files internal structure is as follows: 

 

year tmax_r1  tmin_r1  prcp_r1  vpd_r1  srad_r1  year  tmax_r2  

tmin_r2 ..           

1982 10.0      9.0     1.0      600.0    300.0   1982   10.0     

9.0    ..      

1983 11.0      9.5     2.0      700.0    400.0   1983   11.0     

9.5    ..     

 

4.3.  Methodology 

Our aim is to link a given cave annual per capita growth rate (1982-2006 time 

period) to the corresponding 145 potential climate covariates (same time period), 

then use forward selection procedure to select only highly associated climate 

covariates with the growth rate. Only the selected climate covariates are included 

in the linear model. In other words, we are interested to relate USFW population 

time series data to NASA TOPS climate data, then use the forward selection 

technique to choose the smallest set of climate covariate (maximum 4 variable) 

that best predict the growth rate for a  particular cave. 

 The link is based on the exponential model described in the third chapter. In fact, 

for each individual cave population, the annual per capita growth rate can be 

described as a response of the corresponding climate covariates.  
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Model 

Let : 

Nt :  Population size of cave (i) at year (t) 

Nt +1:  Population size of cave (i) at year (t+1) 

Then, for a given cave population (i), the annual per capita growth rate is taken to 

be a linear combination of the potential climate covariates. 

ln(Nt+1/Nt) = bo + b1 Cov1 +  b2 Cov2 + ...+ b145 Cov145 + Error 

Error ~ N(0,σ
2
) 

Cov1:  The first climate covariate 

Cov2:  The second climate covariate 

... 

Cov145: The last climate covariate 

Selecting Significant Climate Covariates using Forward Selection 

Given the outnumbered potential climate covariates suggested for each cave, 

forward selection algorithm is used to choose only statistically significant climate 

covariates. Forward selection is a data driven model approach. At each step, each 

climate covariate is tested for inclusion in the model. Thus, we begin by including 

the climate covariate most highly associated  with variation in the per capita 

growth rate, and continue adding less associated covariates until none of the 

remaining variables are  statistically "significant".  A sequence of F-tests is used 

to control the inclusion of variables into the linear model. Finally, the final list of 

climate covariate is confirmed by evaluating the model R2( the % of variation in 

the per capita growth rate explained by the chosen climate regressors), and C(p) 

(equivalent to AICC). The desired model has to have a high R2 and a low C(p). 
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For clarification, the following example illustrates the steps followed in model 

selection using forward selection procedure, applied to cave-1.  The example 

includes also a table of cave-1 data records for elucidation: 

1. Use USFW data to estimate the annual per capita growth rate for cave-

1 from 1982 to 2006. The per capita growth rate is denoted by Y and 

placed in the last table column 

2. Match the annual growth rate to the corresponding annual value of the 

145 climate covariates provided by NASA TOPS. The 145 covariates 

are labelled “x1” to “x145” to simplify SAS coding.  (see Annex 4 for 

key to all the covariate labels) 

3. Regress  Y on each of x1-x145, then  select only the statistically 

significant climate covariates to be included into the final model 

4. Verify the final list of  climate covariates incorporated in the model 

using the model R2 and C(p) 
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 Cave-1 Data Records 

Table 4  Cave 1 Data: USFWS and TOPS Data 

year  “x1” 

Tmax 

within 

16km 

radius  

(Aug-

Sep)  

“x2” 

Tmin  

within 

16km 

radius  

(Aug-

Sep)  

“x3” 

Srad  

within 

16km 

radius  

(Aug-

Sep)  

“x4” 

Vpd  

within 

16km 

radius  

(Aug-

Sep)  

“x5” 

Prcp  

within 

16km 

radius  

(Aug-

Sep)  

....  “x145” 

Prcp  

within 

460 km 

radius  

(May)  

Y 

Per 

CapitaGrowth  

Rate  

1982  23.449  11.677  4.565  664.95  352.684  ....  281.720  -0.279  

1983  27.092  14.399  3.071  909.02  374.929  ....  297.865  -0.388  

1984  23.994  11.224  2.237  662.94  378.806  ....  298.834  0.013  

1985  24.860  12.525  1.518  761.88  367.968  ....  305.268  0.025  

1986  23.372  11.088  2.694  686.43  363.244  .....  317.692  0.025  

1987  25.212  12.672  5.286  881.46  367.836  ....  293.490  -0.031  

1988  25.234  12.165  5.004  904.04  380.248  .....  313.284  -0.032  

....       .....    

4.4.  Analysis  

For each cave, the forward selection technique is used to link its per capita growth 

rate to a set of highly associated climate covariates.  The resulting model can be 

used to predict the cave annual growth rate base on the chosen set. This forward 
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selection technique is applied to each of the 167 caves population. The output 

shows that each cave population per capita growth rate is associated with a 

distinct set of climate covariates.  Such a result was anticipated due to the 

geographical dispersion of Indiana Bat population. To demonstrate the finding, 

the analysis of 4 caves from three different states is presented.   

4.4.1. The Four Caves Population Time Series Data (USFWS) 

Table 5   Population Time Series Data for Four Caves (Source USFWS) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.2. Fitting the Model for Each of the Four Caves 

Applying the forward selection procedure for each of the 4 caves, the final model 

has a higher R2 and lower C(p). 

 

 

 

 

Cave-1 Cave-2 Cave-3 Cave-4

Code 29 84 249 (255-260),262

State AR IN MO MO

1982 2785 11822 4350 1100

1983 2500 13475 3250 4250

1984 2500 750

1985 1850 16200 2250 1706

1986 2550 575

1987 1660 22990 2050 1131

1988 2500 400

1989 1400 28581 1575 674

1990 2300 1250 550

1991 1700 41854 1275 466

1992 1580 700 425

1993 1370 38386 700 359

1994 1450 525 165

1995 1280 41157 325 333

1996 1180 380 130

1997 1210 51365 260 270

1998 270 90

1999 1530 62464 155 237

2000 1070 0

2001 1045 48219 85 290

2002 1107 12

2003 729 50941 180 340

2004 614 0

2005 745 54325 180 350

2006 0

2007 938 77687 180 490
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Table 6   Forward Selection for Four Caves 

 Significant  

Covariates 

Coeff. 

Estimate 

Partial  

R
2 

Model 

R
2
 

C(p) 

Cave-1 Sum2_prcp_r4 

Fal1_srad_r1 

Fal1_vpd_r1 

 

-0.081 

-0.006 

 0.00034 

0.2269 

0.1260 

0.0983 

0.2269 

0.3529 

0.4512 

5.4038 

3.1016 

1.7456 

 

Cave-2 

 

Fal3_srad_r1 

Fal3_tmin_r1 

Sum1_vpd_r3 

-0.0016 

  0.0376 

  0.00023 

0.4090 

0.1154 

0.0815 

0.4090 

0.5244 

0.6059 

14.902

5 

9.8946 

Cave-3 

 

Sum3_tmin_r1 

Sum1_tmin_r1 

Sum4_prcp_r4 

-0.12061 

0.06661 

 0.14323 

0.1745 

0.1174 

0.1190 

0.1745 

0.2920 

0.4110 

9.6160 

7.2606 

4.8456 

Cave-4 

 

Win2_srad_r1 

Sum5_tmax_r4 

Sum3_tmin_r4 

0.10087 

-0.87346 

0.81122 

 

0.2665 

0.1142 

0.0726 

0.2665 

0.3807 

0.4533 

7.5388 

5.0952 

4.2694 

 

Comment 

For Cave 1, Sum2_prcp_r4 which is April precipitation within 460 km around 

the cave seems to be highly associated with variations in the cave per capita 

growth rate. The covariate explains 22 % of that variation. The covariate 

estimate is negative. It implies that Cave 1 population decreases with any 

increase in the precipitation. 

For Cave 2, the highly associated covariate with the per capita growth rate is 

Fal3_srad_r1. It is the solar radiation within 16 km radius from the given cave, 

in the time period 0815-1014.  The covariate explains 40 % of the variation in 



30 

 

per capita growth rate. The solar radiation seems to have a negative effect on 

the cave population growth rate. 

For Cave 3, summer temperature seems to be a key factor. Both minimum and 

maximum temperature within r1 and r3 in the time periods 0501-0630 and 

0401-0430 consecutively, seems to affect the growth rate. 

For Cave 4, solar radiation in winter time and temperature in summer time may 

be the key.  

To summarise, the four cave growths seem to be associated with different 

climate covariates.  Each cave selected covariates by the model explain 

between 40 and 60% of the variation in the per capita growth rate. The 

difference in climate covariates selected may be due to geographical and 

climate variation among the 4 caves that are located in 3 different states or 

simply to the forward selection technique limitation. Also the high number of 

covariates made it easy for the procedure to select different covariates across 

distinct caves. 
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4.4.3. Comparing Actual vs. Predicted Per Capita Growth Rates Based on 

the Selected Model for Each of the Four Caves 

 

One way of checking the goodness of fit of the chosen model for each cave 

population is plotting the actual per capita growth rate over time and the predicted 

per capita growth rate by the model.  The plot of the actual per capita growth rate 

over time for the time period 1982-2006 is in blue, while the predicted one is in 

red. 

Cave1  

Growth_Rate
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-0.3
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-0.1

0.0

0.1

0.2

0.3

0.4

0.5

time

1980 1990 2000 2010

Growth Rrate and Predicted Growth Rate Over Time_Location1 
Expected_Growth_Rate = 2.19934 + (-0.00598*Fal1_srad_r1) + (0.00034122 * Fal1_vpd_r1) + (-0.08166 * Sum2_prcp_r4)

Actual Growth Rate
Expected Growth Rate

 

Figure 12: Cave 1 - Growth Rate and Predicted Growth Rate over Time 
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Cave 2 

Growth_Rate
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0.10
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0.14
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time
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Growth Rrate and Predicted Growth Rate Over Time_Location2 
Expected_Growth_Rate = -0.21018  + (-0.00126*Fal3_srad_r1)  + ( 0.03939 * Fal3_tmin_r1 ) + (0.00025055* Sum1_vpd_r3)

Actual G. Rate
Expected G.Rate

 

Figure 13: Cave 2 - Growth Rate and Predicted Growth Rate over Time 
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Cave3

Growth_Rate
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0.2
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Growth Rrate and Predicted Growth Rate Over Time_Location3 
 Expected_Growth_Rate= 0.72697+(-0.12061*Sum3_tminr1)+(0.06661*Sum1_tmin_r1)+(0.14323*Su4_prcp_r4)

Actual G. Rate
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Figure 14: Cave 3 - Growth Rate and Predicted Growth Rate Over Time 
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Cave – 4 

Growth_Rate
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-4

-3

-2

-1

0

1

2

3

4

5
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7

time

1980 1990 2000 2010

Growth Rrate and Predicted Growth Rate Over Time(location_4)
  Expected_Growth_Rate= -0.85824+ (0.10087*Win2_srad_r1)  +  (-0.87346 * Sum5_tmax_r4) + (0.81122*Sum3_tmin_r4 )

Actual G. Rate
Expected G.Rate

 

Figure 15: Cave 4 - Growth Rate and Predicted Growth Rate over Time 

Comments on the 4 plots 

 The 4 charts show that the per capita growth rate predicted values and the actual 
values are very close 

 The graphs demonstrate that the predicted models based on the selected climate 
covariate are able to capture the variation trend of the actual population per 
capita growth rate over time. In fact, the 2 trends are similar over time. 

 Caution should be made about the models. The R2 values and the similarity 
between the predicted and the actual data may be due simply to over fitting the 
training data set. In the presence of 145 covariates, overfitting is a potential issue. 
Moreover, in the absence of an independent test set, it is difficult to test  the  
adequacy of the proposed model. 



35 

 

 

d- Summarizing the Output for all 167 Caves 

The Indiana Bat population is geographically dispersed, therefore it was 

anticipated that the associated climate covariates would vary from cave to cave. 

After checking for strongly associated covariates with individual caves, we are 

interested in covariates that are associated with most of the caves. The following 

table illustrates the most frequent covariate and their frequencies.  

Table 7  Most Frequent Climate Covariates 

Variable Total Count  

(number of caves where the 

variable occurs) 

x23 14 

x2 15 

x211 15 

x212 16 

x5 16 

x215 : Solar radiation  
within 16 km around the 
cave in winter (Jan-Feb) 

18 

x3: Precipitation within 
16 km around the cave in 
fall (Aug 15- Sep 14) 

 

21 

x213: Precipitation 
within 16km around the 
cave in winter (Jan-Feb) 

25 
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Comment  

 X213 is associated with 25 cave population growth rates out of 167 caves 
 X3 is associated with 21 cave population growth rates out of 167 caves 
 X215 is associated with 18 cave population growth rates out of 167 caves 

 

 

The frequency table shows that precipitation by the cave in both winter and fall 

are associated with a large number of cave growth rates. Also, it shows that solar 

radiation by the cave in winter is a climate factor that is associated with the 

growth rate. Other climate factors are associated with other caves. We noticed 

also, while running the frequency tables, that caves in a given geographical area 

tend to share similar climate factors. Therefore we decided to group the 

significant covariates by state.  

f-Frequency of Significant Climate Covariates by State 

Based on the above analysis, it seems that some significant covariates are more 

common in a particular geographical area than others. Therefore, grouping 

climate covariate by state is the next step. To illustrate the output, Missouri caves 

are used. Missouri has 19 caves. The other states frequency tables are in Annex 5.  

  

Table 8 Significant Climate Covariates for Missouri 

Variable Total Count 

x188 3 

x190 3 

x2 3 

x24 3 

x3 3 

x213 4 
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5. Chapter 5  

 Limitation of the Study 

While linking Indiana Bat Population to climate seems to shed some light on I-

Bat population dynamics between 1982 and 2007, it is imperative to emphasize 

the exploratory nature of the study. Indeed, the analysis suggests a possible 

association between Indiana bat population and local climate covariates. 

However, the weakness of the USFW data and the limitation of the applied 

forward selection technique do not allow establishing a definitive association.  

5.1.  Issues with USFW Data 

Due to limited surveying, Most of Indiana Bat population time series contain a 

limited number of time points, giving rise to short-time-series data, which 

imposes challenges for extracting meaningful information.  In fact the longest 

cave time series has 25 observations, while the shortest has 3 observations. 

Moreover, missing values constitute up to 50% of some of the time series. Loss of 

information due to artificially replacing missing values in most Indiana Bat caves 

population using linear interpolation may weaken any analysis conclusions. Also, 

surveying has been done in different caves by different samplers and using 

dissimilar techniques which may have introduced biases and measure errors.  

5.2.  Forward Selection Algorithm Limitation    

When we have to choose among a large pool of covariates (145) for a large 

number of population time series, the forward selection technique is a suitable 

technique. Like any other statistical tool, forward selection has it shortcoming. 

For instance, Harrell (2001) states that "Forward variable selection has been a 

very popular technique for many years, but if this procedure had just been 

proposed as a statistical method, it would most likely be rejected because it 

violates every principle of statistical estimation and hypothesis testing.". 
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One problem in forward selection is that it is based on sequential testing with 

specified entry (SLE) significance levels. A single selection step does not 

represent one hypothesis test but, rather, involves a large number of tests. The “F” 

-to-enter" statistics do not follow an “F” distribution as we may think(Draper, 

Guttman, and Kanemasu 1971). Hence, the SLE cannot be considered a 

probability.  

A second problem is that the order of parameter entry affects the selected model. 

This issue is particularly acute where the predictors are correlated (Grafen & 

Hails 2002 ) which is the case in our study. On the one hand, the 6 different 

climate covariates are correlated with each other, on the other hand, each 

covariate covering a specific radius is highly correlated with itself in the 3 other 

radii. If we are dealing with 145 covariates, depending on the order of entry, the 

algorithm can lead to different final models. Only one model will be presented as 

an answer to biologists, which may give the false impression that only this 

selected model explains the relationship between climate and a Indiana bat 

population dynamic for a specific cave. 

A third issue is the difficulty to interpret significance due to the correlation of 

explanatory climate covariates. Interpreting a single coefficient as the amount by 

which the mean response changes when a given covariate changes by one unit, 

holding other climate repressors fixed, is senseless. A specific climate covariate 

does not change in isolation. 

5.3.  The Research Question Limitation 

A precise hypothesis is the key element in any successful scientific research. Due 

to limited foreknowledge of the relationship between I- Bat population and 

climate, scarce literature about the topic and the absence of previous work on the 

subject, it was difficult to formulate a well-defined and focused research question.  

Instead, a more general and board-based one was proposed by the biologists:  

Among 145 possible climate covariates, what is the best set that can explain well 

each cave population time series data? Such an exploratory question can lead to 
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different answer for each cave. In fact, the final selected model is not the best 

model; rather, it is a good one among other possible fine models.  

Since, forward selection in our case is used for exploration, rather than for 

dressing a specific question, great caution should be used in interpretation the 

result  (Ramsey, 2002): 

 Biologists should investigate each cave final model to detect any 

biological significance or suggest adjustments.  

 The chosen explanatory variables are not necessary unique. They depend 

on the correlation between the 145 climate covariates and the order of 

entry into the selection process 

 Because of large number of covariates, a selected climate covariate may 

be a result of pure chance  

To summarise, despite modeling difficulties, this preliminary exploratory 

analysis is valuable in shedding light over a presumed association between 

Indiana bat population dynamics and climate. The study could be used as a 

platform to generate a more elaborated hypothesis such as: Is August average 

maximum temperature, within 80 km radius, around  cave „x” a  key factor in 

increasing the per capita growth rate for that cave, while controlling for the 

other 5 known possible confounders within the same radius? Moreover, a 

selected model for a cave “x” can be used to predict the per capita growth rate 

for cave “y” if the 2 caves are geographically close. This algorithm can test 

the goodness of the model, and therefore prove if the selected climate 

covariates are indeed associated with Indiana bat per capita growth rate for the 

2 caves. 
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6. Chapter 6   

 Summary 

6.1.  Discussion 

Key to understanding the in decline in Indiana bat population is climate.  Indiana 

bats are selective for their habitat. In winter, they hibernate in lime stone caves 

with very specific climatic conditions. Stable, low temperatures, favourable 

relative humidity, and optimal air flow conditions are all need to conserve fat 

reserves during hibernation. In summer, they roost in warm habitats, preferring 

forests that have old trees and sunny openings. They also prefer river shorelines 

for their reliable supply of insects. 

All attributes of the bat‟s hibernation and migration are mediated by ambient light 

regimes, temperature, and food resources or a combination of these factors. The 

bat‟s ability to build up energy stores, and therefore survive both the long 

hibernation and the long migration, depends on the interplay of these factors. Any 

small change in climate of the cave affects the bat‟s hibernation, and depletes its 

energy supplies, and thereby affecting its survival. Furthermore, any climatic 

change its summer habitat affects the roosting habits by altering its food supply or 

plant phenology. 

As exploratory analysis, plotting the per capita growth rate per county and 

comparing the per capita growth rate over time among nearby caves then linking 

each cave growth rate to climate covariates suggest that different climate 

covariates are affecting cluster of caves at different geographical area. In other 

words, the possible association between climate and Indiana bat population 

dynamic varies depending on the geographical area. For instance, while most 

caves in Minnesota are associated with winter precipitation within 16 km radius 

from the caves, most caves population in Ohio are associated with maximum 

temperature in spring within a large radius from the caves (460 km). The analysis 
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suggest that Indiana bat populations are associated with specific regional climate 

instead of global climate.  

The regional effect of climate may be due to global climate change. Indeed the 

impact of potential change might be affecting the Indiana bat ecosystem such as: 

the climate covariate, the landscape cover, rivers and lakes, forests in ways that 

varies from area to area.  For instance, it may be increasing the temperature in 

some region, while decreasing it others. While such hypothesis need deeper 

investigation, earlier biologist observations propose it. In fact, Clawson‟s 

summary reveals a clear division in population trends between northern regions of 

the states versus southern range. (2002). He documented that while the southern 

population has declined by 74% since 1960, the northern States population has 

been an overall increase in population of 50% over the same time.  It is probable 

that suitable temperature may be a key to understanding such regional disparities 

since the northern region are colder than the southern ones.   

This exploratory study suggests a possible relationship between climate and the 

Indiana bat population. Due to the weakness of the data, the large number of 

covariates and the limitation of forward selection tool,  the results are suggestive, 

not final.  

 As a part of monitoring effects of climate, it is particularly critical to continue to 

assemble information on climate covariate inside the cave and around it, as well 

as at known summer colonies of the species. Such precise information would be 

critical in further investigating causal relationships between climate and I-Bat 

population, especially for priority 1 and priority 2 caves. The 2 priority are the 

key stone in any recovery plans due to their large populations. Also, the specific 

data may help avoid controversies about any management plan that can arise as a 

result of decisions based on incomplete information. 

6.2.  Conclusion 

Bats are a fundamental component in the environment. Indiana bat have populated 

North America for centuries before man invade their habitat and spoil it. The 
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Indiana bat population has been decreasing dramatically in the past half a century 

before WNS immerged in 2006 and start driving the species to extinction. Our 

work is a step in exploring possible relationship between I-Bat population growth 

and climate before the appearance of WNS. 

The low quality of the I-Bat data required intense work with bat biologist to clean 

and input missing values. A useful, but smaller, data set was produced where the 

number of caves was reduced from 450 to 222, then later to 167 and the first of 

time series was 1982 instead of 1950.  

The adequate fit of the exponential growth model versus the logistic to the 222 

population time series suggested the absence of the density dependent 

mechanism. In fact, independently of their size, many caves population are 

decreasing. This result proposes the possibility of existence of external factors 

regulating I-Bat population growth, such as weather, habitat limitation or natural 

disaster. 

Plotting the growth rate for each population geographically, and over time 

reinforced the hypothesis of possible climate effect. First, the geographical 

plotting of caves growth rates shows spatially clustering patterns. Indeed, I-Bat 

population appear to be increasing in some areas while declining in others. 

Second, smoothing each cave growth rate reveals astonishing similarities in 

growths behaviour over time. In fact, closer the caves, more similar are the trends. 

To come to the point, the absence of density dependence, the spatial correlation of 

growth rates and the existence of similar patterns in the growth rate over time for 

adjacent caves suggest the idea of possible effect of climate on the bat population 

decline 

Finally, discussing previous results with USFW bat biologists and YERC 

ecologists leads us to the core of our analysis: Exploring the potential link 

between each cave growth rate and the climate. The analysis is done in the 

following steps:                                                                                      1- Defining 

which climate covariate may be affecting I-Bat survival 



43 

 

2- Depending on I-Bat annual cycle, define which radiuses around the cave  

3- Request the covariate from TOPS for each cave based on caves spatial 

coordinate  

4- Use forward selection to extract the associated climate covariate for a given 

cave then for a given geographical area 

To summarize, the study suggest a possible effect of local climate on Indiana bat 

population decline. However, the limitation of the study method does not permit 

establishing a solid and direct link. The study is exploratory and can be used as a 

base to more elaborate research.  

It should be noted that : 

 This preliminary results are  being interpreted by biologist  

 USFW and YERK biologists are reducing substantially the number  of  

covariates to 1 raduis and probably few seasons to deal with the many 

covariates issue 

 YERC is currently gathering data about the landscape change in the period 

time 1982-2006 in counties that have Indiana Bat caves. Such data will be 

incorporated in our model. 
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Annex 1 

Density Dependence Testing for 3 caves population 

We tested the density dependence mechanism for all the 167 caves. We choose 3 

caves to illustration the procedure 

Cave-1 

State: Missouri  

County: Franklin  

Data row number: 258 

Cave-1 Population Time Series 

Year Population size 

1975 3100 

1976 1867 

1977 1825 

1978 1972 

1979 3229 

1980 2247 

1981 1750 

1982 1100 

1983 1100 

1984 750 

1985 650 
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1986 575 

1987 525 

1988 400 

1989 400 

1990 350 

1991 300 

1992 275 

1993 225 

1994 165 

1995 190 

1996 130 

1997 95 

1998 90 

1999 80 

 

Comparing the 2 Fitted  Models (Exponential and Logistic) Graphically 
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Comment 

Comparing the 2 models graphically suggested no difference in the fitting quality. 

We may expect that the simplest model (exponential) is the best fit. We will 

quantify the difference in the next step by using bootstrapping. 

 

8000 Bootstraping Generated LRT’s Distribution Graph 
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Histogram of LRT
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P-value 

P-value= 0.74 

As it was expected from the graph, there is no evidence against the null 

hypothesis. Therefore, there is no evidence of an effect of the population density 

on the the growth rate in  

hibernacula 2. 

 

 Cave-2 

State: Kentucky  

County: Edmonson  

Data row number: 134 

Cave -2 Population Time Series 
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Year 

Population 

size 

Per Capita 

Growth 

Rate 

1983 15000 -0.11 

1985 13425 0.209 

1987 16550 -0.436 

1989 10700 -0.156 

1991 9150 0 

1993 9150 -0.239 

1995 7200 -0.021 

1997 7050 -0.234 

1999 5575 -0.418 

2001 3670 -0.019 

2003 3600 -0.149 

2005 3100 -0.19 

2007 2563 NA 

 

 

Comparing the 2 Fitted Models Graphically 
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Comment: 

The exponential model is overlapping literally with the more complicated model 

(logistic). Hens, we may expect the absence of the density dependence effect. 

Next, bootstrapping should confirm this result 

8000 Bootstraping Generated LRT’s Distribution Graph 
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Histogram of LRT
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P-value 

P-value= 0.99 

 The null hypothesis is not rejected as we expected from the graph. Bootstraping 

confirmed the exact result by a high P-value. Therefore, we conclude that there is 

not enough evidence for density dependence in this particular cave population. 

 

 

 

 

 

 

3. Cave-3 

State: Missouri  

County: Washington  
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Data row number: 298 

Year 

Population 

size 

1975 81800 

1977 59515 

1979 69387  

1981 72500 

1983 85700 

1985 77950 

1987 60650 

1989 38875 

1991 32125 

1993 22750 

1995 14850 

1997 11875 

1999 9100 

2001 8250 

2003 7775 

2005 6450 

2007 5100 
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Comparing the 2 Fitted Models Graphically 

               Population Size over Time         Growth Rate vs 

Population Size 

 

    

 

 

 

 

 

 

           Comparing the 2 Fitted Models 

 

 

 

 

 

 

Comment:  

P-value= 0.71 

It appears that the third cave population growth rate is also independent of the 

size of the population. 

For the 3 caves we: 

1. Fitted both exponential  and logistic growth model. 



55 

 

2. Used bootstraping technique to simulate the test statistic distribution under 

the null. 

3. Concluded, based on the P-value, that there is strong evidence  for the 

exponential. growth model and hens the absence of the effect of density 

dependence on the per capita growth rate. 

We conclude that these 3 populations may be heading to extinction since their 

growth rate is negative and sensity independent. 

For the total number of caves(222 caves) 

1. Checked density- independence for all the 222 caves  

2. Same result as above 
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Annex 2 

The per capita growth rate estimate per county  

Hibernaculum     b0 bo Average For Multi-Hybernaculum Countiessigma

0.5896    0.1913

0.3018 0.7413

0.6796 0.490709873 0.5449

-0.494 0.3385

0.0493 0.2174

0.0675 0.4654

0.1899 0.9688

0.1686 0.3458

0.1644 0.1757
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Annex 3 
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Annex 4 

To facilitate the programming macro, we denoted the covariates by x1-x127. 

These nomination correspond to the 5 main covariates consecutively:  tmax, tmin, 

prcp,vpd, srad for the following seasons and radii: 

Climate variables key is presented in the following excel file:  

Table 9 Covariates Labels Key 

x190 winter1 dates? 16km tmax

x191 winter1 dates? 16km tmin

x192 winter1 dates? 16km prcp

x193 winter1 dates? 16km vpd

x194 winter1 dates? 16km srad

x211 winter2 1/1-2/28 16km tmax

x212 winter2 1/1-2/28 16km tmin

x213 winter2 1/1-2/28 16km prcp

x214 winter2 1/1-2/28 16km vpd

x215 winter2 1/1-2/28 16km srad

 

 



66 

 

Annex 5 

Table  10.  Covariates Frequency for West Virginia - 18 Caves 

 

Variable Total Count 

x180 2 

x192 2 

x2 2 

x212 2 

x215 2 

x22 2 

x24 2 

x3 2 

x65 2 

x87 2 

x5 4 
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Table  11 Covariates Frequency for Virginia - 10 Caves 

 

Variable Total Counts 

x167 2 

x213 2 

x215 2 

x3 2 

 

 

Table 12  Covariates Frequency for Tennessee - 9 Caves  

 

 

 

 

 

 

 

 

Table 13  Covariates Frequency for Pennsylvania - 3 Caves 

 

Variable Total Count 

x139 2 

x142 2 

x23 2 

x24 2 

x75 2 
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Variable Total Count 

X98 2 

 

Table 14  Covariates Frequency for Ohio - 2 Caves 

 

Variable Total Count 

x121 2 

 

Table 15  Covariates Frequency for New York - 7 Caves 

 

Variable Total Count 

x102 2 

x124 2 

x23 2 

 

 

 

 

 

 

 

 

 

 

Table 16  Covariates Frequency for Kentucky - 53 Caves 
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Variable Total Count 

x192 5 

x211 5 

x212 5 

x214 5 

x22 5 

x23 5 

x3 6 

x45 6 

x2 7 

x5 8 

x215 9 

x213 12 

 

 

 

 

 

 

 

 

 

Table 17  Covariates Frequency for Indiana – 14 Caves 
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Variable Total Count 

x103 2 

x122 2 

x123 2 

x137 2 

x191 2 

x211 2 

x25 2 

x45 2 

x46 2 

x87 2 

x66 3 

 

 

 

 

 

 

 

 

 

 

 

Table 18  Covariates Frequency for Illinois - 9 Caves 
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Variable Total Count 

x98 1 

x1 2 

x150 2 

x180 2 

x188 2 

x44 2 

x80 2 

x82 2 

x211 3 

x3 3 

x67 3 
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Table 19  Covariates Frequency for Arkansas - 13 Caves. 

Variable Total Count 

x130 2 

x163 2 

x181 2 

x212 2 

x25 2 

x78 2 

x124 3 

 


