
The following paper was published in:

Logica Yearbook 2021, Sedlár, I. (ed.), College Publications, London,
UK, 2022, pp. 19–36.



On the Origins of Gaggle Theory
KATALIN BIMBÓ1

Abstract: The generalized Galois logic approach (i.e., gaggle theory), in-
troduced by Dunn, provides a systematic way to define semantics for many
substructural logics in the form of a relational representation of their Lin-
denbaum algebras. We provide an overview of some conceptual antecedents
that we think that likely contributed to the creation of gaggle theory. In our
reconstruction, we rely on Dunn’s publications and some materials deposited
in the Archives of Indiana University, Bloomington, IN, U.S.A.

Keywords: intuitionistic logic, Meyer–Routley semantics, modal logic, pos-
sible world semantics, relevance logic, residuation, R-mingle, tense logic

1 Introduction

Dunn published a series of papers in the 1990s, in which he presented gaggle
theory. The name “gaggle” intends to serve as a convenient pronunciation
of the acronym “gGl,” which abbreviates generalized Galois logic. Gaggle
theory is, perhaps, better viewed as an approach to substructural and inten-
sional logics rather than a motley collection of definitions and theorems. As a
first approximation, gaggle theory aims to bring under a common theoretical
umbrella the ways in which concrete set-theoretical semantics are defined for
a range of logics that exceed 2-valued logic (TV) in some way. A slightly
more precise description would mention two steps in this process. First, the
Lindenbaum algebra of a logic is formed; second, that algebra is represented
using a relational structure in the sense of algebraic representation theory.
Moreover, gaggle theory does not simply amount to an aggregation of set-
theoretic constructions for various logics. It generalizes existing semantics
and furnishes new semantics for logics in a systematic way based on the
algebraic properties of the logics.

1I am grateful to Vít Punčochář and Igor Sedlár, the organizers of Logica 2021, for asking
me to give an invited talk, the content of which overlaps that of this paper. I would like to
thank the audience at Logica 2021 and an anonymous referee for their questions and comments.
The research reported in this paper is partially funded by an Insight Grant (#435–2019–0331)
awarded by the Social Sciences and Humanities Research Council of Canada.
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This paper traces the emergence of gaggle theory in Dunn’s work to
the late 1970s, and points at some set-theoretical semantics that probably
contributed to the formulation of the theory. The semantics we mention are—
in the order of their appearance—Kripke-style semantics for modal and tense
logics, BAO’s, Kripke’s semantics for intuitionistic logic, Dunn’s semantics
for R-mingle (RM) and the Meyer–Routley semantics for relevance logics.

2 Some semantics as motivations for gaggle theory

2.1 Semantics for some normal modal logics

Kripke’s semantics for some normal modal logics was first described in
Kripke (1959), and then in Kripke (1963). This set-theoretical semantics is
widely known now, and it was surely known in the 1960s by Dunn whose
Ph.D. thesis supervisor was Nuel D. Belnap. Alan R. Anderson, Belnap and
Kripke corresponded in the late 1950s. Indeed, Belnap pointed out to Kripke
the decidability problem of E→ in a letter dated May 31st, 1959, which
Kripke solved within a few months.2

Let us consider the modal logic S4 to illustrate an idea and a puzzlement.3

The language of S4 contains a denumerable sequence of sentence letters
〈pi〉i∈ω. Formulas are generated by ¬ (negation), ⊃ (conditional) and �
(necessity) as usual, and A,B, C, . . . range over formulas. An axiomatic
system for S4 may be defined by adding to an axiomatization of 2-valued
logic (with detachment as a rule) the following axioms and rule

(K) �(A⊃ B)⊃ (�A⊃�B) (T) �A⊃A (4) �A⊃��A
(nec) ` A implies ` �A

The notions of a proof and a theorem are defined as usual. We limit our
considerations to this simple notion of consequence in this example.

A possible world semantics for S4 is based on a structure, which is a
pre-ordered (or possibly, weakly partially ordered) non-empty set of worlds,
F = 〈W,R〉. (R ⊆W ×W , and it is a reflexive and transitive (and possibly,
anti-symmetric) relation.) A model M adds a valuation v that assigns a set
of worlds to each p, that is, v(p) ⊆ W . The meaning of w ∈ v(p) is that p

2Belnap’s letter is preserved within Kripke’s correspondence in the Kripke Archives;
cf. Bimbó (2020).

3We harmonize the notation in our presentation of ideas from several semantics, somewhat
along the lines of Bimbó and Dunn (2008). Accordingly, we might not follow the notation or
the terminology of the publications we refer to.
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is true in the world w. The interpretation of all the formulas is given by an
extension of v, which we denote by ~ � (omitting decorations to indicate the
model, which is fixed by the context). To start with, ~p� = {w : w ∈ v(p) }.
1. ~¬A� =W \ ~A� 2. ~A⊃ B� = (W \ ~A�) ∪ ~B�
3. ~�A� = {w : ∀w′(Rww′ ⇒ w′ ∈ ~A�) }

The notions of A being true at w (i.e., w ∈ ~A�), A being valid in M
(∀ww ∈ ~A�), and A being valid in a class of models C (∀M ∈ C, A is
valid in M) are defined as usual. We may write �F A, as customary, to
indicate validity in C, where C is the class of models on F.

Theorem 1 For any formula A, `S4 A iff �F A, where F is as above.

The proof of this soundness and completeness theorem is fairly routine,
and there are multiple published versions of it. Instead of spelling out
the details, we note that the definition of ♦ (possibility) is straightforward.
¬�¬A expresses that A is possible, because it is not that not-A is necessary.
Having worked through the definition of the truth of ¬�¬A step by step, we
obtain the following clause.
4. ~♦A� = {w : ∃w′(Rww′ ∧ w′ ∈ ~A�) }

This means that having both � and ♦ when they are definable via ¬ is
unproblematic in the semantics of normal modal logic—in the sense that a
single accessibility relation is sufficient to model these connectives. We may
note that 3 and 4 are neatly in line with Leibnitz’s readings of modalities
through ∀ and ∃, although he seems to have assumed that all worlds are
accessible from any world (cf. Look (2016)).

Tense logics, more precisely some versions of them, introduce modality-
like operators for reasoning about the past and the future. A minimal tense
logic, denoted here by Kt, has two ♦-type connectives, namely, P (sometime
in the past) and F (sometime in the future). Their �-like duals are H (always
in the past) and G (always in the future). The tense axioms are two instances
of (K) and two instances of (4) with H and G, respectively, and a pair of
axioms (B↓) and (B↑) that tie the future and the past together, so to speak.
These axioms are analogs of the axiom (B) A⊃�♦A, which is a theorem
of the normal modal logics B and S5.
(B↓) PGA⊃A (B↑) FHA⊃A

Finally, the (nec) rule is stipulated for both G and H. The (4) axioms will
force the transitivity of the accessibility relation moving into the future and
moving into the past. However, what is interesting from our point of view
is that (B↓) and (B↑) create a very close relationship between RG and RH.
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In particular, RG = RH̆, that is, the accessibility relations are each other’s
converses. Then, we may omit the subscripts and state the satisfiability
conditions for G and H—reusing a previous clause for �—as follows.

5. ~GA� = {w : ∀w′(Rww′ ⇒ w′ ∈ ~A�) }
6. ~HA� = {w : ∀w′(Rw′w ⇒ w′ ∈ ~A�) }

Rww′ means informally that w′ is in the future of w. If we swap the
arguments as in Rw′w, then w′ is in the past of w.4 From the point of view
of gaggle theory, it is interesting that G and H are not definable from each
other in the context of Kt, yet they are modeled from the same accessibility
relation. However, F and H as well as P and G are each other’s residuals.
For example, for P and G, this means that PA ⊃ B is a theorem of Kt iff
A⊃ GB is a theorem.

2.2 Boolean algebras with operators

Boolean algebras are important beyond their basic role as the class of algebras
into which the Lindenbaum algebra of TV falls. For instance, elementary
probability theory adds a countably additive normal function on the event
space and relation algebras add further operations such as relational com-
position and converse. Jónsson and Tarski (1951–52) introduced a lesser
representation for relation algebras as part of a general representation theory
for BAO’s. The preferred representation of a relation algebra is by binary
relations, whereas their focus is on representing the operations on binary
relations (the elements of a relation algebra) by relations of appropriate (i.e.,
one larger) arity. For example, the composition of a pair of relations S1 and
S2, usually denoted by S1;S2, is represented by a three-place relation, R3

; .

Definition 1 A = 〈A;−,∨, oni

i∈I〉 is a Boolean algebra with operators (a
BAO) when the equations (a1)–(a5i) hold (∀i ∈ I and ∀j 1 ≤ j ≤ ni). (⊥
abbreviates −(a ∨ − a), and oi(~a, [ ]j) indicates that the jth argument has
been singled out, while ~a fills the other argument places. a, b, c, . . . ∈ A.)

(a1) a ∨ b = b ∨ a (a2) (a ∨ b) ∨ c = a ∨ (b ∨ c)
(a3) −(− a ∨ − b) ∨ −(− a ∨ −− b) = a

(a4i) oi(~a, [b ∨ c]j) = oi(~a, [b]j) ∨ oi(~a, [c]j)
(a5i) oi(~a, [⊥]j) = ⊥

4We stress that these are intuitive renderings only. For instance, Rww reads as w is in its
own future and in its own past.
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Any operation satisfying (a4i) is additive in each argument, and with (a5i)
added, oi is normal. Of course, in concrete cases, the operators of a BAO
may interact with each other or may have further properties. For a concrete
example, we take an operator ◦ that is binary and satisfies two inequations
(a6) (a ◦ b) ◦ c ≤ a ◦ (b ◦ c) and (a7) (a ◦ b) ◦ c ≤ b ◦ (a ◦ c) (which could
be written as equations in a BAO). We denote this sample BAO as A◦.

Definition 2 A structure is F = 〈W,R3
◦〉, and a model is M = 〈W,R3

◦, v〉,
where W 6= ∅, R3

◦ ⊆W 3, v(a) ⊆W , v(a) = ~a� and (f1)–(m3) hold.

(f1) ∀w1, w2, w3, w4

(
∃w5 (Rw1w2w5 ∧Rw5w3w4)⇒

∃w5 (Rw2w3w5 ∧Rw1w5w4)
)

(f2) ∀w1, w2, w3, w4

(
∃w5 (Rw1w2w5 ∧Rw5w3w4)⇒

∃w5 (Rw1w3w5 ∧Rw2w5w4)
)

5

(m1) ~− a� =W \ ~a� (m2) ~a ∨ b� = ~a� ∪ ~b�
(m3) ~a ◦ b� = {w3 : ∃w1, w2 (Rw1w2w3 ∧ w1 ∈ ~a� ∧ w2 ∈ ~b�) }

What we have so far will only guarantee the existence of a homomorphic
representation for A◦. Thus, we accumulate some further notions.

Definition 3 Let A◦ = 〈A;−,∨, ◦〉 be the BAO above. U ⊆ A is an
ultrafilter if (i) a, b ∈ U iff a ∧ b ∈ U (i.e., U is a filter) and (ii) − a ∈
U iff a /∈ U . The set of ultrafilters is denoted by U. (iii) R3

◦u1u2u3 iff
∀a1, a2((a1 ∈ u1 ∧ a2 ∈ u2)⇒ a1 ◦ a2 ∈ u3) (where the u’s are from U).

We only state the following lemmas and a theorem, which are well known,
and their proofs are easy or may be found in various publications.

Lemma 1 For any a, b ∈ A \ {⊥} in a BAO, if a � b, then there are
ua, ub ∈ U such that a ∈ ua, b /∈ ua and b ∈ ub.

Lemma 2 Let R′◦ be defined as R◦ above, with u1, u2 ∈ F (where F is
the set of proper filters). If R′◦u1u2u3 holds, then there are u′1, u

′
2 such that

u1 ⊆ u′1, u2 ⊆ u′2 and R◦u′1u
′
2u3 (where the u′’s are from U).

Lemma 3 If A◦ is a BAO as above, then R◦ satisfies (f1) and (f2).

Theorem 2 Let A◦ = 〈A;−,∨, ◦〉 be a BAO as above, and let h(a) =
{U ∈ U : a ∈ U }. h[A] is a concrete BAO with the operations defined as
in (m1)–(m3) that is isomorphic to A◦.

5We could have written (f1) and (f2) using usual notation for composition of R3. (f1) would
turn into R(w1w2)w3w4 ⇒ Rw1(w2w3)w4 with the universal closure tacitly assumed.
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This isomorphic representation theorem may be viewed as a completeness
theorem for a logic that has a binary fusion connective of a certain kind on the
basis of TV. The homomorphic representation theorem similarly parallels
the soundness theorem for a logic.

The limitation to operators may appear a drastic restriction even if the
operators may have further properties. But it is not, because BA’s are overly
abundant in definable operations. For example, ♦ which is a unary operator
in the Lindenbaum algebra of a normal modal logic, allows one to define �,
but also ¬♦ (impossible) and ♦¬ (possibly not). Obviously, every operation
that can be expressed by a contextual definition in a BAO falls under the
scope of Theorem 2. However, we have seen in §2.1 that there are operators
(or ♦-like connectives) that cannot be defined from each other on the basis of
a BA, yet they can be modeled from one relation by switching arguments.
BAO’s are an archetypical example, where a wide range of operations can
be captured by a sole representation theorem. We note that all the operations
have distribution types and respect the bounds too—in the terminology of
gaggle theory. (Definitions of these and related notions for different kinds
of gaggles may be found in Bimbó and Dunn (2008). See e.g., Definitions
1.3.2, 1.3.18, 2.4.1 and 4.3.13.) At the same time, BAO’s are an example
where the potential interactions of operations (e.g., through residuation) are
not fully exploited in the representation, and in this sense, BAO’s are not
completely general.

2.3 Semantics for intuitionistic logic

Intuitionistic logic (J) differs from normal modal logics and BAO’s, because
its Lindenbaum algebra does not have a BA reduct, or in other words, J
is not simply an extension of TV. We only mention one of the several
interpretations that have been introduced for J, namely, the semantics that
originated in Kripke (1965). We assume that the reader is familiar with some
formalization of propositional J—as an axiomatic system, a sequent calculus,
a tableau system or such.

A frame (a structure) for J is F = 〈U,v〉, where U 6= ∅, v ⊆ U2 and
v is a weak partial order. A model is M = 〈U,v, v〉, where v(p) = X and
X ∈ P(U)↑. (X ∈ P(U)↑ iff u′ ∈ X , whenever u v u′ and u ∈ X .) That
is, a propositional variable is mapped by v into a cone of situations. Formulas
are interpreted by extending v according to clauses (j1)–(j5).

(j1) ~A ∧ B� = ~A� ∩ ~B� (j2) ~A ∨ B� = ~A� ∪ ~B�
(j3) ~A → B� = {u : ∀u′(u v u′ ⇒ (u′ /∈ ~A� ∨ u′ ∈ ~B�)) }
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(j4) ~¬A� = {u : ∀u′(u v u′ ⇒ u′ /∈ ~A�) } (j5) ~⊥� = ∅
A is true at u in M if u ∈ ~A�; A is true in M, when U ⊆ ~A�. Lastly,

A is valid, if it is true in all models on all frames for J.
The relationship between ¬A andA → ⊥ is quite clear semantically (and

it matches the syntactic definition of ¬A). The crucial clause is (j3), which
views→J almost as ⊃, but only in the set of situations that are accessible
from the current situation. To facilitate comparison with (j3), we may rewrite
2, the condition for ⊃, as ~A ⊃ B� = {w : w /∈ ~A� ∨ w ∈ ~B� }. Of
course, it is well known that →J is very close to ⊃. The implicational
theorems of TV that go beyond the implicational theorems of J (after the
→J’s are rewritten into ⊃’s) are not principal simple type schemas of proper
combinators.6 Or we may note that the sequent calculus LJ results from LK
by an uncomplicated structural restriction.

Nevertheless, we may observe that the pattern in the possible world
semantics for normal modal logics, which is explicit and general in the repre-
sentation of BAO’s is infringed upon by (j3). We have a binary sentential
connective →J, but we do not have a ternary relation. Dunn (1995) pro-
vided a semantics for J along the lines of gaggle theory without taking into
consideration potential simplifications. Before recalling how to move back
and forth between the two types of semantics, we state the soundness and
completeness theorem for the semantics outlined.

Theorem 3 A formula A is a theorem of J iff A is valid on all models.

We will not give a proof of this theorem here; rather, we sketch the
components of the canonical model that would be used for showing the “if”
direction of the claim; they also figure into Dunn’s completeness theorem.

The Lindenbaum algebra of J is a residuated distributive lattice with
bottom, and it does not need to be a BA. Accordingly, ultrafilters (or
equivalently maximally consistent sets of sentences) cannot be used in the
representation of such a lattice (or in a model of J). The canonical frame
is Fc = 〈P,⊆〉, where P is the set of (proper) prime filters. A prime
filter P satisfies (i) from Definition 3, (iv) a, b ∈ P iff a ∨ b ∈ P and
(v) P 6= A. ⊆ is set inclusion (the prototypical partial order), which may
hold between distinct prime filters. The canonical valuation is defined as
v(p) = {P ∈ P : [ p ] ∈ P }. We can decipher all the P’s by saying that v(p)
is the set of prime filters, in which the equivalence class of p is an element.
The following lemmas are helpful in the proof of the completeness theorem.

6This observation of H. B. Curry is well known; see, e.g., Hindley (1997), Hindley and
Seldin (2008) and Bimbó (2012).
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Lemma 4 For any [A], [B] in the Lindenbaum algebra of J, if [B] 6= [⊥]
and A → B is not a theorem of J, then there are Pa, Pb ∈ P such that
[A] ∈ Pa, [B] /∈ Pa and [B] ∈ Pb. Therefore, Pb * Pa.

Lemma 5 For any formula A and prime filter P , P ∈ ~A� iff [A] ∈ P .

We briefly recall from Dunn (1995) how a ternary relational semantics
for J is obtained. A Heyting algebra (exemplified by the algebra of J) is
residuated, where → is a residual (indeed, the residual) of ∧. The truth
condition for→—using a ternary relation—is (j6), and that for ∧ is (j7).

(j6) ~A → B� = {u : ∀u′, u′′((Ruu′u′′ ∧ u′ ∈ ~A�)⇒ u′′ ∈ ~B�) }
(j7) ~A ∧ B� = {u′′ : ∃u, u′(Ruu′u′′ ∧ u ∈ ~A� ∧ u′ ∈ ~B�) }

The latter clause suggests that u′′ should be a superset of both u and u′

on the analogy of [a), [b) ⊆ [a ∧ b). Thus, the ternary relation is defined
as Ruu′u′′ iff u v u′′ and u′ v u′′. Looking at ∧ once more, the identity
element is [>] (i.e., [¬⊥]), which is an element of every prime filter. Thus,
a ternary relational frame for J is F = 〈U,v, I, R〉, where U 6= ∅, I = U
and Ruu′u′′ is defined from the pre-order v as above. It is easy to see that
the truth conditions (j1) and (j7) are equivalent. We quickly run through the
proof that (j3) and (j6) are equivalent too. If u ∈ ~A → B�, and alsoRuu′u′′

and u′ ∈ ~A�, then by u′ v u′′, u′′ ∈ ~A� follows, because propositions are
cones of situations. But u v u′′ and u′′ ∈ ~A� imply, by (j3), that u′′ ∈ ~B�,
that is, (j6) holds. Now, if we assume u ∈ ~A → B�, and u v u′ and
u′ ∈ ~A�, then using u′ v u′, we have that Ruu′u′, and by (j6), u′ ∈ ~B�.

The ternary modeling may seem only to complicate things. However, that
→ is the residual of conjunction ∧ explains the properties of→, and in turn,
the properties of R. The residuation between ∧ and→ also implies that all
the theorems are equivalent, hence, any and all of them are typified by >.

2.4 Semantics for R-mingle

The logic RM is obtained from R by adding the mingle axiom (cf. Anderson,
Belnap, and Dunn (1992, §R)). RM was introduced by Dunn adapting a
suggestion of S. McCall (see Dunn (2021)). This logic is often called semi-
relevant because it has theorems of the formA → B, whereA is the negation
of a theorem and B is a theorem. Two instances of a theorem with disjoint
sets of propositional variables easily let us create a theorem with implication
as its main connective, but no variable partaking in both the antecedent and
the consequent. If the variable sharing property is taken to be the hallmark
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of a relevance logic, then RM falls short, because it only satisfies the weak
relevance principle (cf. Anderson and Belnap (1975, §29.4)). However, R-
mingle has many pleasant features; in particular, it has a linearly ordered
infinite characteristic matrix. The only (non-trivial) linearly ordered BA
is 2, the two-element Boolean algebra, and residuated distributive lattices
with a least element do not need to be linearly ordered. The semantics that
Dunn designed for RM toward the end of the 1960s (cf. Dunn (1976b))
seems to follow closely Kripke’s terminology and notation; however, those
similarities turn out to be quite superficial. Some of the novel properties
of Dunn’s semantics include: (1) The semantic uses a generated model (in
the contemporary sense of the term in the modal logic literature). (2) The
semantics is 3-valued, moreover, the three truth values are {T }, {F } and
{T, F }, that is, the non-empty subsets of the “usual” set of truth values. (3)
The semantic uses a distinguished situation—like Kripke’s semantics, but the
distinguished situation cannot be an arbitrary situation—unlike in Kripke’s
semantics. (4) The frame is linearly ordered, which is not stipulated in the
semantics for normal modal logics in general or in the semantics for J.

Definition 4 A frame for RM is F = 〈U, ι,≤〉, where ι ∈ U , ≤ ⊆ U2 and
≤ is reflexive, transitive and connected. For ease of use, ≤ is stipulated to be
anti-symmetric with ι being the least element in U . A model is M = 〈U, ι,≤,
v〉, where v : P×U −→ {{T}, {F}, {T, F} } satisfying hereditariness, that
is, (h) if u ≤ u′, then v(p, u) ⊆ v(p, u′). v is extended to compound
formulas according to (1)–(4) (below).

The condition (h) is stipulated for p ∈ P (i.e., propositional variables). To
contrast this with the condition in a model for J, we express the former from
page 24 in a way similar to (h). Thus, (hJ) says that if u v u′ then u ∈ v(p)
implies u′ ∈ v(p), or in other words, if u v u′ then v′(p, u) = {T } implies
v′(p, u′) = {T } (where using v′, we transformed v into a binary function in
an obvious way). In the semantics of J, {T, F } cannot be the value for any p
in any situation; hence, v′(p, u′) = {T, F } in the consequent is not possible.
Essentially for the same reason, v′(p, u′) = {F } is not stipulated when
u v u′ and v′(p, u) = {F }. To put it concisely, for J, the perpetuation of
truth is required along the accessibility relation, whereas for RM both truth
and falsity are upheld moving forward along the linear order.

The view of the three truth values as sets allows for a straightforward
extension of v as follows.

(1) T ∈ v(∼A, u) iff F ∈ v(A, u);
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F ∈ v(∼A, u) iff T ∈ v(A, u);
(2) T ∈ v(A ∧ B, u) iff T ∈ v(A, u) and T ∈ v(B, u);

F ∈ v(A ∧ B, u) iff F ∈ v(A, u) or F ∈ v(B, u);
(3) T ∈ v(A ∨ B, u) iff T ∈ v(A, u) or T ∈ v(B, u);

F ∈ v(A ∨ B, u) iff F ∈ v(A, u) and F ∈ v(B, u);
(4) T ∈ v(A → B, u) iff ∀u′(u ≤ u′ ⇒

(T ∈ v(A, u′)⇒ T ∈ v(B, u′).∧ .F ∈ v(B, u′)⇒ F ∈ v(A, u′)));
F ∈ v(A → B, u) iff T /∈ v(A → B, u) or

T ∈ v(A, u) and F ∈ v(B, u).

First, we note that the T and F clauses are independent from each other,
and even in the case of the extensional connectives (∼, ∧ and ∨), neither
line may be omitted. Second, the T clause for→ starts similarly to the→
clause in J, but here the falsity of the consequent must imply the falsity of
the antecedent too. It may be also notable that only the T condition for→
can shift the evaluation to a new situation.

The truth of A at a situation u means that the value of the formula is
{T } or {T, F }, that is, T ∈ v(A, u). Truth in a model means truth at ι, and
validity obtains when a formula is true in all models. Dunn (1976b) proved
the following soundness and completeness theorems.

Theorem 4 If A is a theorem of RM, then A is valid, and vice versa.

We outline the canonical model and point out some of its properties.
The canonical frame is defined with respect to a prime theory T0 (or in the
Lindenbaum algebra, a prime filter) that contains every theorem of RM.
Uc is the set of all prime theories that extend T0 (and contain all RM
theorems). T0 is ιc and ≤c is ⊆. Obviously, 〈Uc, ιc,≤c〉 is a frame for RM.
(Connectedness follows from the chain theorem (A → B) ∨ (B → A).)
The canonical valuation is defined by a conjunctive condition, namely, T ∈
vc(p, u) iff p ∈ u, and F ∈ vc(p, u) iff ∼p ∈ u.

The selection of a prime theory ιc that contains all the theorems of RM
is motivated by the definition of the frame. But it also shows that in RM—as
in relevance logics typically—not all theorems are equal, which means that
the top element of the Lindenbaum algebra of the logic (if there is one) does
not stand for (or implies) all theorems.

Now, we turn to sketching another semantics for RM, which is a step
closer to what would result from an application of gaggle theory, and more
in line with the Meyer–Routley semantics (though we diverge from the
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usual presentation of the latter). A frame is F = 〈U, ι,R, ∗〉, where ι ∈ U ,
∗ : U −→ U , u∗∗ = u, Ru′us⇒ Ru′s∗u∗ and R satisfies (f3)–(f8).

(f3) R(uu′)ss′ ⇔ Ru′(us)s′; (f4) R(uu′)ss′ ⇒ R(us)u′s′;
(f5) Rιuu; (f6) (Rιu′u ∧Rιs′s ∧Rιu′′s′′ ∧Rusu′′)⇒ Ru′s′s′′;
(f7) Russ′ ⇒ R(us)ss′; (f8) Ruu′s⇒ (Rιus ∨Rιu′s).

A pre-order relation can be recovered as u v u′ iff Rιuu′. Then the last
condition (which “matches” the mingle axiom) may be written as Ruu′s⇒
(u v s ∨ u′ v s). We note that taking a single logical situation, namely, ι is
justified by the fact that the Lindenbaum algebra of RM is linearly ordered.
A model is obtained by adding v, which maps p into a cone of situations
(with respect to v). It should be immediately clear that this semantics is
2-valued, because we have not mentioned any truth values. v is extended
to compound formulas by intersection and union for ∧ and ∨, respectively.
A → B is evaluated as in (j6) (with→ taken to be the implication of RM).
The remaining clauses are (m4) and (m5).
(m4) ~ t � = [ ι) (m5) ~∼A� = {u : u∗ /∈ ~A� }

It seems fair to say that Dunn’s 3-valued semantics is more elegant. The
frame is a kind of structure that is quite familiar to us; e.g., it is exemplified
by N (which of course, brings additional properties with itself). The truth
and falsity conditions for ∼, ∧ and ∨ surely look familiar. The conditions for
→ are ingenious, but straightforward—except perhaps, when the implication
is assigned F , because it’s not true. (Dunn expressed a certain dissatisfaction
with this disjunct and called it the “escape clause.”) On the other hand, the
ternary relational semantics treats RM as yet another intensional logic. The
multiple conditions on R stem from the fact that RM extends R; only the
last condition is specific to mingle (over R). Indeed, Meyer, as soon as he
specified the conditions for R, commented with vexation on their number
and somewhat complicated character. However, this complexity is the price
for approximating ⊃ as much as relevantly possible (and perhaps, it is a
price for generality too). The flexibility of the ternary relational semantics for
various relevance logics such as B, T, E and R was undoubtedly an impetus
for Dunn’s formulation of gaggle theory.

2.5 Semantics for relevance logics

The 3-valued semantics for RM does not seem to be easily adaptable to
some other relevance logics, especially, to the main relevance logics we have

29



Katalin Bimbó

just mentioned (i.e., B, T, E and R) that do not contain the mingle axiom.7

Another way to think about a concrete semantics is by having operations on
a set of objects.8 However, the latter idea does not work for the semantics of
relevance logics just as it did not work for the semantics of normal modal
logics; the natural operation on prime filters does not yield a prime filter.

A semantics that uses a ternary relation for the modeling of→ and ◦ was
worked out in detail and published by Routley and Meyer (1972a, 1972b,
1973). A leftover from the operational approach is the modeling of ∼ from
an operation (cf. Dunn (1966, 1986)). A different combination of operations
and relations is used in the semantics in Fine (1974), which in effect, turns
out to be equivalent to the Meyer–Routley semantics.9

The formulation of the ternary relational semantics seems to have pro-
pelled the creation of gaggle theory. Dunn and Meyer both worked at Indiana
University (in Bloomington, IN), when Meyer—inspired by an idea in Rout-
ley’s big manuscript—worked out the relational semantics for R◦ in a form
that is very close to its later presentations (cf. Bimbó, Dunn, and Ferenz
(2018)). Logics in which there is a conjunction and disjunction that distribute
over each other are well behaved (from the point of view of their semantics),
and the main relevance logics (in their full vocabulary) are among those (just
as J). The first notion of a gaggle introduced in Dunn (1991) incorporates a
distributive lattice as the living quarters for a family of operations, and has
been called a distributive gaggle afterward (cf. Bimbó and Dunn (2008)). To
illustrate both the Meyer–Routley semantics and a concrete (multi-)gaggle,
we will use T◦t and its algebra. An axiomatization of ticket entailment may
be found in Anderson et al. (1992, §R); we assume familiarity with this logic.

Definition 5 A GT gaggle is an algebra 〈A;∧,∨,∼, t, ◦,→〉 of similarity
type 〈2, 2, 1, 0, 2, 2〉, where (g1)–(g6) hold.

(g1) 〈A;∧,∨,∼〉 is a De Morgan lattice;
(g2) 〈A;∧,∨, t, ◦,→〉 is a lattice ordered groupoid (with ◦) with left

identity (t ◦ a = a) and with right residual (a ◦ b ≤ c iff a ≤ b→ c);
(g3) (a ◦ b) ◦ c ≤ a ◦ (b ◦ c); (g4) (a ◦ b) ◦ c ≤ b ◦ (a ◦ c);
(g5) a ◦ b ≤ (a ◦ b) ◦ b; (g6) a ◦ b ≤ c iff a ◦ ∼c ≤ ∼b.
7Some adaptations work well though. See Dunn (1976a) and Bimbó and Dunn (in press).
8Bimbó and Dunn (2017) provides an overview of some of the early work toward a set-

theoretical semantics for relevance logics by several logicians, e.g., Urquhart (1972). We will
not repeat that history here; rather, we focus on the Meyer–Routley semantics.

9Semantics that are duals of the Meyer–Routley semantics were defined for T and E in
Bimbó (2007) and Bimbó (2009); the latter also includes a topological characterization.
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We called GT a gaggle, but it is really two gaggles and a constant inte-
grated into one algebra. The constant t is connected to the ◦ gaggle (which
includes→) and this interacts with the∼ gaggle (which is a component of the
De Morgan lattice). For any A that is a theorem of T◦t, the formula t→ A
is provable. Thus, we may think of GT as a matrix, with D = { a : t ≤ a }.
In the modeling of ◦ and→, we follow the Meyer–Routley semantics, but
for t and ∼ we make some modifications.

Definition 6 A frame for GT is F = 〈U,v, I, R◦, R∼〉, where I 6= ∅,
I ⊆ U , v is a preorder on U , R◦ ⊆ U3, R∼ ⊆ U2 and (f1)–(f7) also hold.

(f1) (R◦uu′u′′∧s v u∧s′ v u′∧u′′ v s′′)⇒ R◦ss′s′′ (i.e.,R◦↓↓↑);
(f2) u v u′ ⇔ ∃ι ∈ I R◦ιuu′; I ∈ P(U)↑; R∼↑↑;
(f3) ∃u (¬R∼uu′ ∧ ∀u′′(¬R∼u′′u⇒ u′′ v u′));
(f4) (R◦uu′u′′ ∧ ¬R∼su′′)⇒ ∃s′, s′′(R◦uss′ ∧ ¬R∼s′′s′ ∧ u′ v s′′);
(f5) ¬R∼u′u′′ ⇒ ∃s, s′, s′′ (R◦u′′ss′ ∧ u′ v s ∧ u′ v s′′ ∧ ¬R∼s′′s′);
(f6) R◦(uu′)ss′ ⇒ R◦u(u′s)s′; R◦(uu′)ss′ ⇒ R◦u′(us)s′;
(f7) R◦uu′s⇒ R◦(uu′)u′s.

The frame is defined to have a pre-order, which makes this frame some-
what similar to that for J. But now v is definable from R◦ and I , rather than
R being definable fromv as in the case of J. This is explained by the fact that
in T◦t implication is not a residual of ∧, and v is linked to provable implica-
tions. The ternary relation in the semantics of J seemed almost like a vapid
complication, though we made some pertinent observations using R. Here
the use of a binary relation R∼ instead of a unary operation is a similar intri-
cacy; the operation could be denoted by ∗, as at the end of §2.4. If we let u∗

to be s, thenR∗us is definable as ¬R∼us∧¬∃s′ (s 6= s′∧¬R∼us′∧s v s′).
It so happens that in the Lindenbaum algebra of T◦t such an s always exists,
moreover, it is unique; these properties support the use of an operation. (The
inequations in (g3) and (g4) are the previous (a6) and (a7) in §2.4, and the
two conditions in (f6) are the same as (f1) and (f2) in Definition 2.)

Definition 7 A model for GT is M = 〈U,v, I, R◦, R∼, v〉, where the
frame is as above and v : P −→ P(U)↑, which is extended to all formulas
according to (m1)–(m7).

(m1) ~p� = v(p) (m2) ~ t � = {u : ∃ι ∈ I ι v u }
(m3) ~A ∧ B� = ~A� ∩ ~B� (m4) ~A ∨ B� = ~A� ∪ ~B�
(m5) ~∼A� = {u : ∀u′(u′ ∈ ~A�⇒ R∼u′u) }
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(m6) ~A ◦ B� = {u′′ : ∃u, u′(R◦uu′u′′ ∧ u ∈ ~A� ∧ u′ ∈ ~B�) }
(m7) ~B → C� = {u : ∀u′, u′′((R◦uu′u′′ ∧ u′ ∈ ~B�)⇒ u′′ ∈ ~C�) }

A formula A is true at the situation u (in some M), when u ∈ ~A�.
The truth of A in a model means that ∀ι ∈ I ι ∈ ~A�, that is, ~ t � ⊆ ~A�.
In Dunn’s three-valued semantics for RM, stipulating that ι was the least
element of U had the effect of limiting U to logical situations, which is
similar to requiring U = I in the case of J. However, here we did not assume
that all situations are logical, neither have we stated that I is the principal
cone generated by a particular logical situation. (In some presentations of
the Meyer–Routley semantics occasionally one distinguished situation is
selected, which is denoted by 0; we do not follow that track here.) Validity
means truth in every model of a frame for GT. The proof of the following is
easy and we do not include the details here.

Lemma 6 (Hereditary property) For all formulas A, ~A� ∈ P(U)↑.

This lemma means that truth is retained along the v relation (which is
not the accessibility relation as in J, only a special part of it). The import of
the lemma is that propositions (i.e., interpretations of formulas) are located
among the upward closed sets of situations. To this extent the lemma is
similar to the hereditariness lemma in the semantics of J.

What we have so far suffices for soundness. For completeness, we outline
the definition of the canonical frame and that of the canonical model.

Definition 8 The canonical frame for GT is Fc = 〈Uc,⊆, Ic, R◦, R∼〉,
where Uc = P, Ic = {P ∈ P : [ t ) ⊆ P } and R∼, R◦ are as in (c1)–(c2).

(c1) R∼uu′ ⇔ ∃a (a ∈ u ∧ ∼a ∈ u′)
(c2) R◦uu′u′′ ⇔ ∀a, b ((a ∈ u ∧ b ∈ u′)⇒ a ◦ b ∈ u′′)

The canonical model for GT is Mc = 〈Fc, vc〉, where Fc is the canonical
frame and vc([A]) = {P ∈ P : [A] ∈ P }.

To get to Theorem 5, it is convenient to prove certain claims as lemmas,
which we only list here. First, the components of Fc are of the declared types,
however, it is far from obvious that they have all the required properties,
especially, that R◦ and R∼ satisfy (f3)–(f7). In establishing the properties of
R∼ and R◦, it is useful to prove versions of the squeeze lemma. The latter
then may be utilized in the proof that vc is a homomorphism. The canonical
situations are prime filters, hence, it is sufficient to appeal to a well-known
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result from lattice theory about separation to see that vc is injective, that is,
an isomorphism. We simply state adequacy. The proofs may be found or can
be pieced together from results in some of the publications cited.

Theorem 5 For any formula A, `T◦tA iff on any frame F for GT, �FA.

3 Concluding remarks

I attempted to reconstruct the conceptual components that likely influenced
the formulation of gaggle theory. The sources for the reconstruction were
Dunn’s publications related to gaggle theory and a more comprehensive view
of Dunn’s research including his other publications and research talks.

Dunn (1966) algebraized Rt (and E too). Although much of the research
in relevance logics was guided by Anderson (1963) at the time, with a focus
on proving (propositional) R and E decidable, Dunn formulated the first
relational semantics for an intensional logic (other than modal logics and J) in
the late 1960s (published as Dunn (1976b, 1976c)). He continued to publish
on algebraic semantics and results for intensional logics (propositional and
quantified) as well as on other aspects of intensional logics. However, after
the invention of the Meyer–Routley semantics for relevance logics, Dunn
published Dunn (1976d) and half a decade later Dunn (1982), which are
alternative relational semantics for some logics.

Dunn gave over 200 research talks in his career; it seems that the first
gaggle talk was delivered in Canada, in 1979, at the University of Victoria
that was entitled “Generalized Representation and Completeness Results.”
In 1983, Dunn toured Australia, and gave several talks on relevance logic
and other topics. The following year he gave a talk at the Carnegie–Mellon
University, which mentions Galois in its title “A Uniform Treatment of Impli-
cation and Negation through Residuation and Galois Connections.” Already
in 1983, in a research proposal, Dunn stated that most of the representation
results for a range of logics had been obtained.

In sum, the emergence of Generalized Galois Logics (or gaggle theory)
can be safely dated to about a decade or so earlier than the publication of
Dunn (1991), which started a series of papers on gaggle theory. The delay can
be attributed to the abundance of publications by Dunn during this period—
such as a series of papers on relevant predication, a co-authored book, a
co-edited book, a chapter on relevance logic in a handbook (which became a
standard reading in the area), and work on another co-authored book. Dunn
also co-authored a short paper Dunn and Hellman (1986) on probability
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theory during the decade. Somewhat surprisingly, this paper—which is not a
paper in logic per se, rather an application of logic—turned out to be Dunn’s
most widely known and read publication at the time. He received requests for
offprints of this paper from all over the world and from people way outside
of academia.

Gaggle theory can be seen as an overarching approach to propositional
intensional logics that starts with an axiomatic calculus or some other proof
system, then moves through algebraization to a set-theoretic semantics. Gen-
eralized Galois logics, including its development in Dunn and Hardegree
(2001), Bimbó and Dunn (2008) and many other publications, proved to be
exceptionally fruitful. However, it is worth mentioning that gaggle theory is
a relatively modest part of Dunn’s overall logical research.
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