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" ABSTRACT

The three;dimensional local 1nduction problem is
considered for various source configurations The
electromagnetic field solutions for layered conductars are
developed and solutions for’iateral]y inhomogeneous
conductivity sthuctures are found. A gomparison of
theoretical and analogue solutions is made. The effeci of
the source on perturbation and 1nduction arrows -1s
| 1nvestigated R - ' N

Three source field and.conductivity stfhcture
combinations are considered. The first model of a
uniform source above a reSistive anomaly approximates an
island in the deep ocean for Geomagnetic Bay type
‘disturbances. The second model consists of an L-shaped
highly resistive sulfide ore body embedded in an average .
continental conductivity configuration exc1ted by a two-
dimensjona], non-dnifonm source which approximates an w
ionosphehic'electrojet cunrent A horizontal dipole above
a square ore body embedded in poor]y conducting rock ' S
constitutes the third model. Profiies of the e]ectromag-s

netic field quantities showing sourcé effects are et

3

presented . \*\J

A comparison of theoretical calculations W1th
. %
analogue model results is made for uniform<two~dimen51ona1
non-unifarm and a horizontal dipole sources over a three-,

) v_ . ‘ S 5
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////dimensional dnomaly. The anPmaly dh the geophysical scale
‘/// repreSents an ore body of lower conduct1v1ty embedded in

| pgor]y conduct1ng rock. It is found that the theoretical
sources used well repreyeni the ana1dgue modgllsources ’
constructéd. In spite of the limitations. in the twé
meghods the results indicate a goOd‘degree of compatability
betkeen the two methods for studxing these 5rob]ems and
they can be used together to learn more about the effects

produced by such anomaligs. Also, by using two approachés

7/
z

‘simultaneously, é better underStanding of the characteris-
tics of each approach is*obtained.

From the theoretical calculations the transfer
functions and relfted perturbation and induction arrows
associated with the electromagnetic field solutions are

" computed. The results show that little source effect is
noted on the induction and perturbation arrows for the
odels chosen. The arrows can be ‘used in the traditional
anner to indicate the flow of anomalous Cufrenfs and
point in the irection.oficonductivity inhomogeneities.
The perturbation.arrows do not well represent anomalous
current vectors. Hawever, by combining the p and q arrow
vectorially the spatial e;tent of the conductivity anomaly
can be outlined. The induction and perturbation arrows
are stable for a variety of anoma]ous and normal f1e1d

calculations w1th the perturbation arrow exhibiting the

vi
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most stability. For small angular spread in -the source
field‘polarization skewing of the induction arrows is

produced.

w
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CHAPTER 1
INTRODUCTION

1.1 General

“External sources which consist of time varying
curfen; systems of finite extent flowjng‘in tﬁe ionbsphere
and above produce magnetic fields that induce electric ch—
rents in the earth's interior. These currents in turn
prbduce magnetic and e]éctric‘fields which contribute to the
total electromagnetic fie}d at the surface of the earth.
The induced currents are perturbed by'variations in the“con-
ductivity structure of the earth and’consequentf&"the
1e£trbmagnetic fields are modified. The analysis

4at'ons can yield an estimate of the electrical

thesis the global and local problems in
nduction are discussed and the three d1men-
sional local perturbat1on prob]em is considered together with
varioyS methods for its solution. The mathematical formula-
tibns 0f the ‘electromagnetic field solutions for unifdrm,
"general two-dimensional non-uniform and horizontal dipole
sources over a semi—{nfinite layered earth with a plane

~ boundary are presented. Using these solutions as the boundary
conditions for an iferative method the solutions over a

-

laterally non-uniform earth are obtained. A comparison of



2

theoretically calculated electromagnetic field profiles
across a three-dimensional anomaly with the prof)]es of an
equivalent analogue model for a uniform, a two-dimensional,
non-uniform and a horizonta] dipole source is made, Perturba-
tion and 1nduct1on arrows are theoretically computed for a
variety of source configurations, frequenc1es and three-

dimensional anomalous conductivity structures.

1.2 Global ‘and Local Problems

The mathematical problems encountered in the study
.of ‘earth currents are of two types. The first type involves
inducing fields of global d1mensions with averaged conducti-
vities for the earth as a whole; these are known as global
problems. The second type may or may not involve inducing
fields of global dtmensions but the conduct1v1ty values are

def1n1te1y qocal values; these are known as local problems.

1.2.1 Global Problems

“In the first grodp of problems, since we are
interested in large regions having dimensions comparable to
those of the earth, spherical polar coordinetes are nor-
mally used. The electrical conduct1v1ty o is then treated
ds a smoothed function of the coordinates (r,6,¢0) at any
point within the earth. This function will not take into
~adcount any 1oca1'variations in conductivity (which may be

eonsiderable) but only Targe scale variations of suitably



3
defined average o for any region: For this problem the
currents induced in any earth model will depend on the nature
and distribution ot the induciég field. The first step in
solving such a problem is to express the inducing field in
terms of spheri’cal harmonics (assumed given). ”The induction
effect of each harmonic is then studjed'separate]y and the
result obtained from the summation of all the harmonics. The
basic theory and method of solution for:this‘typé-of problem

is straightforward, though the calculation may be difficult

and laborious.
e

1.2.2 Methods for Solving Global Problems

' One global problem which has Seen extensively
studied is that of the 1nduct1on,by avary1ng magnetic field.
of electric currents in a spher1ca1 conductor in which the
conductivity is a function of r, the distance from the centgr
of the é;rth. Lamb4(1883) ‘treated the case for the currenté
induced in a spheri&a] conductor by variation of an external
magnetic potentiai. Schuster (1889) applied the method of
spherical harmonic analysis, as shown possible by Gauss (1839),
to the field of the dai]y magnetic‘variation and found that
.the maJor part is of external origin but that a part is a]so
produced from w1th1n the earth. The induced part of the
maénet1c field was attributed to electric currents in the

earth induced by the external magnetic field which he consi-

~dered to be primary. In cooperation with HlLamb,Schuster(1889)



WA

4

concluded that the conductivity of the earth was not uniform
but that the earth con51sts of 1ayers with the inner layers
more highly conductlng Chapman (1918) analyzed the average

field of magnetic storms and showed that the magnet1cf1eldls

,ma1n]y ofyexternal origin with a minor induced part, further

coﬁfirming the work of Schuster (1889). Chapman (1919)
divided the earth into’two concentric layérs and gave an
éstimate of the conductivity and size of the uniform inner
core and outer poorly conducting layer. The conductivity
of the core was determined to be 3.6 «x 10'2 mho/m and the

thickness of e su}rounding non-conducting layer was 250 km.

Chapman and Whitehead (1922) showed tha} the ocean would have

an appreciablébeffect on' the induced field. Price (1930,
1931) extended Lamb's solution tovaperiodic fields and Chadﬁan
and Price (1930) then used this extension to dfscuss the
induced part of the field of magnetic storms. The more
general case when o is any function of r was studied by
Lahiri and Price (1939). They developed both formulae and
methods of calculation for both per1od1c and aper1od1c f1elds

when dea]1ng with any d1str1but1on of conduct1v1ty within the

sphere r=a that can be expressed in the form:
o = oo(qa/r) for r < qa < a and ¢ = 0 for r > qé (1.1)

where 0,>. 4 and r are constants.
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| Lahiri and Price (1939) applied their results using
the data of Chapman (1919) to investigate the earth's conduc-
tivity structure to a depth of appr;ximate]y 800 km. Their
results showed that thé earth's conductivity was}unfform and

5 té.ldamho/m down to a depth of 700 km where

of a value of 10~
the conductivity increased to a value of at least 1 mho/m or
more. _ _

Using data from the Second Polar vea} (1932-1933)
Hasagawa and Ota (1948) and Benkova (1940) independently de-
termined that}in Chapman's'original mode] the non-conductiqg
layer must be 400 km thick and that the conductivity of tqg
core must be 5 x 107 mho/m. Rikitake (1950),using the same
data, determined that the earth is composed of a non-conduc-
ting layer of thickness 400 km, a conducting'mantle of
conductivity 5.0 X 1071 mho/m and-a core whose conduét%vity

must be at least an order of magnitude above thaf of the

mantle. \ 2

Due to skin depth consiaera&ions, the maximum
depth of penetration for induced’éurrents is rough?y 800-
100 km, the conduttivity distribution of the mantle, ;hiEh
extends by seismological evidence from a depth of 700
km to 2900 km, is. undetermined below a depth of 100" km.
Below this depth ‘the lqnger period geomagnetic secular
variation must bé used. McDonald (1957) chose a powér
Taw for the conductivity distribution of the'maﬁtlevbe-

Tow 1000 km (conductivities greater than 10 mho/m) and a
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compendium of Lahiri and Price (1939) c%nductivity estimates
for depth§ less than 860 km (conductivities less than 1 mho/m) .
The intermediate values were Qmoothed exfr&po]atioﬁs from the
inner and outerlportions‘nf the mantle: Yukutake (19559 also
used the secular variation to estimate the con%jcti?f;y pro-
fi.le of the earth. » _ _ - "

1

Cantwell (1960) gave a more detaileT conductivity
. \)
magnetotelluric

|

structure of the upper mantle on the basis‘of
results. A rapid rise in conduttivity neér'a depth of 80 km

2

to a value in excess of 10°° mho/m was inferred by Cantwell

(1960). The Cantwell (1960) and McDonald (1957) curves merge

at 800 km in depth. ‘

With the introduction\of'electronic co;puters,
tihe-series‘ana]ysig ofllarge data sefidpgcame possfbﬁe;»
’ Eckhafdt et a].'(19é3) studied geomagnetic variations of
long period and found strong spéctral peaks at periods of
six months and harmoniCS'df 27 days. The déta fitted the
McDonald (1957) profi]e.quite well to depths of approxi-
mately 1000 km. Banks (1969{ éxtendedvthis meéhod further
so that not only the specfra] péqys but also the continuu?f
of the geomaﬁnetﬁc spectrum could be used as wel].. In
_ fhe‘mode1 that was 6btained.a steep rise in the coqduc- :
tivity took place at 400 km instead of 700 km as in the
McDonald (1957) and the Lahiri and Ppice (19?9) mg<als .
Further analysis by Banks (1972) found that,fhe depth

of the rise of conductivity is much closer to 700 km. -

®
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The variation of o with 6 and ¢ within the crust

is o¥ importance in both global and local problems. For

example, the éonductivity of the oceans is several ordets of

¢

#magnitude greater than that of the continents. Since the
: ~u

oceans are a thin surface layer on the earth of relatively

high conductiv{}y, the problem can be modelled in terms of

electromagnetic induttion in thin sheets. Most models consist
o;{ﬁﬁfn plene or spherical sheets. The conductivity of the .
underlyfng earth represented by a parallel conducting plane
or spherical shell of suitable conductivity at a suitable
depth. When the effects of the ocean as a whole are con-
sidered the plane is infinite or the spherical shell ie
complete. When coastlines are being s4udied the plate 13
finite and in the spherical case a spher1ca1 cap is used. If.

it is desired to model the actual conductivity distribution

of the real oceans of the earth numerical methodSmustbe used.

The earliest work onvinduction in thin sheets was

done by Maxwell (1891) for uniform plane and spherical sheets.

L

Lamb (1887a,b) studied non-uniform circd]ar disks. More
recently Price (1949) developed a general theory of 1nduct1on
in’ th1n Sheets and shells and obtained boundary cond1t1ons at
the surface of the sheet in terms of the non-uniform distri-
but1on of conductivity and the scalar magnetic potentials of

the induced and inducing fields. Price also proposed two

iterative methods for solving the problem. In the first

4
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~Bailey (1970) proved that af the e]ectromagnet)c response of .
the earth is known for all frequencies in a spat1a1 distribu-
tion represented by a s1ng]e spherical harmonic the conduc- -
tivity distr{bution of tne earth can be uniquely determined
hgseuming spherical symmetry for an exact invereion method.
Parker (1970) appl]ed the BackusG11bert(l97O)inverskm'meﬂod to
Banks; - 1969 data and obtalned s1gn1f1cant1y greater surface
conduct1v1ty values than Banks (1969), Parker (1972) obtained
‘bounds on the conduct1v1ty in the mantle andkt%sted the

s

observat1ona1 data for self cons1stency Jady (1974) applied
an e1genva1ue ‘approach to the 1nvers1on pnob]emandshowedthat
the top 600 Kkm of‘mant]e is of re]at1ve]y 1ow conductivity
with a-rise in conduct1v1ty tak1ng p]ace somewhere between
600 .and 950 km in depth. Using the data of Ma11n (1973),
Jady (1975) determ1ned that low conductivity is requ1red to
a depth of 650 k'm pe]ow the surface. '* - ' 4
Apparent]y there have been no sucéessfu] attempts
to obtain so]ut1ons (anaiyt;ca1/or numehﬁca]) for the induc-‘
tion of currents in a spherical conductor, when theégynduc-'
t1v1ty is not on]y a function ofﬂr but a]so depends upon ¢
or ¢ or both. It seems reasonab]e that,~except_withjn the
outermost ZOO'km of the‘eanth; the variation df the conduc-
,tivity-with,r'is far more important than any dependence upon
6 or 9. | ‘

1



method self induction and mutual induction are ignored in
the starting approx1mat1on which is an apprOpr1ate approxima-.
t1on for a low frequency inducing f1e]d The second method
appropriate to a h1gh frequency 1nduc1ng f1e1d assumes. tha¢
the vertical component of the induced field. is equal and
opposite to that of the indncing field in the starting
approximation whicn is equivalent to treating the tn.n
conductor as perfectly conducting initially. Bullard and
Parker (1970) dsed the first nethod to investigate the 24-
"_hour component of the Sq field in the actual oceans.
’Difficu]tieé are encountered in the second method when
conductivity'éiscontinuﬁties exist (Hobbs, 1971). However
a solution in terms of.an.asymtopiq series,in ‘inverse powers
of the freQuency_ggn ne obtained insome cases (Price and
Aghour, 1974), Huténn, Kendall and Malin(1972) have reformu-
- p

. v .
“lated the first method of Price (1949) so that hj
! ,} R

“problems.can be solved and proved that for

h frequency
Eymmetric
problems the solution converges. For -on— 's.nmef ic prob-
41em§ no pnnof exists, . however, the metfod has been success-
”fully app11ed by Hewson- Browne (1973) Hewson-Browne et al.
(1973) app11ed a modified version of the method to the
problem of induction in a thin strip of finite tonductivity
and obtained a soTution.which agréeS|With Parker, (1968).
Parkinson (1975) investigated the possibiiitiéé,of combining

the two methods. The first method was used in the ocean

7
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“regions and the second method was used over the continents.
Although d1ffe}ent iteration algor1thms were used the conver-
‘gence rate of the problem was still 1nsuff1c1ent to give
useful results.

Exact solutions can be obtained for only a few
conductivity‘distributions which include perfect]y‘condukting
finite shéets. Smythe (1968) and Lamb (1945)”solved the ‘case
of an infinfte strip of uniform width and a circular disk fo}
a uniform inducing field using elliptic dnd oblate spheroidal
coordinates. For more complex inducing fields, Ashour (]965a)
so]ved the problem exact]y w1th a system of dual integral
equations. The solution for‘spherlcal caps subjected to
symmetric ihducing fields has been obtained by Collin (1961)
and-Ashour (1965a,b). Induction in a highly cohducting
.hemisbherical shell was considered by Doss and Ashour (1971)
with thg‘purpbse of determining the range of frequencies for -
which an ocean of g]obé] dimensions acts as a perfect conducj
tor except near the coast line. The non-symmetric iﬁduciﬁg-‘
field case can be reduced to‘é;syStem of infegra] equations
(Ashour, 1965a,b). Weideft (1971) 5tudied a,two—dimensiona1 -
electromagmetic induction problem for twoadjacent half-sheets
of different conductivity. The prob}em was solved by contour
integration and showed that the current and tangential

magnetic field component are both finite and discontinuous

at the boundary of the conduct1v1ty d1scont1nu1ty - A similar
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result was obtained by Parker (1968) for 1nduct1on in an
infinite strip by a para11e1 lTine current. For sheets in the
form of a surface of revolution and when the conductivity
and inducing field héye axjﬁ] symmetry, the induction problem
can be solved in terﬁs of a Fredholm integral éqdation
(Ashour, 1950). Roden (1964) consjdered the case of a
uniformly conducting strip with an infinite]y conducting
plane beneath and reduced the problem to a Fredholm equation.
A sheet in which‘thelconductivity decreases near the edge to
zero represents a more realistic model of the oceans. Ashouf
(1971a,wéonsidered a~cifcu1ar diskK, an 1nfinite uniform sfrip
and a hemispherica] shell with such a conduct1v1ty contrast
Exact so]ut1ons for perfectly conduct1ng c]osed
sheets includes the work .of Ashour andﬁPr1ce (1948)'f0r
induction in a spﬁeriéa]'shell forhafhon—uniform conductivity
and inducing fie]d,-Price (1949)'f§r 1ﬁducti0n in a plane
sheet with harmonically varying conduct1v1ty and Ashour and
Ferraro(1964) for applications to the 1onosphere for ani-
sotroPlc conduct1v1ty distributions. More- recent]y Hobbs
and Price (1970) hhve derived surface 1ntegra1 formulae for
expressing any one field quantity in terms of any other for
currents f]owing in concentric sphgricaT'Surfaces. This
hethod is very useful. for determininé the vertical magnefic
field component. Hobbs (1971) successfully applied these
| formulae to a hemispheric shell representing'the Pacific

Ocean surrounding a perfectly conducting sphere.

J

7
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" For very slowly varying magnetic fields it is not
possible to treat the crust)as a thin shg]l by itsélf,

because of the mutual induction between the crust and conduc-
ting mfnt]e below. Cox (1960),. firstvpointed out that the
conducting mantle should be taken into account when modelling
e]ectromagnetic effects over the ocean. Rikitake (1961)
inve§tigated the problem with two-dimensional’anaTog models
and é theoretical mathematical model of a cohductor cpvered
with a conducting sheet. BU]]aEd and Parker (]970) proposed
a model for the conductivity profile of thé oceans jn_which a
cdnducting mantle was overlain by 5 non—conductiqg crust-
mént]e which in turn was covered with a layer of conducting
sediments.of variable thickness. CoXx (1971) asgumed thaf'the

oceah and its sediments were bounded by perfect insulators

which prevented current leakage into the conducting mantle.

1.2.3 Local Pré@]eﬁs -

| " In the local brob]em 1imited regibnSAQf the
earth are concérned and variations of'conductivity
within distances of the order of - 100 km are’
"studied. For this the spher1c1ty of the earth can be
»ignyredvand the earth treatedAaS'emther a semi-infinite or
thick plate cqhducfbr having a non-uniform distribution of
" conductivity. The inducing field in this pfob]em is often
- of global dimensions and thefefofe effectively uniform over

the region-of interest. However, a knowledge of the inddcing
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field and surrounding ground conductivity in the immediate
vicinity of a particular station are insufficient to define
the strength of the induced currents in that-fegion, as
pointed out by Price (1965). The induced current; are affec-
ted by the distribution of the entire inducinglfield and by
‘the average properties of the cohductor over a Eegion of
corresponding dimensions. The entire induced current system
w%]] contributeto the field at a particular station, but the
largest contribution comes frbm induced currents in the
immediate neighbdrhdod. The important pofnt-is that not only
the local properties, but the properties of the conductor asa.
whoHe‘determine the strength of the 1hduced currents in the
.region of interest. | | . |

|  The uniformity of the inducing field for‘the; lTogal
problem has sometimes.been taken to imp]y'that the actual
distribﬁtion'of the induﬁing field céh be ignored when
ca]cu]atihg the induced currents and fields in the region of
'fntereét. This_as§Umption_is implicit in the theory of the
”magnetotéf]uric méthod" of coﬁductiVity sounding of Cagniard
(1953). For models in which the conductivity is a function of

depth only, Cagniard defines the "apparent resistivity" as

o Xy
Pa T T o .l——l (1.2)
‘ | J'i
~in which w is the angular frequency of the horizontal, -

orfhogona] e]ectromdgnetic field components Ex and Hy ﬁ"d‘ﬂo,

t
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is the magnetic permeabili}y of freelspace. The model is

. assumed to be horizontally :tratified in the x- and y-
directions extending t0"infini£y. The forhula is derTVed
from the skin depth effect for uniform half spacefconductors
excited by a]ternafing currents. As such no source field
effects are taken info accounf. As w decreases the currents

penetrate deeper into the conductor and the manner in which

Pa varies gives an\indicatiod of the»conductivity profile.

The accuracy of the profile is dependent on the particular
geophysicai sjtuation being investigated. For moderately
uniform ter;ain and depths the method ié convenient and valu-
ab{e. At greater depth even for horizonia]]y stratified
strata it may be necessary to include consideration of the
source field as d1scussed by Wait (1954) and Price (1962)
Price (1964) po1nts out that the var1at1on fields
shou]d first be separated into parts of externa] and internal

origin and examined separately in order to objectively

interpret 1oca1 patterns of geomagnet1c variations. The

—

qnoma]ous patterns in the f1e1ds of the induced currents are
produced by non-uniform distributionsvof'conductiVity in the
earth, since the external inducing field can be assumed to be
of gfre]atively simple foem and varies only slightly over the
M}anoﬁaloUs area except near the equatorial aed auroral elec-
trojets.'The}e seems ' to be no reason to suggest that the

-

ionosphere has anomalous properties over a specific geogra-“

i
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phic region even though a small effect on the (anisotronic)
conduct1v1ty of the ionosphere might be produced by a strdng
perturbation of the earth's magnetic field. Even if a
cons1derab1e disturbance is caused in the ionosphere by
such Tocal anomalies it is doubtfu] that the surface va]ues
of the magnet1c field wou]d be great]y affected Also qf
the external field is found to reflect to a smal] extent the
anoma]ous magnet1c field d1str1but1on this can be attributed

to the general mutual induction between the earth and the

donosphere.

Once the externa1 field and its induced current

system is known, the IPca] problem can be reduced to examin-

ing the local redistribution of a gigven ‘average system of

induced currents caused by local inhomogeneities of conduc-

tivity. However, it is not necessar1]y a simple prob]em of

red1str1but1on of steady current flow, since. the currents are

time vary1ng and therefore a sk1n effect will be encountered

~The mathematical problems which must be cons1dered are ‘those-

re]at1ng to the disturbance of skin effect d1str1but1ons ofa
current system rather than actual electromagnetic induction
prob]ems in which the distribution of the induced currents
for a non- un1form conductor is determ1ned directly from a

given inducing f1e1d Th1s-prob1em is described by Price

(1964) as follows:
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"Using cartesian coordinates (x,y,z)

with the z axis vertically downwards, a non-
uniform conductor occupies the half-space

z > 0. Near the origin the conductivity is
a function (not necessarily continuous) of
- (x,y,z), but at great distances from the
origin it is a function of z only. A given
alternating e.m.f. impels currents néar the
surface of the conductor. The problem is
to determine the distribution and surface
field of these currents."

The given e.m.f. is the electric field arisiﬁg from he
varyingAmagnetic field and is controlled by the proper-ies
of the conducfor at great distances. In essence the problem
15 formulated in terms of the redistribution of a known

current system near a non-uniform conductor in which the

distribution of the current system is known at targe x .and y.

1.2.4 Methods for Solving the Local Induction Problem
In his classic paper, Price (1950) considered
etectromagnetic induction in a semi—infini%e conductor with
a plane boundary for any inducing field, ‘which was assumed
known. _A uniformly layered earth mode]lwas considered by
Tikhogv (1950). Cagniard (1953), in his derivation of the
v we]% kﬁown theory of magnetote]1urics, assﬁmed a spatially
uniform source of‘iﬁfihitexextent and sinusoidal time
variation, as well as a semi-infinite uniform]y stratified
earth with a plane boundary. waitl(195¢) and Price (1962)
discussed Cagniard's resu]ts-in terms of a source of finite
dimensions. However, until the last -decade, 1ittle attention

has been paid to the problem of a vertiéal fault in the
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conductive region which represents the earth. It s wel]
known that there are limited regions in various parts‘of the
earth, where temporal changes in the geomagnetic~f?éla at
relatively near stations show considerable dineiqp:es in
form and amplitude. These differences remain consistentvin
character for the fluctuations of a given freguency, and
form a-definite pattern for the area stud1ed They are
associated with 1atera1 variations in conduct1v1ty below the
earth's surface. Two-dimensional magnet1c variometer array
stud1es have we]] exh1b1ted the cons1stency of the field
configurations and that the differences in form and amp11tude
are assoc1ated with conductivity var1at1ans It is therefore
important to understand the manner in which lateral varia-
tions affect fhe surface field in order to interpret such
variations. |
D'Erceville and Kunetz (1962) obtained a solution,
,fbr two media of different conductivities in contact along a
vertical plane overlaying a horizontal‘basement that iseifher
infinitely conducting, 1n%inite1y‘resi§;ive or at infinite
depth when the'magnétic field is everywhere parallel to the
~ strike of the fault, (H—po]arization; see‘Chapéer 2).Rankin
- (1962) applied the method of d'Erceville and Kuneti to the

-case of a dike of infinite length but finite depth and in

which the magnetic field is parallel to the dike.
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Weaver (1963) considered a ha]ﬁ-space conductor
which consisted of two quarter-spaces of different conduc-
“tivity with a plane venrtical fault of infinite depth. He .
con51dered both the H- po]ar1zat1on case and the E-polariza-
tion case (see Chapter 2) #ing an analyt1ca] techn1que
His H-polarization case agreed well with that of D'Erceville
and Kunetz. However, in order for him to obtain a solutdon
for the E-poJaﬁfzation.case he found it necessary to use the
approximate boundary‘condition that the tangential magnetic
field is constant along the surface of the conductor. Mann
(1970) proposed a perturbation teehnique to consider the
original Weaver (1963) prob]em, and has shown that )
Weaver's original so]ution 15 ‘Just a first approx1mat1on to
the' field 1ns1de the conductor for norma]]y 1nc1dent
- waves. Weaver and Thomson (1972) have applled this tech-
nique and have been able to av01d the approx1mate boundary
condition of the constancy of the h0r1zonta1 magnetic
field along .the surface and have obtained approximate
solutions. An aporoximate so]utioo tovthe field was found
for a periodic 11ne current above a non- un1form earth
when the he1ght and magnitude of the line current approached

infinity in such a way that the inducing field near t

earth became uniform and finite.. Geyer (1970)dbas used a
similar perturbation technique to jnvestigate the electromag-
neticﬁanoma]ieg over seyeka] type§10f subsurface

and more recently (Geyer,1972) *+ s extended this .

~
~
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contact. Previaus to this, Yukutake (1967) con51dered
1nduct1on in a conductor bounded. by an inetined 1nterface
w1th 4 small angle of t1l} by a successive approximation
method which used repeated reflections of electromagnetic
energy‘betweenwthe ground surface and the tilted boundary.
Treumann (1§7é;,b,c) considered inductiqn.in non-uniform
plates of finite thickness, and has been able to obtain

appro imate.solutionS‘for %he field at the surface of the
pl S Qhen the external inducing field is uniform. Weidelt
(1971) has studied induction in two adjacent.ha1f sheets with
different uniform conductivigjes} Furthermore,'Schumuckér‘
(1971a) has used convolution integrals to Tnvestigate the
induction in ‘a model with a hon-uniform surface layer above a
lgyered substratum. Hughes (1973, 1974) presented a semj-
analytical linear solution to the two-diménsiahal E-polariza-

tion case problem 1nvo]v1ng Fourier series representatlons of

[N

the conduct1v1ty anoma]y. A two-layered earth with a

s1nuso1da1]y vary1ng overburden was modelled by Hughes and

Wait (1975) using the semi-analytical approach of Mann (1964).
Ana]yticél hethods generally give solutions for

only spepia]ized qasés. Anomalous conductivity structures

of any shape may occur naturally, and so it 1% necessary to

consider methods to deaiﬁwith inhomogéneities‘of arbitrary

shape. Several numerical methods have been used to obtain

solutions for problems with vertical discontinuities for both
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H-polarization and E-po]arization cases . Du]aney and Madden
(1962) were the first to qpp]y the tranSm1ss1on line ana]ogy
over a two-dimensional mesh to such prob]ems as these. The
transmission line analogy arises from the simi]arity in form

A
between Maxwell's equations govern1ng the orthogonal coﬂpo-

nents of E and H and the transmission line. equat1onsgoverJ1ng
current and voltage on a transmission 11ne This method has
been used by many authgrs (1nc]ud1ng Madden and Thompson,
1965; Madden and Swift, 196§ﬁ~‘w1ft 1967, 1971; Wright,

1969, 1970; Stankis, 1970; Vozoff,41971; Ku et a]., 1973;

dnd Ku,l1976). The ~finite element method, thch uses the
principle that electromagnetic fields behave in s#ch a way as
to minimize the energy, has recently been applied toinduction
problems by Coggon (1971), Ryu (1972), Silvestor and Haslam
(1972), and Reddy and Rankin (1973). An anisotropically
conducting 1atéra11y fnhomogéneous'medimnwas modelled by
:Reddy and Rankin (1975) using the finite element method. N
Rodi (1976) developed a finite element method wh1ch 1ncréases

the computat1ona1 accuracy of the f1e1d components used in
magnetotelluric ca]cu]at1ons F1n1te di fference techniques s
have been applied by Neves (1957), Latka (1966), Patrick and
Bostick (1969) and others. Jones and Price (1969, 1970,
19771a,b) have employed the finite difference techniquelfor
studies&f .various two-dimensional conductivity distributions .[
and Jones and Pascoe (1971) and Pascoe and Jones (1972) havemxg

Qo
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given a ger_]lra] computer program for the solution of the
local perturbation problem. i

° The relative merits and disadvantages of the four
numerical techn1ques used to solve the local electromagnetic
induction prob1em can be used to decide which method best-:
fits a particular modelling situation. Both the finijte
element and transmission iine analogy methods use matrix
inversion to obtain solutions. For properly chosen grid
spacings economical so]utions in terms of computer costs _can
berobtainedl However, grids with large numbers of p01nts
cannot be accommodated as the computer stoJage for the
matrix inversion becomes proh1b:t1ve Finite difference
techniques when properly applled can be used with lorge
grids since matrices are not involved. The computing time.

used is somewhat longer and the'%tability of the solution

to the anomalouys conduct1v1ty structure, and the electro-

W ¢

magnetic field solutions can be obtained in terms of the
scattering cumrents within it. However large anomalous
domains cannot be handled as matrix inversion is involved

and large conductivity contrasts (> 100:1) cannot be
accommodated. p

-

¢
The grid mesh size in all the methods Must be
~

chosen properly to obtaln a rap1d solutlon The smaller

and more even the mesh size is across conductivityjcontrasts
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the more rapid i: the convergence of the solutijon. If

coarser grids are chosen then the convergence of the

solutiqn takes substantially longer. However, the tote]
number of grid points is limited and therefore the mesh
sizes are chosen“so that small uniform steps are taken
across conductivity contrasts. Phdgressively larger grid
spacings arebused as one approaches the boundary ot the

mesh so as to keep the anomaly as far away from the

boundary as possible.

Jones and Price (1969, 1970) considered the half-
space conductor as thevlimit of a spherical conductor as the
radius becomes infinite. They then carefully deve]oped the
boundary conditions and were able to obtain so]ut1ons for both
the H—po]ar1zat10n and E-polarization cases. Jones and Price
(]970) studied the field d1str1but1on within the whole twgf
d1mens1ona] reglph of interest, as well as the surface values
of the:various components, including the Cagniard (1953)
§bparent resistivity. In moge,recent work, Jones and Prfce
(1971& b) and Jomes (1971a,b) as well as Hibbs and Jones’
(1972 ). have ca]cu]ated apparent resistivity values along the
surface of the conductor Tatra]]yay and Jones (1974a,b)
applied a finite difference techniqge to a cylindrical mesh.
Loseckes and Muller (1975) investigated a two-dimensional
overhanging,. high resigtivity structure uti]izing a ftnite

difference technique. An increase in the rate of convergence

of the above problem was obtained by Muller and Losecke (1975).
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Wi--iamson, Hewlett and Tammemagi (19?4) discovered
an error in the Jones and Pascoe 61971) repre ntatiop of
the first aerivatives for variable grid spacings. Jdneslahd
Thomson (1974) shqwed that its effect on the cé]cu]ated
results is much reduced when the grid spacings used are not
too irregular. Brewitt-Taylor and Weaver (1976) show that
for irregular grid spacings across regioﬁs of conductivity
change the equations for the E—po]arizatioﬁ case must be
further modified to take into accpunt weighted conductivity
averages. The B-polarization equations were found‘to be
incorreEt and must be reformulated for all but regiohs of
uniform conductivfty. Brewitt-Taylor and Weaver regard
conductivity changes as roughly linearly from one value to
the next‘thustreinforcing the Lines and Jones (1973)
concept Qf transition‘zonesT
It shéu]d be noted that in all the numerical

methods ment1oned above the assumpt1on has been made that
the inducing field is uniform. A non- un1form source in the
form of a line current has been cons1dered by Wait (1962)

and Dosso and Jacobs (1968) Schmucker (1971b) ha5cons1dered

non- un1form sgurces over a 1atera]1y ‘inhomogeneous earth in
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which the lateral changes in conductivity are confined to a
limited depth rangef Hermance and Peltier (1970) siudied the
magnetotelluric f{eld of a line currént over a layered
subsufface, and later (Peltier and Hermance, 1971) extended
their approach to include symmetric current distributions,
such as a Gaussian current intensity source. Hutton(1969,1971)
and Hutton and Leggeat (1971) invgstigated the proB]em of
_electromagnetic induction by an equafofial e]ectrojef taking
into account the range of periods over which the electrojet
effect is e*hibfted and the relative contributions of the
”norma]"'and "enhanced" part of the inducing field. Hohmann
(1971) investigated the two-dimensional line current_sourcé
probiem by deriving a Green's scalar functiozjfkom Maxwell's
equations and éxpressing the electric field in terms of an
integral equation involving volume integrations of tHe
anoﬁa]ous fiefd vector over only the anomalous domain. The
boundary conditions were jhcorporated in the kernel of the )
integral equation and were thus automatita]ly‘satisfied by
~the so]ution.' The two—diménsiona] e]ectrbmagnetic response
of a buried cylindrical inhomogeneityvegcited by a line
current source was Ea]cuTated by Howard-(19725 using}av.
"similar method. Schmucker (1971b) has cbhsideredvmode]s
with a non-uniform source over a laterally inhomogen;ous

earth in which the lateral changes in conductivity are

confined to a limited depth range. Hibbs and Jones (1973a)

A
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have used the method of Peltier and Hermance (1971) to
obtain boundary values for.the method of Jones and Price
(1970) ‘and Jones and Pascoe (i97]) so that perturbations
'of such fields by embedded inhomogeneities in the. E--
polarization case may be computed. Hibbs and Jone$(1973b)
extended this méthod to consider a nonhsymmetric, non-
uniform source, as well as aperiodic spatia]]yMtime—varying
sources (Hibbs and Jones, 1974). Rikitake (19}5) investi-
gated eleétromagnetic induction in the earth. for a modula-
ted inducing field and showed the p&ssibi]ity of appreciable
error in electrical conduct1v1ty estimation due to the |
contam1nat1on of long per1od var1at1ons in the geomagnetic
field by short‘periodlvariations. The e]ectromégnetic
response of‘a'two—dimehsiona], ndn—unifprm earth to an
oscillating magnetic dipole source was éo]v;d numerically
by Stoyer.aﬁd Greenfield (1976) using a transmission line
-analogy.L Hibbs and Jones:(]976a,b) have given a method
for modelling any arbitrary two-dimens tonal sourqé field.

The use of two-dimensional arrays.pf hagnetic field
'measurﬁng instruments covéring large éreas of the 7arth
- such as the Western United States énd Canada (Porath et al.,
.]970; Reitzel et al.,; 1970; Camfield et al., 1571;‘Pdréth
et al., 1971; Porath énd Gough, 1971;. Camfield, 1973;
”fémfie]d and Gough,, ]975;/§nd A]abf et al., 1975), South-
eastefn Australia (Benﬁett and Lilley, 1972; L1illey and
Bennett, 1972; Gough et a].; 1974; Bennett and Lilley,

1973; Bennett and Lilley, 1974; and Lilley, 1976) and

/.
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Africa (Gough et al., 1973; and de Beer et al., 1976)
and studies related to the interpretation of array data

, 1973;

(Lilley and Tammemagi, 1972; Tammemagi and Lill
Gough, 1973; Frazer, 1974; Garland, 1975; and Lf]]ey,1975)
have stimulated interest in'the three-dimensional induction
| problem. T}eumanq (1970d) firﬁt showed that the Green‘s
ténsor could be used to obtain a solution to the three-
dimensional probiem._ Joneg and Pascoe (1972), in an exten-
sjon of fheir\tho-dimensiona] finite difference method,
obtained a'so]ution‘for a three-dimensional buried cond@c-
tivity”inhomogeneity using. a cubic mesh. This work was
extended to grids of variable dimensions byéLines and Jones
(1973). Hohmann (1975) extended his two—djmensiona1 mode]
theoretical solution to three—dihensions invo]ving é'dyadic
Green's function. fhe théoretica] solution was obtained
_in_terms'of an integral equation which was reduced tQ a
matrix equation numerical]y‘so]ub1e for the scattering
current in the anomalous body. The glectric and magﬁetic
fields outside the body were.;LUndlby ihtegrating the
appropriate half-space dyadic Green's functibﬁ.oyer the
v&lume §f the scattering current. Raiche (1974) and Raiche
and Coggon (1975) approached the three-dimensional problem
in the same manher..vHoward (TQ?S) studied the problem of

a buried cylinder excited by a magnetic dip61e in three-
dimensions. Also, Weidelt (1975) used the Green's tensor

method to calculate the electromagnetic induction effects

®
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iof a three-dimensional struéture. Hibbs and Jones (1976¢c)
have calculated the electromagnetic fie]d'résponse for
various three-dimensional cbnductivity structures for a
uniform, two:dimehsiona] nbn-uniform and a horizontal

{
dipole source. X

1.3 Transfer Functions

i

A ‘ S
The use of transfer functions for the detection

of anomalous internal currents originated in the work of

Parkinson (1959) and was further advanéed by Wiese (1962).
Parkinson (1959) observed an empirical relationship befween'
" the temporal variatioﬁ of the horizontal (AXT;AYT) and

vertical (AZ magnetic field components. This linear

T—)
relationship

= AAX, + BAY (1.3)

AL T

T T

wheré A and B are cohsfants to be determined, has come to
be known as the “"Parkinson Relationship". Schmucker (1970)
extended the original work and provided a formal theoreticd
approach to the description of the anmomalous. fields in |
terms of transfer functions and descr1bed both induction
(or Parkinson arrows) as we]] as perturbat1on arrows.
Everett and Hyndman (1967) 1ntroduced a unit vector method
of transfer function est1mat1on and Cochrane and Hyndman
(1970) and Hyndma# and Cochrane (1971) simplified the cal- -
culation by substituting éhe observed field gomponents in

place of the normal field components in the calculations.
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Edwards et al. (f971) presented another approach to the
transfer function calculation in which:they conéidered
magnetic correlation (M) vectors, and plotted Parkinson
arrows for stations in the British Isles. Honkura (1971)
‘compared exper1menta11y computed 1nduct1on arrows using
data from Miyake-jima island with a theoret1ca1 mode]
calculation of the.arrows.. Lilley (1974) analyzed the
mathematical formalism of Schmucker (1970) in terms of an
"induction tensor", and compared its charactefisticé for
two- and thregidimensional cases. The timelvariapion of
"1nduct1on arrows was studied by Anderson (1975) for the
U.L.F. frequency band (]-100 mHz). Serious distortions in
the inferred induction arrow d1rect1ons due to source f1e1d
varjations were shown by Anderson et al, (1976a,b). |

Weidelt (1975) calculated induction arrows for
a theoretical model of an embedded anomaly using two
mufua11y perpendicular po1arizatibns of the external elec-
tromagnetic field to constrult his arrows. -Hibbs ‘and
Jones (1976d,e) have ca]cu]ated-theoretica1 induction and
}pertqrbat{onAarrows for uniqum and two-dimensianal non-
.uniform source fields oriented in various directioﬁs
re]at1ve to an embedded three- dimensional anomaly A
swm11ar ca]cu]at18n has been made QH1bbs and Jones, 1976fF)

for a hor1zonta] dipole- source over a h1gh1y conducting

' anomaly for two d1po1e pos1t1ons.
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THe work of this thesis is primarily concerned

with finding so]utfons to the three-dimensional local
induction problem for various‘source configurations and
determining the source effect for each source type on
the transfer functions whiéh are calculated from these o
solutions. A comparison of theoretical solutions with
an analogue model equivalent for different source field

tyPes is also presented.



CHAPTER 2

SOLUTION OF THE THREE-DIMENSIONAL LOCAL INDUCTION
. =,
PROBLEM FOR ONE, TWO AND THREE DIMENSIONAL SOURCE FIELDS

In this chapter a method of solution for the.three-
dimensionai lTocal electromagnetic inq‘ction brdb]em.for
laterally non-uniform conductivity distributions is given.
The géneral local induction problem as described by P}ice
(1950) is discussed. The solutions for‘th}ee source config-‘
urations (uniform, two dimensional non-uni form énd a horizon-
ta]hdipole) abovg a -.uniform layered conductor are pre-onted,
In the method, these sb]utions are used to give bour ar.
conditions for the Lines and Jones (1973)‘finite difference
technique from which the so]utions for the electromagnetic
fie]ds associated with three-dimensional conductivity
inhomogeneities are obtained. ~The conductivity structures,
which dfffer for each soufce anfiguration used, are Chosen
to repfeSént varying degrees of symmetry and conduétiQity
contrasts. For éach combinatfon the sburée frequéncy is

chosen such that the amplitudes of the eleétrbmagnetic field

cohponents presented will have large values.

2.1 The General Three-Dimensional Local Electromagnetic
Induction Problem :

Price (1950) treated the general theory of the

induction and of free decay of electric currents. in a semi-

\

30
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.

infinite conductor with a plane boundary. Two‘fundamental
types of solutions were found and physical explanations for
these were'presented by him. . Methods of calculating induced

fields and their current systems correspondin% to external
-i}ﬂucing’magneticvfie]ds were obtained. '
The mathematical development here fo]]ows closely
that given by Price (1950);‘with the exception that the M.K.S.
system of units is Qsed throughout. For a continuougimédium

the behavior of the electromagnetic fields is described by

Maxwell's equations

50
VxH=Jd+ 55 (2.1)
- oB
VXEz-ﬁ ) (22)
Together with ‘the relations
VeB=0,0-0=-22 ¢g.p=-, | (2.3)

where o is the volume distribution of charge. In the
isotropic and uniform media which are‘canidered throughout
“this work

B=pH ,Jd=0E,D=cE (2.4)
where the permeability, u, the conductivity§ o, and the
permittivity, €, are constants.

Operating on both sides of equationvjz.l)'with the

divergence operator and 4sing the appropriate substitution
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from.(2.4) gives

oD |
R O A s (2.5) .
and by using (2.3) we have /
FECIE S | (2.6)
The solution of equation (2.6) is
p = p e— g t, , (2.7)

" which shows that any initial volume charge distribution Cpo)

»

in the conductor dispefses at a rate whlch is not_inf]uenced 
by other field conditions. Therefore, inside a uhiférm
conductor the volume- charge can be neglected w1thout loss of
genera]1ty if the relaxation t1me constant satisfies the

condition
| - .
o | (2'8)
We have, then,|
V.- E=0 (219)

By taking the curl of (2. ]) and subst1tut1ng the expressions
obtained for v x E into (2. 2) or a]ternat1ve]y by taking the

cur] of (2.2) and substituting the expression obta1ned

for V.x H into (2.1), it can be shown that Fhe electro-
magnetic field quantities satisfy an equation of the

form
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VS G =y (0 = + ¢ +_?)G (2.10)

where G may be'eifher E or H. In a conauctor,,ﬁﬁen the time
changes in the field are not too rapid, pe aéjat.can be
ignored when compared to uoG. That is, displacement cufrents
are negligible when Compared to the conduction currents in
the conductor. Garland (1971) discusses the conditions for
which displacement currents may be neglected. From équation
(2.1), if L and T are taken as/:he characteristic length and
‘time of the variation of the electromagnetic f{eld, ab/oat is
of the order ¢ E/T and Vv x ¢ is of tne order E/L = - u H/T.
It follows that 30/3t is of the order we HL/T Also v x K
is of the order H/L.. For aD/3t to be negligible in‘compari—

son with Vv x-H

Ly < e
€ u.-H =5 << — 2.1
—q2 0 |

_or _ T >5 (ue)]/2L , , (2.]5)

Hence, the charactefistic time must be great compared to the
time of travel of the electromagnetic wave across the region.
Fér a éharacferistic 1éngth equal to the diameter of the
earth the characteristic time must be much less than 0.03.
seconds. In all problems considered in this work the above,
the condition is satisffed. Equation (2f10) then reduces to

the diffusion equation

4
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V26=uoﬁ _ {2.13)

in tﬁe conducting region.

In a dielectric o is negligibly small and equation

(2.10) becomes

N

L
~N

o

Vo G = e (2.]4)

g

where’the electromagnetic effects propagate with speed
(u’e)]/2 througﬁ the region. Induction fields vary in a
relatively slow manner, so that the time of travel across
ény portion of the dielectric, within the region\considered,
is negligibly small compared with the time taken for field

changes to’bécome effective at the point of interest.  Hence,

for a dielectricy equation (2.14) reduces to ()‘

./ | Vg =o | (2:19) .
THe above approximations are?equiva]ent to ignofing

the magnetic effécts of the‘disp1$cement current in both the

conductor and the dielectric. Although\the magnetic effects

of aD/at are neg]fqible, this does not imply that the physi-

cal effects of the displacement current can be ignored.

Since curl H is zero, H can be approximately derived from a

~scalar potential, -
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where (Q 'satisfies Lap]ace'§ equation. Equation (2.5) shoﬁs
that B is everywhere solenoidal and hence derivable from a
vector potentle A defiged by

B =V xA (2.17)

Substituting this into (2.2) and using the vector identity
v x (-v¢) = 0, gives |

2A

E= da—t—V(b . - (2]8)

A and ¢ satisfy the fundamental equation (2!101 if they

satisfy the relation.

Vo A+ug%%+uo¢='0 . » (2.79)

Although the electromdgnetic fié]& vectors E aﬁd

B can be determined when A and ¢ are.known, the functions A
'énd ¢ are not uniquefy defined since the electromagnetic
fields are invariant under the gauge tranéformation.Howéver,
in a particu]ai problem, any so]utign of A and ¢ can be used
to-find the unique fields which satisfy the prescribed
boundéry conditions’ * |

| The e]ectromagnefic field qﬁantities must also
satisfy cértain bouanry conditions. Theﬂﬁangegtia] compo-
nents of E and H and the normal componént of B are continuous
across the interface between any two media. VTHe normal

components of D and J are not in general cbgﬁinuous and the

sum of their components normal to the interface are p and.

RSV

- %% , respectively. ' = i



36

2.2 Eiementary<§91utiong“gfﬁMﬁlygllléhgqpaiions for a

Semi-Infinite;Conductor With a Plane Boundary ¢

The coordinate system is shown in Fig. 2.1." The
~region -|h| « z - 0 is a free space réegion with conductivity
zero. A conductor occupies the half-space z > 0 and it is

assumed that a current source of some form is located at or

above z = -|h]| |

"Since the tangentié] components of E and H are
;continuous at the surface, z=0, and the conductivity, o,
and.permeability, u, are not, the e]emeﬁtary solutions of E
and H can be éxpressed in the form Z(z,t) F(x,y) . The
" variable t occurs only in Z{because %— is multiplied by'uo

—+

in equation (2.13). Substituting
E=12(z,t) F(x,y).© (2.20)
. ' ’
into (2.9), (2.10) and {2.15)

5F 3F =
L (5 gt gi -0 S (2.21)
N 1 27 37
= + g;? = 7 (wo 2% - g;?)f for z>0 ' . (2i22)
AR T A |
and 5;7 +‘3y = 7 ;;? F for 2z<0 . (2.23)

Since the coefficientsof F on the right hand of

(2.22) and (2.23) areindependent of x or y they can be

represented by a real constant, —Az, 50 that

&
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e

'

“igure 2.1

Y

v
Z

The coordinate system. X-Y plane represents the
surface of the semi-infinite half-space conduc-
tor with a plane boundary.

~



38

L |
——-2‘8 +a——2‘+ A E: O . (2.24)
X Y

It will be seen from equation (2.23) that the constant is
necessarily negative.
For the ‘conductor

W2

) 2 07 ' | ‘
——%—)\Z‘-uoﬁ=0, (2.25)
W4 -
and for the dielectric
” 2
02 2, _
—> - A7=0 (2.26)
az
From‘(2.21) it follows that either
an ) '
F2= 0 and a—)‘(—"f'—lay =0 (227)
dF OF ’
‘ 1o X4 ¥y o _ 12371,
or Flax twy) s tre (2.28)
where o is any real or comp]ex‘constant. ' N

The elementary solutions corresponding to (2.27)
and (2.28) are of two types: the firsf‘type correSponds to
current systems in the conductor.which have magnetic fields
outside and the second type has magnetic fields whféH:dré:Ag,

entirely confined within the conductor.
»

2.2.1 Elementary Solutions of the First Type

From (2.24) it is seen that F may be wfitten in

the form

PR
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F = (?B L) | (2.29)

where P is a function of x and y which from (2.24) must

satisfy the relation !

2 2

3~§ + i—g + 2% = g C(2.30)
a X Yy ‘

From (2.26) the form of Z in the dielectric must be

Z = A(t)e ™% + p(t)e*??
so that 7
E = (A(t)e ™7 4 B(t)e**z}(%§~, - 2% 0) for z<0 (2.31)

Since the tangential components of E are continuous at the

surface, z=0, E inside the conductor is of the form

¢ YN |
E = 2(z,t) (%, - 2 ', 0) for//:io . (2.32)

o
O

@
<

@

>

whefe | Z(+O’F) = A(t) +_@ft) . (2.33)

s

The magnetic fields inside and outside the conduc-

tor can be found by using equatior (2.2) which gives

a B - ! ) .
= 3P 2 ’
T3t T ‘%% %2 ’ %% éy » A7IP) for 220 (2.34)
and - %% = A v{(A(t)e'AZ - B(t)e ™ Z)P) for z<0  (2.35)

The continuity of the téngential component of ﬂ§leads to
the reYation’ | . ' . "

3 | - o L A[A'(t)-B'(t)] 0 (2.36)
92 | 2240 - -
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The field intensity in the conductor must tend to zero as

z becomes large, so that -

Z(z,t) » 0 as z >« (2.37)

In the region -|h| < z ~ 0 the potential of the total magne-
tic field satisfies Laplace's equation and the elementary

solution is of the form
} P(x,y) (2.38)

where A is real and positive (or zero) and P satisfies

equation (2.30).
The part of Q fnvo]ving e-)‘Z corresponds to the

. o
source field over the region z < -|h[, that is the

Az X
corresponds to tag

inducing field. The pért involving et
field arising from within thebconductor, that 1is thé'inguced
fie]d\_ Therefdre A'(t) in (2.38)-can be regarded as a %nown
function of ‘the source. Comparing with equation (2.34)&ﬁves .

\\
\

A A(t) = AA'(t) A B(t) = 9B'(t) (2.39):

v ot ot

and A(t) can be obtained. _
Equations (2.33), (2.36) and (2.37) togethér with
(2.25) detérmine B(f) and Z(z,t) uniquely in terms of A'(t).
The induced field will be comblete]y determinedif thé ini-
tial conditions, B(-0), are known. The induced field isthusA

expressed entirely in terms of solutions of the first type.
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. o :
.In these solutions the vertical component of E and therefore

‘the vertical current is everywhere zero. The induced |

- currents flow parallel to the surface of the conductor.

2.2.2 Elementary SQiHElQQE_Qf the Second Type

If ‘equation (2.28) is satisfied then Z must be of

the form »
' 7= c(t)e . C(2.40)

In this‘case, inside the conductor from (2.25)

1o

(«f - a%)c(t) = po 2ELEL (5 4y

so that | c(t) = ¢, eTBt " (2.42)
. ~ | 2 42

where : B = — ‘ (2.43)

From. (2.28) and (2.24) it can be shown that

« OF, 3P, . 'aFZ -ap]
DTz tw Rt Ew e (s

"

where P,.is a function of x and y which satisfies (2.30).
The terms involving P] lead to solutions of the first type
and can be omitted. FZ also satisfies (2.30). Hencé, by

letting FZ = AP a second type of solution for E of the form

- 3P o 3P . |
E = C0 3% ° T % oy ° AP) for 'z>0 (2.45)

—Bt-az o
e . ( )
is found.

OQutside the conductor Z satisfies (2.26) and

comparing with (2.40) it is ayﬁarent that a = + X for z < 0.
. /2
(¢}
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E is then of the form

E=viA(t)e™ + B ()e™2F px.y) for 2¢0 . (2.46)

The corresponding magnetic field inside the conductor is of

the form

0B _ . _-ft-az 2,y0P  ap o
=1 Coe (A - « /A)(ay . Ve 0) for 2>0.(2.47)

Since E is a vector outside the conductor

28
at

s y
Therefore, so]ut1ons of the second type have no

=0 for z<0 . (2.48)

magnet1c f1e1d outside the conductor and solutions of this

type do not enter into the problem of finding currents in-
duced by ekterna] magnetic fie]ds Solutions of th1s type
correspond to the decay of c&rrent systems of a special
form in the conductor. Freely decaying current systems
ebrresgjnding to solutions of the first type can also be
dbtained'by setting A(t) to zero in (2. 38). The modes of

free decay are d1scussed in deta11 by Price (1950).

By using solut1ons’0f the f1rst type, the local
induction problem may be eolved-for uniform,ﬁtwo-dimenéigna],
non-uniform and horizontal dipole 50urees over laterally
homogeneous conduttors So]ut1ons for the first two of
these sources can be formu]ated in terms of the two- d1men-
sional induction probiem.  The horizontal dipole source must

be dealt with in a more general manner.
)

\
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2.3 The Two-Dimensional Problem; E and H Polarizations

The coofdinate éystem is as. before (Fig. 2.7) with -
the region -lhf < z < 0 a free space region withconductivity‘
equal to zero, and the conductor occupies the half-space
z > 0. vAgain, it is assumed that a current source of some
form is located at or above z = -|h|

“For an osti]]dting field with time dependence
eiwt where w is the angular frequency and fhe period 2n/w

is sufficiently long so that displacement currents méy be

neglected, Maxwell's equatiohs become:
curl H =0 E (2.49)

curl E' = - iwp  H (2.50)

where o is the conddctivity appropriate for each region,
Ho is the mégnetjc permeébi1ity'of free space and the time

factor-e(1wt)

is understood in all fie]d'quantftfes,_
In the two-dimensional problem the fiefds do not
vary in one-direction, in this case the x-direction. That'is

all quantities are independent ofcx, and Maxwell's equations

redqce to'
:y& - s_:)i =0 E, , . (2.51)
3& =0 E N | (2.52)
oz . y ’ - -
aHx . , .
e =0 E, . (2.53)
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. o Ok .
zZ _ Y -, o .
Ty 55 HmoH /\(2 54)
OF | : '
X = _ 3
s lmuoHy , (2.55)
oF
X = _
- . 1umOHZ ) (2.56)

.

‘ These equations are such that only Ex’ Hy and HZ
are involved in (2.51, 2.55 aed 2.56) and only Hx’ Ey an.dAEz
are iﬁvo]?ed in (2.52, 2.53 and 2.54). These two separate
sets of equations.can therefore be solved independent]y.

Combining (2.51), (2.55) and (2.56) we obtain

»%E, »°E,
— + —3— = jwu _oE (2.57)
ByT ' 02z 0 X

which is the equation to be so]ved in all regions for the
E-polarization case (the case in which the e]ectr1c f1eld is
paral]e] to any conduct1v1ty discontinuities). )

Comb1n1ng (2.52), (2 53) and (2. 54) a sihi]ar
equat1on 1s obtalned for the H- po]ar1zat10n case (the case
in wh1ch the magnetic field is para]]e] to any conductivity
Fiscontinui ties):

) 82H aZH

——2— j- = iwuooHX . (2.58)

Ty

With th@@proper values of Ovinsertedifor each
conductive region, and with the proper boundary conditions, .
‘these eduations can be so]ved for the two separate cases to

obtain the field d1str1but1ons For the E- po]ar1zat1on, Ex
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is deterhined from the solution of (2.57), and then (2.55)
and (2.56) may be used to caicu]ate the two non-zero magnetic
field components associated with this case. A]sé,'for the
H-polarization, Hx may be determined from (2.58), and
équations (2.52) and (2.53) may be used to obtain the

appropriate electric field components.

2 -3.1 Determin égy_y_f_,.wg_Jx«_O;D.im_e_n_s.wﬁ,al_ Problem

Not a11 two-dimens1ona] probiemsAare determinate.
It is important to examine. the conditions for eterminacy
for a periodic. inducing fie;g~over a:semi~inft2
conductor with a plane béundary occupying the ha]f—space

2z > 0. Following Price (1950), we let Ex be of the form

CE, = 2(z) - Y(y) - elwt (2.59)

and substitution of this expression for Ex into equation

(2.57) gives:

3"y _ 1 (i 9 7
S uwoaZ - =5} y (2.60)
ayf 7 0 '822
for z > 0, and
- 2’y | 12%
Rt - ayz Z '322
2, 2
3°Y 1y - (02
= = - () - (Z£) .y (2.61)
oy z 322

for z < 0, where the arguments for Y and Z have now been

dropped.

ite -uniform
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Since the coefficientsof Y on the right hand side

of (2.60) and (2.57) are independent of x and y they must be

2 . s .
constants, -\", where X is real, positive and non-zero such

that ‘
Y . ,/(2.62)
.%;.
There foxg _
R ) " “2 x g K |
S @ L _& . ' 2 -0 ‘
AE";)? (1wuo<) + 27)2Z 0 (2.63)
and = " 2(z) = A e Y% 4 g V2 (2.64)

. where 82 = i@udo + AZ and A and B are constants. In the

. i

region z < 0,

N 2 .
31 %= . (2.65)
2z ‘
and . 2{z) = a e 2 4 p et? , (2.66)

where a and b are constants. The cogresponding E field is

then . ,
£ = (heP? e ey (2.67)
- -AZ Az
for z > 0, and Ex = {a e + b e " “}Y ‘(2h68)
for z < O

- As z becomes large, Ex must tesd to zero so that
B must be zero. At the boundary z=0, EX must be continaous.
“and 56.

m’:ﬂ',.'A= a+b e | . (269)
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The corresponding magnetic fields arg obtained from (2.55)

and (2.56)_for'; » 0:

and for z < 0:

The
be continuous

relation

The

in the region

is of the form

where P(y) satisfies the equation 3

i ’ X i0A -0z
H = —— —= = . e - Y (2.7
Yy umo 92 muo
3E - ~
= . 1l _.x . _ 1A -0z 3y
Hz —f wh oy Wi € oy (2.71)
4
_ X Az, Az |
Hy = oy ae | b e‘ by (2.72)
I -\z +Xz,3Y ' ,
HZ.- oy {a e +be }ay ‘ (2.73)

’tangential component of themagneticfieldmust

across the boundary z=0,'which leads to the

8BA = A(a - b) . ’ (2.74)

scalar potential Q of the total magnetic‘fie]d

‘-lhl <z < 0 satisfies Laplace's eqbatioh and

Q= -{Ce " + D *ypry) (2.75)

2 2

P(y)/ay‘-2 = - A"P(y)

Since the coﬁductivity outside the conductor is

fzero

and HyAand'Hz

VxH=0. “/f ~ (2.76)
can be;iound from the relation

!
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H= -V C(2.77)

as: Ho = (c e 2 + pet?) 3PLy) L (2.78)
y 0y .
i, = - afc e M L p etyp(y) o (2.79),

|

Equating (2.72) and (2.78) gives:

L R N 707 L1 62 N (2.80)
Wy Wy

0 . 0 oy

Combining (2.69), (2.74) and (2.80) gives:

‘.

* D =ﬁ{g—5—§} c v, . (2.81) 3
a = 1322 240 - (2.82)
b - —‘{gf}7§J a ;' ‘, (2.83)
and A= B | (2.84)

-

Therefore by specifying C all the other quantities

will be determined:. This analysis, while'confinédato uni-

" form subsunﬁgtes,’can be extended to multi-layered cases.

‘The part of @ in (2.75) which involves e *?Z

corresponds to the inducing field of the current sources and

_the part which involves e? corresponds to the field of- the

indung,cuqrents. It can be assumed that the inducing field
- enidd -

potential 7% specified by the current distribution so that

c e 2. P(y) is known. From the preceding discussion it can

be seen that all other fields and potentials are determined

- t,' /’ )
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. <4 -
from the inducihg field. Therefore the problem is deter-
minate for )\ p051ttve and non zero. iThe H-polarization case
can'be shown to be determ1nate ine the same mannerf»rFor
A = 0 the problem becomes indeterminete, that is the induced

field eannot in general be spécified in terms of the

inducing field, as d1scusse\dby Pr1ce (]950)

2.4 The Un1form Source Two D1mens1onal Solution

u

The form of the total electric or magnetic field
for the uniform source for elther the E or H polar1zat1on
case can be fouud from the solution of equation (2. 57) or.

(2. 58) Cons1der1ng first the H-polarization case, for a

aH
'un1form conductor 5}5 = 0 and (2.58) reduces to S
asz
- 2 = Twp ol fer z>0 (2.85)

This,zﬁogether with the boundary conditlon ‘that H tends to

.u.

zere as z » = leads to the solution »
' - 1yv2 1+1y/wu a)1/2
Hx = HO e ’ | - +(2.86)
inside the conductor.', o e

By'virtue of quattonS (2. 52)'and;(2.53), Hx in
the region outs1de the conductor, whereo= O is independeht
of both y and z and is, therefqre,-un1form‘throughout this
region. The H field is cont1nuous across the surface bOUn-
dary, and so\H 1s constant everywhere JusthnSIde the

surface of the ~conductor. This implies tmr aHx/ay is zero

- R . '
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r ’ ~ o
" Jjust inside this\SurIace and therefore from (2.53) that OEZ
“is zero. This agrees with the fact that norma]‘coqponent of

icurrent must be zero at the surface. If @2.58) is wsolved

3 . ‘a8 -~
with the appropriate value of o and the boundary conditions
— - '

oh Hx’ then the required conditions. on E'in the conductor

i wi\]-be satisfied.

3 - ) ' .
\ In the E polarization case, only the field
Voo ¢
components E’~, H and H are involved, and E satisfie:
| x' oy z : 9F X -

(2.57). Again, for a uniform conductor, 5;5 = 0 ané (2.57)

reduces to

.4. 2

3 E . . ' ‘ :
X . : x -
R L Ae . e v (2.87) ‘
9z o IL . o
Wy ‘ . . A\, C
Inside the conductor the solution for Ex is of the form
’ i *» o “94"'
. ’ ‘. R
?]//2(]+i)(muoo)]/22 ) .
&_(‘I E EX = EO e R )
| B . o
‘. for z-0 ' . (-2.88)

From equation (2.56) it can be seen that ‘Is ‘zero. By
subsfitu%ﬁng (2.88) into (2.55) the solutién.for Hy can be
R ' : g S

found inside the conductor.

) N V7 M2 (147) (wp 0%,
(1 + i) (wb a) Eo & | "

ﬁgrug>0_ S (2.89)

“Ih the non-conducting regidn aﬂy/az goes . to zero by virtue

of equation (2.51). This means that H, must be canstant’

.k
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(say HO),with respect to z outside the conductor. Since Hy

is continuous across the surface, from (2.89) we have

/

v ’ P ((J)llo;))]/z .
B e T (2.90)
LR
4 a".-’"“, ‘ &‘
f
From (? 55) !1n the non-conductor ? . .
5 o
. -"-‘,‘ -J’ . “vv'f&' ' [N '()Ex . , ” ‘
o LAVR P anl ' - = - 4.
. ”'.3;7'“k d‘z\va:; . 37 - Twp HY . (2'9]).
.u 3-"3"7 ;‘,2 :‘,- : ‘. l i F
e angc o E = E (1 - j/—z (0 + i) en o) 22y (2.92)
St M

@Nitﬁlp\t;; conductor all field anntities vanish as z » »,
Other boUfidary conditions are that.Ex, Hy and ‘H_ are -
continuous at z=0. As z -+ - «, |E] goes to infinitm. This

result is in acéordance“wfth an energy source wht}h must. .
b ]

.exist at-or heyond the plane z = -|h| . This analysis,

«while confined to uniform subsurfaces, can be extended to
' W

multi-layered cases. ’ »
| In what fo]]o@s; the E- po]ar1zat1on case 15 used

throughout for the un1f0rm source boundary cond1t1ons By

solving fbr the e]ectric f1e§d in the two-dimensional |

ca]cu]at1on%p these e]ectr1c field solutions may be used

]
x%he L1nes and Jpnes (1973)‘f1n1te differences

2

* method to provide boundary and 1n1taa1 conditions for the

directly.in

-

mesh.
(-4
. ! * 1\ x
Yo .
< £ @ <
v & 9 »” ‘,". i ‘ ; 3
»

<<<<

O

Pk
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2.5 The Two-Dimensional Non -Uniform Source Solut1on

"In this section a two d!mens1ona] non—yn.

sheet current s with Gaussian current inta?t., i
bution is discussed, and the sd]g}ion for the eLg tromag-

netic field over a layered conductor is derived. In the

.next section (2.6) a method of using this solution to v‘;**_"
genérate any arbitrary two-dimensional source cpnfiguraéion . J”Vé?
S giveh. | ¢

The coordinate systeh‘used is shown in Fig. 2.2.
The 1ayereq conductor occupies the half-space z >.9 as, 'ﬁi(

shown. #he sheet current source is assumed to flow pa5alle]
to the surface of the earth at a he1ght z = -|h| FoJJOWTng
Peltier and Hermance (1971) and from equation (2.53): it.can

\

be shown -that for a horizontally layered earth and for a

symmetric current source the g*‘mentary electric field in

PRI
1

the. n-th 1ayer is of the form

“f” A"
. -6
EY = (A e N N i*c cos(ry)  (2.93)
. . 4 /
~where R 6% - A2i+ iwp o - : '

n 0 n

and Al ws Wy and o, are respectively the spatial wave number,

the angu]ar frequency, the permeability of free space and

!

the conduct1v1ty of the n-th layer. For a sheet ‘current with

a Gaussian d1str1but1on function | L {
' " - : : (= 22 2
R P il wp K Az ) : s
e C(A) = -0 0 o 2t (2.94)
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currént
source

O3 ’ S
—
o /—J—/
1 1
| O-n v . | @

. @ . '#‘ :
Figure 2.2 The coordinate system, source position and
layered model. - ‘
X )
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wherevIO is}the maximum ihlensity and v is the standard

deviation of the source. | | |

The quantit?es”’An and Bn ere-detgrmined by the _
o

cdnductivify configuration and the solution for the electric

field is completed by taking the sum of E: over all Xi:

\ ‘ o -0 2z 0 z
n IR < n ‘ : ) .
EX(X,Z)-= £ (A, e _nﬁﬁﬁi & } C(x) cos(Ary)dx . (2.95)
- After calculating Ex,.the-magnetic components may
be determined: | |
/ oo -0,.2 0.2 )
Hy(y,z) = - (i/wu ) é (0. [A e -8 e ]cpg))~cos£}y)dx
_ (2.96) .
: ® . "enz'. Onz. '
ﬁz(y,z) = (i/wuo):f {A[An e. +B e 1 €(rx)} sin(ry)dr.
_ ) ' ) -
(2.97)

T

" The half-space above the Earth is considered as

the first 1ayer,-and ﬁf A] = 1 then C(x) is a frequency

L dependent parameter of the source. B] may be thought of as
% - a ref]ect1on coeff1c1ent which represents the contr1but1on

! T . /s

ggf; ., Lo the total e]ectr1c field at the surface by theipbsurface')

oy ? ‘. 4 ~

T eyl 1ayers;-For a three layered conductor 84 = 0 so that E

w11] n;;~9ecqme infinite with depth. The other A and B

s oh
o ta]ues maytbe determ1n9d ﬁ'nce the tangent1a1 components of
- N N Al
E and K" must be font1nuous across layer boundaries. This
X . y ¢ L. VAN

o - ~8. W
. (gives ’

T
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! .
- R -1 "
5 S (2.98)
where R . A * 1
- 02 Q = ] i
\ ((‘ 20,4, |
) -
by vyt Py - 0400 e 20,4,
Q== 70,40 e
_ 0 ) :
0, - 03 * (03 + 0,00 e
b, -y, -20.d
and Q, = [59’1>§ﬁ: e 32 ,

where d] and'd2 are the thjcknesses of the first and second

conducting. layers reSPeCtiyely. Also, we have’

(1 + ;)0

(h, + By e 21y 32071 '
A3 N - 20 d] H]
. (0 *'Q]) e 31«
and \7 | -  .83 = A3 ' Q]
20,4, (8,-0,)d, | |
Ay = (A v By 32 o a0 &

i

. , 'This general meéthod may be extended to more layers
if'desiFéd."'If?shduld alsq be pointed out that the conver-
gence of thgffieLg,dntegrals isfdiscusséd by Hermance and |
Peltier (1970) and Peltier and.Hermance (1971). |

_Thé above solutigps are Timited in that only source

. . - 4
configurations for which the source coefficients C(X) as
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descrfbed by Peltier and Hermance (1971) are obtained-
analytically could be modelled. It is clear that more
general source!configuratibns exist, particu]ariy in ﬁigh
,latitude regions (Kisabeth and Rostoker, 1971

Kisabeth, 1972).

2.6 A Method for Obta1n1ng an Arb1tra[17Two D1men51ona1

Source
ar '_ A method in which anywarb1trary two- dlmen51ona]

. source conf1gurat1on may be representﬂd is des1rab1e and in
this. Sect1on such a. mftmod 1s g1ven 'Th1s method provides
fi'eld values for a ]ﬂygred earth and more general prob]ems
may be studied by us1ng these va]ues as boundary conditions
for a. numerical technique. The computer program‘listing for
this method énd description of its use are given 1in AppenJﬁx
A. |

A general source intensity disfribution may be

‘constructed from a number of e]emehtary sources by supe;-

dosition. A Gaussian intensity\distributioﬁ of small half-

Qidth'(] - 10 km) has been chdsen here as thg elementary
source, since C(X) can be obtained ana]ytica}ly for this

‘distribution. A number of these e]ementary Gaussian sources

of equal max1mum 1ntens1ty are then spat1a11y sh1fted $0

* that a rectangular™ current 1nteﬁ%1ty d1str1but1on may be
approx1mated The electr1c and magnetic f1e1d values are

then obtained by - super1mpos1ng the spatially shifted fields

of the elemental sources
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In this way an arbitrary current intensity distri-
bution -may be approximated in a piecewise contin%?us manner
by weighiing a number of spatially shiftedirectangular
current d1Str1but10nS in accordance with fhe trapezoidal
rule where th@ field components are spatially shifted and
supernmposed. The so]utjon for a two-dimensional source of
afbitrary intensity distribution over a layered Earth'may S
thus be approximated. This is equiva]ent{fb convo]vihg‘the.
arbitrary cur;ent diétribution with the Green's Function of
the rectangular‘eurrent distribution.

- The erbitrary current source could be aber ximated -
‘by directly shifting and summing %he elemental Gadss,ah
field Eo]uf%qns u&ing a criterionsuch as a'least squares
process to weight the Gaussians.lowever, this would increase
the number of computations required by a-factsk edua] to the:
number of Gaussians used to cohsfruct therecéangu]drclrrent
source d1str1but1on and so is not desirable. | :

Because of its s1mp11c1ty, the method is readlly
'app11ed to mode]11ng problems. The width of the rectangular
dlstr1but1on and therefore the half-width of the e]ementa]
Gaussian can be easily estimated by 11near1y approx1mat1ng
the arbitrary current source to the desired accuracy. As
many elemental Gauésians as desired can be used to represent

the rectangular d1str1but1on and for. the examp]es here 3 and

31 Gaussians have been used.

v v . . . @
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2.6.1 Comparison of Piecewise Continuous Representa-
tions and Ana1ytica11yilntegrated Kernal

Calculations
In order to.obtain‘an.indication of how well the
- elemental Gaussian and rectangh]ar representation of a

source will approximate the solution for a case in which
C(x) may be represented analytically several comparisons are
made. It is advantageeus to represent the rectangular cur-
rent. distribution using as few elemental Gaussian currents
as possible. To determine the number that ;ay be used a com-
parison of the field values calculated by usin 3 efemental

Gaussians withvthose calculated by 31 elemental Gaussians to

represent the same rectangular source was made. Calculations

of the field va]pes at the surface of a two—]ayéred Eafth in
which a 50 km ]éyer'of 100 ohm-m resistivity overlays a
ha]ﬁ;&pace of resisti?ity 10 ohm-m.af three frequencies
(1.549}, 0.01 Hz and 0.0001 Hz) were made for Gaussi;%rsheet
currenf intensity dispributions with ha]f—wfdth; equal to
0.968 km and 10.0 km; A rectangular current distribution of
30 km Qidth was approximated by 31 of the 0.968 km elemen-
’tal Gaussian currents spatially shifted one kilometer and
compared with-a représentation of\the 30 km rectangular
curreqt composediof 3'e1ementql Gaussian éurrent; of 10 km
J.ha]f-width shifted one ha]f-width. The results are shown
*:in Tables 2.1 and 2.2. The horizonta]ﬁcomponents are,
normalized at the origin in both tables, whereas Hszs

normalized at 15 km in Table 2.1 and 400 km in Table 2.2.

a
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Comparison of Gaussian representations of rectangular sources near the origin

Frequency: | Hz

Distance
from _ ‘
origin E, o H, H,
(km) k] 31 3 3 k] k)|
0 1-0 10 1-0 1-0 0-0 0-1279 % 10-#
15 . 0-9813 0-9833 0-9813 0-9833 1-0 1-0
30 0-9353  09-360 09353 0-9159 1-838  1-821
60 0-7823  0-7839 0-7821  0-7837 2:593  2-582
90 0-6140  0-6158 0-6137  )-6156 2-40¢  2-404
120 0-4713 0-4729 0-4709 0-4726 1902 1-905
130 0-3624 0:3637 0-3622 0-3635 1-409 1-413
Frequency: 0-01 Hz
Distance
from
origin E, : H, H,
(km) 3 31 -3 31 3 31
0 1-0 1-0 l -0 1:0 0-0 0-4178x 10~
1S5 0-9878 0-9891 0-9852 0-9868 1-0 1-0 -
30 09572 0-9578 0-9487 0-.9492 - 1-883 1-870 ‘
60 0-8490  0-8498 0-8246  0-8258 2:930 2-919
%0 0-7156  0-7168 0-6818  0-6833 3-087  3-083
120 * 0-5870 0-5882 0-5525 0:5539 2-755 2-756
150 0-4767 0-4778 0-44?5 0-4477 2:269 2:2N13
Frequency: 0-0001 Hz
Distance .
from )
origin , E, H, H,
(km) 3P 3 3 3 3 n -
0 1.0 " 10 1-0 1-0 0-0 0-1225x10-%
15 09931 0-9939 0-9845  0-9861 1-0° 1-0
30 0-9759 0-9760 0-9462 0-9467 1-906 1:896
60 0-9127 ;<131 0-8913  0-8207 3-133 34123
90 ¢ 0-8295 0 ¥301 0-6805 06821 3-588  3-584
120 07420 0-7427 0-5624 0-5639 3-551 3-551
150 0-6588 0-6595 0-4705.  0-4718 3-280 3-283
Table 2.7,
< o
b
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Comparison of Gaussian representations. of - rectangular sources at great distance:
Jrom the origin

Frequency: ' Hz
Distance
from : '
origin E, H, H,
(km) 3 31 3 3 I3
0 1-0 1-0 1-0 1-0 0-0 0-8233x 10~*
400 0-07232 0-7293 0-072 0-07265 10 1-0
800 0-01829 0-01842 0-01 96 0-01809 0-1391 0-1391 .
1200 - 0-007588 0 -007640 0 007248 0-007297 004297 004274 -
v G -
Frequency: 0-01 Hz
‘ ‘
from"Q i i v
Ol’i'in ] ~ Es ”p
(km) ! 3+ 3 3 3 3.
o 10 1-0 1-0 LR I 0-0 0-1222x 10~9
400 " 0-1110 01116 0-1052-  0-1059 1-0 1-0
800 0-02912 0-02926 - 0-02742 0-02759 01472 0-1470
1200 . 0-01240  0-01246 001143 0:01149 0-04514  0-04504
qu‘l' )
’ “ Frequegcy: 0-0001 Hz
Distance o %
froer R SR o
Ofﬂl E, e H, - oy g,
tkm). I on 3 31 3 k|
0 10 10 1-0 1-0 0-:0 - 0-1133x10~%
40) 0:2493  0-2501 0-1707  0-1718 10 1-0
800 0-07675  0-07697 0-05785  0-05820 0:2019  0-2018
1200 0-03455 - 0-03465 0:02609  0-02625 0-06467  0-06463

b Table 2.2
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From the tables it is clear that the three 10 km e]ementa1

¢\\\Gauss1an currents we]] represent the rectangu]ar current
-*distribution in the calcu]at1on of the field va]ues
Also, in Tables 2.3 and 2.4 the fields assoc1ated

3
w1th a Gaussian sheet current of 240 km ha]f width calculated

[

in the\manner of Pe1t1er and Hermance (197[) and Hibbs and
Jones (1973a) are compared with those of a 4y ~lement !
.piecewise continuous source construc.ed from 30 km rectanqgu-
lar current sources employing the tw approx1ma;10ns as used
above. The same subsurface and frequenc1es as in Tables 2 1
and 2.2 wére used .Ex and Hy are norma]1zed at th; orwgln"
in both tables while H, is normalized at 15 km in Fable 2.3
aﬁd 400 km in Table 2.4.

| Table 2.3 shows that for d1stances of 150 km or
les’s from the origin the: two solutions are nearly identical.
Table 2.4 indicates that the two solutions differ as the
distance-from~thé origin increases. This is becausemfhe
piecewise continuous source-is'terminated at 720 km whereas
‘the Gaussian source continues to infinity. This is particu- .
larly evident in the Hz‘component which one would expect to
i;trease when the current intensityAEﬂénges rapidly. ’

A further comparison with previous re;u]fs was
made for“ sheet current source of 1nten51ty dlstr1but1on
(y-b)‘ e[b(y b u(y—b) wheve b = - 480 km and u(y b) is
fhe unit step functioﬁ. Us1ng the present method the

source was approxi@ated by forty-nine rectangular sources
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. 2
- - of 30 km width. Each rectangulﬂr source was approx1mahgd by Ad

w '

B
three elemental Gaussians of hal? width 10 km and spatliily
y shifted one’ ha]f width. These calculations were made over a ;

range of per1ods from 1.0 sec to 10 seg-for the same sub-

2,

5urface as above. The apparent resistivty (ca]cu]ated in

the manner of Cagniard 1953) and phase curves for th1s case

o I

are shown in Figs. 2.3 and 2. 4 " The apparent res1st1v1ty

curves are ca]cu]ated for po1nts at 1nterNals of. 200 km-

- 3 3

over the range fr0m - lO to 10 km. The phase ca]culat1on&

111ustrate the d1ffegence between tr- phase of ‘B, and. the

#

"phase of Hy for the*var1ous {requenc1es at th d1fferent

- 3 e T
, The f1e1d pr@f11es of E ok H and H, gor ]0, 10 and 10 ;ec, e
”vaper1od are shown 1g\F1g ZAF.' ,"‘l; Lo '

; S
O‘v -

The apparent¥ eS1st1v1ty curves of F1gs Z 3 and
2 4 111ustrate theﬂkyp1ca1‘s read1n© as a fynction’ of
. pos1t10n at longer per1od2 ajd comparq.we]] wlth “those
obta1ned prev1ous]y (H1bbs and Jones, 1973b). A compar1son
of apparent res1st1v1ty curves is ‘a good- check on the ;
accuracy of the method . Highly accurate f1e1d values are ’
equ1red to calcu]ate the: apparent re51st1v1ty curves s1nce
tue field valuZS areﬁsquared;and a ratio taken. If the
« field values are‘inaccuraﬁe this,produces spreading of the
app rent resistivity curves at shOrt period as wel];as

. ’ inco rect va]ues at ?ogg per1od A]so the field prof11es

for E¥ and Hy of Fig. 2. 5 compare favourably with prev1ous

A

S o ‘] ‘ o ' N o . ‘



" ﬁzzaure 2.3 ‘Apparent resist1v1ty and phase curves for the

(y b){eLb(y b)]Tu (y- b) soqrce over a twas
' ‘ E%h a So-km thﬁck upper Iayer

vV,\

laygred conducto,w

L 4
B3

.of resist1v1ty 100 'ﬁ!;ﬁ”dVe 1yihg a half spacg

_p:
of res1stiv1ty 10 ohm- mQ j@d’%‘rves are’ for i

'the negat1vad§1region and are, ca]cu]ated fOr'
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work. . However, the vertfcaT;magne}io component (Hz)

increases near ]03 km. This is because the current source

"
is terminated at ¥ 1010 km whereaS previously the “source
continhed-to infintty. The results shown in thése plots,
as well as the apparent res1st1v1ty ones of F1gs 2.3 and
2.4 reflect the non'Symmetrwc character of the source.

Fig. 2 f*g1ves the apparent resistivity and phase
curves for the elemental Gauss1an itself. The GaUSSIan @\
source is symmetr1c and the, gesults for + y and - y are -
1dent1ca] % The s’ﬁtading of the curves at longer permoj;gs

a function of % is aga1n ev1dent At short periods

»

;between E and Hy is 45 degrees at a]]

_ the phasa differ

-po%gt1ons beneath the source However, as the period N

>
increases this p&ase d1fference becomes dependent on the

t
p051t10n re]at19e to the source. This effect 1s ev1dent
for al] the non- un1form source mode]s The f1e1d component

prof1]es are shown in F1g 2., 2&?“ : : -

The second coﬁ&uct1vr¢y conf1gurat1on considered

“'b’

uas thatmof a two- layered Earth w1th upper layer 4 km th1ck

‘and res1st1v1ty 0.25 ohm m. w1th .an under]ylng half space of

.

res1stiv1ty 250 ohm-m. The source was constructed in the
same manner as in the previous model. The apparent resist1v1-.;
tx‘and phase curves ‘are shown 1n'Flgs 2 8 and 2.9 and the
fiéld.component.profiles‘in Fig. 2. ;B The apparent
'resistiv1ty curves‘aga1n compare we]] w1th°those obtained

- ~.previously by Hibbs and Jones (1973b)



Figure 2.6

Appargnt resist1v1ty and phase curves for the *

. e]emental Gaussian source over.a two layered

conductor with 50 km thick upper layer of

resistivity 100 ohm-ﬁ overlaying a ha]f-spéce of

res1sgf¥1ty 10 ohm-m. The curveszare for the

pos1t1ve y regian and are,ca]culated for points

along the surface beneat# the source
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Figure 2.7 Field profiles for model as -in Figure 276. E
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F1gure 2.8 Apparemi'resist1vity and phase curves for the ~

PR - S (y=b)* eﬁ%(y~b) u(y b) source over a two 1ayered
;33% o conducfor with-S-km thick uppef layer of resis~
a§?s ?::,*: 7; tiv1tyqdlzs ohmrm and half sbace of,ZSDxﬂﬂ’/h
e A These curves are for- the neghtive y region and

angvcalcu]atéd for ‘points aTong,the sarface

‘beneath thévaburée,~'
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Figure 2.9 As Fiqure 2.8, but for positive y region.-

square : at origin

circle : 200 km

triangle : 400 km e
+ : 600 km
X : 800 km

diamond : 1000 km



100 10t ' 100 100 18 108 100 107

PERIOGD (SEC.) .
APPRRENT RESISTIVITY CURVES

PHASE (DEGREES)

8

»

qu L
- -

8

£

10 100 100 100 1 108 108 i
PERIOD (SEC.)

PHASE CURVES



4
.

Figure 2.10 Field profiles for model as in Figure 2,8.
A1]1 compoments are normalized with respect to
the origin. The results for the 10 sec and the
103 sec curves are nearly the same, and thesei
two cur&es ove}lap. | | |
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2.6.2 An Arbitrary Non Integrable Source Configuration
A third more general model was considered. The
-§ource for this modeiiwas-composed;of foyrteen'rectangiés;
each ‘30 km in width and withsintensity’coefiitients as given
in Table 2.5. Each of the rectangies was approximated by
three elemental,Gaussians of 1G'km'half—width. The conduc-
tivity configuration was that of a‘tWO~layerediEarth with
3‘upper layer 50 km deep and resistivity 100 ohm-m. Ther'
second }ayer was a half-space of resistivity 10 ohm-m The -
apparent resistivity and phase curves are given in Figs
2.11 and 2. 12 and the field component profiles in Fig. 2.13.
For this third arbitrary model the spreading ofthe
apparent resistivity curves fgr di Nferent positidns underthe
source at long periods 1s evident as in the other twomode]s
’ By superimp051ng elemental Gaussian solutions to
construct‘rectangular current segments any general source
configuration can be approxinated This prov1des much
flexibility in the constructipn of sources to-aid in the
remova] of source effects from array data ‘and also in the
s tudy of source configurations from ground measurements when
f% the conductivity of the earth is considered. This approach
‘ may also be used to prov1de boundary conditions for more
general laterally 1nhomogeneous earth mode] caTcu]ations

A description of the actual program and a d/scu551on of its

'use 1s given, in AppendiipA

el
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‘Table 2.5 'Source intensity coefficients'fo?'thebarbiff%

source. .

0.200E
0.500E
d.SOOE
0.500¢E

0.500E.

0.500¢

. 0.30QF
0.700E

0.700E

< 0,700E A
0.700E -

0. 00
0. 00

0. 00

02

02
02
02
02
02
03

03

03
03

03;
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' 2/F{gur€‘2.1l Apparent resistiyity:and‘phase curves for the

4 arbitrary source pver a two-iayered conductor
- with a SO'km thick upper 1ayér of resistivity
lOO.de-m overlaying a half-space of resistivity
. ‘ 10_ohm-m; +The curves are. for tﬁé cega¢iVe y
. regidn‘and are calculated fo} points alongmthe
" surface beneath the sourée.
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Figure 2.12 .A; Fig. 2.11, buE%for the positive y region.
| squaré . at origin. ‘
circle’ : 200 km

Ariangle : ' 400 km .

_ : 600 km

X . 80O km
G

diamond : 1000 km_



100

10 10 10 108 1o
PERIOD (SEC.)

APPARENT RESISTIVITY CURVES

10t

g |
8
gt
gs:... ]
e
8 .
gggf }
8.'-‘- -+
g
r 28 [ 2 8 | 2 8
10 100, 100 100 1% 108 100

PERIOD (SEC.)
PHASE CURVES

107

Yo




., ~ \
v - N
. . . . -
[ ™ e .

Figure 2.13 Field profiles along the surface of the earth
for three periods for model_df Fig: 2.11. Thé
field components are normalized with respect to
the point at the origin. .
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3

2.7 The Horfzontnl Magnetic DipolebSource SolutiOn for -
Two quer Conductor

>

-The horizontal magnetic dfpole solution’ pfesented

here was originally formulated by Grant and ‘West (1965) for a.

magneth dipole Qbove a homogeneous earth. The solution for

the polar thnetic fields was der1ved for a monopole and'

then by simple differ;htiatxon the solution for a magnet1c

g dipole was obtained. Ramaswamy (1973) extended this:wqu:to

include the effect of a two 1ayered-conductiwg edrtﬂ
Cons{der a semi 1nf1nite, three- d1mens1onal, two

layered conducting earth occupying the half‘space z > 0 of

the rectangular coordinate system shown in Fig 2 14 ‘fhe

first layer is of conduct1v1ty o] and depth d, and the Second

‘layer is semi-infinite with conductinty‘o2 The upper half-
'space is, a free -space region. The permeab111ty of both the

;conductors and the upper half- -spage fs equal to. that of . free

magnetic pole situated at (0,0,-h) hqs“cylxndr1ca1 symmetry-

and cylindrical coordinates_(r,o,z)‘are.used. These af?“g‘q“
related to the Certesian cobrdinates-(;‘y,z) by - mf“
c oy . ; ' l‘. ' R ’ » ',} ‘ "1\. :

X = rcos 6 and y = r-sin.e . (2.100).

SR
The vector potential, A, for the magnetic pole will have .-

AN S

-Space. Frop the mathematical model. shown in Fig. 2.]4:<a C

Y

onl;\\\&;96/:ahent due to symmetry which w111 be a function ”;

of r and z, n(r,z). . , i
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MAGNETIC DIPOLE

— X

v N
V4

Figure 2.14 The magnetic dipole and the coordinate system.
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In the three conductivity reqgions considered, the
source currents are excluded so that equation (2.10) must be

satisfied in each region. n(r,z) automatically satisfies

the %ilftion Ve n = 0. . Therefore,

vzn(r,z) - iuomunn(r,z) =0 (2.101)

where Ho» W and o, are the permeability of free spacé, the
angular frequency and the conductivity of the n-th layer

respectively. The time dependence is sinusoidal and the

1wt

factor e is understood jn'aT] field quantities.

Solutions of (2.101) are of the form
[+ (&2 + iuémon)]/zz]
e J(rg) (2.102)
where J](r,g) is a Bessel function of the first kind of

order 1, and
[+ (EZ + iuowon)]/zz

e : Y](r £) (2.103)
where Y](r,g) is the Bessel function of the second kind of
order 1. Since the fields must be finite for r=0, z#0,0only
so]utions of the form (2.102) are pe@pitted. The plus and
minus sign in the exponential are chosen so as to reject
solutions which are not finite as z ~ + =, The complete sol-
ution of (2;101)-15 obtained by superimposing all poésib]e
so]utions of the type (2.102). The magnetic field of the

pole is obtained from relation (2.17)
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e
~

F =Y ww(r,2)0 | (2.104)

'
where,afﬁs the unit vectc - in the 0 difection.l
The horizontal magnet]c dipole so]ut10n1sobta1ned§~
by considering magnetic poles of strength (+p)° and (- p)vary—
ing sinusoidally with time whicn are situated at (X ], -h)

and (X],‘YT»+ AL, -h) respect1ve1y. The total field at any

observational point (x,y,z) is obtained by superimposing the
fields of the individua] poles. In the.]imit as :S\K-O the
total field will reducé to that of a dipole at (X], Y],.~h%
with its dipole moment directed in the negative y—direction,
provided that A% approaches zero .in such a.way ;hat p
remains cbnstant.. That i;, if (E)Y]jand (F)Y]+A2dénote,

the fields at a point (x,y,z) due to poles +p and -p,
respectively, then the field at (x,y,z) caﬂ»be written as

Ho= 19 (T - (r 2.105
e din L0y = @y (2.109)

éxpandihg (E)Y]+A2 in a Taylor seriss about Yi
Ho= tim [-ae(3E) - o(ae?)] . (2.106)
AL+0 1 Y] - .

The dipole moment m is given by the relation

M= 1im P AL . (2.107)-
£2+0
[
so that B H'= - M3L (2.108)
= p Y, ‘ -
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‘The solution for I' depends only on the horizontal diétance
ol Lol

. %9*"93" the pole and the field point, therefore 5y T
: g y ?Y]

al \
2y - (2]0\'3)

i
y

And

X
i
oI

The field, T, is related to the vector potential by (2.17)

= 7 A ) - (2.110)

Using the elementary coordinate transformation =

Fx = Fr cos 8 and Fy = Ir sin 0 the x and y components of
the dipole field are
"9(r _ cos 8) : ‘
- M r_ ; ~ -
4 . '

’H M BFr sin 0

Y p oy

u .M ;

Hy = p Iy

curl of H
(V x H) ' S(2.12)

Following Ramaswamy (1973); the'magnetic fields’
in the first conducting layer are -

.M(uomo])3/zsine ®
Hr i S 2m g n+

3
]
m

(e, z)[aa (r €)-.



f

3/2 .
M(uomo]) cosoxt

£h

95

(2.114)

(2.115)

ﬁ(2.116)’

qe B} 2nr g n+E G_(C,;)J](r &)e‘. de
: 3/2 .-
M(p wo,)%/ “sind = .3
= _. o T L -€h
Hy = - 2m g\"+: ﬁ+(£,Z)J](r £)e de
where n.= (52 + 1u0mo])]/z
and e " 4 g(r)e 2nd+nz
A G+ T -2nd
- 1~ f(g) g(6):e

The fqnctidnSg(g) and f(é

. .

where' NG = (&

The cbrrespondi

. 2 e
1Muow o1cose £

2nr £ n+g

iMungo]sine ] £

fle) = 28, g(e) = 70
2

G

2m g n+§

) are defined as

n-n

o

o
_2yl/2

+
g
1

i

ng solutions for the electric

- o

SE,2)3, (r £)e™ Mg

&

6, (£.2) (€9, (r €) -

i

J;( £
e e,

r£)

!

(2.117),

(2.118)

(2.119)

képlzp)

(2.121)

(2.}22)

PR

!
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The solutions for the magnet1c and e]ectrlc fields

in .the sem1-1nf1n1te 1ayer are:

o 3/2
, My wo,) /“sino = n ¢ Ji(rg) .
- o 1 o : !
Hr = 2n - £ n+€ G+(€ )d)[g‘]o(r {a) = ——-_T'—]
 (gh + (z-d)n) o
e d¢  (2.123)
3/2 | Ny
M(u oY% 1 )7/ “cosh w n_¢ o =(eh (z-d)no)
h s e T 6 () 9y (e o
. ' [
o (2120)
- - \3/2_. ) | o
M(p . wo,) sind = _3 -(€h+(z—d)n )
_ o 1 . £ '
W, = - 5o é nee 6,(£.d) Jy(r £)e ¢ dg
> ’ I .
- (2.125)
Ly 2 ’ ' . '
iMuSwo,cosd o -(&h + (z-d)n )
_ o 1 & . : o
Er - 2-"'. (f) n+‘€ G.’.(gsd)‘]](r E)e : ‘ - dE Y
' '(2.126)
iM% sine = . Coare)
Eg = - 7 £ neg S+ (6,d) (80 (r €) - ———]
-(eh - (z-d)n_)
e , de (2.127)
EZ = p

The magnet1c field so]ut1ons for the\free space

region are'found in the same manner as before
3/2

d My wo,) sing « P Crh | '
H, = —0O A" / {e'(éz) - i(e)el62)yee gh[eqo(r £) -
R | Jilr €) - |
| o 27 g N\ (2.128)

r

-



.(' \" ) ,‘
. ! .{21" ' l\
: 3/2 ] ’ :. "
M(u_wo,) CosH = , . o ..
At K -(gz) ooy (e2)y ) -£h
He —, : qrr o {e i T 2(&])9} }E;J]\("Y‘ E;)e |
| J ' Lo ’ (2.129)
NV SN . o
M(p wo,) sing « e PR _
Ho= - — e s e Bl (r e e
o . ) ‘
y (2.130)
’,/;".;,; z / ) \\ .
- « of ' R 4 dné),, _ \\
where L(g) = Thee) G,(£,d) e , o (2.131)

f

In, the free space region the electric fieid cannot be ob-

tained through fhé use of the curl equation since o:= 0

there. However, the relation

YxE=-iwu H T (2.132)

{

must be used in its piace.

o , 3, 9E, |
- - dwug HoE R 55T 33 | (2.1332
| - .M, BE,
T Tl T (2.134)
P v
. aEe - '|' .aEr .
-, 1 U) Uo‘ HZ = T + F (Ee - W‘) (2.]35)

These equations must beﬂingegrated in ordeﬁ to fjhd.the

electric fie]d.

rer—g

Since EZ vanishes inside the conductor, the

conductor act§’*1ke a perfect reflector (iqfinite condug{

tivity) so far as Ez‘is concerned. Thus geometric imaging

of the dipole cak be used to find the solution” for E,.

Ramaswamy (1973) é‘bus that

2
¥

*

i
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2 2 .
, iMp w"0,c080 « _ )
E. = - ‘] : f {J (r £){e -6 (h+z) + e £(h Zhd&
z . 4 o ~N ‘
f (2.136)
Substituting (2.136) into (2.133) and integrating the
resultinhg equation with respept'to z gives’
2 2 -
‘lMu w E,51N0 @ ‘ 26, (£,0)
- 1 £ tLz : Tt Lz
EQ = - i f {e be - e )Jo(gr) +. T e
' J (Er)
(ea (er) - ——"1e e g (2.137)

The constant of,integration is zero Qince'E in (2.137) must
match &g given by (2 118) in the reg1on 0 < z < d at the
boundary z=0. Similarly substituting 1nto (2 134) and .

fintegrating w1th respectvto z

2 2 : |
iMucwo cos0 2G,(£,0)
1 , +
E. = = e f (e egZ)Jo(r £) * v e e’
Jy(r &) rn . '
R S S L - (2.138)

r )
. i

In this way, the fie]dé associated with a hdrizon—
tal dipole- above a 1ayered'conductor may be determined.- The

forego1ng so]ut1ons were used for all boundary cond1t1ons

1nvo]v1ng hor1zonta1 magnetic dipoles 1n this work. |
, , S 3
2 8 Three D1mens1opa1 F1n1te Difference Numer1ca] Techn1que

Many conduct1v1ty 1nhomogene1t1es of the earth S
magnetic varﬁation field can be studied byvus1ng two-.

\
|

-
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dimensional methods. However, some conductivity anomalies

such as the Alert, Tucson and Japanese affomalies require a

three-dimensional tréétmént. Also any embedded .anomaly with
approximate1y equal spatial dimensions requires a three-

d1mens1ona1 treatment.

Jones and Pascoe(1972) treated the local induction

problem in three dimensions for an 1mbedded cube. Maxwell's

i

equ§tions were solved bver a three dimensional uniform grid
by the use of finite difference approximations‘and the Gauss-
Seide]_iperative method. Lines and Jones (1973) extended
the work to a grid with variable dimensions so that ‘more
general angma]ies‘cou1d.be accommodated énd so that the

4 : s - . e
external boundary conditions could be better satisfied.

The basicimethod is descriked in Lines (1972) and is -
: o . .

f

summarized here.

If the curl of equation‘(2.2),is taken and

substituted into equation (2.1) then the resulting équation

]

for E is

4

vPE - 9(v - E) = iwuw, ok T (2.139)

where -the field*is assumed to have a. time dependence of

e(1wt) where w is the angu]ar frequency and the period is

X}

:suffic1ent1y long so that d1sp]acement currents can be
neglected. The conduct1v1ty o 1s that appropriate for the

région”being considered and Mo is ;he magnet]c permeability
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A11 components of E vary with x, y, and z

in Cartesian coordinates.

!

The above vector equation i

as three scalar equations:

\

can be rewritten

| -

H rel .
WPE aZEx o OE, OF, |
- + - (=t ¥ —5) wp_ g E . (2.140)
8y2 -822. &xv Yy 0z - o X |
b2 2 , '
0"E . a'E I (aEx aEZ) : (2.141)
2 2 T oy ‘ax 3z Wolg O by ’ ‘
X 9z
2 2. B
3" E ot oFE oF : ‘
——?£ * —_?E - %E (EYL * Eﬁl) wu, ok, ’ (2.142) =
9 X , 3y y C _ :
These thrée eduations are solved simultaneously for Ex’ Ey
and E ' | ..
z | g
In the discussion of the numerical method, only
e (2.140) will be considered. A simi]ar procedure . is used in

“evaluating (2.141) and (2.142). The three-dimensional finite

difference grid is shown}!% Fig. 2.15. The numerical formu-

lation for point '0' is considered. Jhe distance to adjacent /

~points in the grid.are in general unéﬁugl. Eight conduc-
“\' i .

1

tivity regions surfound the point, ‘0'. The subscripts of

the electric field components refer to the points on the

.‘grid’of Fig. 2.15 at which the components are evaluated.

e / In (2.140), the finite difference expressions for

BZEX/By2 and azEx/az2 at the point '0O' are evaluated by

<

-Uusing the first'threé»terms of a Taylor series expansion.

For 82Ex/ay2

o b

|
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Figure 2.15 Finite difference grid (from Lines, 1972).
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E J°E
- 3 x4 1 N X 2
E . = E  + (=% Yd, + 5 (—%%) d (2.143)
x3 X0 d3 + d4 3 2 nyé o 3
2
. , E - - E 3 E
! - . xd . x4 1 X 2
- and Ex4 Exo ( d3 + d4 )d4 Yo ( 2 ) d4 ’
3y o
S (2.144)

where the central differences have been used for (aEx/ay).

The value (azEx/ayZ)o is derived by combining (2.143) and

(2.144):
2
2°E
- 1 1 ] 1 1 1 1
(—2) = E_.(~ + (= - 7)) + E (= + - (3= -
.ayZ 0 x3 gg dytd, 'd, ~ d, “x4 EE dj+d, ‘dj
L)) se (e b / (2.145
d, xo' 2 2 , )
3
" The value of (azEx/Z)zz)o is found in a similar
manner: ’ )
2 .
2°E <
- 1 1 1 1 1,1
(—2) = E (-5 + (— - 37)) + E ( (-
322 o x5 gg dgtd tdg T dg x6 "? do+dg .ds
~ —~0) - E, (~7 —7) : (2.146)
dg o d ¢
dg 6

The mixed partial derivatives,va/ax(aEy/ay) and
3/3ax(dE /3z), are evaluated -through the use of central dif-
ference formuiaé To find a/ax(aE /ay) at the point '0', we
use centra] d1fferences, in ‘the x direction, of the central

difference expressions for aEy/ay nearest the point '0"



103

oE Eyg - E.v7 £ -
3 (X =_Aiw.{£1J3+ e ) yzs - byl (2.147)
ax ‘ay ', d *d, 3+, d,*d,
and ‘
2 (aEz) . ‘(Ezls - B SFZ?B EzZﬁ{}
Ix ‘9z d,*d, dg+dg dg+dc

(2.148)

Upon substitution of the finite difference expres-
. , 2. ,..2,® 2 2y e
sions for (9 Ex/oy )0,(8 Ex/az )R a/ax(aEy/oy)o and

a/ax(aEZ/az)0 in (2.140) the following finite difference

equation is obtained.

1 1 L
- Exo (Ef + g? * ;7 * d2) * EXBD3 * Ex404 ¥ ExSDS * Ex6D6
3 4 5 ) )
¢ [ (B3 - Eyyp - Euss + Eosg)
d]+d2 d3+d4 yl? yl4 y23 ya4
N ' ' . ,
* d;+d, (E2T3 LTS r i Ez?§ f EZ?EJ] Tl wl, v Exo
(2.149)

Similarly for (2.141) and (2.142)

1 ] 1 1
- Eyo (g? * £ * . * Eg) P EDy  EypDy * EygDs + EgDe
ol (E - B B+ B
d3+d4 d]+d2 x1 x23 x1 X2
. ] . - .
+ W (Ez-s-s- - EZ§-6' - EZH + EZZ—G)] -~‘| w UQ o Eyor
| (2.150)
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<

and ‘;JH
| 1
e (s L wl v Ly e D, fE,,D, ¢ E_.D, + E_,D
z0 2 2 2 2 2171 2272 2373 2474
d d d d
1 % %9 9
LI I Eoor - E o + E )
d.+d d,+d x15 x?2 x16 x26
5 1 72
+ HETEX (Ey35 ) Ly45 Ey36 ' [y46)] Ty 0 b
\i (2.151)
wheregl(’B] = l§ + E"l&' (%— - %—)
= d] 1 72 2 1
1 . ] 1 1
D, = — * (7— - )
2 45 4t G 9% .
] 1 1 1
D, = — + (7 - )
3 2 d.+d d,- d
o5, 37% %4 %3
1 1 1 1 ¥
D, = —5 * 5 (7~ - &)
4 di d3+d4 d3 d4
‘ 1 1 1
Dy =~ + (= - )
5 dg d5+d6 d6 d5
1 1 1 1
and D, = —5 + (=— - =—) (2.152)
6 dg d.+d, 'd;  dg S

These equations must be simultaneously satisfied
at each interior point of each regiun. As in the two-
dimensional work of Jones: and Pascoe (1971), the 'fictitious'

values, Smith (1969), must be eliminated by application of

[}

s
o

I
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the internal boundary conditions. The condition that the
tangé%tial components of é and H must be continupus e]iminaié
2/3 of fhe "fictitious values'. A‘prob]em arises when E is
normal to a boundary for which o is discontinuous. J must
be continuous across the boundary. [If o is discontinuwous
at a boundary, thén £ must also be discontinuous. However,
thi§ Lannot be represented by a point value at the boundary.
Therefore, the average of t gn each *side of the boundary is
used. When expressions of (2.149), (2.150) and (2.151) are
summed over all eight regions sufrounding.the point '0' and
the boundary conditions are applied to E, the'resulting
expressions are of the same form as in (2.]&9), (2.150)
and (2.151) with 'o‘ being replaced by o the average of all
the conductivities of tH; sur;ounding regions. This implies
that discdntinuities in conductivity are representedby tran-
sit{on zones between the regions of differént codductivity.
The resulting finite difference equations (2.149), -
(2.]50)5and (2.151)'are'§o]ved by using the Gauss—Se{de1_
relaxation technique for simultaneous linear eqdations.
Inttial values are required throughout the interior
'of”thegyrid to start the iteratfve-prqcessi As shown in the
preceding sections of this chapter, éhese initial values may
be determined analytically for a_]ayéred Half-space. In the

next section various source cohfigurations are considered.

and-the boundary conditions for thé finite difference mesh

o
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are determined. The solution of the local three-dimensionat
problem is then obtained for various embedded conductivity

anomalies and frequencies.
W
2.9 Electromagnetic Induction ip Three-Dimensional
Structures for Various SQg[qg_Eig]pﬁ

-

In this sectfon the numerical method is used to
calculate the g]ecfromagnetic fields associated with three-
dimensional conductivity anomalies. Three source field-
conductivity structure combinations are considered. A
uniform soufce above an island structure as well as a two-
diﬁensiona] non-uhiform source aone an L-shaped embédded,
structure and a hbrizonta] dipole above\an embédded square
anoma]y are studied. Profiles of selected electromagnetic
fié]d quantities and;ratios are. presented along with the
appropriate phases for various positions relative to the
anomalous struéture. Three dimensiona]vfigurés of the
amplitudes of the electric and magnetic field components
are given for each source field-conductivity structure
comhination. The source field effect is clearly ‘evident in
all profi]ésq

The electromagnetic fields due to one, two, énd
three-dimensional sources over 1éyered Taterally uniform
_conductors are calculated as discussed previously. 'For the
~one-dimensional source the analytical so]utfon for the

layered earth as in section 2.4, is used here. For the

\

\
N
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two-dimensional source configuration the Fourier series

\

me thod as described in section 2.6 is used, and for the
three;dimensiona] dipole sohrcezghe method of Ramgswamy
(1973) as deScribed in section 2.7 is ﬁsed. As pointed out
before, the electric field values thus calculated are used
to provide boundary and initial éonditions for the finite
difference mesh of Section 2.8 and from this the

~

electric %ie1ds due togthree-dimensional embedded conduc-
. ! o ' .
. tivity anomalies are determined. The magnetic field
quantities are then obtained from the electric field solu-

~tions by using the appropriate finite difference equation.

2.9-1 One-Dimensional Source Field

The one-dimensional source field cons1sts of a.
un1form sheet current f]ow1ng above a layered conductor:

In the present work, the E-polarization case is considered
~and the electric field component is polarized in the x-
direction: with the magnetic field component polarizéq in
the y-direction.

In the model considered, a uniform sheet current
flows above a conducfivity 1nhomogenefty ehbedded'in a two-
layered semi—infinite coﬁducting region with a plane boun-
dary, which approximates an island in!thé deep ocean for
geomagnetic bay'type-disturbances. The first layer is 4 km
in depth,qﬁd of!cbnductivity 4 mho/m. The ;écond layer
éxtends to infinity and has conductfvity 0.001 mho/m;

The embedded anomaly is.a 6 km square intrusion
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[

of the lower conductite layer which penetrates the top layer
tdlthé surface of the conductor. The calculation was done
for a frequency 'of 0.001 Hz.

From thg fofegoing solution the profiles of Ex’
Hy, Hz’ Hz/Hy ahd thetappdrent resistitity (ca]cuiated in
the manner of Cagniard, 1953) as well as their resbective
phases were calculated for 3 prof1]es at d1fferent positions
relative to the anoma]y as in Fig. 2‘]6', The prof1]es were
calculated over the range - 58 km to + 58 km in‘thevy
direction. Each field component or rat1o w1th the e&cept1on
of the apparent res1st1v1ty and . IH /H | was norma11zed with

respect .to its value at -58 km. A1l phases are normalized

to zero at - 58 kﬁ;

<

The first set of prdfiles is taken 8 km from the
center of the anomaly in the negatjve\x direction and isv‘
given in Fig. 2.17. The normalized e]ettric field amp@it;de
E,» exhibits a slight depres3ion in the field due to the
concentration'of chakge on the boundary. of the.andma]y. 'The.
normalized horiZontal magnetic field {Hy|,is reasonably
constant across thﬁs‘profi]e and changes by;oﬁly about 4
percent. Normalized |H | ‘and therefore  |H /Hy{ o }//,_<§\
'vary 1n the same manner over the anoma]y due to the constanE
nature of Hy.. Since bqth IEXI and [Hy[ are near]y constant\\ |
the apparent tesistivity (pa) curve is near]y constant at a \ .

value of 1 ohm=m. The value differs from the actuq]-res1s-

‘tivity of .25 ohm-m because:of the long period used since
. '\ . . v .



Figure 2.16 Anomalous structures with profile positions:

(1, 2, 3) indicated, o ‘,
! .
a. Anomaly assoc1ated w1th
one dimensional source

(Not to’scale) b, Anoma]y assoc1ated with
- ' ’ two-dimensional source

: : . Anomaly associated with
o _ three-dimensional source
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I ‘ ‘ . _ _
the calculated apparent resistivity3va]ue is influenced by

the lower conduct1v1ty reg1on The phases. are nearly
constant varylng by on]y a few degrees, for all prof11es
\

except H and H /H . As would be expectéd the phase of H

and therefore H /H shifts by 180° over the center of the

Il

anomaly, wh1ch is con51stent w1th the change of sign of H

there.

[ AThe second set.of profjles, Qaken‘a]ong the line
X = - 2 km is given in Fig. 2.18 and clearly i]]ustrates the
effects of the anoma]y.’ |E | incdreases over the anoma]y and

IHyI decreases. IHZI and. iH /H | markedly increase over the
anomaly. The apparent res1st1v1ty now shows a small

» 'increase in vafue over the anomaly and its value is’ two
orders of magn1tude be]ow the actua] resistivity va1ue The
size ot the anomaly is 1nsuff1c1ent to cause an apprec1ab1e
-change in the apparent resist1v1ty The phase of the elec-

tric f1e1d Ex, changes by a max1mum of 23 degrees over the

fanoma]y when compared to the phase of the e]ectr1c field at

I
-58 km. The phase of the apparent res1st1v1ty is similar

to. the e]ectr1c field phase since the phase of HyilS nearly
constant Aga1n the phases of H' and H%/H change by 180

- degrees as the center of the anomaly is crossed.

»

The thlrd set of profiles, taken across the center
of the anomaly. is‘given'in Fig. 2.19. This set is almost

1dent1ca1 with the second 'set of profiles except that ]Exl

|
is more sharply peaked as would be expected

N

)
I
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Three-dimensional amplitude proflles of the six
electromagnet1c field components are presented in Fig. 2.20.
The decrease in thg fExl component off the anomaly in the

x-direction due to the concentration of charge at the boun-

dary of the anomaly 1s c]ear]y evident. Over the anomaly

'

lE;l increases while lHyl decreases. [H, | increases over
the edges of ‘the anomaly in the +'y and - y direCtionsi
Near the corners of the. anoma]y both |Ey] and ]Hx| increase
s wou]d be expected due to bending of the fle]ds in these<5
regions. The vertical electrit fie]d;‘[EZ], increases on
“both sides of the anoma]y in the + X and - X directions.

This is because the current is def]ected vertically by the

island structure

2.9;2 Two-Dimensional Source Fte]d
The-tuo-dimens%onal source field is obtained from

a8 non-uniform sheet current flowing above a layered,conduc-
tior. Again,‘in the present uork only the E-poTartzation
case is considered s1nce it 1s most eas11y adapted to the
,;formu]at10n of the solut1on for the electromagnet1c f1e]ds
of a non-uniform sheet current source. For this case both
the horizonta] magnetic field component, Hy, and the verti-
cal magnetic fie]d component, Hz’ wi]ﬁ be}present_in the‘
solution for a layered conducting subsurface ' |
| | In'thi§.work a sheet current of rectangular
1ntens1ty distribution, s1mu1at1ng an ionospheric -

electrojet, which is 1440 km in width and centere¢



“ 116

1

Figure 2.20 Three-dimensional profiles of [E 1, €]

S H I, [H
field.

1 1E, 1,
\ source

yl and IHZI for one-dimensional
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, X
840 km from the center of the L-shaped evgedded anomafh
(Fig. 2.]65)Yis considered. This sheet'cu;?ent flows ag a
height of 110 km above the surface of the conductor. The
conductivity anomaly i§ embedded in-a two-layered, semi-
\yg1nf1n1te conducting region with a plane boundary which is
chosen to represent an average cont1nental vertical conduc-
t1v1ty distribution. The first layer is %0 ki in thi{kness
and of conduct1v1ty 0.01 mho/m. The second layer extends‘
to infinity and has a c0nduct1v1ty of 0.1 mho/m. The
embedded anomaly is L-shaped, as in Fig. 2.16b, and has a
. depth of 3 km.“The céndu ivity.of the anomaly is 0.000]

- mho/m and the calculation is done for a frequency of 0.1 Hz

in order to enhance the magnitude of the anomqlous field. .

~

Tﬁe boundary conditions for the finite df‘ference
mesh were determined by using the general method for two-
dimensional sheet current distributions'over']ayered conduc-
tors as described in section 2.6 above. These values were
then substituted into the numerical technique of,éection

-~

2.8 and the electromagnetic field solutions obtained.

" The threé profile pos1t10ns chosen for this anomal
1y are shown in Fig. 2.16b. .The profiles are ca]cu]ated
over the range - 38 km to + 38 km in the Y-direction. Each

1 field component or rat1o w1th the exception of the apparent
resistivity and IHZ/Hyl is norma]Ized With respect to its
value at - 38 km. ATl phases are normalized tg zero at - 38 km.

)/ The first set of profiles, which is taken § km ,11

~from the cente? of the anomaly in the X-direction is éhownm

;
!



118

in Fig. 2.21. The sloping character of the source field is
c]ear]}.evideht in the IEX]. |Hy| and |HZ|‘profiles. Since
the conductivity contrast is only 100 to 1, the effect of
the anomaly at this profile position is not evident for |Ei|
and |Hyl at this frequency. Also, as will be seen later,
the r;pid change in‘the source field tends to screen the
effect of the anomaly when the fields are normalized. The
effect of the anomaly can be clearly seen in the |HZ| and
IHZ/HyI profiles. The apparent resistivity is constant for
this profile and corresponds in value tb the conductiyity of
the upper layer. The phases are sedsib]y uni form for all
quantitigs for this profile position although the expanded
scale of the diagram amplifies any ehange in phan.

The second set of profiles (Fig. 2.22) is taken
2 km from the center of the anomaly in the X-direction.
These show effects due to fhe anomély. The anomaly is just
e(ident in thg IEXI profile while in the IH;I profile the
diﬁping of the profile due to the anomaly is apparent. <The
|HZ/Hy| profiles clearly show thé effect of the anomalous

structure. As-before, the apparent resistivity profile

'shows a slight increase ‘due to the anomaly. However, the

size of the structure is too small for the apparent resis-
. . . ’ B . -
tivity to have a value equal to the resistivity of the

anomaly which is 10000. ohm-m. A noticeable change in the

h)

phases of both Hz and HZ#Hy is now‘e?ident over the anomaly

. rs
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whf]e the other phases remain relatively constant.

The third set of profiles, given in Fig. 2.23 is
much the same in form as the second set of profiles. However,
the effect of fhe énoma]y is apparent over a greater distance
than before due to the increase in the width of the anomaly
at thi§ prdfile posgtion. Also, more clearly evident in the
]HZ| and |HZ/Hy| profiles is the indWCfion effect of the H,
component of the source field. The peéks in the |HZ| profi]e
~are not symmetric and differ in character.

In Fig, 2.24 thé three-dimensional amplitude
profiles of the,siu.électromagnetic field cpmpdnents are
preéented. The figures are distorted near the edges since
a non-uniform grid was used in célcu]ating the field Qo]yq
tions while a uniform grjd is used in the three-dimensional
presentation. .The anomalous electric field in the x-direc-
tion, lE S is barely discernible due to the rapid spatial
change}of the source field. Al1l. the other electromagnetic
field components clearly show the_effects of the non-
symmetric structure. The corners of the structures are
identified with large increases\in [Eyl and IHXI. IHQI

dips over the structure'andzthe'edgq?'of the structure

are outlined by IHZ| and ]EZI.

2.9.3 Three-Dimensional Source Field
A three-dimensional source field can be obtained
by using a horizontal magnetic dipole as a source as out-

lined in section 2.7 ~above.
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L‘In the ﬁodel considered a howizonta] magnetie di-
pole was b]acedf]7 km in the negative Y-dirgction’from;tﬁe
éenter df the anomafy.(sée Figffi16c) atla heiéht of 150'km
above the_surface of the anomal-y.I The dipole is pofarized

in the negative Y-direction. The conductivity anomaly is

embedded in a two-layered, semi-infinite conducting region

R

with a plane pounda?yﬂ' The first layer is 128 km in deptn‘

and of conductivity 0.21 x 1073

mho/m, The second layer is
. . : H ' . . .

of infinite depth and has conductivi%y 0.8 mho/m. "The

embedded anomaly {see Fig. 2.16c) is 16 ki square and 4 km

deep with its top at the surface of the conducting region
. - :

-and has the same_cohductivity as the lower layer. . This

cé]cu]ation.was cgrriedaout for a frequency of 0.075 Hz.
b . g P
The,two.proTile positions for this anomaly are

shown in Fig. 2.16c. The profiles are calculated over the-
| re -
range y =-42 km to y=+ 42 km. Each field component or ratio

‘with the exception of the apparent resistivity anleZ/Hylis

A - '
normalized with respect to its value at - 42 km. All phases

are normalized to zero at - 42 km. ' o s

The first set of profiles which is taken 24 km

| ,
from the center ?f:the anomaTy in the'X—directiﬁn is shown 
in fig. 2:25. The non-uniformity of the'50urCe\fie1d'is
c]ear]y evident in all theiamp]itgde prof%leiJ »fof[thfs
frquency and conductivity contf&st the anomalous stfucture”
is evident at this distanceé away fromlthé anomaly.

| '

. s i ,
There is an increase due to the source field

F
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 ‘fieLd goes through zero. \
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in the IEXI p}ofile” and ' a depression in the lHyl
profi]e;. The bgundaries of the anomaly are shown in the
|HZ|»ane:1Hz/Hy| profile by s]ith'beaks. The apparent’
resistivity profile exhibits a s]ight increase,iopposite to
what would be expected,;because of the increased electric
field in that region caused by the eharge coneeﬁtratfon,

The phases are nearly cqnstant'with the exception of the Hg

and HZ/HY phases which go throygh a change of 180 degrees

| ds the vertical component of the source field goes ﬂhrough

blf
zero. ' |
. | |

The second set of prof1]es, takep across the center
of - the anoma]y, is shown in F\g/ 2. 26 In these proffﬁes
‘) |
the effect of the anomaly is clearly displayed inyall

_ ' |
amplitude components and thejir phases. A marked depression

.in the |Ex| profile is evident. lHyl,increases rapidly'over

the. anomaly and the |Hz| and lwz/N§| prdfi]eslexhibit
two peaks- over the edges of the anoma1y. The apparent~resis-
t1v1ty var1es from approx1mate1y the va]ue of the re51st1v1-

ty of the f1rst layer to the value of the reS1st1\,ty of the

' vaﬁoma]y.' Increases in phase are]noted for Ex’ Hy and;pa

i

while the phases of H_ and HZ/Hy change by 180° as ghe source
1 ‘ ‘ .

In Fig. 2.27 the three-dimensjonal amplitude

o - . ‘ - ]
profiles of the six electromagnetic field components are

‘ preSented'for the three-dimensional source field case. A

i
! ' "
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1argé depﬁgssioh in IExl is present over the anoma]jlwhile
just outside thé anomaly the field inérea;es s]ight]y due to
the varying surface charge on the boundary'between thé |
conductivity regions. |Hy|'increases overvthe énomaly énd
the corners of thetanomaly are marked by increases in |Hx|
and JEy[.\ The sides of the anomaly are defined by |E_| and
|HZ|. The peaks of IHZIFare not of equal height becaus? of

the non-uniform source field.



CHAPTER 3 ! | )

”

A COMPARISON OF ELECTROMAGNETIC ANALOGUE MODEL
MEASUREMENTS AND FINITE-DIFFERENCE NUMERICAL
CALCULATIONS FOR THREE DIFFERENT SOURCE FIELDS. .

.

Two methods used to study efectromagnetic
induction problems are theoretical model ‘calculations aﬁd
analogue.model expgriménts. Most mathematical methods
requirg highly siﬁp]ified conductivity_distributions and
§ource fie]ds. Models composed of ﬁorizonta]]y 1aygred’
conductors and generalized source fie]ﬁs—p?esent no
serious mathematical difficulties. Problems in which
1atera1_condu§tivity contrasts occur are much less
tractable ana]ytich]]y and are usua]]y]solved by
numerical techniques. One such technique which 1end§
,itgé]f readily té a wide-rangé of thfee—dimensionaf
problems is the finite difference7méthod of séctign 2.8.
Various source fﬁeld»configuratiOns can be mbde]]ed by
supplying the appropriate boundary con&itions to the .
finite difference . mesh. In.this manner -the eiectromag—‘
netic field soiutions for embedded anomé]ies‘with thé
sam2 stratification at\hlt boundaries for various source
fiéld configurations can Bg found. Scaled'ana}ogue‘model

methods are appropriate to problems for which no

‘mathematical solution exists or for which numerical

130
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evaluation presents great difficulty. This method is most
readily adapted to problens involving high conductivity
cont;asts (of the 6rder of 104\» in which suitably shaped
graphite Bodies simulate highiy conducting regions such

as ore bodies or oceans, and concentrated salt so]utions.
simulate a poorly conducting host earth. A comparison

of results from the two ﬁethpds is useful in understandiné
the app{icability of both me;hods’as we]]_és gaining an
appreciation of the difficulties encountered in tnem.

One difficulty often encountered in laboratory
scale modef experiments. is the pfob]em of edge effects.
Sizeable edgé effests can arise in simulating inducfion
problems which inVo]vg uniform.source fields, since it is
often difficult to éenerate perfectly uniform fields in
the Jaboratory. Another problem in model experiments is
that associated withAthe finite dimensjonszof‘the detector
'pr‘obg‘s si.n(.:e a finite-sized detector simoothes out the()*
behé&ﬁour-of the e]ectromagnefic fields in regions where
the fields ' *ry rapidly, i.e., in the neighbourhood of a
rconductivity»discqntinuity. There is.a]sp a 1imj£ to how
accdrate]y a finiie—sized probe'can be positiongd. For

small sized anomalies the positiBFTﬁa‘Eng’aligﬁment of -

the anomaly is a‘very critical factor in determining the

character of anomalous fields. The alignment of tﬁe source:

field also becomes more critical as the dimensions of the

-
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current carrying device which produces it decreases.

In numerical modelling techniques a mesh of grid
poinfs is superimposed on the conductivity confi .ration
under gﬁudy so that the conductivity model is represented
by a number of cells of uniform conductivity. The
accuracy of the numerical method depends on the size of
the grid intervals as well as on the uniformity of grid
spacings, particu]ar]y for points near conductivity
discontinuities. The volume of the grid arraj must be
limited due to storage and computing‘time consiaerations.
This re;triction may 1éad to difficulties in the
selection of small and uniform grid spacings or:in.the
satisfaction of the houndarf conditions at‘greaf

distances'from the anomaly. !

1

3.1 Mathematical Analysis

A brief mathematical development, foliowing
k‘Dosso (]966); of the mode]]ingﬂprob]em follows. The MKS
system 6f units is used, with the c;nductivity expressed
in mhd/m._ Consider Maxwell's field equations for a

homogeneous conductor

BH”
VX_E_ +U:3—t=0 (3.1)
vaxH - Lo E =0 (3.2)

o

To write these equations in a dimensionless form, let

i
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L ’

E= ek o= hoH (3.3)
i ", o T “okm (3.8)
d = doD(-,_x t = tOT‘ no= 0 S (3.5)

where £, H, ke‘ km’ D, T and S are dimensionless numbers,

h oL d t nd o are tHe unit antitie
and eo, o’ "o o 9y t, 0 9, t u Quantities

of the electric field, magnetic field, dielectric constant,
magnetic permeability, length, time and conductivity,
. respectively. If we substitute (3.3), (3.4) and (3.5)

<

~into {(3.1) and (3.2), we obtain

. oH o
Vox B o+ u(w) =0 (3.6)
* ' JE

Vo< H - “(‘:)_Ti)‘k’._ yE = 0 (3.7)

* . .
where V is the dimensionless curl operator taken with

respect to D,

L 8 T S
and o S E ('e“) - (3.8)
. 0 0 : -
. ’
. . _— doeoke €, : \
B = —/— (=) - | (3:9)
' ‘to Mo .
d . . N ’ eo“\,
an vy = d o S(2) (3.10)
00 hO -

. quations (3. 6) and (3. 7) are dimensionless and have ‘the
same form as the original f1e1d equations. The solutions
to these equatlons are invariant under a change in scale

if the dlmens1onless coeff1c1ents w, B and y are invariant.

) S

>
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Hence, it is possdible to design a séa]ed model of an

actual geophysica1 electromagnetic boundary value

problem.

If we confine our attention to problems where

.t and u have the free-space values and let S = 1,
and e]iminéte eo/hO from equations (3.8) to (3.10) then
the necessary and sufficient condition that the solutions

be invariant under a change of scale is that

d \
—_.0 = =
T vconstant or dofo constant (3.11)

where fo is frequency and

dooo = constant . ‘ | (3.12)
pe s

If we let primed symbols refer to the
-geophysical dimensions and unprimed symbols refer to the

model dimensions, equatidns (3.11) and (3.12) can be
& , . ,
expressed as

df = d°f~ (3.13)
do = d7o” ©(3.14)
If displacement currents are neglected additional freedom

in sca11ng is obta1ned Equation (3.9) can be ignored and

by combining (3.8) and (3.10f

0fd2 = o’f’d’2 (3.15)



Equation (3.15) indicates the re]at]onsh1p
that must exist between the conductivities, frequencies
and lengths involved for the actual prob]em’and its
scaied model in order that the ratios of the Tield
components and phase d1fferences are the same for the

two problems.

3.2 Ana]ogue_ﬂode] Apparatus
A photograph of the equipment used is shown in

Plate 3.1. The mode] cons1sts of an overhead osc11]at1ng

field source (three d1fferent ones were used), a large

tank (244 cm by 168 cm and 76 cm deep) contaihing

concentrated salt solution (64 cm deep) of conductiv1ty

21.0 mho/m simulating the uniform upper layer of a poorly

conducting earth and a graphite block of conductivity -

0.8 «x 105 mho/m (see P]ate 3.2) which served as an anoma]y‘

. The graph1te anomaly used in the ana]ogue mode 1

measurements and a lucite mount des1gned and constructed

by the author to ho]d it r1g1d1y in the tank are shown

in P]ate 3.2. To minimize the effects of the concrete .' I

floor, the bottom of the tank was lined with a 5 c¢m th1ck o

graphite layer of conduct1v1ty 1.2 x 105 mho/m. Th1s

layer of graph1te acts as a shield for any remaining

field at the’ bottom of the tank. If the tank were much - . .

deeper (several skin depths) then the effects of the floor |

and earth below would present no prob]em -and the graphite
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Plate 3.1

“Analogue Experimental

Equipment
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layer would not bé necessary. Two stainless-steel sheets
Jining the t;nk'&ahls (para]lel‘to the beam which
supports the meaéurement\probé) and conneéted by a
copper wire placed outside the tank permitted the

“currents induged in the salt water to flow pafai]e] to
the source current (perpendﬁtu]ar to beam). Without
this arrangement the iﬁduced currents for two dimensional
soqrées;wou]q be ;onstrained to flow perpendicular to i
‘the soufce ;urrent near the wa]s of the tank. f

The eléctrif and magnéfié fig}d detectors,

Nmounted on the ends of luéfte rods, were éttached to a
moveable Tucite plate he]a.on the:rigjd peam abovq‘thé
tank. The vértical and horizontal hagnetjc field
detectors coﬁSGsted of twin coils Q,]O cm 1ong and 0.64
cm outer diameter. The coils were designed to have a low
inductance in order that thé resd;gnt_frequency would
be well abo&e any frequencies of interest The signai |
from the coil was monitored and amp11f1ed by a Tektronlx |
502 osc111oscope Thg amp11tude of the output of the

’osc11loscope was meésured‘using a Hewlett- Paékard VIVM
and the phase angle was heasured using a North Atlant1c
Phase Ang]e‘Voltmeter A reference:s1gna1;was provyded
by ausma1\¢;o11 situated at a fixed position near the
field sougk\ The‘average field a]ong the surface was

determ1ned by measuring the vo]tage difference between
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points 1.48 cm apart. The electric field detector

Eonsisted of three probes mounted in a lucite rod with

‘the points just protruding from the end and makiﬁg

contact with the surface of the salt Sblution.v The th

‘outer probes; f.48=cm apart, were connected by means of a
two;goﬁe shielded cab]e)to the’d}fferenfial input of the

Tektronix 502~osci11oscope Thé third probe, situated at -

the mid po1nt between the end probes, was connected to the

cab]e sh1e1d -and . hence to ground'on the osc1lloscope

~In this way the noise common jto both probes was removed. .

The amplitude and phase angle of the amplified éigna]

"were measured in the same way.as described for.the

ﬁagnetic field signaii'

3.3 Model Description

The geophysical model (see Fig. '3.1b),
cons1dered in this work is a h1gh]y conduct1ng body of
conductivity 0.8 mho/m which is 16 km square and 4 km
- thick embedded at-the surface of a poorly conducting,.
host earth 126.8 km thick:and of cconductivity 0.21 x,ff
107 -3 mho/m. The host earth over]ays an infinite ha]f
space of Conduct1v1ty 1.2 mho/m.  Three different souré€
field current distributjions are used in conjunction with
the geophysﬁca]{modeT; uniform, yg-aygand a horizonté]

magnetic dipole. The source frequency in each case is

0.075 Hz. ,
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POSITION OF HORIZONTAL DIPOLE AND ye® SOURCE WITH
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o

The model scaling factors used here are

"j—h
II'
ey
x
—
o

4=

The primed quantities refer to tne natural scale in the
geophysical problem, while the otners refer to the
'and]ogue model. USIng the above conduct1v1ty sca11ng
factor, graphite of conductivity 0.8 x 10 mho/q .
represents the nigh1y'60ndUCting body, of conQuctivity of
0.8 mho/m, : while the concentrated salt eo]qtion of |
eonduetiyity}21.0 mho/m_eimu]ates a poorTy conducting nost'
earth of 0. 21 x 1073 mho)m' The mode] frequency of.
30 khz s1mu1ates a frequenfy of O 075 Hz while a scale
1ength of T cm in the modeﬁ represents 2 km in the
‘neturaT scale. Thus an anghaly 8 cm square and 2 cm
thick in the model represents a geophysjeal anomaly 16 km
square and -4 km"deep For this mode]l frequency, the sk1n
.'depths in graph1te and in sa]t water are 0. 84 cm and
63.4 cm, respect1ve]y, wh1ch correspond to 1.68 km for
‘the sea water and 126.8 km for the 1and

The theoretica] e]ectromagnetic field solutions
for the three sources over 1atera1]y un1form conductors

v

can be ca]cu]ated for the geophysical model by various

o

o
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me thods. For the un1form source the analyt1ca1 solution,
of Jones and Price (1970) for a layered earth 1s used.
The Fourier series method of Hibbs ahd Jones (1976a,b)
is used. to obtaln the ana]yt1c so]ut1on for the ye -ay
-.source This source distribution, where a = ./120.,
is theoretically'approximated by 37 appropriately weighted
rectangular current d1str1but1ons of width 10 km and
these are given in Table 3.1. The rectangular current
d1$tr1but1on is approximated by one elementa] gaussian of
half w1dth 10 km as descr1bed in Hibbs and Jones (1976d,e)".
The’ current source f]ows at a he1ght of 110 km (see
Fig. 3. la) in the geophy51ca] model and is positioned
such that the fax1mum value of the current d1str1but1on
co1nc1des w1th the center of the anoma]y ' The analytical
so]ut1on for the horlzonta] magnet1c d1po]e s calculated
using the metnod of section 2.7. The magnetic dipole
polarized in the negative y dlrect1on is placed 17 km
from the center of the anoma]y, see Fig. 3,%a, at a
he1ght of 150 km above the surface

The' electr1c f1e1d values thus ca]culated are
‘used to prov1de the boundary and 1n1t1a1 conditions for
the finite d1fference mesh of sect1on 2 9 and from this
the e]ectr1c field assoc1ated ‘with the three- d1mens1ona1
embedded conduct1v1ty anoma]y is determined. The
anomalous e]qctromagnetiC;fields-due to'the conductivity

* .

structure are assumed to be zero at the boundaries of tne
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Table 3.1

Weighting Coefficients of Rectangular
Current Distributions

R e i i T S S AU U
o
=
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finife difference mesh. A 25x25x25 mesh of grid points
is used in nhé numerical method. After the electric
field is determined, the magnetic field quantifies are
obtained from the eiectri; field solution by using
approp?iate_finite’di%ferénce equations. A special
technique must be used in the t%eoretica] finite-
difference method ;ﬂﬂn both high co:%uctivity contrast

(>#103)  and high frequency (- .01 Hz) are used in

&

cénjunction as in this comparison. In the finite

- difference method an:érfthmetic average of the
conductivities‘{s normally used and works well in
obtaining Soiutibns even fof pigh conductivity contrast

as long jas the frequency is not too high. However in

'
/

the’high frequency case d transition one of fonductivity
'must be introduced such that the conductivity cdhtrast
is never more than 100. In the model this zone of

1 mho/m surrouhds_the anomaly

conductivity 0.21 x 10~
- Hust gnside the anomaly boundary and is éne grid spacing
thick. *This allows the electric field to vary more
rabfd]y across the anomaly boundary, now diffused, and
more accurately represent the ac%ual field there;

This technqué would also be helpful along the
sufface boundary wnere, the EZ caused by the anomaly must
be taken into-account. Since the conductivity i; zero

in the regiosn Z < 0 an infinite number of transition

‘ZZZSS would be necessary to allow for a conductivity
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contrast of no more than 100 at any one boundary. This
is not practical and was therefore not done. However, a
;™ layer of host earth.(v = 0.21° x 10°2 mho/m) one half
kilometer thick was placed over the conductivily
éonfiguration to help reduce the effects on EZQ This was
also warranted by tne fact that the analogue model anomaly
reqﬁires a layer of salt water (0.1-0.2 cm thick) over
the anomaly in order to make the e]ectric,field measure-
meﬁt;; Since EZ is used in.the calcu]atioa of Hy an
effect can be exbected on phat component which will be -
seen in the section 3.4. ;
Invthe ana]ogue model the current sources were:

lln the fo]]ow1ng manner. A reasonab]y

constructed
uniform source f1eld was obta1ned by using two parallel
current carry1ng wwres separated by abd1stance of 2.4 m.
and situated at a height of 1.2 m above. the surface of
the salt solution (Ramaswamy et ali, 1975). In the model
coordinate system, Fig.v3 1b, the current f]ow in the.
source f1e1d is- along the x- d1rect1on The yevay source,
where a = 1./60. (all d1mens1ons in cm), is composed of
° 37’&urrent carrying w1re§, see Fig. 3.2, in which oﬁly
every"fifgh wire is used. The wirqs are aligned parallel
to the X axis and fhe current carrying elements are 5 cm
apart. Thus each current element approximates a gaussian.

~current distribution of 10 km half width in the

1

geophysica]“mpgséég
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Figure 3.2 Current Carryingv_;w‘i re Grid forze'ay Source
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The amount of current which flows in any
particular current carmying element is controlled by a
resistance'placed in series with the wire. The values

o~ ) .
of the resistances varyainversely as the coefficients

of the rectangular current distributions in the \
geophysica] source. .The. th1rteenth wire (thegelement B
rY ~y
w1th max1mum current) is placed over the center of the *
-

anomaly. The gr1d of w15es is 51tuated at a helght of

55 cm above tne surface of the sa]b so]ut1on The

&
validity of thgganalogue mode ] for ‘the overhead magnetic |
dipole source h&& been tested earlier (Thomson et al. .
:]972). The magnet1c dlpole is modelled by a current =
1oop'of_rad1us 6.4 cm placed at a neight of 75 cm above . i
.the surface of the salt water solution. Th1s h819ht
corresponds to a hEIth of 150 km 1¢‘the geophys’cal :A\WL
_mode] The curnent loop 'was placed at (x =0 cm, y.¥ e8.5

cm) with the moment of the d1po]e po]ar1zed in the y “fﬁ

direction as shovn in Fig. 3.1b.
3.4 Results }
The.parameters which are common]y used to“
describe the effect of conduct1v1ty contrasts on the
geomagnet1c°f1e1d are the ratio of the amp]1£%ye of the

vertlcal magnet1c f1e1d (H ) and the component of the

-

"hprazontgl magnetic field (Hy) that isfdbrma] to the

;ﬁkoCe current, anmd the apparent resiﬁtivity (oa)'whichﬁ

oo
o

%

“a.
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is defjned as S -
2
Y2 T hhT&' 0
. y ‘
calculated in the manner of Cagniard (1953) Profiles of

tnese quantities and their re]evant phases alo-g with the
amplitude and phase prpflles of the electromagnetic field
components frgm up}ch fhey are der1v@ﬁ are ca]cu]ated in \

the ;heoret1cab»model and measured 1n the analqgue model

"for 3 pg&lt&ons re]a}lve to the anoma]y (see.F1g. 3.1b)

fan'each source “field conf1gurat1on The profiles of the

theoretfcal and ana]ogue models are compared over the

.-h

‘range -40 km to +40 km 1N’the y d1rect1on for the uniform

‘whlch ‘the calculations are made along the proff]es are

&

' source and +42 km for the other source€s. - The points for

y = *0,2,4,6,7,8,9,10,12,16,24,40 km for the uniform

‘source. and y = +0,2,4,6,8, dO 12,14,18,26,42 km foP the

othér'%burces‘_ E n field component or\rat1o with the
except1on of the apparent resfst1v1ty and. |H /H | is .

normalized wWith respect to its va]ue at -40 km or 442 km.

t

i Al phases are norma]lzed to zere at -40 km 0r‘-42 km.

3.x.- e

The pos1t10nsbo£rthe grof1]es, ak showr in Fig. 3.1b, are

across the center of the anomaly, x = 0 km, fOur kilometers "

fromnthe edge qiathe anoma]y, X = -4 km, and outs1de the

Aanoma]y four k1]ometers From the edge for‘the un1form i

source, X = -12 km, and ten k1]ometers from the edge,

x = -18 km, for the other sources. Also three dimensional

- ¢ " Ny -
g i ’ ‘ S
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figures are given to‘shom the comparison of the electro-

ymagnetic field combonent§'for the theoretical and anélogue

model. The range of the profi]e§ in the y direction is the
same as previously and the positions of the profiles in .

7

‘the x direction are \ = o,-2,-4,-q;-7,-8,-9,-10,-12,-]6,Eqif

4
Dy

. (.vi

for the uniform sourc. x = o,-z,-a,-6;-8,-10,-12,~i$]y.'

-18,-26 km for the bther sources.” The fi&hres are digi T

torted near the edges since a uniform grid spacing. is .

used in the plotting. : v

_ v

l3.4.1 Uniforg Source Resd]té

The brofi]es and three dimeﬁsiona]'figures of
the résults for the‘unjform source comparjson are shOwn“*
in Figs. 3.3.€E 3.6."fﬁé first set of profiles given igu)
Fig. 3.3 is taken 12 km from the cenfér of the anoméiy ;q‘ b
‘the negétive x direction. The normalized electric fielap
amplitude, lExl, of both the .analogue model measurements
and .the thebret}ca1 calculations éxhj%;ts an increase in
the fié]d due to fhe concentrapion 5§§charge'on t,pg:l
vertical Soundary of:the anomaly. The ndnma]i?ga~ﬁonizon-
taf,magnetic'fi¢1d, lHyl, offthe‘ana]ogu:bmbde] is

v

reasonably constant écrqss this profile as is the

: . AR
theoretical model. The normalized 1HZ| curve in the
theoretical model exhibits a small anomalous field in

comparison-to the. anaogue model which exhibits almost
v : j e , \

- .no anomaloUs,field. S}nce.the electric field in the -

- %
&
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Y

w1th norma11zed phases for un1form sourqﬁ?,,.x;
field and prof11e 1.

. _ - theoretical calculation ¥ »

+ analogue model
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theoretical model varies in a less abrupt manner and over

& : r .
greater spatial distances than the analogue model electric
' | a

- field, it could reasonably be expected that the anoma-
Tous magnetit field of the theoretical mode] will also
vary over 1af§eh distances than the analogue model
anomalous magnetic field. This is the case for theleZ[
.field component. Also the magnetic¢ field of the ana]ogue
model at-y = '+ 40 km is greater than that of the
theoreticai model due to some non-uniformity in the
ana]oghe.model source field, as can be seen in the

| H /HC1 profi]e. Th1s will tend to lessen any anoma]ous
field characteristics in the analogue model curve ‘The
lHZ/Hy[ profile shows the small amount of non- un1form1ty
in the ana]ogue model source; field. The apparent : ,
resistivity curves of both the theonqt1ca1 and ana]ogue i
models are approx1mate]y the same value of 4. 76 x 10'3

ohm/m, the actual resistivity of the Poorly conductingn

\host earth.

1
\

The ana]og%g curve exhibits a slight increase
near the ‘center of the prof11e, which is due to the
increased e]ectr1c f1e1: in that region caused by surface
charge concentrat1on on the'anomaly boundary. The phase
comparisons agree qu1te well and are near]y constant with
the exceptyon of the HZ aﬂf Hz/Hy Bhases %hich shift o

3

through 180° over the center of the anomaly, which is
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consistent with the change of sign of‘HZ there,

| The second set of profiles, taken along the
H“ne X = -4 km is given in Fig. 3/4. The effects of the.
anomaly-are clearly indicated. ]Exl decreases over the
anomaly for both the analogue and theoretical mode] . The
theoretical calculation does not vary as rapidly over.
the edges of the anomaly as do the ana]ogue mode | reSults
due to the conduct1v1ty trans1t1on zone wh1ch has been
introduced at the boundar1es of the Aanomaly of the

theoretica] model. lHyl increases over the anoma]y for

the theoret1ca] and analogue mode]s ‘The theoretical

model exhibits a greater increé@e which can be j

to thqﬁabsence of a trans1t1on zone at the surfPer.

‘ The inclusion ofbﬁ transition zone allows the vertical

e]ectrlc,f1e1d EZ to vary more rap1d}y and thus 1ncrease
oE

,tha accuracy of the 375 term in the ca]culat1on of the

hor1zontal magnet1c field Hy

. [Hzl and PH /H T are {ncre;sed'marked]y over
.the bo:ndar1es of the ‘anomaly for both the tnepret]ca]
and analogue mode1 as would be expected. A spread1ng of
‘the -peaks of the theoretxca1 curve is noted for both
profiles. This 1s_attr1butab1e to the slower variation
of the edectric field cbmppnents:in the theorefical‘mode1.

~The apparent shifts in the minima of the lHil and ]H /H [

curves are due to the difficulty in p051t1on1ng the

i
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. anomalous sfrubture.in the analogue model. The comparison

of the apparent resistivities shows the effect of ghe

anomaly. Thg theoretical and analogue calculations véry |
}rom thé,va1de of the poorly conducting host earth,

;w4;26 x 103 ohm/m, to appAOximate1y the value of 'the highly
conaﬁcting‘anomaiy, 0.8‘ohm/m. The shape of the tneoreti-
cal curve near the anomaly resembles the shape of the
lExI curve. Tne phases of Ex and Hy increase over tne
boundaries of the,anomaly which can be attributed to the
transition zone while the phase of o, shdws a small
génera] increase over~the whole anomily. @gain the phases
of HZ and Hz/Hy change by 1805 as the center ot the. anomaly
is crossed. The phase comparisons for thjs profile,
agreelreasbﬁably'we11. Néar the boundaries of the anomaly
Ismall discrepgncies are noted. ,

The third set, of ﬁrofi]es, taken gcross the
center,of the anoma1y,lx =0 km; is given in Fig. 3.5.
The shapes of the amplitude curves in'this profile are
much the same aS‘iﬁ the second profi]eﬂ. HoweQer, the
‘|Ex|’ p, and IHZ)HyI comparis;n curves agree more closely
in this profile. The phase comparisons are similar to
the last profile with the Hz and,Hz/Hy phases slightly

‘more accentuated. | \

The three»dimensiona] amp]itude*profiﬂes of the
compa(iSon of the three electromagnetic field c0mponent§

is shown in Fig. 3.6. The |Ex|, |Hy|Aand |HZ[ three
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dimehsional profiles for the theoretical model are shown '
in Fig§. 3.6a,b,c and for the ana]ogue mode] in Figs. 3.6
d,e,f.’ Each figure is scaled individually. The inc}ease
in [éxl just.outside the.anomaly‘due to charge on the
bouhdary is c]early‘evident in the analoque mhdeL
Fig. 3.6d along with the decrease in the field rver the
aﬁomaly. In Fig. 3.6a the smoothing eff -t of the finite

difference calculation can be seen.~ In Fig. 3.6b and

" 3.6e an increase in |Hy| can be seen for both models.

The erratic tehaviour of Fig. 3.6e is due to the small
- K . .‘\’;‘: . " . »
variation in the lHy] field over the anomaly which when.
4.0
combined w1th the sca11ng of the three d1mens1ona] f1gure

-shows the s]1ght errons in manual digitization of the

'iéha]ogﬂe,model records. The value of |Hy| over the .

boundary of the anomaﬂy para]]e] to the Yy axis in Flg 3.6b

|
is higher- than would be expected and can be attr1buted to

bthe transition zone. A compar1$on of Fig. 3.6c and

Fig. BVGf shows that |HZ| increases over the edges of the
anomaly for both models. Howeve'r, tpe thEoretical mode
shows an.increase over the Eoundéry of the anbma]y‘paralTel
to the y axis, again due to the transition zone there.

The discrepancies noted in fﬁe magnetic field
components between'the a;§1ogue and theore;ica] models
occur méin]y near the transition zoné at the edge of ﬁhe
anbmaly; }n»the analogue modgl rapid spatial va?igtjons

’

due to surface charge distributions are noted in the
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electric field for prof1les JUSt outside the boundar1es

of the anomaly. Such large var1at1ons ,do not occur in ] #
the‘theoretica} hode] since the fields vary slowly through
the transition zone which represents the boundary anc ‘re
charge distr?butions there are more diffuse and the
ae]ectric fields associated with them are less. S1nce the
theoret1ca1 e]ectr1c fields show less effect due to the
charge in the trans1t1on zone, the magnet1c f1e1d

<

solut1ons are consequentiy affected and higher‘values of

magnetic field are thus generated in the_ theoretical

| model near the transition zone. The smoothing introduced by

the transition zone is greater than thatof the finite size

5
of the sensor in the ana]ogue model since the width of the

trans1t1oh'zone is twice the probe spacing 1# thes>ensor. !
\3 4. 2 Two- D1mens1ona1 Non- Unwfonm Souﬁée Results
- The profﬁ]es and three d1mens1ona1 ‘figures of
the.relets forithe ye Y source comparison dreé* shown in
Figsf 3.7 to 3.10. The f1rst set of ‘profiles (Fig 3.7)
“" is taken 18 km _from the center of the anoma]y 1h the
Qegat1ve x direction. The'l | lH r and "p, compar1son

: curves agree well and are s1m11ar 1n %hape t&wﬁhe uniform

source curves ¥or the prof11e except for a ﬁléght t11t1ng

due to the non-uniform source fze]d The lH | and

compar1son curves show a more- def1n1te source effect in

4‘!\"

- the form of a general decrease in the amplltud§ across

~

%
the region of interest. The thecret1ca1 ~and qnw]ogue

models .agree well at the y = + 42 km points the#eby

verifying the theoretical boundary valwe calculations df

o ‘ -

.
% .
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Figure 3.7. IEXI, lHyl, | H 21 ]H /H l and.p profiles

Wwith normalized

phases for 3 two-dimensional
source f1e1d and profile 1. - - B
s theoret1cal caqu1~.1onf
: + analqgue model :
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Figure 3.10 Three- dimensiomal prof11es of |E |, |Hy| and

IHLI for the ye "4 source field.
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Theoretical profiles (a,b,c) '

. .Analogbe@’rd‘f'ﬂes.‘(q,e,f)
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Hibbslandsdon€§ (TQJéd;e). Over the anoma]ytthe
1 theoretical curve shows 2 smaTT anomalous field for
B N the same reason as in the un1form source case whlleo
R ‘;'; ‘m‘ the anaTogue curve dﬂ‘s not. The éffect bf the source
. © field: is. greatest on. the [H | and |H /H | proflles for
th1s source f1e1d conf1gura¢1on Only a slight source

, effect was noted ?nythe othe# prpﬁnles The phase

A - b a8 .
ﬁ!t comparisons agrée qu1te well and are nearly constant for

gomlrtt

. . E_, H and Py The phase% of H and’H /H‘ yary 9]1ght]y !
. 4_] .:"‘X .‘y .

'?-oéer the anomaly for the ana]ogue modeT - : R “'y
'ff '.'.d" The., se;ond set of proYiTeS. &aken dTﬁng the. .

-‘ s 3

@l@%w‘line x = -4 ktn‘qs gqven.”n Fry. 3. 8. The effects of
: "both t(ft‘ anomaﬂy aﬂd the, source ﬁeld are'cleahy SRR

wy T,

1nd1cated vThe 1E 1 qurves agree qufte well With the
effect,bf thg tran51¢1on zone cTearTy ev1dent The
. |

source f1e]d for both‘j@ﬁels 1ncreases,fronrthe negatiye .

. to p051t1ve y reg1ons ' N e
. . .o "3 . LG TN , s -
*‘f“” ' lH | 1ncreases over tﬂe anomaly and ttﬂts

upward sllghtly due to source effect in both ,the =~

\
1

| .
theorethaT and analoguggmodels The larger 1ncrease in

* lH | for the thgbret1ca1 model occufs for the same

.

reason .as gvven ear11er for. the un1form source. The

P . ’
/-smaTT peaks in the lH \ prof1Te at y = +8 km are due to

[

L. - the' t?ans1t1on zones at those pOl%tS IH | and- lH /H ¥

1Mcrease over thgredges of the anomaTy for both

”
R . . T N .
. . ' .«
‘ v
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45.43, theoret1ca1 and ana]o&gz modefs though 1ess in the case
A 3

v'

[}
A

: phase change wh

~increase over the anomaly than invthe previOus profile.

\ ’ . AL o
g : \ o
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ST

.

of the analogue model. The peaks are now nonvsymmetr1c

Both ana]ogueqipd theoretical 4urves exh1b1t the same
behaviour. The tomparisphhdf'the appagrent resistivities
shows the effect of the anomaly but no spatia] iariatien of
apparent res1st1v1ty due to the non- mnform source ts ev1den4

Thephases of L and Py increase sllght]y over the boundaries of

<3,

the anomaly for the theoret1ca1 ca]cu]at1on The phase of hy u

remains constant in botW analogue and theoretical model. The phase of

HZ,and H /H dips ;o 60° at y= -8 km and . 1ncreases to +60° .
. N l .
at y = +8 km over the boundar1es of the anoma]y for the

analogue mode] At y = +42 k. the phase of the ana]ogue

,mode] begins to dsﬂp$ase as a consequence of the ]800 ; d¥#>

place outs1de the’ range of 1,}

- »

on—un1form'source The ph&se ) o ?f N

‘\
1nterest *due to

< curvies of the theoretlcat model exhibit approx1mate?y r

\3 ‘9 ta

the same behav1our as the analogue mode] but due ‘to.the .

t

'tran51t1on zones the curves do not co1nc1de

4o - The thlrd set of prof1]es taken across the

Al
ot

hcenter of the anomaly, X % Oéiﬁm'1s given in Fig. 3}9.

_,.‘

The shapes of the ampllfupe cumyes - in th1s profile are

't bﬁ
uchhthemsame'as in F1g. 3. 8 wfih the except1on that the

©

lExlxaﬁ ‘ba comparlson curves agree more c]ose1y in this

profile. The |H | comparison curves show azgre&ter

‘ i
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Both the analogue and theoretical |HZ|, IHZ/Hy[

] .
comparison curves are more peaked over the boundaries
of the anomaly. than in the preceedhnd profile. The»

phases of Ex, H; and E /H are constant for both models.

- .

“ The phases of H and H /Hy ar Vf the same character as

the previous proflles with anlanalogue model phase

\ .
decrease to -90° at’'y = -8 km and increase to +90°¢ R

. Wy
‘ d

The three dﬁmensiona] amplltude prof1les of
5

at\y = +8 km.

.the compar1son of the three e]ectromagnet1c field o

Y.
three dimensional profi]es for the tneoret1ca1 mode] are

‘componentsare shown in ;19 3. ]0 The IEXI; [H | and IHZI

showh in F1g 3.10a,b,c and for the ana]ogye model i
Fig. 3. 10d e,f. Each figure is sca]ed 1£§1v1dua11y |

" . .As before ‘the 1ncrease in ]E | JUSt outside the anoma1y

» Lo X

fdue to the charge on the ‘boundary is evident ‘in the
’ana1ogue model, Fig. 3.10d, along with the decrease ih the.

' ?1e1d over the anomaly. In an 3. ]Oa the smooth1ng

effect of the trans1t1on znne crn be seen In Fin -3.10b

\

\ ' .
and'Fig. 3. 10e an increase 1n']Hyl can be-seen for .oth-
mode]s ~When compargd with the: three d1mens1ona1 f1gures

-ay.

for the mn1form source the- effect of the ye ) source is

ev1dent in the tilting of\the ]H | profiles. Tne value
of IH | over the boundary of the anomaly para]leh\to thei

y axis is h1gher than wou]d be expected: due to the
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v )

'Jl‘lncreases over the.edges wof the anomaly in both profiles.

170

1,tran51t10n ;m‘F\af”g ‘the un1form ”?rce case. A ‘
| e

o fo %6hpar1son of F1g 3.10¢ and Fig. J¥;3f Shows that IHZ}

|

- The source field ceuses non-symmetry in the pedk values.

As before an increase in the theoretical IHZ[ figure is
. . a« \ .
noted over the boundary ﬁf the anomaly parallel to the

y axis.,
i

3.4.3 The~Horizonta1 Dipole Sourte Results : | .
The profiles andvthree dimensiqnal figqres'of

the results for the‘horﬂzontal dibole §ource cbmpariébn‘v

ére shown\inhFig. 3.11 to Fig. \3 14 The f1rst set of

profiles, Fig. 3'1] is taken 18 km fnom the center of

oy
the anoma]y 1n the neg?‘}Ve x*d1r ion.: ¥Fhe. _concentration
Sth'e anorﬁ%]y is, ~clear1y <&

of charge on the bound
evident in th analogue " €l electr1c Fleld lﬁxl |
pro?ile Also the non- un1form source’ fie]d and Tts,

effect on the anoma]ous e]ectr1c fKe]d is apparent

iy

The theoret1ca1 curve>agrees well with the analogue curve

confirming the theoret1ca1 boundar{;val i§a]culat10n of

&

Ramaswamy (1973) used here The magnetlc f1eld |H | ) s,

vlprof11e of the anaﬂogue mode] shows the source field Ny

@
variation but 11ttle effect from the anoma]y. The\

_theoretjcq;afield curve increases from hehatiwe to

%osftive<y buﬁvl; an'ihSUffﬁcient amount fb exattly match .

¢
the analogue curve. - This misalignment of the curve is
L 4

\ "

T
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.

. Figure 3.11 IEXI, lHyl, IHZI, IHZ/HyJ and »_ profiles

. With normalized phases for the hérizontal,
: dipole source field and’profile 1.

t theoretical calcula on ’
P

+ analogue model - Joew
3 ,
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Figure 3.14 Three-dimensional profiles of |Ex|, |Hy| and
IHZI for the horizontal dipole source field.

Theoretical profiles (a,b,c)

Analogue profiles (d,e,f)
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| o
explained by.ihe fact.that the value of the maghetic fieyd//’
at y=,;42Akm used to normalize the Curve is slightly less
accurate due 'to the wider grid sﬁacing'used at that poiqi;
This, combinéd‘with the 1arger spatial variation of the
seurce field, serves to accentuate the misa]ignment When‘
compared with the [Hyl profi]Fs.of other sources. Thellﬂz]

and IHZ/HyI profiles compare quite wellgwith this profile.
The théoretical 6uryes show a slightly more ;nomaﬂoUSvfie]d
'és was the case for the uniform source. The appxrént resis-
t1v1ty has the value of the poorly conductwng host earth

4, 76x ]03 ohm/m, for both models. .The ana]ogue model curve
shows a slight increase ovér the anomaly due to'fhe
increased electric field. This increase is-not as large as
noted for previous sourcesvfor thi§ profile. This is a .
source effect due to the fact that lHyl has a ]arger value
over the anomaly for the horfzpnta] dipole source. fhe
~theoretical curve is Slighﬁly'higher than the analogue

curve due to the slightly lower value of the theoretical

[H curve, The‘phase/comparisons agree réasonab]y well

yl‘
and are nearly constant with the exception of the H and
, Hz/H phases which sh1ft through 180° at the minima of
the amplitude curves of these quantities.

The second set of profiles takenvalong_the Tine
x = -4 km is given ?h.Fig. 3.12. As before the effeéts
of tﬁe anomaly are clearly evid&qt-in this.profile. Both

~

the analogue and theoretical |Ex1cufves decrease over the
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anomady by approximately the'same amount and~ethﬂit the

same source field with the é&cept10n of the effect of the
’ .

transition zone. e T

o Near y = +42 krni.both the theoretical apd
analogue |Hy| curves @ssu@e the.same relationship as

in the previous profi]e, hoWever -over thepdnoma]y both °

P
IJ

curves now increase The theoret1ca1 curve t11ts
/

upward in the positive y d1rect1on over the anoma]y w1th

!

" the two small peaks at y = +8 km The ana]ogue“curve

exhibits a decrease over the edge of the anoma]y at o
y = -8 km and an increase over the edge’ at y & +é km.
The |H | and |Hz/Hy| curves for the theoret1ca]

1 o

and'ana1ogue mode]s exhﬁbit two non-symmetryc,peaks over
the edges of the anJma]y along with the profi]e,pf‘the.
source field, The theorettcal‘curve peaks are‘s]ightly
‘h1gher a%f wider as was the case for the un1form source

pThe theoret1ca1 and analodue apparent res1st1v1ty curves

- vary from approx1mate1y the poorly conduct1ng value of the

host earth, 4.76 x 103 ohm/m, to the value of the h1gh1y

conducting anomaly, 0. 8 ohm/m. The phases of E and pa !

1ncrease s]1ght1y over the boundar1es of the anoma]y for

~the theoretical calculation which can be attributed to the -

transition zone at the boundaries. The phaqg’of'Hy
remains constant in both the analogue and theoretical

models. The phase of-Hz_and‘H;/Hy_dips‘to -60° at

>
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-

y = -8 km and increases to +60° at 'y = +8 km over the
boundar1es of the anomaly for the analogue mode] A 180° ©

' phaseyshift is noted at .y = +18 km due td the “source

i

f1e1d}1n the analbogue model The -phase' curves of -the
<
theoret1ca1 mode] exhibit f1rst an 1ncrease and then a

o

decreaic at' 'y = 8 km due to the trans1t1on zone. The

theore cal curve then remains constant unt11 the 180°

/

phase/ﬁh1ft at y = +18 km : | J

The third set of prof11es taken across the

. centek of the anomaly, x =0 km, is g1ven in Fig. 3 ]3

As waﬁLthe case for the prev10us sourcés these prof11es

have much the same shapes for the amp11tude curves as
L 2

the pre§1ous proflles of Fig. 3.12. The IExI and p

: .\ ‘ .
comparxsqn curves more closelyAagree in these profiles.
. ! .

The trendF of the |H, ]|, LH | and |H YH-|_curves seen in

Y

: the prev1 us prof11es for the ana]ogue model are fully

def1ned in this prof11e. The increase of the theoret1ca1

|H | curve is more pronounced The phase profiles are

I}
much thelsame as in the prev1ous prof11e

/

// The three d1mens1ona1 amp11tude prof11es of the

A

‘ compahﬁson of the three electromagnet1c f1e1d components

. |H
| y
dimensiona]'profiles for the theoretical model “are shown

x| | and [H, L three-

T An F1g 3. 14a b CMth for the ana]ogue model 1n Fig. 3.14

d e,f and each ftgure is sca]ed 1nd1v1dua]1y as before.,
. ’ 8

~
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As w1th the other sourcegqthe increase in IEX] just

outside the- anoma]y due to-the charge on the’ bOundary is

/ \
ev1dent 1n.the analogue mode], F1g. 3.14d, along with

the decrease’ in the fie]d over the,anoha]y. In Fig.
3.14a -the smooth1ng effect of the transition zone can be

y!
and [H,| profiles for the ana]ogue mode] Fygs. 3.14c, f.

seen. The source effect is c]ear]y evident 1n1the | H

The values of the theoret1ca1 IH | and |H ] curves,

'Fig. 3.14b,c, over the boundary of theﬂanomaly para]]e]

to the y axis are h1gher than would be expected due to

the trans1t1on ‘Zone. A compar1son of Fig. 31]4c and

. Fig. 3.14f shows’that |H2| inqreases over tﬁi edges .of

the anoma]y for both the theoret1ca] model and analogue

model. However, the ana]ogue model varlat1on of |HZ| fs'

! ] <

less accentuated.

3.5 Summary o %-'\

The two very d1fferent methods foﬁ study1ng

electromagnet1c perturbation problems show genera]
'agreement The cond1t1on of a gradua]]y chang1ng o

\ e]ectr1c field through transition zones in the theoret1ca1

J

v
e

calculat1ons 1eads to differences .in the reSu]ts near” Fif o

the boundary of the anomaly espec1a11y for the magnkx1c

E;’( 4,
f1e1d Thns effect however, has- been lessened byﬁthe

. function of the frequency, the conduct1v1ty contrast ‘and -

Y

K

inclusion of the trans1t1on zone. Th1s effect 1s both a. g
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to a lesser ektent‘the grid"spacing' The solutlon over\

-

,,,—ftﬁe/;;emaly and at ]arge d1stances agrees well w1th the

X -
analogue model thereby conf1rm1ng the boundary cond1t1on

Y

-

v ca]cu]at]ons of H1bwaand Jones (1976d, e) and
Ramaswamy (1975) The frequency, 075 Hz, together
w1th the high conductivity contrast tests the limits of
the’ approx1mat1ons in the methods.- It is seen that a
transitien—fghe must be intreduced<in'the numerica]
method to a]low’the fieids to vary more rapidly. For
1onger periods: or lower conduct1v1ty contrasts the
fields vary less rap1d1w and are better approx1mated
‘part1cu1ar1y in the numerlcal calcu]at1ons. It has thus
been instructive to examine the possible Timits on-the
ahproximations applied to'the‘iterdtive ﬁrocess due to the -
comp]exity of the process and the iarge number of

configurations which can be modelled.

{



) CHAPTER 4

-

A STUDY OF PERTURBATION AND INDUCTION ARROWS FOR
VARIOUS CONDUCTIVITY CONFIGURATIONS AND SOURCE FIELDS m

2 , : ' .
<:j The numerical methods of Chapter 2 are used

tp ca]cylafe the electromagnet{c fields associated with

three dimensiqnaf conductjvity_anoﬁa]ies. The .calculations

were'done for thfee source fields and threesconductiv%iy.

cbnffguratibns.. A uniform field oriented'jd'Qarious |
~directions §glative‘to the‘anomaly is considered first.

The transfer functioﬁs and related perturbation and

inductioon arrows associatéd.With the fields are calculated. /?//
‘. The results show that tﬁe_pertukbation arrows do not well

describé'the’anomalous currents for the three-dimensiohal

model consideied,-but‘can givé a méthod of outlining tne

spétia] extent-of_the anomaly. The ihduct@on arrowgqmay
be used in the tradifiona] way to indicate the flow of
anomalous currents and point towar& con&dctivity -
inhomogeneities. Two methods of ca]cul&iing.the induction.
éfrowg are compared. |

'The sgéond type of sodrge field considered is

due té a number 6f¢two-dimensiona1 sheet current‘sources.
wfth.dffferent é;rrent intensity“distributiong, variously

positioned and orientated wifh respect to the conductivity

anomaly. . The transfer func;ioﬁk and related perturbation

l

182



\\ 183

and induction arrows associated with the fields are
calcu{ateq as before.: In addition, approximatejqzrmal ane
perturbation fields are used in the transfer function
,calc%%atibns aﬁd comparisons are made.

The third source field considered is due to
hofizonta1 magnetic dipoles placed at two different
positions with respect to the conducpivity anomaly.. The
transfer functions and related perturbation and induction
arrews associatee with the fields are calculated and .
compared with the arrows obtained from aguhiform ﬁource,
calculation. Aga1n, the results show the source effect on
the 1nduction arrows and 1n61cate that the perturbatlon
arrows proque a method of olutdining the spatial extent of
. the anoma]y; fhe transfer function ca]cu}ations are made E
for both exact and apprdximate normal fields. In the

traqsfer function calculation the‘anomalous fields %re

" correlated with a normal field as suggested by Schmucker

L

'(1970) and Cochrane and Hyndman (1970).

-
>

4.1 The Mathematical Formulation of the Induction and

Perturbation Arrows

In studies of geomagnetic variations, it is
common to seek empirical relationships between different
magnetic field components which are independent of time.

The electromagnetic. nduction phenomena encountered in

geomegnetic studies obey Maxwell's equations. Thnese:

~
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R : \
equations are linear, and thus 1‘hear induction miﬁrices

s PR
can be defined. The determination*of the slemﬁﬁ%ﬁﬁof these

matrices and from them the conduct1v1ty s€?dqtupa of the

earth is the goal of transfer jupt%ﬁ z:7i; s
(1970) defined two sets df aiipws,;:~3:mnduc
perturbation arrows, in.term§§gf the*?&§£§nts

induction matrix. &

.

i S . Schmucker

L.0n and

of h1s

In his approach, Schmucker (1970) assumed that a

linear relationship exists between the Fourier transforms

of the anomalous internal field components and the normal

i

field components for a single frequency and this is

4
"~

expressed as:

The duantities C , C and CZ
Xa Ya a

transferms of the anomalous parts of the x, y

C h h h C C.

xa X y z xn Ax
C = |d d d_| |¢ + |c

Ya X Yy Zz Yn Ay
C Z Z z C 1 C p
z, , X y z zZ, I AZ ¥

(4.1)

are Four1ef

and z

components of the magnet1c.f1e]d\respect1ve]y;_C; » C

n yn-

and CZ ére the Fourier transforms of the normal parts

n ' 5

of the x,y and z magnetic field components respectively;

and CAX, C and CAz‘are'the Fourier transforms of the

Ay

uncorrelated portions of the x, y and z components, where
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the Fourier transform for;a function R(t) is defined as
+w

Calf) = [ R(t)e Wt ar . (4.2)

“

-0

) i T
The transfer functions h, d and z are in general complex

-

and their reaT parts are referred to as the in-phase

transfer functions while their imaginary parts are the

quadrature-phase transfer functions. Then for the

anomalous part of Z,

_ + C (4.3)
- ra n Y Y z 2, Az '

The autocorrelation power spectrum of C;

7 is defined as

a
. ' *
s =¢c, - Cr M1  (4.4)
ZaZa . Za Za 0

where T0 is the period chosen, SZ 7 is the 1imiting
, i - a a ,
value as To ~+ o and C; denotes the complex conjugate of CZ
' ad . .

. a
In a similar manner the cross correlation power spectrum

and CX for example is defined as
“n _

between CZ
a

. an)/T0 o (4f5)

*

‘Using the crosscorrela&tion and-autocorrelation

power spectra of the anomalous and normal fie]dzcomponenfs
along with»phe,COndition that the crosscorrelation power

spectra between the residual and normal field components
¥
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be zero, Schmucker (1970) obtained a linear matrix’

. .
involving the transfer functions and power spectra._ Ffor,

the z transfer functions:

» &
z + 2z S o+ z_S = §
X XnX, Y ¥Yn*n Zn%n Za%n v
2.S + 28 + 7 =7s (4.6)
X XY Y YaYn zZ z.Yq Za¥n | )
2. S + 2 8§ + 25§ S
x“x 2z Y ¥nz, 27z 2 2,2,

Similar matrices can be obtained fot the h and d transfer
fﬁncpions. | | |

Schmucker (1970) represeqted the transfer
functions as two sets of arrows. I[f we let i and j be
Cartesian unit vectors in the x and } direftiom;respective-
ly, the induction arrows are defined for a partfcular

frequency as:

.

< = -z i -z J (in-phase arrow)
real *real Yreal . :
(4.7)
[ ’ = 2 i+2z J  (quadrature-
imaginary ximaginary ' yimaginary phase arrow) -

-

in‘accordance with the orientation of the Parkinson (1959)

arrow. The in-phase arrows, as defined here, point toward
. : { .

current concentrations and thus toward regions of higher

conductivity than the surroundings.
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for'both in-phase 5)0 quadrature-phase arrows. “Schmucker
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The ;E?ond set of arrdws ca]led perfurbatlga_/

srrows, is Jef ed as: S
. >|' - ‘ i ' _‘“,'". 3
. SRR S hx% * dxl | o
LN . L4 i , -',\' ( 4 . 8)
. s - . ! - h ] + d . R N A,
: . a7 0yl T 9%l

(1970) points out. that when these arrows are rotated, 90°
of the anom{lous internal current f1e1d which is syper-
imposed on the unperturbed normal carrent flow. The R
arrow, represents the anomalodg current in the N y

(l

direction and the q ‘arrpw that in the x d1rect1o:

In the present work the 1n—phase induction

r arrows are- made negat1ve with respect to the def1n1t1on .

by Schmucker (1970) and consquently point away from hidh

conductlwlty areas toward areas of Tow conductwvxty " The s

perturbation arrows are rotated 90°‘counter c10ckw1se in
the manner suggested by Schmucker (1970) Lo Fﬁ
4.2 The Calculation of Perturbat1on and Inductlon Arrons
~for a Umiform Source Over a Fhree D1mens1ona1
Conductivity Model - S .
ST x K

«The calculations are carried”but F%r uniform :

"sourceg lynearly polarized at various d1rect10ns over &

\I -

conductivity .inhomogeneity embedded in.a wo- layered sem1-

13

infinite conducting region with a plane boundaryg; The -

/ S

we

’counter clockwise they. indicate the strength and d1rectlon.‘3‘

s
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first‘l&yér isM4 km.in depth and of conductivity 4 mho/m.
The second layer is of infinite depth and has conductivity
0.00] mhoﬁm; The embedded apoma]y is ac6 km squdare intru-
sidn of the lower.condudltive layer which peng{:jtes the
top layer to the surface of the conductor.

This conductivity configuration was 92059q
because of its symmetry since all the e]ectric'fielhl4
solutions for the source polarization angles presented
‘cou]d be derived from thrée independent solutions (0°,
23°, 45°).

The numerical technique of Section”Z.Q/is used
to obtain the electric field solution from whifh the
magnetic fields ;nd ‘transfer funct;ons are calculated.

The calculations have been made for two frequencies:

0.001 Hz and 0.0033 Hz.

4.2.1 Single Source Results
For linear po]arizatﬁon and a single orientation
"of the sourc: fi- ]d in which the normal magnetic field is

in the y direction the transfer function mactrix reduces

to a single e Jjation. For the 'z transfer function 'matrix

this equation ‘is:

Simi]arvequations can be obtained from the h and d

transfer function matrices.

i
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The transfer functions obtained in this manner
for the model considered are shown in the arrow representa-

tion _.in Figure 4.1 for 0.001 Hz. Since the normal current:

P . .
is polarized in the x direction, the p perturbation arrow-

is undefined. The q perturbation arrow‘should then describe
the magnitude and direction of the anomalous current. The
q arrow together with the arrows associated with the
calculated anomalous current (from the known electric
perturbation field and the conductivity{structure) and the
induction arrows are shown in Figure 4.1,

AQay from the anomaly the perturbation arrows
(Figure 4.1A) qua]itatively resemble the anomalous current
arro@s (Figure 4.18): Nearer the anomaly the in—phése
perturbation arrows differ markéﬁly from the in-phase
ahbmalous current arrows. Over the anomély the fn:phase
pefturbation arron_greatly increase in magnitude. Since
the conductivipy of the anomaly decreases by a facto} of

3, the current f]dwing in the anomaly is small

4 x 10
relative to that flowing in thg surrounding material and
therefore only small anoma]oui‘current arrows appear over
the anomaly. In the method O;QSection 2.8 the conducti-
vity associated with a particular node is the averaée of
the conductivities of the surrbundiﬁg regions, and the
boundary between the anomaly and the surrounding régicn
is not abrupt as 1nd1cafed in the figure but consists of

. - ) - . !
a transition zone between the conductive regions.



Figure 4.1

Single source with the normal current field in
the X direction for 0.001 Hz. The dashed
arrows are the in-phase arrows and the solid
arrows are the quadrature-phase arrows.

(A) q perturbation arrows,

. (B) anomalous current arrows,

(C) induction arrows.

The surface of the conductlng region near the
anomaly is shown and the inner square reg1on
represents the anomalous structure.
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Figure 4.1C gives the induction arrows associated
with this simple source orientation. The arrows dre
polarized in the direction of the normal magnetic field.
They vary in magnitude over the grid and point toward the
! , v

conductivity anomaly.

. 4.2.2 Mu]tip]e Source Results
For a number of sources with the inducing field
11near1y ‘polarized and orlented in various d1fferent

directions the transfer function matrix is représented by

.

a twb—dimensiona] matrix. For the z transfer functions

(4.70)

S .
y ynyn" ZaYn

The cross. correlation and autocorrelat1on power spectra

’

are calculated for each source polarization and- these are

-

‘averaged and the transfer funct1ohs are determ1ned in the
"manner of Schmucker (]970). | . \
The results ;rom the calculation of transfer
functidns for six sources: for periods of 0.001. Hz and’
10..0033 Hz ;re shown in Figures 4.2 and 4.3. Ffor the case
of multiple 50urces at d1fferent or1entat1ons both p and

q arrows are def1ned. By adding these two arrows vector-

ially (R°+ q) an arrow to represent the total anoma1ous’
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Figure 4.2 'Perturbation, current and induction arrows

calculated from six source orientations: 23°,

45°, 90°, 135°, 248° and 315° as measured

counter-clockwise from the x-axis for.0.001 Hz,

The dashed arrows are the in-phase arrows
and the solid arrows are the qQuadrature-phase
arrows. : .

(A) p perturbation éqrqws,
B) q perturbation arrows,
C) adomalous current arrows .,

(
(

(D). p + 9 perturbation arrows, ;' : e
(

E) induction arrows.
, <

-
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'/Fi.gure 4.3 As Figure 4.2 but for 0.0033 Hz.
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current should be obtained. The p and q arrows together
with the arrows representing p + g are given in these
figures. Also, vectors which describe the calculated

“anomalous electric currents detefmined from the anomalous

in

electric field and known conducti
. Figures 4.2C and 4.3C. It is apparent that the (p +q)
éhrows.do not comp;re wél] with the anoha]ous current
arrows for this three-dimensional model. From Figures
4.2t and 4.3E, we see that the induction arrows are no
longer po]arized;'but now point toward the center of the
.anomaly over the whole surface region. The,stability of
the perturbation and induction arrows wfth ffequency for
this model is appareht by comparison of Figures 4.2 and 4.3,i
If the E'perturbétion arrow s made nega??%e
with respect to the definition by Schmucker (that is; it
now defines the anomalous internal currenf superimposed on
the normal currents ﬁ&pwfng in the + y direction) as in-
Figure 4.4A and then:;dded to the g pertufbatfon_arrdw
to give a new. (p .+ q) afrow as in Figure 4.4E, this new
(p + q) érrow now agkees quaTit;}ive]y with the ca]cufated
anoma]oﬁs current arrows (Figﬁke_4:4D) fdr regions away’
from the-anoma]y.  As thé,anom51y is appko;ched bdfh tﬁe
‘ in-phase and qﬁadrétufe—phase (p +)g) arrows differ from
“the anomalous current arrbws; HoWever, both sets of
arrows exhibit,thé same geheraﬁ trend. Over the edge of
the anomaly the (R + q) pertufbationrarrows pofnt,approxi-\

mately opposite in direction to the anomalous current arrows..



Figure 4.4

Perturbation, electric field, current and
induction arrows calculated from six source
orientations: 23°, 45°, 90°, 135°, 248° and
315° at 0.001 Hz. The dashed arrows are the
in-phase arrows and the solid arrows are the
quadrature-phase drrows.

(A) p perturbation arrows, [
B) g perturbation arrows,
anomalous electric field arrows,

)
C)
D) anomalous current arrows,
E) p + q perturbation arrows,
F)

(
(
(
(
(

induction arrows.
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4

Schmucker (1§10) stated that at least five rahdo%
sourcé“fiéld orientations are required to assure stable
transfer functio;s. Figure 4.5 gives\é comparison of
inductioh}arrows for three.sets of pd]arization angles at
0.001 Hz. In Figure 4.5A two source or1entat1ons which are
mutual]y perpend1cu1ar are used and"!é induction arrows
compare well with those of Weidelt (1975) calculated by
supgrposition fo‘rig somewhat similar model. In Figure
4. 53 thfée source field ériénﬁatﬁons spread over a range
:of 45° are used to construct the arrows and somq skéw1ng
of the 1nduct1on arrows -is evident. Figure 4. 5U is for
s1x source field orientations whlch are spr;zd throughout
the full 360° range and.in this there is very Tittle
skewing of the arrows. It appears that less “than six
source oripntations may be used, bgt if this is dong the
directfon of the source fields must be qhosenlwith care
and should be ;uite different from one another. '

Cochrane and Hyndman (1970) proposéd that the
total magnetic ?iefd be substituted for the‘horma1 magneti’c
field in the transfer function calcu]ationstsince this | \
would be easier to apply.in the‘analysis of experjmenta]

_ observations. Fi&ure 4.6 is a:fécalcu1ation of the arrows
as in F1gure 4.2 but w1th this change, and it is seen that <T

no apprec1ab1e change in the configuration of the arrows

is produced‘ This is expected because the hor1zontaL



Figure 4.5

Y,

)

Comparison of number and angular spread of
current sources. The dashed arrows are the
in-phase arrows and the solid Arrows are.the
quq?rature-phase arrows. ’

(A) induction arrows for source po]arizétion
angles of 0° and 90°, - : :

(B) induction arrows for source.polarization
angles of 0°, 23° and 45°,

(C) induction arrows for source polarization
© angles of 23°, 45°, 90°, 135°, 248° and
315°.

.4-“(
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Figure 4.6

Perturbation, current and induction arrows
calculated as in Figure 4.2, but with the
substitution as suggested by Cochrane and
Hyndman (1970). A, B, C, D and E parts .

as in Figurd 4.2. ‘
V "
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magnetic field oecreases by only about 25 peroenp over
the anomaly for this model. .
In‘Figures‘4.4C and 4.4t a comparison of the
anomalous electric field and the new (p + q) perturbation
arrows is hade'for six source orientations at 0.001 Hz.
Both the anomalous electric field and perturhation arrows
are sensitive to she_ahomaly. The electric field is more
‘sensitive to anomalous structure than the maonetic field.
It may therefore be desirab]e, since in most experimenta]

work of this nature the magnet1c f1e1ds are measured, to

[

obta1n e]ectr1c f1e]d information from quant1t1es
calculated from the observed magnetic fields. An this

. : L ‘ P
respect, the (p + g) perturbation arrow should be useful
' : o . '

in accurately outlining regions of anomalous conductivity.

© 4.3 The Calculation of Perturbation and Induction Arrows
for a Three-Dimensional Conductfvity Structure and
Various Two-Diménsional Source F1e1ds

The ca]cu]at1ons were carried out for e1ght two-’
d1men51ona1 sheet current sources with spat1a1 intensity
as in Frgure 4.7 oscillating w1;h‘a e1rcu1ar frequency of
2n/w and flowing at a height of 110 km above .a tho-]ayered
sem1-1nf1n1te conducting region with a- p]ane boundary and
an embedded condUCt1v1ty anomaly. - The first, 1ayer is 50
km in depth and of conduct1v1ty 0 01 mho/m ; The second oo

]ayer extends to infinity and has a conduct1v1ty of 0. 1 ;.



: ( | . -
Figure 4.7 Coordinate system, sources and anomaly

(not to scale). 1
-
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ﬁho/m. The embedded anomdly is L-shabed; as/in‘Figuré'4.7
and has a depth of 3 km. The cdnductiVityfof the ;nomaly
ts 0.0001 mho/m, and the calculation is’doné'for a ;u'

?requency of 0.1 Hz. |

The boundary cond}tions for the finite differeﬁce
;mesh‘wefé deterﬁined’by usihg the‘genefa] method for two
dimensional. sheet current qjstributions\oVér layered y

conductors as described in Section 2:6.. Each source was

approximated in a piecewise linear manner by ‘49 suitably

weighted rectangular current distributions of 30 km width.

/ e e . Lo
The rectangular current distributions were approximated by

three elemental gaussians of 10 km half-width each
‘ !

‘spatia]]y shifted one half-width. These field values

were then'éubstituted into the numerical technique of

Section 2.8 and the electromagnetic field solutions

¢
" -

ﬁésu]ts

4.3.1 Single Source ,
jThe no}maT magnetic fiéTd for a non-uniformlgheet »
current source po]a}fzed ih,the_x'difec;ion will toﬁtain:.
mag;etic fie]d‘éampOnénts/in the y abd,z direétidn( _
However, the z component is small in»gompafisbn‘with the |
y component over thé anomaly and surrounding region. For
tHis reasonlthe 3x3 éransfer fuﬁctidn hatrix {equaéion 4.6)
is il]-conditibned and must be reduced to é one—dimenéiona]
relationship. For the zvtransfer %unction matrix phﬁs

!
/



equation is:

7= N o (4.11)

*‘Simi]ar“équdtiOns are obtained from the h and d

a -

transfer function matrices upon reduction to the one- ..
! .

dimensiopa] case.
4, )
The non-uniform sheet current source with the

4]

electric field po]arﬁzed in the x direction used in this

model’ is shown. ianigure 4.7A. The transfer functions
obtained in this manner for the mode1 cons1dered are shown
in the arrow representat1on in Figure 4.8. S1nce on]y hy

dy, ‘and zy are defined for this'source ~the p perturbat1on
‘arrow is undefined. "The g pertUrbat1on arrows ‘(Figure
4.8A) should then descn1be the magnitude and d1rect1on of
‘the anomalous current. At some/d1stance from the anoma]y
as was found in Section 4.2, the q pertunbat1on,qrrows f
‘\rqua1itative1y resemble the anomalous current arrows.
However, dver the anomaly the perturbation arrows increase .-
in magn1tude and are not representat1ve of the anomalous
currents. This. is to be expected since the anoma]ous
_nagnetic field is most intense over the anoma]y A]so,_
for this source, the inductidn arrows, F1gure 4.88, are
polarized in‘the y direction. The 1nduct10n arrows vary
t1n magn1tude over the grid and po1nt toward the anomaly.

!

As would be expected the null of the 1nduct1on arrows

T



Figure 4.8 Single source with normal current ~ic1d in
the x direction for 0.1 Hz. The cashed arrows
are -the -in-phase arrows, the solid ar ows are
the quadrature-phase arrows. .
(A) g perturbation arrows,

(B) induction arrows.
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inside the anomaly shifts in the positive yﬂdirection as
the anomaly 'is crossed in the positive x direction due to

the broadening of'the anomaly. ‘ o

4.3.2 Multiple Source Results

| For a number of sources with inducing fields
.11near1y polarized and or1entated in various directions
the transfer funct1on matr1§ mys.t now be represented by a
two d1mens1ona1 matr1x For the*z transfer functions:

{ &

(4.12)

i'Slmﬂar equat1ons are obtalned from the h and d transfer
'funct10n matr1ces The cross corre]at1on and auto-
correlation power spectra are calcu]ated for each .source
' po]ar1zat1on and these are averaged and the transfer
funct1ons are. determ1ned |

| The two sources used to represent a mu]t1p1e
source or1entat1on are shown in F1gure 4.7B,C. An approthte
separat1on of 70° in thevorientation of the source
polar1zat10ns allows ‘the ca]cu]atIOn of the transfer
funCt1ons w1th less than six source f1e1d polar1zat10ns

“The results of this calculation for the frequency

used are shown 1n F1gure 4 9. Since h and d transfer



.
Figure 4.9 Two.soqrceé with polarizations separated by 70°
situated near anomaly for 0.1 Hz. The dashed

arrows are the in-phase arrows dnd the solid
arrows are the quadrature-phase arrows. -

(a) p perturbation arrows,

(b) g perturbation arrows,
(c) p + q perturbation arrows,
(d) induction arrows. -

’
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funftion matrices are two-dimensional in x and y both the

P (Figuré 4.%3) and q (Figure 4.9b) arrows are defined.

The p perturﬁaiion arrows have been made negative with
respect to the definition of Schmucker ?1970) (that is,
théy now define the anomalous internal chrent superimposed
on the normal currents flowing in the + y direction. If
these two arrows are added vectorié]Iy/(g + q) as in Qlf:)
Figure 4.9¢, thé épatia] extent of the anomaly is outlined
by arrows 561arized at an angle of approximate]y~135°
counter-cliockwise to the positiye «x ax:s. Thc:(g + q)
arrdws are approximately 50% 1qrger than the surrounding
ﬁgrkows over the anomaly. | \,

N In this case the inddction arrows (Figure'4.9d)
are no longer polarized in .the y direction. Thq arrowsl
tend to poinf’radfal]y towardlthe centra]lmoment af the
anomaly. Howeve?, some source effect due to the non-

uniformity of the source field can be noted in the in-phase

arrows.

As,pointed out by Cochrane and Hyndman (1970),
the probklem of defining the normal field ﬁdr the calcula-
tion of'inductfon arroﬁs can be parﬁja]]y ovgrcome.by
substituting the total field as the normal field in the

transfer function calculations, since this is easier to

{ . -

apply in the ana]ysis.of'expefimenta] observations. In
their calculations Cochrane and Hyndman»(]979%xassumed

that the magneti&lfie]d combonent in the z;éirecfﬁon was



o
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totally anomalous which thus allows a calculation of the .
induction arrows. This assumptipn cannot be made when -
calculating the anomalous field for‘thejhorizonté] compo-
nents of the magnetic field. Figure 4.10.1s a recalcula-
tion of the arrows in Figure 4.9 using theECochrane and
Hyndman (1970) suggestion. As can be seen iﬁ[Figurg 4.10,
little change is noted in the perturbation andiinductiqn
arrows,‘which depend»oﬁ.fhe horizontal hégnetic field
components. However, the anomalous field used to calculate
the perturbation and induction arrows in.Figure 4.10 is

exact.

- It is important to determine the effect on the

~calculations if the anomalous ‘and normal fields are

- ~

approximate. In Figure.4.11 the perturbation and induction
arrbws are given fof a calculation in which the normal
field is assumed to be conifant'and\the anomalous field-~is

ﬁthejreéult of subtraéting the normal field from the total

- magnetic field. Thevalue for the normal field was

obtainéd by averaging the field values a]ong‘the boundary

ﬁof the finite difference mesh. The-.boundary forms a sduare

witﬁla perpendtcular distance of 58 km from the center
'fothe!anoma1y. Figure 4.11 gives an indication of the
relative stability of the Schmucker method.

Schmucker (1970) stated that at least five ran-

3

~dom source +field orientations are required to assure



Figure 4.10 As -Figure 4.4 but with

substitution ag
suggested by Cochrane

and Hyndman (1970).

!
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Figure 4.11 As Figure 4.9 but for averaged normal field.
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stable transfer functions. Figure 4.12 shows the result
off ca]cu]éting t%g indﬁctioﬁ arrows for six sources

. centered a-large distance froy the anomaly witﬁ an angular
spread of 63°;_‘The Sburces used in this Caicd1ation afe‘.

shown in Figure 4.7a, d, e, f, g, h. In Figure 4.12a the

' . . ' !
calculation was done/in the manner of Schmucker (1970) and

it 1s apparent that'severe'skewfng of the 'induction arrows
. is evident When cdmpafed to Figure 4.9d..1The ca]cu]ation
lof the induction afgowé accdrdfng‘to Cochrane'and.Hyndman
(19705 is:shown in Figure 4.12. Agaiﬁ'ﬁeveke skeQing of
the arrows is noted. However; the appearange df the two
 diagrams differs much more than was the cas; between.
Figure 4.9d and Figure 4.10d. |

- ]

: i B A
4.4 The Calculation of Perturbation and Induction Arrows.

for a Three-Dimensional Conductivity Model and DipoIé

Source Fields

The calculations were carried out for horizontal

4.13 sci]]étjng:with a circular frequency of 2n/w and

p]acéd t a height of 150 km above a two-layered semi-
B ' ) / I

fnfinite conducting region with a plane boundary and an
. . . . : )
embedded tonductivity anomaly. The first layer is 128 km

3 mho/m. The

in depth/and of conductivity 0.21 x 10~
secopd layer is of infinite depth and‘has'cond0ctivityi
' i

1 ) : ' .
mho/m. The embgdded anomaly (indicated by the inner

ma netic dipole sources indicated b& 1 and 2 as‘in Figuré'

£



o
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Y

{

Figure 4.12 Induction arrows for six d1stant sources
With close angular spread (68°).

(a) calculation according to Schmucker (1970)
’(b) ca]cu]at1on accord1ng to Hyndman (1970).

i
[
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A 8
2(-17,0,-150).

/

.Figure 4.13 Coordinate system, andma1y~and' two dipole
sources (not to scale).
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square of Figure‘4.13) is 16 km square and 4 km deep with-\

ftg"top_at the surface of fhe conducting region and has

~the same conductjvity as the lower layer. With the origin N

of the coordinate systém at the center of’the anomaly,

the' position (in Cartesian coordinates) of the first dipole

is‘(x=0 km, y=-17 km, z=-150. km) and of the second is

(x=-17 km, y=0 km, z=-150 km). The dipole momehﬁ of the

firstAdipole is polarized in the‘negative‘y djrection and

the second dipole is polarized in the negative * directioni
The numerical téchnique'oflséction 2.8 L

is used to obtain the electric field solution for the

-three;dimensional model and'fndm‘this the magnétic fields

and‘transfer fuhct{ons are calculated. The boundary |

condiéibn% for the finite difference mesh are obtained

" for the dipole source above the layered‘cdnduétor by

‘means of a brogram su;plied'by V; Ramaswamy , (Ramaswamy,

1573). Near the boundary the anomalous fie]ds‘are

assumed to be zero. The calculations were:made fow the

frequency 0.075 Hz.

AN
4.4.1 Single Source Results

For a.single magnetic'dipo1e at position 1 the
thebretical]y calculated normal magnetic fie]ds~contain
all three field components. However, the x and z

components are small in comparison to the y component ,

over the anomaly'and surrounding region due td;the .
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posifion of the dipole at x=0 km, y=«i7 km and z=-150 km.

For this reason the 3x3 transfer function (equation 4. 6)

'\&15 il1- cond1t1oned and must be reduced to a one- d1mens1onal‘

relat1onsh1p For the z transfer function matrix thls

eqqatlon is:

e (4.13)
y | e

Similar equations are obtained from the h and d transfer

i

function matrices upon-reduction to the one-dimensional

case.

The transfer functions obtained in this manner
for the model cons1dered are shown in the arrow representa-

-

t1on in F1gure 4.14. $1nge only hy, dy and zy are def1neq
for this source, the p perthbation‘afrow ié undefined.
‘The q perturbation arrows (F1gure 4.14A) should then
descrlbe the magnitude and d1rect10n of the anoma]ous
current At some distance from the anomaly as was.found
previou;]y, the-g perturbation‘arrows qualitatively
resemble the anomalous current arrows. However, over the
aana]y_tHé pertqrbatidn arrows intrease in magnitude and

are not representative . of the anomalous currents. Also,

fbr'this source, the induction arrows, Figure 4.148B, are

\po1arized in the y directionz' The induction arrows vary

in magn1tude over the gr1d and point away from the anoma]y

.



I

I
Figure 4.14

_Sing]e horizontal dipole source with moment -

polarized in y direction positioned at

x=0 km, y=17 km and z=150 km. The dashed
arrows are the in-phase arrows and the o
solid arrows are: the quadp@ture-phase arrows.

(A) g perturbation arrows, \
(B) induction arrows.

The surface of thégEcnductin
the. anomaly is shown and the
region represents the anomalou

‘region near:
nner square
structure.
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For purposes of comparison the g perturbat1on
and induction arrows for a unlform source «"th a normal
magnetic field polarized in the + y direction are given
in Figure 4,15. 1In the q perturbation arrows the
quadrature-phase drrows are greater in magnitude compared
with the in-phase arrows for the uniform field source.

Also,. the 9 perturbation arrows are more perturbedfin the

uniform field casé. The induction arrows are very similar.

4.4:2 Two-Dipole 30ur¢e’Resu1ts
| For the two-dipole source the magnet1c field
so]ut1on of dipole 1 was rotated 90° to obta1ﬂ the -
solution for dipole 2. The cross correlation and auto-
correJat1on power spectra are calculated for each indivi-
dual dipole source and these are averaged and the transfer

functions determlned. The transfergfunctfon matrix must

now be répresented by a two-dimensional matrix. .For the

oz trans fer functiong: ; A L
z S + z = 5
X X Xrl y _yn n z n
.i ! (4.14)
S + . ‘Z S = S ’
Zx Xy Ty ynyn ZaYﬁ

Similar equations are obtained from the h and d transfer

function matrices.

)



—

Figure 4.15 As Figure 4.14 but for & uniform source with
a normal magnetic field polarized in the y
direction. ' ,
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The results of this ca]cu]ation for the frequency
.used are shown in Figure 4.16. Since h and d transfer
- function matrices are two—dimensiona{ in x and y, both the
E’(Figure 4.16A) and q (Figure 4.16B) arrows are dekined.
Tﬁefg perturbatfon arrows have been mdde negative with
respect to the deffﬁﬁ%iop:of Schmucker (]970) (that is,
they’now define the anomalous internai Cur}ent,superimposed
- on t?e horma}‘current§ flowing in the + y direction. If
these two érrows are added vectorially (p + q) as in
Figu?e 4.16C, the spatip] extent of the anomaly is out- -
lined by'arrows polarized af an angle of appkoximaté]y,45°
clockwise to the positive x axis.

In the two-dipale case the induction arrows

(Figure'4.160) are no fonger po]ariZed in the y direction.

. - Over the anomaTy the induction arrows tend to point

radia]1y.away from the centerlof,the_a;omaly. However,
away from the anomaly the arrows are polarized approxjmate;
]y'pefpendiCUlar1y to the ppdndary and deérease in magniw

. tude'neaf the corners'of'tﬁe anomalyf " This 1is due fo‘%he
hfgh concentration of circulating anomalous current within
the cohductivity anomaly since the conductivity there is

3

greater by a factor of 3.81 x 107 compared with_the

|

w4

sukrounding region. Also, the small size of the anomé]}A' S

contributes to the skewing of the arrows.

o
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Figure 4.16 Horizontal two-dipole source with moment

- polarized in the y direction for dipole (1)
and in the x direction for the dipole (2).
The dashed arrows are the in-phase arrows
and the solid arrows are the quadrature-
phase arrows.

(A) p perturbation arrows,
(B)'Q,perturbation arrows,
(C)p+tg peerrbafion.arrows,
(D) induction arrows. y
The surface of the conducting region near

the anomaly is shown and the inner square
region represents the anomalous structure.

N
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For comparison the perturbétion and induction
arrohs of two orthogonal unjform sources polarized in the
X and y directions are presented in Figureld.lf. As found
in the single dipole case, the P> g:andlp + q .perturbation
quadrature-phase arrohs are greater in magnitude compared
Wi th the in- phase arrows for the uniform field source.

Also, as before, the perturbat1on arrows are more perturbed
in the uniform field cese . The quadrature-phase induction .
arrows are greater in magnitude compared with the inrphase -
arrows for the uniform source\fie]d case. The orientation
of the’induction arrows is very simi]ar.’ ‘

As pointed out by‘Cpchréne and Hyn'dman (1970),
the‘prob1em of defining the normal field for the calcula-
tion of induct%on arrows can be’parthal]y overcome by
substituting the total field as the normal field in the -
transferxfunctjon calculations, since this is easier to.
appiy ih the analysis oﬁ‘experimehta]‘obsenvations] In.
their caltu]ations Cochrane and Hyndman ([970) assumed
that the magnetic fielp component in the z direEttOn was
tota}ly ahqma]ops which thus allows a de]culetionzpf»the
induction arrows. This assumption cannot be made when
calculating the anomalous field for the horizontal
cpmponents of the‘magnetic:field. ‘Figure 4.18 is a
recalculation of the arrows in'Figpre 4.16 using the

Cochrane and Hyndman (1970) suggestion. As’cah be~seen



F¥gure 4.17 As. Figure 4.16 but for two orthogonal
. ~uniform sources with the normal magnetic
field polarized in the x and y directions.

i
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Figure 4.18

1

Horizontal two-dipole source with moment
polarized in the y direction for dipole (1)
and in the x direction 'for dipole (2). The.
transfer functions are calculated as

' suggested by Cochrane and Hyndman (1970).

The dashed arrows are the in-phase arrows
and the solid arrows are the quadrature-
phase arrows.

(A) p perturbation arrows,

\B) q perturbation arkows,

(C) p.+'q perturbation arrows,
(D) induction arrows.

The surface of the,conddcfing region near the

anomaly is shown and the inner square region
represents the anomalous structure.
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in Figure 4.18 11tt1e change is noted in the perturbat1on~
arrows, wh1ch are dependent on the horizontal magnetlc
field components. However, the anomalous fie]d used to
calculate the perturbation and induction arrows in

Figure 4.18 is exact.
r

In this respect, it is of interest to determine
the effect on the calcu]at1ons if the anoma]ous and normal

fields- a";" fuate. In Figure 4.19 the:perturbation

\.a're _given for a calculation in which
- jE 1 ¢ e

"from the tota] hagnet1c field. The value for the normal
field was obtained by averaging the field values-along the
boundary of the f1n1te d1fference mesh. The boundary
rforms a square with a perpendicular distance of 60 km from
.the center of the anomaly. This w111 glve a reasonable
,approx1mat1on to the normal field since ‘the d1po]es are
1ocated near the anomaly and some symmetry is expected
Also the field is reasonably un1form over the reg1on of
the anomaly. For. dipoles placed far from the anomaly a
better approximation would be a 1inear.interpolation
across the grid and this latter approximation may also
be useful for-]ahge anomalies. in Figure 4.19 a slight
gkewing 6f the arrows is noted but:hp appreciable change

in their configuration is apparent.



o

Figuke 4.19 As Figure 4.18 but for averaged normal field
: values. : ' : !
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. In Figure 4.20 the calculation is done as in®

Figure 4.19 but the totaf_fie]d is substituted for the

constant normal field.

/

\ .
i

4.5 Conc]usions~

The transfér functions and related perturbation
and induction arrows assoc1ated\\1th the e]ectromagnet1c
ﬁ1e]ds induced in various conduct1v1ty anomalies by
uniform, two-dimensiona] non-uniform: and horizontal dipole
.(bsources oriented in vanious directions have been'studted
in this chapter. Fo( single sources‘the induction arrows
are oo1qrized in a singie direction, which, for the uniform
and two-dimensional non-unifonm sources, 1is {ﬁ the direc-
tiontperpendichlar to source current flow. This is dup to
the bofarization of the normal field in-the .uniform source
Loase”ano the polarization of the horizontal normal field
tOmbonent,and the smallneSS"of the veftica] normal'field
component 1n the two- d1mens1ona1 non- un1form case.. For
fthe hor1zonta1 d1po]e “the 1nduct!0n arrows are po]arlzed
1n the d1rect1on of the dipole moment ﬁn the region
1mmed1ate1y beneath a hor1zonta1 d1pole source,-the norma]
magnetic f1e;d eomponent, which .i 1n the d1rect1on of the
dipo]e moment;_is much greeter invmagnigude'than either
‘the verticalrﬁT perpendicular norma1‘negnetic field

LA . ‘
component, hence the polaridgtion of thé induction arrows .

&



L.
. ' ‘ - .

Figure 4.20 VAE Figure 4.18 ~ut for averaged normal field

values wi*th substitution as suggested by |,

R - Cochrane asd Hyndman (1970)

A,

. ":‘"
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- fer“functions for the multiple éource‘orientatibn models

jvectoria]]yydg not compare well with the anomalous current

.
' '

: L \ . ‘ .
The perturbations arrows for the s1ng]e,source5 for which !

246

only the q arrow i's defined qualitatively resemble the

'R .
anomalous current outside the unomdly However, near and

- -

over the anomaly . the in- phase 1nduct1on arrowsy y@rease
markedly in = tude regard]ess of whether gﬁeiqiomaly is

more conductive or resistive than the surro g material
A
which would not be expected of the dnomalous current

vectors. , ‘ . S

Various methods were used to calculate the tranmftve
: ‘ ) ﬂ‘jé

preeented.‘ The induction ;rrows'ace no:longer polarized

and now point toward (or away tcom} the conduc£1v1t; anoma]y

Bod?;yand q perturbations are defined for these cases. !
In the uniform source case thepconGEQt of a 9

normal fieldEfollow1ng Schmucker (1970) is used in thej

trénsfer_function-ca]culétione and is compared with ‘the

Cochrane and Hyndmaﬁ 1970)%transfer function ca]cu]at1ons

It is found that perturbdt1on and 1nduct1on arrows are-

stable with frequency for the gbege gons}dered For this L

source the 1ntroduct10n:pf the Cochrane and Hyedmah (1970)

substitution produces no appreciable chque’in the

configurations ot,the perturbation and induction arrows.

,,It is found that the perturbatiqn.arrows.when:summed

-

) I , : -
"vectors calculated, nor do they compare with the calculated

t
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electric field vectors. Howerer, this new (p + q)
pertureation arrow 1s very sensitive to changes in
conductivity .and can be used to outline the spatial
extent of the anomaly'mueh in the Same way as one would
use electric field infordation if it could be accurafely
: . _ :
'obtained. The degree of randdmness of the source‘
‘Vorientations‘was also imvestigatedj Less than f1ve

‘source fleld polar1zat1ons can be! used 1f the sources are
\,at ]east 90° spat1a1]y apart. Small anqu]ar spreads of
source field po]ar1zat1on produce skewfanbf the e

, ﬁk‘ﬂv'igf
induction arrows. j }‘;'“'-

v-“

Simi‘lar calcu]ations w@r done pfor 0@9“}%9-}
dimensional non- un1f0rm sources and the horlzontaT Jdpole
30urces In add1t1on to the Schmucker (1970) and Cochrane
and Hyndman (1970) formu]at1on od‘&he transfer funct1ons,
the effect of both an approx1mate‘1l5malous and normal
field was cons1dered By using an averaged field value
for the norma] field, the anomalous field is determ1ned

by subtract1ng the averaged normaﬂ field from the total

field. The 1nduct1on arrows are skewed sl1ght1y for the

Cochrane and Hyndman (1970) calculat1on due to:the source qg?

effect for both source types with the'horizonta1}dipole¢

‘induction arrows showing s}igﬁt]x more deflection due to

the increased source‘e&fect} The averaged ndrmaf field

o

calculation shows increased skewing for both source3types.
. N, K * . ¥
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In general, though,it cdn be concluded that'the induction
y .
‘arrows are stab]e for a varlety of anoma]ous and normal

f1e1d ca]cu]atlons. The perturbation arrows were more

stable than the 1nduct1on arrows for these chdnges and
could again be used to outline the spatial extent of the
‘anoma]y. In the‘two—d]mensional.non-unﬁfofm Source

calcu]at1ons the. effect of a smal] angular spread in

source fleld poﬁﬁﬁ313%1ons showed the severe skewing

that can result. - . - . : ‘

-
Ly



CHAPTER 5
|

.‘4.3,;3 ,
|

: y _ '
" CONCLUSIONS. AND RECOMMENDATIONS FOR FURTHER RESEARCH

A study of the three-dimensional local induction

>

problem has been presented in this work. Solutions for
the electromagnetic fields were obtained for various
sources and laterally non-uniform conductiVity distribu-

tions These caicu]ations were used to compare with

!

i

analogue model measurements for three different source
configurations. Transfer functions and their related
perturbation and induction arrows were a]so ca]culated for

the three source types and various embedded conductiVity

anomalies,
|

The 1oca] induct%%% problem for,embedded

three- dimenSiona] conductiy y‘inhomogeneities foroVarious

' sources was solved through the use of the fidfﬁitc
differencg technique of Lines and Jones (1973) Soiutions
fbr the three source coifiguratidhs (uniform, two- ‘
dimensional, non—uniform and horizontai dipole) above a
uniform iayered-conductor were Obtained and used as
boundary conditions for the finite difference mesh In gi
the case of the two~dimensional non- uniform source a
computer program was deve]oped to calcu]ate the

i‘ eiectromagnelic field$ associated with any arbitrary

two dimensionia source intensity current distribution

249
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over a layered earth. Utilizing the caleulated_boundary
conditions, three source field conductivepty structure
“combinations were_considered. 1. A uniform current source
above an island structure in the deeproceanfwg. A latitu—
dinally confined'iqnosPherjc e]ectrojet (across which

‘current is. uniformly distributed) above L-shaped sulfide

J»ore bedy emhedded ie material -with an average'continental
conductivity; 3. A horizontal, dibo]e ebove an ore body of
reLat1ve]y Tow conduct1v1ty wh1ch is ‘embedded in poor]y
conduct1ng rock. Therproftges‘of selected e]ectromagnetic
field quant1t1es:and‘;;probriate phases for Various
positions EeTative’to the‘aﬁcmalous structures were
presented aguywﬁ1 ds mhree d1mens1ona1 amplitude figures

.of the electric and magnetqc field components‘ The effect
of the source‘was c]ear]y'apperent in all prof}les except
that Of they apparent resistivity. The effect of charge
concentrat1on at the boUndary of the anoma]y is ev1dent
in the lEXI and P, Component prof11e§ furthest from theb

.anoma]y.' The_‘pa curve exhibits a s]idht'anoma]y in the

cpposite sense to the change whjchhﬁould be eXpected.

This effect is due to?the«charge onjthe boundary and
affects the p_  calculation for thTz*profi]e. The thfee-
dtmensiena1‘amp11tudevfigures of the stx e]eqtrwmegnetic Y
field cemponents also exhibits strong source effects.
Thewcornere of the anoma]ies;cou]d easily be identified by

émp]ithde maxima in IHX{. The sides of the anomaly were

° !



‘ ‘compatibility was_demonstrated,for the two methods and

)
~

ana1ogue modellmeasurements was made for three source

LT

e
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marked by increases in the amplitude of,lHZ].
| /

A compar1son of theoretical calculations With

field conf1gurat1ons over an ore body of re]at1ve]y low

conduct1v1ty embedded in poorly conductlng rock.

Calculations and measurements were made for uniform,
. N ! . .

two-dimensional non-uniform .and Horizontal dipole sources.
|

Selected electromagnetic field quantities apd their

‘phases were presented in profiles for various positione»

1

reTative to the conductivity structu§e> It was found that

-in the f1n1te dlfference method used a trans1t1on zone

must be ‘introduced in ;he conduct1v1ty configuration if

Both high frequency and=high condhctivity contrast are

used Even w1th ‘the refinement differences were noted in
the three d1mens1ona1 e]ectromagnet1c f1e]d praofiles for -

<
the theoretical and analogue models over the transition

¢

. K . . - “E ‘
'zone. In spite of these limitations a~g§6d degree of
. . g

their simuitanebusvuse in‘studying the effects of
conduct1v1ty anomalies is indicated. Jn addition it was
found that the theoretical source calcu]at1ons we]]v.
represented the analogue model sources-

Transfer funct1ons and re]ated perturbation
and fndgct1on arrows associated with the theoret1ca1
electromagnetic field ea]cdlatiohs were computed. The

uniform, two-dimensional non-uniform and thorizontal

L}
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dipole sources oriented in various directions'ahd posi-
tioned variously with respect to the conducti?ity struc-
ture were used. A number of methods. (i.ei, Schmucker
(19709 ; Cochranevand Hyndman (1970)) were used to calc#—
late the transfer functions. Dependipg on the method
used and the approximations made for the norha]‘ﬁnd
anomalous fiéids a slight amohnt of skewingjfn'the arrows
was noted. In this respect the greatest skewing noted -
Was due to the use of averaged normal'and approximate
ahoﬁa]oq;'fields. 'Howevér, in generé], the induétion
arrows were stab]e.for"the‘varfety of anomalous and
normal field ca]ch]atioﬁs qSeq. The'pertufbafion arrows
were evén more stable in this réspect. ttle source

effect was noted for either induction or perturbation

arrows. Only if aivery small angular spread in source

D '
- field polarizations was ‘used would severe skewing be

-

=

/ : .
noted. This was most evident<for the two-dimensional

non-uniform sources far from the anomaly. ‘As would

A

ﬁd{possibly be the case for measurements made atxfgﬁ-

latitudes due to auroral électrojets. Thb results showed
that the indhction arrows could.still be uséd to indicate

the flow of anomalous currents and point in the direction

'ﬁ

’

of conductivity anomalies. The perturbation arrows when

added vectorially (p + gq) were not found %o compare well

with either the anomalous current or thevanomalous

£
k

1



electric field vectors. Ho¥evér. this new arrow was
found to be very sensitfvé to conductivity chgnges‘in
much the same manner as the e]eclric field and c0u1d be
'used to outline the spatiaj extent of the anomaly.

The difficulty of de%ininq a normal field in
the perturbafion and inductidn arrow trﬂnsfer function
analysis emphaQizCs the desirability of defining ‘the
fr;nsfer functjonsvin?ferms of the‘obseFVed surface field
components. ‘A corre]akion between the spatial deriva-
tives of the horizontal and vertical magnetic field
components exist§4 Arrows could be défineq from the
calculated transfer functions such that the boundaries
of the anomalous conductivity region could be defined.

L]
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APPENDIX A

THE CALOULATION OF THE ELECTROMAGNETIC_FLELDS OF A
SHEET CURRENT SOURCE WITH ARBITRARY SPATIAL INTENSITY
DISTRIBUTION OVER A LAYERED HALF SPACE -

THE COMPUTER PROGRAM AND ITS APPLICATION -

A.1 Description of the Program

a The general two- d1mens1ona1 program for . a sheet

current soured'hlth an arbitrary intensity d1str1but1on is
' .

‘Fomposed of two programs in wh1ch the so1ut1on for a genera]

&
source 1s constructed from a number of e]ementery sources

© " by superpostthdl : The«f1rst program ca]culates/thﬁ/irer
: 1

' V
components over a two d1mens1ona] !hwd w1th a 1ayered sub-

surface d%e to a current source w1th a Gauss??n spat1a1
'1ntens1ty d1str1but1on of small ha]f w1dth (bermed an

}elementa] Gaussian) The second program comb1nes the so]u-

A F___J

ﬁmpns for the f1!1dfcomponents of a number of spatIally

.shlfted e]émental Gausswan sources such that h rectangu]ar

d1str1bution of .current 1ntens1ty is c]ose]y approx1matedw ‘

Nlth an appropr1ate change 1n parameters the sedond program

[ ]

is alsoouSEd.to approx1mate\the arb1trfry curgent 1ntens1ty
s

) d1str1but1on in. a plecew1se cont1nuous manner by we1ght1ng

.

t1ons 1n accordance w1th the trapezo1da1 ru]e The so]ut1on

for the f1e]d compOnents due to the arbxtrary source ‘and the

‘ layered subsurface is thus obta1ned

\ S -fZZO .

|

-~

'a number of spat1a11y shifted rectangu]ar current dastr1bu- ..
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A.2. The Program | ELEMENTAL Aus

’ ‘{' The EL[M?NTAL GAUSSIAN program con51sts of . a main
progham and two subprograms. INTEG gnd CONST. The main
program listfng is'given in Figures A.1 and A.2. The
subprograms INTEG‘and CONST aré‘given in Fjgures A:3. A.a
and A.5, A.6 respéctivé]y ® e T '

Tﬁe main program ca]cu1ates th@ field’ component
‘values at a spec1f1ed number of po1nts (NT) a]ong a 1eve1
at a Sonsxant he1ght for pos1t1ve y vg]ues for a Gauss1an

current*d{str1butlon at z = -|h|

@% The integrat1ons for E H; and Hn are performed

”through the call to IyIEG? The 1ntegrat1on subrout1ne

DR
(INTEG) calls the subrout1ne CONST 1n wh1ch the 1ntegrands,f”

A
)

' -6z gz
(1/mu ){s[A e v" + Bne”n‘]C(s)? . sin(sy)

R . RV /o

..

..,,\p °
i
4

:. ';C’/

' ex&}ud1ng the te;ms cos(sy fou éx and Hy and s1n(sy) for H .
z“(see Chapter 2), are ca]cu]ated for all va]ues of”% at the B
\, ﬂ ‘ . ’
spec1f1ed Tevel. For E the 1ntegrand sl o 5
ROV o
(A e ..Zé'ene"_'? “1ets) ?;(sj) L (R)
. ForlHy the integrand is: N '5 ' f o
i et R C
(—I/wu )18, [A e M) L JL(S
- \J - . . . g . {
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GOS80 4 e L LENFNTAL GAUSSIANGe®ssscase

CAUPION CAUTION
RAMETERS 21,07,02,P9,20,HW ARF EXPRESSED IN WETERS
ALUES IN THP ARRAY Z ARF EXPRESLSED EN KILOMETFRS,

THE
THE

/
Z(-'-NEIGHT QP UPPER BOUNDARY ABOVE‘SUE]ACE (A NEGATIVE vALUP)
DY=~<~THICKNESS OP FIRST LAYER-~--1F HALP space IS DESIRED SFT DY
GRFATER THAN 1.0E+6 METERS, -
D2-=-THICKNESS OF SECOND LAYER~=<1IP ONLY ONE LAYPR I§5USED SET D2
GREATER THAN 1,0Fes METERS---~LIKPWISE POR A HALP HALF SPACE,
Ol=-=-MAXINUM INTENSITY OFP THE ,GAUSSTIAN CURRNT DISTRIDUTION CENTERED
AT THE ORIGIN,
20==-HEIGHT OP CURPRENT SOURCE ABOVE SURPACE (A NEGATIVY VALUR)
HW<=~HALP WIDTH OP GAUSSIAN CURRENT DISTRIBUTION
N1==~-NUMBEF OPF LEVELS TO BE CALCULATED
N2,N3,NU4,~==THE MEANING OP THESF VALUES IS EXPLAINED IN PORNAT
STATEMENT 112,
NA--=NUMBEK OF KI'LOMETERS BETWEPN CALCULATED FIELD VALUERS
NT---TOTAL NUNBER QF POINTS PEF LEVFL
NS==-ONE HALP THE NUMBER OFP INTEGRATION INTFRVALS, THIS NUMBER
MUST BE AN EVFN NUMBER.

THE MKS ,SYSTEHIUNXTS I35 useD TNROUGﬂOUT THIS PROGRANM,

Y
..““.’0...0“0;‘0“.“."."““““‘

INTEGER 2 (29)
DIMENSION CON (4),Y (2001)

COMPLEX ODD(2001),EVEN(2001),ORIGIN(2001),EX(2001) :
COMPLEX ODDHY(2001),0DDHZ(2001),!VFNHY(ZOOU,EVPNHZ(2001),ORIGMY(?
1001),0RIGMZ(2001),HY(2001),Hz(2001)
COHHON/H/OI,OH,UH,HH,PI,‘zo,A,B,Dl,M,NT,NS,Nﬂ

READ(5,100) z1,o1,o2,cfz,zo,uu,n1,N2,NJ,Nu,Na

READ(5,101) NT, NS ,

lm=~== THIS ARRAY CONTAINS THE INTER LEVEL SPACINGS. THE FIRST
SPACING IS THE DISTANCE BETNEEN THF *FIRST LEVEL AND THE TOP BOUNDARY,
TAESE VALUES ARF IN KILONMFTFRS, .

IP(NILEQ.1) GO TO 103

READ(5,102) (Z(K),K=1,N1) 4
GQ TO 104

READ(5,102) 2(1h . e

FREQ~--FREQUENCY IN HERTZ, .
A,B=~-LIMITS OF INTEGRATION. INTEGFAND IS ASSUMED NEGLIGIBLE AT B. A=0,

.

R!AD(S,!OST“ngo,B

CON~=~ARRAY CONTAINING THE CONDUCTIVITIES OF THE VARIOUS LAYERRS

STARTING WITH THE AIR LAYER (CONDUCTIVITY ZERO) AND PROCEEDING DOWNWARD,
FOUR CONDUCTIVITIES MUST BE SPECIFIED, I¥ A MALP SPACE SUBSHRPACE '
IS DESIRED , THE THREE SUBSURPACE CQNDUCTIVITIES MUS5T BE SPECIFIED

TO BI THE SAME VALUE,

Figure A.] ELEMENTAL _GAUSSIAN main program.

~—t
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READ(5,106,END=107) CON
107 A=0.0

PI=UNO*ATAN(1.0)

ON=2,QepPIePREQ

UN--~PERNEABILITY OF' PREE SPACE’ g

Nnoan

Un=1,262-6 ) * ' .
WRITE(6,108) . '

WRITE (6,109) 21,D1,D2,0I,20,H¥,N1,N8

WRITE(6,110) FREQ,B .

WRITE(6,111) (CON(I),I=1,4)

J2=N2-V~ .

Ji=N3-1 .
WRITE(6,112) Nu,J2,J)

©

SELECT LEVELS AND DO XiT!GPATION POR 7*7LD YALUEZS BY CALLING INTEG
Pe )

nno

113 I=1
Z2=Z10¢PLOAT(Z(1))*1.0000B¢C _
CALL IITEG(ODD,ODDHY,ODDHZ,EV?N,fVPNNX,!VENHZ,ORIGI',ORIGNY,OIIGHZ

1,BX,HY,HZ,22,CON,Y) .
WRITE(6,114) I

VRITE (7) EX

VRITE(8) HY

VRITE (9) HZ

WRITE(6,115)

IRITB(6,116)(EX(J),J-lz,NJ,NM)

WRITE (6,117 .

WRITE (6,116) (HY(J),J=N2, N3, Nu)

WRITE(6,118)

URITB(6,116)(HZ(J),J’N?;.J,'“)

I=Te1 ;
IP (I.LE.N1) GO TO 111 . R N |
STOP ' o

100 PORMAT (6E10.4,12,1I4,14,14,14)

101 PORNAT (I4,IS)

102 PORMAT (213) -

105 PORMAT(P7.5,210.4)

106 PORMAT (210a4) P

108 PORHIT('1','Z1',9X,'D1',91,'D2',9X.'OI‘,9X,'ZO',9X,'HU',QY,'N1',“X

1

1,'n8") .
109 POBRMAT ('=*',6(E10,.4,1%),12,2X,14) P
110 FORMAT (*=-*,'PREQ =',F7,5," UPPER LINIT OF INTEGKATION =',E10.4)
171 PORAAT('~','CONDUCTIVITIES= ‘LU (210.4,2x)) by

112 PORRAT('-','COMPLEX PIELD VALUES ARE GIVEN AT INTERVALS OP !, I, X

1,° KA. OVER A RANGE OF ', I4,' KN, TO ¢,I4,' KN,¥)
174 PORMAT (*-','LEVEL',I14,* CONPLETED') .
115 FORMAT ('~=*,'EX"*)
11€ PORMAT (100 (*0',5(210.4,1X,E10.4,3X) /))
117 PORMAT(*=*, *HY?)
118, PORMAT (*=*, 'HZ ") ’ . C L

¥D

Figure A.2
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non

Nnnonn

aoanNoonNnOann

202
201

204

) : 274

SUBROUTINE INTEG(ODD,ODDHY,ODDHZ,!VEN,!V!NHY,!VBNHZ,ORIGIN,ORIGHY}
10RIGHZ,EX,HY,HZ,22,CON,Y) ’ *

THIS SUBROUTINE DOES THE INTEGRATION THROUGH THFE USE OPF FILON'S METHOD

DINENSION GON (4),Y (NT)
COMPLEX ORIGIN (NT),ODD(NT),EVEN(NT), EX (NT)

COMPLEX ORIGHY (NT) ,ORIGHZ (NT),EVENHY (NT), BVENHZ (NT) ,ODDHY (NT) ,ODDH
1Z(NT) ,HY (NT) , HZ (NT) ' .

COMPLEX CONSTT,CONSHY,CONGHZ,ELIN, HYLTIN, HZLIN ~
CONMON/A1/CI,OM,UM,H¥,PT,20,A,B,D1,02,NT,N5, NG

S~==INTERVAL OF INTEGRATION. : - -

S= (B=A) /(FLOAT(NS) {R.)

Y=-=<APRAY CONTKING E DISTANCES FFOM THE ORIGIN IN THE POSITIVE Y

DIRECTLON AT WHICH FIYLD. CALCULATIONS ARE PERPORMED. S

DO 200 I=1,NT

Y(I)=PLOAT (I-1)%1000, , .
RIGHY(I)=(0.0,0.0) :

garcnzqr)-(o.o,o.O)

EVENRY (I)=(0.0,0.0)

EVENHZ (I)=(0,0,0.0) - H

ODLCHY (I) = (0.0, 0. 0)

ODDHZ (I4=(0,0,0.0)

ORIGIN(I)=(0.0,0.0)
EVEN(I)=(0.0,0.0)

ODD(I)=(0.C,0.0)

ARRAYS PREFIXED WITH ODD CONTAIN THE CALCU ATIONS OF THE TINTEGRAND
-PERFORMED FOR THE ODT NUMBEPED INTERVALS O INTEGRATION, IN ACCORDANCE
WITH FILON'S METHOD.

ARRAYS'PFFFIXFD WITH EVEN CONTAIN THE CALCULATIONS OF THE INTEGRAND
PERFORMED FOR THE EVEN NUMBERFD INTERVALS OF INTRGRATION, IN ACCORDANCE
WITH FILON'S METHOD, \'

T=S . :
DO 201 J=1,N5 v .

CALL CONST(T,Z2,CONSTT,CONSHY[CONSHZ,CON)

DO 202 I=1,NT, N8 _
ODDHX(I)=0CDHY(I)‘CONSHY‘COS(T‘Y(I))

ODDHZ (I) =OTDHZ (1) *CONSHZ*SIN (TeY (I))
ODD(I)'ODD(I)OCONSTT‘COS(T‘Y(I))

T=T+S+S ' )
NB=N5=-1 . ' -

G=S+S : .

DO 203 J=1,NB , _

CALL CONST(G,ZZ,CONSTT,CONSHY,CONSHZ,CON)

DO 204 I=1,NT,NB .
EVENHY(I)=EVENHY(I)’CONSHY‘COS(G‘Y(I))
EVENHZ(I)=EVENHZ(I)’CONSHZ‘SIN(G‘Y(I))

EVEN (I) =EVEN (I) +CONSTT*COS (G*Y (1))

4

: : ’

Figure A.3 Subroutine INTEG.

o . -
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nrrRo

20:

206

207

.205

1

G=GeSeS R : : - ;
Ve1,000E-20 . /
CALL CONST(V,22,CONSTT,CONSHY,CONSHZ,CON)

DO 205 I«1,NT,NB ,

ORIGHY(XO_CONGHY ' ‘

ORIGNZ (I) =CONSHZ ; R !

ORIGIN(T) =CONSTT : : . .

FILON'S INTEGRATION METHOD ' . . . o,

THE=Y (I) *5"

IP (THE .LE. .1) GO TO 206 . :
ALPQ{(THE®® 20 THE® STN (THE) #COS (THE) = 12, * (SIN (THE) ) #92) ) /DHE .
"BETA=2.* (THE* (1. + ((COS(THE)) %#2)) =2, #SIN (THE) *COS (THE) ) /THE®*)
GAMMA=Y, S (STN(THE) ~THE®COS (THF)) /THE®*3

GO TO 207

BETA®2,/3,¢2.% (THE#**3) /15. =4, ¢ (THE® %) /105,42, % (THE®**6) /567,
GAMMA=U, /3, =2, ¢ (THE®2) /15, + (THE**uY/210.~ (THR*®6) /11340,

ALP=( (2. $THES#1) /U, )= ((2.* THE®*5) /315,) #( (2. *THE®®7) /4725.) |
HY(I)=S‘(B!TA‘(EVENH¥(I)-.S‘ORIGHY(I)»OGAHHA‘ODDH{{;))

HZ (I} =S* (ALF*ORIGHZ (1) +BETA*EVENHZ (I) ¢«GANNA®ODDHZ (X))

EX {I)=S* (BETA® (EVEN(I)=.5%0RIGIN (I)) +GAMMA®ODD (I})

LINEAR INTEPPOLATION BETWEEN CALCULATED POIﬁTS IN‘A GIVEN LEVEL.

NI=N8+1 . : \
N10=NB~1 ’ R : . ‘
PO 208 I=N9,NT,NA

ELIN&(EX (I)=EX(I-NE)) /FLOAT(NR)

HYLIN= (HY (I) ~HY (I-N8))/FLNAT (NB)

. HZLIN= (HZ (I) -HZ (I-NB)) /FLOAT (NR) -~

208

DO 208 .J=1,N10 :
EX (I-N8+J) =EX (I-NB) + ELINSFLOAT (J) .
HY (I=-NB¢J) =HY (I=NB) +HYLIN*®*FLOAT (J) ‘

HZ (I-N8+J)=HZ (I~ NB) +HZLIN*PLOAT (J)

RETURN .

END ' - /_;5 . o
Figure A.4 ;SubroutineilNTEG {continued).
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301

302

sgnnour:ua CONST (S,Z2,E1,HY1,HZ1,C0R)
DIMENSION CON(U4) .
CONPLEX TH (3),¥(3),Q,CRXP, R, 81,CSQRT,A2,A], 4,82,B3,01,21
CONFLEX HY1,HZ1 o - :
CONPLEX CPRIN,CAPLX e
CORRON/A1/0T,0M,UN,HV,PI,20,A,B,D1,D2,NT,NS, ' , -

THIS, SUBROUTINE CALCULATES THE INTEGRAND VALUES,

THE SUBSURPACE CAN CONTAIN A NAXINUM OP #;0 LAYERS AND ONE HALP SPACE,

érnxn-(o.o,-1.0)o((oxoon-un-uu)/(sonr(z.o-PI)OS))tzxp(Stzo-sotztnu

100 .
2/72.) ] ) ' N

Zugee2 h
DO 300 ‘N=1,3 CoL
J1=0NSURSCON (Ne1) , .
W (N)=CAPLX (Z,Y1) o
TH () =CSQRT (W (N))
IP{D1.GT.1.0E¢6) GO TO 301 i _
IF(D2.6GT.1.0E+6) Q1=CHPLX(0.0,0,0) . _ .
IP(D2.GT.1.0E+6) GO TO 301 ; :
Q1= ((TR (2) “TH (3) )/ (TH (2) $TH(3))) CEXP(~2.*TH (2) *D2)
IP(D1.GT.1.0E+6) GO TO 302 o
QJ](¢H11)orn(z)o(rn(1)-rn(2))-a1tcxxp(2.-rn(z)-o1))/(rn(1)-?5(2)o(
1TH(1)OTH(2))‘%;‘C!XP(2.°TH(2)‘D1)))‘CEXP(Z.'TH(1)‘DI) X
R=(S® (Q¢1.)) /(TH(1) % (Q=1.)) , _
Blx(R=1.) /(R¢1,) . , e
IP(D1.GT.1.0E+6) “Bl= (S=TH(1))/ (S*TH (1)) B "

304

- IP(%2 JLE. 0.0) GO TO

303
304

305

306

‘TP (D1.GT.1.0E+6) A4=CHPLX(1.0,0.0) ¢B1 ﬂ
IP(D1.GT.1.0E+6) GO TO 307 . .

A2=((1.¢B1)*Q) /(Q¢1,) . .

B2=A2/Q ) . : .

I?P(Z2 .LE. DY) GO'TO 305 . .
AJ-((A2OB2‘QBXP(2.‘TH§1)‘D1))/(1.001‘C!XP(2.‘TH(2)‘D1)))‘CEXP((TH(
12) -TH(1))*D1), @& .
B3=a3®Q1 -

IP(D2 .GT. 1.0 E+6) GO TO 303
Ir(z2 .LB. D2)- GO TO 306
Mi=(A3+B3ISCEXP (2¢TH (2) *D2) ) CEXP ((TH (3)=TH (2) ) *D2)
GO TO 307 ‘ B N

Aa=p) .

GO0 TO 307

E1x= (EXP (~5%Z2) +B1SEXP (S*22)) *CPRIN )
HY1=((0.0,-1.0)) (ON*UN)) *S* (EXP (~S%22) -B1%#EXP (S*22)) *CPRIN
HZ1=(({0.0,1.0)%S)/ (ON*ON))*E1 ,

GO TO 308

El1= (A2¢CEXP (~TH(1) 22) +B2#CEXP (TH (1) %Z2) ) *CPRIN

. W

H!1-((0.0,-1.0)/(0!‘0!))‘TH(1)‘(AZ‘C!XP(-TH(1)'22)°B2'C!Xé(Tﬂ(1)‘2

12) ) sCPRIN
HZ1=(((0.0,1.0)*S)/(ON*UN))*21 T )

GO TO 308 .
Ei= (A3®CEXP (~TH (2) #22) +BI*CEXP (TH (2) *22) ) *CPRIN - ‘
HY1-((0.0,-1.O)/(OH'UH))‘TH(Z)‘(AJOCZXP(TTH(2)‘ZZ)-BJ‘C!XP(TH(Z)‘Z
12)) sCPRIN , T . .

14

\ .
V- H

!

Figure A.5 Subroutine CONST.

-

>
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- 308

277

nzi-u(o 0,1. onsummuu))tn :
GO TO 30 .
n1-ua-czxp( ru(s)-az))tcnxn
HY1=( (0.0, -1. o;uom-mu)-rﬂ(a)—(Autczxp(-'ru(s)uzz) sZpRIN
HZ1=(((0.0,1.0) #S) / (ON*UN)) #ET" \
RETURN ° T
END : .

A )

Figure A.6 Subroutine CONST (continued).
. N ‘ .



-7 C(s) is as giveu in equation(2.94)of Section2.5.Upon
return%ng to INTéG the integrapfon is performed by the use of
Filon' method (}ranter; 1965) | The main program then writes
the g:z;tric and magnetic f1e1d values for that 1eve] on a

: fi]e or magnet1c tape. This process is then repeated for

‘subsequent levels. \' : \ 3

-

"A.3 The Program RECTAZOID - _ .
’ This program sums a finite number of elemental

- Gaussian so1utions‘to obtain an approximate solution for a
Lrectangu]ar'current distrioution. Jhe.user specifies the

' number o% e]ementa] Gaussians to approximate the rectangular
current distribution and'assigns their source coefficients
the magnitude one. The e1ehenia1'Gaussian solution for
positive values of y calculated by the'previous program is
read into'botﬁ positive and ®egative y regions. In th1s,°the

- vertical magnetic f1e1d quantities must be made negative in
the negative y region since the vertical magnetic field is
asymmefric about the origin. /This solution is theq shifted
and\summed to approximate the’rectangular current solution.
The:result is then'stored This program is aga1n used to

g1ve the solut1on for a piecewise continuous source composed

of a summat1on of rectangular current sources. The general

,—ﬂ¢sou{£i\;:?figurat1on must digitized by the user at regu]arT
intervals (equal to the width of the rectangles) and these
source coeff1c1ents are then supp11ed to the program in the

]
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array SA. The general solution is obtained by superimposing
rectanguiar source solutions which are shifted wWith respect
go one another and multiplied by the appropriate source
coefficienps in accordance with the trapezoidal rule. -The 7’_
final solution is thus obtained for tﬁe']ayered earth and

is that of a piecewise continuous source which approximateé
‘a confinuous source. The listing of RECTAZOID is given in

Figures A.7 and A.8.

A.4 Varlous Par&%eters and Their Effects on the Solut1on

?L the programs many parameters can be var1ed and

the values of these can affect the accuﬁacy’of the f1na1 | '
solution. It is important to consider these parameters and A,//ffﬁf

*

the reasons for choosing their values. /

A.4.1 Elemental Gaussian —

The final result depend; greatlykﬁponéth Curacy
of the elemental Gaussian solution. 4The importaft - -
parameters here are B, N5 and NS.

For ha]f widths of approx1mate1y 10 km the source
function C(s) is governed by the %;rm eSZ . Therefore, B.
shou]d be taken to be at least ten t1mes the damping constent
(1/[zo|) for a source in free space (see Hermance and Peltier

(1970). Far a 1ayered earth mode1 a value of 0.8 x 10 -4 or

lTarger will be sgtisfactory.
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000090000 RECTAZOI DG ss0sanne ’ A

NT---NURBER OF FIELD POINTS USED IN THE PLENENTAL GAUSSIAN PROGAM, -
NLEVEL---NUMBER OP LEVELS, N :
RSOUR=-<RUNBER OF SOURCE ELEKENTS. HOUST BE ODD NGRAER POR RECTANGULAR
SOURCE. '

NSC---NUNBER OF THE SUURCE ELEMENT WHICH IS POSITIONED OVER THE ORIGIN,
NSHIPT-=<NUMBER OP ARRARY ELENENTS THAT PIPLD IS TO .BE SHIPTED POR PACH
CURRENT PLEMENT.

NHZ-=--1P HZ NAGNETIC PIELD DATA IS BEING RUN POR A RECTANGULAR Source !
NHI®1, AT ALL OTHER TIANPS NNZ=0, THIS IS TO ALLOW POR NON-SYRNETRY OP HZ
MAGNETIC PIELD' VALUES,

THE DINENSION OF THE SOURCE ARRAY (SA) NUST EQUAL NSOUR. . p
NH¥=--HALP WIDTH OF ELENENTAL GAUSSIAN,

COMPLEX ET(4001) ,EX(2001) ,EA (4001)

DIMENSION SA(14)

READ(5,100) NT,NLEVEL,NSOUR, NSC,NSHIPT,NHZ,NHW
READ(5,101) Nu4,N2,N3

WRITE (6,102)" , )
VRITE(6,103) NT,NLEVEL,NSOUR,NSC,NSHIPT, NHE, NHW .
J2=N2¢1

J3=N3-1 -
WRITE (6,104) N4,J2,J3

AT 1=NT-1 .

NT2=NT+1

NTOT=2¢NT-1

IP (NSHIPT.GT. NHN) GO TO 106

SOURCE ARRAY POR BECTANGULOR source.

DO 105 I=1,NSOUR N
SA(I)=1.000 ’ }
GO TO 107 -

SOURCE ARRAY FOR LINEARLY APPROXIMATED SOURCE.

BEAD (7) SA o,
I1=1 '
IP (NSHIPT.GT. NHW) GO TO 112

ELEMENTAL GAUSSIAN PIELD VALUES

‘o

READ (8) EX e %

PORM SYMMETRIC FIEBLD ARRAY (EXCEPT IN CASE OF HZ FOR RECTANGULAR 'SOURCE)
FRON ELEMENTAL GAUSSIAN DATA. N

DO 109 I=1,NT
EA (NT1eI)=BX (I)

EA (I) *EX (NT2-T) : ‘ .
IP (NHZ.EQ.0) GO TO 111 : <

Figure A.7 The program RECTAZOID.

'

.—u A ‘ )
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Do 110 I=1,NT . v " e
110 EA(I)'=~EA(]) { . PR

111 IP(NSHIPT.EQ.NH¥) ‘GO TO 'J \ e
c : )
< BECTAZOID FIELD VALDES, - . ,
c ' \\\__
112 RRAD(8) ZA ' o
c ~ , ‘ } , .
c MULTIPLY BY AMPLITUDE OF ng;taucu;Aa, unce g;nrznnn OVER THE ORIGIN,.
113 DO 114 I=1,NTOT -:3{r, L
114 BT (I) =EA (I} *SA(NSC) vjf71i;i

J= (NSC~- \)‘NSHIPT \
J1=1

115 1P (3.20.0) Gd w 1ﬁy~u &\Jiﬁ Ty
SHIPT ANC ADD FOR sﬁg\fz ann;\ﬁgtxjﬁmntvltcnrxvz Y BEGTON,

NnNnNn
L

—

DO 116 I=1,NTOT % .
xr((xoa).Lr 1.08. (1¢9) }J NTOT) GO TO 116
zr(x)-zr(x)osn(xoa)-sa4a1)

116 CONTINGER
J=J=NSRIPT . ,

J1=J141
GO TO 115 .

117 K=NSC#+1 )
J=RSHIPT

118 IP(K.GT.NSOUR) GO TO 120

SHIFT ANB ADD FOR SOUPRCE ELEMENTS IN THE POSITIVE Y REGION,

Nnoon

' DO 119 I=1,NTOT
IP ((1-J).LT.1.0R. (I=J).GT. NTOT) GO TO 119
ET (1) =ET(I) ¢BA(I-J)*Sh (X} ,
119 CONTINUE .
J=JeNSHIFT N
K=Ke1 -
GO TO 118
120 WRITE(9) ET .
HRITE(6,121) I : -
WRITE (6,122) (ET (J} ,J=1,KTOT, N4) \
I1=1149 )
IP(I1.GT.NLEVEL) GC TO 123 .
G0 TO 108
" 123 sTOP
\ 100 PORMAT(Iu,6I3)
101 PORMAT (315)
102 POBMAT(*-*,' NT NLEVEL NSOUR NSC NSHIPT NHZ NAW')
103 POBMAT(*-*,1X,I4,5X,I3,4X,13,2X,13,5%,13,1X,13,1X,13}
104 PORAAT(*-*,'CONPLEX PLELD VALuzs ARE GIVEN AT INTERVALS OF *,IS, "
1,'KA. OYER A RARGE OF )15, KR, TO  ,IS,' KA.')

121 PORAAT(*-*,°"LEVEL®, 14, COHPL!T!D')
122 PORHAT(100('0',5(210.“,1X,B10.0,3!)/))
ENT .

-

Figure A.8 The program RECTAZOID (continued). ;
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, f " A total of 4000 integration intervals (2*N5) is
S sufficient for a half width (HW) of 1-10 km. This value of
NS5 improves the accuracy of ‘the apparent resistivity curves

™~ ca]cu}ated from

) | . -= »_ 155|

(hagn1hrdk\L953) since when calculaiing the apparent -
resistivity any error in the fielg values produces a greater
error in the resistivity values. Satisfactory field values
may be obtained by using approximately oné-sixth this

value of N5. These values of B and N5 were used in
calculating the elemental Gaussian results of Tables 1 and
'2 of Chapter 2. In cajculgting the 240 km half width
Gaussian the valud of B\was taken as 0.1 x ]0'4.

The solution-for ahe field valués at any particu-
lar level is Ealculated at a certain number of points and
this is indirectly deterﬁined by N8. The vaiues for inter-
mediafe points are determined‘by a linear interpdlation
between the ca]éulated points. The quantity (N8-1)
represents tﬁe number of points between calculated values.
In all cases except the sample rhn N8 w set equal to 10.
If this value is made too large the solz:?}n will be less

accurate, especially when the field solutions are shifted

and addeg. r
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A.4.2 RECTAZ0ID
Tﬁe parameters in RECTAZOID which most affect }he

results ::e NSOUR a:ﬁ NSHIFT. When synthesizlng the

rectangu]ar source the best approximation is obtained when ¢

~the adjacent elemental Gaussians are one half width apart, l, )

Because of this, NSHIFT is equal to the Half-eidth in

kilometres. Hhen arbitrary source currents are approximated

NSHIFT 15 equal to the width of the rectangles. The w#d;h‘

of the rectanguhar source specified by NSOUR can also affecc g

the accuracy o?‘the solution. The normalized values of ﬂz’ )

are most affected by the source geome;rxme\d coarse rectan-

gular approximations to the arbitray§ source configuration

I
can noticeably affect these profiles. i>

A.5 Sample Run

Sample calculations have been made and the results
of this run are given in Figures A.9, A.10, A.11 and A.12.

The sdmple run has been designed to provide an

-~
A

easy verification of the program, The total running time
to obtain the results g1ven here is approximately 40 s on
the IBM 360/67 .at the University of Alberta. 1In then
'ELEMENIAL GAUSSIAN PROGRAM for this example only three
points are calculated and the remaining ones are obtaihed
through linear interpolation. Alsjngle value of 50 must be
supplied for the Z array since the fields are obtained for

/\\
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0.200E+02
0.500E+02
0.500E+02

0.500E+02

A .
>

0.500E+02
0.500€+02
9.300E+03
0.700E+03
0.700E+03
0.700E+03
0.700E+03
0.500E+03
0.300E+03
0.200E+02

4
Figure A.¥ Sample run source coefficien*s.
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the surface level. The\va]ue of NT was 2001 and N5 was taken
to be 20. The other parameters are as, specified in Figure
A.9: Figufe A.10 gives phe parameters used in RECTAZOID to
construct the 30-km rectangular source. Since only vertical
magnetic,fieid data are produced in tois run NHi\must be set
equal to 1 to eosure the nod:symmetry_of'the Hz field. The
value of‘NHZ must be takeﬁ/;svT 1n~constroct10n of\;he
fectangu]ar source, but wHen synthesizing the-arbif%@ry
source from these rectangles NHZ must equal zero. rﬁq
erbitrary source consists of fourfeen rectangular souroes
‘ weighted as Tndicated in the source'array SA gi)ﬁn in Fqure
AT The third rectangular currentlsource is oositionedfot
‘the origin as indicated by NSC. The parometers of Fjgure
A.12 produce the. vertical magnetic field associated with th1s
source and these field va]ues are given as well 1n Figure
A.12. 1If the electric field or the horizonta] magnetic
f1e1d is des1red the elemental Gaussian data. for those
fields could be operated upon by RECTAZOID to produce ohe‘
desired fie]d" Ih»these latter. two'cases all parameters;¥or

RECTAZOID would remain.the same .as before, except for NHZ

which wou]d be set equa] fo zere. ‘ \ /

!
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