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Abstract 

We built a family of hierarchical risk models for the spread of invasions by the spiny 

waterflea (Bythotrephes longimanus) in lakes in Ontario, Canada. Knowledge of 

covariates determining lake invasibility and ability to predict risk of future invasions may 

help to develop management policy and slow the invasions in the future.  The models are 

based on two component submodels.  The first component was a stochastic gravity 

submodel for the propagule pressure between lakes via recreational boaters.  The second 

component was a submodel for establishment risk, given that the invader has already 

been introduced to a lake.  This component was a logistic regression model, incorporating 

up to 17 measured covariates that describe the physical and chemical condition of the 

lake. Variants of the risk model, each incorporating different subsets of the covariates, 

were calibrated using presence/absence data from a 300-lake survey conducted in 2005–

2006 by the Canadian Aquatic Invasive Species Network (CAISN).  The predictive 

capacity of the best model was high, giving AUC values close to 0.94. Of the model 

covariates considered, the most important predictors of existing invasions were propagule 

pressure and lake pH, and, to lesser extents, phosphorus (P) and lake elevation. Our 
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fitting of the propagule pressure submodel demonstrated a significant Allee effect for 

Bythotrephes. Our development of the establishment risk predictor showed that it is 

essential to account for temporal variability in lake physico-chemistry.  We demonstrated 

that invasions of lake networks by the spiny waterflea follow highly predictable patterns 

which can be understood with a properly calibrated, hierarchical risk model.   

 

Key words:  Aquatic invasions, risk model, invasion predictions, statistical model 

selection, habitat suitability 

Introduction 

 

Biological invasions are increasing, mainly due to the rapid growth of international trade 

and transport (Lockwood et al. 2005). Invaders can cause biodiversity losses (Sala et al. 

2000, Gurevitch and Padilla 2004), with ecological and economic harm measured in 

millions or even billions of dollars (Pimentel et al. 2005). Management efforts to reduce 

the spread of invaders to protect native habitats are thus clearly justified, but such 

management is best designed using scientifically grounded understanding, tools and/or 

arguments with a proven history of efficacy.  Such arguments and efforts require the 

predictive modeling of invasion risk built on the analysis of actual invasion cases, so that 

reasons and ecological mechanisms for invasion success can be understood and 

appropriately modelled (Clark et al. 2001).  

 

One approach to predicting invasions is to determine the types of habitat that are suitable 

for the invader. This is similar to determining species’ niches from records of current 

distribution and abundance or presence/absence data (e.g. Pulliam 2000; Guisan and 

Thuiller 2005; Stockwell 2007).  Although this approach has frequently been used to 

model invasible habitat based on the occurrences of the invader and its relationship with 

the environment in its native habitat, it has also been used successfully to model potential 

range expansion of an invader given current presence/absence data and habitat 

characteristics within the invaded range (e.g. Drake and Bossenbroek (2004)). 
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However, it matters not how invasible a new habitat is, if invader propagules do not reach 

it.  Therefore, another important component of the invasion process is propagule 

pressure, characterizing the number of introduced individuals or the rate of their 

introduction (e.g. Drake et al. 2005). Propagule flow to a certain location can be 

estimated with the help of gravity models, which have been successful in explaining past 

and predicting future introductions (Bossenbroek et al. 2001; MacIsaac et al. 2004). 

Because both propagule pressure and invasibility are clearly implicated in the invasion 

process, they can be combined into one risk model, e.g. Leung and Mandrak (2007), 

effectively describing both introduction and establishment steps of invasion.  This 

approach is both intellectually satisfying, and appears to provide the most promise in 

prediction of the invasion risk, though it does require both more data and more 

complicated models.  

 

The spiny waterflea, Bythotrephes longimanus (Crustacea, Onychopoda, Cercopagidae) 

is a good candidate for building such an integrated, invasion risk model. It was first 

discovered in North America in the lower Laurentian Great Lakes in the early 1980s, 

likely transported within ballast water by ships from the Baltic Sea.  Within a decade, it 

had occupied all the Great Lakes and started to spread to inland lakes (see review of 

Bythotrephes invasion history and corresponding references in Branstrator et al (2006)).  

Bythotrephes is a zooplankton predator, and it has dramatically decreased native 

zooplankton biodiversity (Yan et al. 2002; Barbiero and Tuchman 2004), but its impacts 

may depend on characteristics of the native zooplankton community (Strecker and Arnott 

2005).  Its spread has been modeled among the thousands of lakes in the Great Lakes 

region (MacIsaac et al. 2004; Muirhead and MacIsaac 2005; Branstrator et al. 2006; 

Muirhead 2007), where it appears that human-mediated traffic of recreational boats is a 

major mechanism of new and ongoing introductions (Weisz and Yan 2010). 

 

Not all lakes are suitable for Bythotrephes establishment, however.  The invader 

preferentially colonizes large, deep, and nutrient poor lakes (MacIsaac et al. 2000; Weisz 

and Yan 2010), a lake type that is common on the Canadian Shield.  MacIsaac et al. 

(2000) developed a model of lake invasibility by Bythotrephes based on European lake 
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data. Although the model was reasonably successful in predicting invasions for lakes in 

which the species has been recorded, it also generated a high rate of predicted 

occurrences where Bythotrephes was not observed (i.e. false alarms). One possibility of 

the mismatch between model predictions and observed invasion status for Canadian 

Shield lakes is differences in processes governing lake water clarity in Canada, where 

water colour is the main determinant, vs. Europe, where phytoplankton biomass is key 

(Cairns et al. 2007). Alternatively, mismatches between model predictions and observed 

invasions may be due to the stage to which the invasion has progressed.  Bythotrephes 

invasions are still ongoing in Canada (Cairns et al. 2007), given the recent colonization 

history.  Thus it is necessary to distinguish between two situations: (a) when the invasion 

is in its initial stages, and (b) when the invasion is well advanced and the invader has 

occupied almost all suitable locations.  In the latter case, when species absence is related 

mainly to unfavourable conditions, the relationship between species establishment and 

habitat suitability is relatively static and matches the standard niche determining 

concepts. In the former situation, this relationship is dynamic and more complicated to 

model: some lakes are not invaded due to their unsuitability, while the others are suitable, 

and likely have invasions in their future.  They are currently protected from invasion only 

by dispersal limitation.  These alternatives complicate the determination of favourable 

conditions for the invader, and necessitate distinguishing “true absence” from “temporary 

absence”.  Only presence data are certain if there is insufficient sampling effort or 

insufficient time for the observed process to develop (Lele and Keim 2006; Pearce and 

Boyce 2006).  

 

To achieve a better understanding of Bythotrephes spread and establishment on the south-

central Canadian Shield, the Canadian Aquatic Invasive Species Network (CAISN) 

conducted a project to collect Bythotrephes presence/absence data with sufficient 

sampling effort to confirm true current presence and absence and to collect simultaneous 

lake physical and chemical characteristics in order to determine the best predictors of 

invasion risk (Cairns et al. 2006).  In 2007, a database containing the results of sampling 

of about 300 lakes (“300 lakes database”) was compiled (Cairns et al. 2007) and provided 

to the modeling teams within CAISN.  Here our main purpose is to develop a statistical 
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model for lake invasibility by Bythotrephes based upon the 300 lakes data.  We needed a 

family of models since we didn’t know which of the measured covariates determined 

lakes invasibility. 

 

Methods 

Data on Muskoka watershed invasion by Bythotrephes 

 

300 lakes database 

 

In 2005 and 2006, 311 lakes were sampled from June to August (as described by Cairns 

et al. 2006, 2007) during peak Bythotrephes population size (Yan and Pawson 1998).  

The lakes were located in the Muskoka watershed 2EB (Cox 1978) which has the longest 

Bythotrephes invasion history in North America outside of the Great Lakes  (Yan et al. 

1992).  This region also has been identified as a hotspot for new invasions because of 

substantial recreational boater traffic (MacIsaac et al. 2004).  Field crews collected 

plankton samples for Bythotrephes presence/absence, defined physical characteristics of 

the lakes, and collected water samples for subsequent chemical analysis at the Ontario 

Ministry of the Environment’s Dorset Environmental Science Centre chemistry lab 

(Dorset, Ontario).  All plankton samples (6/lake) were examined in their entirety for 

Bythotrephes. Later the survey data were organized into a “300 lakes database”, which 

was provided to the modelling teams within the CAISN project.  Details of survey design 

and lake sampling techniques can be found in Cairns et al. (2006), Cairns et al. (2007), 

and Weisz and Yan (2010).   

 

Here we used n=306 lakes from the database, for which values of 17 lake covariates 

listed in Table 1 were available.  In formulae we refer to the covariates and lakes by 

numbers: Cvk for k-th covariate, and Cvki for the measurement of k-th covariate in lake i.  
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To improve maximum likelihood convergence and interpretation of the results of 

regression models, we normalized the data.  For each Cvk  we calculated its mean k and 

its “spatial” standard deviation across lakes Sk.  In actual model fitting we used the 

normalized values:  

 
k

kki
kix

S

Cv




        (1) 

The values of k and Sk are presented in Table 1.   

 

Data for determining temporal variability of covariates 

 

For 42 of the 306 lakes, the covariates were measured twice, in both 2005 and 2006. The 

measurements clearly show that chemical covariates vary with time. Information about 

their variability is important for invasion predictions, since such a predictor must give a 

reasonable answer for any measurement within a given range. To characterize variability 

of chemical covariates, we used records of covariates for 8 lakes in the same region as 

our spatial survey that were shared with us by A. Paterson of the Ontario Ministry of 

Environment (see Yan et al. 2008 for an overview of limnological changes in these 8 

lakes).  Most records were taken 1-2 times a month, mainly from the end of April to the 

beginning of November, and we used 1989 to 2007 data, when Bythotrephes were 

introduced and spreading in the region.  For each covariate, first we estimated the 

variance at each lake, and then averaged the variances with the weights proportional to 

the number of data points at each lake.  The square root of the averaged variance gives 

the standard deviation for temporal variability k of each covariate. 

 

Propagule pressure estimates 

 

The direct measurement of Bythotrephes propagule pressure is infeasible, but models for 

propagule pressure may be developed based on movement patterns of a well-known 

vector: recreational boating.  Now common tools for predicting boater’s behaviour are  

gravity models (Thomas and Hugget 1980; Keller et al. 2009), which have been 
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developed to model migration and flows of economic trade (e.g. Zipf 1946; Linneman 

1966)   Here we used a stochastic form of gravity model for Ontario lakes developed in 

Potapov et al. (2010). The model predicts the mean boater traffic between lakes i and j as 

a Poisson process with the mean intensity  

     ,58.0,37.1,
1




 jiijNjNiij bbdAAC    (2) 

where  

 2

0

0

0

0

km3200,
/1







 A
AA

AA

AA

A
A

i

i

i

i
Ni      (3) 

is the normalized lake area, characterizing its attractivity for boaters;  dij is the distance 

between the lakes; and bi characterizes the number of boaters visiting lake i. We assume 

that the number of boaters in a geographic area is proportional to the total population in 

this area, Popk, and their willingness to travel to the lake is inversely proportional to the 

distance from the area to the lake lik.  For these inhabited areas we take regions 

corresponding to the first two digits of a postal code (FSA2), and  

  

 areas FSA2
 allover 

1Pop

k

kikbi lCb .       (4) 

Cb is a normalization constant.  

 

To predict absolute mean boater flow, C in (2) must be proportional to the total number 

of trips in the lake system or the total number of boaters.  These numbers may be known 

only approximately or may be unknown.  In spite of this, (2) can successfully predict 

relative boater traffic, showing ratios of the flows for different lakes. In this case we can 

choose C arbitrarily. In this work, we have normalized  such that the maximum 

estimate corresponds to i=1, which is equivalent to choosing C=15.23.  To obtain the 

absolute boater flow A , we need a conversion factor C such that  CA . 

 

Let us assume that the number of invader individuals transported by each boat is a 

binomially distributed random number with the mean In . Then the flow of invader 

individuals into a lake is a random variable:  

   InCCCPoissonY   ,,~ .   
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The coefficient C  is unknown, but can be estimated from the data. 

 

 Single covariate predictors and current invasion stage 

 

Logistic regression based on presence/absence data is a standard approach to risk 

modeling when there is no additional information about the processes to be modeled.  We 

tried it with only one covariate, that is we compare 18 models for probability of lake i 

invasion of the form 

        ,exp1,
1

10,


 uuSxaaSP iiINV    (5) 

where S(u) is logistic function and xi the value of one of the 18 covariates listed in Table 

1 related to lake i. We fit these models to the data with the help of R function glm (R 

2009; Crowley 2007).  The models were ranked according to AIC value. 

 

This step may give information about current invasion stage.  In the initial stage of 

invasion there are many suitable lakes, but only a few are accessed by the invader, and 

the most important invasion predictor must be propagule pressure for the lake. On the 

other hand, if sufficient time has elapsed for the potential spread of the invader, most of 

uninvaded ones are not suitable for the invader. Thus, the most important invasion 

predictors should be covariates related with habitat type, most probably related with 

water chemistry. 

 

The results are presented below, and propagule pressure appeared to be the best 

predicting covariate.  Therefore, the most accurate invasion risk model must account for 

two invasion stages: introduction and establishment.  We implemented this approach in a 

hierarchical risk model. 
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Hierarchical risk model and model selection 

 

Our hierarchical risk model couples a stochastic model for population introduction, which 

is based on propagule pressure, with an establishment risk model, based on the local 

environmental conditions.   This hierarchical risk model can be expanded into a family of 

such when only subsets of local environmental conditions are included in the 

establishment risk submodel. In the last part of this section we develop methods for 

assessing which out of the family of models best reflects biological reality.  From this 

selection process we can deduce which environmental conditions have a significant 

impact on Bythotrephes establishment. 

 

Modeling techniques used for the establishment risk model are determined by our goals: 

1) to obtain risk estimates for Bythotrephes invasion into lakes and 2) to determine 

covariates important for lake invasibility diagnostics.  Since all covariates are numbered 

in Table 1, such a subset can be represented as a collection K of covariate indices. For 

example, if we use elevation (Elev), phosphorus (P1) and pH, then K=(3,10,16).  If we 

need to denote that index k takes all values from such a subset, we shall write Kk . 

 

Invasion as a random process 

 

We introduce a random variable X  where 0X  corresponds to uninvaded lake and 

1X  to invaded one.  Also, let us denote: 

  |jYP  — probability that j invader individuals arrive at a lake given propagule 

pressure ; 

 jYXP  |1  — probability that the invader establishes given that jY   individuals 

arrive. 

 

The probability of the lake invasion is then: 

      




||11

0

jYPjYXPXP

j

.   (6) 
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The probability that an invader establishes given a level of propagule pressure 

 jYXP  |1  is often approximated by a binomial distribution with the independent 

separate establishment of each individual in many invasion models (Jerde and Lewis 

2007; Jerde et al. 2009), but this approach does not seem appropriate for Bythotrephes. 

During the summer, Bythotrephes has several parthenogenetic reproduction cycles, and 

by the end of summer the introduced individuals create a small population. Then through 

sexual reproduction, resting eggs are produced, which is the only life stage that has been 

demonstrated to survive the winter in North America.  Establishment depends on how 

many resting eggs are produced, which in turn depends on the size of the end-of-summer 

population.  If the sexually reproducing population is too small, the invader may go 

extinct due to Allee effects (Wittmann et al. this issue).  The presence of Allee effects 

implies a threshold in the terminal population size.   

 

If the lake is suitable for Bythotrephes, 3-6 cycles of parthenogenetic reproduction with 

2-4 eggs at each stage may result in an “avalanche” that increases the number of 

individuals ~100 times and more, and the initial number of individuals needs only to be 

enough to start the avalanche. If the lake is not suitable or less suitable, then the 

avalanche does not arise and the initial number of individuals may not matter, unless 

hundreds are introduced, which we consider improbable for recreational boaters. 

Therefore,  jYXP  |1  is actually a probability of a reproductive avalanche for a 

certain lake, given j individuals are introduced.  

 

The stage of parthenogenetic reproduction can be modeled by a branching process, and to 

the sexually reproduction stage the model from Jerde et al. (2009) can be applied, but 

such a model would be quite complicated. To simplify the approach, we assume that 

there is a threshold number of invader individuals m such that: 

 

 for  j<m      0|1  jYXP      (the invader does not survive if fewer than m arrive); 

 for  j>m       mYXPjYXP  |1|1      (the further increase of j individuals 

practically does not increase the probability of establishment.  If the lake is suitable, m 

is enough for establishment; if it is not suitable, additional arrivals do not help). 
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Then the probability of establishment may be approximated by: 

     

   mQmYXP

jYPmYXPXP

mj

,|1

||11



 


    (7) 

where 

       









 CjPjPmQ

mjmj

||,  

It can be shown (see Appendix A), that  mQ ,  can be approximated by a simpler 

expression:  

   !/,exp1 mCQ m
 .    (8) 

Eventually we obtain the relation:  

      mYXPXP m  |1exp11 ,    (9) 

where the last term depends only on the lake covariates.  This expression has the same 

form as habitat suitability models, where the first factor describes invader flow and the 

second one describes lake suitability. 

 

Model (9) has some similarity with the hierarchical model in Leung and Mandrak (2007) 

for zebra mussels, where the invasion probability equals to a product of propagule 

pressure term and lake suitability term.  However, their derivation is different.  The term 

(8) has been used in Leung et al. (2004) to account for Allee effect, but without 

derivation. 

 

 

Model of lake suitability 

 

We assume that the establishment probability  mYXP  |1   depends on the covariates 

that have been measured for each lake.  As mentioned above, these covariates vary with 

time and we treat them as normally distributed random variables  2,n~ kkk x    (Sect. 2).  
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If the covariates were constant, a reasonable approximation may be the logistic 

regression:  

  













 

Kk

kk xaaSmYXP 0|1 . 

A simple substitution of k  instead of kx  would give “instant lake suitability”, while the 

invader establishment takes time and should depend on averaged characteristics. For this 

reason, we use the approximation:  

  















 

Kk

kkaaSmYXP 0|1      (10) 

Since the sum in the internal brackets is also distributed normally, it may be simplified to:  














 

 KKK k

kk

k

kk

k

kk axaaaav 22
00 ,n~ ,    (11) 

or 

  1,0n~, 0
22

00  
 KK k

kk

k

kk axaa . 

Therefore, averaging in (10) need to be done over only one Gaussian random variable 0 . 

Exact averaging requires evaluation of an integral over 0 , but we approximate it by a 

finite sum (see Appendix B). Let j0  are n0 points such that probabilities 

000 /)5.0()(Prob njj  , j=1,…,n0, that make a uniform grid in [0,1]. If n0 is big 

enough, then  

    
 













0

1

22

00

0

1
|1

n

j k

kkj

k

kk axaaS
n

mYXP
KK

   (12) 

 

Hierarchical invasion risk model 

 

Combining (9) and (12), we come to the full invasion risk model  

    



























  

 

0

1

22
00

0

1
exp11

n

j k

kkj

k

kk
m axaaS

n
XP

KK

. (13) 
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There are no standard functions for fitting such models, so we calculated log-likelihood  

     

0

1
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00

1

lnln

exp1ln,,
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























 



 



KK

  (14) 

and maximized it with respect to  kam,,  using R internal function vmmin, a part of 

optim routine, corresponding to BFGS method (R 2009).  To obtain a good initial guess 

for gradient descend maximization in vmmin, we did 5000 steps of non-annealing "hide 

and seek" random maximization algorithm (Romeijn and Smith 1994; Spall 2003; 

Potapov 2009).  To increase the speed of computations, the function implementing 

calculations of log-likelihood, random maximization and calls to vmmin has been written 

in C++ as an R extension. 

 

Model selection 

 

We have tested models of various complexities containing different subsets of covariates. 

The simplest models contained only gravity scores , more complicated used  and one 

lake covariate,  and two covariates, and so on.  To compare performance of different 

models and to select an optimal set of covariates, we apply methods of statistical model 

selection. 

 

We used information-based criteria, associating the best model with the minimum value 

of AIC or BIC (Burnham and Anderson 2001, 2004; Ghosh and Samanta 2001).  

Interpretation of their results has been considered in a number of publications.  Most 

important for us are two conclusions. 

 

1.  Sometimes AIC and BIC give different conclusions according to which model should 

be considered as the best.  According to (Burnham and Anderson 2004),  BIC gives better 

results, when the true model is simple and has 1-4 covariates, AIC is better when the true 

model is complicated. Ghosh and Samanta (2001) put it slightly different:  AIC is better 

when we want to build a better predictor, BIC is better when we need to “discover the 
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truth”, that is to find a model related to most important underlying mechanisms.  

Therefore, in our case the primary model selection tool must be BIC. 

 

2.  Burnham and Anderson (2001) consider interpretation of model comparison by means 

of AIC.  They conclude that the difference of AIC for two models should be big enough 

to decide that one is definitely better than the other.  If AIC2, the two models should 

be considered as similar, and only for AIC>8 one of the models is almost certainly 

better.  Since both AIC and BIC are both based upon calculation of log-likelihood, one 

should expect that similar approach should be in case of BIC as well.  

 

To compare the predictive ability of the models we compare their values of AUC or area 

under ROC curve, (e.g. Pepe 2003).  In our case, typically the models having the least 

BIC values have the greatest AUC value as well. 

 

 

Results 

Current invasion stage 

The best single covariate for predicting the invasion status of lakes was propagule 

pressure  with AIC=151 (Fig. 2).  The next best was pH with AIC=164, and AIC 

difference between these models was 13, which means that  was a much better 

predictor.  Therefore, the invasion status of a lake was best explained by the chances for 

invader introduction.  Water chemistry parameters were of secondary importance to 

establishment, significant only for lakes with big enough .  This is an argument in 

favour of using habitat suitability model (13), that takes into account the current invasion 

dynamics, and considers invasion as a process with two independent stages: introduction 

and establishment (see Leung and Mandrak 2007 as well). 
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Chemistry data variability 

 

The estimates of variances and standard deviations k (Table 1) are important not by 

themselves, but only in comparison with variability of the same covariates between the 

lakes or spatial variability Sk, that may allow us to predict lake invasibility.  If both types 

of variability are close, it is impossible to say what is the reason for the difference in 

covariate values between the lakes: temporal variability or a significant difference in the 

lake types.  For a covariate to be a potentially valuable invasion predictor, the condition 

1/ S  kk  must hold.  The relative variability in covariates kk S/  is shown in Fig. 3. 

The highest ratio in variability is found for Secchi depth (close to 0.6) with most of the 

ratios for other covariates below 0.2.  Thus, spatial variability for them is much more 

important than temporal.   

 

Results for Hierarchical model (13) 

 

To determine the optimal value of parameter n0 in (13), we did model fitting with all 

possible combinations of 1 to 4 lake covariates for n0=1, 3, 5, 11, 25, 51, 99.  Models 

were characterized by AIC, BIC, and AUC values.  As we increase n0, the mean 

deviation of the results from those for n0=99 stabilize (Fig. 4), and for n051 there is 

practically no difference. 

 

The second effect related with n0 was model overfitting. Models of logistic regression in 

presence of measurement errors may be biased (Stefanski and Carroll 1985; Carroll et al. 

1995).  When the data by chance appear to be separated better than they should be 

according to their distribution, the fitted maximum likelihood model has a threshold 

point, such that below the threshold it predicts risk close to 0, and above the threshold 

close to 1.  This means that the risk is underestimated below the threshold and 

overestimated above it.  This effect can be called overfitting since the model interprets a 

random feature as a significant one.  In our case, overfitting is caused by temporal 

variability rather than measurement error, the latter being much less.  Overfitting is 
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reflected in the values of logistic regression coefficients. Typically for a regression model 

with normalized covariates |ak|~1, and in case of overfitting the values may be ~100 and 

more.  In test calculations with n0=1 and 6-7 covariates, we have observed values ak even 

exceeding 1000.  The hierarchical model accounting for variability of the covariates 

automatically corrects for occasional data separation and often eliminates overfitting.  

The values of max| ak| averaged over 20 AIC-best and BIC-best models decrease with n0 

(Fig. 6) and saturate for n051, in agreement with Fig 5.  For this reason, below the 

results are presented for for n0=51. 

 

Model selection for the models including nc=0, 1, 2, 3 and 4 lake covariates gives 

different conclusions for AIC and BIC criteria, see Table 2.  According to BIC, the best 

was the model with nc=1 using propagule pressure  and lake pH.  According to AIC, the 

best was the model with nc=3 using  , pH, phosphorus and elevation.  One model with 

nc=4 has AIC slightly smaller than models with nc=3, but its coefficients show signs of 

overfitting: the model actually uses the difference of two measures of alkalinity, that is 

mainly random series, to improve likelihood minimization.  Therefore, this model has to 

be discarded, and other models with nc=4 are not better than models with nc=3. 

 

Model selection also shows evidence of a certain structure in combinations of covariates 

within 21 best models with nc=3 (see Table 3). The models naturally split into two 

groups. Five or six models (#7, 14, 17, 19, 20, and perhaps 15) demonstrate signs of 

overfitting: coefficients for pH are 3-5 times more than that for the other models.  The 

rest of the models demonstrate a clear pattern.  All of them have the structure:  

  + pH + {P or DOC} + {one of: Elev, Ca, Alk, Alki, K, CD, Na, Mg}. (15) 

All covariates in each group enclosed in braces are strongly correlated with each other, 

(see Table 4) and hence must be related with the same effect.  

 

AIC and AUC for all models tested are well correlated, so the model with the lowest AIC 

has the highest AUC (Fig. 6).  BIC splits the results into four bands, according to the 

number of covariates used, and the model with the best BIC does not have the highest 

AUC. 
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Estimates of m for all tried models are grouped into three clusters (Fig. 7).  The best 

models according to both AIC and BIC criteria form a cluster of estimates around 2.2. 

The best invasion predictors 

 

We can conclude that there are two candidates for the “best” predictor:  

a) using  and pH, AIC=121.8, BIC=133.6, AUC=0.914,  
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Model (16) is supported by BIC criterion and parsimony.  Model (17) is favoured by 

AIC, and has a higher AUC value.  Note that many models of (15) family also have AUC 

higher than model (16).  
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Discussion 

 

Composition of the family (15) of the best predictors shows that it accounts for 4 

different effects, with the first two effects, related with propagule pressure and pH being 

much more important than two latter ones.  The effect of propagule pressure is obvious 

and has been discussed above.  pH may be a classifier for type of lake based on water 

inflow, the characteristics of the surrounding watershed or underlying geology. 

 

Phosphorus and dissolved organic carbon may characterise lake productivity. 

Bythotrephes is more likely to be found in oligotrophic lakes (MacIsaac et al 2000; 

Branstrator et al 2006). This assumption agrees with the negative sign of the coefficients 

ak for both P and DOC (Tables 2-3).  Secchi depth is strongly anticorrelated with both of 

them (correlation coefficients are –0.59/–0.63 and –0.67, see Table 4), and could also be 

a useful predictor.  Bythotrephes is a visual predator requiring light to hunt, and thus low 

light (small Secchi depth) may increase its death rates by reducing its ability to find food.  

Hence, lower Secchi depth should be associated with lower establishment risk, as 

propagules will die if they can't see to find food (Weisz and Yan 2010).  On the Canadian 

Shield, Secchi depth is controlled by DOC (Pérez-Fuentetaja et al 1999).  Unfortunately, 

Secchi depth has the highest variability among all covariates, and cannot make a reliable 

predictor (Fig. 3, Table 1). 

 

The last effect is related with big group of covariates in the last braces in (15).  

Conductivity, alkalinity, and concentration of base cations are well correlated with each 

other.  All of them are correlated with lake elevation as well.  Since concentrations of the 

ions are not very high, it is hard to explain their effect on Bythotrephes establishment.  

We may assume that all these chemistry variables just characterize lake elevation.  The 

latter, in turn, determines order of the lake in a chain of water reservoirs connected by 

rivers or streams.  If an upstream lake becomes invaded, this increases chances of all 

lakes below it to become invaded as well. Also many of the higher elevation lakes in our 

case are protected as they are in Algonquin Park, a large provincial park in Ontario, so 

they have much less motorized boat traffic. In other words, as elevation increases, 
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chances of a lake to become invaded are less.  This agrees with the negative sign of ak 

related to elevation (Tables 2-3).  If this assumption is true, then it has two consequences. 

 

First, the effect of elevation or alkalinity is an indirect measure of propagule pressure as 

well, though less explicit.  It might be specific of Muskoka watershed (e.g. the presence 

of Algonquin Park), and be not so important in other regions.  Second, it is better to use 

elevation itself in the predictor, rather than metal ion data correlated with it. This leaves 

only two predictors with 4 covariates:  (, pH, P, Elev)  and  (, pH, DOC, Elev).  If we 

decide to drop lake elevation Elev as a not very reliable propagule pressure predictor, 

then, according to Table 2, accounting only for P or DOC does not provide a significant 

decrease in AIC or increase in AUC compared to the simplest predictor (16), containing 

only , pH.  The latter then appears to be optimal. 

 

If we consider only the establishment part of the model (9), namely equation (12), it 

considers only properties of the lake without explicit accounting for propagule pressure.  

Therefore, it describes lake suitability as a potential habitat for Bythotrephes. In other 

words, it provides risk for the lake to be invaded sometimes in the future.  We have 

calculated it for all 306 lakes used for model fitting.  It appears that more than 100 of 

them have an invasibility risk >0.5, and for the year 2006 only 28 of them were invaded.  

This means that numerous new invasions may be expected in the future.  As more lakes 

with both chemical and P/A data become available, models may improve, and other 

variables, such as predators may well help improve future models. Clearly this is a work 

in process. 

 

We expect that our predictors will work in other Ontario lakes, because so much of 

Ontario is covered by the similar terrain of the Canadian Shield.  We also expect our 

predictors should apply to other lakes with similar temperature regimes and ecosystem 

structure, and recreational boater activity.  Bythotrephes survival and growth strongly 

depend on water temperature (Kim and Yan 2010). Hence, lake temperature may be 

another important covariate for predictors targeted for wider areas. 
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If we consider only the propagule pressure-related part of the model (9), namely Eq. (8), 

it mainly describes invader introduction.  However, it also has a part related to 

establishment, parameter m. Leung et al (2004) have pointed out that its value greater 

than 1 means the presence of Allee effect: a successful establishment requires 

introduction of a certain minimum number of individuals even for most suitable lake. Our 

estimate of m2.2 we interpret as an experimental evidence of Allee effect for 

Bythotrephes predicted earlier by Wittmann et al. (2010). The presence of an Allee effect 

may be an important factor for the rate of Bythotrephes spread, and potentially for its 

controllability (Taylor and Hastings 2005). The reduction of propagule pressure below 

critical threshold below which Allee effects prevent population expansion (e.g. due to 

better management of equipment by boaters) may prevent new invasions. The spread of 

other species, such as zebra mussels, are also influenced by Allee effects (Leung et al 

2004). 

 

There is a possibility of further development of our hierarchical model. For the lake 

suitability component we used logistic regression, while there are other possibilities such 

as neural networks (Leung and Mandrak 2007) or GARP (Herborg et al. 2007).  In our 

case logistic regression has the following advantages:  

1. There are well established techniques for estimating parameters and errors in 

logistic regression;  and, it is computationally efficient, which is very important 

for comparison of several thousand candidate models. 

2. Its results are very easy to report and to reuse, see (16), (17), and Tables 2-3. 

3. Compared to more complex techniques (e.g. neural networks), it is much easier to 

detect the effects of overfitting and, in case of linear function of covariates, to 

implement corrections for variability in covariates. There are theoretical results 

for the case of measurement errors. 

Use of other approximation techniques for the lake suitability part is possible. However, 

accounting for covariates’ variability would be a much harder computational problem.  

 

Further applications of our risk models may be related with lake management. 

Knowledge of propagule pressure should allow managers and ecologists to identify lakes 
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where invasion may be expected, and thus might require additional signage or public 

outreach to reduce propagule introduction. Knowledge of the pH of these lakes might 

increase the accuracy of the determination of  the risk of invasion.    

 

Our modeling approach may be of interest not only for Bythotrephes-related research 

community, but for developing models for other invaders and to invasion biologists in 

general. Describing invasion risk at different stages of invasion may require combinations 

of submodels for propagule pressure, Allee effect and habitat properties. Models of 

habitat suitability type with explicit accounting for the probabilities of propagule arrival 

and establishment are useful at early stages of invasion, when only the presence data are 

certain and will not change in future, and absence may be related with problems of the 

invader detection or delays with the invader arrival. 

 

Temporal variability in habitat characteristics may produce many modelling problems.  

Accounting for it appears to be important in three aspects.  1) Covariates with too much  

variability in time appear to be predictors of limited reliability, like Secchi depth in our 

case. 2) A single covariate measurement may lead to overestimated or underestimated 

invasion risk. 3) Predictors which account for variability (hierarchical model) appear to 

be computationally efficient and stable against the effects of overfitting. 
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Appendix A 

 

For the function Q in (7) we have the following expression: 
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Or, in terms of the relative boater flow ,  
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where  should be fitted from data.  

 

We have tried another possible approximation to Q,  

     mm
mmQ

/1
2 !/exp1,  . 

It have shown slightly worse model performance, though formally it provides closer 

approximation to  mQ , .  Both approximations are compared in Fig. 9. 
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Appendix B 

With the help of (11), formula (10) can be written as  
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Introduce a change of variables, 
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then we have one-to-one relation between 0  and  , there exists the inverse change 

 0 , and hence we can write 
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1

0
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We approximate this integral by a finite sum over 0n  points using midpoint rule. The 

interval [0,1] we split into 0n  segments of the length 0/1 n , with the middle in the points 

0/)5.0( njj  , 0,...,1 nj  .  The corresponding values of j0  can be obtained from 

(B3), and they coincide with the probabilities that 000 /)5.0()(Prob njjj  . 

Substituting these values of j0  into (B4), we obtain (12). 
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Table 1. Lake covariates in 300-lakes database, mean and standard deviation for 306 

lakes, and estimates of temporal variability (s.e.) k. 

k Covariate Symbol units k Sk k 

1 Lake area A Ha
 

67.95 120.4 — 

2 Lake perimeter Per m 5996.2 8861.0 — 

3 Lake elevation Elev m 327.4 83.02 — 

4 The bottom of strata sampled or 

maximum depth of composite 

sample 

D m 4.69 2.30 — 

5 The Secchi depth of the lake at 

sample date and time 

SD m 3.74 1.76 1.00 

6 Sodium unfiltered total. Na mg/L 3.49 8.53 0.21 

7 Potassium unfiltered total K mg/L 0.42 0.40 0.050 

8 Magnesium unfiltered total Mg mg/L 0.70 0.40 0.064 

9 Calcium unfiltered total Ca mg/L 2.78 2.17 0.24 

10 Total Phosphorus; unfiltered total, 

field replicate 1  

P1 μg/L 10.16 8.34 1.48 

11 Total Phosphorus; unfiltered total, 

field replicate 2 

P2 μg/L 10.29 8.54 1.48 

12 SiO3 unfiltered reactive Si mg/L as 

Si 

0.64 0.52 0.26 

13 Dissolved Organic Carbon DOC mg/L 6.01 3.11 0.48 

14 Total inflection point alkalinity Alki mg/L as 

CaCO3 

4.15 4.43 0.41 

15 Total fixed end point alkalinity to 

pH 4.5 

Alk mg/L as 

CaCO3 

6.19 4.38 0.41 

16 pH pH — 6.18 0.57 0.19 

17 Conductivity at 25
o
C CD μS/cm 42.09 61.08 2.76 

18 Propagule pressure (added to data 

set) 

 Year
-1 

— — — 
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Table 2.  The best models for different number of covariates. Within each category AIC and BIC criteria give the same results. The 

values of coefficients , m, ak are given for normalized covariates xk. 

 

nc AIC BIC AUC Covariates  m ak, k=0,…,nc 

0 146.6 154.0 0.853     2.50   1.86   7.49                 

1 121.8 

133.7 

137.3 

132.9 

144.9 

148.5 

0.914 

0.890 

0.884 

, PH  

, K  

, Alki 

  13.03 

  4.04 

  14.59 

  2.23 

  1.75 

  2.28 

 -2.12    5.50             

  3.47   20.22             

 -0.08    2.70             

2 118.7 

120.0 

120.5 

120.9 

121.2 

133.6 

134.9 

135.4 

135.8 

136.1 

0.926 

0.923 

0.924 

0.919 

0.919 

, P1, PH  

, P2, PH  

, SD, PH  

, Elev, PH  

, K, PH  

  10.82 

  12.96 

  10.11 

  12.32 

  14.90 

  2.11 

  2.21 

  2.11 

  2.17 

  2.28 

 -5.28   -5.55    8.98         

 -3.93   -3.72    6.88         

 -7.03    5.96   15.60         

 -2.74   -1.16    5.71         

 -1.96    3.06    4.76         

3 115.8 

117.1 

118.0 

118.1 

118.2 

134.4 

135.7 

136.6 

136.7 

136.8 

0.935 

0.933 

0.929 

0.928 

0.930 

, Elev, P1, PH  

, Elev, P2, PH  

, Ca, P1, PH  

, P1, Alki, PH  

, K, P1, PH  

  12.11 

  14.90 

  15.76 

  16.16 

  13.54 

  2.09 

  2.19 

  2.28 

  2.29 

  2.20 

 -5.96   -1.96   -5.82    6.87     

 -4.58   -1.59   -4.16    5.30     

 -3.79    1.90   -3.41    5.82     

 -3.33   -3.04    1.84    4.80     

 -3.82    3.49   -3.49    6.15     



32 

4 115.2 

115.8 

115.9 

116.8 

117.1 

137.5 

138.1 

138.2 

139.2 

139.4 

0.936 

0.937 

0.939 

0.936 

0.934 

, P2, Alki, Alk, PH 

, Elev, P2, Si, PH 

, Elev, P1, Si, PH 

, Elev, Ca, P1, PH 

, P1, Alki, Alk, PH 

  38.44 

  55.95 

  14.06 

  15.13 

  18.49 

  2.65 

  2.52 

  2.03 

  2.20 

  2.35 

-15.10  -17.52   64.13  -57.86   12.80 

 -3.87   -1.44   -3.24    0.87    2.09 

 -4.81   -1.64   -4.46    1.00    3.85 

 -5.18   -1.46    0.92   -4.87    5.85 

 -7.77   -7.40   30.03  -26.12   10.41 
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Table 3. 21 best models with propagule pressure and 3 lake covariates (nc=3).  According to their AIC values, all of them cannot be 

totally rejected as potential true model. 5 models that include covariates including perimeter, area, sampling depth, Secchi depth, and, 

probably, SiO3 show signs of overfitting: too big |ak| for pH and phosphorous.  Other predictors show a pattern: all of them have the 

structure pH+{P or DOC}+{one of: elevation, Ca, K, Na, Mg, alkalinity, conductivity}. The values of coefficients , m, ak are given 

for normalized covariates xk..  Figures in bold denote the predictors with possible overfitting (see text), and covariates in bold show 

potential source of overfitting. 

# AIC BIC AUC Covariates  m ak, k=0,…,nc 

1 115.8 134.4 0.935 , Elev, P1, PH    12.11   2.09  -5.96   -1.96   -5.82    6.87 

2 117.1 135.7 0.933 , Elev, P2, PH    14.90   2.19  -4.58   -1.59   -4.16    5.30 

3 118.0 136.6 0.929  Ca, P1, PH    15.76   2.28  -3.79    1.90   -3.41    5.82 

4 118.1 136.7 0.928  P1, Alki, PH    16.16   2.29  -3.33   -3.04    1.84    4.80 

5 118.2 136.8 0.930  K, P1, PH    13.54   2.20  -3.82    3.49   -3.49    6.15 

6 119.0 137.6 0.927  P1, PH, CD    14.52   2.25  -3.58   -3.34    6.22    2.63 

7 119.0 137.6 0.929  Per, P1, PH    9.06   1.98 -16.98    1.71  -13.18   27.84 

8 119.1 137.7 0.927  P1, Alk, PH    14.21   2.23  -3.67   -3.46    1.36    5.50 

9 119.4 138.0 0.926  Ca, P2, PH    17.89   2.35  -3.29    1.72   -2.84    5.04 

10 119.5 138.1 0.926  P2, Alki, PH    18.06   2.34  -3.00   -2.60    1.63    4.39 

11 119.6 138.2 0.926  K, P2, PH    15.52   2.27  -3.32    2.96   -2.87    5.38 

12 119.7 138.4 0.925  Na, P1, PH    13.47   2.22  -3.66    2.59   -3.58    6.55 
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13 119.7 138.4 0.924  Ca, DOC, PH    17.98   2.35  -2.66    1.67   -2.14    4.16 

14 119.9 138.5 0.928  SD, P1, PH    9.80   2.06 -10.18    3.52   -8.78   16.87 

15 120.0 138.6 0.927  P1, Si, PH    8.64   1.98  -5.99   -6.97    1.41    9.18 

16 120.1 138.7 0.925  P2, PH, CD    16.56   2.31  -3.14   -2.88    5.33    2.45 

17 120.2 138.8 0.927  D, P1, PH    11.63   2.18  -7.75   -1.86  -11.00   14.29 

18 120.2 138.8 0.927  Mg, P1, PH    12.46   2.18  -4.46    1.71   -4.05    7.46 

19 120.4 139.0 0.926  Per, P2, PH    10.43   2.06 -12.59    1.33   -8.90   21.35 

20 120.4 139.0 0.926  A, P1, PH    10.11   2.06  -6.93    0.33   -6.37   11.45 

21 120.4 139.0 0.924  Elev, DOC, PH   14.36   2.20  -2.91    -1.10    -1.75    4.21 
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Table 4.  Correlation coefficients for lake covariates in Table 1. The correlation matrix was calculated by R function cor. 

 #   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

 Covariate A Per Elev D SD Na K Mg Ca P1 P2 Si DOC Alki Alk PH CD  

1  A  1.00  0.92 -0.01  0.47  0.19 -0.06 -0.02  0.03 -0.02 -0.18 -0.17  0.04 -0.16 -0.01  0.01  0.10 -0.05  0.86 

2  Per  0.92  1.00 -0.04  0.47  0.21 -0.06 -0.03 -0.00 -0.04 -0.20 -0.19  0.02 -0.17 -0.04 -0.03  0.06 -0.06  0.82 

3  Elev -0.01 -0.04  1.00  0.21  0.11 -0.32 -0.22 -0.30 -0.39 -0.19 -0.17  0.05 -0.17 -0.38 -0.38 -0.26 -0.33 -0.22 

4  D  0.47  0.47  0.21  1.00  0.63 -0.13 -0.11 -0.08 -0.11 -0.50 -0.47 -0.08 -0.48 -0.11 -0.10  0.06 -0.15  0.47 

5  SD  0.19  0.21  0.11  0.63  1.00 -0.04  0.01  0.01  0.01 -0.63 -0.59 -0.29 -0.67 -0.01 -0.01  0.28 -0.05  0.24 

6  Na -0.06 -0.06 -0.32 -0.13 -0.04  1.00  0.53  0.69  0.76  0.07  0.08  0.00  0.12  0.63  0.62  0.23  0.95 -0.02 

7  K -0.02 -0.03 -0.22 -0.11  0.01  0.53  1.00  0.54  0.57  0.06  0.07  0.11  0.10  0.48  0.47  0.28  0.73  0.02 

8  Mg  0.03 -0.00 -0.30 -0.08  0.01  0.69  0.54  1.00  0.81  0.08  0.07  0.26  0.10  0.82  0.80  0.46  0.71  0.08 

9  Ca -0.02 -0.04 -0.39 -0.11  0.01  0.76  0.57  0.81  1.00  0.07  0.06  0.10  0.10  0.91  0.89  0.39  0.81  0.05 

10  P1 -0.18 -0.20 -0.19 -0.50 -0.63  0.07  0.06  0.08  0.07  1.00  0.91  0.25  0.69  0.11  0.10 -0.19  0.07 -0.19 

11  P2 -0.17 -0.19 -0.17 -0.47 -0.59  0.08  0.07  0.07  0.06  0.91  1.00  0.29  0.67  0.09  0.09 -0.19  0.08 -0.18 

12  Si  0.04  0.02  0.05 -0.08 -0.29  0.00  0.11  0.26  0.10  0.25  0.29  1.00  0.36  0.17  0.17 -0.01  0.03  0.05 

13  DOC -0.16 -0.17 -0.17 -0.48 -0.67  0.12  0.10  0.10  0.10  0.69  0.67  0.36  1.00  0.06  0.06 -0.34  0.13 -0.19 

14  Alki -0.01 -0.04 -0.38 -0.11 -0.01  0.63  0.48  0.82  0.91  0.11  0.09  0.17  0.06  1.00  0.99  0.51  0.68  0.06 

15  Alk  0.01 -0.03 -0.38 -0.10 -0.01  0.62  0.47  0.80  0.89  0.10  0.09  0.17  0.06  0.99  1.00  0.50  0.67  0.07 

16  PH  0.10  0.06 -0.26  0.06  0.28  0.23  0.28  0.46  0.39 -0.19 -0.19 -0.01 -0.34  0.51  0.50  1.00  0.27  0.24 

17  CD -0.05 -0.06 -0.33 -0.15 -0.05  0.95  0.73  0.71  0.81  0.07  0.08  0.03  0.13  0.68  0.67  0.27  1.00 -0.02 

18    0.86  0.82 -0.22  0.47  0.24 -0.02  0.02  0.08  0.05 -0.19 -0.18  0.05 -0.19  0.06  0.07  0.24 -0.02  1.00 
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Figures 

 

 

 

 

Fig. 1 Lakes in Muskoka watershed used in the study 

 

 

 

 



37 

 

AIC

100

110

120

130

140

150

160

170

180

190

200

no
ne

la
m

bd
a

P
H A

P
er

D
O
C

B
G

S
C
D P

1
P
2

A
LK

I
A
LK C

a

S
iO

3
M

g K
C
25 N

a

 

 

Fig. 2.  Results for fitting presence-absence data with single variable logistic predictor.  

The best predictor is gravity score (propagule pressure).  Therefore, invasion is in 

progress, and many suitable lakes may be not invaded because the invader has not 

reached them.  This allows to hope that habitat suitability-type models are more 

appropriate for predictions. 
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Fig. 3.  Relative variability of chemical covariates Skk  / .  For all covariates spatial 

variations exceed temporal ones at least twice.  
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Fig. 4. Choice of n0.  Model (13) has been fitted to data for n0=1, 3, 5, 11, 25, 51, 99 for 

all possible combinations of  and up to 4 other covariate, 3214 models totally.  The 

figure shows the difference |AIC(n0)–AIC(99)| averaged over all models.  Changes are 

insignificant for n025, n0=51 appears to be close the optimal choice. 
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a) b) 

 

Fig. 5.  Another effect related with the choice of n0: overfitting in logistic regression.  If 

data by chance are “too well separated”, the maximum likelihood fitting makes the 

logistic function close to an abrupt step, which can be diagnosed by high values of |ai|.  

The panels show ii amax  averaged over for 20 best models according to AIC or BIC 

criteria.  Without taking into account data variability (n0=1), models with the best AIC 

values are overfitted.  As n0 increases, the data separation becomes less pronounced, and 

the absolute values of model coefficients become smaller.  In agreement with Fig. 3, the 

choice n0=51 is optimal.  
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Fig. 6.   Dependence of AUC value on AIC and BIC for all 3214 models, n0=51.   

 

 

  

 

Fig. 7. Estimates of m for all tested models. Models with the least AIC/BIC demonstrate 

estimates slightly greater than 2.  We interpret this as a sign of presence of Allee effect. 
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Fig. 8. BIC-best lake invasibility predictor (establishment risk estimate) using only pH 

(solid line). Gray solid lines shows error estimate, dashed lines show temporal variability, 

small bullets – uninvaded lakes, large bullets – invaded lakes. According to the predictor, 

104 lakes have risk>0.5 and only 22 of them are invaded. 
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Fig. 9. Comparison of exact  mQ ,  and its approximations for m=2 and 3:  black solid 

line – exact  mQ , ;   dashed –    !/exp1,1 mmQ m ;  dotted line – 

   !/exp1,1 mmQ m  where  is obtained by fitting Q1 to Q, (actual coefficient 

will be fitted anyway); gray line      mm
mmQ

/1

2 !/exp1,  .   

 


