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Abstract

Steam allocation is an important decision to be made for bitumen thermo-recovery

using the Steam Assisted Gravity Drainage (SAGD) technique. This is due to the

significant amount of steam requirement and often limited steam generation capac-

ity. Steam-to-oil ratio (SOR) is an important parameter affecting the production

performance. It is necessary to address uncertainty in SOR to prevent constraint

violation in SAGD reservoir states such as subcool, and also to maximize the overall

steam utilization efficiency. This SAGD steam allocation problem is addressed first,

by formulating a NMPC such that uncertainty in SOR is taken into consideration.

The allocation is further optimized by managing the development of well pads and

controlling the steam injection to different well pairs in a given developed well pad.

The first part of this thesis studies the problem of steam allocation and oil produc-

tion optimization in the SAGD process considering SOR uncertainty. A first principle

model for the SAGD process is developed and further incorporated into the Nonlinear

Model Predictive Control (NMPC) problem, which enforces the system to be within

various constraints while optimizing an economic objective. The uncertainty is dealt

with using three methods in this work: (i) open-loop worst-case optimization, (ii)

scenario tree based closed-loop optimization and (iii) affine policy based closed-loop

optimization. Performances of the above methods are compared through Monte-Carlo

simulations. Results demonstrate the superiority of affine policy based optimization

method, which has around 50% improvement of economic performance over static

robust and scenario based method in handling SOR uncertainty.
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Subsequently, we study the problem of integrated well pad development schedul-

ing with nonlinear model predictive control based steam injection in steam-assisted

gravity drainage (SAGD). The scheduling problem has been modeled as a mixed inte-

ger program to find optimal development sequence and timing of multiple well pads.

Model predictive control problems are solved to find optimal steam injection plan such

that the reservoir is under control. The integrated problem is solved using open-loop

and closed-loop methods: 1) Scheduling problem is only solved at the beginning of

project operation, 2) Scheduling problem is solved every year with shrinking horizon

implementation, and 3) Shrinking horizon implementation of scheduling with reservoir

model update based on feedback from control level. Simulation results demonstrate

the benefits of closed-loop integrated scheduling and control: the NPV increase is

18.93%.
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Chapter 1

Introduction

1.1 Motivation

Canada has a large reserve of oil sands in Alberta at three locations: (i) Athabasca,

(ii) Cold Lake and (iii) Peace River. Two commercially used in situ heat recovery

methods are Cyclic Steam Stimulation (CSS) and Steam Assisted Gravity Drainage

(SAGD). Steam allocation is an important decision to be made for bitumen thermo-

recovery using Steam Assisted Gravity Drainage (SAGD) technique. This is due to

the significant amount of steam requirement and often limited steam generation ca-

pacity. Profitable and safe extraction of oil from SAGD wells requires control on the

amount of oil-water emulsion being extracted. Lack of reliable instrumentation to

measure the volume of the liquid pool necessitates the estimation of the level using

subcool. Subcool is defined as the difference between saturation temperature of water

at the injector well and the temperature of the mixture extracted from the producer

well. The level of liquid pool is directly proportional to the magnitude of subcool.

High subcool can thus cause flooding in the injector well, while a very low subcool

could cause steam breakthrough. Such situations lead to safety and economic con-

cerns motivating the need for robust control [1, 2].

A SAGD facility consists of (i) the Central Processing Facility (CPF), (ii) the

Surface Pads (SP’s) and (iii) the Drainage Area (DA). CPF provides steam to each of

the SP’s through pipelines, and each SP has multiple pairs of parallel wells (or DA’s)

attached to it. The availability of revenue and steam in the planning horizon of a

SAGD project allows us to strategically commission surface pads over the planning
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horizon and simultaneously control the activated SP’s.[3]. Higher profitability can

be achieved by integrating the higher level scheduling horizon formulation with the

lower level economic-NMPC formulation.

The SAGD process comprises pairs of horizontal wells drilled in the formation

and vertically spaced a short distance apart. Steam is injected through the injector

well (upper) while the producer well (lower) collects the condensate-bitumen mixture

for delivering to the surface as shown in Figure 1.1. The SAGD process is shown to

have various advantages over the use of CSS. The CSS process requires the injection

of steam at high temperature and pressure, thus having a recovery factor of 20-25%

which is not satisfactory for manufacturers. The high pressure and temperature of

steam injection render it infeasible for use in regions with fine grain sands or thick

bottom water. The SAGD process is shown to have higher extraction and recovery

rates and is more environmentally friendly compared to other extraction processes

[1].

Oil sands 

Cap Rock

Clay
Surface layer

Steam injection well Production well

Steam 
generation plant

To Upgrading plant

Figure 1.1: Typical SAGD plant

1.2 Literature survey on control methods

Gotawala et al.,[4] applied Proportional Integral Derivative (PID) control algorithms

for subcool control and showed advantages in maintaining steam conformity. The

use of such PID control algorithms in the context of gas-lifted wells shows oscillatory

2



characteristics. This oscillatory behavior was shown to be resolved by techniques such

as partly closing choke (Schmidt et al.,[5]) or increasing the gas injection rate (Golan

& Whitson, [6]). While the latter technique attenuates oscillation, it may not be

the optimal solution. The use of model-based controllers would provide a smoother

control performance and prevent issues such as overshoot and oscillatory behavior

that are inherent to PID control algorithms.

Previous works by Eikrem et al.,[7] and Jahanshahi et al, [8] adopt simplified mod-

els for single well control. However, coupling of wells causes interaction across state

variables and hence, it is important to understand the dynamics of the system. Dy-

namic optimization was implemented on a simple linear model by Codas et al [9]. The

work of Krishnamoorthy et al[10] was based on a partial differential equation model

for mass and momentum balances. Alali et al.[11] used partial differential equations

to describe heat transfer in the steam chamber. Plenty of research has been done to

develop transient models for long term steam chamber development [12, 13]. The use

of complex reservoir models makes it difficult to implement model-based controllers in

SAGD reservoirs. The simplified reservoir models have been derived previously and

have similar dynamic response compared to commercial simulators like OLGA [7]

and Petroleum Expert [14]. The research focuses on developing a simulator with PID

control for subcool, based on first principle models. The author develops a compre-

hensive short term to long term SAGD simulator with first principle models generated

and interconnected for steam generation, steam injection and reservoir. Purkayastha

et al. [15] compared the performance of a multi-input multi-output (MIMO) model

predictive controller with steam trap and oil rate controls with a multi-input single-

output (MISO) MPC with only steam trap control. They showed that MIMO MPC

offers better performance over the MISO MPC. Saputelli et al. [16] proposed a mul-

tiscale decision-making approach for real-time reservoir management which suggests

an oilfield operations hierarchy that entails system identification, optimization, and

control. The works mentioned above are solved in a deterministic setting while a lot

of literature is not available for dealing with problems with uncertainty.

Krishnamoorthy et al. [17] derived first principle mathematical models for a gas-
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lifted well network. The work addressed the uncertainty in gas-to-oil ratios using

worst-case and scenario tree based optimization techniques. Performance for nominal,

worst-case and scenario tree based optimization techniques was compared. Real-time

optimization in SAGD at the lowest level of operations is riddled with uncertainty

from assumptions made in long-term and medium-term optimization plans. The

open-loop method does not take into account the new information available within the

control horizon after decisions are made. Closed-loop prediction involves anticipation

of new solutions as new information becomes available within a single optimization

problem. The optimization involved would thus not optimize fixed control inputs

over the entire control horizon. Closed-loop optimization was introduced in litera-

ture with regulatory and supervisory control of well operations [18, 19]. Adaptive

and gain-scheduled MPCs were used for real-time optimization [20]. Shen et al. [21]

presented a robust optimization approximation method to solve chance constrained

MPC problem in SAGD application, where they used a linear process model obtained

through closed-loop identification.

Van Essen et al. [22] developed an approach termed as ”robust reservoir manage-

ment”, which optimizes control action over a collection of model realizations similar

to scenario tree based optimization. Hanssen et al. [23] developed a method to opti-

mize a set of control policies rather than control inputs. Policies are defined as a set

of affine functions whose parameters (slope and intercept) are optimized to get a set

of closed-loop predictions.

The plant model has been used to predict the behavior of the system and compute

the optimal control inputs for tracking a set-point objective function. The process of

tracking a pre-defined set-point does not guarantee an efficient and profitable opera-

tion of the system as discussed in [24]. The operation of a system at its constraints

could cause constraint violations if uncertainty is not accounted for while designing

an NMPC. Different methods for addressing the uncertainty experienced in NMPC

have been explained by Lucia et al. [25]. The work implements open-loop and closed-

loop methods to address the multistage stochastic optimization problem. The NMPC

was applied to a polymerization reactor model and the performances of different ap-
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proaches were compared.

1.3 Literature survey for integrated optimization

problem

Figure 1.2: Multiple well-pads are set up in lease area, each well-pad has multiple
well pairs associated with them as seen from the branched structure from the main
line. The figure is obtained from: link-picture, and is available to be reused.

Well pad positioning, planning and utility network optimization are important aspects

in SAGD well operations, those decisions impact the available capital for growth, and

profit generated by the facility. Several studies have been published on the aspects

of development planning and strategic arrangement of well pads. Nasab et al. [26]

developed an optimization framework for determining the optimal strategy to place

well pads in a SAGD development area. Shahandeh et al. [3] developed a method to

optimize the Net Present Value (NPV) of oil revenue generated subject to uncertainty

in oil price and reservoir production rates. The authors utilized rigorous mathematical

models to determine the production and injection capacities available for each well
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pad. The work aims to schedule the commissioning and decommissioning of wells

based on uncertainty realizations. Ortiz et al. [27] worked on formulating a mixed-

integer multi-period problem for oilfield production. The authors built three mixed

integer optimization models of varying complexity for oil production in a reservoir.

The problem considers fixed parameters to determine oil production decisions and

operational starting and ending time for different wells. Awasthi et al. [28] formulated

a multi objective optimization model to maximize the NPV and total oil production

in an oil field. They built a bi-criterion optimization model to determine the ideal

compromise between the two objective functions, i.e., between maximizing NPV and

total oil production. The work considers the uncertainty in market value of oil and

production parameters to build a two-stage stochastic optimization model.

Enterprise-wide optimization is a popular field of study lying at the interface of

process systems engineering and operations research[29, 30]. Well-pad development

scheduling does not take into consideration the performance of control level problem

hence, may give subpotimal or even infeasible operational targets. The key feature

of enterprise-wide optimization is the integration of various levels of operations in an

enterprise for better decision making using additional information. Biegler [31] worked

on integrating scheduling and dynamic process operation for continuous processes.

The method utilized discrete formulation for simultaneous optimization of scheduling

and operating decisions. The integrated optimization was applied on a semi-batch

process for the manufacturing of polyether polyols. Nystrom et al. [32] worked

on solving a production optimization problem to determine transition trajectories,

operating points and sequencing for manufacturing a set of products. The problem

is split as solving a dynamic optimization problem at the lower level while solving a

MIP problem at the upper level for scheduling. Nie et al. [33] worked on developing a

general-purpose formulation for integration of scheduling and dynamic optimization

for batch/continuous processes. The integrated problem is designed as an RTN based

scheduling problem and process dynamic optimization with simultaneous collocation

method.

In the current day, process systems must be able to respond to external factors

such as changes in demand and in prices of produced commodities in the market. En-

gell et al. and Touretzky et al [34, 35] discussed the possibilities of integration between
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scheduling, and advanced control. Harjunkoski et al. [36] reviews system environ-

ment where integration between planning, scheduling and control systems takes place.

Chatzidoukas et al. [37] worked on generating an optimal grade transition trajectory

for polymerization processes. Integrated approach for optimal production scheduling

is presented in parallel with transition profiles using Mixed Integer Dynamic Op-

timization (MIDO) techniques. Paulus and Borggrefe [38] have used a European

electricity market model to make long-term forecasts for market process using linear

optimization models in order to bridge the gap between demand and production in

the electricity market. Soroush and Chmielewski[39] worked on process systems en-

gineering opportunities available in power generation, storage and distribution. The

work considers the interaction of fuel, solar, wind and flow battery interactions with

the smart grid. Yue & You [40] developed a general modeling framework that takes

into account both economic and environmental criteria. The bi-criterion optimiza-

tion model was formulated as a mixed-integer linear fractional program (MILFP) and

solved using tailored reformulation-linearization method and Dinkelbach’s algorithm.

Gallestey et al. [41] worked on utilizing model predictive control to increase economic

efficiency by optimally utilizing limited resources. The scheduling and control were

done in a cascade fashion with outer loop providing targets while inner loop met the

envisioned targets. Van Essen et al.[42] presented a two-level strategy to optimize life-

cycle production optimization in an operational setting. The upper level problem was

modeled as a first principle reservoir model to produce injection and producing pro-

file. These optimal targets were achieved using a model predictive controller (MPC).

Some previous works studied the closed loop optimization and control applications

in the oil and gas sector. Van Essen et al.[43] worked on hierarchical economic opti-

mization of oil production from petroleum reservoirs. The oil production problem was

formulated as a hierarchical optimization problem that considers economic life-cycle

performance as the primary objective with the daily optimization production as the

secondary objective. Li et al. [44] presented a mixed integer simulation optimization

method for shale gas hydraulic fracturing network design. They optimized the well

placement, number of fracturing stages, and fracture lengths in a discrete shale gas

reservoir model. Grema and Cao [45] proposed a receding horizon control based opti-

mal control approach for waterflooding process optimization. More recently, Horsholt
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et al. [46] introduced a model reduction method for oil production optimization to

decrease the simulation run-time while maintaining the model fidelity.

Multiparametric programming is one powerful technique that can be used to bridge

the gap between scheduling and control decision making. Burnak et al. [47] presented

simultaneous strategies for the integration of scheduling and control via multipara-

metric programming. The continuous and binary scheduling decisions are explicitly

taken into account in the multiparametric model predictive controllers. Zhuge et

al. [48] proposed a framework for the integration of scheduling and control to re-

duce the complexity and computational time. They identified explicit control pol-

icy using multi-parametric programming and integrated it with the scheduling level

problem. They applied this integrated approach to a CSTR problem and achieved

control. Chu et al. [49] discussed the online integration of scheduling and control

to cope with process uncertainties. The authors worked with a sequential batch pro-

cess where they solved the integrated problem to determine controller references for

the lower level optimization problem. To reduce computational burden, the authors

solved a reduced integrated problem by implementing a moving horizon approach.

Tlacuahuac and Grossmann [50] proposed a simultaneous scheduling and control op-

timization formulation applied, to a CSTR. The scheduling for the CSTR was modeled

as a mixed integer dynamic optimization (MIDO) problem, while the dynamics were

represented as a set of ordinary differential equations solved using orthogonal col-

location. Baldea et al.[51, 52], proposed a novel framework to integrate production

scheduling and model predictive control for continuous processes. The authors utilize

low-dimensional time-scale bridging model (SBM) to capture process dynamics over

longer time scales relevant to the scheduling problem.

1.4 Optimization under uncertainty

Optimization under uncertainty refers to the branch of optimization where uncertain-

ties are associated with parameters or states used in the model. This uncertainty in

parameters or states makes the mathematical model uncertain, presenting us with a

class of optimization commonly called Stochastic Programming (SP). Stochastic pro-

gramming requires the knowledge of probability distribution of uncertain parameters
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or states. The probability distribution of uncertainty is considered to be known or

can be estimated [53].

Another method to deal with uncertainty involves finding an optimal solution

that is optimal at the worst-case of uncertainty realized for the considered set. Ro-

bust optimization requires the programmer to assume or have the knowledge of the

uncertainty set for the considered problem. The figure 1.3 represents the summary

of methods used for optimization under uncertainty, the literature survey for opti-

mization under uncertainty with the formulations and tutorials are given in chapter

2.

Optimization
under uncertainity

Stochastic
programming

Robust
optimization

Recourse based  Chance
constrained StaticAdaptive

Figure 1.3: Summary of general methods for optimization under uncertainty

1.5 Thesis structure

In this thesis, SP methods and affine based policy have been applied to the case of

NMPC for SAGD well pair control. Chapter 2, has a tutorial on the different meth-

ods used in the work. Chapter 3, shows the problem statement and modeling for

SAGD case. The continuous ODE’s utilized to describe the process and the NMPC

are discretized utilizing direct collocation method using legendre polynomials. The

allocation of limited steam to two different well pairs is shown while utilizing SP meth-

ods and Affine-policy based methods. The study compares the profit obtained from

the same two wells using different methods while also considering the computational

load to utilize each one of the above mentioned methods. Chapter 4, describes the
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integrated optimization that solves the scheduling problem at the upper level while

solving the control problem at the lower level. The scheduling problem was linearized

to formulate a Mixed-Integer-Program(MIP) while the controller was a deterministic

NLP. The study compares the performance of running the scheduler in closed-loop

with a rolling horizon approach vs open-loop schedule with NMPC control. Chapter

5, gives the summary of the work done along with possible future work along similar

lines to the work presented in the thesis.
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Chapter 2

Tutorial

This section presents method formulations and simple example problem to show the

implementation of various methods used in the thesis. Firstly, the chapter explains the

theory and formations used to solve optimization problems under uncertainty. The

generalized formulations are followed by explaining stochastic optimization methods

using the simple example of a supply chain management problem. The problem deals

with minimizing the cost of production, holding inventory and external purchases to

satisfy customer demand. The demand is assumed to be uncertain, and the different

formulations and results obtained are shown for the simple case.

2.1 Robust optimization

The robust optimization approach considers the uncertainty model to be deterministic

and set-based. Robust optimization deals with finding an optimum solution that

is viable for any realization of uncertainty in the assumed or given set. Robust

optimization was first explored in early 1970 by Soyster [54]. The research exploration

into robust optimization was popularized by the work of Ben-Tal and Nemirovski

[55, 56, 57] in the late 1990s.

2.1.1 Static Robust Optimization

Static robust methods refers to the section of robust optimization where only a sin-

gle stage optimization problem is considered. The decisions for such a problem are

enforced simultaneously before the uncertainty is realized. Static robust methods are

used when no further information of uncertainty is available in time, and the problem

is solved for the worst-case realization of uncertainty. Such a solution, however is

conservative. Consider a linear optimization problem represented as:
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min c>x

s.t Ax ≤ b ∀A ∈ U

where, A ∈ U indicates that the matrix A is affected by uncertainty, and thus, belongs

to the uncertainty set U . If ai represents the ith row of uncertainty matrix A and

takes values in the uncertainty set U , the static robust formulation can be represented

by:

min c>x

s.t max
{a∈U〉}

a>i x ≤ b ∀i

This formulation thus chooses the maximum value of each ai in row i of uncertain

matrix A. The solution obtained would then satisfy the constraint for all possible

realizations of uncertainty.

2.1.2 Adaptive robust optimization

The previous section talks about static robust optimization, where the decision-maker

takes all the decisions at one stage, i.e. before the realization of uncertainty. In the

adaptable setting, the decisions are taken stage wise and the decision taken in current

stage would be dependent on the realization of uncertainty from the previous stages.

If we consider a 3-stage problem:

min c>x

s.t. A1(u1, u2)x1 + A2(u1, u2)x2(u1) + A3(u1, u2)x3(u1, u2) ≤ b, ∀(u1, u2) ∈ U

The sequence of events in the above given problem is given as: 1) decision x1 made, 2)

uncertainty u1 is realized after the first decision is made, the new decision x2 is made,

3) uncertainty u2 is realized after second decision is made, finally decision x3 is made.

Here x1 would be the static decision taken before any uncertainty is realized, followed

by decisions x2 and x3 that are the adaptable decisions made after uncertainty at the

previous stage is realized.

2.2 Stochastic programming

Stochastic programming assumes the uncertainty in the problem has a probability

distribution that is known or can be estimated. The idea was first introduced by

Dantzig in his original paper dated back to 1955 [58]. This section explains in detail

recourse-based SP, and gives a brief explanation of chance constraint-based SP.
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2.2.1 Chance-constraint based SP

The constraints in an optimization problem can be defined as 1) constraints that

have to be met at all costs, called the hard constraints, and 2) constraints that can

be violated sometimes, called soft constraints. The hard constraints have no tolerance

for violation, while soft constraints can tolerate a certain degree of violation. In the

chance constrained approach, the soft constraints are modeled in a way such that

they are met with a certain confidence limit α. The magnitude of confidence limit

is inversely proportional to the probability of violation of the soft constraint. The

formulation of a chance constrained model is as shown below:

min
x

c>x (2.1)

s.t. Prob(A>(ξ)x ≥ b(ξ)) ≥ 1− α (2.2)

x ∈ X (2.3)

In the formulation shown above, all the constraints given by the Equation 2.2 have to

be satisfied with a certain probability greater than 1− α. This model expects all the

constraints to be met with the same level of probability, and hence is referred to as a

joint constrained problem. The more general model of a chance constrained problem

can be given as:

min
x

c>x (2.4)

s.t. Prob(ai(ξ)xi ≥ bi(ξ)) ≥ 1− αi i ∈ [1, 2, ..p] (2.5)

x ∈ X (2.6)

where p represents the number of constraints. The RHS of Equation 2.5, 1 − αi,

represents the probability with which the ith constraint has to be satisfied.

2.2.2 Recourse-based SP

The other way of solving stochastic optimization problems is through recourse based

methods. The recourse based approach can be classified as two-stage or multi-stage

recourse methods. The two-stage stochastic programming problem can be interpreted

as, at the current time, the decision taken is without the uncertainty being realized

called the here-and-now/first stage decisions. The decision taken after the uncer-

tainty has been realized to mitigate the effect of the action taken at the first stage,

called wait-and-see/second stage/recourse decision. The general form of a two-stage

recourse stochastic programming problem is given below [59]
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min
x,y(ξ)

c>x+ E
[
q(ξ)>y(ξ)

]
s.t. Ax ≥ b

T (ξ)x+Wy(ξ) ≥ h(ξ)

x ≥ 0, y(ξ) ≥ 0

The objective of the above described problem is to minimize the cost function. The

first term of the cost function represents the cost of the first stage decision, before

uncertainty has been realized. The second term of the cost function represents the

expected cost of the second stage decision, taken after uncertainty has been realized.

The expectation operator in the second term exists as the cost due to future decisions

must be accounted for, while solving the optimization problem at the current instant.

The above formulation can have infinite realizations of uncertainty and hence cannot

be solved numerically.

Mathematical model Uncertainty
(Stochastic)

Scenario tree

SP model

Figure 2.1: Utilizing scenario tree to represent stochastic program building in the
presence of uncertainty

The assumption made to solve such an intractable model is that the primitive

uncertainty vector (ξ) has a finite number of possible realizations called scenarios,

represented as ξ1, ..., ξK with associated probabilities of p1, ..., pK . The primitive un-

certainty is thus discretized to have K finite scenarios. The probability pK represents

the probability with which scenario k occurs. As the size of the primitive vector ξ

increases, the number of scenarios required to represent the uncertainty vector suffi-

ciently increases. For example, consider the components of the random vector ξ ∈ Rd
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are independent of each other, and we construct scenarios by assigning to each compo-

nent 3 different possible scenarios. Then, we have the total number of scenarios equal

to be K = 3d. As the size of components increases, the growth of K is exponential

and becomes computationally unmanageable to solve [60]. This problem of choosing

the adequate number of scenarios for any primitive uncertainty set can be dealt with

by randomizing the scenarios using Monte-Carlo sampling techniques. The general

recourse-based SP using scenarios can be represented as:

min
x,y1,y2,..yK

c>x+
K∑
k=1

pkq
>
k yk

s.t. Ax ≥ b

Tkx+Wyk ≥ h(ξ), k ∈ [1, 2.., K]

x ≥ 0, yk ≥ 0 k ∈ [1, 2.., K]

The goal of recourse-based SP can be summarized in Figure 2.1. The nomenclature

used in scenario tree representation is shown in Figure 2.2

Root node

Scenario

Second stage

Third stage

Figure 2.2: Nomenclature used in scenario tree

The root node represents the first stage without the uncertainty. The blue path

represents one of the scenarios K, the yellow node represents the decision taken at

the second stage, while the green node represents the third-stage decision. Consider

the general formulation of a Nonlinear Model Predictive Control problem :

min
ui

I∑
i=1

J(xi+1, ui) (2.7a)

s.t. xi+1 = f(xi, ui, θ) ∀i (2.7b)

h(xi, ui) ≤ 0 ∀i (2.7c)
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where xi represents system states, ui represents control inputs, Equation 2.7a repre-

sents the cost function to be optimized, Equation 2.7b represents the system dynamic

model, and Equation 2.7c represents the constraints associated with the system. The

deterministic structure as shown in Equation 2.7a-2.7c is further exploited and ex-

tended to scenario tree based optimization to address uncertainty. We can express the

evolution of states under uncertainty as: xi+1,s = f(xi,s, ui,s, θs), where θs represents

the parameter value of scenario s. Each new state xi+1,s is a function of the previous

state xi,s and control input ui,s and the parameter value realized in the specific sce-

nario s. The input ui,s for time instant i and scenario s is applied at the beginning

of each time period to obtain the evolution of state. Scenario tree based methods

require the use of non-anticipativity constraints as future decisions cannot be made

at current time; hence the variables branching at the same node should assume the

same value.

The goal of the optimization problem is to minimize the expected cost. If the prob-

ability of a particular scenario occurring can be given as ωs, the scenario tree based

multistage stochastic optimization formulation can be represented as:

min
ui,s

S∑
s=1

I∑
i=1

ωsJ(xi+1,s, ui,s) (2.8a)

s.t. xi+1,s = f(xi,s, ui,s, θs) ∀i, s (2.8b)

h(xi,s, ui,s) ≤ 0 ∀i, s (2.8c)

ui,s = u(i, s′) ∀i, (s, s′) ∈ SP (2.8d)

Equation 2.8d represents the non-anticipativity condition, where SP defines the set

where non-anticipative constraint should be applied. That is, at time i, the decision

ui is determined over scenarios s and s′ that share the same path up to time i.

2.2.3 Affine policy based optimization

In adjustable robust optimization the decision is taken at the first instant without the

realization of uncertainty. The decisions taken at the further stages are dependent on

the uncertainty realized at the previous time instant. Ben-Tal, et al.[61] introduces the

idea of affinely adjustable robust counterpart formulation for the recourse decisions

in adjustable robust optimization. In a multi-stage problem, the method assumes the

decisions taken from the second-stage of the optimization problem can be modeled as

a linear function of either state or primitive uncertainty. When the decision variable

is parameterized using states, the method is called closed-loop state feedback policy,

whereas if the decision rule is parameterized using uncertainty the method is called

16



closed-loop uncertainty feedback policy. Consider a general two-stage optimization

problem with uncertainty,

min
x,y(ξ)

c>x

s.t. Ax ≥ b

T (ξ)x+Wy(ξ) ≥ h(ξ)

x ≥ 0, y(ξ) ≥ 0

In the above representation, the decision variable x is not affected by uncertainty

(The first stage decision) and y(ξ) is dependent on the primitive uncertainty ξ. The

decision variable y is parametrized as an affine function of primitive uncertainty given

as y(ξ) = y0 + y1ξ. The problem can now be represented as:

min
x,y(ξ)

c>x

s.t. Ax ≥ b

T (ξ)x+W (y0 + y1ξ) ≥ h(ξ)

x ≥ 0, y(ξ) ≥ 0

The new problem is still a function of primitive uncertainty, causing a set of semi-

infinite constraints for each realization of uncertainty making the problem intractable

to solve. The solution to the above problem can be obtained by using robust dual

counterpart. The methodology to obtain a computationally tractable model is ob-

tained by Ben-Tal [61] and described below: Consider the stochastic programming

problem:

min
x1,x2,y(ξ)

cx1x1 + cx2x2 + E [cyy(ξ)] (2.9)

s.t. x1 + y(ξ) ≥ D(ξ) ∀ ξ ∈ Ξ (2.10)

x2 + y(ξ) = b1 ∀ ξ ∈ Ξ (2.11)

x1, x2 ≥ 0 (2.12)

y(ξ) ≥ 0 ∀ ξ ∈ Ξ (2.13)

Applying affine decision rule to the problem using the following formulations:

D(ξ) = ξD1 + (1− ξ)D2

y(ξ) = y0 + y1ξ

Substituting y(ξ) and D(ξ) in Eq.(2.10) and Eq.(2.11) we have an intractable formu-

lation given by:

min
x1,x2,y(ξ)

cx1x1 + cx2x2 + E [cy(y0 + y1ξ)] (2.14)
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s.t. x1 + y0 + y1ξ ≥ ξD1 + (1− ξ)D2 ∀ ξ ∈ Ξ (2.15)

x2 + y0 + y1ξ = b1 ∀ ξ ∈ Ξ (2.16)

x1, x2 ≥ 0 (2.17)

y0 + y1ξ ≥ 0 ∀ ξ ∈ Ξ (2.18)

where D1 and D2 are the extreme value realizations of uncertainty ξ. The tractable

formulation of the above model is achieved by exploiting the duality property. Sim-

plifying Eq.(2.15), to separate the terms with ξ and terms independent of ξ we have:

(x1 + y0 −D2) + ξ(y1 −D1 +D2) ≥ 0 ∀ξ ∈ Ξ

The primitive uncertainty set can be defined as a simple polyhedral set with the limits

ξ and ξ:

ξ ≤ ξ ≤ ξ

The uncertainty set Ξ is defined as Aξ ≥ b

Using the matrix formulation Aξ ≥ b the constraint 2.15 can be rewritten as:

x1 + y0 −D2 +

{
minξ ξ(y1 −D1 +D2)
s.tAξ≥ b

}
≥ 0

The term inside the parenthesis undergoes a dual transformation and hence we obtain:

x1 + y0 −D2 +

{
maxλ≥0 b

>λ
s.tA>λ = y1 −D1 +D2

}
≥ 0

where, the dimensions of λ is the same as that of b. The max operator is then

dropped to get the following set of constraints:
(x1 + y0 −D2) + b>λ ≥ 0

A>λ = y1 −D1 +D2

λ ≥ 0


The above set of constraints convert the semi-infinite intractable mathematical prob-

lem to a computationally tractable model that can be solved. The new model is

shown below:

min
x1,x2,y(ξ)

cx1x1 + cx2x2 + cy(y0 + y1E [ξ])

s.t. x1 + y0 −D2 + b>λ ≥ 0

A>λ = y1 −D1 +D2

x2 + y0 − b1 = 0

y0 + b>λy ≥ 0
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A>λy = y1

y1 = 0

x1, x2 ≥ 0

λ ≥ 0

2.3 Illustration Problem

The problem in this section has been taken from the book Optimization-Models

[62]. The simple case of supply chain management has been considered to imple-

ment stochastic optimization techniques. The problem considers the supply-chain

components that involve ordering costs, inventory handling costs and external order

costs. The problem is solved over a finite time horizon, given as T . The objective of

the problem is to minimize the costs of operation while satisfying demand. To derive

an analogy between supply chain management problem and linear MPC, we can look

at the following highlights of the analogy:

• The stock level of a certain product is analogous to the measured state in MPC.

It is represented by the variable x(k), stock level of product at time k

• The product bought at a certain time k is analogous to the control input given

to a system at time k, in the case of MPC. The input is represented by u(k) for

time k

• The demand for a product is analogous to the demand of a certain product

produced from the system under MPC control. The demand at time k is rep-

resented by w(k)

The mathematical representation for a supply chain model with one good and time

period T is given below :

The stock level of the good at time k + 1 is given as:

x(k + 1) = x(k) + u(k)− w(k), k = 0, 1, ..., T − 1

Here, x(0) = x0 is the initial stock of goods in the inventory. The current level of

stock is, thus the sum of level at the previous time instant and the products ordered

in, while removing the stock that is sold to meet the demand w(k). The holding cost

for inventory is denoted by h, and the costs of meeting demand from external buying,

and of buying the good are denoted by p and c, respectively. The objective cost to

be minimized is given as:

cu(k) +max(hx(k + 1),−px(k + 1))
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When the stock is positive, the holding cost hx(k + 1) is incurred. When the stock

is negative, the stock has to be bought from an external supplier thus incurring an

external cost of −px(k + 1). Considering an upper bound M on size of order. The

T -stage optimization problem can be written as:

min
u(0),..,u(T−1)

T−1∑
k=0

cu(k) +max (hx(k + 1),−px(k + 1))

s.t. 0 ≤ u(k) ≤M, k = 0, 1, ..., T − 1

Here, x(k) = x0 +
∑k−1

i=0 (u(i) − w(i)), k = 1, ..., T. Introducing slack variables, the

max function in the objective function can be removed. The formulation now can be

represented as:

min
u(0),..,u(T−1),y(0),...,y(T−1)

T−1∑
k=0

y(k) (2.19)

s.t. cu(k) + hx(k + 1) ≤ y(k) k = 0, ..., T − 1 (2.20)

cu(k)− px(k + 1) ≤ y(k) k = 0, ..., T − 1 (2.21)

0 ≤ u(k) ≤M, k = 0, ..., T − 1 (2.22)

Solving the above deterministic problem, we get the ordering schedule and stock levels

as shown below:

Figure 2.3: The plot on the left shows the plot for inputs of products over time, while
the plot on the right shows the stock of the product over time

Since the demand of a given product is not certain, we assume there is a deviation

of 15% on the upper and lower bounds of nominal demand. The lower and upper

limit on the demand can be given as:

wlb = (1− ρ)ŵ(k)

wub = (1 + ρ)ŵ(k)
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where, ρ can be defined as the assumed degree of deviation from the nominal case.

The nominal case of demand can be defined by a sinusoidal function given as:

ŵ(k) = 100 + 20sin

(
2π

k

T − 1

)
, k = 0, .., T − 1

The uncertainty in the model is solved using the methods discussed as follows:

2.4 Static Robust

The static robust method utilizes the worst-case limits on the uncertain parameters in

order to convert the uncertainty problem into a deterministic problem that is solved

at the extreme limits of the uncertain parameter.

Two new variables x1 and x2 are defined in order to get the correct stock for the

case of extreme lower bound and extreme upper bound respectively. The formulation

of the static robust problem is shown below:

min
u(0),..,u(T−1),y(0),...,y(T−1)

T−1∑
k=0

y(k) (2.23)

s.t. x1(k) = x1(0) +
k−1∑
i=0

(u(i)− wlb(i)) ∀k = 1, ..T − 1 (2.24)

x2(k) = x2(0) +
k−1∑
i=0

(u(i)− wub(i)) ∀k = 1, ..T − 1 (2.25)

cu(k) + hx1(k + 1) ≤ y(k) k = 0, ..., T − 1 (2.26)

cu(k)− px2(k + 1) ≤ y(k) k = 0, ..., T − 1 (2.27)

0 ≤ u(k) ≤M, k = 0, ..., T − 1 (2.28)

Since each element of w belongs to an interval, Equation 2.20, cu(k) +hx(k) ≤ y will

only be satisfied iff,

cu(k) + h(x1(0) +
k−1∑
i=0

(u(i)− wlb(i))) ≤ y

The Equation 2.21, cu(k)− px(k) ≤ y is satisfied iff,

cu(k)− p(x2(0) +
k−1∑
i=0

(u(i)− wub(i))) ≤ y(k),

thus giving rise to the equations 2.24 to 2.27. The solution thus obtained will be based

on the extreme limits of the demand, thus making the solution very conservative. The

results obtained by static robust method is given below.
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Figure 2.4: The plot on the left shows the plot for inputs of products over time while
the plot on the right shows the stock of the product over time

The worst-case cost obtained for the static robust method is $11, 392.

2.5 Scenario-based method

The scenario-method was used to solve the uncertain model using robust horizon of

1. The scenario trees used to describe the demand parameter are shown below.

T = 12

1.00

1.10

0.85

1.15

NR = 1

Figure 2.5: Scenario tree describing the deviation from nominal values in each one
of the scenarios. Each scenario has the same probability of occurrence and hence a
probability of 0.25 is assigned to each of the scenarios

The formulation for the scenario based method can be derived from the determin-

istic formulation such that a new index s is added in order to provide an input and
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a stock level for each occurrence of a scenario. The formulation is given below:

min
u(0,s),..,u(T−1,s),y(0,s),...,y(T−1,s)

S∑
s=1

ω(s)
T−1∑
k=0

y(k, s) (2.29)

s.t. x(k) = x(0, s) + Uu− Uw (2.30)

cu(k) + hx1(k + 1) ≤ y(k) k = 0, ..., T − 1 (2.31)

cu(k)− px2(k + 1) ≤ y(k) k = 0, ..., T − 1 (2.32)

0 ≤ u(k) ≤M, k = 0, ..., T − 1 (2.33)

u(0, 1) = u(0, 2) = u(0, 3) = u(0, 4) (2.34)

The U matrix here is defined as:

U =


1 0 0 · · · 0
1 1 0 · · · 0
...

...
. . . . . .

...
1 1 1 · · · 1


The solution to the scenario tree problem can be given as:

Figure 2.6: The plot on the left shows the plot for inputs of products over time while
the plot on the right shows the stock of the product over time

The profit obtained using the scenario tree using expectation objective is $7959.8.

The above figure shows only one scenario, and the performance of the methods can

be compared only when they are being tested for a statistically significant number of

generated scenarios. There were 1200 scenarios generated such that they have a mean

that is the same as nominal demand, while the variance of the scenarios increased

with increase in time given as:

σ2
k = (1 + k)σ̄2, k = 0, ..., T − 1

where, σ̄2 = 1 The Figure 2.7 summarizes the results obtained from utilizing scenario

tree method for 1200 scenarios.

23



(a) Input for 1200 scenarios (b) Demand simulated for 1200 scenarios

(c) Stock level for 1200 scenarios
(d) Cost distribution for 1200 scenarios

Figure 2.7: Results obtained from simulating 1200 scenarios and applying scenario
tree based method

2.6 Affine policy based method

Affine policy based method utilizes a closed-loop approach to address uncertainty.

The input is parametrized with respect to uncertainty. The first stage decision is taken

with no knowledge of uncertainty, while at consequent stages over the realization of

uncertainty, the function output with respect to uncertainty gives the input at the

current stage of optimization. Writing input as a function of uncertainty in demand

we have u = ū + A(w − ŵ), where ū represents the decision taken at current time,

A represents the coefficients to be optimized, and the term w − ŵ represents the

deviation of actual demand from nominal case.

A =


0 0 · · · 0
α1,0 0 · · · 0
α2,0 α2,1 · · · 0

...
...

. . .
...

αT−1,0 · · · αT−1,T−2 0


Representing the demand deviation by w̃, we have w̃ = w − ŵ, which lies in the

interval:

−w̄ ≤ w̃ ≤ w̄; w̄ =
ρ

100
ŵ ≥ 0
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Substituting the parametrized input in place of u we have the formulation as given

below:

min
ū,y,A

1>y (2.35)

s.t (cū+ cAw̃) + h(x0 + U(ū+ Aw̃)− Uw) ≤ y, ∀w ∈ W (2.36)

(cū+ cAw̃)− p(x0 + U(ū+ Aw̃)− Uw) ≤ y, ∀w ∈ W (2.37)

0 ≤ ū+ Aw̃ ≤M, ∀w ∈ W (2.38)

Observe that, if ν is a vector, and w̄ ≥ 0, the robust limits can be explained by:

max
−w̄≤w̃≤w̄

ν>w̃ = |ν|>w̄

min
−w̄≤w̃≤w̄

ν>w̃ = −|ν|>w̄

Applying the robust limits on Equations 2.36 and 2.37, we can reformulate the affine

formulation as:

min
ū,y,A

1>y (2.39)

s.t cū+ hUū+ hx0 − hUŵ + |cA+ hUA− hU | w̄ ≤ y, (2.40)

cū− pUū− px0 + hUŵ + |cA− pUA+ pU | w̄ ≤ y (2.41)

ū+ |A|w̄ ≤M, (2.42)

ū− |A|w̄ ≥ 0 (2.43)

The above formulation is no longer defined on the deviation w̃ which is the uncertainty

considered in our problem. The robust counterpart, thus, lets us consider the extreme

limits of the uncertainty set w̃, removing the uncertain parameter w̃. The above

problem is now simplified using slack variables, Z1, Z2 and Z3.

min
ū,y,A

1>y (2.44)

s.t cū+ hUū+ hx0 − hUŵ + Z1w̄ ≤ y, (2.45)

cū− pUū− px0 + hUŵ + Z2w̄ ≤ y (2.46)

ū+ Z3w̄ ≤M, (2.47)

ū− Z3w̄ ≥ 0, (2.48)

|cA+ hUA− hU | ≤ Z1, (2.49)

|cA− pUA+ pU | ≤ Z2, (2.50)

|A| ≤ Z3 (2.51)

The results obtained for 15% uncertainty is shown in Figure 2.8.
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Figure 2.8: The plot on the left shows the plot for inputs of products over time, while
the plot on the right shows the stock of the product over time

The ordering policy and stock can be derived as:

u = ū+ Aw̃

x = x0 + U(ū− ŵ) + (UA− U)w̃

The above formulations give the right ordering policy as uncertainty is realized. The

value of w̃ can be calculated at each stage to find the appropriate policy. The upper

and lower limits for the orders and stock are derived as:

ulb = ū− |A|w̄,

uub = ū+ |A|w̄,

xlb = x0 + U(ū− ŵ)− |UA− U |w̄,

xlb = x0 + U(ū− ŵ) + |UA− U |w̄

The limits are plotted in Figure 2.8 The above figure shows only one scenario, and

the performance of the methods can be compared only when it is being tested for

a statistically significant number of generated scenarios. Applying the method to

the same 1200 scenarios generated for scenario tree method, we have the results

summarized in Figure 2.9.
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(a) Input for 1200 scenarios (b) Demand simulated for 1200 scenarios

(c) Stock level for 1200 scenarios

(d) Cost distribution for 1200 scenarios

Figure 2.9: The figure summarizes the results obtained from simulating 1200 scenarios
and applying affine policy based method

The profiles were generated for the case where uncertainty was assumed to be

0.15ŵ.

2.7 Conclusion

In the following chapter, we firstly discuss the origins and development of solutions to

optimization under uncertainty. The section 2.1 describes the literature and formu-

lations for static robust and adaptive robust optimization. The section 2.2 describes

the literature and formulations for stochastic programming. The section describes the

various formulations for stochastic programming that involves, chance constrained

based in section 2.2.1 and recourse-based stochastic programming in section 2.2.2.

The above formulations are shown in a problem illustration based on supply chain

management, given in section 2.3.

27



Chapter 3

Steam allocation and oil
production optimization in SAGD
reservoir under SOR uncertainty

In this chapter, the steam allocation and oil production optimization under Steam-to-

Oil-Ratio(SOR) uncertainty is discussed. The model was SAGD reservoir was adopted

and modified from the work by Rashedi, et al. [14]. The steam chamber is modeled by

first principle models containing heat and mass balances for liquid pool, described as

a system of Ordinary Differential Equations (ODE’s). These equations in continuous

time are discretized and solved as a system of coupled non-linear algebraic equations.

Section 3.1 describes the assumptions made in the model and the first principle equa-

tions that describe the model. Section 3.2 describes the deterministic formulation of

the SAGD problem. Section 3.3 presents the general stochastic optimization problem

and describes the formulation techniques for the different methods used. Section 3.4

presents the obtained results and compares the performance among them.

3.1 Mathematical modeling of SAGD reservoir

The SAGD reservoir model used for optimization is derived below. The assumptions

made in the model are listed as follows:

• Only the ramp up stage is modelled, as the time frame considered is for short

term SAGD (≈ days) and evolution to plateau stage takes approximately 0.5 -

2 years.

• The change in chamber height is slow compared to change in temperature and

level. Hence, we assume that the volume of the steam chamber is constant.
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Figure 3.1: The figure describes the work-flow of conducted research

• The volume ratio of water and oil in the liquid pool is approximately equal to

the flow ratio of water and oil that feeds the liquid pool, V w

V o = qw

qo

• The heat loss from the liquid pool to the reservoir is negligible compared to the

heat gained by the liquid pool from the reservoir.

• The oil drained from the reservoir into the liquid pool is estimated as qo =

qs/SOR. The SOR used here is not a cumulative steam-to-oil ratio but instan-

taneous steam-to-oil ratio used to estimate oil production from reservoir.

The SAGD model used in this work is applicable only for the ramp-up stage (i.e.,

the reservoir has not reached the cap rock). This limitation in the model can be

overcome by modifying the model for the other stages of SAGD process. However,

the proposed method for addressing uncertainty in NMPC can still be applied to the

modified model.

The model consists of the mass balance in the liquid pool and the energy balance in

the liquid pool. First, the mass balance equation can be written as:

d

dt

[
ρoV o + ρwV w

]
= ρo(qo − qos) + ρw(qw − qws) (3.1)
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Figure 3.2: The figure shows the cross section of steam chamber

where the inlet mass flows include heated bitumen and condensed water from steam

chamber, and the outlet mass flows include bitumen and water to producer well.

Energy balance over the liquid pool during the ramp up stage can be formulated

as

d
dt

[
(ρoV oCpo + ρwV wCpw)(T p − T r)

]
= Q̂(t) + ρoqoCpo(T s − T r)

+ρwqwCpw(T s − T r)− ρoqosCpo(T p − T r)− ρwqwsCpw(T p − T r) (3.2)

where the first term of the right hand side represents heat transfer from steam chamber

to liquid pool Q̂(t) = 128.3P − 669.1, which is an empirical relation that defines

heat transfer between steam chamber and liquid pool to be directly proportional to

steam injection pressure. The second and third term represent the heat carried by

condensed steam and heated bitumen from steam chamber to liquid pool. The fourth

term denotes the heat carried by produced water and oil through the production well

and the last term represents the heat loss from liquid pool to surrounding reservoir

(considered to be too small and hence ignored).

The mixture of oil and water produced from the reservoir can be modeled as

ρmqmo = ρoqos + ρwqws (3.3)

For oil sands reservoir without any trap zones, it can be approximated that the

oil drained from reservoir to the pool from reservoir temperature to saturated steam

temperature requires an equivalent amount of heat from condensed steam, thus giving

the relation:

ρwqw =
ρoqoCpo(T s − T r)

ηeffXsλs
(3.4)

Combining Eq(3.4) and Eq(3.1) we get the following relation:

dV m

dt
=
ρoqo + ρwqw

ρm
− qmo (3.5)
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Solving equation Eq(3.2) we have:

dT p

dt
=

Q̂

ρmCpmV m
+

[
ρoqoCpo + ρwqwCpw

ρmCpmV m

]
(T s − T r)− 1

V m

[
qmo +

dV m

dt

]
(T p − T r)

(3.6)

where the observed states are V m and T p. The flow rate of condensed oil is given as:

qo =
qs

SOR
(3.7)

The volume of the oil in the liquid pool is given as:

V o =
V mqo

qo + qw
(3.8)

The volume of water in the liquid pool is given by:

V w =
V mqw

qo + qw
(3.9)

The level of the liquid can be calculated as:

l =

[
0.955V m

e2

] 1
3

(3.10)

The heat capacity of the mixture is calculated as:

Cpm =
ρoV o

M o(ρ
oV o

Mo + ρwV w

Mw )
Cpo +

ρwV w

Mw(ρ
oV o

Mo + ρwV w

Mw )
Cpw (3.11)

The density of the mixture is calculated as:

ρm =
V oρo + V wρw

V o + V w
(3.12)

The differential equations Eq(3.5) and Eq(3.6) are represented by the generalized

equation

ẋn = f(xn, zn, un, pn, θn) (3.13)

The algebraic equations from Eq(3.7) to Eq(3.12) can be represented as

g(xn, zn, un, pn) = 0 (3.14)

where n is the well index, and the differential states (xn), algebraic states (zn), input

variables (un), deterministic parameters (θn) and uncertain parameter (pn) are given

by:

xn = [V m
n T pn ]T
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zn = [V o
n ln Cpm

n V w
n ρmn qon qwn ]T

un = [qsn qmon ]T

θn = [ρon ρwn en T sn Xs T rn Cpw
n Cpo

n λsn]T

pn = [SORn]

3.2 Deterministic formulation

The steam allocation and oil production optimization problem is represented mathe-

matically as:

min
qsn,q

mo
n

∑
n

∫ T

0

[σcq
s
n(t)− σpqmon (t)] dt (3.15a)

s.t. ẋn = f(xn, zn, un, pn, θn) ∀n (3.15b)

g(xn, zn, un, pn) = 0 ∀n (3.15c)

An ≤ qmon ≤ An ∀n (3.15d)

Bn ≤ qsn ≤ Bn ∀n (3.15e)

N∑
n=1

qsn ≤ C̄ ∀n (3.15f)

γn ≤ V m
n ≤ γn ∀n (3.15g)

Dn ≤ T pn − T sn ≤ Dn ∀n (3.15h)

The objective function represents the cost of steam and revenue from oil production

to be optimized. Constraint Eq(3.15d) provides the upper limit on the oil production

rate in a well pair whereas constraint Eq(3.15e) provides the limit on steam injec-

tion rate into a particular well pair. Constraint Eq(3.15f) limits the available steam

capacity and constraint Eq(3.15h) limits the subcool temperature to prevent steam

breakthrough.

Discretization

The orthogonal collocation technique is presented, used to discretize the continuous

ODE’s, and is adopted from a numerical example from Beigler [63]. The general

representation of an ODE is written as:

dz

dt
= f(z(t), t), z(0) = zo (3.16)

The Equation 3.16 is continuous in time and can be solved as an initial value prob-

lem using various numerical techniques (polynomial approximation) or by utilizing
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analytical methods to integrate between set limits. For a finite element, the polyno-

mial approximation for state z is shown in Fig 3.3. To develop the NLP formulation,

hi

Figure 3.3: Polynomial approximation of state profile across finite element

most often, Lagrange interpolation polynomials are used. The time elements are

represented as i, where each time element is split into K intervals using K + 1 inter-

polation points, and the size of the interval is represented by hi. The state in a given

element is given as:[
t = ti−1 + hiτ

zK(t) =
∑K

j=0 lj(τ)zij

]
∀t ∈ [ti−1, ti] , τ ∈ [0, 1] (3.17)

where, lj(τ) =
∏K

k=0,6=j
τ−τK
τj−τk

, tij = ti−1 + τjhi and zK(t) = zij. So the time derivative

of the state can be represented by the Lagrangian polynomial as shown below:

zK(t) = zi−1 + hi

K∑
j=1

Ωj(τ) ˙zij (3.18)

The Equations 3.17 and 3.18 are normalized over time and represented as functions

of τ . The collocation equation can now be represented as:

K∑
j=0

zij
dlj(τk)

dτ
= hif(zik, tik), k = 1, ..., K (3.19)

If Legendre roots are utilized to get the placement of collocation points, terminal

conditions have to be enforced to maintain continuity of the state profiles. With

Lagrange interpolation profiles, the terminal conditions are:

zi+1,0 =
K∑
j=0

lj(1)zij, i = 1, ..., N − 1 (3.20)

zf =
K∑
j=0

lj(1)zNj, z1,0 = z0 (3.21)
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Utilizing radau roots as collocation points eliminates the need for terminal conditions,

as the last collocation point lies on the initial point for the next time element. The

collocation roots are given in the Table 3.1

Degree K Legendre Roots Radau Roots
1 0.5 1.0

2
0.211325 0.3333
0.788675 1.0000

3
0.112702 0.155051

0.5 0.644949
0.887298 1.0000

Table 3.1: The roots to be used as collocation points τk

The solution to the following example problem can be utilized to understand the

method of orthogonal collocation: Consider the ODE [63],

dz

dt
= z2 − 2z + 1, z(0) = −3

We can split the time interval into N elements, the interval size is defined as h = 1/N ,

and we use collocation of the order 3 i.e, K=3.

K∑
j=0

zij
dlj(τk)

dτ
= hi

(
z2
ik − 2zik + 1

)
, k = 1, ..., 3, i = 1, .., N (3.22)

Using radau collocation of third order we have,

τ0 = 0, τ1 = 0.155051, τ2 = 0.644949, τ3 = 1

For N = 1 and z0 = −3 and expanding on Equation 3.22 we have:

z0(−30τ 2
k + 36τk − 9) + z1(46.7423τ 2

k − 51.2592τk + 10.0488)

+ z2(−26.7423τ 2
k + 20.5925τk − 1.38214) + z3

(
10τ 2

k −
16

3
τk +

1

3

)
= (z2

k − 2zk + 1), k = 1, 2, 3

(3.23)

The three simultaneous equations then can be solved to obtain the solution for the

three variables z1, z2, z3.

The optimization problem defined above includes a set of continuous time differ-

ential algebraic equations. This infinite dimensional optimal control problem can be

discretized and solved as a finite dimensional problem. The direct collocation tech-

nique using Legendre interpolation polynomials of third order is used in this work for
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the purpose of discretization.

The given time interval is split into P equal sampling intervals. Legendre collocation

scheme of third order is chosen and hence we have C + 1 points in each interval:

0, ..., C. The discretized states can be represented as:

Xi,j =
[
V m

1,i,j, · · · V m
N,i,j, T

p
1,i,j, · · · T

p
N,i,j

]T
Zi,j = [V o

1,i,j, · · · V o
N,i,j, l1,i,j, · · · lN,i,j, C

pm
1,i,j, · · · C

pm
N,i,j, V

w
1,i,j, · · · V w

N,i,j,
ρm1,i,j, · · · ρmN,i,j, qo1,i,j, · · · qoN,i,j, qw1,i,j, · · · qwN,i,j]T

where Xi,j represents the combined states for n wells at time instant i and collocation

point j in the interval
[
i, i+ 1

]
. For the sake of continuity in state variables, we have

the relation that Xi,C and initial conditions of the next time interval Xi+1,0 should

be equal.

Deterministic optimization model

The intermediate equations were removed by substituting them into the ODE’s. The

new model is presented below.

min
qsn,i,q

mo
n,i

N∑
n=1

I∑
i=1

[σc · qsn,i − σp · qmon,i ] +
N∑
n=1

I∑
i=1

γ1|qsn,i+1 − qsn,i|+
N∑
n=1

I∑
i=1

γ2|qmon,i+1 − qmon,i |

(3.24a)

s.t.
C∑
j=0

V m
n,i,j

dlj
dτ

(τk) = h
[
qon,i + qwn,i − qmon,i

]
∀n, i (3.24b)

Q1n,i,j,k

C∑
j=0

T pn,i,j,s
dlj
dτ

(τk) = h
[
Li(q

o
n,i + qwn,i)Q̂+Q2n,i,j,k −Q3n,i,j,k(T

p
n,i,k − T

r)
]
∀n, i, j, k

(3.24c)

Q1n,i,j,k = (ρoqon,iC
po
n M

w + ρwqwn,iC
pw
n M o)(ρonq

o
n,i + ρwn q

w
n,i)V

m
n,i,k ∀n, i, j, k

(3.24d)

Q2n,i,j,k = Ln,i(q
o
n,i + qwn,i)(ρ

o
nq

o
n,iC

po
n + ρwn q

w
n,iC

pw
n )(T sn − T r) ∀n, i, j, k

(3.24e)

Q3n,i,j,k = (ρonq
o
n,i + ρwn q

w
n,i)(ρ

o
nq

o
n,iC

po
n M

w + ρwn q
w
n,iC

pw
n M o)(qon,i + qwn,i) ∀n, i, j, k

(3.24f)

qon,i =
qsn,i

SORn

∀i, n (3.24g)

qwn,i =
ρoqon,iC

po
n (T s − T r)

ηeffXsλs
∀i, n (3.24h)

Ln,i = ρonq
o
n,iMw + ρwn q

w
n,iMo ∀i, n (3.24i)

V m
n,i+1,0 = V m

n,i,C ∀i, n (3.24j)
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T pn,i+1,0 = T pn,i,C ∀i, n (3.24k)

An ≤ qmon,i ≤ An ∀n, i (3.24l)

Bn ≤ qsn,i ≤ Bn ∀n, i (3.24m)

N∑
n=1

qsn,i ≤ C̄ ∀i (3.24n)

γ ≤ V m
n,i,j ≤ γ ∀i, n, j (3.24o)

Dn ≤ T pn,i,j − T sn,i,j ≤ Dn ∀i, n, j (3.24p)

where the second and third terms in equation 3.24a represent the penalty for change

in successive inputs, which prevents the big change in control action, thus making the

control inputs smooth. The usage of Radau roots simplifies the optimization problem

as the final collocation point corresponds to the initial point of the next element.

3.3 Stochastic Optimization Problem

In this work, we consider the uncertainty related to SOR. The state variables will

be uncertainty dependent. In an open-loop optimization model, the control variables

will be independent of uncertainty. On the other hand, the control variables will be

also uncertainty dependent in a closed-loop optimization formulation as presented in

this section. The overall stochastic optimization model is given as following:

min
qsn,i,q

mon,i

E
[ N∑
n=1

I∑
i=1

[
σs · qsn,i(ζ)− σp · qmon,i (ζ)

]
+

N∑
n=1

I∑
i=1

γ1|qsn,i+1(ζ)− qsn,i(ζ)|+

N∑
n=1

I∑
i=1

γ2|qmon,i+1(ζ)− qmon,i (ζ)|
]

(3.25a)

s.t.

C∑
j=0

V m
n,i,j(ζ)

dlj
dτ

(τk) = h
[
qon,i(ζ) + qwn,i(ζ)− qmon,i (ζ)

]
∀n, i (3.25b)

Q1n,i,j,k(ζ)
C∑
j=0

T pn,i,j,s(ζ)
dlj
dτ

(τk) =

h
[
Li(q

o
n,i(ζ) + qwn,i(ζ))Q̂+Q2n,i,j,k(ζ)−Q3n,i,j,k(ζ)(T pn,i,k(ζ)− T r)

]
∀n, i, j, k

(3.25c)

Q1n,i,j,k(ζ) =

(ρoqon,i(ζ)Cpo
n M

w + ρwqwn,i(ζ)Cpw
n M o)(ρonq

o
n,i(ζ) + ρwn q

w
n,i(ζ))V m

n,i,k(ζ) ∀n, i, j, k
(3.25d)
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Q2n,i,j,k(ζ) =

Ln,i(q
o
n,i(ζ) + qwn,i(ζ))(ρonq

o
n,i(ζ)Cpo

n + ρwn q
w
n,i(ζ)Cpw

n )(T sn − T r) ∀n, i, j, k
(3.25e)

Q3n,i,j,k(ζ) =

(ρonq
o
n,i(ζ) + ρwn q

w
n,i(ζ))(ρonq

o
n,i(ζ)Cpo

n M
w + ρwn q

w
n,i(ζ)Cpw

n M o)(qon,i(ζ) + qwn,i(ζ)) ∀n, i, j, k
(3.25f)

qon,i(ζ) =
qsn,i(ζ)

SORn,i(ζ)
∀i, n (3.25g)

qwn,i(ζ) =
ρoqon,i(ζ)Cpo

n (T s − T r)
ηeffXsλs

∀i, n (3.25h)

Ln,i = ρonq
o
n,i(ζ)Mw + ρwn q

w
n,i(ζ)Mo ∀i, n (3.25i)

V m
n,i+1,0(ζ) = V m

n,i,C(ζ) ∀i, n (3.25j)

T pn,i+1,0(ζ) = T pn,i,C(ζ) ∀i, n (3.25k)

An ≤ qmon,i (ζ) ≤ An ∀n, i (3.25l)

Bn ≤ qsn,i(ζ) ≤ Bn ∀n, i (3.25m)

N∑
n=1

qsn,i(ζ) ≤ C̄ ∀i (3.25n)

γ ≤ V m
n,i,j ≤ γ ∀i, n, j (3.25o)

Dn ≤ T pn,i,j(ζ)− T sn,i,j ≤ Dn ∀i, n, j (3.25p)

For simplicity in presenting the above model, we ignored the condition that every

constraint must be satisfied for a pre-defined uncertainty set: ∀ξ ∈ Ξ.

Scenario tree based optimization

In the scenario tree based formulation, a scenario tree is used to model the uncer-

tainty. A scenario corresponds to a full path of SOR uncertainty realization over

the prediction horizon. With ωs being the probability of occurrence of a particular

scenario s, we have the final optimization problem represented as:

min
qsn,i,s,q

mo
n,i,s

S∑
s=1

ωs ·

(
N∑
n=1

I∑
i=1

[σc · qsn,i,s − σp · qmon,i,s]+

N∑
n=1

N∑
i=1

γ1|qsn,i+1,s − qsn,i,s|+
N∑
n=1

N∑
i=1

γ2|qmon,i+1,s − qmon,i,s|

) (3.26a)

s.t.
C∑
j=0

V m
n,i,j,s

dlj
dτ

(τk) = h
[
qon,i,s + qwn,i,s − qmon,i,s

]
∀n, i, s (3.26b)
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Q1n,i,j,k,s

C∑
j=0

T pn,i,j,s
dlj
dτ

(τk) = h
[
Li(q

o
n,i,s + qwn,i,s)Q̂+Q2n,i,j,k,s −Q3n,i,j,k,s(T

p
n,i,k,s − T

r)
]

∀n, i, j, k, s
(3.26c)

Q1n,i,j,k,s = (ρoqon,i,sC
po
n M

w + ρwqwn,i,sC
pw
n M o)(ρonq

o
n,i,s + ρwn q

w
n,i,s)V

m
n,i,k,s

∀n, i, j, k, s
(3.26d)

Q2n,i,j,k,s = Ln,i,s(q
o
n,i,s + qwn,i,s)(ρ

o
nq

o
n,i,sC

po
n + ρwn q

w
n,i,sC

pw
n )(T sn − T r)

∀n, i, j, k, s
(3.26e)

Q3n,i,j,k,s = (ρonq
o
n,i,s + ρwn q

w
n,i,s)(ρ

o
nq

o
n,i,sC

po
n M

w + ρwn q
w
n,i,sC

pw
n M o)(qon,i,s + qwn,i,s)

∀n, i, j, k, s
(3.26f)

qon,i,s =
qsn,i,s

SORn,i,s

∀i, n, s (3.26g)

qwn,i,s =
ρoqon,i,sC

po
n (T s − T r)

ηeffXsλs
∀i, n, s (3.26h)

Ln,i,s = ρonq
o
n,i,sMw + ρwn q

w
n,i,sMo ∀i, n, s (3.26i)

V m
n,i+1,0,s = V m

n,i,C,s ∀i, n, s (3.26j)

T pn,i+1,0,s = T pn,i,C,s ∀i, n, s (3.26k)

An ≤ qmon,i,s ≤ An ∀n, i, s (3.26l)

Bn ≤ qsn,i,s ≤ Bn ∀n, i, s (3.26m)

N∑
n=1

qsn,i,s ≤ C̄ ∀i, s (3.26n)

γ ≤ V m
n,i,j,s ≤ γ ∀i, n, j, s (3.26o)

Dn ≤ T pn,i,j,s − T sn ≤ Dn ∀i, n, j, s (3.26p)

un,i,s = un,i,s′ ∀n, i, (s, s′) ∈ SP (3.26q)

The notation ui,s represents input u at sample i and s scenario.

Affine policy based method

The uncertainty in SOR is modeled as a function of a primitive uncertainty ξ in N

wells.

SORn,i(ξ) = A(n)ξn,i + (1− ξn,i)B(n) ∀n, i (3.27)
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where the lower bound of SOR is represented as A(n), the upper bound is represented

as B(n), and ξ satisfies

0 ≤ ξn,i ≤ 1 ∀n, i (3.28)

The uncertainty from the parameters in N wells can be summarized in a vector as:

ζ = [1, ξ1,1, ..., ξ1,P , ξ2,1, ..., ξ2,P , ..., ξN,1, ..., ξN,P ]. The uncertainty set can be defined

as as: Ξ = {ζ : Eqs..3.28}. The above set Ξ can be simplified and written as

Ξ = {ξ : W · ζ ≥ hu}

where W and hu are a matrix and a vector of known coefficients from the mentioned

equations in the uncertainty set, respectively.

Robust counterpart constraint derivation

For those constraints with only input variables, while the constraint satisfaction is

enforced for a given uncertainty set, robust counterparts of the constraints are de-

rived. As an example, the procedure for robust counterpart constraints derivation is

described below:

1. Consider the stochastic constraint 3.25l :

qmon,i (ζ) ≤ An ∀i, n, ζ ∈ Ξ

2. Apply the LDR and factor ζ[t−1] :

(
qmon,i

)> · ζ[i−1] ≤ An ∀i, n, ζ ∈ Ξ

3. Derive the robust counterpart and introduce the truncate operator P ζ
n,mo:{

max
ζ∈Ξ

((
qmon,i

)> · P ζ
i

)
· ζ
}
≤ An ∀i, n

4. Use the uncertain set definition:{
max

((
qmon,i

)> · P ζ
i

)
.ζ

s.t. −W .ζ ≤ −hu

}
≤ An ∀i, n

5. Introduce a dual variable Λmo
n,i and apply duality to inner LP problem:

min − (hu)> Λmo1
n,i

s.t. −W>Λmo1 =
((
qmon,i

)> · P ζ
i

)>
Λmo1
n,i ≥ 0

 ≤ An ∀i, n
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6. Drop the minimization operator
− (hu)> Λmo1

n,i ≤ An

−W>Λmo1
n,i =

((
qmon,i

)> · P ζ
i

)>
Λmo1
n,i ≥ 0

∀i, n

The optimization problem is represented as:

min
qsn,i,q

mo
n,i

N∑
n=1

I∑
i=1

[
σc · qsn,iEζ∈Ξ[ζ]− σp · qmon,iEζ∈Ξ[ζ]

]
+

N∑
n=1

I∑
i=1

γ1|qsn,i+1Eζ∈Ξ[ζ]− qsn,iEζ∈Ξ[ζ]|+

N∑
n=1

I∑
i=1

γ2|qmon,i+1Eζ∈Ξ[ζ]− qmon,iEζ∈Ξ[ζ]|

(3.29a)

s.t.
C∑
j=0

V m
n,i,j,s

dlj
dτ

(τk) = h
[
qon,i,s + qwn,i,s − qmon,i · P

ζ
i ζ
]
∀n, i, s (3.29b)

Q1n,i,j,k,s

C∑
j=0

T pn,i,j,s
dlj
dτ

(τk) = h
[
Li(q

o
n,i,s + qwn,i,s)Q̂+Q2n,i,j,k,s −Q3n,i,j,k,s(T

p
n,i,k,s − T

r)
]

∀n, i, j, k, s
(3.29c)

Q1n,i,j,k,s = (ρoqon,i,sC
po
n M

w + ρwqwn,i,sC
pw
n M o)(ρonq

o
n,i,s + ρwn q

w
n,i,s)V

m
n,i,k,s

∀n, i, j, k, s
(3.29d)

Q2n,i,j,k,s = Ln,i,s(q
o
n,i,s + qwn,i,s)(ρ

o
nq

o
n,i,sC

po
n + ρwn q

w
n,i,sC

pw
n )(T sn − T r)

∀n, i, j, k, s
(3.29e)

Q3n,i,j,k,s = (ρonq
o
n,i,s + ρwn q

w
n,i,s)(ρ

o
nq

o
n,i,sC

po
n M

w + ρwn q
w
n,i,sC

pw
n M o)(qon,i,s + qwn,i,s)

∀n, i, j, k, s
(3.29f)

qon,i,s =
qsn,i · P

ζ
i ζ

SORn,i,s

∀i, n, s (3.29g)

qwn,i,s =
ρoqon,i,sC

po
n (T s − T r)

ηeffXsλs
∀i, n, s (3.29h)

Ln,i,s = ρonq
o
n,i,sMw + ρwn q

w
n,i,sMo ∀i, n, s (3.29i)

V m
n,i+1,0,s = V m

n,i,C,s ∀i, n, s (3.29j)

T pn,i+1,0,s = T pn,i,C,s ∀i, n, s (3.29k)
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− (hu)> Λmo1

n,i ≤ Ān

−W>Λmo2
n,i =

((
qmon,i

)> · P ζ
i

)>
Λmo1
n,i ≥ 0

∀i, n (3.29l)


− (hu)> Λmo2

n,i ≤ −An
−W>Λmo2

n,i =
((
−qmon,i

)> · P ζ
i

)>
Λmo2
n,i ≥ 0

∀i, n (3.29m)


− (hu)> Λs1

n,i ≤ B̄n

−W>Λs1
n,i =

((
qsn,i
)> · P ζ

i

)>
Λs1
n,i ≥ 0

∀i, n (3.29n)


− (hu)> Λs2

n,i ≤ −Bn

−W>Λs2
n,i =

((
−qsn,i

)> · P ζ
i

)>
Λs2
n,i ≥ 0

∀i, n (3.29o)


− (hu)> Λst

i ≤ C

−W TΛst
i =

(∑N
n=1

(
qsn,i
)> · P ζ

i

)>
Λst
n,i ≥ 0

∀i, n (3.29p)

γ ≤ V m
n,i,j,s ≤ γ ∀i, n, j, s (3.29q)

Dn ≤ T pn,i,j,s − T sn ≤ Dn ∀i, n, j, s (3.29r)

where equations 3.29l - 3.29p are the robust counterpart constraints, which corre-

spond to the stochastic constraints 3.26l - 3.26p, respectively. Note that explicit

nonanticipativity constraints are not needed here since the affine decision rule covers

this condition.

Robust optimization was developed by [64, 65]. They consider an uncertainty

set without full probability distribution information. Finally, both the scenario tree

model and the affine policy model are nonlinear optimization problem. They are

solved using the NLP solver IPOPT in this work.

3.4 Simulations and results

The discretized NLP is implemented in GAMS for a system of two well pairs. The

reservoir parameters of the two wells are shown in Table 3.2. Radau collocation of

order 3 is chosen.
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Table 3.2: Well parameters

Well 1 Well 2
ρo(kg/m

3) 1005 920
ρw(kg/m3) 920 827.32
SOR 3.65 4.15
P (kPa) 2000 3000
Tr(
◦C) 4 4

Ts(
◦C) 212 233

Cpo(J/kg/
◦C) 1.9 1.98

Cpw(J/kg/◦C) 4.57 4.71
σc($/m

3) 95 95
σp($/m

3) 373 373

The simulations were carried out on a 4-core Intel i5-6500 CPU@3.2 GHz with

8GB RAM. The process model was solved on MATLAB 2018b using ODE45, and the

optimization problem is solved on GAMS 25.1.1.

The initial condition is supplied to GAMS through MATLAB. The solution to

the algebraic equations provides the initial condition to the next element. The steam

injection and oil production rate are obtained for the entire prediction horizon. Only

the first input is applied to the process model; the state obtained is then sent as the

initial condition for optimizer. Using ode45 and the inputs provided from GAMS,

the process is integrated in the same interval length as set in GAMS. The Fig. 3.4

represents the methodology of integration and inputs applied.

u(2)u(1) u(N)

1, 0
1, 1 1, 2

2, 0

1, 3

2, 1 2, 2
3, 0

2, 3

N, 0
N, 1 N, 2

N, 3

Figure 3.4: The figure shows the timeline for implementing optimal inputs at time
i. The input u(1) stays constant over the collocation points and is applied at the
beginning of period 1. The state is then integrated within the time element i between
collocation points j. The state evolves as xi,j...xi,c where i represents time element
and j represents the collocation point.

The simulation and the process were initialized with the same set of SOR’s and the
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optimal controller kept the temperature and volume profiles under the set constraints

as shown in Fig. 3.27a. Three representative scenarios were picked to capture the

uncertainty in the parameters. The three scenarios are represented by Fig. 3.5.
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Figure 3.5: Three representative SOR Profiles well 1(left) and well 2(right)

Monte-Carlo simulations were used to generate 100 scenarios with a normal distri-

bution, mean set at 0 and standard deviation 1. The formula to generate the scenario

is given as: SORn,i+1 = SORn,i +Rn where, Rn represents the random number gen-

erated from the normal distribution. Fig. 3.6 shows the SOR profile generated for

two separate SAGD wells.The SOR used here is instantaneous SOR (ISOR). The oil

produced from the reservoir, draining into the liquid pool in the steam chamber is cal-

culated based on the steam injection and the ISOR. The deviation assumed on ISOR

reflect the daily basis non-constant oil production rate caused by the reservoir geo-

logical condition change as the production goes on. The deviations from the nominal

value are not of large magnitude in the short term (±0.3 dimensionless units).
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Figure 3.6: SOR Profiles generated using monte-carlo simulations for 100 different
scenarios. Well 1(left) and well 2(right)
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Deterministic optimization

For the deterministic case, the process model with the optimizer was solved with

a static nominal value for SOR. The rolling horizon approach was implemented by

using the same SOR for the process and optimization model, and the initialization for

the next time instant was obtained from the process model’s previous state. When
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(a) Temperature profile
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(b) Manipulated variables

Figure 3.7: (a) The figure represents the temperature profile for deterministic
case(Blue) and the case where there is a slight mismatch in the SOR parame-
ter(Orange). The dotted-red lines represent the constraints on sub-cool which are
clearly violated when there is a mismatch in the parameter. (b) This figure repre-
sents the 1)Steam injection rate on the top and 2) Oil production rate on the bottom.
The steam allocation was set to a maximum value of 5.5m3/day that was constantly
achieved in the deterministic case, the case with the mismatch however does not use
the max allowed allocation

SOR is slightly perturbed from its normal constant value, the nominal value of SOR

is supplied to the optimizer whereas the increasing scenario profile is supplied to the

process as the true SOR. The slight mismatch causes the temperature to overshoot

by a big margin and violate the constraint as shown in Fig. 3.27a. The figure shows

that, for NMPC, lack of addressing the uncertainty involved with parameters can lead

to solution that violates the constraints and cause operational difficulties.

Worst-case open-loop optimization

Worst-case optimization is performed by feeding the most conservative realization

of SOR for both wells. The increasing random profiles of SOR are being fed to the

process model, whereas the optimizer works only with the constant conservative value

supplied to it. The temperature of liquid pool is shown in Fig. 3.8. The results are

44



shown for completely optimal solutions by the optimizer. The temperature profiles of

all the scenarios stayed well within the constraints with the steam allocation constraint

active. The worst-case method utilizing the most conservative parameter to obtain

the solution does not give a very profitable estimate of control inputs as shown in Fig.

3.9. This use of an open-loop method does not take into consideration the availability

of new information for the next time step. Such a static solution thus would not give

an optimal solution.
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Figure 3.8: The temperature of liquid pool in well 1 and 2 for 100 scenarios using
worst-case optimization. The dotted red lines represent the constraints for sub-cool
and the controller does not violate the set constraints.

Scenario tree based optimization

The scenario tree used for addressing the uncertainty is given in Fig. 3.10. The

robustness of the solution to the uncertainty from SOR can be offset by presenting

the extreme values in the scenario tree. The temperature and steam injection of

scenario tree based optimization for three representative scenarios are shown in Fig.

3.11 respectively for a robust horizon 1. The states for the extreme scenarios stay

well within the set constraints with the steam allocation constraint active. The profit

obtained for the three representative scenarios is given in Fig. 3.12. The profits

increase from scenario 1 to scenario 3. As the SOR continues to decrease, there is an

increase in the obtained profit.
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Figure 3.9: (a) The figure represents the cumulative profits obtained from worst-
case method. The plot has representative profits for 100 scenarios.(b) The histogram
gives a frequency of profits obtained from 100 scenarios. The mean cumulative profit
obtained over 60 days is $19212.
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(a) Scenario tree well-pair 1
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(b) Scenario tree well-pair 2

Figure 3.10: (a) The figure shows the scenarios considered for well pair 1 with a
nominal value at the first node and the highest possible value of SOR at the 4th node
(b) The figure shows the scenarios considered for well pair 2 with a nominal value
at the first node and the highest possible value of SOR at the 4th node. Both the
scenario trees have a robust horizon of 1 as the branching stops at time instant 1.
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Figure 3.11: (a) The figure shows the temperature for the three extreme scenarios
chosen, the sub-cool constraints are not violated. (b) The manipulated variables for
well 1(Top) and well 2(Bottom)
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Figure 3.12: Cumulative profits obtained from 3 scenarios

The method applied to the 100 scenarios gave a statistically significant result for

the said method. [66]The scenario tree with a robust horizon 1 was enough to address

the deviations presented by the 100 scenarios as seen in Fig. 3.13. The cumulative

profit plot for the 100 scenarios and the histogram are represented in Fig. 3.14.
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Figure 3.13: The temperature of liquid pool in well 1 and 2 for 100 scenarios using
scenario tree based optimization. The dotted red lines represent the constraints for
sub-cool and the controller does not violate the set constraints.
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Figure 3.14: (a) The figure represents the cumulative profits obtained from scenario
tree based method. The plot has representative profits for 100 scenarios.(b) The his-
togram gives a frequency of profits obtained from 100 scenarios. The mean cumulative
profit obtained over 60 days is $19770.

The robust horizon being 1 prevents the excessive branching, and hence provides

a solution quicker than that of a robust horizon 2. The computational load increases

as the number of scenarios and corresponding branching increases. The scenario tree

with robust horizon 2 is shown in Fig. 3.15. The extreme values of the parameters

are used in designing the scenario tree to ensure feasibility at points not represented
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explicitly in the scenario tree.
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(b) Scenario tree well-pair 2

Figure 3.15: (a) The figure shows the scenarios considered for well pair 1 with a
nominal value at the first node and the highest possible value of SOR at the 4th node
(b) The figure shows the scenarios considered for well pair 2 with a nominal value
at the first node and the highest possible value of SOR at the 4th node. Both the
scenario trees have a robust horizon of 2 as the branching stops at time instant 2.

The results for scenario tree based optimization with robust horizon 2 are shown

in Fig. 3.16. The profits obtained for three representative scenarios is shown in

Fig. 3.17. The states for the three scenarios stay well within the constraints for the

nominal, and the two extreme cases. The profits increase as the SOR decreases with

time as expected.
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(b) Steam injection rate for 2 well pairs

Figure 3.16: (a) The figure shows the temperature for the three extreme scenarios
chosen, the sub-cool constraints are not violated. (b) The manipulated variables for
well 1(Top) and well 2(Bottom)
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Figure 3.17: Cumulative profits obtained from 3 scenarios

Scenario tree based method with a robust horizon 2 was applied to the 100 sce-

narios. The states and cumulative profit obtained for 100 scenarios are given below.

The results obtained by NR = 1 and NR = 2 do not vary as much and either one can

be used provided the number of scenarios remains constant.
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Figure 3.18: The temperature of liquid pool in well 1 and 2 for 100 scenarios using
scenario tree based optimization for a robust horizon of 2. The dotted red lines
represent the constraints for sub-cool and the controller does not violate the set
constraints.
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(b) Histogram of profits obtained

Figure 3.19: (a) The figure represents the cumulative profits obtained from scenario
tree based method (Robust horizon 2). The plot has representative profits for 100
scenarios.(b) The histogram gives a frequency of profits obtained from 100 scenarios.
The mean cumulative profit obtained over 60 days is $19838.

Scenario tree method with robust horizon 2 requires 24.35% more time to compute

than scenario tree method with robust horizon 1 without enough economic profitabil-

ity as shown in Table 3.3.

Affine policy based optimization

Next, the affine method is applied to bring in feedback to the control loop. This

method was applied in two ways: 1) Rolling-horizon fashion and 2) Re-optimization

after prediction horizon. In rolling horizon fashion the inputs obtained at the first

sample instant is applied, after which the problem is re-optimized. In the latter

however, the policy obtained is utilized to obtain inputs until the prediction horizon

after which the problem is re-optimized.

The affine policy based method brings in feedback control thus making it a closed-

loop method [25]. The scenario tree with a robust horizon of 1 is used along with

affine policy in a rolling-horizon fashion. The states and manipulated variables are

as shown in Fig. 3.20. The profits for three representative scenarios are given in Fig.

3.21.
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(b) Steam injection rate for 2 well pairs

Figure 3.20: (a) The figure shows the temperature for the three extreme scenarios
chosen, the sub-cool constraints are not violated, using affine policy based method
with rolling horizon (b) The manipulated variables for well 1(Top) and well 2(Bottom)
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Figure 3.21: Cumulative profit obtained for 3 scenarios

The state and manipulated variables for the three scenarios resemble the ones

presented by scenario tree method NR = 1. The profits obtained, however, are less

than that obtained from the open-loop method as the policy obtained is optimal

for the entire prediction horizon whereas, only the input obtained at first instant is

applied and the problem is re-optimized. To get a statistically significant difference

between profits obtained between scenario tree and affine methods, the same is applied

on 100 scenarios. The state for 100 scenarios are given in Fig .3.22.
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Figure 3.22: The temperature of liquid pool in well 1 and 2 for 100 scenarios using
affine policy based optimization in a rolling horizon fashion. The dotted red lines
represent the constraints for sub-cool and the controller does not violate the set
constraints.

The profit obtained for 100 scenarios and the distribution is shown in Fig. 3.23.
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Figure 3.23: (a) The figure represents the cumulative profits obtained from affine
policy based method with rolling horizon. The plot has representative profits for 100
scenarios.(b) The histogram gives a frequency of profits obtained from 100 scenarios.
The mean cumulative profit obtained over 60 days is $18417.

As seen from the histogram, the obtained mean over 100 scenarios has a sub-par

performance when compared to the scenario tree method as well as static robust(worst-

case) method.
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The above results show that applying affine policy in a rolling horizon manner and

re-optimize the policy at every step does not lead to superior solution performance.

Next, we apply the affine policy method but re-optimization at the end of the pre-

diction horizon (denoted as ”no-rolling horizon”), the results obtained show a very

different trend than the ones obtained with open-loop methods. The results for 3

scenarios with rolling-horizon after the prediction horizon are given in Fig. 3.24 for

states and Fig. 3.25 shows the profit obtained. The profits are summarized in Table

3.4.
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(b) Steam injection rate for 2 well pairs

Figure 3.24: (a) The figure shows the temperature for the three extreme scenarios
chosen, the sub-cool constraints are not violated, using affine policy based method
without rolling horizon (b) The manipulated variables for well 1(Top) and well 2(Bot-
tom)

The states as seen above stay well within the set constraints. The profits obtained

from the three methods show a much higher profit compared to that of the other

methods.
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Figure 3.25: Cumulative profit obtained for 3 scenarios

The same method is applied for 100 scenarios to show statistically significance in

performance. The subcool state for 100 scenarios is shown in Fig. 3.26. The profit

obtained for 100 cumulative scenarios and the distribution is given in Fig. 3.27. The

profits statistics are summarized in Table 3.3.
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Figure 3.26: Temperature of liquid pool in well 1 and well 2
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(b) Steam injection rate for 2 well pairs

Figure 3.27: (a) The figure shows the temperature for 100 scenarios generated by
monte carlo method, the sub-cool constraints are not violated, using affine policy
based method without rolling horizon (b) The histogram gives a frequency of profits
obtained from 100 scenarios. The mean cumulative profit obtained over 60 days is
$30988.

Static Robust Scenario (NR = 1) Scenario (NR = 2) Affine (Rolling horizon) Affine (No-rolling horizon)
Mean 19212 19770 19838 18417 30988
Standard deviation 91.7 282.3 156.8 282.3 7655.1
Time taken 3804.7s 4331.4s 5386.1s 17050s 5993.7s

Table 3.3: The table represents the mean and variance for profits obtained using
different methods for 100 scenarios. The time taken for each method to compute 60
days of input was averaged out over 100 scenarios and is presented in seconds.

Static Robust Scenario (NR = 1) Scenario (NR = 2) Affine (Rolling horizon) Affine (No-rolling horizon)
Scenario 1 18594 18891 19050 17538 20255
Scenario 2 19519 19770 19906 18417 21337
Scenario 3 20333 20684 20776 19326 23069

Table 3.4: Profits obtained from 3 representative scenarios

3.5 Conclusion

In this work, we presented an optimization method for SAGD reservoir steam allo-

cation and oil production optimization considering SOR uncertainty. First principles

model of the SAGD process is used for NMPC problem formulation. The uncertainty

in SOR is dealt with using multistage stochastic optimization technique. The use

of an evolving scenario tree to model uncertainty helps make an intractable problem

tractable in real-time optimization. The scenario tree method with a robust horizon

performs well compared to worst-case static robust method. Furthermore, when the
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affine policy method is implemented with a rolling-horizon method after the end of

each prediction horizon, it provides the highest operating profits compared to the

other methods. The computational time required for affine policy based method

using rolling horizon at the end of rolling horizon, utilizes 38.3% more time than sce-

nario tree based method but gives a profit that is higher by 56.74%. The closed-loop

method also shows superiority in handling the states close to their constrained values.

57



Chapter 4

Integrated well pad development
scheduling with steam allocation
optimization in Steam Assisted
Gravity Drainage

In this work, we consider a linear mathematical model to schedule multiple well pairs

over the planning horizon. Nonlinear SAGD model has been adopted from Gotawala

and Gates [67] and implemented in the NMPC setup. The integrated problem is

solved hierarchically in a shrinking horizon fashion for the scheduling level and in a

rolling horizon mode for the control level. The NMPC achieved perfect control on

all the active well pads while minimizing an economic objective. The scheduler used

relevant information from the lower level control problem in order to reschedule and

commission the adequate number of wells to provide highest profit. The section 4.1

introduces the problem statement tackled in this chapter. The section 4.2 introduces

the mathematical model used for the upper and lower level problem. The section 4.3

portrays the methodology used in the chapter. The section 4.4 portrays and explains

the results obtained.

4.1 Problem statement

SAGD development involves developing and positioning well pads in the area leased

from the government. The optimal positioning and development of well pads is an

important area of study for the profitable execution of the project. The lack of in-

formation from the lower level operation make the target set by the scheduler to be

sub-optimal, or even infeasible to be implemented on the ground level. This is a big

drawback of isolated planning of well pad development.
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Figure 4.1: Representation of SAGD facility with two well-pads each having 2 well-
pairs of injector and producer wells.

Usual SAGD facility has multiple well-pads each having multiple well pairs. The

integrated optimization of scheduling and control of SAGD well-pads works on a

two-fold objective. The first objective of the problem is to strategically develop the

SAGD well-pads in the allocated region for the maximization of the NPV of the

project in the scheduling horizon. The second objective of the problem is to control

the process under its safe limits for optimal steam injection to the process. Solving

the scheduling and control level problem using integrated optimization achieves the

two fold objective in a pragmatic manner. The information available from the control

level is utilized in the scheduling level in order to re-optimize the development of

new well pads, while considering the restrictions imposed by the control level. The

integrated optimization problem thus achieves a practical schedule while satisfying

the constraints imposed by the lower level.

4.2 Mathematical Model

4.2.1 Scheduling level model

Miura and Wang [68], presented an improved model to predict cumulative steam to

oil ratio (CSOR) for SAGD wells at the Japan Canada Oil Sands Limited (JACOS)

Hangingstone project. The authors compared the obtained CSOR to the one pre-

dicted by the Edmonds and Peterson[69] model. The steam chamber growth with
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time was developed by[68] by improving the model suggested by Butler[1] given as:

hs = 2

(
kgkt

mνsφ∆SoCvo

)1/3

t2/3 (4.1)

The analytic model for CSOR is obtained as:

CSOR =
∆T (t)

∆H(t)φ

(
Soi − b−1

b

(
νs(t)φhs(t)

bkgt

)1/(b−1)
) × (Cvr +

√
ktCvot

βhs(t)

)
(4.2)

where β represents sweep efficiency factor that varies in the range of 50% to an

economic limit of 85%, and hs(t) represents the change in steam chamber height with

time in Eq.4.1. The latent heat is obtained from the difference between enthalpy of

steam at chamber temperature and enthalpy of the condensate at producer well.

∆H(t) = H(steam at chamber temperature)

−H(condensate at producing temperature)
(4.3)

The instantaneous steam-to-oil ratio (ISOR) can be calculated as:

ISORw,t =
CSORw,t∑t−1
k=1 ISORw,k

∀w ∈ W , t ∈ T (4.4)

The steam consumption model is formulated using heat consumption in the steam

chamber. The heat consumption in SAGD well considers two components, heat inside

steam chamber Hinside and cumulative heat loss Hloss. The heat outside the steam

chamber is composed of heat losses from the chamber sides and under-burden which

is considered to be one-third of heat losses from the overburden. The total heat

consumption Htotal and total required steam volume Vsteam are calculated using the

following equations:

Hinside = A∆TCvrhηs (4.5)

Htop =
4

3
A∆T

√
ktCvot

π
(4.6)

Hloss = Htop +
1

3
Htop (4.7)

Htotal = Hinside +Hloss (4.8)

Vsteam(t) =
Htotal

Hlv

=
A∆T

Hlv

(Cvrhηs +
√
ktCvot) (4.9)

Equations 4.5 to 4.9 are used to determine the cumulative volume of steam until the

year t. The steam required to be injected in each year is determined using the formula

qsmaxw,τ = Vsteam(t) − Vsteam(t − 1). Using equations 4.5 to 4.9 the steam utilization
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profile for a single well-pair is presented in figure 4.2. It is worth pointing out that the

above steam injection plan is only based on geological model and ignores the lower

level control restrictions. The steam injection and oil production model represents an

ideal target which may not necessarily be achieved. This paper’s objective is close the

loop between scheduling level and control level such that the model can be updated

timely based on the control level feedback.
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Figure 4.2: The figure represents the max steam injection rates to well-pad 1

The scheduling problem can then be described as:

min
∑
t∈T

∑
w∈W

1

(1 +DR)t
[αstt q

st
w,t − αot qow,t] (4.10a)

s.t. tstartw =
∑
t∈T

zw,t · t ∀w ∈ W (4.10b)∑
t∈T

zw,t ≤ 1 ∀w ∈ W (4.10c)

qow,t =
∑
τ∈Tw

zw,t−τ+1q
st
w,τ

ISORw,t

∀w ∈ W , t ∈ T (4.10d)

qstw,t ≤
∑
τ∈Tw

zw,t−τ+1q
smax
w,τ ∀w ∈ W , t ∈ T (4.10e)

qstw,t ≥
∑
τ∈Tw

zw,t−τ+1q
smin
w,τ ∀w ∈ W , t ∈ T (4.10f)∑

w∈W

qstw,t ≤ qcpft ∀t ∈ T (4.10g)

The scheduling problem aims to commission and decommission wells in a SAGD fa-

cility based on profitability. Equation (4.10c) ensures the wells can be commissioned
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only once, equation (4.10f) sets the limits on maximum available steam due to me-

chanical restrictions and equation (4.10g) assures no shutdown takes place before a

well reaches end of its lifetime. The equation (4.10g) offers limits on total steam

available at the central processing facility (CPF) represented by qcpft . The equation

(4.10d) makes the above model from 4.10c to 4.10g a Mixed Integer Non-Linear Pro-

gramming (MINLP) problem. The above model can be linearized and hence converted

to a Mixed Integer Linear Programming (MILP) problem, as represented below.

min
∑
t∈T

∑
w∈W

1

(1 +DR)t
[αstt q

st
w,t − αot qow,t] (4.11a)

s.t. tstartw =
∑
t∈T

zw,t · t ∀w ∈ W (4.11b)∑
t∈T

zw,t ≤ 1 ∀w ∈ W (4.11c)

qow,t =
∑
τ∈Tw

ystw,t,t−τ+1

ISORw,t

∀w ∈ W , t ∈ T (4.11d)

qstw,t ≤
∑
τ∈Tw

zw,t−τ+1q
smax
w,τ ∀w ∈ W , t ∈ T (4.11e)

qstw,t ≥
∑
τ∈Tw

zw,t−τ+1q
smin
w,τ ∀w ∈ W , t ∈ T (4.11f)∑

w∈W

qstw,t ≤ qcpft ∀t ∈ T (4.11g)

ystw,t,t−τ+1 ≤ qsmaxw,τ zw,t−τ+1 ∀w ∈ W , t ∈ T, τ ∈ Tw (4.11h)

ystw,t,t−τ+1 ≤ qstw,t ∀w ∈ W , t ∈ T, τ ∈ Tw (4.11i)

ystw,t,t−τ+1 ≥ qstw,t − qsmaxw,τ (1− zw,t−τ+1) ∀w ∈ W , t ∈ T, τ ∈ Tw (4.11j)

The equation (4.10d) is a product of a binary variable and a continuous variable,

making the model nonlinear. This equation can be simplified by using an interme-

diate continuous variable ystw,t,t−τ+1. Equations 4.11d,4.11h,4.11i and 4.11j show the

linearization to convert MINLP to a MILP formulation.

4.2.2 Control level model

The mathematical model used for building the NMPC is adopted from Gotawala et

al.[67]. The underlying assumptions made are as follows:

• The mass balance is assumed to be steady state

• The ramp-up stage model is sufficient to control sub-cool for the entire lifetime

of SAGD well pads
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• The ISOR is assumed to be constant within each year

• Control can be sufficiently achieved using just the steam injection rate qis as

the manipulated variable

• The ratio of volumes of oil and water contained in the pool is proportional to

the ratio of the flow rates of oil and water that feed the pool: V w

V o ≈ qw

qo

Figure 4.3: The steam chamber is assumed to have a triangular shape. qs represents
the input of steam to the chamber and is the manipulated variable, qo and qw repre-
sents the oil produced from the reservoir and condensed steam respectively. qos and
qws represent the produced oil and water pumped to the surface

The material balance around the liquid pool is given by:

ρoilqo + ρwaqw − ρoilqos − ρwaqws =
d

dt
(ρoilV o + ρwaV w) (4.12)

The water production rate from the liquid pool qws is related to the steam injection

rate, expressed as :

qws = fqis (4.13)

where f can be between 0.9 and 1.1, and qis is the steam injection rate. The oil

produced from the well is given as:

qos =
qis

ISOR
(4.14)

The oil drained from reservoir to the pool from reservoir temperature to saturated

steam temperature requires equivalent amount of energy from condensed steam, thus

giving us the relation:

ρwaqw =
ρoilqoCpo(T s − TR)

ηeffηsλs
(4.15)

63



Substituting equations 4.13, 4.14 and 4.15 in 4.12 and setting dVo
dt

= 0, we have

qo =
qis
(

1
ISOR

+ ρwa

ρoil
f
)

1 +
(
Cpo(T s−T r)

ηeffηsλs

) (4.16)

The energy balance around the liquid pool can be written as:

ρoilqoCpo(T s − TR) + ρwaqwCpw(T s − TR) + Q̊

− ρoilqosCpo(T P − TR)− ρwaqwsCpw(T P − TR)

=
d

dt

[
(ρoilV oCpo + ρwaV wCpw)(T p − TR)

] (4.17)

Simplifying the above equation and re-writing it, we have:

dT p

dt
+ A (T p − T r) = B +Q (4.18)

where,

A =
1

V o

qo − qis
(

1
ISOR

+ ρwa

ρoil
f
)

1 +
(
Cpo(T s−T r)
ηeffηsλs

) +
1

ISOR

 qis

1 +
(
Cpw(T s−T r)
ηeffηsλs

)


B =
qo

V o
(T s − T r)− fρwaCpw

V oρoilCpo

 1

1 +
(
Cpw(T s−T r)
ηeffηsλs

)


and,

Q =
Q̊

1 +
(
Cpw(T s−T r)
ηeffηsλs

)
The heat lost from the steam chamber to the liquid pool Q̊ is given as [70]:

Q̊ = 128.3P − 669.1 (4.19)

The deterministic NMPC model is represented as:

min

∫
n

∫
i

αsts q
is − αosqo (4.20a)

s.t. qo =
qis
(

1
ISOR

+ ρwa

ρoil
f
)

1 +
(
Cpo(T s−T r)

ηeffηsλs

) (4.20b)

dT p

dt
+ A (T p − T r) = B +Q (4.20c)

A =
1

V o

qo − qis
(

1
ISOR

+ ρwa

ρoil
f
)

1 +
(
Cpo(T s−T r)
ηeffηsλs

) +
1

ISOR

 qis

1 +
(
Cpw(T s−T r)
ηeffηsλs

)
 (4.20d)
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B =
qo

V o
(T s − T r)− fρwaCpw

V oρoilCpo

 1

1 +
(
Cpw(T s−T r)
ηeffηsλs

)
 (4.20e)

Q =
Q̊

1 +
(
Cpw(T s−T r)
ηeffηsλs

) (4.20f)

Q̊ = 128.3P − 669.1 (4.20g)∫
n

∫
i

qis ≤ 3×
qstw − qispar
Tm −X

(4.20h)∫
n

∫
i

qis ≤ C̄ (4.20i)

D ≤ T p − T s ≤ D (4.20j)

The above model in continuous time is discretized using Radau collocation roots of

third order as shown in Figure 4.4.

hi

Figure 4.4: The figure shows the discretization method to convert an ODE. The
points τ1 − τ3 show the three Legendre polynomial roots. The equations are solved
at these discrete time intervals.

The discretized model used for control is given below:

min
∑
n∈N

∑
i∈I

αsts q
is
w,n,i − αosqow,n,i (4.21a)

s.t. qow,n,i =
qisw,n,i

(
1

ISORw,s
− ρwa

w

ρoilw
f
)

1 +
(
Cpo

w (T s
w−T r

w)
ηeffηsλsw

) ∀n ∈ N , i ∈ I (4.21b)
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3∑
j=0

T pw,n,i,j
dlj
dτ

(τk) = h

[
Qw +Bw,n,i − Aw,n,i

(
T pw,n,i,k − T

r
w

) ]
∀n ∈ N , i ∈ I, k ∈ K

(4.21c)

Aw,n,i =
1

V o
w

qow,n,i − qisw,n,i

(
1

ISORw
− ρwa

w

ρoilw
f
)

1 +
(
Cpo

w (T s
w−T r

w)
ηeffηsλsw

) +
1

ISORw,s

 qisw,n,i

1 +
(
Cpw

w (T s
w−T r

w)
ηeffηsλsw

)


∀n ∈ N , i ∈ I
(4.21d)

Bw,n,i =
qow,n,i
V o
w,n,i

(T sw − T rw)− fρwaw Cpw
w

V o
wρ

oil
w C

po
w

 1

1 +
(
Cpw

w (T s−T r)
ηeffηsλsw

)
 ∀n ∈ N , i ∈ I

(4.21e)

Qw =
128.3Pw − 669.1

1 +
(
Cpw

w (T s
w−T r

w)
ηeffηsλsw

) (4.21f)

T pw,n,i+1,0 = T pw,n,i,′3′ ∀n ∈ N , i ∈ I (4.21g)

Bn ≤ qisw,n,i ≤ Bn ∀n ∈ N , i ∈ I (4.21h)∑
n∈N

qisw,n,i ≤ C̄ ∀i ∈ I (4.21i)

∑
n∈N

∑
i∈I

qisw,n,i ≤ 3×
qstw − qispar,w
Tm −X

(4.21j)

Dn ≤ T pw,n,i,j − T sn ≤ Dn ∀n ∈ N , i ∈ I, j ∈ J (4.21k)

The usage of Radau roots simplifies the optimization problem as the final collocation

point corresponds to the initial point of the next element. The above discretized

model is solved for each well pad w ∈ W .

4.3 Methodology

The scheduler solves the mixed integer linear programming problem from the start

of the scheduling horizon. The binary variables schedule the commission of specific

well-pads at specific years of the scheduling horizon, and provide the target values

for the commissioned well-pads. The control level receives the target steam injection

and well pad commissioning information. The NMPC provides optimal inputs to

the process, thus keeping the subcool for the wells within the well pad under set

safe limits. The total steam utilized in the control level is passed to the scheduling

level in order to update the maximum amount of steam to inject into the process

while keeping the process under control. The total steam utilized and the active well
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pad information is passed as feedback to the scheduler in order to fix the variables

and resolve at the next time instant (year). This method ensures the following: 1)

The wells commissioned at the previous time instant stays commissioned while the

scheduler re-optimizes at the current time, 2) The NPV calculated at the current time

instant utilizes the information of actual steam injected from the control level, and

3) Updating the maximum steam for injection keeps the limits closer to the targets

achievable by the lower level control problem.

Scheduling level

NMPC

Process

Closed loop to
update max
steam, fix
variables realized
at previous year

Closed loop at the
control level,
update every

week.

Figure 4.5: The flow-chart explains the hierarchical method to solve the integrated
optimization problem. The variables passed from control level to scheduling level are
used to fix the values of the variables that are realized and utilized after current year.

1st year (52 weeks)

3w
3w

3w52w

sth year (52 weeks) Sth year (52 weeks)Scheduling level

Control level

Decision
variables

3w

Decision
variables

Figure 4.6: The time-line shows the integration of two optimization problems at very
different time scales of years and weeks on the upper and lower level respectively.
The shrinking horizon approach for the scheduling and rolling horizon approach for
the control level are shown, where the control level utilizes a prediction horizon of 3
weeks.

During the start of the well pad, the growth of the steam chamber has not been

achieved and hence the complete steam target provided by the scheduler is injected

into the process without any control while producing all the bitumen produced in

year one. The figure 4.5 shows the summary of the variables being passed in the
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closed-loop operation. The time-line of the decisions taken by the upper level prob-

lem and the lower level problem is summarized in figure 4.6.

The methodology involves solving the integrated optimization problem in a hier-

archical manner. Solving the scheduler problem and the control problem together, as

one single problem requires solving a very large mixed integer nonlinear program. The

problem takes a lot of computational effort to solve. In the presence of large number

of well-pads (20 well-pads) with each well pad having 6 well-pairs, the size of the

optimization problem would be too large to solve. In order to solve the integrated

optimization model, we formulated a hierarchical optimization method: scheduler

solved first at the upper level and control for the wells that have been activated by

scheduler is performed at the lower level. Note that the maximum steam injection

qsmaxw,t is only a target to be applied, and it may not be realistic for control level op-

eration since it is only evaluated based on geological model[68].

The control problem with the prediction horizon of 3 predicts optimal inputs for

3 weeks while implementing the control action at the first time instant. This rolling-

horizon method is used to control the active well-pad until the end of year. The total

steam utilized by the active well-pads in a given year
∑

n∈N
∑

i∈I q
is
w,n,i is utilized to

calculate the ratio between target given by the scheduler and actual steam given by

ratio(w,t) =
qsmaxw,t∑

n∈N
∑

i∈I q
is
w,n,i

The ratio is passed back to the scheduler to update the qsmaxw,t for all the wells at

the previous time instant, which is calculated each year when new information is

available from commissioning wells. Three methodologies were considered: 1) No-

shrinking horizon implementation for scheduling level with no update, 2) Shrinking

horizon implementation for scheduling level without update, and 3) Shrinking horizon

implementation for scheduling level with update.

The process model was built in MATLAB R2018b, and the scheduling level was

programmed in GAMS 25.1.1 and solved with CPLEX solver. The NMPC was pro-

grammed in GAMS 25.1.1 and solved with IPOPT solver. The simulations were

carried out on Intel(R) Core(TM) i5-6500 CPU @ 3.2GHz with 4-cores and 8GB

RAM.
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4.4 Results and Discussion

The following section describes the results obtained from the integrated optimization

technique utilizing the three methodologies as described above. The SAGD well

development planning involves 20 well-pads, each having 6 pairs of wells. The well

pads, when active, activates all the 6 well pairs pertaining to them. The well pairs

have different geological parameters and injection pressure with a total available steam

injection capacity constrained by qsmaxw,t for each well pad in each year. The steam is

allocated among the 6-well pairs in a well-pad by the control level.

The scheduling level utilizes a planning horizon of 25 years. The lifetime of all

the well-pads were vary between 7 to 10 years. Each well-pad has a different lifetime.

The number of wells that can be commissioned is limited by the amount of steam

available at the central processing facility.

4.4.1 No-shrinking horizon implementation of scheduling level

In this methodology the scheduling level of the integrated optimization is solved only

at year one to obtain the schedule for the entire scheduling horizon, without resolving

at year t to end of planning horizon at year T as shown in figure 4.6. The schedule

obtained by this method is described in figure 4.7, which shows the Gantt chart

obtained by single solution of scheduling optimization.

Gantt Chart
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Figure 4.7: The gantt chart represents the commissioning of wells by the scheduling
level formulation.

The gantt chart shows wells being commissioned at year 22, with very little time

left of the scheduling horizon. This causes a capital investment at year 22 that is not

very profitable for the enterprise. The information from the scheduling level is passed
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down to the control level that can be used to control only the wells that are active.

The results obtained from the control level are shown below.
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(a) Temperature profile for well-pad 18. The sub-
plots represent the temperature of produced emul-
sions in each well given by T pn
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(b) Steam injection profiles for well-pad 18. The
subplots represent the steam injection rate in each
well given by qisn

Figure 4.8: The figure shows the control profiles obtained from control level for a
single well-pad

As shown in figure 4.8 the control profiles stay well within their set constraints.

The produced steam however does not match the targets set by the scheduling level.
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(a) Steam target to be achieved by control level,
obtained from the scheduling level.
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(b) Oil target to be achieved by control level, ob-
tained from the scheduling level.

Figure 4.9: The figure shows the steam and oil produced by the control level on the
ground vs the targets envisioned by scheduling level.

The figure 4.9 shows the difference in the levels of steam utilized by the lower-

level control problem versus the targets envisioned by the scheduling level. The steam

utilized at the first year meets the steam target given by the scheduling level because,

at the year of commissioning of a well no control action takes place and the entire

steam available is utilized by the well pad. The vast difference in the target and level

achieved in the remaining time is due to the fact that the solution is obtained from

an open-loop method. The NPV obtained from this method is $1.2885E + 09.

4.4.2 Shrinking horizon implementation of scheduling level

In this methodology, the scheduling level of the integrated optimization is solved at

the end of each year to obtain the schedule for the current year of production as

shown in figure 4.6. The schedule obtained by this method is described in figure 4.10,

which shows the Gantt chart obtained by single solution of scheduling optimization

for selected years 1,9,16, and 25.
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Gantt Chart
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(a) Gantt chart to show the schedule obtained at
year 1 of the scheduling horizon
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(b) Gantt chart to show the schedule obtained at
year 9 of the scheduling horizon
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(c) Gantt chart to show the schedule obtained at
year 16 of the scheduling horizon
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(d) Gantt chart to show the schedule obtained at
year 25 of the scheduling horizon

Figure 4.10: The figure shows the gantt charts for scheduling level at different years
of the scheduling horizon

The Gantt chart shows wells being commissioned at year 22, with very little time

left of the scheduling horizon. This causes a capital investment at year 22 not very

profitable. The information from the scheduling level is passed down to the control

level. The results obtained from the control level are shown below.
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(a) Temperature profile for well-pad 19. The sub-
plots represent the temperature of produced emul-
sions in each well given by T pn
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(b) Steam injection profiles for well-pad 19. The
subplots represent the steam injection rate in each
well given by qisn

Figure 4.11: The figure shows the control profiles obtained from control level for a
single well-pad

As shown in the figure 4.11 the control profiles stay well within their set con-

straints. The injected steam however does not match the targets set by the scheduling

level.
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(a) Steam target to be achieved by control level,
obtained from the scheduling level.
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(b) Oil target to be achieved by control level, ob-
tained from the scheduling level.

Figure 4.12: The figure shows the steam and oil produced by the control level on the
ground vs the targets envisioned by scheduling level.
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The figure 4.12 shows the difference in the levels of steam utilized by the lower-level

control problem vs the targets envisioned by the scheduling level. The vast difference

in the target and level achieved is due to the fact that the solution is obtained from

an open-loop method without updating the max steam injection as new information

is available. The NPV obtained from this method is $1.3277E + 09 which is better

than the NPV obtained by no-shrinking horizon implementation of scheduling level

by 3.92%.

4.4.3 Shrinking horizon implementation of scheduling level
with update

In this methodology, the scheduling level of the integrated optimization is solved at

the end of each year to obtain the schedule for the current year of production as shown

in figure 4.6. The ratio of target to actual steam injected is updated such that the

max possible steam injection for all the wells at that year are updated using the ratio.

The ratio is updated at the end of each year of operation, with the consideration of

ratios obtained from all the active and decommissioned wells, with respect to the

lifetime of wells active at the current time instant . The schedule obtained by this

method is described in figure 4.13, that shows the Gantt chart obtained by single

solution of scheduling optimization for the years (1,9,16,25).
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Gantt Chart
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(a) Gantt chart to show the schedule obtained at
year 1 of the scheduling horizon
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(b) Gantt chart to show the schedule obtained at
year 9 of the scheduling horizon
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(c) Gantt chart to show the schedule obtained at
year 16 of the scheduling horizon
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(d) Gantt chart to show the schedule obtained at
year 25 of the scheduling horizon

Figure 4.13: The figure shows the gantt charts for scheduling level at different years
of the scheduling horizon

The Gantt charts here show the scheduling optimizer to commission the last well-

pad by year 19, thus not commissioning wells at a year much later than that to

prevent capital investments towards the end of the lifetime of the SAGD project.

This increases the profitability by a very good margin.
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(a) Temperature profile for well-pad 16. The sub-
plots represent the temperature of produced emul-
sions in each well given by T pn
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(b) Steam injection profiles for well-pad 16. The
subplots represent the steam injection rate in each
well given by qisn

Figure 4.14: The figure shows the control profiles obtained from control level for a
single well-pad
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(a) Steam target to be achieved by control level,
obtained from the scheduling level.
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(b) Oil target to be achieved by control level, ob-
tained from the scheduling level.

Figure 4.15: The figure shows the steam and oil produced by the control level on the
ground vs the targets envisioned by scheduling level.

The figure 4.15 shows the difference in the levels of steam utilized by the lower-

level control problem vs the targets envisioned by the scheduling level. The difference

in the target and level achieved is minimized due to the fact that the solution is
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obtained from an closed-loop method by updating the max steam injection as new

information is available. This form of communication between the ground reality and

targets envisioned by the scheduler increases the NPV of the SAGD project. The

NPV obtained from this method is $1.5170E + 09 which is better than the NPV

obtained by shrinking horizon implementation of scheduling level without update by

18.93%. The comparison plot of NPV obtained by three different methods shows the

percentage improvement from one method to another in figure 4.16.
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Figure 4.16: The plot compares the performance of different methodologies, the blue
bar represents NPV obtained from the shrinking horizon with update, orange rep-
resents shrinking horizon without update and yellow represents no-shrinking horizon
implementation of scheduling level

4.5 Conclusion

In this chapter, we study the problem of integrated well pad development schedul-

ing with nonlinear model predictive control in steam-assisted gravity drainage. This

integration decision-making problem addresses the long term resource allocation (in-

vestment on well pad development) and short term resource allocation (steam injec-

tion allocation) problem in an integrated manner. The scheduling problem has been

modeled as a mixed integer program. The deterministic problem is then solved while

considering fixed parameters based on geographical location of well pads. The com-

missioning inputs as well as steam targets for the commissioned wells are passed onto
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the control level optimizer. The lower level NMPC utilizes the targets obtained from

the scheduling level in order to inject steam into the process optimally thus main-

taining sub-cool within the constraints. Three different methodologies were tried

and compared for the deterministic case: 1) No-shrinking horizon implementation of

scheduling level, 2) Shrinking horizon implementation of the scheduling level, and 3)

Shrinking horizon implementation of scheduling level with closed-loop update. The

results improved significantly from method 1 to method 3, by 3.92% and 18.93%

subsequently.
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Chapter 5

Conclusion

In the thesis, different stochastic, robust, and decision rule based optimization was im-

plemented for steam allocation and oil production optimization in the SAGD process.

In the third chapter of the thesis, we presented a first principles model of the SAGD

process used in the NMPC formulation. Parametric uncertainty was introduced to the

model via SOR, thus solving a multistage stochastic optimization problem. The use

of an evolving scenario tree to model uncertainty helped make an intractable problem

tractable in real-time optimization. The scenario tree method with a robust horizon

performed well when compared to worst-case static robust method. When the affine

policy method was implemented with a rolling-horizon method after the end of each

prediction horizon, it provides the highest operating profits compared to the other

methods. The affine policy method successfully gave higher operating profits while

reducing the computational time compared to other stochastic methods.

With the formulation of a NMPC, that successfully allocates steam while max-

imizing revenue from oil production under SOR uncertainty, the problem was inte-

grated with solving a scheduling level problem. The integrated optimization problem

studied the behavior of well pad development scheduling with NMPC in SAGD. The

fourth chapter of the thesis describes the formulation of the integrated optimization

problem, with scheduling problem being modeled as a MILP and the NMPC mod-

eled as a deterministic NLP. The deterministic problem was solved while considering

fixed parameters based on the geographical location of well pads. The commission-

ing inputs, as well as steam targets for the commissioned wells were passed onto the

control level optimizer. The lower level NMPC utilized the targets obtained from

the scheduling level to inject steam into the process optimally thus maintaining sub-

cool. Three different methodologies were tried and compared for the deterministic

case: 1) No-shrinking horizon implementation of scheduling level, 2) Shrinking hori-
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zon implementation of the scheduling level, and 3) Shrinking horizon implementation

of scheduling level with closed-loop update. The results improved significantly from

method 1 to method 3.

Future work

Based on the work done in the thesis, potential paths are presented below for future

work.

Multiple sources of uncertainty

In the third chapter of this thesis, we discuss parametric uncertainty affecting the

model with a single source of uncertainty being the SOR. The work provides opti-

mal control action by assuming that all measurements available to the controller are

deterministic, and that uncertainty in the model is sourced from only SOR parame-

ter. Future work may include uncertainty from measured variables such as flow rate,

temperature, and other geological parameters.

Integrated optimization

In the fourth chapter of the thesis, only the deterministic problem was solved in the

current work and hence the NMPC or the scheduler are not hedged against uncertainty

in parameters considered or market price fluctuations for the crude. The future work

can be extended to incorporate uncertainty and utilizing affine based formulation for

both the scheduling and control level problems. The hierarchical methodology of

solving the integrated optimization problem can be modified and solved as a single

large MINLP. Decomposition algorithms can modified and developed to solve such a

large optimization problem in real time.
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