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Abstract

Morphologically complex languages such as Arabic pose several challenges in
Natural Language Processing (NLP) due to their complexity and token spar-
sity. Most techniques approach the problem by transforming the words of the
language from their sparse surface form representation to a less sparse form be-
fore processing. The transformation usually takes the form of a morphological
analysis or a morphological segmentation.

This dissertation addresses two tasks in Arabic NLP: Statistical Machine
Translation(SMT) and Sentiment Analysis. To improve English-Arabic SMT,
we apply segmentation on Arabic to decrease token sparsity and enhance the
correspondence between tokens of the English and Arabic language. However,
due to this segmentation, the translation system is limited to extracting fea-
tures based on morphemes (partial words) and only outputting morphemes
during decoding. Such a system lacks knowledge of the original form of the
words.

We further improve translation from English to Arabic by combining both
segmented and desegmented views of the target language. The system can
benefit from segmentation’s sparsity reduction and verifies its generation of
correct words. We present a language-independent technique to desegmenta-
tion that approaches the problem as a string transduction task. We propose
a new algorithm that desegments the decoder’s search space encoded as a lat-
tice, thus allowing the system to use features from the desegmented view of
the search space. We extend the phrase-based statistical machine translation
system to allow desegmentation during the decoding process on the fly. In
addition, we conduct an experimental study to verify what matters most in

morphologically segmented SMT models.
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Our second task is sentiment analysis, where we resort to Arabic lemma-
tization to improve sentiment analysis of Arabic tweets and blog posts. We
explore translation in the opposite direction, from Arabic into English in or-
der to evaluate the loss of sentiment predictability when Arabic social media
posts are translated to English, manually or using an SMT system. We use
state-of-the-art Arabic and English sentiment Analysis systems and develop
automatically generated Arabic lexicons from lemmatized tweets to improve

this task.
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Chapter 1

Introduction

1.1 Machine Translation: A Brief History

Machine Translation (MT) is defined as the task of translating from one natural
language to another. It is one of the oldest subfields in Artificial Intelligence
and Natural Language Processing. The story goes back to World War II
where machine translation was conceived as a decipherment problem. In 1947,
Warren Weaver, a pioneer MT researcher formulated the problem as: given an
encoded sentence with strange symbols, the problem is to find best decoded
sentence (Weaver, 1955).

There are two main directions in Machine translation: rule-based MT and
statistical MT. Rule based MT adopts the use of manually created linguistic
rules (Somers, 1992). While manual creation of such rules is expensive and
while it is difficult to represent complex morphology and syntax as rules for
some rich languages, the recent remarkable progress in MT is due to statistical
methods. Statistical Machine Translation (SMT) aims to learn rules automat-
ically from a bilingual corpus. A statistical model is learned from the data by
finding cooccurrences between words in source and target languages. The idea
of SMT was pioneered by IBM researchers in the late 1980’s by presenting the
Candide SMT system (Brown et al., 1990, 1993) .

The progress in MT led it to be integrated with several applications such
as cross-lingual information retrieval and speech translation. Currently, ma-
chine translation output is being used as a first draft translation for several

translation agencies, where human translators add further adjustments and



fixes (Michael Denkowski and Lavie, 2014). Several SMT systems are freely
available online such as Google Translate and Microsoft Bing Translator. They
usually provide usable translations between English and some Western Euro-

pean languages.

1.2 Motivation

Translation, similar to most Natural Language Processing tasks, is exacerbated
when it involves a morphologically complex language such as Arabic, Finnish
and Czech. Such languages present formidable challenges because of their
complexity and large number of inflections and derivations of words. Different
features such as person, gender, number, tense, etc. are expressed by some
modifications to the word. Such modifications can take the form of an affix con-
catenation or a word derivation that is based on templates. However, all these
different forms share the same meaning which is usually expressed by their
lemma. Therefore, this leads to data sparsity and poor word representation in
any system. Most NLP techniques approach these problem by transforming
the words of the morphologically complex language from their surface! form
coarse-grained representation to a fine-grained form before processing. The
transformation usually takes the form of a morphological analysis or a mor-
phological segmentation. This dissertation focuses on providing morphological
solutions to two tasks in Arabic NLP: Statistical Machine Translation(SMT)
and Sentiment Analysis.

Morphological segmentation is an effective technique for statistical machine
translation (SMT) when translating from and to Arabic. When translating
from English into Arabic, segmentation on Arabic decreases token sparsity
and enhances the correspondence between tokens of the English and Arabic
language. Table 1.1 shows an English example with its Arabic translation

provided with its transliteration? that illustrates aspects of translation and its

lword form as it originally appeared in the text
?We provide Arabic examples with Habash-Saoudi-Buckwalter (Habash et al., 2007)
transliteration scheme that maps Arabic characters to ASCII Roman script to enhance

readability.



complexity. Notice how each of the Arabic words encapsulates the meaning of
several English words. The segmentation splits Arabic words into their mor-
phemic representation. Unlike English, prepositions and pronouns in Arabic
are encoded as bound morphemes, with the former represented as a prefix and
the latter represented as a suffix in «lad) lghT'th “to his eminence” . Such prop-
erties exacerbate the SMT task through an increase of Arabic token sparsity
and a large out-of-vocabulary rate. However, due to this segmentation, the
translation system is limited to extracting features based on morphemes (par-
tial words) and only outputting morphemes during decoding. Such a system
lacks knowledge of the original form of the words. Our goal in this thesis is to
improve translation from English into Arabic. We would like the SMT system
to output morphologically and orthographically correct Arabic words while
also benefiting from segmentation. Also, we aim to allow our SMT models
to capture several aspects related to Arabic morphology and present a fluent
translation.

On the other hand, lemmatization (as a form of morphological analysis) for
morphologically complex languages is a practical approach for sparsity reduc-
tion. When applied on Arabic social media text for a sentiment analysis task,
lemma forms maintain the main aspects of the meaning of their surface forms
while their clitical and inflectional features are dropped. Such an approach
shows significant improvements when sentiment analysis systems are trained
on lemmas compared to training on the original surface forms.

However, lemmatization alone might not suffice as a solution due to the
use of dialectal Arabic terms in social media. Current Arabic morphological
analyzers find difficulty in lemmatizing such terms because they lack strict
writing standards. Also, available lexicons have low coverage to terms appear-
ing on social media. We aim to create a state-of-the art Arabic sentiment
analysis system that relies on automatically generated Arabic lexicon from
tweets. Also, we want to benefit from both available English sentiment anal-
ysis resources and advances in Arabic-English SMT to measure the loss of
sentiment predictability when Arabic social media posts are translated into

English manually and automatically.



English we explained the matter to his eminence .

Arabic c kst WY L2l

Transliteration wAwDHnA AlAmr lgbTth
Segmentation w+ AwDH +nA Al+ Amr 1+ gbTh +h
Gloss and explained we the matter to eminence his

Table 1.1: English example with its Arabic translation.

1.3 Approaches

In this section, we provide a summary of the approaches we propose to English-
Arabic SMT and sentiment analysis, with the different challenges faced and
the main contributions in this thesis.

In Chapter 4, we address the desegmentation task that appears as part of
the SMT pipeline when translating into morphologically segmented Arabic.
Arabic segmentation appears as a preprocessing step in an SMT pipeline (Fig-
ure 1.1). The segmentation process applies adjustment rules on Arabic to reg-
ularize the segmented substrings; hence simply concatenating the segmented
forms might not result in the original Arabic word (lgbTth — I+ gbTh+h).
An SMT system trained on segmented Arabic outputs Arabic translations in
segmented form, which has to be desegmented again to allow readability and
evaluation. Our first challenge is to address the the current desegmentation
techniques and their limitations. Then, we provide a novel desegmentation
technique that handles the problem through a string transduction approach.
Our technique overcomes limitations of current techniques by learning deseg-
mentation rules automatically, and at the same time memorizing long sequence
mappings.

Our technique showed gains and near-perfect desegmentation when applied
on naturally occurring segmented Arabic words. But when we applied it to
Arabic SMT output, it did not make much difference compared to other tech-
niques. This comes as a result of applying desegmentation as a post-processing
step in the SMT pipeline (Figure 1.1). Desegmentation merely operates on the
final output of the SMT system and does not contribute to how the output is

generated. Hence, decoding errors propagated to the desegmentation step are
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Figure 1.1: Statistical Machine Translation pipeline involving target language
segmentation as a preprocessing step.

unlikely to be fixed.

In Chapter 5, we address this challenge by providing a solution to in-
tegrating desegmentation in the SMT process, rather than keeping it as a
post-processing step. Instead of segmenting the final output, we desegment
the search space (represented as a lattice) that is built from segmented Arabic
tokens. Thus, the system is provided with two views of its search space: a
segmented and a desegmented view. This enables extraction of features from
desegmented words such as scoring using an unsegmented language model. As
a consequence, our system benefits from the sparsity reduction of morpholog-

ical segmentation, and at the same time, outputs correct desegmented Arabic



words.

Our lattice desegmentation system shows significant improvement on English-
Arabic and English-Finnish translations compared to systems applying deseg-
mentation on the final output. Yet, we were faced with several questions and

challenges from experts and reviewers regarding our approach:

1. Is it possible to get the same gains by desegmenting a different SMT
component such as the phrase-table rather than desegmenting the lat-

tice?

2. Is it possible to run an unsegmented model, where segmentation only
influences the word alignment and also get the same improvement in

translation quality?

These thoughtful questions gave us a chance to go further and evaluate other
desegmentation options and confirm whether there are better options than
desegmenting the lattice.

In Chapter 6, we provide a systematic exploration of a space of possi-
ble solutions for translating directly into unsegmented Arabic text while still
obtaining the benefits of segmentation. Segmentation provides a potential
boost to many components of the SMT system such as the alignment model,
translation phrase table, and language models. We illustrate which compo-
nent benefits the most from segmentation by providing scenarios that differ in
where desegmentation is applied.

Our experiments on English-Arabic translation attribute the benefits of
segmentation to phrases with flexible boundaries, which give the SMT system
the freedom of generating words that can span multiple phrases. Also, we show
that the use of an unsegmented language model contributes to the BLEU score
but discourages the use of morphologically decomposable words. Also, our
lattice desegmentation approach proved to be the best desegmentation, while
in the other explored approaches we are giving up this important property
of phrases with flexible boundaries. At this point, we are ready to move the

desegmentation process directly into the decoder.



In Chapter 7, we present an algorithm that extends the phrase-based SMT
system by enabling desegmentation while decoding. Sequences of morphemes
are desegmented on the fly, followed by word-level feature extraction from
desegmented forms. This goal is far more challenging; yet, we get a model
that is easier to use and more accessible to the SMT community than the
lattice desegmentation system.

Finally in Chapter 8, we investigate a task that is only possible due to
advances made in Arabic-English SMT. Sentiment Analysis has predominantly
been on English. Thus there exist many sentiment resources for English, but
less so for other languages such as Arabic. But with improvements in statistical
machine translation systems over the last decade, we no longer have to rely on
strictly monolingual sentiment analysis systems. An alternative is to translate
the focus language text into English, and run an English sentiment analysis
system.

We provide an evaluation on the loss in sentiment predictability when Ara-
bic blog posts and tweets are translated into English manually and automat-
ically. In the process, we create a state-of-the-art Arabic sentiment analysis
system and compare its performance to an English one trained on Arabic
translations. We discover that even though translation significantly reduces
the human ability to recover sentiment, automatic sentiment systems are still
able to capture sentiment information from the translations. we conduct qual-
itative and quantitative studies to investigate why we observe these results.
We find that sentiment expressions are often mistranslated into neutral expres-
sions when translated. Further, mistranslation of ambiguous words, sarcasm,
metaphoric expressions, and incorrect word-reordering are common reasons
why translations fail to preserve sentiment. In the process, we also create a
state-of-the-art Arabic sentiment analysis system and automatically generated

Arabic lexicon from tweets.



1.4 Thesis Organization

We now describe the organization of the thesis. In Chapter 2, we provide a
brief overview on phrase-based statistical machine translation system and its
different components. In Chapter 3, we provide an overview on the Arabic
language, its morphology, syntax, and main challenges. In addition, we dis-
cuss the basic approaches to handle Arabic in Statistical Machine Translation.
Chapters 4 through 8 provide details on our approaches for English- Arabic
SMT and sentiment analysis, as outlined in the previous section. Finally,
we conclude by summarizing our contributions in Chapter 9 and discussing

directions for future work.



Chapter 2

Phrase-based Statistical Machine
Translation

This section provides a short introduction to Statistical Machine Translation
(SMT). It covers main approaches for training an SMT system, tuning, de-
coding, as well as methods for system evaluation. It includes definitions for
the main terminologies used in SMT context, that will be referenced in the

subsequent chapters.

2.1 The Standard Model

Machine translation is a well defined problem in NLP that involves translating
from a source language to a target language. Given a source sentence f, we
want to find the best translation e in target language among a set of candidate

translations E. The problem can be represented as

¢" = arg maxp(el f) (2.1)

Currently, the phrase-based SMT model is considered the best performing
model for several languages. Unlike the word-based model, the unit of transla-
tion is a phrase. A phrase in SMT is merely a sequence of one or more words
and does not necessarily correspond to the linguistic meaning.

In SMT, we want to learn translation rules statistically from a parallel
corpus. A parallel corpus is a large set of translation examples that are

sentence aligned. When translating, we want to guarantee two main criteria



in the output: (1) the output is fluent, and (2) it also conveys the meaning
of the source sentence by using words which are correct translations. Fluency
is measured using a Language Model (LM) which gives high probability
score for an output sentence e that is more fluent than other sentences. The
LM parameters are estimated based on a target language monolingual corpus,
which is abundantly available. Adequacy is measured using a Translation
Model (TM) which gives a conditional probability score for any pair f and e.
The TM parameters are estimated by training on a bilingual parallel corpus.
Hence, the model is further decomposed into smaller components using the

noisy channel approach of the generative model:

TranslationModel  LanguageModel

——— ~ N
e’ =argmax  p(fle) x  p(e) (2.2)

Due to syntactic differences between languages, translated phrases have to
be reordered. A Reordering model learns to penalize larger skips for consec-
utive phrases using a distortion limit parameter. This leads to phrases being
translated in a monotonic, swapped, or discontinuous manner with respect to

the neighboring phrase.

2.2 Language Model

A language model evaluates whether a sequence of words is fluent. It defines
a probability distribution that assigns a high probability to a fluent sequence
of words and a low probability to an unlikely sequence. Assuming we are
translating into English, a LM should assign a high probability to “ezports to
china increase” and a low one to “increase to exports china” since it has an
incorrect grammar and word order.

Given a word sequence W = wy, w, ..., wyw|, the n-gram language model’
uses chain rule to calculate the probability of W, denoted as P(W), as a
product of conditional probabilities of individual words given their history of

preceding words:

LAn n-gram is an n-token sequence of words

10



p(W) = p(w1) X p(wz|wy) X p(ws|wiws) X p(ws|wiwews) X ... X p(wy|w;...wp_1)
W]

= H(wdwl...wi_])
i=1
(2.3)
The product is further simplified using a conditional independence Markov

assumption that takes the history of each word up to n words.

w
p(W) ~ [ [ plwilw},, (24)
i=1

For a trigram language model that uses a history of two preceding words,

the probability of “he lives in canada” is estimated as:
p(he lives in canada) = p(he|<s>) x p(lives|<s> he) x p(in|he lives)
x p(canadal|lives in) x p(<\s>|in canada)

where the symbols <s> and <\s> corresponds to start-of-sentence and end-

of-sentence respectively.
The probabilities are estimated from a large monolingual English corpus

using Maximum Likelihood Estimation. For a trigram language model,

count(w;w;wy)

(2.5)

p(wi|wiw;) ~ >, count(wyw;w)

where count(X) returns the number of instances of the sequence X in the
corpus. During testing, several n-grams might not be seen in the training data
set. In order to account for previously unseen n-grams, smoothing techniques

are used to move some probability mass from seen n-grams to unseen ones.

2.3 Translation Model

As mentioned earlier, a parallel corpus is needed for training a translation
model p(f|e). Phrase extraction for the TM depends on a word aligned par-
allel text. An alignment is a mapping between a word in source text to its
correspondence in target language text. Alignment is learned automatically

through an unsupervised approach from the statistics of the parallel text by
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measuring how frequent a source word co-occur with target word. Given the
generated alignments, we can extract phrases (f, &) such that they are consis-
tent with the word alignment. This means that words in f has to be aligned
with words in € and vice versa. Also the words in the extracted phrase have
to be continuous. Figure 2.1 represents an alignment matrix with alignment
points between an English sentence and its Arabic translation. The alignment
is used to extract phrases shown in the adjacent table for source segments of
length three or less. Notice that no phrase is extracted to wwzFEt mydAlyAt
due to discontinuity on the source. Also, notice that the word tqdyr has no
alignment with the source, but still we can extract phases that includes this
word as long as there is no discontinuity in the extracted pair.

Phrase extraction allows building a phrase table that consists of source
phrase, target phrase and four probability scores estimated from the world
aligned parallel corpus. The scores are: inverse phrase translation probability
o(f|e), inverse lexical weighting lez(f|e), direct phrase translation probability
o(e|f), and direct lexical weighting lex(e|f). The translation probability is

calculated as ~
count(e, f)

>, count (€, f;)

where count(e, f) returns the number of times phrases & and f co-occur in

¢(fle) = (2.6)

the parallel corpus. The lexical weights checks how well words in f and &
translate to each other. Each word’s lexical translation probability can be
determined by counting the words aligned to it in our training corpus. Given
these lexical probabilities, the lexical weight of a phrase pair can be calculated

as the product of lexical probability scores for the aligned words in the phrase.

2.4 Decoding

Given the above models, decoding in SMT involves finding the translation
with the highest probability (Equation 1). The decoding task is considered to
be an NP-complete problem. Solutions provided are heuristic and might not
guarantee finding an optimal translation. The phrase-based SMT system uses

a multi-stack beam search decoder that work as follows. First, source
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T2t s 3
$2¢ 5 2¢8 English Arabic
medals mydAlyAt
medals and grading ribbons wsrAyT
Siiki ' and grading ribbons wsrAyT tqdyr
: to Ely
grading to tqdyr Ely
ribbons were distributed wwzEt
were winners AlfAgzyn
distributed winners . AlfAyzyn .
to winners Ely AlfAyzyn
to to winners tqdyr Ely AlfA§zyn
winners to winners . Ely AlfAyzyn .
to winners . tqdyr Ely AlfA§zyn .

Figure 2.1: Alignment matrix between an English sentence “medals and
grading ribbons were distributed to winners” and its Arabic translation
J.jw‘ J.p JEv _‘.njljij Wl Casj 99, where the black squares represent
an alignment point between source and target words. The adjacent table shows
extracted phrases with source-length less than or equal to three.

segments with different sizes are picked up from the source sentence, and their
translation options are retrieved from the phrase table. The search space can
be constructed by considering different permutations of the source segments
and their multiple translation options. But this can lead to an exponential
growth of the search space. The decoder handles this by initializing n stacks
(priority queues), where n is the source-length. Then, the decoder starts con-
structing the output from left to right, making sure it covers all the words
in the source sentence such that that no input word is covered twice. Partial
translations considered during this search are called hypotheses. The process
of appending current hypothesis with new translations for an uncovered source
segment is called hypothesis expansion. As hypotheses get expanded, they
are allocated to the appropriate stack, such that stack-i accepts hypotheses
covering 7 source words. The purpose of the stack is to keep hypotheses sorted
according to their partial scores, and discard the ones that cost more than

the best hypothesis according to a threshold value. The process is known
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as threshold pruning. Another pruning approach is to keep the top k hy-
potheses in the stack by restricting the stack size to k. The approach is called
histogram pruning. Pruning reduces the complexity of the model and search
space, and restricts the hypothesis expansion to a certain limit, thus allowing
faster decoding.

Each partial hypothesis is represented through a state which saves several
pieces of information used to calculate the partial cost. The state contains
all of the information needed to score an expansion of its partial hypothesis.
This includes the source coverage vector, the n-gram language model context
and any information needed to calculate reordering probabilities. When two
hypotheses have identical states, they can be recombined. The reason is that
the better scoring hypothesis will always be considered in the path to the final
hypothesis. As a result, the decoder can benefits from hypothesis recombi-
nation through having an efficient search by not considering paths with high
cost.

As we explained, pruning is based on comparing partial scores of hypothe-
ses covering same number of source words. The problem is that some source
phrases are easier to translate than the others, thus making the their partial
hypotheses scores incomparable. Given the sentence “italy topped the list of
cotton importing countries”, it is easier to translate “the list of” compared to
translating “cotton importing countries”. The phrase “the list of” has more
common words that can provide its translation with a cheaper score compared
to “cotton importing countries”. Such unfair score comparison might lead to
hypothesis of “cotton importing countries” be pruned. The problem is ad-
dressed by adding a future cost to the partial score of the hypothesis. The
purpose of future cost is to estimate how difficult it is to translate the rest of

the sentence, given the partial hypothesis.

2.5 Parameter Tuning

The models that we have described (translation model, language model and

reordering model) can be represented as features h;(z) in a log-linear model
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that are weighted based on their significance in generating best possible trans-

lations.

p(z) o exp Z Aihs () (2.7)

i=1

The translation score generated from the combination of these components

is a weighted score based on parameters ;.

xbest(Ala '--:/\n) = arg maxz)\ihi(:ﬂ) (28)
i=1

Parameter tuning refers to setting the parameter weights \; so that the
translation quality is optimized. Optimization is usually based on the BLEU
score, which is an automatic evaluation metric (described in Section 2.6). The
well-known approaches for tuning are Minimum Error Rate Training (MERT)
and Margin Infused Relaxed Algorithm (MIRA). Both of these approaches
run on a development set that is decoded and conduct optimization on the
n-best list or lattice generated from the development set. Given an initial
weight setting, MERT optimizes the parameters iteratively by updating the
weights and re-decoding to expand n-best list or lattice. It is not feasible
when the number of features is more than 30. MIRA is an online learning
algorithm that updates the weights with respect to a loss function (calculated
based on BLEU score) and marginal constraints. The updates are minimal
while obtaining a margin larger than the loss of incorrect classification. Unlike

MERT, MIRA can train an SMT system with millions of features.

2.6 Evaluation Metrics

Human evaluation is always expensive and time-consuming. As a result, a
trusted automatic evaluation metrics that can evaluate the output’s fluency
and adequacy have always been in demand. Several automatic evaluation
metrics are available for the machine translation task. They all evaluate the
SMT output based on a reference, which is a human-generated translation

for the test sentence. The performance of these metrics is always debatable.
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But given two translation outputs from 2 different SMT systems, they can
indicate to some extent which of the two is better. The most popular metric is
the Bilingual Evaluation Understudy score known as BLEU(Papineni et al.,
2002). It calculates the geometric mean of precision based on matching n-
grams between the SMT output and one or more references. Since it is a metric
based on precision, the tendency to prefer shorter translation is controlled by
a brevity-penalty when the length of the reference is larger than the length of
the output. It is defined as :

1
BLEU-4 = brevityPenalty x exp(i Z log precision;) (2.9)
i=1

where

number of matching i-grams

TEectsion; =
P ' total number of i-grams in the output

output-length
" reference-length

)

brevityPenalty=min(1

Another metric is the Word Error Rate. It uses a dynamic programming
approach to calculate the number of edits needed to transform the output
translation into the reference. The metric is more concerned about the se-
quence of words in comparison with the reference. It is not frequently used for
SMT as it places hard penalty on reordering even if the translation is correct.
We will use this metric to evaluate the desegmentation of a word (Chapter 4),

where reordering is not a concern. It is defined as

substitutions + deletions + insertions

WER =

reference-length
Translation Error Rate (TER) (Snover et al., 2006) is similar to WER and
calculates the number of edits required to change the SMT output into the
reference. But it also considers the block movement, which is a sequence of
words (called shifts), among the editing steps. We use this metric in Chapterb

to evaluate the translation quality.
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Chapter 3

Arabic Language and Challenges

This section briefly describes the orthographic, morphological, and syntactic
characteristics of the Arabic language that exacerbate the process of SMT and
sentiment analysis. We also illustrate the challenges faced in English- Arabic
SMT along with the various approaches presented in recent papers to tackle

them.

3.1 Arabic Orthography

In this section, we describe main Arabic orthography issues that cause compu-
tational complexity during translation. Unlike English, Arabic text is written
from right to left. Also, the text is either fully diacritized, partially diacritized
or undiacritized. Diacritics are small marks that are added to consonants.
They help disambiguate any semantic differences and usually change based
on syntactic conditions. For example, diacritizing the word _&S5 ktb (undi-
acritized form) can disambiguate its meaning as either: g_’,..'."? kataba “wrote”,
g__,..'.'? kutub “books”, or Q..'}.'? kutiba “has been written” (where a, u, and i are
diacritics). Also, several Arabic letters are spelled inconsistently using differ-
ent forms. The Alif has different variants such as bare Alif | A, hamzated Alif
VA 1 A and Alif Mada | A4 . The letter & Ya is sometimes written as a dottless
Ya s “

Such inconsistent spelling of Arabic characters and use of characters inter-
changeably lead to word sparsity, ambiguity, and poor probabilistic estimations

of words. These challenges are mainly addressed by applying orthographic nor-
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malization schemes. An initial preprocessing step in Arabic SMT is to remove
all diacritics. Although this might add more ambiguity for some words, it has
a positive influence on the quality of translation as it decreases sparsity. An-
other preprocessing step is to normalize Arabic script by converting different
forms of Alif | 17 1and Ya & s to bare Alif | and dotless Ya ¢ respectively.
El Kholy and Habash (2012“3,) studied the effect of orthographical normal-
ization on Arabic by experimenting on reduced (with Alif and Ya normaliza-
tion) and enriched Arabic (with predicting right Alif and Ya format). Better
results were shown with the reduced Arabic set. Currently, most of the re-
search in En-Ar uses reduced Arabic format. Furthermore, Arabic SMT output

is compared to an undiacritized script during evaluation.

3.2 Arabic Morphological Complexity

Another challenge that contributes to the Arabic complexity is morphology.
The richness in Arabic morphology and the large number of Arabic word forms
increase the sparsity and out-of-vocabulary word rate in the corpus. Arabic
words are derived based on a root and pattern. For example, the word ;_,.::'K
kAtib “writer” is derived from the root \_,j? k-t-b “wrote” and pattern 1423,
where 1, 2 and 3 are the consonants in the roots respectively. Verbs in Arabic
inflect for aspect, mood, voice, and subject (person, number and gender), while
nouns inflect for gender, number, state and case. Each of these features has
its own set of subcategories which results in different inflected word forms.
Although templatic morphology presents interesting challenges, we will not
address it in this thesis.

Each inflected word form (base) can be attached to several optional clitics.

A general form of Arabic word can be represented by:

[question+ [conjunction+ [particle+ [determiner+ BASE +pronoun]]]]
(3.1)

where each of these clitical categories has a fairly large set of clitics.

As a result of such morphological richness, a lemma can have thousands

11A2i3 is an abstract template for nouns that means the one that enacts the action in
the root
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and with their ability

>

5 e Bd o
W+ b+ qdrh +hm

W

A 2 g
wbgdrthm

Figure 3.1: Segmentation of Arabic word o )&, ¢ whgdrthm and its alignment
with its English translation.

of inflected forms. El Kholy and Habash (2012a) show that the number of
Arabic tokens? in a bilingual corpus is estimated to be less by 20% to the
number of English tokens. However, the number of Arabic word types® in
the same corpus is as twice as the number of English word types. In addition,
alignment gets complicated between the English source and Arabic, as a single
Arabic word can correspond to multiple English words spread at distinct places
in the sentence. Notice that the clitical categories (question, conjunction,
particle, determiner and pronoun) represented as bound morphemes in Arabic,
correspond to separate words in English. The next two subsections illustrate

how to improve correspondence and decrease token sparsity between English

and Arabic.

3.2.1 Segmentation

Segmentation is the process of splitting a word into consecutive substrings.
Several NLP tasks rely on segmentation as a method for decreasing token
sparsity, and using a simplified form of a word that can still encompass some
aspects of its meaning, especially when dealing with morphologically complex

languages.

Znumber of running words in a corpus
3number of distinct words in a corpus
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In this thesis, we define Morphological Segmentation as a process that

involves both:
e splitting the word into consecutive substrings

e applying morphological and orthographic adjustments on required sub-

strings

We adopt the same definition proposed by Habash (2010) for tokenization.
We use the the term “segmentation” instead of “tokenization” in order not to
confuse it with the tokenization task used in statistical machine translation
context and limited to dividing text into sequence of words by separating
punctuation marks Throughout this thesis, we use the above definition of
segmentation on Arabic language, unless stated otherwise.

As mentioned in this section, Arabic words can be formed by attaching
clitics to an inflected base form. The attachment is not a simple concatena-
tion step; rather, it involves several character transformations on morpheme
boundaries that might cause the word to be different from its individual parts.
During segmentation, the orthographic adjustments step applies charac-
ter transformations to convert the segmented substrings back to their basic
form. For example, the Arabic word «lale) [Tflth “for his child” is segmented
as o+ dab +) [+ Tflh+h “for child his”. The orthographic adjustment trans-
forms letter “t” to “h”; otherwise, we get the incorrect Arabic word =Jdale Tflt.

Segmenting Arabic words into correct morphemes is a challenging task.
Checking whether a sequence of characters is part of the stem or constitute
a clitic requires morphological analysis of the word. After detecting the mor-
phemes in a word, the next task is to choose at what clitical point to segment
and how to group the tokens. Habash et al. (2009) provide Morphological
Analysis and Disambiguation for Arabic tool (MADA) which can perform
word analysis and apply different segmentation schemes. MADA uses Sup-
port Vector Machine to select the best word analysis from a list of analyses
provided by Buckwalter Arabic Morphological Analyzer (BAMA )(Buckwalter,
2004).
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Buckwalter wstqdm xdmthA bAltcAwn mchm
Translation and she will offer  her service in collaboration with them
D1 w+ stqdm xdmthA bAltcAwn mchm
D2 w+ s+ tqdm xdmthA b+ AltcAwn mchm
D3 w+ s+ tqdm xdmp -+hA b+ Al+ tcAwn m¢ +hm
S2 w+s+ tqdm xdmp -+hA b+Al+ tcAwn m¢ +hm
ATB w+ s+ tqdm xdmp -+hA b+ AltcAwn m¢ +hm

Table 3.1: Different segmentation schemes presented in literature for Arabic.
We refer the reader to Habash (2010) for a complete list of schemes.

The choice of the level of granularity in segmentation usually depends on

the task. A certain segmentation scheme, that works well for Information Re-

trieval, might complicate the process in Machine Translation, and vice versa.

Several segmentation schemes were proposed in literature for Arabic. Each of

the segmentation schemes differ in where segmentation is applied. Table 3.2.1

shows commonly used segmentation schemes for Arabic, where the segmenta-

tion point is decided based on the general form of Arabic word. These schemes

were presented by Sadat and Habash (2006), except for S2 that was presented

by Badr et al. (2008)

e D1: segments question and conjunction clitics

e D2: segments question, conjunction and particle clitics

e D3: segments all clitics

e S2: segments all clitics, but groups enclitics(question, conjunction, par-

ticle and determiner) together as one token.

e ATB: the Penn Arabic Treebank segmentation scheme segments all cl-

itics except for determiner proclitic J! Al which is left attached to the

base form.

We adopt the Penn Arabic Treebank (PATB) segmentation scheme in all of

our experiments in this dissertation. El Kholy and Habash (2012a) show in
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an experimental study that it has the best impact on English-Arabic SMT

compared to other schemes.

3.2.2 Desegmentation

When translating from Arabic into English, the segmentation is a form of pre-
processing, and the output translation is readable, space-separated English.
However, when translating from English to Arabic, the output will be in a
segmented form, which cannot be compared to the original unsegmented ref-
erence. Simply concatenating the segmented morphemes cannot fully reverse
this process, because of character transformations that occurred during seg-
mentation. Hence, when translating into a segmented language, the segmen-
tation must be reversed to make the generated text readable and evaluable.

Desegmentation is the process of converting the segmented form of words
into their original orthographically and morphologically correct surface form.
This includes concatenating tokens into complete words and reversing any
character transformations that may have taken place. The task is considered
challenging since the process can result with multiple desegmented options.

For example, the following three words oB\Ji SrAh, o;\Ji srAAh, and G\Ji
§rAgh meaning “its purchase” differ in their Hamza form (§ « X W § A) as
they inflect for nominative, accusative and genitive case respectively. When
segmented, they share the same segmentation form o+ ;1Ji srA’ +h. Without
any knowledge of the context of o+ ;b.i 3rA’ +h, or the diacritic mark appear-
ing on the Hamza or the character preceeding it(which are usually dropped
when Arabic text is processed), it will be difficult to know its original unseg-
mented from.

The segmentation and desegmentation operations can place a word in three
different states when performed in any NLP task. To resolve any ambiguity

in definitions(in later chapters), we define the word states as:

e Segmented Word: is a word that is morphologically segmented and is

presented in its segmented form

e Unsegmented word is a word in its original form and was never seg-
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mented. We also use the term surface form to denote a word in its

unsegmented form.

e Desegmented Word: is a word that went through a segmentation
process, and was then desegmented. Notice that the process of deseg-
mentation does not always result with the original word form before

segmentation i.e its unsegmented word form

The techniques proposed for the desegmentation task fall into three cat-
egories: simple, rule-based and table-based (Badr et al., 2008). We devote

Chapter 4 to discuss these approaches in detail with their limitations.

3.3 Syntactic Challenges

Word order in Arabic has some degree of freedom, thus affected by the syntac-
tic relations represented within the complex morphology. Arabic sentences can
have different word order, but some cases appear more than others. Arabic
has both nominal sentences (starts with a noun) and verbal sentences, but the
verbal sentences are more frequent. In machine translation, this will have an
influence on the fluency when translating into Arabic, as sentences in English
are mainly nominal (except for imperative sentences). Adjectives in Arabic
follow the noun they modify and the idafa noun phrase. Idafa construct is
similar to the English possessive and compound nouns. For example, “the
student’s notebook” is translated to _JUal| EJKEu “notebook the-student” in
Arabic. In Subject-Verb-Object sentences, the verb agrees with the subject
in gender and number. In Verb-subject-object order sentences, the verb only
agrees in gender. Also the verb subjects in Arabic can be dropped (the reader
usually infers it from the verb conjugation).

Phrase-based SMT has some limitations in modeling the syntactical rela-
tionship since phrases in SMT are generated by the alignment and not by a
syntactic parser. This results in limitations in handling long distance agree-
ment appearing in the selected phrases by the decoder. Such long distance

dependencies are affected by the differences between syntax structure in En-
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glish and Arabic.

3.4 Summary

In this chapter, we highlighted the main problems pertaining to the complexity
of the Arabic language in NLP tasks. We discussed the main challenges related
to orthography, morphology and syntax. In this thesis, we do not try to
solve challenges related to Arabic syntax. We mainly concentrate on providing

solutions related to morphology in the context of SMT and sentiment analysis.
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Chapter 4

Reversing Morphological
Segmentation in English-to-Arabic
SMT

In the previous chapter, we discussed “segmentation” as a solution that over-
comes the morphological complexity of the Arabic language. The advantages
of Arabic morphological segmentation in SMT appears as a reduction in lexi-
cal sparsity and improved correspondence between English and Arabic tokens.
Nevertheless, the output of such system is segmented and unreadable Arabic.
Recombining segmented tokens to generate original word forms is not a trivial
task, due to morphological, phonological and orthographic adjustments that
occur during segmentation. In this chapter, we address “desegmentation” as
an indispensable process in the SMT pipeline which handles this problem. We
review a number of desegmentation schemes for Arabic, such as rule-based and
table-based approaches and show their limitations. We then propose a novel
desegmentation scheme that uses a character-level discriminative string trans-
ducer to predict the original form of a segmented word. In a comparison to
a state-of-the-art approach by El Kholy and Habash (2012a), we demonstrate
slightly better desegmentation error rates without the need for any handcrafted
rules. We also demonstrate the effectiveness of our approach in an English-to-

Arabic translation task.
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4.1 Introduction

Statistical machine translation (SMT) relies on segmentation to split sentences
into meaningful units for easy processing. For morphologically complex lan-
guages, such as Arabic or Turkish, this may involve splitting words into mor-
phemes. Throughout this thesis, we adopt the definition of tokenization pro-
posed by Habash (2010), which incorporates both morphological segmentation
as well as orthographic character transformations (unless stated otherwise). To
use an English example, the word tries would be morphologically segmented
as “try + s”, which involves orthographic changes at morpheme boundaries
to match the lexical form of each token. When translating into a segmented
language, the segmentation must be reversed to make the generated text read-
able and evaluable. Desegmentation is the process of converting tokenized
words into their original orthographically and morphologically correct surface
form. This includes concatenating tokens into complete words and reversing
any character transformations that may have taken place.

For languages like Arabic, segmentation can facilitate SMT by reducing
lexical sparsity. Figure 4.1 shows how the morphological segmentation of the
Arabic word ey “and he will prevent them” simplifies the correspondence
between Arabic and English tokens, which in turn can improve the quality of
word alignment, rule extraction and decoding. When translating from Arabic
into English, the segmentation is a form of preprocessing, and the output trans-
lation is readable, space-separated English. However, when translating from
English to Arabic, the output will be in a segmented form, which cannot be
compared to the original reference without desegmentation. Simply concate-
nating the segmented morphemes cannot fully reverse this process, because of
character transformations that occurred during segmentation.

The techniques that have been proposed for the desegmentation task fall
into three categories (Badr et al., 2008). The simplest desegmentation ap-
proach concatenates morphemes based on token markers without any adjust-
ment. Table-based desegmentation maps segmented words into their surface

form with a look-up table built by observing the segmenter’s input and out-
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and he will prevent them

\\7\//

o e

W+ S+ ymng +hm

S

pElate 9

wsymnchm

Figure 4.1: Alignment between tokenized form of “wsymnchm” ey and
its English translation.

put on large amounts of text. Rule-based desegmentation relies on hand-built
rules or regular expressions to convert the segmented form into the original
surface form. Other techniques use combinations of these approaches. Each
approach has its limitations: rule-based approaches are language specific and
brittle, while table-based approaches fail to deal with sequences outside of
their tables.

We present a new detokenization approach that applies a discriminative
sequence model to predict the original form of the tokenized word. Like table-
based approaches, our sequence model requires large amounts of tokenizer
input-output pairs; but instead of building a table, we use these pairs as train-
ing data. By using features that consider large windows of within-word input
context, we are able to intelligently transition between rule-like and table-like
behavior.

Our experimental results on Arabic text demonstrate an improvement in
terms of sentence error rate! of 11.9 points over a rule-based approach, and 1.1
points over a table-based approach that backs off to rules. More importantly,
we achieve a slight improvement over the state-of-the-art approach of El Kholy
and Habash (2012a), which combines rules and tables, using a 5-gram word-
based language model to disambiguate conflicting table entries. In addition,

!Sentence Error rate is the percentage of sentences containing at least one error after
desegmentation.
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our desegmentation method results in a small BLEU improvement over a rule-

based approach when applied to English-to-Arabic SMT.

4.2 Related Work

Sadat and Habash (2006) address the issue of lexical sparsity by presenting dif-
ferent preprocessing schemes for Arabic to English SMT. The schemes include
simple segmentation, orthographic normalization, and decliticization. The
combination of these schemes results in improved translation output. This is
one of many studies on normalization and segmentation for translation from
Arabic, which we will not attempt to review completely here.

Badr et al. (2008) show that segmenting Arabic also has a positive influence
on English to Arabic SMT. They apply two segmentation schemes on Arabic
text and introduce desegmentation schemes through a rule-based approach, a
table-based approach, and a combination of both. The combination approach
desegments words first using the table, falling back on rules for sequences not
found in the table.

El Kholy and Habash (2012a) extend Badr’s work by presenting a larger
number of segmentation and desegmentation schemes and comparing their ef-
fects on SMT. They introduce an additional desegmentation schemes based
on the SRILM disambig utility (Stolcke, 2002), which utilizes a 5-gram un-
segmented language model to decide among different alternatives found in
the table. They test their schemes on naturally occurring Arabic text and
SMT output. Their newly introduced desegmentation scheme outperforms
the rule-based and table-based approaches introduced by Badr et al. (2008),

establishing the current state-of-the-art.

4.2.1 Desegmentation Schemes in Detail

Rule-based desegmentation involves manually defining a set of transformation
rules to convert a sequence of segmented tokens into their surface form. For
example, the noun “lrjys” .. M} “to the president” is tokenized as "I+ Alrgys”
( I+ “to” Alrgys “the president”) in the PATB tokenization scheme. Note
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Rule Segmented Desegmented

1+Al — 11 1+ Alryys lIryys
h+(pron) — t(pron) Abnh+hA AbnthA
y+(pron) — A(pron) Alqy+h AlgAh
'+(pron) — § AntmA’+hm AntmAjhm
yty =y Syny-+y syny

n+n — n mn-+nA mnA
mn+m — mm mn-+mA mmA
¢n+m — ¢m ¢n+mA ¢mA
An+lA — AlA An+lA AlA

Table 4.1: Desegmentation rules of El Kholy and Habash (2012a), with exam-
ples. pron stands for pronominal clitic

that the definite article “Al” J! is kept attached to the noun. In this case,
detokenization requires a character-level transformation after concatenation,

which we can generalize using the rule:
I+Al — L

Table 4.1 shows the rules provided by El Kholy and Habash (2012a), which
we employ throughout this chapter.

There are two principal problems with the rule-based approach. First, rules
fail to account for unusual cases. For example, the above rule mishandles
cases where “Al” || is a basic part of the stem and not the definite article
‘the”. Thus, "1+ AlgAb’ (I+ “to” Ak Ab “games”) is erroneously desegmented to
IIEAb O\al) instead of the correct form is “IAk Ab” LY. Second, rules may
fail to handle sequences produced by segmentation errors. For example, the
word “bslTh” daluy “with power” can be erroneously segmented as "b+slT+h”,
while the correct segmentation is “b+slTh”. The erroneous segmentation will
be incorrectly desegmented as “bsiTh”.

The table-based approach memorizes mappings between words and their
segmented form. Such a table is easily constructed by running the segmenter
on a large amount of Arabic text, and observing the input and output. The
desegmentation process consults this table to retrieve the unsegmented surface
forms of segmented words. In the case where a segmented word has several

observed surface forms, the most frequent form is selected. This approach fails
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when the sequence of segmented words is not in the table. In morphologically
complex languages like Arabic, an inflected base word can attract many op-
tional clitics, and tables may not include all different forms and inflections of
a word.

The SRILM-disambig scheme introduced by El Kholy and Habash (2012a)
extends the table based approach to use an unsegmented Arabic language
model to disambiguate among the different alternatives. Hence, this scheme
can make context-dependent desegmentation decisions, rather than always
producing the most frequent unsegmented surface form. Both the SRILM-
disambig scheme and the table-based scheme have the option to fall back on

either rules or simple concatenation for sequences missing from the table.

4.3 Desegmentation as String Transduction

We propose to approach desegmentation as a string transduction task. A
string transducer maps between two sets of character symbols. In this task,
the transducer maps from characters of the segmented form to characters of the
desegmented form. We train a discriminative transducer on a set of segmented-
unsegmented word pairs. The set of pairs is initially aligned on the character
level, and the alignment pairs become the operations that are applied during
transduction. For desegmentation, most operations simply copy over charac-
ters, but more complex rules such as [+ Al — [l are learned from the training
data as well.

The tool that we use to perform the transduction is DIRECTL+, a dis-
criminative, character-level string transducer, which was originally designed
for letter-to-phoneme conversion (Jiampojamarn et al., 2008). To align the
characters in each training example, DIRECTL+ uses an EM-based M2M-
ALIGNER (Jiampojamarn et al., 2007). After alignment is complete, MIRA
training repeatedly decodes the training set to tune the features that determine
when each operation should be applied. The features include both character-
based n-gram source context and HMM-style target transitions. DIRECTL-+

employs a fully discriminative decoder to learn character transformations and
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when they should be applied. The decoder resembles a monotone phrase-based

SMT decoder, but is built to allow for hundreds of thousands of features.
The following example illustrates how string transduction applies to deseg-

mentation. The segmented and surface forms of bbrActhm f.‘,;'.pbu ‘“with their

skill” constitute a training instance:
b+ brAch +hm — bbrActhm

The instance is aligned during the training phase as:

b+ b r A ¢ h 4+ h m

NN (R A O R A
b b r A ¢ t € h m

The underscore “ 7 indicates a space, while “€” denotes an empty string. The

following operations are extracted from the alignment:

e bt —>b e A A e - —¢
e b—b e ¢ ¢ eh —+h
er—r eh —t em —m

During training, weights are assigned to features that associate operations
with context. In our running example, the weight assigned to the b+ — b
operation accounts for the operation itself, for the fact that the operation
appears at the beginning of a word, and for the fact that it is followed by an
underscore; in fact, we employ a context window of 5 characters to the left or
right of the source substring “b+", creating a feature for each character-based
n-gram in that window.

Modeling the segmentation problem as string transduction has several ad-
vantages. The approach is completely language-independent. The context-
sensitive rules are learned automatically from examples, without human inter-
vention. The rules and features can be represented in a more compact way
than the full mapping table required by table-based approaches, while still
elegantly handling words that were not seen during training. Also, since the

training data is generalized more efficiently than in simple memorization of
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complete segmented-unsegmented pairs, less training data should be needed

to achieve good accuracy.

4.4 Experiments

This section presents two experiments that evaluate the effect of the deseg-

mentation schemes on both naturally occurring Arabic and SMT output.

4.4.1 Data

To build our data-driven desegmenters, we use the Arabic part of 4 Arabic-
English parallel datasets from the Linguistic Data Consortium as training data.
The data sets are: Arabic News (LDC2004T17), eTIRR (LDC2004E72), En-
glish translation of Arabic Treebank (LDC2005E46), and Ummah (LDC2004T18).
The training data has 107K sentences. The Arabic part of the training data
constitutes around 2.8 million words, 3.3 million tokens after segmentation,
and 122K word types after filtering punctuation marks, Latin words and num-
bers (Refer to Table 4.2 for detailed counts).

For training the SMT system’s translation and re-ordering models, we use
the same 4 datasets from LDC. We also use 200 Million words from LDC Arabic
Gigaword corpus (LDC2011T11) to generate a 5-gram segmented /unsegmented
language model using SRILM toolkit (Stolcke, 2002).

We use NIST MT 2004 evaluation set for tuning (1075 sentences), and
NIST MT 2005 evaluations set for testing (1056 sentences). Both MT04 and
MTO05 have multiple English references in order to evaluate Arabic to English
translation. As we are translating into Arabic, we take the first English trans-
lation to be our source in each case. We also use the Arabic halves of MT04
and MTO05 as development and test sets for our experiments on naturally oc-
curring Arabic. The segmented Arabic is our input, with the original Arabic
as our gold-standard desegmentation.

The Arabic text of the training, development, testing set and language
model are all segmented using MADA 3.2 (Habash et al., 2009) with the Penn

Arabic Treebank segmentation scheme. The English text in the parallel corpus
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is lower-cased and segmented in the traditional sense to strip punctuation

marks.

4.4.2 Experimental Setup

To train the desegmentation systems, we generate a table of mappings from
segmented forms to surface forms based on the Arabic part of our 4 parallel
datasets, giving us complete coverage of the output vocabulary of our SMT
system. In the table-based approached, if a segmented form is mapped to
more than one surface form, we use the most frequent surface form. For out-
of-table words, we fall back on concatenation (in T) or rules (in T+R). For
SRILM-Disambig desegmentation, we maintain ambiguous table entries along
with their frequencies, and we introduce a 5-gram language model to disam-
biguate desegmentation choices in context. Like the table-based approaches,
the Disambig approach can back off to either simple concatenation (T+LM)
or rules (T+R+LM) for missing entries. The latter is a re-implementation of
the state-of-the-art system presented by El Kholy and Habash (2012a).

We train our discriminative string transducer using word types from the 4
LDC catalogs. We use M2M-ALIGNER to generate a 2-to-1 character align-
ments between segmented forms and surface forms. For the decoder, we set
Markov order to one, joint n-gram features to 5, n-gram size to 11, and context
size to 5. This means the decoder can an utilize contexts up to 11 characters
long, allowing it to effectively memorize many words. We found these settings
using grid search on the development set, NIST MTO04.

For the SMT experiment, we use GIZA-++ for the alignment between En-
glish and segmented Arabic, and perform the translation using Moses phrase-
based SMT system (Hoang et al., 2007), with a maximum phrase length of 5.
We apply each desegmentation scheme on the SMT segmented Arabic output
test set, and evaluate using the BLEU score (Papineni et al., 2002).

4.4.3 Results

Table 4.3 shows the performance of several desegmentation schemes. For eval-

uation, we use the sentence and word error rates on naturally occurring Arabic
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Data set Before After
training set 122,720 61,943
MT04 8,201 2,542
MTO05 7,719 2,429

Table 4.2: Type counts by before and after segmentation.

Desegmentation WER SER BLEU
Baseline 1.710 343 26.30
Rules(R) 0.590 14.0 28.32
Table(T) 0.192 49 28.54
Table+Rules(T+R) 0.122 3.2 28.55
Disambig(T+LM) 0.164 4.1 28.53
Disambig(T+R+LM) 0.094 24 28.54
DIrRecTL+ 0.087 2.1 28.55

Disambig+DIRECTL+  0.038 1.0 28.56

Table 4.3: Word and sentence error rate of desegmentation schemes on the

Arabic reference text of NIST MT05. BLEU score refers to the English- Arabic
SMT output.

text, and BLEU score on segmented Arabic output of the SMT system. The
baseline scheme, which is a simple concatenation of morphemes, introduces
errors in over a third of all sentences. The table-based approach outperforms
the rule-based approach, indicating that there are frequent exceptions to the
rules in Table 1 that require memorization. Their combination (T+R) fares
better, leveraging the strengths of both approaches. The addition of SRILM-
Disambig produces further improvements as it uses a language model context
to disambiguate the correct desegmented word form. Our system outperforms
SRILM-Disambig by a very slight margin, indicating that the two systems
are roughly equal. This is interesting, as it is able to do so by using only
features derived from the segmented word itself; unlike SRILM-Disambig, it
has no access to the surrounding words to inform its decisions. Furthermore,
we integrate our system with SRILM-Disambig, such that it disambiguates
between the n-best desegmentation options that DIRECTL+ outputs. The
integration results with the lowest error rate due to an added benefit from

access to the context of the desegmented word. This level of performance is
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achieved without any manually constructed rules.

Improvements in desegmentation do contribute to the BLEU score of our
SMT system, but only to a point. Table 4.3 shows three tiers of performance,
with no desegmentation being the worst, the rules being better, and the various
data-driven approaches performing best. After WER dips below 0.2, further
improvements seem to no longer affect SMT quality. Note that BLEU scores
are much lower overall than one would expect for the translation in the reverse
direction, because of the morphological complexity of Arabic, and the use of

one (as opposed to four) references for evaluation.

4.4.4 Analysis

The sentence error rate of 2.1 represents only 21 errors that our approach
makes. Among those 21, 11 errors are caused by changing h to h and vice
versa. This is due to writing p and h interchangeably. For example, “Aj-
mAly+h” was desegmented as "AjmAlyh” JU| instead of "AjmAlyh” «JL&\.
Another 4 errors are caused because of the lack of diacritization, which affects
the choice of the Hamza form. For example, bnAwh” osl.:._-, “bnAgh” &\ and
"bnA’h” s\ (Vits building”) are 3 different forms of the same word where the
choice of Hamza ¢ is dependent on the its diacritical mark or the mark of
the character that precedes it. Another 3 errors are attributed to the case
of the nominal which it inflects for. The case is affected by the context of
the noun which DIRECTL+ has no access to. For example, “mfkry+hm”
("thinkers/Dual-Accusative”) was desegmented as "mfkrAhm” f.nL,iu (Dual-
Nominative) instead of "mfkryhm” o Jia.a The last 3 errors are special cases
of “An +y” which can be desegmented correctly as either “Any” d'\ or "Anny”

L_5;:,1.

The table-based desegmentation scheme fails in 54 cases. Among these
instances, 44 cases are not in the mapping table, hence resolving back to sim-
ple concatenation ended with an error. Our transduction approach succeeds
in desegmenting 42 cases out of the 54. The majority of these cases involves
changing h to h and vice versa and changing [+ Al to Il. The only 2 instances
where the segmented word is in the mapping table but DIRECTL+ incorrectly
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desegments it are due to Hamza case and hto h case described above. There
are 4 instances of the same word/case where both the table scheme and Di-
RECTL+ fail due to error of segmentation by MADA, where the proper name
quwh 045 is erroneously segmented as qw +h. This shows that DIRECTL+
handles the OOV correctly.

The Disambig(T+R+LM) erroneously desegments 27 instances, where 21
out of them are correctly segmented by DIRECTL+. Most of the errors are
due to the Hamza and h to h reasons. It seems that even with a large size
language model, the SRILM utility needs a large mapping table to perform
well. Only 4 instances were erroneously desegmented by both Disambig and
DirRecTL+ due to Hamza and the case of the nominal.

The analysis shows that using small size training data, DIRECTL+ can
achieve slightly better accuracy than SRILM scheme. The limitations of using
table and rules are handled with DIRECTL+ as it is able to memorize more

rules.

4.5 Summary

In this chapter, we addressed the desegmentation problem for Arabic using
DIRECTL+, a discriminative training model for string transduction. Our
system performs the best among the available systems. It manages to solve
problems caused by limitations of table-based and rule-based systems. This
allows us to surpass the performance of the SRILM-disambig approach without

using hand-crafted rules.
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Chapter 5

Lattice Desegmentation for
Statistical Machine Translation

In the previous chapter, we addressed desegmentation as a post-processing
step in the SMT pipeline that desegments the 1-best-output from the de-
coder. We provided a solution that address the task as a string transduction
problem. Our technique resulted with a near perfect desegmentation on nat-
urally occurring Arabic text, while no improvement is shown on Arabic SMT
output. Desegmentation as a post-processing technique could not overcome
errors propagated by the decoder. In this chapter, we aim to benefit from de-
segmentation by integrating it into the SMT process. Instead of desegmenting
the 1-best-output, we expand our translation options by desegmenting n-best
lists or lattices. We provide a novel lattice desegmentation algorithm that
effectively combines both segmented and desegmented views of the target lan-
guage for a large subspace of possible translation outputs, which allows for
inclusion of features related to the desegmentation process, as well as an un-
segmented language model (LM). We investigate this technique in the context
of English-to-Arabic and English-to-Finnish translation, showing significant
improvements in translation quality over desegmentation of 1-best decoder

outputs.
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5.1 Introduction

Morphological segmentation is considered to be indispensable when translat-
ing between English and morphologically complex languages such as Arabic.
Morphological complexity leads to much higher type to token ratios than En-
glish, which can create sparsity problems during translation model estimation.
Morphological segmentation addresses this issue by splitting surface forms into
meaningful morphemes, while also performing orthographic transformations to
further reduce sparsity. For example, the Arabic noun (J gal) lldwl “to the coun-
tries” is segmented as [+ “to” Aldwl “the countries”. When translating from
Arabic, this segmentation process is performed as input preprocessing and is
otherwise transparent to the translation system. However, when translating
into Arabic, the decoder produces segmented output, which must be deseg-
mented to produce readable text. For example, [+ Aldwl must be converted
to lldwl.

Desegmentation is typically performed as a post-processing step that is
independent from the decoding process. While this division of labor is useful,
the pipeline approach may prevent the desegmenter from recovering from errors
made by the decoder. Despite the efforts of the decoder’s various component
models, the system may produce mismatching segments, such as s+ hzymp,
which pairs the future particle s+ “will” with a noun hzymp “defeat”, instead of
a verb. In this scenario, there is no right desegmentation; the post-processor
has been dealt a losing hand.

In this chapter, we show that it is possible to maintain the sparsity-reducing
benefit of segmentation while translating directly into unsegmented text. We
desegment a large set of possible decoder outputs by processing n-best lists
or lattices, which allows us to consider both the segmented and desegmented
output before locking in the decoder’s decision. We demonstrate that signifi-
cant improvements in translation quality can be achieved by training a linear

model to re-rank this transformed translation space.
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5.2 Related Work

Translating into morphologically complex languages is a challenging and inter-
esting task that has received much recent attention. Most techniques approach
the problem by transforming the target language in some manner before train-
ing the translation model. They differ in what transformations are performed
and at what stage they are reversed. The transformation might take the form

of a morphological analysis or a morphological segmentation.

5.2.1 Morphological Analysis

Many languages have access to morphological analyzers, which annotate sur-
face forms with their lemmas and morphological features. Bojar (2007) in-
corporates such analyses into a factored model, to either include a language
model over target morphological tags, or model the generation of morpho-
logical features. Other approaches train an SMT system to predict lemmas
instead of surface forms, and then inflect the SMT output as a post-processing
step (Minkov et al., 2007; Clifton and Sarkar, 2011; Fraser et al., 2012; El Kholy
and Habash, 2012b). Alternatively, one can reparameterize existing phrase ta-
bles as exponential models, so that translation probabilities account for source
context and morphological features (Jeong et al., 2010; Subotin, 2011). Of
these approaches, ours is most similar to the translate-then-inflect approach,
except we translate and then desegment. In particular, Toutanova et al. (2008)
inflect and re-rank n-best lists in a similar manner to how we desegment and

re-rank n-best lists or lattices.

5.2.2 Morphological Segmentation

Instead of producing an abstract feature layer, morphological segmentation
transforms the target sentence by segmenting relevant morphemes, which are
then handled as regular tokens during alignment and translation. This is done
to reduce sparsity and to improve correspondence with the source language
(usually English). Such a segmentation can be produced as a byproduct of
analysis (Oflazer and Durgar El-Kahlout, 2007; Badr et al., 2008; El Kholy
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and Habash, 2012a), or may be produced using an unsupervised morphologi-
cal segmenter such as Morfessor (Luong et al., 2010; Clifton and Sarkar, 2011).
Work on target language morphological segmentation for SMT can be divided
into three subproblems: segmentation, desegmentation and integration. This
chapter is concerned primarily with the integration problem, but we will dis-
cuss each subproblem in turn.

The usefulness of a target segmentation depends on its correspondence to
the source language. If a morphological feature does not manifest itself as a
separate token in the source, then it may be best to leave its corresponding
segment attached to the stem. A number of studies have looked into what gran-
ularity of segmentation is best suited for a particular language pair (Oflazer
and Durgar El-Kahlout, 2007; Badr et al., 2008; Clifton and Sarkar, 2011;
El Kholy and Habash, 2012a). Since our focus here is on integrating segmen-
tation into the decoding process, we simply adopt the segmentation strate-
gies recommended by previous work: the Penn Arabic Treebank scheme for
English-Arabic (El Kholy and Habash, 2012a), and an unsupervised scheme
for English-Finnish (Clifton and Sarkar, 2011).

Desegmentation is the process of converting segmented words into their
original surface form. For many segmentations, especially unsupervised ones,
this amounts to simple concatenation. However, more complex segmentations,
such as the Arabic tokenization provided by MADA (Habash et al., 2009), re-
quire further orthographic adjustments to reverse normalizations performed
during segmentation. Badr et al. (2008) present two Arabic desegmentation
schemes: table-based and rule-based. El Kholy and Habash (2012a) provide
an extensive study on the influence of segmentation and desegmentation on
English-to-Arabic SMT. They introduce an additional desegmentation tech-
nique that augments the table-based approach with an unsegmented language
model. A literature review on the desegmentation techniques and their limi-
tations has been covered in the previous chapter (section 4.2.1). Also, we pro-
pose a discriminatively-trained character transducer that replaces rule-based
desegmentation (section 4.3). In this chapter and the next two chapters (6
and 7), we adopt the Table+Rules approach of El Kholy and Habash (2012a)
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for English-Arabic, while concatenation is sufficient for English-Finnish.

Work on integration attempts to improve SMT performance for morpho-
logically complex target languages by going beyond simple pre- and post-
processing. Oflazer and Durgar El-Kahlout (2007) desegment 1000-best lists
for English-to-Turkish translation to enable scoring with an unsegmented lan-
guage model. Unlike our work, they replace the segmented language model
with the unsegmented one, allowing them to tune the linear model parameters
by hand. We use both segmented and unsegmented language models, and tune
automatically to optimize BLEU.

Like us, Luong et al. (2010) tune on unsegmented references,! and trans-
late with both segmented and unsegmented language models for English-to-
Finnish translation. However, they adopt a scheme of word-boundary-aware
morpheme-level phrase extraction, meaning that target phrases include only
complete words, though those words are segmented into morphemes (this ap-
proach will be revisited in the next chapter). This enables full decoder inte-
gration, where we do m-best and lattice re-ranking. But it also comes at a
substantial cost: when target phrases include only complete words, the sys-
tem can only generate word forms that were seen during training. In this
setting, the sparsity reduction from segmentation helps word alignment and
target language modeling, but it does not result in a more expressive trans-
lation model. Furthermore, it becomes substantially more difficult to have
non-adjacent source tokens contribute morphemes to a single target word. For
example, when translating “with his blue car” into the Arabic :\3 2 ;,J\ < JL.._.,...]
bsyArth AlzrqA’, the target word bsyArth is composed of three tokens: b+
“with”, syArp “car” and +h “his”. With word-boundary-aware phrase extrac-
tion, a phrase pair containing all of “with his blue car” must have been seen
in the parallel data to translate the phrase correctly at test time. With lat-
tice desegmentation, we need only to have seen AlzrgA’ “blue” and the three

morphological pieces of bsyArth for the decoder and desegmenter to assemble

!Tuning on unsegmented references does not require substantial modifications to the
standard SMT pipeline. For example, Badr et al. (2008) also tune on unsegmented references
by simply desegmenting SMT output before MERT collects sufficient statistics for BLEU.
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the phrase.

5.3 Methods

Our goal in this work is to benefit from the sparsity-reducing properties of
morphological segmentation while simultaneously allowing the system to rea-
son about the final surface forms of the target language. We approach this
problem by augmenting an SMT system built over target segments with fea-
tures that reflect the desegmented target words. In this section, we describe
our various strategies for desegmenting the SMT system’s output space, along

with the features that we add to take advantage of this desegmented view.

5.3.1 Baselines

The two obvious baseline approaches each decode using one view of the target
language. The unsegmented approach translates without segmenting the
target. This trivially allows for an unsegmented language model and never
makes desegmentation errors. However, it suffers from data sparsity and poor
token-to-token correspondence with the source language.

The one-best desegmentation approach segments the target language
at training time and then desegments the one-best output in post-processing.
This resolves the sparsity issue, but does not allow the decoder to take into
account, features of the desegmented target. To the best of our knowledge,
we are the first group to go beyond one-best desegmentation for English-to-
Arabic translation. In English-to-Finnish, although alternative integration
strategies have seen some success (Luong et al., 2010), the current state-of-

the-art performs one-best-desegmentation (Clifton and Sarkar, 2011).

5.3.2 n-best Desegmentation

The one-best approach can be extended easily by desegmenting n-best lists of
segmented decoder output. Doing so enables the inclusion of an unsegmented
target language model, and with a small amount of bookkeeping, it also allows

the inclusion of features related to the operations performed during deseg-
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mentation (see Section 5.3.4). With new features reflecting the desegmented
output, we can re-tune our enhanced linear model on a development set. Fol-
lowing previous work, we will desegment 1000-best lists (Oflazer and Durgar
El-Kahlout, 2007).

Once n-best lists have been desegmented, we can tune on unsegmented ref-
erences as a side-benefit. This could improve translation quality, as it brings
our training scenario closer to our test scenario (test BLEU is always mea-
sured on unsegmented references). In particular, it could address issues with
translation length mismatch. Previous work that has tuned on unsegmented

references has reported mixed results (Badr et al., 2008; Luong et al., 2010).

5.3.3 Lattice Desegmentation

An n-best list reflects a tiny portion of a decoder’s search space, typically
fixed at 1000 hypotheses. Lattices? can represent an exponential number of
hypotheses in a compact structure. In this section, we discuss how a lattice
from a multi-stack phrase-based decoder such as Moses (Koehn et al., 2007)

can be desegmented to enable word-level features.

Finite State Analogy

A phrase-based decoder produces its output from left to right, with each oper-
ation appending the translation of a source phrase to a growing target hypoth-
esis. Translation continues until each source word has been covered exactly
once (Koehn et al., 2003).

The search graph of a phrase-based decoder can be interpreted as a lattice,
which can be interpreted as a finite state acceptor over target strings. In its
most natural form, such an acceptor emits target phrases on each edge, but
it can easily be transformed into a form with one edge per token, as shown
in Figure 5.1a. This is sometimes referred to as a word graph (Ueffing et al.,
2002), although in our case the segmented phrase table also produces tokens

that correspond to morphemes.

20r forests for hierarchical and syntactic decoders.
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Figure 5.1: The finite state pipeline for a lattice translating the English frag-
ment “with the child’s game”. The input morpheme lattice (a) is desegmented
by composing it with the desegmenting transducer (b) to produce the word
lattice (c). The tokens in (a) are: b+ “with”, [Ebp “game”, +hm “their”, +hA
“her”, and AITfl “the child”.

Our goal is to desegment the decoder’s output lattice, and in doing so,
gain access to a compact, desegmented view of a large portion of the trans-
lation search space. This can be accomplished by composing the lattice with
a desegmenting transducer that consumes morphemes and outputs deseg-
mented words. This transducer must be able to consume every word in our
lattice’s output vocabulary. We define a word using the following regular ex-

pression:

[prefix|* [stem] [suffix|* | [prefix|+ [suffix]+ (5.1)

where [prefix|, [stem] and [suffix| are non-overlapping sets of morphemes, whose
members are easily determined using the segmenter’s segment boundary mark-
ers.> The second disjunct of Equation 5.1 covers words that have no clear
stem, such as the Arabic 4 [h “for him”, segmented as [+ “for” +h “him”.

Equation 5.1 may need to be modified for other languages or segmentation

3Throughout this thesis, we use “+” to mark morphemes as prefixes or suffixes, as in w+
or +h. In Equation 5.1 only, we overload “4-” as the Kleene cross: X+ == X Xx.
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schemes, but our techniques generalize to any definition that can be written
as a regular expression.

A desegmenting transducer can be constructed by first encoding our de-
segmenter as a table that maps morpheme sequences to words. Regardless of
whether the original desegmenter was based on concatenation, rules or table-
lookup, it can be encoded as a lattice-specific table by applying it to an enu-
meration of all words found in the lattice. We can then transform that table
into a finite state transducer with one path per table entry. Finally, we take
the closure of this transducer, so that the resulting machine can transduce any
sequence of words. The desegmenting transducer for our running example is
shown in Figure 5.1b. Note that tokens requiring no desegmentation simply
emit themselves. The lattice (Figure 5.1a) can then be desegmented by com-
posing it with the transducer (5.1b), producing a desegmented lattice (5.1c).
This is a natural place to introduce features that describe the desegmenta-
tion process, such as scores provided by a desegmentation table, which can be
incorporated into the desegmenting transducer’s edge weights.

We now have a desegmented lattice, but it has not been annotated with
an unsegmented (word-level) language model. In order to annotate lattice
edges with an n-gram LM, every path coming into a node must end with the
same sequence of (n — 1) tokens. If this property does not hold, then nodes

4 This property is maintained by the decoder’s

must be split until it does.
recombination rules for the segmented LM, but it is not guaranteed for the
desegmented LM. Indeed, the expanded word-level context is one of the main
benefits of incorporating a word-level LM. Fortunately, LM annotation as well
as any necessary lattice modifications can be performed simultaneously by
composing the desegmented lattice with a finite state acceptor encoding the
LM (Roark et al., 2011).

In summary, we are given a segmented lattice, which encodes the decoder’s

translation space as an acceptor over morphemes. We compose this acceptor

with a desegmenting transducer, and then with an unsegmented LM acceptor,

40r the LM composition can be done dynamically, effectively decoding the lattice with
a beam or cube-pruned search (Huang and Chiang, 2007).
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producing a fully annotated, desegmented lattice. Instead of using a tool kit
such as OpenFst (Allauzen et al., 2007), we implement both the desegmenting
transducer and the LM acceptor programmatically. This eliminates the need
to construct intermediate machines, such as the lattice-specific desegmenter in
Figure 5.1b, and facilitates working with edges annotated with feature vectors

as opposed to single weights.

Programmatic Desegmentation

Lattice desegmentation is a non-local lattice transformation. That is, the
morphemes forming a word might span several edges, making desegmentation
non-trivial. Luong et al. (2010) address this problem by forcing the decoder’s
phrase table to respect word boundaries, guaranteeing that each desegmentable
token sequence is local to an edge. Inspired by the use of non-local features
in forest decoding (Huang, 2008), we present an algorithm to find chains of
edges that correspond to desegmentable token sequences, allowing lattice de-
segmentation with no phrase-table restrictions. This algorithm can be seen as
implicitly constructing a customized desegmenting transducer and composing
it with the input lattice on the fly.

Before describing the algorithm, we define some notation. An input mor-
pheme lattice is a triple (n,, N,€), where N is a set of nodes, £ is a set of
edges, and n, € N is the start node that begins each path through the lat-
tice. Each edge e € £ is a 4-tuple (from, to, lex,w), where from, to € N are
head and tail nodes, lex is a single token accepted by this edge, and w is the
(potentially vector-valued) edge weight. Tokens are drawn from one of three
non-overlapping morpho-syntactic sets: lez € Prefiz U Stem U Suffiz, where
tokens that do not require desegmentation, such as complete words, punctua-
tion and numbers, are considered to be in Stem. It is also useful to consider
the set of all outgoing edges for a node n.out = {e € £|e.from = n}.

With this notation in place, we can define a chain ¢ to be a sequence of
edges [e; ... ¢ such that for 1 <i <[ :e;.to = e;y,.from. We denote singleton
chains with [e], and when unambiguous, we abbreviate longer chains with their

start and end node [e;.from — e;.to|. A chain is valid if it emits the beginning
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of a word as defined by the regular expression in Equation 5.1. A valid chain is
complete if its edges form an entire word, and if it is part of a path through
the lattice that consists only of words. In Figure 5.1a, the complete chains
are [0 — 2], [0 — 4], [0 — 5], and [2 — 3]. The path restriction on complete
chains forces words to be bounded by other words in order to be complete.®
For example, if we removed the edge 2 — 3 (AITfl) from Figure 5.1a, then
[0 — 2] ([b+ [Ebp]) would cease to be a complete chain, but it would still
be a valid chain. Note that in the finite-state analogy, the path restriction is
implicit in the composition operation.

Algorithm 1 desegments a lattice by finding all complete chains and re-
placing each one with a single edge. It maintains a work list of nodes that lie
on the boundary between words, and for each node on this list, it launches a
depth first search to find all complete chains extending from it. The search
recognizes the valid chain ¢ to be complete by finding an edge e such that c¢+e¢
forms a chain, but not a valid one. By inspection of Equation 5.1, this can only
happen when a prefix or stem follows a stem or suffix, which always marks a
word boundary. The chains found by this search are desegmented and then
added to the output lattice as edges. The nodes at end points of these chains
are added to the work list, as they lie at word boundaries by definition. Note
that although this algorithm creates completely new edges, the resulting node
set A" will be a subset of the input node set A'. The complement N' — A" will
consist of nodes that are word-internal in all paths through the input lattice,

such as node 1 in Figure 5.1a.

Programmatic LM Integration

Programmatic composition of a lattice with an n-gram LM acceptor is a well
understood problem. We use a dynamic program to enumerate all (n — 1)-
word contexts leading into a node, and then split the node into multiple copies,
one for each context. With each node corresponding to a single LM context,

annotation of outgoing edges with n-gram LM scores is straightforward.

Sentence-initial suffix morphemes and sentence-final prefix morphemes represent a spe-
cial case that we omit for the sake of brevity. Lacking stems, they are left segmented.
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Algorithm 1 Desegment a lattice (ns, N, &)
{Initialize output lattice and work list WL}
n,=n, N'=0,& =0, WL = [n,]
while n = WL.pop() do

{Work on each node only once}
if n € N’ then continue

N =N"U{n}
{Initialize the chain stack C}
cC=10

for e € n.out do
if [e] is valid then C.push([e])
{Depth-first search for complete chains}
while ey, ..., e] = C.pop() do
{Attempt to extend chain}
for e € ¢;.to.out do
if [e; ... e, €] is valid then
C.push(fey, ..., e ¢€])
else
Mark [ey, ..., ¢ as complete
{Desegment complete chains}
if [e;, ..., €] is complete then
WL.push(e,.to)
E' =& U {deseg([e1,...,el)}
return (n, N’ &)

5.3.4 Desegmentation Features

Our re-ranker has access to all of the features used by the decoder, in addition

to a number of features enabled by desegmentation.

Desegmentation Score We use a table-based desegmentation method for
Arabic, which is based on segmenting an Arabic training corpus and memo-
rizing the observed transformations to reverse them later. Finnish does not
require a table, as all words can be desegmented with simple concatenation.
The Arabic table consists of X — Y entries, where X is a target morpheme
sequence and Y is a desegmented surface form. Several entries may share the
same X, resulting in multiple desegmentation options. For the sake of sym-

metry with the unambiguous Finnish case, we augment Arabic n-best lists
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or lattices with only the most frequent desegmentation Y.¢ We provide the

count of X -+ Y

count of X ) as a feature, to indicate

desegmentation score log p(Y | X )= log (
the entry’s ambiguity in the training data.” When an X is missing from the
table, we fall back on a set of desegmentation rules (El Kholy and Habash,

2012a) and this feature is set to 0. This feature is always 0 for English-Finnish.

Contiguity One advantage of our approach is that it allows discontiguous
source words to translate into a single target word. In order to maintain
some control over this powerful capability, we create three binary features that
indicate the contiguity of a desegmentation. The first feature indicates that the
desegmented morphemes were translated from contiguous source words. The
second indicates that the source words contained a single discontiguity, as in a
word-by-word translation of the “with his blue car” example from Section 5.2.2.

The third indicates two or more discontiguities.

Unsegmented LM A 5-gram LM trained on unsegmented target text is

used to assess the fluency of the desegmented word sequence.

5.4 Experimental Setup

We train our English-to-Arabic system using 1.49 million sentence pairs drawn
from the NIST 2012 training set, excluding the UN data. This training set
contains about 40 million Arabic tokens before segmentation, and 47 million
after segmentation. We tune on the NIST 2004 evaluation set (1353 sentences)
and evaluate on NIST 2005 (1056 sentences). As these evaluation sets are
intended for Arabic-to-English translation, we select the first English reference
to use as our source text.

Our English-to-Finnish system is trained on the same Europarl corpus as

Luong et al. (2010) and Clifton and Sarkar (2011), which has roughly one

6 Allowing the re-ranker to choose between multiple Y's is a natural avenue for future
work.

"We also experimented on log p(X|Y) as an additional feature, but observed no improve-
ment in translation quality.
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million sentence pairs. We also use their development and test sets (2000

sentences each).

5.4.1 Segmentation

For Arabic, morphological segmentation is performed by MADA 3.2 (Habash
et al., 2009), using the Penn Arabic Treebank (PATB) segmentation scheme
as recommended by El Kholy and Habash (2012a). For both segmented and
unsegmented Arabic, we further normalize the script by converting different
forms of Alif 1 7 1and Ya &  to bare Alif | and dotless Ya _s. To generate
the desegmentation table, we ailalyze the segmentations from the Arabic side
of the parallel training data to collect mappings from morpheme sequences to
surface forms.

For Finnish, we adopt the Unsup L-match segmentation technique of Clifton
and Sarkar (2011), which uses Morfessor (Creutz and Lagus, 2005) to analyze
the 5,000 most frequent Finnish words. The analysis is then applied to the
Finnish side of the parallel text, and a list of segmented suffixes is collected.
To improve coverage, words are further segmented according to their longest
matching suffix from the list. As Morfessor does not perform any orthographic

normalizations, it can be desegmented with simple concatenation.

5.4.2 Systems

We align the parallel data with GIZA++ (Och et al., 2003) and decode using
Moses (Koehn et al., 2007). The decoder’s log-linear model includes a stan-
dard feature set. Four translation model features encode phrase translation
probabilities and lexical scores in both directions. Seven distortion features
encode a standard distortion penalty as well as a bidirectional lexicalized re-
ordering model. A KN-smoothed 5-gram language model is trained on the
target side of the parallel data with SRILM (Stolcke, 2002). Finally, we in-
clude word and phrase penalties. The decoder uses the default parameters for
English-to-Arabic, except that the maximum phrase length is set to 8. For
English-to-Finnish, we follow Clifton and Sarkar (2011) in setting the hypoth-

esis stack size to 100, distortion limit to 6 and maximum phrase length to
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20.

The decoder’s log-linear model is tuned with MERT (Och, 2003). Re-
ranking models are tuned using a batch variant of hope-fear MIRA (Chiang
et al., 2008; Cherry and Foster, 2012), using the n-best variant for n-best
desegmentation, and the lattice variant for lattice desegmentation. MIRA was
selected over MERT because we have an in-house implementation that can
tune on lattices very quickly. During development, we confirmed that MERT
and MIRA perform similarly, as is expected with fewer than 20 features. Both
the decoder’s log-linear model and the re-ranking models are trained on the
same development set. Historically, we have not seen improvements from using
different tuning sets for decoding and re-ranking. Lattices are pruned to a
density of 50 edges per word before re-ranking,.

We test four different systems. Our first baseline is Unsegmented, where
we train on unsegmented target text, requiring no desegmentation step. Our
second baseline is 1-best Deseg, where we train on segmented target text
and desegment the decoder’s 1-best output. Starting from the system that
produced 1-best Deseg, we then output either 1000-best lists or lattices to cre-
ate our two experimental systems. The 1000-best Deseg system desegments,
augments and re-ranks the decoder’s 1000-best list, while Lattice Deseg does
the same in the lattice. We augment n-best lists and lattices using the features
described in Section 5.3.4.8

We evaluate our system using BLEU (Papineni et al., 2002) and TER (Snover
et al., 2006). Following Clark et al. (2011), we report average scores over five
random tuning replications to account for optimizer instability. For the base-
lines, this means 5 runs of decoder tuning. For the desegmenting re-rankers,
this means 5 runs of re-ranker tuning, each working on n-best lists or lattices
produced by the same (representative) decoder weights. We measure statistical
significance using MultEval (Clark et al., 2011), which implements a stratified

approximate randomization test to account for multiple tuning replications.

8Development experiments on a small-data English-to- Arabic scenario indicated that the
Desegmentation Score was not particularly useful, so we exclude it from the main compari-
son, but include it in the ablation experiments.
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5.5 Results

Tables 5.1 and 5.2 report results averaged over 5 tuning replications on English-
to-Arabic and English-to-Finnish, respectively. In all scenarios, both 1000-best
Deseg and Lattice Deseg significantly outperform the 1-best Deseg baseline
(p < 0.01).

For English-to-Arabic, 1-best desegmentation results in a 0.7 BLEU point
improvement over training on unsegmented Arabic. Moving to lattice deseg-
mentation more than doubles that improvement, resulting in a BLEU score of
34.4 and an improvement of 1.0 BLEU point over 1-best desegmentation. 1000-
best desegmentation also works well, resulting in a 0.6 BLEU point improve-
ment over 1-best. Lattice desegmentation is significantly better (p < 0.01)
than 1000-best desegmentation.

For English-to-Finnish, the Unsup L-match segmentation with 1-best de-
segmentation does not improve over the unsegmented baseline. The segmen-
tation may be addressing issues with model sparsity, but it is also introducing
errors that would have been impossible had words been left unsegmented. In
fact, even with our lattice desegmenter providing a boost, we are unable to
see a significant improvement over the unsegmented model. As we attempted
to replicate the approach of Clifton and Sarkar (2011) exactly by working
with their segmented data, this difference is likely due to changes in Moses
since the publication of their result. Nonetheless, the 1000-best and lattice
desegmenters both produce significant improvements over the 1-best deseg-
mentation baseline, with Lattice Deseg achieving a 1-point improvement in
TER. These results match the established state-of-the-art on this data set,
but also indicate that there is still room for improvement in identifying the
best segmentation strategy for English-to-Finnish translation.

We also tried a similar Morfessor-based segmentation for Arabic, which has
an unsegmented test set BLEU of 32.7. As in Finnish, the 1-best desegmen-
tation using Morfessor did not surpass the unsegmented baseline, producing
a test BLEU of only 31.4 (not shown in Table 5.1). Lattice desegmentation

was able to boost this to 32.9, slightly above 1-best desegmentation, but well
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Model Dev Test
BLEU BLEU TER

Unsegmented 24.4 32.7 494
1-best Deseg 24.4 33.4 48.6
1000-best Deseg  25.0 34.0 48.0
Lattice Deseg 25.2 34.4 477

Table 5.1: Results for English-to-Arabic translation using MADA’s PATB

segmentation.

Model Dev Test
BLEU BLEU TER
Unsegmented 15.4 15.1 70.8
1-best Deseg 15.3 14.8 71.9
1000-best Deseg  15.4 15.1 71.5
Lattice Deseg 15.5 15.1 70.9

Table 5.2: Results for English-to-Finnish translation using unsupervised seg-
mentation.

below our best MADA desegmentation result of 34.4. There appears to be a

large advantage to using MADA’s supervised segmentation in this scenario.

5.5.1 Ablation

We conducted an ablation experiment on English-to-Arabic to measure the
impact of the various features described in Section 5.3.4. Table 5.3 com-
pares different combinations of features using lattice desegmentation. The
unsegmented LM alone yields a 0.4 point improvement over the 1-best de-
segmentation score. Adding contiguity indicators on top of the unsegmented
LM results in another 0.6 point improvement. As anticipated, the tuner as-
signs negative weights to discontiguous cases, encouraging the re-ranker to
select a safer translation path when possible. Judging from the output on the
NIST 2005 test set, the system uses these discontiguous desegmentations very
rarely: only 5% of desegmented tokens align to discontiguous source phrases.
Adding the desegmentation score to these two feature groups does not im-
prove performance, confirming the results we observed during development.

The desegmentation score would likely be useful in a scenario where we pro-
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Features dev test

1-best Deseg 245 334
+ Unsegmented LM 249 338
+ Contiguity 25.2 344

+ Desegmentation Score 25.2 34.3

Table 5.3: The effect of feature ablation on BLEU score for English-to- Arabic
translation with lattice desegmentation.

vide multiple desegmentation options to the re-ranker; for now, it indicates
only the ambiguity of a fixed choice, and is likely redundant with information
provided by the language model.

5.5.2 Error Analysis

In order to better understand the source of our improvements in the English-
to-Arabic scenario, we conducted an extensive manual analysis of the differ-
ences between 1-best and lattice desegmentation on our test set. We compared
the output of the two systems using the Unix tool wdiff, which transforms a
solution to the longest-common-subsequence problem into a sequence of multi-
word insertions and deletions (Hunt and Mecllroy, 1976). We considered ad-
jacent insertion-deletion pairs to be (potentially phrasal) substitutions, and
collected them into a file, omitting any unpaired insertions or deletions. We
then sampled 650 cases where the two sides of the substitution were deemed
to be related, and divided these cases into categories based on how the lat-
tice desegmentation differs from the one-best desegmentation. We consider a
phrase to be correct only if it can be found in the reference.

Table 5.4 breaks down per-phrase accuracy according to four manually-
assigned categories: (1) clitical — the two systems agree on a stem, but at least
one clitic, often a prefix denoting a preposition or determiner, was dropped,
added or replaced; (2) lexical — a word was changed to a morphologically
unrelated word with a similar meaning; (3) inflectional — the words have the
same stem, but different inflection due to a change in gender, number or verb
tense; (4) part-of-speech — the two systems agree on the lemma, but have

selected different parts of speech.
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Lattice | 1-best Both

Correct | Correct | Incorrect
Clitical 157 71 79
Lexical 61 39 80
Inflectional 37 32 47
Part-of-speech 19 17 11

Table 5.4: Error analysis for English-to-Arabic translation based on 650 sam-
pled instances.

For each case covering a single phrasal difference, we compare the phrases
from each system to the reference. We report the number of instances where
each system matched the reference, as well as cases where they were both
incorrect. The majority of differences correspond to clitics, whose correc-
tion appears to be a major source of the improvements obtained by lattice
desegmentation. This category is challenging for the decoder because English
prepositions tend to correspond to multiple possible forms when translated into
Arabic. It also includes the frequent cases involving the nominal determiner
prefix Al “the” (left unsegmented by the PATB scheme), and the sentence-
initial conjunction w+ “and”. The second most common category is lexical,
where the unsegmented LM has drastically altered the choice of translation.

The remaining categories show no major advantage for either system.

5.6 Summary

In this chapter, we have explored deeper integration of morphological deseg-
mentation into the statistical machine translation pipeline. We have presented
a novel, finite-state-inspired approach to lattice desegmentation, which allows
the system to account for a desegmented view of many possible translations,
without any modification to the decoder or any restrictions on phrase extrac-
tion. When applied to English-to-Arabic translation, lattice desegmentation
results in a 1.0 BLEU point improvement over one-best desegmentation, and
a 1.7 BLEU point improvement over unsegmented translation. We have also
applied our approach to English-to-Finnish translation, and although segmen-

tation in general does not currently help, we are able to show significant im-
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provements over a 1-best desegmentation baseline.

In the next chapter, we explore different methods for translating into un-
segmented Arabic while benefiting from segmentation. We experiment with
different options for integrating desegmentation in the SMT pipeline such as

desegmenting the phrase table or the alignment generated by GIZA++.
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Chapter 6

What Matters Most in
Morphologically Segmented SMT
Models?

In the previous chapter, we introduced one form of integrating desegmentation
in the SMT process by desegmenting the decoder’s search space. Our lattice
desegmentation algorithm resulted in a significant improvement in the transla-
tion quality attributed to using features from both segmented and desegmented

views of the search space. This brings us to several questions:

e [s it possible to desegment a different component of the SMT pipeline

and achieve similar results to the lattice approach?

e Since segmentation improves translation, what steps and components of
a phrase-based statistical machine translation pipeline benefit the most

from segmenting the target language?

In this chapter, we explore different options of integrating desegmentation with
the SMT processes. We test several scenarios that differ primarily in when de-
segmentation is applied, showing that the most important criterion for success
in segmentation is to allow the system to build target words from morphemes
that span phrase boundaries. We also investigate the impact of segmented and
unsegmented target language models (LMs) on translation quality. We show
that an unsegmented LM is helpful according to BLEU score, but also leads
to a drop in the overall usage of compositional morphology, bringing it to well

below the amount observed in human references.
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arrived with || his new car

]

A b

syArp  +h  Aljdydp

jA"  bsyArth  Aljdydp

Figure 6.1: An illustration of one-to-one correspondence between Arabic mor-
phemes and English words. Arabic text is segmented using the PATB tok-
enization scheme, and shown in Buckwalter transliteration.

6.1 Introduction

Segmentation has repeatedly been shown to improve translation into or out of
morphologically complex languages by splitting relevant morphological affixes
into independent tokens. Segmentation as a pre-processing step brings several

benefits to translation:

e Correspondence with morphologically simple languages, such as En-

glish is improved. In Figure 6.1, segmenting bsyArth allows one-to-one

links for “with”, “his” and “car”.

e By building models over morphemes, rather than words, data sparsity

is reduced.

e By allowing morphemes with clear syntactic roles to be translated inde-
pendently, we increase our expressive power by creating new lexical
translations. For example, using the two phrase-pairs in Figure 6.1 re-
sults in a new word after desegmentation (b+ syArp +h = bsyArth),

which might not have existed in the training data.

However, there is also a price to be paid. While morpheme-level models are
more resistant to data sparsity, they account for less context than word-level
models, make stronger independence assumptions, and they are less efficient

statistically, in that they devote probability mass to sequences containing ille-
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gal words. Furthermore, when segmentation is applied to the target language,
the process must be reversed at the end of the pipeline to present the output
in a readable format. This desegmentation step complicates our pipeline,
and can introduce errors.

Our work in this chapter is inspired by two recent contributions that at-
tempt to combine the advantages of word- and morpheme-based models. Lu-
ong et al. (2010) combine word and morpheme views in a desegmented phrase
table, allowing morphemes to reduce sparsity while words expand context,
and eliminating the need for a separate desegmentation step. Their word-
boundary-aware morpheme-level phrase extraction technique restricts phrase
boundaries so that no target phrase can begin with a suffix or end with a pre-
fix. This allows them to desegment each target phrase independently, enabling
the use of both word- and morpheme-level language models during decod-
ing. However, this phrase-table desegmentation approach lacks the expressive
power that comes from translating morphemes independently.

In the previous chapter, we introduced the lattice desegmentation ap-
proach, which comes close to combining all the advantages of word and mor-
pheme views. By desegmenting a lattice that compactly represents many
translation options, and rescoring it with a word-level language model, we
avoid restricting the phrase table. However, by delaying desegmentation until
rescoring, the approach loses Luong et al. (2010)’s advantage of full decoder
integration.

In this chapter, we present an experimental study of English-to-Arabic
translation that is designed to better understand the impact of various trade-
offs when translating into a morphologically segmented target language, and to
identify what aspects of segmentation are most beneficial to translation. The
benefits of segmentation can impact several components in the SMT pipeline:
the alignment model, the translation table, and the various language and trans-
lation models. Throughout this study, we investigate the effect of varying the
point in the SMT pipeline where the segmentation is reversed. In addition, we
attempt to combine word- and morpheme-level models within the decoder as

much as possible.
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Our experimental study provides three novel insights. First, we present
strong evidence indicating that the ability to build target words across phrase
boundaries is the most important property of target language segmentation.
This implies that phrase table desegmentation, the only published desegmen-
tation technique that has been fully integrated into decoding, gives up seg-
mentation’s primary advantage. Second, we draw a previously unobserved
connection between the use of an unsegmented LM and the decoder’s overall
use of compositional morphology; we show that although unsegmented LMs
tend to increase BLEU score, they also reduce the system’s use of morpho-
logical affixes to well below that of a human. Finally, we present the first
direct comparison between phrase table desegmentation (Luong et al., 2010)

and lattice desegmentation (Salameh et al., 2014).

6.2 Background

Our work builds on earlier studies of automatic morphological segmentation
and its impact on SMT. There are many ways to segment syntactically relevant
affixes from stems. Supervised techniques may either pass through an inter-
mediate morphological analysis (Habash et al., 2009), or directly segment the
character stream (Green and DeNero, 2012); recent work on supervised Arabic
segmentation focuses primarily on adaptation to dialects (Habash et al., 2013;
Monroe et al., 2014). There are also a host of unsupervised techniques (Creutz
and Lagus, 2005; Lee et al., 2011; Sirts and Goldwater, 2013), which provide
valuable language portability, but which generally fall behind supervised meth-
ods when labeled data is available.

There is a large body of work studying the best form of segmentation
when translating from a morphologically complex source language (Sadat and
Habash, 2006; Stallard et al., 2012), where the segmentation can be used as
a simple preprocessing step, or to create an input lattice (Dyer et al., 2008).
Recently, there has been a growing interest in segmentation on the target
side (Oflazer and Durgar El-Kahlout, 2007), which introduces a question of
how to perform proper desegmentation (Badr et al., 2008). El Kholy and
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Habash (2012a) have conducted a thorough exploration of the various seg-
mentation and desegmentation options for English to Arabic translation, and

we follow their work when designing our test bed.

6.3 Methods

When translating into a segmented target language, such as Arabic, the seg-
mentation will need to eventually be reversed for the output to be readable.
The key insight driving our experiments is that by varying the point in the
SMT pipeline where this reversal occurs, we can alter which models are based
on morphemes and which are based on words, and thereby determine which
components most benefit from segmentation. We assume a phrase-based SMT
architecture similar to that of Moses (Koehn et al., 2007), but most of our
observations hold for hierarchical and tree-based models. In all of our ap-
proaches, we desegment using a mapping table that counts the segmentations
performed on the target side of our training data. The table uses counts of
word-segmentation pairs to map each morpheme sequence back to its most
likely unsegmented word form. We back off to manually crafted rules in cases

where the segmented form does not exist in the mapping table (El Kholy and
Habash, 2012a).
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Table 6.1 summarizes the effect of the desegmentation point on the com-
ponents of a typical SMT system, indicating which components are built using
morphemes and which are built using words. Most components should be fa-
miliar, but the last row introduces flexible boundaries, a concept that will
be central to our study. This property of the phrase table indicates whether
phrases can have unattached affixes at their left or right boundaries. Systems
without flexible boundaries cannot combine morphemes across phrases to cre-
ate translations that were not already seen in the parallel text; as such, this
property has a large impact on a system’s expressive power.

We describe our comparison systems in turn, each corresponding to a col-
umn in Table 6.1. We also describe a segmented language model feature, which

can be added to any system that uses a word-level phrase table.

6.3.1 Baselines

We rely on two main baselines to evaluate what matters most in segmented
models. An unsegmented system leaves the Arabic target unsegmented and
uses an unsegmented language model. This model suffers from data sparsity
and poor English-Arabic word correspondence. The decoder always outputs
morphologically correct Arabic words, as it does not require a desegmentation
step.

Meanwhile, one-best desegmentation segments the Arabic target lan-
guage before training begins, and the decoder’s output is generated in seg-
mented form. As a post-processing step, the one-best output is desegmented
using a mapping table and desegmentation rules. All of the component mod-
els used during decoding are based on morphemes instead of words. The
segmented models are intended to help alleviate data sparsity and improve
token correspondence. Unlike the unsegmented system, this system requires a

desegmentation step, which can produce morphologically incorrect words.

6.3.2 Alignment Desegmentation

Our unsupervised alignment models (Brown et al.; 1993; Och and Ney, 2003)

are sensitive both to poor word-to-word correspondence and to data sparsity
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issues. They are also at the very start of the SMT pipeline; they impact
nearly all other downstream models. Therefore, it would be reasonable to
suspect that the primary benefit of segmentation could come from improved
word alignment. Alignment desegmentation allows us to test this theory by
desegmenting immediately after alignment.

More specifically, we segment the target side as pre-processing. After word
alignment, we replace the segmented Arabic training data with its unseg-
mented form. Note that this desegmentation is perfect, as we can always
refer to the original sentence to resolve any ambiguities. This is accompanied
by desegmenting alignment links by replacing each morpheme index with the
index of the unsegmented word that now contains the morpheme. As one
would expect, this leads to an increase in the number of one-to-many align-
ments. Training is then resumed with these links and the unsegmented target.
Other than having its alignment model benefit from segmentation, this system
has the same properties of an unsegmented system: all remaining component
models are based on words. Since all morphemes are desegmented well before

decoding begins, it clearly cannot use flexible boundaries to build new words.

6.3.3 Phrase Table Desegmentation

Our next desegmentation point is after phrase extraction, resulting in a system
where we segment the text, align the morphemes, perform phrase extraction
over morphemes, and then desegment the resulting tables. Following Luong
et al. (2010), we first remove all phrases that have target sides with flexible
boundaries, which allows us to desegment each remaining target phrase inde-
pendently. The result is a desegmented phase table. Note that we leave the
various scores associated with each phrase-pair unchanged.

This model is similar to alignment desegmentation described in the pre-
vious section in that all remaining components and operations are based on
words. However, there are two key differences. First, the lexical weights of
each phrase are calculated over morphemes rather than words. Second, the
phrase-length limit is applied at the morpheme level rather than at the word

level. We use this scenario to test the utility of morpheme-level lexical weights.
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This system is related to, but not identical to the work of Luong et al.
(2010). Their system actually merges tables from an unsegmented model with
those from phrase table desegmentation; they investigate a number of meth-
ods to combine the scores across tables. In addition, they incorporate both
segmented and unsegmented language models, which is a difference that we

address in the next section.

6.3.4 Segmented LM Scoring in Desegmented Models

Both alignment desegmentation and phrase table desegmentation rely on an
unsegmented language model, as they naturally decode directly into a de-
segmented target language. We experiment with augmenting both of these
systems with an extra feature: a segmented language model. For each Arabic
target word, we add its segmented form to the phrase table as an extra fac-
tor (Koehn and Hoang, 2007). We insert this factor after phrase extraction, so
it has no impact on alignment or the calculation of translation model scores.
The factor merely gives us access to the segmented morphemes during decod-
ing. The decoder uses this factor to apply a segmented language model during
each hypothesis extension.

Although the segmented language model spans a shorter context, its scores
benefit from the reduced data sparsity that comes from modeling morphemes.
In particular, it can unveil whether attaching two hypotheses is grammatical.
For example, the unsegmented language model score for the consecutive target
phrases LK i f kl msAkinA “all our problems” l.:-'lé)h-:'-j wrlAfAtnA “and
conflicts” is relatively low. Scoring their segmented representation [kl msAkl
+nA] [w+ xIAfAt +nA| leads to a more optimistic score, as the segmented
language model assesses the morpheme sequence using 4-grams and trigrams,
while the unsegmented model scores the word sequence with unigrams and

bigrams.

6.3.5 Lattice Desegmentation

We compare the previous approaches to the lattice desegmentation approach

(Chapter 5) and place it in Table 6.1 for reference. A system built entirely
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over morphemes outputs a pruned lattice that compactly represents its hy-
pothesis space. This lattice is then desegmented by composing it with a finite
state transducer that maps morpheme sequences into words. By rescoring the
desegmented lattice with new features, the system benefits from having both a
segmented and desegmented view of the search space. The added features in-
clude discontiguity features, as well as an unsegmented language model. The
discontiguity features indicate whether a desegmented word came from one

contiguous morpheme sequence, two discontiguous sequences, or more.

6.4 Experimental Setup

We train our English-to-Arabic system using 1.49 million sentence pairs drawn
from the NIST 2012 training set, excluding the UN data. This training set
contains about 40 million Arabic tokens before segmentation, and 47 million
after segmentation. We tune on the NIST 2004 evaluation set (1353 sentences)
and evaluate on NIST 2005 (1056 sentences). We also report a second test,
which tunes on the NIST 2006 evaluation set (1664 sentences) and evaluates on
NIST 2008 (1360 sentences) and 2009 (1313 sentences). NIST 2004 and 2005
datasets have sentences from newswire, while NIST 2006/2008 /2009 have sen-
tences drawn from newswire and the web. These evaluation sets are intended
for Arabic-to-English translation, and therefore have multiple English refer-
ences. As we are translating into Arabic, we select the first English reference
to use as our source text, and use the Arabic source as our single reference

translation.

6.4.1 Segmentation

For Arabic, morphological segmentation is performed by MADA 3.2 (Habash
et al., 2009), using the Penn Arabic Treebank (PATB) segmentation scheme
as recommended by El Kholy and Habash (2012a). For both segmented and
unsegmented Arabic, we further normalize the script by converting different
forms of Alif and Ya to bare Alif and dotless Ya. In order to generate the

desegmentation table, we analyze the MADA segmentations from the Arabic
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Model mt05 | mt08 mt09

Unsegmented 32.8 15.0 19.0
Alignment Deseg. 33.4 154 19.1
with Segmented LM 33.7 154 19.4
Phrase Table Deseg. 33.4 15.5 19.3
with Segmented LM 33.6 15.6 19.7
1-best Deseg. 33.7 15.7 202
without flexible boundaries 32.9 154 19.4
Lattice Deseg. 34.3 16.4 205

Table 6.2: BLEU scores on each of the methods described in section 6.3 .
MTO5 results are tuned using NIST MTO04. Results on NIST MT08 and MT09
datasets are tuned on MTO06 dataset.

side of the parallel training data to collect mappings from morpheme sequences

to surface forms.

6.4.2 Systems

We align the parallel data with GIZA++ (Och et al., 2003) and decode using
Moses (Koehn et al., 2007). The decoder’s log-linear model includes a standard
feature set. Four translation model features encode phrase translation proba-
bilities and lexical weights in both directions. Seven distortion features encode
a standard distortion penalty as well as a bidirectional lexicalized reordering
model. A KN-smoothed 5-gram language model is trained on the target side
of the parallel data with SRILM (Stolcke, 2002). Finally, we include word and
phrase penalties. The decoder uses Moses’ default search parameters, except
that the maximum phrase length is set to 8. The decoder’s log-linear model is
tuned with MERT (Och, 2003). Following Salameh et al. (2014), the tuning of
the re-ranking models for lattice desegmentation is performed using a lattice
variant of hope-fear MIRA (Cherry and Foster, 2012); lattices are pruned to a
density of 50 edges per word before re-ranking. We evaluate our system using

BLEU (Papineni et al., 2002).
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6.5 Results

Table 6.2 shows the results of our translation quality experiments. In previous
sections, we mentioned several factors that might contribute to the quality
improvements found with segmented models. Beyond the raw ranking of sys-
tems, we can use the commonalities and differences between these systems to
draw some broad conclusions of what aspects of a segmented system are most

important.

6.5.1 Decoder Integration

Lattice Desegmentation performs best overall, which is not entirely surprising,
as it has access to all of the information present in the other systems. Notably,
it outperforms Phrase Table Desegmentation; this is the first time to our
knowledge that the two have been compared directly.

The main disadvantage of Lattice Deseg, which is not present in Align-
ment and Phrase Table Deseg, is the lack of decoder integration of its un-
segmented view of the target; instead, it is handled by re-ranking a lattice in
post-processing. In fact, the top two systems, Lattice Deseg and 1-Best Deseg,
are also the only two systems without access to unsegmented information in
the decoder. This suggests that the benefits of decoder integration are not

sufficient to overcome the trade-offs currently demanded by integration.

6.5.2 Flexible Boundaries

What is perhaps more surprising is that neither Alignment Deseg nor Phrase
Table Deseg are able to match the 1-best Deseg scenario. With the benefit of
added segmented language models, both of these systems have access to almost
all 1-best Deseg’s information and more, yet they fail to match its translation
quality in every test. What both systems lack with respect to 1-best Deseg is
flexible phrase boundaries, which allow the creation of new translations across
phrases. To confirm the importance of flexible boundaries, we created a new
version of 1-best Deseg by pruning all phrases with flexible boundaries from
the phrase table, and then re-tuning. The resulting system loses 0.6 BLEU on
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average, which is more than half of the 0.9 difference between Unsegmented
and 1-best Deseg. We conclude that flexible boundaries are one of the most

important aspects of a segmentation scenario.

6.5.3 Language Models

Both Align Deseg and Phrase Table Deseg show consistent, albeit small, im-
provements from the addition of a segmented LM. In order to assess the im-
portance of the unsegmented LM, we consider 1-best Deseg without flexible
boundaries, and Phrase Table Deseg with Segmented LM. These two sys-
tems have exactly the same output space, as their respective phrase tables are
constructed from morpheme-level phrase extraction followed by pruning flex-
ible boundaries. Furthermore, both systems use a segmented LM and lexical
weights built over morphemes. Their only differences are that Phrase Table
Deseg uses an unsegmented LM and unsegmented tuning, resulting in BLEU
scores that are higher by 0.4 on average. Similarly, a unsegmented LM is one
of the main differences between Lattice Deseg and 1-best Deseg, with the oth-
ers being unsegmented tuning and discontiguity features. Although we have
not isolated the unsegmented LM perfectly, these results indicate that it is
valuable.

6.5.4 Lexical Weights

The primary difference between Alignment Deseg and Phrase Table Deseg is

1 Without a segmented

that the latter uses morpheme-level lexical weights.
LM, we see a 0.1 average BLEU advantage for Phrase Table Deseg, increasing
to 0.2 when a segmented LM is included. Unfortunately, these improvements
are not consistent across test sets. This suggests that there may be an advan-

tage from morpheme-based lexical weights, but it is certainly not large.
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Model mt05 mt08 mt09

Reference 15.9% 18.1% 18.9%
Unsegmented 12.0% 122% 12.6%
Alignment Deseg. 11.6% 11.0% 11.8%
with Segmented LM 11.7% 11.2% 12.0%
Phrase Table Deseg. 11.3% 10.1% 11.2%
with Segmented LM 11.6% 10.5% 11.4%
1-best Deseg. 16.1% 182% 19.2%
without flexible boundaries 14.2% 14.7% 15.4%
Lattice Deseg. 10.0% 11.5% 12.2%

Table 6.3: Percentage of words in the SMT output that have non-identity
morphological segmentations.

6.6 Analysis

Our translation quality comparison indicates that flexible boundaries are the
most important property of a target segmentation scenario, so we examined
them in greater detail. Phrase pairs with flexible boundaries account for
roughly 12% of phrases used in the final output of our 1-Best Deseg system.
We performed a detailed analysis to see if the flexible boundaries were used
to produce novel words; that is, words that were not seen in the target side
of the training data. Roughly 3% of the desegmented types generated by the
1-best-desegmentation system are novel. We randomly selected 40 novel words
from each test set to analyze manually. First, none of these desegmented words
appear in the reference, and therefore, they have no positive impact on BLEU.
Furthermore, 64 of the 120 selected words violate the morphological rules of
Arabic. Looking instead at the novel words in the reference, only 115 reference
words could not be found in the Arabic side of our training data. Of these,
only 37 could be constructed from morphemes found in our training set. This
means that there is only a small number of opportunities to better match the
reference by producing a novel word. Together, these two pieces of analysis
strongly suggest that the advantage of flexible boundaries comes from creating

new translation options for a given source sequence, rather than from creating

I The other difference is the calculation of the phrase length limit, which favors Alignment
Deseg, as its word-based limit allows more phrases overall.
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novel words.

We were able to compute statistics on flexible boundaries for only two of
our systems, because the other three disallow them entirely. In order to char-
acterize all five systems, along with the human references, we measured overall
affix usage by counting decomposable words. Table 6.3 shows the percentage of
words in the Arabic translations that have non-identity morphological segmen-
tations when processed by MADA. In terms of affix usage, the 1-best Deseg
method tracks the Reference very closely, while all remaining scenarios show
a substantial drop in usage of decomposable words. Most surprisingly, Lattice
Deseg is included in this group, even though its BLEU scores are higher than
1-best Deseg. Since 1-Best Deseg’s most prominent characteristic is its lack of
an unsegmented LM, this suggests that unsegmented LMs may dramatically
impact affix usage. Note that flexible boundaries do not (fully) account for
the gap in affix usage, as the 1-best Deseg still has noticeably higher usage
of decomposable words, even with flexible boundaries removed. This implies
that Lattice Deseg and the various fully integrated desegmentations could be
improved by attempting to directly manipulate their usage of decomposable
words, perhaps through a specialized feature.

As a final piece of analysis, we also investigated the impact of different
n-gram orders for segmented LMs. Most of the scenarios proposed here add
an unsegmented LM to a segmented system, and the most obvious advantage
of an unsegmented LM is that it accounts for more context than a segmented
LM. However, this only holds if we force both LMs to have the same n-gram
order. To see if higher order segmented LMs would improve translation, we
experimented with different n-gram orders for our 1-best Deseg system. As we
increased the segmented n-gram order from 5 to 8, we saw no improvement over
the 5-gram LM used throughout this chapter. In fact, BLEU score began to
drop after n = 6. This suggests that the advantage of adding an unsegmented
LM cannot be emulated by increasing the order of the segmented LM.
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6.7 Summary

In this chapter, We have presented an experimental study on translation into
segmented target languages by creating models that apply desegmentation at
different points in the translation pipeline. We have provided evidence that
access to phrases with flexible boundaries is a crucial property for a successful
segmentation approach. We have also examined the impact of unsegmented
LMs, showing that although they are helpful according to BLEU, they also
hinder the generation of morphologically-complex words. This suggests that
current methods could be improved by attempting to increase their use of

morphological affixes.
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Chapter 7

Integrating Morphological
Desegmentation into Phrase-based
Decoding

In the last two chapters, we attempted to benefit from desegmentation through
integrating it with various SMT components. We also confirmed that the best
integration approach is to desegment the search space encoded as a lattice.
Our analysis showed that the use of morpheme-level and word-level features
improves the quality of translation and validates the correctness of the deseg-
mented forms.

In all of the previous approaches, we had to interrupt the SMT pipeline at
some point to apply desegmentation. In this chapter, we attempt to integrate
desegmentation directly into decoding, such that morphemes that contribute
to forming a word are desegmented on the fly. This allows word-level features
to be extracted from the desegmented forms and to be considered throughout
the entire search space. We elaborate on the challenges that arise due to this
integration. Our results on a large-scale, English to Arabic translation task

show significant improvement over the 1-best desegmentation baseline.

7.1 Introduction

Morphological segmentation is typically performed as a pre-processing step
before the training phase, which results in a model that translates the source

language into segmented target language. Desegmentation is the process of
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transforming the segmented output into a readable word sequence, which can
be performed using a table lookup combined with a small set of rules. Deseg-
mentation is usually applied to the 1-best output of the decoder. However,
this pipeline suffers from error propagation: errors made during decoding can-
not be corrected, even when desegmentation results in an illegal or extremely
unlikely word. Two principal types of solutions that have been proposed for
this problem are rescoring and phrase-table desegmentation.

The rescoring approach desegments either an n-best list (Oflazer and Dur-
gar El-Kahlout, 2007) or lattice (Chapter 5) , and then re-ranks with features
that consider the desegmented word sequence of each hypothesis. Rescoring
features include the score from an unsegmented target language model and
contiguity indicators that flag the target words constructed from contiguous
source tokens. Rescoring widens the desegmentation pipeline, thus allowing
desegmentation features to reduce the number of translation errors. However,
these features are calculated only for a subset of the search space, and the
extra rescoring step complicates the training and translation processes.

Phrase-table desegmentation (Luong et al., 2010) also translates into a seg-
mented target language, but alters training to perform word-boundary-aware
phrase extraction. The extracted phrases are constrained to contain only com-
plete target words, without any dangling affizes (phrases with flexible bound-
aries). With this restriction in place, the phrase table can be desegmented
before decoding begins, allowing the decoder to track features over both the
segmented and desegmented target. This ensures that desegmentation features
are integrated into the complete search space, and side-steps the complications
of rescoring. However, we show experimentally in Chapter 6 that these benefits
are not worth giving up the phrase-pairs eliminated by word-boundary-aware
phrase extraction.

We present a method for decoder-integrated desegmentation that combines
the strengths of these two approaches. Like a rescoring approach, it places no
restrictions on what morpheme sequences can appear in the target side of a
phrase pair. Like phrase-table desegmentation, its desegmentation features

are integrated directly into decoding and considered throughout the entire
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search space. We achieve this by augmenting the decoder to desegment hy-
potheses on the fly, allowing the inclusion of an unsegmented language model
and other features. Our results on a large-scale, NIST-data English to Arabic
translation task show significant improvements over the 1-best desegmentation
baseline, and match the performance of the state-of-the-art lattice desegmen-
tation approach (Chapter 5) , while eliminating the complication and cost of
its rescoring step. Our approach is implemented as a single stateful feature

function in Moses (Koehn et al., 2007).

7.2 Method

Our approach extends the multi-stack phrase-based decoding paradigm to en-
able the extraction of word-level features inside morpheme-segmented models.*
We assume that the target side of the parallel corpus has been segmented into
morphemes with prefixes and suffixes marked. This allows us to define a com-
plete word as a maximal morpheme sequence consisting of 0 or more prefixes,
followed by at most one stem, and then 0 or more suffixes. We also assume
access to a desegmentation function that takes as input a morpheme sequence
matching the above definition, and returns the corresponding word as output.
For our Arabic experiments, we use a table-based desegmentation scheme that
falls back on a small set of rules for sequences not found in its table. The
output of a phrase-based decoder is built from left to right, and at each step,
a hypothesis is expanded with a phrasal translation of a previously uncovered
source segment. In-decoder desegmentation monitors the target sequence of
each translation hypothesis as it grows, detecting morpheme sequences that
correspond to complete words and desegmenting them on the fly to generate
new features.

The task of determining whether a word is complete is non-trivial. We are
never sure if we will see another suffix as we expand the hypothesis, so we can

only recognize a complete word as we begin the next word. For example, take

IThe ideas presented here could also be applied to hierarchical decoding, which would
require generalizing them to account for right context as well as left.
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hyp?2: hyp4:

his ideas _y through
hyp1: AfkA |-—»”"

r +h [ Ebr

to spread ""n...*

====3 |+ nsr hyp3: hyp5:
his ideas _w through
+h AfkAr E—— mn XIAl
‘-“

Figure 7.1: Decoding the Arabic translation of the phrase “to spread his ideas
through”.

hypl in Figure 7.1. This hypothesis ends with a stem nsr, which may end a
complete word, as is the case when we expand to hyp2, or may represent a word
that is still in progress, which occurs as we extend to hyp3. This means that
the word-based scoring of the morpheme sequence [+ nsr must be delayed or
approximated until we know what follows. A related challenge involves scoring
phrase-pairs out of context, as is required for future-cost estimates. Take, for
example, the target phrase +h AfkAr added by hyp3 in Figure 7.1. Without
the context, we have insufficient information at the left boundary to score +h
with word-based models, while AfkAr at the right boundary may or may not
form a complete word. Here, there is no choice but to approximate. The
quality of these approximations and the length of our delays will determine

how effective our new features will be when incorporated into beam search.

7.2.1 Decoder Integration

A typical phrase-based decoder represents a hypothesis with a state that con-
tains the information to guide search and calculate features, such as the source
coverage vector and the target context for the language model. Hypothe-
ses with identical states can be recombined to improve search efficiency. We
augment the state with two structures: (1) a buffer @) containing all of the
morphemes that contribute to the current word in progress, represented as
a queue of tokens; and (2) n-gram context C for the word-level target lan-

guage model. The search’s initial state begins with an empty () and with n-1
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Algorithm 2 Desegmentation State Update
Input: State variables @, C
Input: Extending phrase P
for each token ¢ in P do
if ¢ cannot continue the word in Q then
W = Desegmentation of tokens in ()
Extract word-level features for W
(Word-level LM score is p(W|())
Update current feature vector

Update C' with W

Empty @
Append token ¢ to )

beginning-of-sentence tokens in C.

When a state is extended with a target phrase P, we update the in-decoder
desegmentation structures ) and C with Algorithm 2. Tokens are appended
to () until a token ¢ would begin a new word, at which point the tokens from
() are desegmented and the resulting word is used to calculate features and
update the target context. Following the lower decoding path in Figure 7.1,
(Q would be emptied and desegmented first during hyp3 when t = AfkAr,
calculating features for W = Insrh.

The main cost of in-decoder desegmentation comes from maintaining the
context necessary to evaluate the m-gram, word-level language model. As
each desegmented word in C' will correspond to at least one segmented token,
the system’s effective language-model order in terms of segmented tokens will
frequently be much larger than n. Storing larger language-model contexts
make it less likely that states will be equal to one another, which reduces
the amount of recombination the system can do, and increases the number of

states that must be expanded during search.

7.2.2 Delayed and Optimistic Scoring

In the above approach, desegmentation and feature scoring are applied only
when a complete word is formed. We refer to this as delayed scoring because
the features for a token are not applied until other tokens have been added to

the hypothesis. For example, in Figure 7.1, the tokens [+ ns$r added in hypl
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are not evaluated with word-level features until hyp2 or hyp3 completes the
word. This delay results in inaccurate scoring of hypotheses, as the cost from
these tokens is hidden until () is emptied. These inaccuracies can lead to poor
pruning choices and search errors during beam search.

Alternatively, we can perform optimistic scoring, which tries to score the
contents of () as early as possible. In this case, we assume that the contents
of () form a complete word, without waiting for the next token to confirm it.
With each hypothesis extension, when the last token in P is processed and
added to the queue, we desegment the contents of () and extract features, but
without emptying (). The scores of these features are cached in a variable S
that does not affect recombination, as the scores are deterministic given @), C
and the model. When a later token confirms the end of the word, we subtract
S from the scores derived from the actual desegmented word, to account for
our earlier approximation. Note that for a () containing only a prefix, we must

still delay scoring.

7.2.3 Features

Three features are extracted from each desegmented form. An unsegmented
n-gram language model scores W in the context of C, as shown in Algorithm 2.
We also implement the contiguity features as in section 5.3.4. These indicators
check if the desegmented form is generated from a contiguous block of source
tokens, a block with 1 discontiguity, or a block with multiple discontinuities.
Finally, most phrase-based decoders incorporate a word penalty that counts
the number of target words in a hypothesis. In our scenario, this can count
segmented morphemes or desegmented words. We try both in our experiments.

For future cost estimates, we must also provide out-of-context feature scores
for each phrase-pair in our system. To do so, we ignore suffixes appearing at
the beginning of a target phrase and prefixes appearing at the end. We assume
that the remaining tokens form complete words, and desegment and score them

to provide out-of-context scores.
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7.3 Experiments

We use the NIST 2012 dataset (1.49 million sentence pairs excluding UN pairs)
to train an English-to-Arabic system. The system is tuned with the NIST 2004
(1353 pairs) evaluation set and tested using NIST 2005 (1056 sentences) and
the newswire portion of NIST 2008 (813 pairs) and NIST 2009 (586 pairs). As
there are multiple English reference translations provided for these evaluation
sets, we use the first reference as our source text.

The Arabic part of the training set is morphologically segmented by MADA
3.2 (Habash et al., 2009) using the PATB segmentation scheme. Variants of
Alif and Ya characters are uniformly normalized. We generate a desegmenta-
tion table from the Arabic side of the training data by collecting mappings of
segmented forms to surface forms.

We align the parallel data with GIZA++ (Och et al., 2003), and decode
with Moses (Koehn et al., 2007). The decoder’s log-linear model includes a
standard feature set. KN-smoothed 5-gram language models are trained on
both the segmented and unsegmented views of the target side of the paral-
lel data. We experiment with word penalties based either on morphemes or
desegmented words. The decoder uses Moses’ default search parameters, ex-
cept for the maximum phrase length, which is set to 8, and the translation
table limit, which is set to 40 2. The decoder’s log-linear model is tuned with
MERT (Och, 2003) using the unsegmented form of the Arabic development
set. We evaluate with BLEU (Papineni et al.; 2002), and test statistical sig-

nificance with multeval (Clark et al., 2011) over 3 random tuning replications

We test four systems that differ in their desegmentation approach. The
NoSegm. baseline involves no segmentation. The One-best baseline trans-
lates into segmented Arabic and desegments the decoder’s 1-best output. The
Lattice system is the lattice-desegmentation approach of Chapter 5. We im-

plement our in-Decoder desegmentation approach as a feature functions in

ZWe experimented with different translation options limits on 1-best-deseg system but
found no improvement above 40 options
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System WP mt05 mt08 mt09
NoSegm. word 332 186 256
One-best morph. 338 19.1  26.8
Lattice morph. 344 19.7 27.4
morph. 34.1 194  27.0

Delayed word 341 195 2638
morph. 342 196 272
word 34.5 19.7 272

Optimistic

Table 7.1: Evaluation of the desegmentation methods using BLEU score. Both
Delayed and Optimistic refer to in-Decoder Desegmentation method used. WP
shows whether Word Penalty feature is based on a complete desegmented word
or a morpheme.

Moses, testing scoring variants (delayed vs. optimistic), and word penalty
variants (morpheme vs. word).

Table 7.1 shows the results on three NIST test sets, each averaged over 3
tuning replications. The lattice approach is significantly better than the 1-best
system, which in turn is significantly better than the unsegmented baseline.
Our Optimistic in-decoder approach with word penalty calculated on word
tokens is significantly (p < 0.05) better than the 1-best approach, and effec-
tively matches the accuracy of the more complex lattice approach. Typically,
one would hope to surpass a rescoring approach with decoder integration; how-
ever, our lattice implementation fully searches its lattice, even if composition
with the word-level language model causes the lattice to explode in size. A lat-
tice beam search that dynamically calculates word-level language model scores
would provide a more fair, and more efficient, comparison point.

All of the systems with word-level features improve over the 1-best model,
as their features penalize desegmentations resulting in illegal words or unlikely
word sequences. We see a small, consistent benefit from optimistic scoring.
Error analysis reveals that translations with many consecutive stems benefit
the most from this variant, which makes sense, as our approximations would
be exact in these cases. We were surprised to see differences between word
penalty variants, but a penalty based on desegmented word-forms provides
the system with greater control over the number of words that appear in its

final output, which can be important.
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7.4 Summary Results

For the sake of complete comparison, we reran our experiments using the
same Moses release (version 2.1.1), same hyper-parameters and same tuning
and evaluation datasets as in section 7.3. The main differences between the
experiments in this chapter and the ones in previous chapters is in setting the
number of translation-table-options to 40 (previously was 20) and using only
NIST MTO04 for tuning. Also, we removed the web data from NIST MTO0S8
and MT09 and only used the newswire portions. We summarize the results in

Table 7.2 with the methods introduced in Chapters 5, 6 and 7.

Ref. System WP mt05 mt08 mt09
Ch. 5 NoSegm. word 33.2 186 256
Ch. 6 Alignment Deseg. word 33.3 192  26.1
Ch. 6 with Segmented LM word 33.0 188 259
Ch. 6 Phrase Table Deseg. word 33.4 191 259
Ch. 6 with Segmented LM word 33.7 192 264
Ch. 5 One-best morph. 33.8 19.1 268
Ch. 6 without flexible boundaries morph. 33.0 188  26.1
Ch. 5 1000-best-list morph. 34.1 193 272
Ch. 5 Lattice morph. 344 19.7 27.4
Ch. 7 Delayed in-Decoder morph. 34.1 194 270

word 341 195 268
Ch. 7 Optimistic in-Decoder morph. 342 19.6 272

word 34.5 19.7 27.2

Table 7.2: Evaluation of different desegmentation methods presented in this
thesis using BLEU score. The Ref column mentions the chapter where the
desegmentation methods was first introduced.

The results show similar pattern to the ones in previous chapters. The
BLEU score of 1000-best-list desegmentation lies between the 1-best-deseg and
lattice desegmentation. Alignment and phrase-table deseg. scores lie between
the NoSegm and 1-best-desegm scores. Also, one-best without phrases with
flexible boundaries achieved scores close to the NoSegm (except on MT09).
The table shows that the overall conclusions hold while relative comparisons
may have slightly changed on some experiments.

In this chapter, we tackled a challenging problem of integrating deseg-
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mentation into decoding, and got scores similar to the lattice desegmentation
approach, but with a method that employs a substantially simpler pipeline.
At this point, we have seen one form of Arabic morphological transformation
through segmentation that resulted with several benefits. In the next chapter,
we explore a different transformation on a sentiment analysis task, namely,

Arabic lemmatization.
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Chapter 8

Sentiment after Translation:
A Case-Study on Arabic Social
Media Posts

In the previous chapters, we applied segmentation on Arabic to improve trans-
lation from English into Arabic. Segmentation is one form of language transfor-
mation for handling morphologically complex languages and decreasing token
sparsity. In this chapter, we explore morphological analysis (lemmatization)
as an alternative approach for morphologically complex languages.

In general, when text is translated from one language into another, sen-
timent is preserved to varying degrees. In this chapter, we use Arabic so-
cial media posts as a stand-in for source language text, and determine loss
in sentiment predictability when they are translated into English, manually
and automatically. As benchmarks, we use manually and automatically de-
termined sentiment labels of the Arabic texts. We create a state-of-the-art
Arabic sentiment analysis system and show it has the best accuracy on lem-
matized forms of Arabic sentences. We also improve our system by creating
Arabic lexicon that is automatically generated from lemmatized-form of Arabic
tweets. We also show that sentiment analysis of English translations of Ara-
bic texts produces competitive results, w.r.t. Arabic sentiment analysis. We
discover that even though translation significantly reduces the human ability
to recover sentiment, automatic sentiment systems are still able to capture

sentiment information from the translations.
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8.1 Introduction

Automatic sentiment analysis of text, especially social media posts, has a
number of applications in commerce, public health, and public policy devel-
opment. However, a vast majority of prior research on automatic sentiment
analysis has been on English texts. Furthermore, many sentiment resources
essential to automatic sentiment analysis (e.g., sentiment lexicons) exist only
in English. Thus there is a growing need for effective methods for analyzing
text from other languages such as Arabic and Chinese, especially posts on
social media. There has also been marked progress in automatic translation
of texts, especially from other languages into English. Thus, instead of build-
ing source-language specific sentiment analysis systems, one can translate the
texts into English and use an English sentiment analysis system. However, it is
widely believed that aspects of sentiment may be lost in translation, especially
in automatic translation. Though, the extent of this loss, in terms of drop in
accuracy of automatic sentiment systems remains undetermined.

This chapter analyzes several methods available in annotating non- English

texts for sentiment:

e Use a source-language sentiment analysis system.

e Run an English sentiment analysis system on manually created English
translations of source language text.

e Run an English sentiment analysis system on automatically generated

English translations of source language text.

In our experiments, we use Arabic social media posts as a specific instance
of the source language text. We use state-of-the-art Arabic and English sen-
timent analysis systems as well as a state-of-the-art Arabic-to-English trans-
lation system. We outline the advantages and disadvantages of each of the
methods listed above, and more importantly conduct experiments to deter-
mine accuracy of sentiment labels obtained using each of these methods. As
benchmarks we use manually and automatically determined sentiment labels

of the Arabic tweets.
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These results will help users determine methods best suited for their par-

ticular needs. Along the way, we answer several research questions such as:

1. What sentiment prediction accuracy is expected when Arabic blog posts
and tweets are translated into English (using the current state-of-art
techniques), and then run through a state-of-the-art English sentiment

analysis system?

2. How does this performance compare with that of a current state-of-the-

art Arabic sentiment system?

3. What is the loss in sentiment predictability when translating Arabic text

into English automatically vs. manually?

4. How difficult is it for humans to determine sentiment of automatically

translated text?

5. When dealing with translated text, which is more accurate at determin-
ing the sentiment of Arabic text: (1) automatic sentiment analysis of
the translated text, or (2) human annotation of the translated text for

sentiment?

The inferences drawn from these experiments do not necessarily apply to lan-
guage pairs other than Arabic-English. Languages can differ significantly in
terms of characteristics that impact accuracy of an automatic sentiment analy-
sis system. Our goal here specifically is to understand sentiment predictability
of Arabic dialectal text on translation. However, a similar set of experiments
can be used for other language pairs as well to determine the impact of trans-
lation on sentiment.

Through our experiments on two different datasets, we show that sentiment
analysis of English translations of Arabic texts produces competitive results,
w.r.t. Arabic sentiment analysis. We also show that translation (both manual
and automatic) introduces marked changes in sentiment carried by the text;
positive and negative texts can often be translated into texts that are neu-

tral. We also find that certain attributes of automatically translated text that
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mislead humans with regards to the true sentiment of the source text, do not
seem to affect the automatic sentiment analysis system.

In the process of developing these experiments to study how translation al-
ters sentiment, we created a state-of-the-art Arabic sentiment analysis system
by porting NRC-Canada’s competition winning system (Kiritchenko et al.,
2014) to Arabic. We also created a substantial amount of sentiment labeled
data pertaining to Arabic social media texts and their English translations
which is made freely available.!

This is the first such resource where text in one language and its translations
into another language (both manually and automatically produced) are each

manually labeled for sentiment.

8.2 Related Work

8.2.1 Sentiment Analysis of English Social Media

Sentiment analysis systems have been applied to many different kinds of texts
including customer reviews, newspaper headlines (Bellegarda, 2010), novels
(Boucouvalas, 2002; Mohammad and Yang, 2011), emails (Liu et al., 2003;
Mohammad and Yang, 2011), blogs (Neviarouskaya et al., 2011), and tweets
(Mohammad, 2012). Often these systems have to cater to the specific needs
of the text such as formality versus informality, length of utterances, etc. Sen-
timent analysis systems developed specifically for tweets include those by Go
et al. (2009), Pak and Paroubek (2010), Agarwal et al. (2011), and Thel-
wall et al. (2011). A survey by Martinez-Camara et al. (2012) provides an
overview of the research on sentiment analysis of tweets. In the last two years,
several shared tasks on sentiment analysis were organized by the Conference
on Semantic Evaluation Exercises (SemEval), which allowed for comparison
of different approaches on common datasets from different domains (Wilson
et al., 2013; Rosenthal et al., 2014; Pontiki et al., 2014). The NRC-Canada
system (Kiritchenko et al., 2014) ranked first in these competitions, and we

use it in our experiments. Details of the system are described in Section 6.

thttp:/ /www.purl.com/net /ArabicSentiment
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8.2.2 Sentiment Analysis of Arabic Social Media

Sentiment analysis of Arabic social media texts has several challenges. The
text is often in a regional Arabic dialect rather than Modern Standard Arabic
(MSA). Unlike MSA which is a standardized form of Arabic, dialectal Arabic
is the spoken form of Arabic and lacks strict writing standards. The text
often includes words from languages other than Arabic and multiple scripts
may be used to express Arabic and foreign words. In addition, Arabic is
a morphologically complex language, thus having a lexicon of word-sentiment
associations that covers all different surface forms becomes a cumbersome task.
Negation in MSA is expressed through negation particles, but in some dialects
(Egyptian) it is expressed using suffixes at the end of the word. We refer the
reader to Mourad and Darwish (2013) for more details on these issues.

There have been a few studies tackling sentiment analysis of Arabic texts
(Ahmad et al., 2006; Badaro et al., 2014). The ones most closely related to
our work are the studies of sentiment analysis of Arabic social media (Al-Kabi
et al., 2013; El-Beltagy and Ali, 2013; Mourad and Darwish, 2013; Abdul-
Mageed et al., 2014). Here we review existing Arabic sentiment analysis sys-
tems that were designed specifically for Arabic social media datasets. Abdul-
Mageed et al. (2014) trained an SVM classifier on a manually labeled dataset
and applied a two-stage classification that first separates subjective from ob-
jective sentences and then classifies the subjective into positive or negative
instances. The authors have compiled several datasets from multiple social
media resources that include chatroom messages, tweets, forum posts, and
Wikipedia Talk pages. However, these resources have not been made publicly
available yet.

Mourad and Darwish (2013) trained SVM and Naive Bayes classifiers on
Arabic tweets annotated by two native Arabic speakers. We compare our
system’s performance to theirs in Section 7.

Refaee and Rieser (2014b) manually annotated tweets for sentiment by two
native Arabic speakers. They used an SVM to classify tweets in a two-stage

approach, polar vs neutral, then positive vs. negative. The authors shared
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their data with us and we test our system on their dataset. However, the
dataset they provided us is a larger superset than the one they had originally
used (Refaee and Rieser, 2014a). Thus, the results of sentiment systems on

the two sets are not directly comparable.

8.2.3 Multilingual Sentiment Analysis

Work on multilingual sentiment analysis has mainly addressed mapping senti-
ment resources from English into morphologically complex languages. Mihal-
cea et al. (2007) used English resources to automatically generate a Romanian
subjectivity lexicon using an English-Romanian dictionary. The generated
lexicon is then used to classify Romanian text. Wan (2008) translated Chi-
nese customer reviews to English using a machine translation system. The
translated reviews are then classified with a rule-based system that relies on
English lexicons. A higher accuracy is achieved by using ensemble meth-
ods and combining knowledge from Chinese and English resources. Balahur
and Turchi (2014) conducted a study to assess the performance of statistical
sentiment analysis techniques on machine-translated texts. Opinion-bearing
phrases from the New York Times text corpus (2002-2005) were automatically
translated using publicly available machine-translation engines (Google, Bing,
and Moses). Then, the accuracy of a sentiment analysis system trained on orig-
inal English texts was compared to the accuracy of the system trained on au-
tomatic translations to German, Spanish, and French. The authors concluded
that the quality of machine translation is sufficient for sentiment analysis to
be performed on automatically translated texts without a substantial loss in
accuracy. Contrary to that work, our study uses both manual and automatic
translations as well as both manual and automatic sentiment assignments to
systematically examine the effect of translation on sentiment. Additionally,
we deal with noisy social media texts as opposed to more polished news media
texts. There exists research on using sentiment analysis to improve machine

translation (Chen and Zhu, 2014), but that is beyond the scope of this thesis.
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Figure 8.1: Experimental setup to determine the impact of translation on
sentiment. We compare sentiment labels between Ar(Manl.Sent.) (shown
in a shaded box) and other datasets shown on the right side of the figure.
Ar(Manl.Sent.) is the original Arabic text manually annotated for sentiment.

8.3 Method for Determining Sentiment Predictabil-
ity on Translation

In order to systematically study the impact of translation on sentiment anal-

ysis, we propose the following experimental setup:

e Identify or compile an Arabic social media dataset. We will refer to it

as Ar. (Ar comes from the first two letter of Arabic.)

e Manually translate Ar into English. We will refer to these English trans-
lations as En(Manl. Trans.) [Manl. is for manual, and Trans. is for

translations|

e Automatically translate Ar into English. We will refer to these English

translations as En(Auto.Trans.) [Auto. is for automatic.|

e Manually annotate Ar. for sentiment. We will refer to the sentiment-

labeled dataset as Ar(Manl. Sent.)

e Manually annotate all English datasets [En(Manl. Trans.) and En(Auto.
Trans. )| for sentiment, creating En(Manl. Trans., Manl.Sent.) and En(Auto.
Trans., Manl.Sent.), respectively.

e Run a state-of-the-art Arabic sentiment analysis system on Ar, creating

Ar(Auto.Sent.)
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e Run a state-of-the-art English sentiment analysis system on all the En-
glish datasets |En(Manl. Trans.) and En(Auto.Trans. )|, creating En(Manl.
Trans., Auto.Sent.) and En(Auto. Trans., Auto.Sent.), respectively.

Figure 1 depicts this setup. Once the various sentiment-labeled datasets are
created, we can compare pairs of datasets to draw inferences. For example,
comparing the labels for Ar(Manl.Sent.) and En(Manl.Trans., Manl.Sent.)
will show how different the sentiment labels tend to be when text is translated
from Arabic to English. The comparison will also show, for example, whether
positive tweets tend to often be translated into neutral tweets, and to what
extent. The results will also show how feasible it is to first translate Arabic
text into English and then use automatic sentiment analysis (Ar(Manl.Sent.)
vs. En(Auto. Trans., Auto.Sent.)). In Section 8.8, we provide an analysis of
several such comparisons for two different Arabic social media datasets.

DATA: Since manual translation of text from Arabic to English is a costly
exercise, we chose, for our experiments, an existing Arabic social media dataset
that has already been translated — the BBN Arabic-Dialect/English Parallel
Text (Zbib et al., 2012).2 Tt contains about 3.5 million tokens of Arabic dialect
sentences and their English translations. We use a randomly chosen subset of
1200 Levantine dialectal sentences, which we will refer to as the BBN posts or
BBN dataset, in our experiments. Additionally, we also conduct experiments
on a dataset of 2000 tweets originating from Syria (a country where Levantine
dialectal Arabic is commonly spoken). These tweets were collected in May
2014 by polling the Twitter API. We will refer to this dataset as the Syrian
tweets or Syrian dataset. Note, however, that manual translations of the Syrian
dataset are not available.

The experimental setup described above involves several component tasks:
generating translations manually and automatically (Section 8.4), manually
annotating Arabic and English texts for sentiment (Section 8.5), automatic
sentiment analysis of English texts (Section 8.6), and automatic sentiment

analysis of Arabic texts (Section 8.7).

Zhttps://catalog.ldc.upenn.edu/LDC2012T09
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8.4 Generating English Translations

The BBN dialectal Arabic dataset comes with manual translations into En-
glish. We generate automatic translations of the Arabic BBN posts and the
Syrian tweets, by training a multi-stack phrase-based machine translation sys-
tem to translate from Arabic to English. Our in-house system is quite simi-
lar to Cherry and Foster (2012). This statistical machine translation (SMT)
system is trained on data from OpenMT 2012. We preprocess the training
data by segmenting the Arabic source side of the training data with MADA
3.2 (Habash et al., 2009), using Penn Arabic Treebank (PATB) segmentation
scheme as recommended by El Kholy and Habash (2012a). The Arabic script
is further normalized by converting different forms of Alif 1 17 Vand Ya AT
to bare Alif | and dotless Ya _¢. The different forms are used interchangeabl}:,
and normalization decreases the sparcity of Arabic tokens and improves trans-
lation. The English side of the training data is lower-cased and tokenized by
stripping punctuation marks. We set the decoder’s stack size to 10000 and
distortion limit to 7. We replace the out-of-vocabulary words in the trans-
lated text with UNKNOWN token (which is shown to the annotators). The
decoder’s log-linear model is tuned with MIRA (Chiang et al., 2008; Cherry
and Foster, 2012). A KN-smoothed 5-gram language model is trained on the
English Gigaword and the target side of the parallel data.

8.5 Creating sentiment labeled data in Arabic
and English

Manual sentiment annotations were performed on the crowdsourcing platform
CrowdFlower® for three BBN datasets and two Syrian datasets:
1. Original Arabic posts (BBN and Syria datasets), annotated by Arabic
speakers.
2. Manual English translations of Arabic posts, annotated by English speak-
ers (only for BBN dataset).

3http:/ /www.crowdflower.com
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positive negative neutral agreement

BBN data
a. Ar(Manl.Sent) 41.50 47.92 10.58 73.80
b. En(Manl.Trans., Manl.Sent) 35.00 43.25 21.75 68.00
c. En(Auto.Trans., Manl.Sent) 36.17 36.50 27.34 65.70
Syria data
d. Ar(Manl.Sent) 22.40 67.50 10.10 79.00
e. En(Auto.Trans., Manl.Sent) 14.25 66.15 19.60 76.10

Table 8.1: Class distribution (in percentage) of the sentiment annotated
datasets.

3. Automatic English translations of Arabic posts (BBN and Syria datasets),
annotated by English speakers.

Each post was annotated by at least ten annotators and the majority sentiment
label was chosen. Table 8.1 shows the class distribution of sentiment labels in
various datasets. Observe from rows a and d that neutral tweets constitute
only about 10% of the data in both BBN and Syria datasets. The Syrian tweets
have a much higher percentage of negative posts, whereas in the BBN data,
the percentages of positive and negative posts are comparable. (Arabic tweets
in general tend to be much more skewed to the negative class than Arabic
blog post sentences.) Rows b, ¢, and e show that translated texts tend to lose
some of the sentiment information and there is a relatively higher percentage
of neutral instances in the translated text than in the original text.

For each post, we determine the count of the most frequent annotation
divided by the total number of annotations. This score is averaged for all
posts to determine the inter-annotator agreement shown in the last column of
Table 8.1. We use this agreement score as benchmark to compare performance

of automatic sentiment systems (described below).

8.6 English Sentiment Analysis

We use the English-language sentiment analysis system developed by NRC-
Canada (Kiritchenko et al., 2014) in our experiments. This system obtained
highest scores in two recent international competitions on sentiment analysis
of tweets —SemEval-2013 Task 2 and SemEval-2014 Task 9 (Wilson et al., 2013;
Rosenthal et al., 2014). We briefly describe the system below; for more details,

92



we refer the reader to Kiritchenko et al. (2014).

A linear-kernel Support Vector Machine (Chang and Lin, 2011) classifier
is trained on the available training data. The classifier leverages a variety of
surface-form, semantic, and sentiment lexicon features described below. The
sentiment lexicon features are derived from existing, general-purpose, man-
ual lexicons, namely NRC Emotion Lexicon (Mohammad and Turney, 2010,
2013), Bing Liu’s Lexicon (Hu and Liu, 2004), and MPQA Subjectivity Lex-
icon (Wilson et al., 2005), as well as automatically generated, tweet-specific
lexicons, Hashtag Sentiment Lexicon and Sentiment140 Lexicon (Kiritchenko

et al., 2014).4

8.6.1 Generating English Sentiment Lexicon

Ablation experiments in Mohammad et al. (2013) showed that their sentiment
system benefited most from the use of the Hashtag Sentiment Lexicon. The
lexicon was created as follows. A list of 77 seed words, which are synonyms
of positive and negative, was compiled from the Roget’s Thesaurus. Then, the
Twitter API was polled to collect tweets that had these words as hashtags.
A tweet is considered positive if it has a positive hashtag and negative if it
has a negative hashtag. For each term in the tweet set, a sentiment score is
computed by measuring the PMI (pointwise mutual information) between the
term and the positive and negative categories:

SenScore (w) = PM I(w, pos) — PMI(w, neg) (8.1)
where w is a term in the lexicon. PMI(w,pos) is the PMI score between w
and the positive class, and PMI(w, neg) is the PMI score between w and the
negative class. A positive SenScore (w) suggests that the word is associated
with positive sentiment and a negative score suggests that the word is asso-
ciated with negative sentiment. The magnitude indicates the strength of the

association.

4http:/ /www.purl.com/net /lexicons
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Arabic Sentiment Dataset MD RR BBN Syria

sentiment classes pos, neg pos,neg pos, Neg, neu  pos, neg, neu
number of instances 1111 2681 1199 2000
Most frequent class baseline 66.06 68.92 47.95 67.50
Human agreement benchmark - - 73.82 79.05
MD Arabic SA system 72.50 - - -

Our Arabic SA system(surface)  70.65 84.0 62.0 79.45
Our Arabic SA system(lemma) 74.62  85.23 63.89 78.96

Table 8.2: Accuracy (in percentage) of sentiment analysis (SA) systems on
various Arabic social media datasets. Accuracy is calculated based of sum of
true positives of all folds.

8.6.2 Pre-processing and Feature Generation

The following pre-processing steps are performed. URLs and user mentions
are normalized to http://someurl and @someuser, respectively. Tweets are
tokenized and part-of-speech tagged with the CMU Twitter NLP tool (Gimpel

et al.,; 2011). Then, each tweet is represented as a feature vector.

The features:

- Word and character ngrams;

- POS: # occurrences of each part-of-speech tag;

- Negation: # negated contexts. Negation also affects the ngram features: a
word w becomes w_ NEG in a negated context;

- Automatic sentiment lexicons: For each token w occurring in a tweet, its
sentiment score score(w) is used to compute: # tokens with score(w) # 0; the
total score = > Cjueer SCOTE(w); the maximal score = Mazyepmeer Score(w); the
score of the last token in the tweet.

- Manually created sentiment lexicons: For each of the three manual sentiment
lexicons, the following features are computed: the sum of positive and the
sum of negative scores for tweet tokens in affirmative contexts and in negated

contexts, separately.
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surface lemma
count coverage | count coverage
5897 56% 3885 67%
Syria 9856 63% 5644 73%
RR 16005 58% 8416 66%
MD 7620 65% 4706 73%

Table 8.3: Type counts for surface and lemmatized forms of the training sets.
The coverage is the percentage of types in the training data that is covered by
the hashtag lexicon.

8.7 Arabic Sentiment Analysis

8.7.1 Building an Arabic Sentiment System

We built an Arabic sentiment analysis system by reconstructing the NRC-
Canada English system to deal with Arabic text. It extracts all of the feature
described in Section 8.6.2 except POS and negation features. We also gener-
ated a word-sentiment association lexicon as described in Section 8.6.1, but
for Arabic words from Arabic tweets (more details in sub-section below). We
preprocess Arabic text by tokenizing with CMU Twitter NLP tool to deal with
specific tokens such as URLSs, usernames, and emoticons. Then we use MADA
to generate lemmas. Finally, we normalize different forms of Alif and Ya to

bare Alif and dotless Ya to decrease token sparcity in Arabic datasets.

Generating Arabic Sentiment Lexicon

We translated 77 positive and negative seed words used to generate the En-
glish NRC Hashtag Sentiment Lexicon into Arabic using Google Translate.
Among the several translations provided by it, we chose words that were less
ambiguous and tended to have strong sentiment in Arabic texts. To increase
the coverage of our seed list, we manually added different inflections for these
translations.

We polled the Twitter API for the period of June to August 2014 and
collected tweets with #(keyword). After filtering out duplicate tweets and
retweets, we ended up with 163,944 positive unique tweets and 37,848 negative
unique tweets. All tweets are preprocessed by normalizing the Alif and Ya
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pos neg neu

BBN data
a. Ar(Auto.Sent) 39.78 60.05 0.17
b. En(Manl.Trans., Auto.Sent) 43.12 55.63 1.25
c. En(Auto.Trans., Auto.Sent) 42.87 56.05 1.08
Syria data
d. Ar(Auto.Sent) 20.60 75.30 4.10
e. En(Auto.Trans., Auto.Sent) 24.75 69.75 5.50

Table 8.4: Class distribution (in percentage) resulting from automatic senti-
ment analysis.

characters and converting words to their lemmatized form. Then for each

word w, SenScore (w) was calculated just as described in Section 8.6.1.

8.7.2 Evaluation

We tested the Arabic sentiment system on two existing Arabic datasets (Mourad
and Darwish (2013) (MD) and Refaee and Rieser (2014a) (RR)) and two newly
sentiment-annotated Arabic datasets (BBN and Syria). Table 8.2 shows re-
sults of ten-fold cross-validation experiments on each of the datasets. For
MD and RR, the presented results are for the two-class problem (positive vs.
negative) to allow for comparison with prior published results. For BBN and
Syria, the results are shown for the case where the system has to identify one
of three classes: positive, negative, or neutral. Human agreement scores are
shown where available.

We experimented using 2 versions of our system, one trained on the surface
forms of the training data and another one trained on their lemmas. Table
8.2 shows that results from training on lemma forms surpasses the ones on the
original surface forms. Lemmatization decreases the lexical sparsity mainly
through dropping out the affixes from the words and converting it to a form
that maintains its core meaning. Table 8.3 shows a decrease in token types
by around 40% for these datasets. We also calculated the percentage of types
for each dataset that is covered by the hashtag lexicon. A lemmatized lexicon
results with higher coverage to terms in the datasets compared to one generated
from surface forms.

Note that the accuracy of our system (trained on lemmas) is higher than
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previously published results on the MD dataset. The only previously published
results on the RR dataset are on a small subset (about 1000 instances) for
which Refaee and Rieser (2014a) obtained an accuracy of 87%. The results in

Table 8.2 are for a larger dataset and so not directly comparable.

8.8 Sentiment After Translation

Using the methods and systems described in Sections 8.4, 8.5, 8.6, and 8.7, we
generated all the manually and automatically labeled datasets mentioned in
Section 8.3’s Experimental Setup. Table 8.4 shows the distribution of positive,
negative, and neutral classes in datasets that have been automatically labeled
with sentiment. These percentages can be compared with those in Table 8.1
(rows a and d) which show the true sentiment distribution in the BBN and
Syria datasets. Observe that the automatic system has difficulty in assigning
neutral class to posts. This is probably because of the small percentage (about
10%) of neutral tweets in the training data. Also notice that the system
predominantly guesses negative, which is also a reflection of the distribution
in the training data. The strong bias to negatives is lessened in the English
translations.

Main Result: Tables 8.5 and 8.6 show how similar the sentiment labels
are across various pairs of datasets for the BBN posts and the Syrian posts,
respectively. For example, row a. in Table 8.5 shows the comparison between
Arabic tweets that were manually annotated for sentiment and those that were
automatically labeled for sentiment by our Arabic sentiment analysis system.
Column 2 shows the percentage of instances where the sentiment labels match
across the two datasets being compared. For row a. the match percentage of
63.89% represents the accuracy of the automatic sentiment analysis system on
the Arabic BBN posts.

Row b. shows the difference in labels when text is manually translated
from Arabic to English, even though sentiment labeling in both Arabic and
English is done manually. Observe that the two labels match only 71.31%

of the time. However, the agreement among human sentiment annotators on
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Data Pair Match %

a. Ar(Manl.Sent) - Ar(Auto.Sent) 63.89
b. Ar(Manl.Sent) - En(Manl. Trans., Manl.Sent) 71.31
c. Ar(Manl.Sent) - En(Manl. Trans., Auto.Sent) 68.65
d. Ar(Manl.Sent) - En(Auto.Trans., Manl.Sent) 57.21
e. Ar(Manl.Sent) - En(Auto.Trans., Auto.Sent) 62.49
f. En(Manl. Trans., Manl.Sent) - En(Auto.Trans., Manl.Sent) 60.08
g. En(Manl. Trans., Manl.Sent) - En(Manl.Trans., Auto.Sent) 66.51
h. En(Auto.Trans., Manl.Sent) - En(Auto.Trans., Auto.Sent) 69.58

Table 85: Match percentage between pairs of sentiment labelled BBN
datasets.

Data Pair Match %
a. Ar(Manl.Sent) - Ar(Auto.Sent) 78.96
b. Ar(Manl.Sent) - En(Auto.Trans., Manl.Sent) 71.05
c. Ar(Manl.Sent) - En(Auto.Trans.-Auto.Sent) 78.11

d. En(Auto.Trans, Manl.Sent) - En(Auto.Trans., Auto.Sent) 78.80

Table 8.6: Match percentage between pairs of sentiment labelled Syria
datasets.

original Arabic texts was only 73.8%. So, the English translation does affect
sentiment, but not dramatically.

Row c. shows results for when the manually translated text is run through
an English sentiment analysis system and the labels are compared against
Ar(Manl.Sent.) Observe that the match for this pair is 68.65%, which is
not too much lower than 71.31% obtained by manual sentiment labeling. This
shows that the English sentiment system is performing rather well. (One would
not expect it to get a match greater than 71.31%.) More importantly, the
English sentiment system shows a competitive result of 62.49% when run on the
automatically translated text (row e.), which makes this choice a viable option
for sentiment analysis of non-English texts. This result is inline with previous
findings in Information Retrieval (Nie et al., 1999) and Text Classification
(Amini and Goutte, 2010).

Rows d. and e. compare Ar(Manl.Sent.) with manual and automatic sen-
timent labeling of automatic translations. Since automatic translation from
Arabic to English is fairly difficult, we expect these match percentages to be
lower than those in rows b. and c., and that is exactly what we observe. How-

ever, it is unexpected to find the number for row e. to be higher than that of
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row d. We find the same pattern for corresponding data pairs in the Syrian
tweets as well (rows b. and c. in Table 6). This suggests that certain attributes
of automatically translated text mislead humans with regards to the true sen-
timent of the source text. However, these same attributes do not seem to
affect the automatic sentiment analysis system as much. Since the NRC sen-
timent analysis system is largely reliant on word-sentiment associations and
does not use syntax-based features, it is possible that syntactic abnormalities
introduced by automatic translation impact human perception of sentiment.

Row f. shows that manual and automatic translation lead to only about
60% match in manually annotated sentiment labels with each other. Row
g. shows accuracy of the English automatic sentiment analysis system on the
manually translated text (assuming the English sentiment labels as gold). The
result of 66.51% is very close to human agreement on manually translated data
(68%), which demonstrates the high quality of the English sentiment analysis
system. Row h. shows accuracy of the English automatic sentiment analysis
system on the automatically translated text (assuming the English sentiment
labels as gold). In this case, the system’s accuracy of 69.58% is higher than the
human agreement on automatically translated text (65.7%), which again shows
that automatic translation greatly impacts sentiment perceived by humans.

We manually examined several tweets from the BBN dataset to under-
stand why humans incorrectly annotate a tweet’s automatic translation. Most
of the cases were due to bad translation where sentiment words either disap-
peared or were replaced with words of opposite sentiment. In some cases, the
translation was affected by typos on the Arabic side. Table 8.7 shows some
examples. Often the mistranslations occurred due to word sense ambiguity.
For example, JLE.;: has two meanings: scorpions and clock arms. In example
1 (metaphorically stating that relatives can hurt like scorpion bites), the word
is mistranslated, leading to neutral (instead of negative) sentiment.

One reason why the automatic sentiment analysis system correctly anno-
tates several automatically translated instances (where manual annotations of
the translation may fail), is that the system can learn an appropriate model

even from mistranslated text — especially when automatic translation makes
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1. Bad auto. translation: mistranslation of ambiguous words

Post oLls O ,BY AT ol skale Lol

Auto.Trans. the minimum taught me that more relatives clock

Manl. Trans. Life has taught me that most of the relatives are scorpions

2. Bad auto. translation: mistranslation of ambiguous words

Post C,Jﬂiachi:\lo&l_gb;giﬂ

Auto.Trans. 1 wish i live in a place not cut off by snow

Manl. Trans. I wish I live in a place where snow never stops falling

3. Bad auto. translation: sarcasm is hard to translate

Post Olej o 839> 90 Al rL\.'a'J A3l

Auto.Trans. you're still good in front of the leakage of water existed from time
Manl. Trans. Expect more good to come, water has been leaking since a long time

negative

neutral
negative

positive

negative
positive

negative

positive
negative

Table 8.7: Examples where the automatic translation was annotated a sen-
timent different from the sentiment of the original Arabic tweet, but whose
original sentiment was correctly predicted by the English sentiment system.
The manual translations are also listed for reference.

consistent errors. For example, .ail ﬁm (Oh God grant victory to) has been
consistently translated to God forsake. All tweets having this phrase are cor-
rectly annotated as positive by our system, but were marked negative by the
human annotators.

Caveats: The automatic systems employed in these experiments, i.e., Ara-
bic sentiment analysis, English sentiment analysis, and SMT systems, exhibit
state-of-the-art performance; nevertheless, further improvements are possible.
The Arabic sentiment system will benefit from extended sentiment lexicons
and features derived specifically for the Arabic language. The English senti-
ment analysis system can be further adapted to the peculiarities of machine-
translated texts, which are notably different from regular English. The current
translation system has been trained on non-tweet data that results in a high
percentage of out-of-vocabulary words on our datasets. In our experiments,
we assumed that all texts are written in Levantine dialect of the Arabic lan-
guage. However, tweets can have a mixture of dialects or even a mixture of
languages (e.g., Arabic and English). Addressing these factors will give even

more insight on how sentiment is altered on translation, in specific contexts.
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8.9 Summary

We presented a set of experiments to systematically study the impact of En-
glish translation (manual and automatic) on sentiment analysis of Arabic so-
cial media posts. Our experiments show that automatic sentiment analysis of
English translations (even of automatic translations) can lead to competitive
results—results that are similar to that obtained by current state-of-the-art
Arabic sentiment analysis systems. Our results also show that automatic sen-
timent analysis of automatic translations outperforms the manual sentiment
annotations of the automatically translated text. This suggests that SMT
errors impact human perception of sentiment markedly more than automatic
sentiment systems. We also show that translated texts tend to lose some of
the sentiment information and there is a relatively higher percentage of neu-
tral instances in the translated text than in the original dataset. The resources
created as part of this project (Arabic sentiment lexicons, Arabic sentiment
annotations of social media posts, and English sentiment annotations of their

translations) are made freely available.®

http:/ /www.purl.com/net /ArabicSentiment
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Chapter 9

Conclusion

Morphological segmentation and morphological analysis are effective approaches
for sparsity reduction in morphologically complex languages, specifically Ara-
bic. Segmentation manages to improve the SMT system by improving cor-
respondence between source and target language and decreasing token spar-
sity. Similarly, lemmatization improves sentiment analysis through maintain-
ing core meaning of the word while reducing it to a simpler form. In this
dissertation, we aimed to improve translation from English to Arabic in a
phrase-based SMT framework. We addressed several issues concerning deseg-
mentation and moved it from post-processing to a decoder-integrated process.
This opens an opportunity to benefit from both morpheme-based and word-
based properties of the Arabic language. We also measured sentiment pre-
dictability when Arabic social media text is translated to English manually
and automatically, and compared the results to ones obtained using Arabic
sentiment analysis system. In this final chapter, we summarize our work in

this dissertation, highlight the main contributions and discuss future work.

9.1 Summary

We provided a desegmentation technique that is language-independent and
overcomes the limitations of available techniques. We approach desegmenta-
tion as a string transduction problem. Our DIRECTL+ tool is trained on
aligned segmented and unsegmented forms where character aligned pairs be-

come the operation of transduction. When applied to a naturally occurring
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Arabic text, our approach performs the best with a word error rate of 0.087.
However, when tested on a segmented Arabic SMT output, we get similar
results to a Table+Rule-based technique. Our results suggested that merely
improving the desegmentation technique might not contribute much to the
improvement in translation quality. Since desegmentation is dealt with as a
post-processing step, propagated decoder errors are difficult to overcome. Our
analysis implies that the benefits of desegmentation could be well-utilized at
earlier points of the SMT pipeline.

In Chapter 5, we provide an algorithm that desegments the search space
built from segmented Arabic tokens. This supports the SMT system with
two views of the search space. Initially, the system has a morpheme-based
view, where the model’s features are based on segmented Arabic. The second
view is word-based view, where the lattice is desegmented. The desegmented
lattice enables extraction of word-level features, such as scoring on an unseg-
mented language model or using discontiguity features. Our results shows an
improvement of 0.7 BLEU points compared to the 1-best-desegmentation base-
line. The system seems to have two main benefits from desegmentation and
adding word-level features. First, the desegmented form’s correctness is always
evaluated with the unsegmented language model, given its desegmented con-
text. The unsegmented language model can span a larger morphemic context
compared to segmented language model. Second, our analysis reveals that dis-
contiguity features have a positive effect on the choice of clitics. Desegmented
words aligned to consecutive source tokens are favored by the system over ones
aligned to discontiguous source tokens. An incorrect clitic in a desegmented
form can not contribute to the BLEU score. Among several correct transla-
tions of English prepositions, our system is able to choose the correct ones
that contributes to the BLEU score.

Our lattice desegmentation algorithm showed significant improvement in
the quality of the translation. Yet, desegmenting the lattice is not the only op-
tion. In Chapter 6, we provide a systematic study that explores all options of
integrating desegmentation in the SMT pipeline by changing the point where

we apply desegmentation. In addition to the lattice, we apply desegmentation
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to the alignment and the phrase table. One thing these approaches have in
common is that they all output unsegmented Arabic, but exploit segmenta-
tion properties. Our results confirmed that lattice desegmentation was the
best integration option. By desegmenting the alignment and phrase table, we
are giving up the most significant property of desegmentation: phrases with
flexible boundaries. Although these phrases accounted for 12% of phrases in
the output, they appear to be responsible for the difference in BLEU score
between the one-best-desegmentation and the unsegmented baseline. We also
examined the impact of an unsegmented language model in our experiments.
The unsegmented language models always contributed to the BLEU score.
But at the same time, it caused a drop in the use of morphologically complex
words. Our analysis suggests that systems using unsegmented language mod-
els could also be improved by using features that encourage the morphological
productivity of the system, as this can have a positive impact on fluency.

A limitation of our lattice desegmentation approach is that it applies de-
segmentation as an offline process to a pre-generated search space from the
decoder. To overcome this limitation, we developed a model that integrates
desegmentation directly with the decoder (Chapter 7). Desegmentation and
word-level feature extraction are handled while hypotheses are expanded in
the decoder. Our in-decoder approach produces results with similar scores to
the lattice desegmentation. At the same time, the method adds no complica-
tions to the SMT pipeline, which remains as simple as train, tune and decode
(while the desegmentation is running through the decoding).

On a different work, we managed to evaluate the loss of sentiment pre-
dictability when Arabic tweets are translated manually and automatically into
English (Chapter 8). Competitive results were shown compared to running our
state-of-the-art Arabic sentiment analysis system developed by us on Arabic
tweets. Also, sentiment analysis on automatically translated text surpasses
the human annotation of automatically translated text. Our analysis reveals
that the SMT system translates Arabic source tokens more consistently. Since
the automatic sentiment analysis system is trained on these consistently trans-

lated text with the original sentiment labels of the source text, it is still able
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to determine the true sentiment. However, since human sentiment annotators
see many instances where the sentiment terms are mistranslated into neutral

terms, they are unable to determine the true sentiment.

9.2 Future Work

The desegmentation technique we adopt in Chapters 5, 6 and 7 is table-based.
As desegmentation can lead to different unsegmented word forms, we limited
our choice to the most frequent option from the desegmentation table. We
plan to expand this work and handle multiple desegmentation options. Also,
we plan to experiment with translating from English into Arabic lemmas.
The purpose of the table in this case is to map sequences of Arabic lemmas
with their clitics to an inflected form attached to its clitics. This increases the
options in our search space. Moreover, we can leave choosing the better option
to the unsegmented language model, or to integrating additional word-based
or part-of-speech features.

The unsegmented language model in our in-decoder desegmentation ap-
proach in Chapter 7 can not handle out of context scoring of phrases with
flexible boundaries. We plan to improve the unsegmented language modeling
such that it can give a better estimation for such cases. This allows good
hypotheses to be still considered in the search space, and not get discarded
early.

In this dissertation, we handled the problems of translation from English
into Arabic from a morphological perspective. An interesting future plan is to
expand this work to also handle agreements that affect the Arabic words’ sur-
face forms. A language model usually handles agreement implicitly. However,
when translating into Arabic with its rich morphology, we need to integrate
more information about the context. In particular, syntactic features can be
incorporated into the system, which can be passed to future translation op-
tions.

A large number of out-of-vocabulary words are proper nouns that are usu-

ally left untranslated or dropped from the final output. The SMT system can

105



be improved by transliterating these words. Our research on transliterating
Arabic names to English is a state-of-the-art (Kondrak et al., 2012; Nicolai
et al., 2015). We plan to train transliteration from English to Arabic and in-
tegrate the transliteration system with the SMT system to better handle such
transliterations.

Our current Arabic sentiment analysis system can not handle negations
terms in Arabic. Negation in modern standard Arabic (MSA) appears as a
free morpheme, while it appears as a circumfix in some dialects. One in-
teresting direction is to allow the system to handle negations by taking into

consideration the scope that it negates.
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