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Abstract

This thesis presents the results of concentric punching tests performed on twelve
reinforced flat plate specimens. On the basis of these tests, a model for the ultimate
strength of flat plate-column connections is proposed.

Isolated, interior column-plate connection specimens were tested. Rotational
restraint was provided at the plate boundaries. Specimens were 155 mm thick and
2750 mm square in plan. Four of the specimens were reinforced with steel fibers. The
major variables were fiber content, position of steel reinforcement, density of steel
reinforcement passing through the column and degree of edge restraint. These tests were
designed to test the validity of the truss model, as proposed by Alexander and Simmonds.

The straight-line truss model is found to be an inadequate description of the
behavior of a slab-column connection. A new model that provides a more accurate
description of the behavior of the test specimens is developed in a manner consistent with
a lower bound solution for punching failure. This model, called the bond model, is
successfully applied to 116 tests in the literature.

The bond model describes an interior column-plate connection as the intersection of
four radial strips that are parallel to the reinforcement. The punching load is a function of
both the flexural strength of these strips and the ability of the adjacent plate to deliver
load to the strips.

According to the bond model, punching failure results from the limited ability of a
plate to generate force gradient in flexural reinforcement close to a column support.
Particular attention is given to the importance of bond in limiting force gradient.

The bond model is compared to existing code appproaches for estimating punching
strength. There is some discussion as to how the bond mode! may be incorporated in a

complete description of the shear-moment interaction of an edge or corner column-plate

connection.



Table of Contents
1 Introduction
1.1 Description of Problem
1.2 Scope of Study
2 Background
2.1 Description of Punching Failure
2.1.1 Flexural Failure
2.1.2 Shear Failure
2.2 Methods of Testing
2.3 Observed Behavior
2.4 Existing Approaches for Estimating Punching Capacity
2.4.1 Concrete Rupture Models
2.4.2 Flexural Models
2.4.3 Truss Model
2.5 Objectives of Testing
3 Specimens, Apparatus and Procedure
3.1 Description of Test Specimens
3.1.1 Reinforcement
3.1.2 Concrete
3.1.3 Casting, Stripping and Storing of Specimens
3.2 Test Apparatus
3.3 Instrumentation

3.3.1 Strain Measurements

3.3.2 Linear Variable-Differential Transformers (LVDT’s)

3.3.3 Load Cells
3.4 Test Procedure



4 Observations and Evaluation
4.1 Flexural Behavior
4.2 Strain Gauge Measurements
4.2.1 Bar Force Profiles
4.2.2 Force Gradients
4.2.3 Anchorage Failure
4.2.4 Bottom Mat Strain Gauges
4.3 Miscellaneous Observations
4.3.1 Cracking
4.3.2 Demec Data
4.3.3 Overall Expansion
4.4 Effects of Test Variables
4.4.1 Effect of Steel Placement
4.4.2 Effect of Fibers
4.4.3 Effect of Boundary Restraint
4.5 Evaluation of Straight-Line Truss Model
5 Development of the Bond Model
5.1 Background
5.2 Elements of Bond Model
5.2.1 Radial Strips
5.2.2 Loading of Radial Strip
5.2.2.1 Primary Shear
5.2.2.2 Torsional Shear
5.3 Equilibrium of Radial Strip
5.3.1 Actual Loading of Radial Strip
5.3.2 Simplified Loading of Radial Strip

41
41
43
45
45
48
49
50
50
51
52
52
52
54
35
57
75
75
78
78
79
81
83
85
85
86



5.4 Bond Model Capacities
5.4.1 Flexural Capacity of Radial Strip
5.4.2 Primary Shear Loading
5.4.2.1 Bond Strength
5.4.2.2 Nominal Shear Stress
5.4.3 Ultimate Strength of Slab-Column Connection
5.4.4 Limits of Bond Model
6 Application of Bond Model
6.1 Assessment of Bond Model Mechanism
6.1.1 Measured Force Gradients
6.1.2 Boundary Effects

6.1.3 Correlation of Ultimate Load and Measured Force Gradient

6.1.3.1 Specimens Without Fiber Reinforcement
6.1.3.2 Specimens With Fiber Reinforcement

6.2 Ultimate Strength Predictions Based on the Bond Model

6.2.1 Test Results from the Literature
6.2.2 One-Way Shear, Two-Way Shear and Bond
6.2.3 Beam Action Shear and Bond
6.3 Comparison of Bond Model with Code Methods
6.3.1 Critical Sections
6.3.2 Effect of Aspect Ratio
6.4 Further Discussion of Bond Model
6.4.1 Causes of Punching Failure
6.4.2 Edge Column-Slab Connections

6.4.3 Relationship Between Other Models and the Bond Model

6.4.4 Future Work

88
88

90

91

92

93

101
101
101
105
107
108
112
113
114
116
122
124
124
126
127
127
129
130
130



7 Conclusions
References
Reinforcement Details
Load and Deformation Measurements
Strain Gauge Data
Demec Data

Tests in the Literature

144
146
150
153
177
208
214



Table 3.1
Table 3.2
Table 3.3
Table 4.1
Table 4.2
Table 6.1
Table 6.2
Table 6.3

Table 6.4
Table C-1
Table E-1
Table E-2

Table E-3

Table E-4

Table E-5

Table E-6
Table E-7

Table E-8
Table E-9
Table E-10
Table E-11

List of Tables

Test Descriptions

Concrete Test Results

Concrete Toughness Test Results

Selected Load-Deflection Data

Geometry of Straight-Line Truss Model

Measured Force Gradients

Primary Shear Loads Based on Measured Gradients

Summary of Bond Model Results for Tests in
Literature (116 Tests)

Measured and Predicted Values of w
Description of Force Gradient Intervals
Description of Test Specimens: Moe (1961)

Description of Test Specimens: Elstner and
Hognestad (1956)

Description of Test Specimens: Kinnunen and
Nylander (1960)

Description of Test Specimens: Regan, Walker and
Zakaria (1979)

Description of Test Specimens: Rankin and Long
(1987)

Description of Test Specimens: Gardner (1990)

Description of Test Specimens: Shilling and
Vanderbilt (1970)

Description of Test Specimens: Lunt (1988)
Calculated Results: Moe (1961)

Calculated Results: Elstner and Hognestad (1956)
Calculated Results: Kinnunen and Nylander (1960)

32
33
33

132
132
133

133
177
214
214

215
215
216

217
218

219
220
221
222



Table E-12 -

Table E-13
Table E-14
Table E-15
Table E-16

Calculated Results: Regan, Walker and Zakaria
(1979)

Calculated Results: Rankin and Long (1987)
Calculated Results: Gardner (1990)

Calculated Results: Shilling and Vanderbilt (1970)
Calculated Results: Lunt (1988)

223

224
226
227
228



Figure 2.1
Figure 2.2
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11

List of Figures

Typical Punching Failure

Straight-Line Idealization of Compression Fan

Basic Reinforcement Layout

Typical Load vs. Strain for Steel Coupon Test
Photo of Steel Fiber

Load-Deflection of Fiber Reinforced Beams
Notched Beam and Cylinder Test Set-Ups
Standard Test Set-Up

Plan View of P19RC

Plan View of PI9RB

Top Demec Pattern

Bottom Demec Pattern

Edge Rotation and Expansion Measurements
View of Test in Progress

Load-Deflection: Variable Clear Cover
Load-Deflection: Variable Spacing
Load-Deflection: Clear Cover of 11 mm
Load-Deflection: Clear Cover of 38 mm
Load-Deflection: Variable Edge Restraint
Idealized Folding Pattern of Plate

Diagram of Half Plate

Flexural Performance

Bar Force Profile: P11F0

Bar Force Profile: PI9RB

Column Bar Force Gradients: P11F0



Figure 4.12-

Figure 4,13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21
Figure 4.22
Figure 4.23
Figure 4.24
Figure 4.25
Figure 4.26
Figure 4.27
Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8
Figure 6.1

Column Bar Forces: P11F0

Perimeter Bar Force Gradients: P11F0
Perimeter Bar Forces: P11F0

Column Bar Force Gradients: P19S50
Column Bar Forces: P19S50

Bottom Mat Bar Forces at Face of Column
Bond Cracking

Top Crack Pattern: P19RE

Top Crack Pattern: PI9RC

Bottom Crack Pattern: P19RE

Bottom Crack Pattern: PI9RC

Shear Crack: P19RE

Summary of Bottom Demec Strains

Compression Side of Plate at Column: P19RE
Compression Side of Plate at Column: P11F66

Geometry of Straight-line Compression Strut

Radial Arch

Layout of Radial Strips

Isolated Radial Half-Strip

Derivation of Kirchhoff Shear
Equivalent Loading of Radial Half-Strip
Optimized Loading of Radial Half-Strip

Assumed Rupture Surfaces for Morita and Fujii

Bond Estimate
Practical Loading of Radial Half-Strip

Geometry for Determining Effectiveness of Bottom

Reinforcement

66
67
67
68
68
69
69
70
70
71
71
72
72
73
73
74
97
97
98
98
99
99

100
134



Figure 6.2

Figure 6.3
Figure 6.4
Figure 6.5

Figure 6.6
Figure 6.7
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure A-1
Figure A-2
Figure A-3
Figure B-1
Figure B-2

Figure B-3
Figure B-4

Figure B-5
Figure B-6

Figure B-7

Figure B-8

Effect of Reinforcement Ratio on One-Way Shear

Strength

Bond Model Predictions Using ACI Code One-Way

Shear Stress

Bond Model Predictions Using BS 8110 Code
One-Way Shear Stress

Bond Model Predictions Using Morita and Fujii
Estimate of Bond Strength

ACI Code Predictions

BS 8110 Code Predictions

Critical Sections Defined by Codes

Equivalent of Critical Section for Bond Model
Comparison of Bond Model and ACI Code
Comparison of Bond Model and BS §110 Code
Effect of Column Rectangularity

Top Mats with Reinforcement Spaced at 150 mm
Top Mats for Specimens P19S75 and P19550
Bottom Mat and Positions of Reinforcement
Load-Deflection Diagrams: P11F0

Ratio of Edge Restraint to Average Load in Tie
Rods: P11F0

Data from LVDT’s Measuring Plate Expansion:
P11F0

In-Plane Expansion of Plate Near Center-Line:
P11F0

Load-Detiection Diagrams: P11F31

Ratio of Edge Restraint to Average Load in Tie
Rods: P11F31

Data from LVDT’s Measuring Plate Expansion:
P11F31

In-Plane Expansion of Plate Near Center-Line:
P11F31

134

135

136

137

138
139
140
140
141
142
143
150
151
152
154
154

155

155

156
156

157

157



Figure B-9 -
Figure B-10

Figure B-11
Figure B-12

Figure B-13
Figure B-14

Figure B-15
Figure B-16

Figure B-17
Figure B-18

Figure B-19
Figure B-20

Figure B-21
Figure B-22

Figure B-23
Figure B-24

Figure B-25
Figure B-26

Figure B-27

Load-Deflection Diagrams: P11F66

Ratio of Edge Restraint to Average Load in Tie
Rods: P11F66

Data from LVDT’s Measuring Plate Expansion:

P11F66

In-Plane Expansion of Plate Near Center-Line:
P11F66

Load-Deflection Diagrams: P38F0

Ratio of Edge Restraint to Average Load in Tie
Rods: P38F0

Data from LVDT’s Measuring Plate Expansion:

P38F0

In-Plane Expansion of Plate Near Center-Line:
P38F0

Load-Deflection Diagrams: P38F34

Ratio of Edge Restraint to Average Load in Tie
Rods: P38F34

Data from LVDT’s Measuring Plate Expansion:

P38F34

In-Plane Expansion of Plate Near Center-Line:
P38F34

Load-Deflection Diagrams: P38F69

Ratio of Edge Restraint to Average Load in Tie
Rods: P38F69

Data from LVDT’s Measuring Plate Expansion:

P38F69

In-Plane Expansion of Plate Near Center-Line:
P38F69

Load-Deflection Diagrams: P195150

Ratio of Edge Restraint to Average Load in Tie
Rods: P19S150

Data from LVDT's Measuring Plate Expansion:

P19S150

158
158

159

159

160
160

161

161

162
162

163

163

164
164

165

165

166
166

167



Figure B-28

Figure B-29
Figure B-30

Figure B-31
Figure B-32

Figure B-33
Figure B-34

Figure B-35
Figure B-36

Figure B-37
Figure B-38

Figure B-39
Figure B-40

Figure B-41
Figure B-42

Figure B-43
Figure B-44

Figure B-45
Figure B-46

Figure C-1

In-Plane Expansion of Plate Near Center-Line:
P19S150

Load-Deflection Diagrams: P19S75

Ratio of Edge Restraint to Average Load in Tie
Rods: P19S75

Data from LVDT’s Measuring Plate Expansion:

P19875

In-Plane Expansion of Plate Near Center-Line:
P19S75

Load-Deflection Diagrams: P19S50

Ratio of Edge Restraint to Average Load in Tie
Rods: P19S50

Data from LVDT’s Measuring Plate Expansion:

P19S50

In-Plane Expansion of Plate Near Center-Line:
P19S50

Load-Deflection Diagrams: PI9RE

Ratio of Edge Restraint to Average Load in Tie
Rods: P19RE

Load-Deflection Diagrams: P1I9RC

Ratio of Edge Restraint to Average Load in Tie
Rods: PI9RC

Data from LVDT’s Measuring Plate Expansion:

P19RC

In-Plane Expansion of Plate Near Center-Line:
P19RC

Load-Deflection Diagrams: P19RB

Ratio of Edge Restraint to Average Load in Tie
Rods: PI9RB

Data from LVDT's Measuring Plate Expansion:

P19RB

In-Plane Expansion of Plate Near Center-Line:
P19RB

Bar Force Profiles: P11FO

167

168
168

169

169

170
170

171

171

172
172

173
173

174

174

175
175

176

176

178



Figure C-2°
Figure C-3

Figure C-4

Figure C-5

Figure C-6

Figure C-7

Figure C-8

Figure C-9

Figure C-10
Figure C-11
Figure C-12
Figure C-13
Figure C-14
Figure C-15
Figure C-16
Figure C-17
Figure C-18
Figure C-19
Figure C-20
Figure C-21
Figure C-22
Figure C-23
Figure C-24
Figure C-25
Figure C-26
Figure C-27
Figure C-28

Bar Force Profiles: P38F0

Bar Force Profiles: P11F31

Bar Force Profiles: P38F34

Bar Force Profiles: P11F66

Bar Force Profiles: P38F69

Bar Force Profiles: P19S150

Bar Force Profiles: P19S75

Bar Force Profiles: P19S50

Bar Force Profiles: PI9RE

Bar Force Profiles: PI9RC

Bar Force Profiles: PI9RB

Column Bar Force Gradients: P11F0
Column Bar Forces: P11F0

Perimeter Bar Force Gradients: P11F0
Perimeter Bar Forces: P11F0

Column Bar Force Gradients: P11F31
Column Bar Forces: P11F31
Perimeter Bar Force Gradients: P11F31
Perimeter Bar Forces: P11F31
Column Bar Force Gradients: P11F66
Column Bar Forces: P11F66
Perimeter Bar Force Gradients: P11F66
Perimeter Bar Forces: P11F66
Column Bar Force Gradients: P38F0
Column Bar Forces: P38F0

Perimeter Bar Force Gradients: P38F0

Perimeter Bar Forces: P38F0

178

179
179
180
180
181

181

182
182
183
183
184
184
185
185
186
186
187
187
188
188
189
189
190
190
191
191



Figure C-29
Figure C-30
Figure C-31
Figure C-32
Figure C-33
Figure C-34
Figure C-35
Figure C-36
Figure C-37
Figure C-38
Figure C-39
Figure C-40
Figure C-41
Figure C-42
Figure C-43
Figure C-44
Figure C-45
Figure C-46
Figure C-47
Figure C-48
Figure C-49
Figure C-50
Figure C-51
Figure C-52
Figure C-53
Figure C-54
Figure C-55

Column Bar Force Gradients: P38F34
Column Bar Forces: P38F34

Perimeter Bar Force Gradients: P38F34
Perimeter Bar Forces: P38F34

Column Bar Force Gradients: P38F69
Column Bar Forces: P38F69

Perimeter Bar Force Gradients: P38F69
Perimeter Bar Forces: P38F69

Column Bar Force Gradients: P19S150
Column Bar Forces: P195150
Perimeter Bar Force Gradients: P195150
Perimeter Bar Forces: P195150
Column Bar Force Gradients: P19S75
Column Bar Forces: P19§75

Perimeter Bar Force Gradients: P19§75
Perimeter Bar Forces: P19S75

Column Bar Force Gradients: P19S50
Column Bar Forces: P19S50

Perimeter Bar Force Gradients: P19S50
Perimeter Bar Forces: P19S50

Column Bar Force Gradients: PI9RE
Column Bar Forces: PI9RE

Perimeter Bar Force Gradients: PI9RE
Perimeter Bar Forces: PI9RE

Column Bar Force Gradients: PI9RC
Column Bar Forces: PI9RC

Perimeter Bar Force Gradients: P19RC

192
192
193
193
194
194
195
195
196
196
197
197
198
198
199
199
200
200
201
201
202
202
203
203
204
204
205



Figure C-56
Figure C-57
Figure C-58
Figure C-59
Figure C-60
Figure D-1

Figure D-2
Figure D-3
Figure D-4
Figure D-5
Figure D-6
Figure D-7
Figure D-8
Figure D-9

Figure D-10

Perimeter Bar Forces: PI9RC

Column Bar Force Gradients: PI9RB
Column Bar Forces: P19RB

Perimeter Bar Force Gradients: PI9RB

Perimeter Bar Forces: PI9RB

Bar Force Profiles from Demec Measurements:

P11F0

Bar Force Profiles from Demec Measurements:

P38F0

Bar Force Profiles from Demec Measurements:

P11F31

Bar Force Profiles from Demec Measurements:

P38F34

Bar Force Profiles from Demec Measurements:

P11F66

Bar Force Profiles from Demec Measurements:

P38F69

Bar Force Profiles from Demec Measurements:

P19S150

Bar Force Profiles from Demec Measurements:

P19S75

Bar Force Profiles from Demec Measurements:

P19S50

Bar Force Profiles from Demec Measurements:

PI9RC

205
206
206
207
207
209

209

210

210

211

211

212

212

213

213



b

b b b,

=~ &~

Notation

width of plate strip for definition of p* and p~

non-dimensional terms characterizing rupture surface for Morita and
Fujii procedure for estimating bond strength

width of beam
dimension of column face

effective depth of reinforcing mat measured from center of mat to far
side of slab

diameter of reinforcing bar

cover of reinforcing mat measured from center of mat to near side of
plate

yield stress of steel

cylinder strength of concrete

concrete modulus of rupture

concrete tensile strength from split cylinder test

ratio of internal flexural moment arm to d

restraint factor

ratio of ER to TR

loaded length of radial strip

distributed bending moment on side face of radial strip
distributed torsional moment on side face of radial strip
distributed load applied directly to radial strip, including self-weight
line load on radial half-strip resulting from ¢
dimensions describing geometry of compression strut
spacing of reinforcement

effective spacing of reinforcement (truss model)
distributed shear in plate

line load on radial half-strip resulting from Kirchhoff shear



w, W, bond model loading term from one adjacent quadrant of plate
wyer bond model loading term based on ACI code beam shear; BS 8110

Wact; ekt code beam shear; Morita and Fujii procedure for estimating bond
strength

A, area of single reinforcing bar

A, total area of flexural reinforcement for a beam

A, total area of strut steel (truss model)

Az top steel reinforcing radial strip

A bottom steel reinforcing radial strip

CR corner restraint load

concrete modulus of elasticity

. steel modulus of elasticity
ER edge restraint load
F, force in reinforcing bar
F,’ force gradient in reinforcing bar
G, fracture energy of concrete
K non-dimensional parameter used to estimate tan o in truss model
L total length of radial strip
Ms flexural capacity of radial strip
M" M positive and negative moment capacities of radial strip
P column load
P... summation of loads carried by all radial strips framing into column
Ppe yield-line flexural capacity of plate assuming undeformed geometry
P, load carried by single radial strip
| ultimate load predicted by truss model
Pu, P, test value of ultimate load; load at first yield

TR average load in tie rods
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Sus

shear force acting on beam cross-section

angle of concrete compression strut relative to horizontal (truss model)
center deflection of plate; at yield; at ultimate load

strain of reinforcement

strain gradient of reinforcement

density of bottom reinforcement in radial strip

density of top reinforcement in radial strip

horizontal shear stress required by beam a.. idon shear

bond shear on reinforcing bar according to Morita and Fujii procedure



Chapter 1
Introduction

1.1 Description of Problem

Flat plate structures consist of reinforced concrete slabs supported on columns with-
out drop panels or column capitals. They are an economical form of high-rise construc-
tion because the absence of projecting beams, drop panels and capitals simplifies
formwork and allows the application of interior finishes directly to the soffit of the slab.

The design of flat plate structures is generally governed by serviceability limits on
deflection or by the ultimate strength of the column-plate connections. Failure of the
column-plate connection, usually called punching failure, is of particular concern because
of its catastrophic consequences.

Existing building code design procedures for the punching strength of column-plate
connections are largely empirical. There is justifiable concern that, as building tech-
niques and materials change, these procedures may not ensure safe structures. It is
widely held ihat a mechanical model which explains the transfer of load between plate
and column would form a more reliable basis for design procedures.

The development of a general model is complicated by two features of column-
plate connections. First, the failure is concealed by the surrounding plate, making direct
observation of the events leading to failure impossible. Second, column-plate
connections may be loaded under any combination of vertical load and moment, making
it difficult to develop a general model which can handle all load cases. It is not surprising
that, despite considerable research, a simple but general mechanical model for the trans-

fer of load between plate and column has yet to be developed.



1.2 Scope of Study
The truss model, as proposed by Alexander and Simmonds (1986), appears to have

the potential of providing a general solution to the problem of estimating the strength of a
slab-column connection. It handles a wide variety of loading combinations on edge
column-slab connections with considerable accuracy, as well as concentrically loaded
interior column-slab connections.

The truss model assumes that a slab-column connection may be adequately
described as a space truss composed of straight-line concrete compression struts and steel
tension ties. For a slab-column connection under concentric load, the main parameter
which must be estimated in applying the truss model is the effective angle, o, between
the compression struts and the plane of the slab. This is accomplished by means of an
empirical expression based on tests reported in the literature.

Tests of twelve flat plate-column specimens are reported in this thesis. The princi-
pal goal of this testing was to check the validity of the truss model. If the model proved
satisfactory, then it was believed that a less empirical approach to determining the
effective angle, a, could be developed on the basis of extensive measurements of steel
reinforcement strains in the vicinity of the column. If the truss model was shown to be
inadequate, then it was hoped that these same measurements would suggest an alterna-
tive.

Based on the observations recorded in these tests and those in the literature, a
revised model for the transfer of shear between a flat plate and a column is proposed.
This new model, called the bond model, is a modification of the truss model, in which
straight-line compression struts are replaced by curved compression arches. Bond of

reinforcement plays a central role in determining the geometry of the arches.

W



The scope of this study is limited to connections with concentrically loaded, square
or circular columns. In Chapter 6, however, the application of the bond model to the case
of an edge or corner column-slab connection under combined shear and moment is dis-

cussed, as well as other implications of the model.



Chapter 2
Background

2.1 Description of Punching Failure

The term punching failure describes the localized failure of a reinforced concrete
flat plate-column connection wherein the column and an attached portion of the plate
push through the surrounding plate. The failure surface is usually described as a trun-
cated cone or pyramid, with the fracture surface inclined at an angle of about 25 to 35
degrees with the horizontal. A section sawn through a typical punching failure is shown
in Figure 2.1.

Almost all flat plate-column connections appear to fail by punching. However,
punching failures may occur before or after the development of the full flexural capacity
of the plate, as calculated by yield-line methods. As a result, there is considerable debate
as to when a punching failure constitutes a shear failure. Clyde and Carmichael (1974)
suggest that the two terms are synonymous. This view, however, is not universally
shared.

Gesund (1975) states that many tests, reported in the literature as punching failures,
were actually local flexural failures. He proposes three categories of column-plate con-
nection failure: flexural punching, shear-tension punching and shear-compression punch-
ing. A semi-empirical parameter is used to predict the goverhing type of failure for any
particular connection.

In a similar vein, advocates of plasticity approaches to punching , as presentzd by
Regan and Braestrup (1985), contend that a "proper" punching failure is related only to
rupture of the concrete and is not enhanced by flexural reinforcement. Dependence on

flexural reinforcement is seen as evidence that the failure is not punching.



Criswell (1974) discusses a gradual transition between flexural and shear failures of
slab-column connections. He tries to separate shear and flexural failures on the basis of
how much ductility is evident prior to fracture and whether or not the flexural capacity of
the plate is reached.

Punching failures are considered analogous to shear failures in beams. There are
presumed to be two-way plate equivalents to the shear and flexural failures observed in
beams. As will be shown, however, there is no clear definition of a flexural failure in a
two-way plate. The assumption of two distinct categories of punching failure, namely

flexural and shear, inevitably leads to a third transitional category.

2.1.1 Flexural Failure

In a reinforced concrete beam, flexural failure is defined by crushing of the concrete
compression block. This may occur before (over-reinforced) or after (under-reinforced)
yielding of the flexural reinforcement. In either case, the concrete compression force is
an essential component of the resisting moment at a cross-section. Its loss directly affects
the flexural capacity of the cross-section.

An under-reinforced concrete beam undergoes an abrupt change in structural stiff-
ness upon yielding of its flexural reinforcement. Yielding is concentrated over a short
length of the beam. The total load carried by the beam is relatively constant while
deformations increase greatly, making the flexural capacity of the beam a well-defined
upper limit on its carrying capacity.

Most would agree that if a beam reaches its flexural capacity, it does not fail in
shear. If this is true, then it is also true that if a beam fails in shear, it does not reach its
flexural capacity. For beams, because the flexural capacity is such a well-defined quan-

tity, this indirect definition of shear failure is very useful. Assuming adequate anchorage



of the reinforcement so that the bars cannot pull out, any flexurally under-reinforced
beam without shear reinforcement that fails prior to yielding may be termed a shear fail-
ure. The definition of a shear failure need not be based on the observed failure of a par-
ticular component within the beam that is essential to shear transfer. Instead, shear
failures in beams are indirectly defined as those failures that are not flexural.

For two-way plates, flexural capacities are usually based on yield-line analyses.
However, for most tests, reaching this calculated flexural capacity does not correlate well
with the onset of ductile behavior. Test results on simply supported plates routinely
exceed these upper bound estimates by as much as 30 per cent. Explanations for this
excess flexural strength include membrane forces, boundary restraints and second order
effects which allow the slab to act as a folded plate. In any case, it seems clear that the
yield-line capacity of a plate does not provide a convincing definition of a flexural fail-
ure. Therefore, the calculated flexural capacity is an unattractive criterion for the defini-

tion of the upper limit of shear failure.

2.1.2 Shear Failure
The definition of flexural failure in beams is related to observed failure of internal

components that can be shown to play a role in carrying moment. In order to define shear
failure of a plate-column connection, more attention must be given to the behavior of
those internal components that are necessary for shear.

Shear is related to moment gradient by the equations of statics. In reinforced con-
crete, assuming that all flexural tensions are carried by steel, moment gradient can be
achieved either by arching action, which requires a changing internal flexural moment

arm, or by beam action, which requires a force gradient in the reinforcement.



For a member to fail in shear, it must reach some limiting factor for beam or
arching action. Beam action is governed by those factors which limit force gradient,
namely bond and yield of the reinforcement. In the absence of shear reinforcement,
arching action is controlled mainly by the proximity of the applied loads to the supports.

The question of whether a specimen fails in flexure or shear should be replaced
with the question of whether the failure was concerned with the mechanism of moment
capacity or moment gradient. Consider a lightly reinforced plate whiéh exceeds its calcu-
lated yield-line capacity. With increases in deflection, yielding spreads away from the
column and the average force gradient in the reinforcement close to the column is
reduced. By the equations of statics, the loss of force gradient close to the column should
reduce the shear capacity. Additional spreading of yield further compromises shear
strength, raising the possibility that failure is reached when the declining shear strength
reaches the flexural capacity.

Force gradient in the reinforcement may also be controlled by the bond strength at
the reinforcement to concrete interface. A limiting bond strength would certainly provide
a bound for the force gradient in the reinforcement. The nature of this limit, however,
would be quite different than the one imposed by yielding of the steel. Bond failure
would introduce a brittle quality to the failure mechanism.

One concludes that punching failure may always be explained in terms of a shear
failure. Shear failures are the result of a failure of the slab to generate required moment
gradient. 'They may occur before or after the development of a yield-line mechanism
within the plate. This is consistent with the observation that almost all column-plate con-
nections ultimately have a punching failure. The reason that all the failure surfaces look

about the same, whether or not a folding mechanism has developed, is that they are all

shear failures.



For the most part, it is felt that punching failures reported in the literature as flexu-
ral failures were really ductile shear failures brought about by the spread of yielding.
Those punching failures which are considered "proper” are either over-reinforced flexural
failures or brittle shear failures which resulted from bond failure of the reinforcement.

The distinction between a flexural failure and a shear failure which is caused by
extensive yielding is perhaps only of academic interest. For the purposes of design, only
the brittle punching shear failure is of interest. This suggests that a model for the punch-

ing strength of column-slab connections should begin with an understanding of reinforce-

ment bond.

2.2 Methods of Testing

By far the greatest number of tests on concentrically loaded interior column-slab
connections have been performed on isolated column-slab connection specimens with
rotationally unrestrained edges. The plates are either circular or square in plan, with their
size determined by the approximate position of radial contraflexure of a prototype struc-
ture. Plate loads are applied on the perimeter at either discrete point or line supports. In
the case of square plates on line supports, corners are generally free to lift.

The overall flexural behavior of a simply supported, single column-slab connection
test is affected by the gross geometry of the plate and loading arrangement. Round plates
supported around the perimeter by a ring or by tie rods at evenly spaced positions have
fairly uniform radial crack patterns, suggesting polar-symmetric behavior. Tests of this
type were done by Kinnunen and Nylander (1960) and Gardner (1990).

For square plates on square supports with plate comers free to lift, such as those
tested by Elstner and Hognestad (1956), Moe (1961), Regan et al (1979) and Rankin and

Long (1987), load tends to concentrate on the central region of each edge of the plate.



This rearrangement of load effectively prevents the opening of radial cracks which are
parallel to the reinforcement. Cracking that is associated with the yield-line mechanism
of the plate is constrained to be at some angle to the reinforcement.

Isolated column-slab connection tests have been criticized for failing to model such
features as moment redistribution and in-plane restraint. Nevertheless, this type of test
remains popular owing to its simplicity.

Tests reported by Shilling and Vanderbilt (1970) and Lunt (1988) have more realis-
tic boundary conditions. In these tests, some form of rotational restraint was provided on
the plate edges.

For the tests of Shilling and Vanderbilt, the torsional stiffness of an edge beam cast
integrally with the plate provided rotational restraint. Each specimen was vertically sup-
ported at four comners and the central column stub. Load was applied by means of an air -
bag. The rotational restraint provided by the edge beam was internal to the overall
specimen and could not be measured directly.

The specimens tested by Lunt extended to the center span of the plate in all direc-
tions. Sixteen equal vertical loads were applied to the plate. Vertical extension arms
attached around the perimeter of the plate permitted vertical displacement but restrained
rotation. Although it would have been possible to measure directly the amount of rota-
tional restraint provided by the extension arms, these loads were not reported.

Long and Masterson (1974) report a series of comparative tests between rotationally
restrained and simply supported plates. Specimens were tested under combined shear
and unbalanced moment. The restrained specimens were larger in plan and failed at
higher loads than their simply supported counterparts. Masterson and Long attributed the

increased strength to increased membrane forces generated by the surrounding plate act-

ing as a tension ring.
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2.3 Observed Behavior

Masterson and Long (1974) describe four stages in the punching failure at an inte-

rior column.

(D)
@)
3
4

Vertical flexural cracks open at the face of column.

Slab tension steel close to the column yields.

Flexural and shear cracks extend into what was the compression zone of the slab.
Failure occurs before extensive yielding. Masterson and Long assume that failure is
caused by rupture of the reduced compression zone.

Kinnunen and Nylander (1960) report that, at positions close to the column on the

slab soffit, radial compressive strains decreased or even became tensile prior to failure.

Under load, the specimens took on the shape of a cone, with the portion of slab outside

the shear crack rotating as a rigid body in the radial plane with increasing curvatures in

the circumferential direction. They conclude that any model of a slab-column connection

must have the equivalent of arching action in the radial direction in order to be consistent

with concrete strain measurements.

Measurements of internal concrete strains by Shehata, reported by Regan and

Braestrup (1985), suggest that at a position within d of the column face, the distribution

of circumferential strain is very nearly radial, with the maximum compressive strain at

the slab soffit. This is in agreement with the observation by Kinnunen and Nylanderof a

conical deflected shape for their test specimens. Furthermore, the linear distribution of

strain shows that behavior in the circumferential direction is analogous to a slender beam.

In the radial direction, Shehata reports a non-linear strain distribution, with the maximum

compressive strain located in the interior of the plate, closer to the tension steel. These

measurements, like those of Kinnunen and Nylander, suggest arching action in the radial

direction.
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The appearance of a punching failure suggests that diagonal tension may be impor-
tant in limiting shear strength. However, the diagonal crack typically forms at loads less
than 70 per cent of ultimate (Broms, 1990). Regan and Braestrup state, that prior to
punching failure, the inclined crack surface has already formed. Furthermore, the con-
nection is stable in this cracked condition and may be repeatedly loaded and unloaded.
These observations are supported by tests by Kinnunen and Nylander. Test specimens
which were fabricated with pre-formed conical punching surfaces which completely sur-
rounded the column showed at most only about a 25 per cent reduction in capacity.

Measurements of vertical concrete surface strains on the column support by Shilling
and Vanderbilt (1970) show that load tends to concentrate at the corners of square col-
umns. No strain concentrations were observed for specimens with round columns.

There appears to be an interaction between flexural strength and shear strength.
Many empirical approaches for estimating punching strength, such as those developed by
Elstner and Hognestad (1956) and Moe (1961), have a dependency on flexural strength.
In particular, the shear strength is reduced as the ratio of shear strength to flexural
strength increases.

Bottom reinforcement improves both the ultimate capacity and ductility of a con-
nection. Clyde and Carmichael (1974) report three tests in which the primary variable
was the amount of bottom reinforcement. Top reinforcement for all plates was at 0.84

per cent. The ultimate deflection doubled and load increased 25 percent as bottom steel

content went from 0 to 100 per cent of the top mat.



12

There appears to be some scale effect in punching strength. Tests by Kinnunen,
Nylander and Tolf (reported by Broms, 1990) show that for double scale specimens, the
strength increases by a factor of about 3 rather than the factor of 4 which would be

expected in the absence of scale effects. The British code accounts for scale effects in its

expression for a limiting nominal shear stress.

2.4 Summary of Significant Methods for Estimating Punching Capacity

Most existing approaches describe punching in one of three ways. Concrete rupture
models assume that something akin to diagonal tension failure in beams governs punch-
ing failure in plates. Most code models as well as plasticity approaches may be consid-
ered to be concrete rupture models. Flexural models describe an overall folding
mechanism for the plate and assess the limits on ductility for this mechanism. Invariably,
the final limit to ductility is found to be some critical stress or strain in the concrete com-
pression block near the column. The truss model is most like a flexural model, except
that it assumes failure to be governed by conditions where a concrete strut meets its steel

tie and not where the strut meets the column.

2.4.1 Concrete Rupture Models
Upper bound plasticity approaches assume concrete to be a rigid-plastic material.
Concrete fracture is described by some yield criterion for concrete, the most popular
being the modified Coulomb failure criterion. The plasticity approach assumes a fracture
surface of a particular form and derives an energy expression which describes rupture
along this surface. This expression is then minimized by employing variational calculus.
In his development of a plastic punching model, Bortolotti (1990) states that the

punching mechanism assumed in the plasticity approach is applicable only when the slab
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is sufficiently rigid, either because of boundary restraint or level of reinforcement. This
agrees with the statement by Regan and Braestrup (1985) that plasticity approaches were
concerned with "proper” punching only. Regan and Braestrup also note that the plasticity
approach predicts that a critical vertical shear stress on a critical section should be a good
parameter for describing punching failure.

Most building codes assume that the capacity of a slab-column connection can be
estimated on the basis of a nominal vertical shear stress acting on a critical section. The
rationale for this approach rests largely in a presumed equivalence between diagonal
cracking in beams and punching failure of plates. The position of the critical surface
varies from code to code. In the case of the ACI code, it is located at 0.5d from the
column face while in the British standard, it is located at 1.5d from the column face.

It is not clear how concrete rupture models can be reconciled with the test observa-
tion that diagonal cracking does not lead to punching. The most commonly held opinion
is that the nominal shear stress sﬁould be considered an index of the severity of the
loading. As stated by Criswell and Hawkins (1974) a nominal shear stress "is indicative
of neither the actual shear stresses nor their distribution."

Code equations do not assume critical sections to be at the face of column. Further-
more, no attempt is made to calculate the true area of concrete in shear, which should be
limited by the depth of the compression block at the face of the column. Experience has
shown that better results are obtained with a critical section at some distance from the
face of the column. The flexural depth of the plate, and not the depth of the compression

block, is used as a measure for the depth of the shearing section.
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The fact that code equations should work at all is evidence that something akin to
beam action is at work within the plate. The concept of a critical, nominal shear stress is
easily justified if the ultimate load is governed by the horizontal shear stresses resulting

from bond.

2.4.2 Flexural Models

Flexural punching models for plate-column connections assume a fan-like mecha-
nism of wedge-shaped sections of slab. The failure criterion may be based on a yield-line
analysis, as in Gesund (1975) ora critical condition in the concrete compression block, as
in Kinnunen and Nylander.

The yield-line approach is criticized by Long (1975) as not being consistent with
the observed behavior of plate-column connections.

The mechanical model developed by Kinnunen and Nylander is widely considered
to be the best description of the behavior of polar symmetric, interior column-plate con-
nections. It assumes that the fan-like mechanism in the plate deforms until some critical
tangential strain is reached in the compression block near the column face. This is
roughly equivalent to assuming that punching failure s a flexural failure, with rupture of
the compression block being the goveming feature.

The limiting strains proposed by Kinnunen and Nylander have been criticized as not
being realistic. Broms (1990) addresses some of these concerns. He uses a variation of
the Kinnunen and Nylander model incorporating failure criteria for the concrete which
are more justifiable. The model, however, remains essentially a flexural mechanism

which is controlled by rupture of the compression block near the face of column.
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Very little attention has been given to the location where the failure surface inter-
cepts the tension reinforcement of the plate. Since average shear stresses are reduced
with increasing perimeter, it has been assumed that this location cannot be critical. This
may not be a good assumption.

Tests indicate that there is something very much like truss action operating in the
immediate vicinity of the column. If this is true, then in this region the average moment
arm between the compression block and the reinforcing steel decreases as distance from
the column increases. As the moment arm décreases, a force gradient in the reinforce-
ment becomes less effective in shear transfer.

For isolated column test specimens, load is applied externally at the assumed line of
contraflexure. This is compatible with direct arching action between applied load points
and support. In a real slab, however, the shear at the line of contraflexure is internal to
the system. At the boundary of truss-like action around a column, beam action must take
over. The effectiveness of beam action in carrying shear is reduced if the internal flexu-

ral moment arm is reduced.

2.4.3 Truss Model
Alexander and Simmonds (1987) propose a method for estimating ultimate strength

of a slab-column connection based on a truss model. The truss model assumes that a slab
column connection can be idealized as a space truss composed of steel tension ties and
straight-line, inclined concrete compression struts. The horizontal components of the
struts are equilibrated by steel tension tie forces. The vertical components of the com-
pression struts transfer vertical load between the slab and column.

Three assumptions are required in order to estimate the capacity of a slab-column

connection under concentric load using the truss model. First, the amount of steel which



can act as tension tie (strut steel or A,) is limited on the basis of proximity to the column.
Second, all strut steel is assumed to yield. Third, the angle of the compression strut, @, is
empirically predicted on the basis of a dimensionless parameter, K, which relates the hor-

izontal force in each strut to the strength of the concrete cover confining the strut.

_ sgxd'x\fe [2.1]
" Ay xf, x (c/d)’®
25K [2.2]

tano.=1.0-¢e™>
As a result of the preceding equations, the ultimate capacity of a slab-column

connection under concentric load was given as:

P,..=2[A, xf,xtan(o)] 23]

The rationale behind the truss model is that punching failure results from the failure
of the plate to confine the out-of-plane component of a compression fan. The average
effect of the fan can be represented by a straight-line compression strut, as shown in
Figure 2.2. Itis assumed that in order to satisfy horizontal equilibrium, each compression
fan must converge on its attendant tension tie. At the points where compression fans and
tension ties meet, only the confining strength of the concrete covering the reinforcement
prevents the reinforcement from pushing out of the plane of the slab.

As discussed in Alexander and Simmonds (1988), the truss model appears to be the
most promising model for the ultimate behavior of slab-column connections available. It
can handle a wide variety of problems, including the shear-moment interaction of edge
column-slab connections. To remove the empiricism from the estimate of tan @, a reex-
amination of the truss model approach was required.

The definition of the parameter K depends on many of the same quantities which

would be used in estimating the anchorage length for a reinforcing bar. It follows that,

16
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since this empirical approach seems to work, punching may be the result of bond failure
of the strut steel. The parameter K may not relate directly to tana, but rather to the length
where the reirforcing bar is met by the compression fan, called the transfer length.

The significance of this revised interpretation of K is that the flexural depth of the
slab imposes a geometric constraint on the average value of tanc.. The minimum length
over which the yield force of a bar can be developed is never zero. Therefore, there must
be some minimum transfer length between a compression strut and a reinforcing bar. For
a slab-column connection in which the transfer lengths are near minimum, a decrease in
the flexural depth of the plate must result in a decrease in the effective value of tanct.

This dependancy of tan o on the flexural depth of the plate is not accounted for in the

empirical equation for K.

2.5 Objectives of Testing
The straight-line idealization of a compression fan predicts that an effective com-

pression strut will act between the centroid of the compression block at the face of the
column and a point at the level of the tension reinforcement at some distance from the
face of the column. The location where the reinforcement and compression fan meet
should be marked by a declining magnitude of the bar force as distance from the column
increases.

The primary objective for the present investigation has two parts. The firstis to
establish the geometry of the compression struts by measuring strains in the reinforce-
ment that passes through or in close proximity to the column. The second is to observe
how this geometry reponds to variations in different parameters.

Four parameters are examined. Three of these, namely clear cover of reinforce-

ment, spacing of reinforcement and fiber reinforcement of the concrete are expected to
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affect the geometry of the compression struts by affecting the bond strength of the central
reinforcing steel. The fourth parameter, moment redistribution, is expected to affect
strains in the reinforcement at some distance from the column. As steel through the col-
umn region begins to yield, increased loads can be carried as long as the effective angle
of the compression strut increases. This requires reinforcement at some distance from the

column to unload as the point of contraflexure moves in toward the column.



Figure 2.1 Typical Punching Failure

Reinforcing Bar

T\

Face of Column

Figure 2.2 Straight-Line Idealization of Compression Fan
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Chapter 3

Specimens, Apparatus and Procedure

3.1 Description of Test Specimens

The test program consisted of 12 isolated interior column-flat plate connections.
The plates were 155 mm thick and 2750 mm square with 200 x 200 x 200 mm column
stubs above and below the plate. Orientation of specimens for testing was as it would be
in a real structure, with the column stub load acting vertically upwards and the top sur-
face of the slab near the column in tension.

The plate edges were restrained against rotation for two reasons. First, rotational
restraint provides a more realistic boundary condition by permitting internal redistribu-
tion of loads. Second, it is believed that punching strengths may be enhanced if plate
loads are applied too close to the column. As a result, the specimens were somewhat
larger in plan than comparable, simply supported specimens reported in the literature.
Increased size leads to reduced flexural strength, creating the need for rotational restraint
of the plate edges.

The effects of four variables are studied: clear cover of top mat, additional slab rein-
forcement through the column, steel fiber content and boundary restraint. Specimen des-
ignations provide abbreviated descriptions of each test, as outlined in Table 3.1. The
variables of clear cover and fiber content were expected to affect punching capacities by
changing bond behavior of the reinforcement. Increasing the amount of steel through the
column was expected to increase the magnitude of the available tension tie. The bound-
ary restraint series was not originally planned. After the first test (P11F0) had been com-

pleted, it was realized that a better understanding of the boundary restraints was needed.
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The basic top mat reinforcement layout, shown in Figure 3.1, has twelve #10M bars
at 150 mm spacing. Top mats for P19S50, P19S75 and the three specimens in the edge
restraint series had additional bars. Specimen P19S75 had three additional bars each
way, resulting in a reinforcement spacing of 75 mm over the middle 450 mm of the plate.
In P19S50, six reinforcing bars were added each way, bringing the bar spaéing in the cen-
tral 450 mm of plate to 50 mm. For the specimens of the restraint series, the spacing of
the top mat was maintained at 150 mm spacing each way but two additional bars -each
way were placed at the outer edge of the top mat, bringing the total number of bars to
fourteen each way. All twelve specimens had the same bottom mat, show in Figure 3.1.
Additional reinforcing details are provided in Appendix A

The specimens were for the most part lightly reinforced in order to limit the amount
of steel close to the column. The primary goal was to obtain a reasonably complete pic-
ture of the behavior of the reinforcing steel in the immediate vicinity of the column.

The specimens were not intended to be representative of some particular prototype
slab. However, for the purposes of establishing reasonable bar cut-offs, columns were
assumed to be spaced at about 4500 mm on center. According to the detailing require-
ments for slabs in CAN3-A23.3, the minimum distance from the face of column for bar

cut-off of column strip steel would be about 900 mm.

3.1.1 Reinforcement

All specimens were reinforced with 10M deformed reinforcing bars with a nominal
area of 100 mm?® and a minimum specified yield of 400 MPa. Tension tests were per-
formed on sample coupons. Although the steel used for the twelve specimens came from

two separate shipments, there were no significant differences in the material properties.



A typical load-strain plot from a coupon test is given in Figure 3.2. The reinforcing
steel had a well-defined yield plateau at 43.8 kN and an ultimate load of 72 kN. On the
basis of the nominal area for the bar of 100 mm?, the steel had a yield stress of 438 MPa

and a modulus of elasticity of 183,000 MPa.

3.1.2 Concrete

Normal weight concrete for all twelve specimens was obtained from a local
supplief; Four separate castings were required, at intervals of approximately five weeks,
and the same concrete mix was ordered for each. The mix had 12mm aggregate, a speci-
fied slump of 75 mm and an estimated 28 day compressive strength of 25 MPa.

Xorex corrugated steel fibers, 50 mm in length, were added to the concrete in four
specimens. A photograph of an individual fiber is shown in Figure 3.3. Fiber contents
were determined by wash-out tests at casting time. In order to facilitate the addition of
steel fibers, WRDA-19 plasticizer was added to the mix at a rate of 1.5 liters per cubic
meter. Both plasticizer and fibers were added on site.

Compression and split cylinder tests were performed on all concrete mixes. Modu-
lus of rupture tests, in accordance with ASTM Standard C 78, were also performed on
some mixes. Cylinders were nominally 150 mm in diameter and 300 mm long. Beams
were 152 x 152 x 914 mm. The results of these tests are summarized in Table 3.2. All
cylinders and beams were air-cured alongside the test plate specimens.

A number of toughness tests were performed. These are summarized in Table 3.3.
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Third point loading tests as described in ASTM Standard C 1018 were performed
on four fiber reinforced beam specimens. The set-up of these tests is the same as that
used in a modulus of rupture test. The results of these tests were not entirely satisfactory,
owing to excessive flexibility in the test frame. Load-deflection curves for these tests are
given in Figure 3.4.

The flexural toughness indices, I, I, and I, are ratios of areas under the load-
deflection diagram of a third point loading beam test. The denominator is the enclosed
area at first cracking. The numerators of I, I,, and I, are the enclosed areas at 3, 5.5 and
15.5 times the first-crack deflection respectively.

Toughness tests were made on six notched beam and cylinder specimens. Fracture
energy measurement tests as described in the RILEM Draft Recommendation (1985),
were done on notched beam specimens measuring 152 x 152 x 914 mm. In addition, six-
teen fracture energy tests, based on the RILEM procedure, were performed on notched
cylinders.! The test set-up and nominal specimen dimensions for the notched toughness
tests are given in Figure 3.5.

The term fracture energy, Gy, is a measure of the energy per unit area required to
cause tensile failure of concrete. For a notched beam test, G, is the area under the entire
load-deflection curve divided by the projected area of the fracture surface.

The notched toughness tests on beams are appealing because they may be used for
both plain and fiber reinforced concrete. In addition, the notched beam test, unlike the
third point loading test in ASTM Standard C 1018, has a modest requirement for testing
machine stiffness (Hillerborg, 1985). Results for fracture energy based on notched beam

tests clearly show the beneficial effects of steel fiber reinforcement.

1 These tests were based on a suggestion by Dr. Ame Hillerborg.
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The toughness tests on notched cylinders do not give results that are consistent with
the larger span beam specimens for fiber reinforced concrete. There is, however, reason-
able agreement in the case of the single, plain concrete mix that was tested both ways.
There may be some value in exploring the possibilities of a notched cylinder alternative

to the larger notched beam test, at least for plain concrete.

3.1.3 Casting, Stripping and Storing of Specimens

All plates were cast upside down for two reasons. First, the truss model emphasizes
the importance of the concrete cover and it is easier to control the distance between the
form and the steel rather than the distance between the steel and the screeded surface.
Second, casting upside down allows both the extension lugs for demec measurements to
be fitted into drilled holes in the form and the short strain gauge lead wires to exit the
_ specimen through the bottom of the form, thereby keeping them out of the way during
casting.

The set of specimens with a clear cover of 11 mm were cast first. To maintain
workability of the mix, WRDA-19 plasticizer was added, at the rate of 1.5 I/m’, prior to
the placing of any concrete. Specimen P11F0 was then cast. The amount of concrete
remaining in the truck was estimated and the amount of steel fibers needed to provide a
nominal weight density of 30 kg/m® was then added. Specimen P11F31 was then cast,
with the actual weight density of fibers determined by washout test. As before, the
amount of concrete remaining in the truck was estimated and additional steel fibers were
added to the mix, bringing the final nominal weight density to 60 kg/m’. Actual fiber

content was again determined by washout test.
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By the time the concrete for the first two specimens had been placed, workability of
the concrete had begun to deteriorate. 'I'heréfore, additional plasticizer, at an estimated
rate of 0.75 I/m’, accompanied the final dose of steel fibers. Casting of all three speci-
mens took about 1.5 hours.

The second set of specimens to be cast were those with a clear cover of 38 mm.
The procedure followed was the same as that used for the 11 cover specimens except that
plasticizer was added to the concrete after casting the first specimen, P38F0. There were
two reasons for this, based on the experience of casting the first set of specimens. For
specimen P11F0, the plasticized concrete was so sloppy that there was some concern
about the possibility of mix segregation. In addition to this, the plasticizer was effective
for a limited time. By delaying the initial dose in casting the 38 mm cover specimens,
re-dosing was not required. Casting of the second set of specimens took about 1 hour.

For the third and fourth castings, concrete was placed directly from the truck with
no on-site modifications. It took slightly more than one half hour to place the concrete
for each set of specimens.

After casting, specimens were covered with polythene and allowed to cure for 7 to
10 days. Sides of the forms were removed one or two days after casting. Two to three
weeks after casting, the specimens were lifted clear of the form. Four steel lifting lugs
and shackles, attached to the sides of the specimen by means of threaded, cast-in-place
inserts, permitted the plates to be lifted in a horizontal position. The plates could be

turned over by lifting on only one edge. Specimens were stored on edge awaiting testing.

3.2 Test Apparatus
Three different test set-ups are shown in Figures 3.6, 3.7 and 3.8. The primary load
was applied by jacking with a manual pump between the laboratory strong floor and the



central column stub of the specimen. The specimen was tied down to the strong floor by
eight 19 mm diameter steel tie rods. All specimens had some form of rotational restraint
applied at the plate boundary.

For all specimens except PI9RC and P19RB, edge rotational restraint consisted of
positive edge moments which were applied by jacking up on structural steel extension
arms on all four sides of the plate, as shown in Figure 3.6. The four edge restraint jacks
plus a fifth jack that was used to monitor the load were linked to a common manifold and
controlled by a separate manual pump.

For plate P1I9RC, shown in Figure 3.7, the upward jacking loads were applied at the
corners of the specimen, thereby restraining the comer levers. As with the previously
described edge restraint, the corner restraint jacks plus a fifth Ioad monitoring jack were
linked to a common manifold, separate from the central jack.

Specimen P19RB combined both methods of edge restraint. This required a total of
three manual pumps: one for the central load jack, a second for the edge restraint jacks
and a third for the corner jacks.

In order to minimize membrane forces in the plane of the slab caused by the sup-
ports, all edge and corner reszraint jaéks were mounted on roller bearings, placed to allow

radial movement with respect to the central column stub.
3.3 Instrumentation

3.3.1 Strain Measurements
The primary goal of the testing program was to try to establish the geometry of a
strut and tie mechanism within the slab-column connection. It was believed that the end-

points of concrete compression struts could be estabiished from strain distributions along
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reinforcing bars close to the column.

In each test, strain measurements were made on a total of eight top-mat reinforcing
bars. Four of these bars (two in each direction) passed through the column and are
referred to as column bars. The remaining bars, 125 mm from the column face, are
referred to as perimeter bars.

Forty electrical xesisfance foil strain gauges, with a nominal resistance of 120 ohms
and a gauge length of 5 mm, were placed on the top mat of each specimen. A layout of
the gauges is shown in Figure 3.1. Discounting any differences between inner and outer
layers of steel, there are seven geometrically distinct locations of strain gauges on two
geometrically distinct reinforcing bars. It was thought that this would provide sufficient
duplication of data to ensure reliability.

At each gauge location, the deformations of the reinforcement were ground smooth.
In an effort to minimize the impact of the gauges on the bond characteristics of the steel,
single gauges were used at each location and grinding was restricted to the smallest area
that would permit placement of the gauge.

Gauges within the column stub region were attached with an epoxy adhesive. The
remaining gauges were attached with a cyano-acrylate adhesive. After lead wires were
attached, all gauges were covered with a layer of flowable silicon to provide electrical
insulation. This was followed by a thick patch of conventional silicon sealant. To lessen
the effect on the steel-concrete bond, the patch was confined to the immediate area of the
gauge and did not wrap around the bar.

On each of the three specimens in the R series, an additional eight strain gauges
were placed on the bottom (compression) mat of steel at the face of the column. These

were attached with epoxy adhesive.
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Demountable mechanical extensometer (demec) measuremerits were made on the
perimeter and column bars in each direction. Extension lugs were brazed onto the rein-
forcing bars at 50 mm intervals, following the layout given in Figure 3.9. Demec points
were attached with sealing wax to the ends of the lugs. Prior to casting, each lug was
sheathed with a short length of rubber tubing. The tubing and lug fit into drilled holes in
the bottom of the form. The rubber tubing was removed before testing, leaving a space of
approximately 5 mm between the lug and the surrounding concrete. On the compression
side of the plate, concrete surface strains were measured using demec points at the posi-
tions shown in Figure 3.10.

All demec measurements were made with a prototype electronic extensometer,
developed at the University of Alberta by 8.J Kennedy, R.Gitzel, D.Lathe and A.Dunbar.
The device automatically records extensometer readings for later down-loading to a per-
sonal computer. The electronic extensometer permitted large numbers of readings to be
made by only one person, and eliminated the problem of typing errors when transferring
raw data into a computer for processing. Unfortunately, the extensometer results were
disappointing. It is felt that localized cracking, awkwardness of some of the measure-
ment locations, flexibility of the brazed on lugs and flexibility of the extensometer itself

combined to reduce the accuracy of the measurements.

3.3.2 Linear Variable-Differential Transformers (LVDT’s)

On most specimens, two 15 volt LVDT’s were mounted in each direction on verti-
cal extension arms, approximately 300 mm from the plate center-line, and wires were
strung across to corresponding positions on extension arms on the opposite side of the
plate. This arrangement is shown in Figure 3.11. From these readings, the average edge

rotation and overall radial expansion of the plate could be estimated.
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The center deflection of the plate was obtained by measuring the stroke of the cen-

tral jack relative to the strong floor with a single 15 volt LVDT.

3.3.3 Load Celis
All vertical loads to the specimens were measured, thereby allowing a check on

overall equilibrium. A full bridge arrangement of strain gauges was installed on each tie
rod, allowing the tie rods to serve as load cells. The central load was monitored with a
1800 kN load cell. Five jacks of the same type and manufacture, connected to a common
manifold, were used in providing either edge or corner restraint. Four of these jacks
reacted against the test specimen; the fifth jack reacted against a 90 kN load cell.
Because the jacks were geometrically similar and subjected to a common hydraulic pres-

sure, it was assumed that the load in all five jacks was equal.

3.4 Test Procedure

Prior to testing, each specimen was checked for alignment within the testing appara-
tus. The apparatus, which allowed for minor adjustments, could also be used to move the
specimen if larger adjustments were required. The edge restraint jacks were used to
translate the plate. The specimen was rotated by supporting the plate on the central jack.

Owing to the length of time required to take sets of demec readings, most tests iook
between two and three days to complete. Specimens remained loaded for the duration of
the test, except for those occasions when the correction of problems such as hydraulic
leaks required the removal of load.

With one exception, tests were started by lifting the specimen clear of the blocking
with either the edge or comer restraint jacks and measuring the combined self weight of

the specimen and attached loading apparatus. The center jack was then brought to bear
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on the specimen and the LVDT used to measure the stroke was adjusted and zeroed. All
slack was removed from the tie rods and the end nuts were made finger tight. Load was
then applied through the center jack, with adjustments to the restraint jacks made as
required. Figure 3.12 shows a typical test in progress.

Specimen P11F66 was first lifted on the center jack. Tie rods were then tightened
and the edge restraint jacks were brought to bear. The test continued with load applied to
the center jack and adjustments made to the restraint jacks as required.

In addition to the LVDT, load cell and strain gauge output, the data acquisition sys-
tem recorded the date and time that each set of data was taken. The system stores each
set of readings as a separate load step. This provided a logging system for recording
other observations made throughout the tests.

The position of radial contraflexure could be controlled by adjusting the ratio of
edge restraint to average tie rod load. Throughout most tests, a maximum ratio of aver-
age tie rod (TR) to edge restraint load (ER) of about 1.6 was maintained by adjusting the
edge restraint jacks. For the specimens with edge restraint only, this made the applied
load statically equivalent to a ring load at a radius of approximately 910 mm from the
center of the column. At large deflections, this ratio was allowed to increase as dictated
by the specimen, thereby simulating the tightening of the ring of contraflexure with
moment redistribution. During testing, the required magnitude of ER was determined

from the center load (P) according to the following relationships.

- ; 3.1
TR _P+4ER 8sel)"wezght ~ 1.6ER [3.1]

— 1 —-— 1 3.2
6= P +4ER - selfweight _ P —selfweight _, (3.2]

8ER 8ER



_P- selfweight [3.3]

ER 8.8

Tests of specimens P19RC and P19RB were conducted somewhat differently.
After the initial set-up, specimen P19RC was actively loaded through only the central
jack until load step 66. Corner restraint loads were purely reactive with no set limits on
the ratio of corner restraint to average tie rod load. At load step 66 (load and stroke
approximately 270 kN and 42 mm respectively), additional load was placed on the comer
restraints in order to check the sensitivity of the central load to increased corner restraint.
There was almost no change in the load at the central jack as a result of this procedure.

As was the case for specimen P19RC, specimen P19RB was initially lifted on the
corner restraints. The center and edge restraint jacks were then brought to bear. The
dge restraint load was adjusted according to Equation 4.3. The comer restraint jack was
not adjusted until load step 31 (load and stroke approximately 265 kN and 20 mm respec-
tively). It appeared ai this point that the structural stiffness of the specimen was declining
significantly. Additional load was placed on the corner restraints. This resulted in an
increase in the measured center load and a slight improvement in stiffness. At load
step 41 (load and stroke approximately 295 kN and 25 mm respectively), the corner
restraint load was again increased. At load step 42 an attempt was made to increase the -
edge restraint load. However, hydraulic leaks prevented the edge restraint jacks from
accepting additional load. At this point, valves between the pumps and the edge and cor-
ner restraint jacks were closed. For the remainder of the test load was applied to the cen-

ter jack only, with no active loading of the edge and corner restraint jacks.
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Table 3.1 Test Descriptions

Mark Type of Test | Clear Cover Series and Remark
(mm) Relevant Quantity
P11F0 Plate 1 Fiber, § kg/m® Restraint, Edge
150 mm Spacing
P11F31 Plate 1 Fiber, 31 kg/m’® Restraint, Edge
150 mm Spacing
P11F66 Plate u Fiber, 66 kg/m’ Restraint, Edge
150 mm Spacing
P38F0 Plate 38 Fiber, 0 kg/m® Restraint, Edge
150 mm Spacing
P38F34 Plate 38 Fiver, 34 kg/m’ Restraint, Edge
‘ 150 mm Spacing
P38F69 Plate 38 Fiber, 69 kg/m’ Restraint, Edge
150 mm Spacing
P19S150 Plate 19 Spacing, 150 mm | Restraint, Edge
No Fiber
P19S75 Plate 19 Spacing, 78 mm Restraint, Edge
No Fiber
P19S50 Plate 19 Spacing, 50mm | Restraint, Edge
No Fiber
PI19RE Plate 19 Restraint, Edge 150 mm Spacing
No Fiber
P19RC Plate 19 Restraint, Corner | 150 mm Spacing
No Fiber
P19RB Plate 19 Restraint Both 150 mm Spacing
Edge and Corner No Fiber
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Table 3.2 Concrete Test Results

Plate Lot | Fiber Con- i bif E, f
tent (MPa) (MPa) (MPa) (MPa)
(kg/m’)
~ P11F0 1 0 33.2 246 NA 4.16
'P11F31 1 30.8 35.8 2.84 23,500 4.25
P11F66 1 65.7 350 3.77 22,170 422
P38F0 2 0 356 2.68 NA 4.54
(plast.) (38.1) (2.90) | (24,200) (4.93)
P38F34 | 2 33.8 384 284 | 23,200 5.58
P38F69 | 2 69.0 38.5 3.52 24,400 5.30
P19S150 | 3 0 26.0 2.19 20,700 N/A
P19S§75
P19S50
PI19RE 4 0 353 322 29,000 N/A
PI19RC '
P19RB
Table 3.3 Concrete Toughness Test Results
Plate Lot | Fiber Con- Gf Gg I5 Ilo Igo
tent (N/m) (N/m)
: (kg/m*) | Cylinder | Beam
P11F0 1 0 N/A 172 N/A N/A N/A
P11F31 1 30.8 1966 1515 3.09 3.34 353
P11F66 1 65.7 1608 4607 4.02 557 6.73
P38F0 2 0 (203) (183) N/A N/A N/A
(plast.) _
P38F34 | 2 33.8 1377 2550 3.44 4.00 4.36
P38F69 | 2 69.0 1471 5964 3.64 5.17 6.85
P19S150 | 3 0 246 N/A N/A N/A N/A
P19875
P19S850
P19RE 4 0 299 N/A N/A N/A N/A
PI9RC
P19RB
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Chapter 4

Observations and Evaluation

4.1 Flexural Behavior
The load-defle: 7t helps to identify changes in load carrying mechanisms
within the specimens. . d rect comparison with the load-deflection behavior of

other tests in the *..a.o.+ - :juestionable because of differences in boundary condi-
tions.

The load-deflection diagrams for all tests are given in Figures 4.1 to 4.5. For clar-
ity, unloading and reloading sequences have been deleted from these plots. Complete
load-deflection diagrams for each test are given in Appendix B. It should be noted that
the deflection of the plates at the tie rod positions is not zero because of the elastic exten-
sion of the tie rods. This can be estimated based on the reported loads in Appendix B and
the elastic stiffness of the rods. Values of the center load at first yielding of steel (P,) and
at ultimate (P,,) are given in Table 4.1, as well as values of deflection corresponding to
first yield and ultimate load.

Nearly all the tests exhibited three stages of behavior, marked by significant
changes in the slope of the load-deflection curves. Stage I refers to uncracked behavior.
Stage Il initiates with cracking around the column perimeter and terminates with the for-
mation of a folding mechanism within the plate. In stage III, the plate undergoes large
plastic deformations as the yielded portion of each reinforcing bar lengthens. For these
tests, the boundary between stage II and stage III was consistently at a deflection of about
20 mm. These stages are illustrated with the load-deflection diagrams shown in

Figure 4.1.
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The load-deflection behavior at the beginning of stage II is linear. At this point the
specimen may be described as a cracked elastic plate. Toward the end of stage II, the
slope of the load-deflection diagram decreases as the folding mechanism develops within
the plate. Although this non-linear load-deflection behavior is mostly a result of yielding
of the reinforcement, its onset does not always correlate well with first yielding of the
reinforcement. For example, from Table 4.1, the deflection at first yield for specimen
P19RE is 11.3 mm. However, the load-deflection behavior for this plate, shown in either
Figure 4.1 or 4.5, does not show any significant loss of stiffness until a deflection of
about 15 mm. In contrast to this, the deflection at first yield for specimen P19S50 is
18.9 mm while, from Figure 4.2, the apparent onset of non-linear load-deflection behav-
ior in stage I is at al;out 17.5 mm. The inconsistent relationship between the beginning
of non-linear load-deflection behavior in stage II and first yielding of the reinforcement is
attributed partly to bond-slip of the reinforcement. This is discussed in Section 4.2.3.

The idealized folding pattern of the plates with standard edge restraint is illustrated
in Figure 4.6. Although the extension arms were effective in restraining rotation about an
axis parailel to the slab edge, any component of rotation about an axis perpendicular to
the edge was comparatively unrestrained.

In Chapter 2 it is stated that the flexural capacity of a two-way plate as calculated
by yield-line methods is routinely exceeded by test results. Membrane forces, boundary
restraints and second order effects which allow the slab to act as a folded plate are most
often cited as reasons for underestimating the flexural strength. In this investigation,
little or no restraint was applied to the specimen in the plane of the slab by the loading

apparatus. As a result, the significance of folded plate action in enhancing the flexural

strength of each slab may be assessed.
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Consider the diagram of one-half of a specimen, shown in Figure 4.7. At ultimate
load axis A-A is at a negative yield-line, implying that all top steel crossing A-A is at
yield. Assuming undeformed geometry, one can determine the flexural moment arm of
the plate and hence calculate the total bending moment, M, distributed along axis A-A.
The magnitude of the edge restraint load, ER, may be expressed as a factor, , times the
load on one tie rod, TR, with k determined from test measurements. Using the value of &
at maximum load together with the previously computed value of M, a theoretical value
for TR can be calculated by satisfying the rotational equilibrium of the half-plate about
axis A-A. Using this value of TR and ER =k X TR the total load, Pj,., may be calcu-

lated.

Py, = selfweight + X TR - T ER [4.1]
At failure, all specimens carried load in excess of their calculated flexural capaci-

ties. In Figure 4.8, the ratio of the test load, P,,, to the calculated load, P, is plotted
against (6 + jd)/jd, where  is the center deflection and jd is the flexural moment arm of
the plate. For specimens at ultimate load, not only does P,,/Py,, vary linearly with

(8+ jd)/jd, but the constant of proportionality is very nearly unity.

The reason that P, consistently underestimates P,, lies in the assumption of unde-

formed geometry in determining the flexural moment arm of the plate. In Figure 4.7,
with two-way bending, if there is a plastic hinge along axis A-A, then there must also ke
a plastic hinge centered on axis B-B. The folding of the plate along axis B-B enhances

the flexural moment arm for bending about axis A-A.

4.2 Strain Gauge Measurements

All top mat strain gauges were placed on either column bars or perimeter bars. The

term column bar denotes any of the four reinforcing bars passing through the column at
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a distance of 75 mm from the center-line of the plate. Perimeter bar refers to any of the
four bars at 125 mm from the face of column (225 mm from plate center-line). There are
seven geometrically distinct gauge locations on each top mat. On the column bar, gauges
are located at 85 mm, 225 mm, 375 mm and 675 mm from the center-line of the plate.

On the perimeter bar, gauges are located at 75 mm, 225 mm and 525 mm from the center-
line of the plate. An additional eight strain gauges were installed on the bottom mat at
the face of the column in the three specimens of the restraint series.

All data from strain gauges are presented as average bar forces. Measured strains
were converted to bar forces on the basis of coupon tests of the reinforcing steel. After
this conversion, values of bar force from geometrically similar gauge locations were
averaged. Complete diagrams of average bar force data obtained from strain gauges are
presented in Appendix C.

Some strain gauge circuits became non-functional during the course of every test.
There are three main reasons for this. First, the strain at some gauge locations may
exceed the limitations of the strain gauge adhesive. Second, the electrical leads may be
sheared from the gauge as a result of slip of the reinforcing bar relative to the surrounding
concrete. ‘Third, cracking of the concrete may break the electrical leads. In orderto
exclude non-functioning gauges from averages, some judgement was required in deciding
the load step at which any particular gauge ceased working. To assist in this, the output
of a suspect gauge was compared to the output from gauges at geometrically similar loca-

tions within the same specimen.
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The quality of strain gauge data varied between test series. Whereas almost all
strain gauges in the S-series functioned up to failure of the specimen, with excellent
agreement of readings between geometrically similar locations, the fiber reinforced speci-
mens with 38 mm clear ccver had a poor record of gauge survival and readings were

more scattered. This i; discussed further in Section 4.4.1.

4.2.1 Bar Force Profiles
A bar force profile is a diagram of the variation in force along the length of a rein-

forcing bar. Figures 4.9 and 4.10 show typical force prefiles for the column bar and the
perimeter bar at selected levels of load. The horizontal coordinate is the di: 2nce
between the gauge and the center-line of the plate. For all diagrams, a bar force of zero is
reported at distances from the center-line of 1000 mm for the perimeter bar and 1360 mm
for the column bar. These iscations correspond to the termination points of the bars.

Bar force profiles show the changes in the internal behavior of a specimen at vari-
ous load levels. They are used to monitor the extent of yielding during a test and to
determine where a bar is effectively anchored relative to the column. The slope of a

force profile gives a measure of the intensity of average bond stresses along the reinforce-

ment,

4.2.2 Force Gradients

As discussed in Chapter 2, a force gradient in the reinforcement is needed to carry
shear by beam action. Therefore, the existence of a force gradient at a particular location
may be viewed as at least affording the potential to carry shear by beam action. Simi-

larly, the absence of a force gradieni may be taken as definite proof that any shear at that

location is the result of arching action.



Average force gradients in the perimeter and column bars are obtained by calculat-
ing the slope of the bar force profiles over the intervals between adjacent gauge locati'c‘ms.
For each interval, the gange locations closest to and far"hest from the column are called
respectively the uppes and lower gauge locations. By including the termination points of
the reinforcing bars as effective gauge locations (bar force = 0), four intervals for the col-
umn bar and three intervals for the perimeter bar may be defined. For each bar, the inter-
vals are numbered, starting with the interval that is closest to the plate center-line, as
shown in Figure 4.9. The value of tke force gradient over each interval is plotted against
the deflection at the center of the plate to produce a bar force gradient diagram. Bar force
and force gradient diagrams for each test are provided in Figures C-13to0 C-36. For ref-
erence, a load-deflection diagram is included in each figure.

The maximum value of force gradient recorded for a particular interval may be
limited in one of three ways: (1) by yielding of the reinforcement at the upper gauge loca-
tion, (2) by failure of the bond between the steel and the concrete or (3) by the internal
mechanics of the plate. The first two limitations on force gradient result in the
redistribution of load within the plate; the loss of one load carrying mzchanism leads to
the development of another. The third limisation is an outcorae of load redistribution; the
internal load carrying mechanism of a plate changes from one that requires a force gradi-
ent at a particular location to one which does not. All three limitations on force gradient
are illustrated by the test results of specimen P11FQ. Figurcs 4.11 and 4.13 show force
gradient diagrams for the column and perimeter bars of specimen P11F0. Values of the
bar force at the different gauge locations are plotted against deflection in Figures 4.12
and 4.14.

In Figure 4.13, *he force gradient over the second interval of the perimeter bar

reaches a maximum value of approximately 100 N/mm at a center deflection of about
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22 mm. The upper and lower gwuge: tocations for this interval are 225 mm and 525 my
from the center-line of the plate, respectively. Figure 4.17 shows that, for a detie:tici of
about 22 mm, the bar force reaches yield (44 kN) at the upper gauge location, while at the
lower gauge location, the bar force continues to increase. The gradient over this interval
is limited by yielding of the reinforcing bar at the upper gauge location.

In Figure 4.11, the force gradient over the first interval of the column bar reaches a
maximum value slightly greater than 100 N/mm at a deflection of about 12 mm.
Between 12 mm and 16 mm of deflection, the force gradient drops off slightly. At about
16 mm of deflectiiw, the force gradient begins to decline sharply . Figure 4.12 shows
that at a center deflection of 12 mm, the average column bar force at a distance of 85 mm
from the plate center-line is about 35 kN. The average bar force at this position does not
reach yield until a deflection of about 18 mm, by which time the magnitude of the force
gradient has dropped to about 75 N/mm. It is believed in this case that the force gradient
is limited by bond of the reinforcement.

The force gradient over the second interval of the colurnii bar, showr. in
Figure 4.11, is believed to illustrate the third type of limitation on force gradient. Ata
deflection of about 18 mm, the gradient peaks at a value of only 60 N/mm. This is well
below the maximura value of 100 N/mm reached at other intervals on both the column
and perimeter bars of specimen P11F0, suggesting that bond failure is probably not
responsible for this comparatively low value of force gradient. However, a deflection of
18 mm corresponds with reaching first yield of the perimeter bar. The premature loss of
force gradient in the column bar may have been caused by an increase in the amount of

radial arching action, brought on by yielding of the perimeter bar.



4.2.3 Anchorage Failure

Anchorage failure can be viewed as a special case of bond failure. Bond strength
imposes a limiting value to the maximum bar force gradient that can be sustained over
any particular interval. An anchorage failure is the result of reaching the limiting value
of force gradient at the end of the reinforcing bar. Therefore, the magnitudes of the bar
force gradients over the third interval of the perimeter bar and the fourth interval of the
column bar are compared to previously set maximum values in order to chick for anchor-
age failure.

Consider the column bar force gradients for specimen P19550, shown in
Figure 4.15. The maximum value of force gradient over the third interval is approxi-
mately 47 N/mm, reached at a deflection of about 15 mm. The magnitude of force gradi-
ent over this interval is reasonably well maintained up to a cente: deflection of about
25 mm. This establishes a limiting bond capacity for the column . At ultimate load,
the force gradient over the fourth interval reaches the limiting value established over the
third interval, resulting in anchorage failure of the column bar.

It should be noted that for specimen P19S50, the bar located 125 mm from the plate
center-line (50 mm adjacent to the column bar) was cut off at 1000 mm from the plate
center-line. No strain measurements were made on this bar. However, if the strains
measured on the column bar are reasonably close to the strains which might have been
measured in the adjacent bar, then anchorage failure of this bar should be expected when
the column bar force 675 mm from the plate ceater-line reaches about 15 kN.

Figure 4.16 shows that this occurs at a center deflection of about 20 mm, and that there is
also a change in the slope of the load-deflection diagram at this point. It is considered

that this reduction in the stiffness of the plate is due to partial anchorage failure of the

reinforcement.
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From the appearance of the bar force gradient diagrams, it would appear that
anchorage failure may have played a part in determining the ultimate load of many of the
specimens. In most cases, the cut-off perimeter bar is the most critical. Force gradients
for the third interval of the perimeter bar of specimens P195150, P11F31, P11F66 and
P38F69, shown in Appendix C, appear o have reached previously established maximum
values. In addition, values of force gradient suggest that anchorage failure was at least
imminent in specimens PI9RC and P19RE.

Specimen P19S75 is unique in that it is the only specimen with a reinforcing bar
located on the line of symmetry of the plate, providing a crack initiator at the exact loca-
tion of the fold line of the flexural mechanism. Observed cracking over this center-line
bar appeared to be more severe than in other tests. It is felt that this cracking
comproraised the anchorage of the center-line bar, although this cannot be established by
direct measurements because no strain gauges were mounted on this bar.

All specimens had what would be visually classified as punching failures, in that
they had the classic, pyramid-shaped failure surface. None of the specimens gave any
outward indication of anchorage failure in the form of a horizontal split which extended
to the edge of the plate, or even to the end of the cut-off bars. This suggests that visual

assessment after failure may not be a reliable way to detect anchorage failures.

4.2.5 Bottom Mai Strain Gauges
In the three specimens of the restraint series, PI9RE, PI9RC and P19RB, eight

strain gauges were placed on the bottom mat of each specimen, just inside the column.
The averaged output from thest gauges, in the form of bar forces, is given in Figure 4.17,

with negative sign indicating compression.
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For each of the three specimens initially, the plate is uncracked and the bottom rein-
forcement at the column face is on the compression side of the neutral surface. The max-
imum compression force in the bottom reinforcement is reached at the first cracking load
of the plate, about 100 kN. After cracking, the migration of the neutral surfaces
downward results in tensile increments of strain. At an advanced stage, the bottom rein-
forcement lies above the neutral surface of the plate and is in tension. This stage corre-
sponds to a load of about 250 kN in all three teits.

At this point, there is a divergence in behavior. Both specimens P19RC and P19RE
show a marked reduction in bar force, which is particularly sudden in the case of P19RC.
This probably signals extreme fiber crushing of the flexural compression block at the face
of column.

In specimen P19R3B, there was no evide: . of concrete crushing. The gauges con-
tinued to read tension until failure, although the. magnitude of that tension is significantly
lower than was recorded in P19RE or PI9RC. This is probably the result of the much
reduced deflection of specimen P19RB.

4.3 Miscellaneous Observations

4.3.1 Cracking

V-shaped bond cracking, as shown in Figure 4.18, was observed in the specimens
with an 11 mm clear cover. The appearance of these cracks coincided closely with reach-
ing peak force gradients in the steel.

Photographs of specimin P19RE after testing (Figures 4.19 and 4.21) show typical
crack patterns. The crack pattern on the top surface of the plate (Figure 4.19) clearly

shows the dominant folding pattern of the specimen. The crack pattern on the slab soffit
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(Figure 4.21) shows the effects of the edge restraint. Similar patterns were observed in
all specimens except P19S75, P19S50 and P19RC. Figures 4.20 and 4.22 give the pattern
of cracking for specimen P19RC. Specimens P19S75 and P19S50 did not have well
developed crack patterns. As was noted in Section 4.2.3, while under load a relatively
prominent crack opened on the center-line of specimen P19S75. After failure, this crack
was not especially noticeable.

In some specimens, the inclined failure surface broke through the top surface of the
plate in advance of failure. In the case of P19RE, upon the appearance of this crack (see
Figure 4.23), all jacking was stopped. Over a period of 48 minutes, the center load fell
gradually from its maximum vaize of 303 kN to 283 kN while the deflection was main-

tained.

4.3.2 Demec Data
Prior to taking a set of demec readings, all hydraulic valves were closed and the

load was allowed to stabilize for a period of time between one or two hours. On some
occasions, the specimen was left loaded overnight and demec readings were taken first
thing in the morning. A full set of readings took about one hour to complete.

Results from demec readings are presented in the form of average bar force profiles
at various levels of load (see Appendix D). Bar force peaks correspend very closely to
the positions of crossing reinforcing bars, indicating that the transverse steel acts as a
crack initiator. Dips in bar force between peaks are attributed to in-and-out bond.

The average results for concrete strains at eight positions close to the column on the
compression side of the plate are summarized in Figure 4.24, which shows that the ratio
of circumferential to radial strain generally increases as each test progresses. At ultimate,

radial concrete compression strains were between 20 and 50 per cent of the circumferen-



tial strain at the same location. The increasing ratio of circumferential to radial compres-
sive strain is consistent with increasing radial arching action in conjunction with

circumferential beam action.

4.3.3 Overall Expansion

Results from edge mounted LVDT’s are presented in Appendix B. All results con-
firm an overall radial expansion of the plate, which is consistent with the kinematic
requirements for the formation of a punching failure surface. However, the expansion is
consistently linear with center deflection, suggesting that the formation of a diagonal rup-
ture surface within the plate is a gradual rather than sudden process.

In general, there is no significant expansion of the bottom surface. There is consid-
erable expansion at the top surface, in the order of 4 mm of expansion across the full

width of the plate for every 30 mm of deflection. Restraint of this expansion could result

in significant increases in strength.
4.4 Effects of Test Variables

4.4.1 Effect of Steei Placement

From Figures 4.3 and 4.4, it can be seen that for any comparable level of fiber con-
tent, the specimen with a clear cover of 38 mm had a greater ultimate deflection. All
specimens with a clear cover of 38 mm showed greater stage I strength gairs than those
with 11 mm clear cover. In the case of plate P38FO0, the post-yielding strength gain was
sufficient to overcome the difference in load at the beginning of stage III between plates

P38F0 and P11F0. In stages I and II, the structural stiffness depends upon the flexural
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depth of the plate. As a result, the specimens with a clear cover of 11 mm and a flexural
depth of 132 mm carried higher loads at stage III than did the specimens with a clear
cover of 38 mm and a flexural depth of 105 mm.

Figure 4.1 shows that the load-deflection diagrams for specimens P195150 and
P11FO are virtually identical, despite the differences in flexural depth. Increased flexibil-
ity of the bond-slip relationship resulting from bond cracking, as discussed in
Section 4.3.1, is considered responsible for reducing the stiffness of specimen P1 1F0
relative to specimen P19S150.

Specimen P38FO failed at a load which was 3 per cent higher than specimen P11F0.
The straight-line truss model predicts an increase in strength of 37 per cent, clearly indi-
cating that the effect of flexural depth has not been adequately accounted for. However,
it should be pointed out that the Canadian and American codes predict a drop in strength
of 27 per cent.

For stages I and II, the load-deflection behavior of the specimens of the spacing
series, shown in Figure 4.2, is similar to that of the other specimens. Both plates P19S75
and P19S50 show almost no stage ITI behavior. In contrast, plate P195150 shows consid-
erable ductility, with enough plastic strength gain to match the ultimate load of specimen
P19S875. |

As shown in Figures C-8 and C-9, the peak load of the perimeter bar in specimens
P19S75 and P19S50 is consistently greater than the peak load in the column bar. This
effect is particularly noticeable for specimen P19S50. Figure C-48 shows first yielding
of the perimeter bar at a deflection of about 20 mm; Figure C-46 (also 4.16) shows first
yielding of the column bar at a deflection of about 30 mm. A similar observation for
slab-column specimens with concentrated reinforcement is made in Elstner and

Hognestad (1956). As the concentration of reinforcement increases, the amount of con-
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crete available to bond an individual bar decreases. The reduced straining of the column
bars is believed to be the result of a reduced stiffness in the bonding of the reinforcement
and may also be linked to the anchorage of the column bars, discussed in Section 4.2.3.
In general, the strain gauges for the fiber reinforced specimens with a clear cover of
38 mm did not perform as well as did those for the specimens with a clear cover of
11 mm. One reason for this may be that because a larger cover requires a greater length
of lead wire to be embedded in the concrete, there is an increased probability that a crack
will sever the electrical connection. A second plausible reason is that the specimens with
a clear cover of 38 mm deformed in a way that was more likely to shear the electrical
leads from the gauges. Bar force profiles for the 11 mm and 38 mm clear cover series,
shown in Figures C-1 through C-6, show that, despite larger deflections, there is consis-
tently less straining over the fourth interval of the column bar in the specimens with a
clear cover of 38 mm than is the case in the comparable specimens with a clear cover of
11 mm. For the specimens with a clear cover of 11 mm, curvatures are spread throughout
the plate while in the specim.ens with a clear cover of 38 mm, the curvatures are more

concentrated in the vicinity of ths:olumn.

4.4.2 Effect of Fibers
In both stages I and II, structural stiffness increased with the fiber content. Evi-

dence of increased stiffness can be seen in Figures 4.3 and 4.4. At the beginning of stage
1, at about 20 mm of deflection, the fibsr reinforced specimens carried from 20 to 30 per
cent more load than the specimens without fiber reinforcement. The additional strength
and stiffness at smaller deformations is attributed to the ability of the fiber reinforcement

to bridge small 4327k, effectively increasing the level of reinforcement.
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Deflections at failure increased significantly with fiber content. This is attributed to
the ability of the fiber reinforced specimens to sustain large rotations in the concrete com-
pression blocks. Figure 4.8 shows that the increased ultimate deflection of the fiber rein-
forced specimens is sufficient to explain their higher failure loads. This suggests that at
very large deflections, only the conventional reinforcement was able to bridge the cracks
at the plastic hinges of the fiber reinforced plates. At ultimate load, the steel fibers did

not contribute significantly to the moment capacity at a yield-line.

The nature of failure was changed with the addition of fibers. With the exéeption of
specimen P38F69, the fiber reinforced specimens had reasonably stable unloading curves
during failure. The specimens split apart gradually as the load fell off. Sperimen
P38F69 had a sudden failure, as is usually associated with punching.

Although most plates showed some evidence of spalling of concrete at the face of
the column prior to punching failure, the failufe sirface of the specimens without fiber
reinforcement closely follewed the outline of the column, as shown in Figure 4.25. In
contrast, the failure surface on the compression side of the slab of the fiber reinforced
specimens did not follow the outline of the column, but broke through the soffit of the

slab at some distance from the column following no particular pattern, as shown in

Figure 4.26.

4.4.3 Effect of Boundary Restraint

Specimen P19RE was similar to specimen P195150, providing some basis for com-
paring the results of the three restraint series tests with those of the other nine tests. Both
specimens P19RE and P19S150 were tested under the same relative magnitudes of edge
restraint and tie rod loads. The reinforcement spacing and flexural depth of the plates are
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equal. Concrete properties differ because the specimens were cast from different batches.
The major difference between the two plates was that specimen P19RE had an additional
two reinforcing bars each way at the outer edge of the top mat.

As shown in Figure 4.1, although the load-deflection diagram for specimen P19RE
is consistently higher than that for specimen P195150, the main changes in the slope of
the load-deflection diagrams occur at roughly the same value of deflection. In addition,
the perimeter bar force gradient diagrams for these two tests, shown in Figures C-39 and
C-51, are strikingly similar. Although the peak magnitudes of the gradients are slightly
higher for specimen P19RE, both figures show that the peak values of gradient are
reached at the same values of deflection.

There are a few differences between the column bar force gradient diagrams of
specimens P195150 and P19RE, shown in Figures C-37 and C-49. The gradient over the
first interval of the column bar in specimen P195150 reaches a smaller peak value at a
smaller deflection than is the case for specimen P19RE. This suggests that a shift to
radial arching action may have occurred earlier for specimen P19S 150 than for specimen
P19RE. From the bar force diagrams in Figures C-38 and C-50 it can be seen that yield-
ing spread farther from the column in specimen P195150 than in specimen P19RE. In
particular, the column bar force at a distance of 675 mm from the plate center-line
reaches yield in specimen P19S150 whereas it reaches about 75 per cent of yield in speci-
men P19RE. This additional yielding accounts for the observed differences between the
two specimens in the gradients over the third and fourth intervals of the column bar.
Both the earlier shift to arching action and the additional spread of yielding are attributed
to a lower bond strength resultirig from the lower concrete strength of specimen P19S150.
Despite their differences, it is felt that the similarities between specimens P19S150 and

P19RE demonstrate that the trends observed in the restraint series are generally appli-



cable to the other nine tests.

Although the boundary conditions for specimens P19RE and P19RC were quite dif-
ferent, their load-deflection diagrams are almost identical. Still, perimeter bar force gra-
dient diagrams in Figures C-51 and C-55 suggest that there may be differences in the
internal load carrying mechanisms. The gradient over the first interval of the perimeter
bar appears to play a more prominent role in the behavior of specimen P19RC than speci-
men PI9RE. Both gradients reach peak values at a deflection of about 6 mm. In the case
of specimen P19RE, the magnitude of the gradient steadily declines from this point on.

In the case of specimen P19RC, this first peak value is a local maximum only. A second
peak value is reached at a deflection of about 14 mm. Ata deflection of 20 mm, the mag-

nitude of the gradient for specimen P19RE is only 20 N/mm whereas the value for speci-
men P19RC is still about 80 N/mm.

4.5 Evaluation of Straight-Line Truss Model

On the basis of the straight-line truss model, the length over which the force in the
reinforcement decreases should correspond to the intersection of the compression strut
with the reinforcement. Therefore, the force profile of a bar that passes through the col-
umn should reveal the position of one end of the compression strut.

The assumed geometry of a straight-line compression strut is shown in Figure 4.27.
The strut acts as a straight-line compression member, with one end at the center of the
flexural compression block at the face of the column and the other end at the level of the
top mat reinforcement, a distance 7, from the face of the column. The distances r; and 7,

from the face of the column mark the length over which the bar force is expected to

decline to zero.
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Consistent with the assumptions of the truss model, test values of tai &t were eacu-

lated as the ratio of final central column load to the force of the strut steel, A,,, acting at
yield. Based on this value of tana, the dimension 7, is calculated.
r,=d/tana - [42]

The distances r; and 7, are estimated on the basis of column bar force profiles.

Consider, for example, the bar force profiles for specimen P11F0, shown in Figure 4.10.
At a load of 230 kN (90% of ultimate), yielding of the column bar has spread to at least
375 mm from the plate center-line, or 275 mm from the column face. This places a
minimum value on 7; of 275 mm. The value of 7, is not as well defined as that of 7;.
From Figure 4.10, it appears that the smallest distance between the center-line of the plate
and the far end of the strut is about 1000 mm. This corresponds to a value of 900 mm for
To.

Bar force profiles for all sperimens are provided in Figures C-1to C-12. Values of
r,, r; and 7, are listed in Table 4.2. Values of 7, and r; for specimen P38F34 are not given
because too many strain gauges fziled during the test.

The results listed in Table 4.2 do not support the straight-line truss model. Except
for specimens P19S75 and P19S50, values of r; are consistently greater than r,, whereas
the straight-line compression strut, as shown in Figure 4,10, requires that r; be less than
r.

The bar force profiles do not display the post-yielding behavior that was originally
expected with the straight-line strut idealization. Figure 4.10 shows bar force profiles for
specimen P19RB. Since this specimen was the most heavily restrained, it was expected
to show most clearly the effects of redistribution. At z load of 267 kN (78% of ultimate),
r; and r, are approximately 125 mm and 700 mm, respectively. As the load increases to

324 kN (94% of ultimate) the values of 7; and 7, increase to about 275 mm and 900 mm,

58



59

respectively. Under the assumptions of the straight-line truss model, an increase in both
r; and r, must lead to a decrease in the strut angle, o.. However, a icrease in o is not
consistent with an increase in load.

Combining the corner and edge restraints increased both the stiffness and ultimate
load of specimen P19RB. The straight-line truss model, however, predicts an increased
load with increased boundary restraint only if the boundary restraint includes compres-
sion forces in the plane of the slab. The model predicts no beneficial effect for rotational
restraint alone. Therefore, the increased s:t ngth of specimen P19RB is not in agreement
with predicted behavior based on the straight-line truss model.

It is concluded on the basis of measured bar force profiles that the  aight-line ide-
alization of the concrete compression fan is not adequate. In Chapter 5, & mocification of

the truss model is proposed which is in better agreer..2nt with the test data of this

investigation.



Tabled.d £ - 4 Load-Deflection Data
Test el Weight P, 5, P S
» (kN) (kN) (mm) (kN) (mm)
Plive 35.7 165 135 257 48
P11F31 36.6 193 11.2 324 69
P11F66 374 210 1’3.9 345 75
P38F0 35.2 147 14.1 264 62
P38F34 36.8 174 14.5 308 85
P38F69 36.9 184 14.9 | 330 ¢3
P19S150 35.7 155 125 258 49
P19575 36.2 202 15.8 258 27
P19S50 350 268 189 319 Py
P19RE 35.7 173 11.3 304 50
P19RC 27.3 177 119 282 44
P19RB 35.8 242 4.6 343 37
Table 4.2 Geometry of Straight-Line Truss Model
Test N, A, P tano r, r; r,
(mm’) | (N) (mm) | (mm) | (mm)
P11F0 8.6 860 257 0.682 195 275 900
P11F31 8.6 860 324 0.860 157 400 1275
P11F66 8.6 860 345 2916 147 400 1275
P38FC 8 800 264 0.753 139 275 600
P38F34 8 800 308 0.879 119 125 575
P38F69 8 800 330 0.942 111 125 600
P19S150 8 800 258 0.736 170 400 1275
P19S75 16.8 1680 258 0.351 356 0 1275
P19S50 25.6 2560 319 0.283 442 0 1275
P19RE 8 800 304 0.878 142 275 1275
P19RC 8 800 282 0.804 155 275 1275
P19RB 8 800 343 0.979 128 275 900
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Figure 4.20 Top Crack Pattern: P1I9RC
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Figure 4.23 Shear Crack: P19RE
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Figure 4.26 Compression Side of Plate at Column: P11F66
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Chapter §
Development of the Bond Model

5.1 Background

The truss model describes a slab-column connection as a space truss composed of
steel tension ties and straight-line concrete compression struts. Failure is assumed to ini-
tiate at the intersection between a compression strut and its attendant steel tie and is the
result of the inability of the slab to confine the out-of-plane component of the
compression strut.

Although the truss model provides an exceilent qualitative description for much of
the behavior of slab-column connections (Alexander and Simmonds, 1987), in Chapter 4
it is shown that the geometry of a straight-line compression strut does not agree with
experimental measurements. In particular, the location of the intersection between the
effective centroid of the strut and the top mat reinforcing steel, based on failure loads,
does not agree with the position of the strut as determined from bar force profiles (ie. r; is
generally greater than 7,). A model that retains the desirable characteristics of the truss
model and is consistent with experimental measurements is required.

As an alternative to the straight-line strut, consider the curved arch shown in
Figure 5.1. A curved arch is more consistent with measured bar force profiles since r;
need not be less than 7,. In a plan view, the arch would be parallel to the reinforcement.
As was the case in the truss model, the horizontal component of the arch is equilibrated
by tension in the reinforcement. As long as the width of the arch is limited to the width
of the column support, the arch may be considered a purely radial component within the
plate. This approach also preserves the truss model concept of shear being carried
radially by an inclined concrete compression strut. The geometry of the curved radial

arch, however, cannot be determined from the bar force profile of the reinforcement tying

the arch.
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If the horizontal force component in the arch is assumed to be constant, then the
shear carried by the arch varies, from a maximum at the face of the column where the
slope of the arch is large, to a minimum, or perhaps zero, at the intersection of the arch
and the reinforcing steel, where the slope of the arch is small. The shear that was carried
by the arch at the face of the column must be dissipated in a direction perpendicular to
the arch at some distance away from the column. The rate at which shear can be dissi-
pated determines the curvature of the arch.

At this point, it is necessary to examine how shear may be carried in a reinforced
concrete flexural member. Ina R/C beam, moment is calculated as the product of the
steel force, T, and an effective moment arm, jd. Moment gradient or shear results wher-
ever the magnitude of the force or moment arm varies along the length of the member
(x — axis).

i i 5.1
=d(2d)=dg)jd+dgf)T [5.1]

14

The shear carried by a beam may be divided into two separate components. Shear
that is the result of a gradient in tensile force acting on a constant moment arm is said to
be carried by beam action. Shear resulting from a constant tensile force acting on a
varying moment arm is said to be carried by arching action. Whereas beam action at a
particular cross-section requires bond forces at that cross-section, arching action requires
only remote anchorage of the reinforcement. For any particular cross-section, the
maximum beam action shear is limited by the force gradient that.can be sustained in the
reinforcement; the maximum shear that can be carried by arching action is limited by the
proximity of the applied loads to the support.

Note that a distinction is made between bond and anchorage. Bond describes the
transfer of force between a reinforcing bar and the surrounding concrete in a region

which is not affected by the termination point of the bar. Anchorage describes the ability
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to prevent the end point of the bar from slipping through the concrete. Although a bond
failure limits the reinforcing bar force gradient, it does not limit the magnitude of the bar
force provided there is adequate anchorage.

Returning now to the curved radial arch, it must be decided which of the two avail-
able mechanisms, beam action or arching action, can account for the dissipation of shear
perpendicular to the arch. Several observations, discussed in Chapter 2, suggest that
beam action is the only possible mechanism of shear transfer in what amounts to a cir-
cumferential direction. For example, Kinnunen and Nylander (1960), report that the
deformed shape of test specimens under load is essentially conic, with little or no
curvature in the radial direction. This would require a linear distribution of circumferen-
tial strain through the thickness of the plate, with maximum compressive strain at the slab
soffit. Shehata (reported in Regan and Braestrup, 1985) confirmed this strain distribution
by direct measurement. As long as the maximum circumferential compressive strain is
constrained to be at the slab soffit, the centroid of the circumferential concrete compres-
sion block must remain close to the bottom of the slab. This means that the flexural
depth, jd, in the circumferential direction is relatively constant, and any shear that is to be
carried in the circumferential direction must be carried by the two-way plate equivalent
of beam action.

According to the proposed model, the ability of a plate to carry shear by beam
action plays a central role in determining the shear strength of a slab-column connection.
Beam action shear requires a force gradient in the reinforcement. In Chapter 4, three
potential limits of force gradient are proposed. Of these three, two are limits imposed by
cross-sectional strength, namely yielding of the reinforcement and bond failure.
Although almost all plate-column connections ultimately punch, as discussed in

Chapter 2, only the punching failures that precede widespread yielding of the reinforce-



ment are of concern to desigrers. For those connections that fail prior to widespread
yielding, bond strength is considered to be the most important limitation on force
gradient.

The truss model assumes straight-line compression struts acting at a constant angle
of inclination. The proposed model is really a modification of the truss model, and might
be called a truss model with curved or variable angle struts. However, the geometry of
the strut is not directly assessed in the proposed model. Instead, the punching capacity of
a slab-column connection is found to be a function of the flexural capacity of the radial
arches and the ability of the adjacent quadrants of two-way plate to generate beam action
shear on the side faces of the arches. Owing to the preeminence of bond strength in limit-

ing beam action shear, the model is called the bond model for punching shear failure.
5.2 Elements of Bond Model

5.2.1 Radial Strips
The orthogonally reinforced slab-column connection is modelled as a rectangular

grillage, as shown in Figure 5.2. Four strips, parallel to the reinforcement, extend from
the column. The width of each strip is defined by the column size. Fora square or rect-
angular column, the width of the strip is equal to the side dimension of the column (c)
perpendicular to the strip. For a round column, the width of the strip is equal to the
diameter of the column. The end of the strip farthest from the column support will be
called the remote end. The remote end of a strip is at either the edge of the specimen for
a simply supported plate or at the center of span for a continuous plate. The total length
of a strip is designated as L.

Within a strip, the directions parallel and perpendicuiar to the strip (r —axis and

n —axis respectively) coiticide with the radial and circumferential directions of the plate.
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The strips themselves may be described as radial. Any load reaching the column must
pass through one of these four strips. The strength of the connection is determined by
assessing both the flexural strength of each radial strip and the ability of the adjacent
quadrants of two-way plate to load each radial strip.

Treating the connection as a rectangular system of structural elements avoids the
difficulties associated with modifying a polar-symmetric model to account for orthogonal
reinforcement. It does, however, limit the proposed model to joints between columns and

orthogonally reinforced concrete plates.

5.2.2 Loading of Radial Strip

Consider the free body diagram of one-half of a radial strip shown in Figure 5.3.
The half-strip extends from the column to a position of zero shear. In the case of a sim-
ply supported plate with a single, central column, the zero shear position is at the edge of
the specimen. For a continuous plate with multiple column supports, the location of
maximum positive radial moment close to the center of span corresponds to the position
of zero shear.

A radial strip must support the combined effect of any load applied directly to the
strip (q), including the self-weight of the strip, and the internal shears and moments
developed on the side faces of the strip by the adjacent quadrants of two-way plate.

In Figure 5.3, the near side face of the half-strip is lcaded in shear (v), torsion (m,)

and bending (m,) by the adjacent quadrant of two-way plate. The far side face lies on an
axis of symmetry for the plate. Under concentric loading, both shear and torsion on this
face are zero. The bending moment applied to the far side face of the half-strip is equal

' and opposite to the bending moment on the near side face.

The combination of shear and torsion on the side face of the radial half-strip is

replaced by a statically equivalent line load, v (Kirchhoff shear), acting on the strip. This
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procedure is outlined below with reference to Figure 5.4. Note that the sketches in
Figure 5.4 are not free body diagrams. Only those shears and moments that appear in the
equation of rotational equilibrium for a plate element about the r-axis and for a radial
half-strip element about the n-axis are included.

Rotational equilibrium about the r-axis of the plate element shown in Figure 5.4

gives the following relationship.

Am, x Ar =v x ArAn ~ Am, x An [5.2]
om,  om, , , (5.3]
-$=v—$- or m, =v-m,

For the case of concentric punching, the radial strip center-lines are, by symmetry,
lines of zero shear and torsion. Consider the forces on a small segment of radial
half-strip, also shown in Figure 5.4. In order to satisfy rotational equilibrium about the

n-axis, there must be a total shear force, Q, in the half radial strip.

QxAr=mxAr or Q=m, [5.4]

The line load (v) which is statically equivalent to the combined shear and torsion on

the side face of the radial half-strip is sum of all vertical loads applied to the strip

segment.
VXAr=vxAr+AQ [5.5]
—_ .30 __ . om, [5.6]
v=v+ 3 =Y + 5
Combining Equations 5.3 and 5.6 gives:
[5.71

V=—s—+2 X=5 or v=m,+2xm/’
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The term v is often referred to as the Kirchhoff shear. It has its origins in elastic

plate theory as a way of satisfying equilibrium at a free or simply supported edge of a
plate. Hillerborg (1975) discusses the applicability of this condition to an internal plate
boundary.

The Kirchhoff shear is a line load which is statically equivalent to the combination
of shear and totsion applied to a side face of a radial strip. Figure 5.5(a) shows the actual
loading on a radial half-strip, excluding the bending moments about the n-axis.

Figure 5.5(b) shows the same radial half-strip with the Kirchhoff shear replacing the tor-
sions and shears.

The Kirchhoff shear has two components. The first is a shear resulting from the
gradient in bending moment perpendicular to the radial strip. This is referred to as pri-
mary shear. The second is a shear resulting from twisting moment gradient along the side

face of the radial strip, called torsior.. shear.

5.2.2.1 Primary Shear

Primary shear results from the gradient in bending moment perpendicular to the
radial strip. As in a beam, bending moment gradient must be achieved through some
combination of beam and arching action. It will be shown that primary shear is the ulti-
mate source of all load entering the radial strip from the adjacent quadrants of two-way
plate.

Bending moment gradient perpendicular to the radial strip must be the result of
beam action alone. If F, is the bar force, then, 2s with the beam action term of

Equation 5.1, this bending moment gradient may be expressed as follows.

- 5.8
m,'=(1~‘,,id/s)'=’—s‘-’-xp,' B4



In a region dominated by beam action, bending moment gradient and force gradient
in the reinforcement are equivalent. Direct estimates of primary shear may be obtained
by measuring strains in slab reinforcement at intervals perpendicular to the strip. Bar
strains can be related to ber forces through steel coupon tests. Average force gradients in
the reizforcement may be calculated as the difference in bar force between two positions
on the same reinforcing bar divided by the distance between these two positions.

It is assumed that for any particular specimen, there is some limit to the force gradi-
ent which can be sustained at the boundary between steel and concrete. This would
amount to a bond limitation on the quantity m,’,

For very lightly reinforced plate-column connections, behavior near ultimate load is
characterized by widespread yielding of the reinforcement at increasing distances from
the column. Under such circumstances, the maximum force gradient at the edge of the
radial strip may be limited by the spread of yielding, rather than bond.

Given that there is some upper limit on m,’, primary shear has the potential to

deliver a finite distributed load to any particular position along the side of the radial strip,
equal to the maximum bending moment gradient perpendicular to the strip at that posi-
tion.

The term F,’ is the force gradient in a single reinforcing bar. If this term is aver-

aged over the spacing of the reinforcement, the resulting term is the horizontal shear

stress required for moment gradient.
F’ [59]

T=—

s

Equation 5.8 may be rewritten as follows:

— [5.10]
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From Equations 5.9 and 5.10 it can be seen that, in a region dominated by beam

action, a limiting value of force gradient in the reinforcement is the equivalent of a

limiting shear stress.

5.2.2.2 Torsional Shear

Torsional shear is the result of gradient in the torsional moment on the side face of

the radial strip, in a direction parallel to the radial strip. The factors governing the magni-

tude of the torsional moment and the torsional moment gradient are not known, nor is it

clear how these quantities might be measured in a test. Some of the problems associated

with estimating torsional shear are outlined below.

(1) Unless a slab-column connection is highly over-reinforced, the bending moment

)

near the column perpendicular to the radial strip will be at or near the yield moment
at failure. It is not clear how large the torsional moment at this location may be.
The normal moment yield criterion (Marti and Kong, 1987) suggests that under
these conditions the torsional moment should be zero. However, a combination of
doweling action in the plane of the slab of the reinforcement perpendicular to the
radial strip and horizontal shear stresses in the compression block may allow some
non-zero torsional moment.

The factors which might control the torsional moment gradient near the column are
not known. If a torsional moment on the side face of the radial strip can be main-
tained to the column support, then it produces a concentrated load at the support
equal to twice the value of the torsional moment. If, however, the torsional moment
begins to decline at some distance from the support, then it adds to the Kirchhoff
shear and requires flexural support from the radial strip, necessitating an interaction

between the primary and torsional shear mechanisms close to the column.
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(3) The deformations required to generate torsional shears may be so large as to require
a loss of force gradient in the reinforcement close o the column, either through
spread of reinforcement yielding or extensive damage to the confining concrete.
Either of these would result in a trade-off between primary and torsional shear
mechanisms.

Although it may not be possible to estimate directly the contribution of torsional
shear to the overall capacity of a plate-column connection, it is possible to outline some
of the effects of torsional shear on the basis of equilibrium conditions.

At the remote end of the radial strip, the magnitude of the torsional moment must be
zero. In the case of a continuous plate, this statement is based on symmetry. In the case
of a simply supported plate, zero torsional moment is a boundary condition. For a con-
centrically loaded column, the torsional moment must also approach zero at the column
support as a result of symmetry. .

A consequence of the requirement for zero torsion at the column end of the radial
strip provides a criterion for minimum load capacity. For a concentrically loaded col-
umn, if there is a non-zero torsional moment at any point along the side face of a radial
strip, then according to Equation 5.7, the total Kirchhoff shear between that point and the
face of the column must be equal to at least 2 times the magnitude of the torsion. Since
both faces of the radial strip are loaded in the same way, the minimum support reaction
for the radial strip is equal to 4 times the magnitude of the torsional moment. Since there
are four radial strips, the total minimum column reaction is 16 times the magnitude of the
torsional moment.

Since the torsional moment is zero at both ends of the radial strip, the total contribu-
tion to Kirchhoff shear made by torsional moment gradient must be zero. Starting at the
column end of the strip and moving outward, a positive increment in torsional shear must
be accompanied by a positive (downward) increment in Kirchhoff shear, according to

Equation 5.7. Near the remote end of the strip, the value of the torsional moment must



return to zero, resulting in negative (upward) increments to the Kirchhoff shear. The neg-
ative and positive increments in Kirchhoff shear resulting from torsional moment gr.di-
ent must always sum to zero over the full length of the radial strip.

Torsional shear affects the distribution of Kirchhoff shear along the length of the
radial strip. The root source of all shear load on the side face of the radial strip is primary
shear. With regard to loading the radial strip, however, the effective point of application

of this shear load may be moved much closer to the column by the action of torsional

shear.
5.3 Equilibrium of Radial Strip

5.3.1 Actual Loading of Radial Strip

Consider the free body diagram in Figure 5.5(a) and (b), showing the net forces and
moments acting on a radial half-strip. In Figure 5.5(a), the line load, q, is the sum of the
self-weight of the half-strip and any distributed loads applied directly to the half strip. In
Figure 5.5(b), the Kirchhoff shear, v, replaces the shears and torsional moments on the
side face of the half-strip.

The radial strip supports all the loads shown in Figure 5.5(b) by acting as a cantile-
ver beam. The maximum capacity of this system is obtained by optimizing the distribu-
tion of Kirchoff shear, subject to certain constraints.

The total flexural strength of the cantilever is the sum of M~ and M *. Flexural equi-

librium of the radial strip leads to Equation 5.11 and vertical equilibrium produces
Equation 5.12. In each of these equations, the factor two accounts for the fact that both v
and g were defined for a radial half-strip. The quantity P, is the total load carried by one

radial strip of an interior column-slab connection.
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L A1
M"+M'=M,=2xf (vV+q)rdr (5.1}
o 0

P,=2x f “G+a)dr [5.12]
0

5.3.2 Simplified Loading of Radial Strip
The total line load at any point on a radial half-strip is the sum of the directly

applied line load, g, and the Kirchhoff shear, v, the latter being composed of torsional

shear and primary shear. In order to evaluate the integrals of Equations 5.11 and 5.12,

three assumptions are made regarding the distribution of load along the lengtk: of the

radial strip. These assumptions both simplify and optimize the loading of the radial strip.

(1) All Kirchhoff shear is assumed to be the result of primary shear. The torsional
shear contribution is considered negligible.

(2) Atadistance / from the column end of the radial strip, the Kirchhoff shear
decreases from the maximum value permitted by primary shear (m,’,,,) to a value
of zero. The length [ is referred to as the loaded length of the radial strip.

(3) The direct load on the radial strip is assumed to be negligible (g =0).

Assumption (1) is conservative since it underestimates the intensity of Kirchhoff
shear close to the column end of the radial strip. For the case of a punching failure occur-
ring before significant deformation of the plate, it is justified because the behavior at ulti-
mate load does not favour the development of large torsional momeats on the side face of

the radial strip. There are two reasons for this.
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First, the side face of the radial strip is close to an axis of symmetry, where the tor-
sional moment is constrained to be zero. A large torsional moment on the side face of the
radial strip requires that the orientation of the principal mioment axes be mark'edly |
different than the n and r axes of the strip. This is not consistent with small deformations
of the plate.

Second, near ultimate load, the plate is cracked in flexure, reducing its torsional
stiffness. In addition, the torsional moments are parallel to the reinforcement and require
the development of dowel forces in the plane of the slab. With low torsional stiffness,
large deformations would be necessary to generate significant torsional moments, but
large deformations are not consistent with a brittle punching failure.

Assumption (2) optimizes the loading of the radial strip with regard to maxirnizing
total load. Itis not inherently conservative and almost certainly violates conditions of
compatible deformations within the plate. It is however, consistent with the develepment
of a lower bound estimate on punching capacity, which allows the violation of compati-
bility deformations within the plate provided that statics are satisfied at every point, the
primary shear mechanism has enough ductility to allow redistribution and the torsional
shear capacity is at least sufficient to offset any direct load on the strip.

If assumption (2) is accepted, then assumption (3) is conservative and justified for
slab-column conrnections. For a prototype slab under uniformly diﬁributcd load, the area
of slab supported by a single column is large compared to the plan area of the loaded
length of the radial strips. For a typical slab-column connection test specimen, loads are
applied outside the immediate vicinity of the column and only the dead weight of the
radial half-strip contributes to . In either case, ¢ is small compared to primary shear and
may be neglected. For a spread footing, the plan area of the radial strips accouats for a

significant fraction of the entire footing area. The intensity of load applied directly to the
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radial strip is much larger than in the case of a column-supported plate. As a result, it
may be overly conservative to neglect ¢ in estimating the punching capacity of a footing-
column connection.

The optimized loading of a radial half-strip is shown in Figure 5.6. The loading

term w is defined as follows.

7 5.13
w=m,,’w=-1—:-bu’m=tmxjd (5.13]

Rather than define w as a line load on a radial half-strip, it is convenient to consider w as
the simplified, opiimized Kirchhoff shear load acting on one side of a radial strip by an
adjacent quadrant of two-way plate. A radial strip of an interior column-slab connection
has two adjacent quadrants of two-way plate. The total line load on a radial strip of an
interior column-slab connection is 2w. For an edge or corner column, however, there
will be radial strips that are parallel to the free edge of the plate and have only one

adjacent quadrant of two-way plate. In this case, the total line load is w.

5.4 Bond Model Capacities
In this section, an attempt will be made to quantify the elements of the bond model

which will determine the ultimate strength of a slab-column connection. Estimates are

needed for the flexural capacity of the radial strip and the magnitude of the primary shear.

5.4.1 Fiexural Capacity of Radial Strip

The flexural strength of each radial strip can be estimated in the same way as any
under-reinforced concrete beam. The assumption of yielding in the reinforcement, at
least for those bars passing through the column, is consistent with observed behavior.

Expressions for the negative moment capacity, M ", at the column end of the strip and the
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positive moment capacity, s+, at the remote end of the strip, are given in Equations 5.14

and 5.15. The factor, k,, accounts for the degree of rotational restraint at the remote end -

of the radial strip.
M =p xfjd’xc, [5.14]
M*=k xp*xfjd’xc, [5.15)

Equations 5.14 and 5.15 require definitions of the effective densities in the radial
strip of the top and bottom reinforcement, p~ and p*. It would seem reasonable to assume
that any steel which passes through the column contributes to M~. There is, however, a
problem in dealing with reinforcing bars which are close to the column. Furthermore, for
uniformly spaced reinforcement, the values of p~ and p* should not depend on whether

the mat is bar centered or space centered. The following definitions of p~and p* satisfy

these criteria.
- Agr [5.16]
Pe=pxd
. Ap [5.17]
Pe=pxd

A_ris the total cross-sectional area of top steel passing through the column plus one

half the area of the first top bur on either side of the column. Similarly, 4,5 refers to the
total area of bottom mat steel passing through the column plus one-half of the first
bottom bar on either side of the column. The quantity d is either the flexural depth of the
top or bottom mat of reinforcement, as appropriate. The term b also depends upon which
mat is being considered. Itis the column dimension plus the distance to the first
reinforcing bar on either side of the column.

The restraint factor, k,, is zero for the typical, isolated slab-column connections with
rotationally unrestrained edges. For prototype slabs or test specimens whose boundaries

extend to the center of span and are fully restrained against rotation, k, is equal to unity.



5.4.2 Primary Shear Loading

The maximuni intensity of primary shear loading, w, on a radial half-strip is calcu-
lated by muliiplying the limiting force gradient in the reinforcement perpendicular to the
radial strip by its internal flexural moment arm and dividing by the spacing of the
reinforcement (Equation 5.13). The reinforcement spacing and internal moment arm are
either known or can be estimated accurately. Although the force gradient along a reinfor-
cing bar may be limited by either yielding of the reinforcement or by bond failure, it is
the limitation imposed by bond failure that results in a brittle punching shear failure.
Therefore, one way of estimating the primary shear loading term w uses a direct estimate
of bond strength.

According to Equation 5.9, in a region dominated by beam action, a limiting force
gradient in the reinforcement is equivalent to a limiting shear stress. In Section 5.4.2.2 it
is shown that this limiting shear stress is no different than that used to estimate the con-
crete contribution to the shear strength of slender beams. Values of critical nominal shear
stress for one-way beams are well established in design codes. Primary shear may be
estimated on the basis of code values for critical nominal shear stress. In this way, the

bond model provides a link between code provisions for the design of one-way and two-

way flexural members.

5.4.2.1 Bond Strength

The conditions which exist for the top steel in two-way plate near a column are not
conducive to high values of bond stress. Lack of confinement perpendicular to the plane
of the slab makes splitting failure likely. Two-way bending causes transverse tension
which further reduces bond strengths.

Morita and Fujii (1982) present an empirically derived relationship for bond stress

at splitting failure. The value of b,is the lesser of b, or by;. The terms b,; and b; are non-



dimensional measures of the amount of concrete which must fracture in a splitting failure.
Splitting in the plane of the reinforcement is accounted for by b,;, while a local

wedge-shaped split around a single bar is accounted for by b,,, as illustrated in Figure 5.7.

=5 _ [5.18]
bu=g—1
b, =B [5.19]
dy
1., =Vf'c x(0.09614b, +0.1337) (5.20]

The maximum value of primary shear load on a radial half-strip as limited by 7., is:

5.21
WM&F=jdX{—1t:—bXTw} [ ]

5.4.2.2 Nominal Shear Stress

The term 7, defined in Equation 5.9, is equivalent in concept to a nominal shear

stress in a slender one-way beam. For a beam of width s, the average shear on a horizon-

tal section which separates the reinforcing steel from the rest of the beam is:
" V [5.22]

Ve =y T dxs

where T" is the force gradient in the tension reinforcement. This nominal shear stress

forms the basis of building code approaches for estimating the concrete contribution to
shear strength. It is an attempt to estimate the capacity of the beam to develop the
average bond requirements demanded by shear. Therefore, building code methods of
estimating one-way shear strength should be directly applicable to two-way plates.

In the interests of simplicity, building codes usually assume j =1.0 in
Equation 5.22. Therefore, Equation 5.10 should be modified to reflect this approxima-

tion.
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m’=1xjd,=v,xd [5.23]
This should provide a reasonable estimate of maximum moment gradient.
Values of v, according to the American and British standards are:
ACI 318: v, =0.166 X\, [5.24]
[5.25]

1 1
BS 8110: v, =029 x (pg X f.)’ (400/d)*

The corresponding values for primary shear loading applied to a radial haif-strip, w,

are.
ACI 318 Wy =d X0.166 X\, {5.26]
1 1 {5.27]
BS 8110 Warr = d X0.29 X (p X F°.) (400/d)*

5.4.3 Ultimate Strength of Slab-Column Connection

In practice, the slab reinforcement of most slab-column connections is uniformly
distributed, at least in the immediate vicinity of the column. So long as the reinforcement
perpendicular to a radial strip is uniform, the value of w does not vary along the length of
the radial strip. This is true whether w is based on an estimate of bond or a critical shear
stress. Therefore, while the value of w may vary continuously, as shown in Figure 5.6, a
typical plate with uniform distribution of reinforcement and a uniform thickness should
have a uniform value of w, as shown in Figure 5.8(a). Equation 5.11 may be further sim-
plified and soived for the loaded length, /.

M,=2xf
0

1 =\Mw [5.29]

Combining Equations 5.12 and 5.29 yields:

wil 2 [5 .28]

L !
wWirdr =2x f (wirdr =2x2-
0
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P,=2><J;L(w)dr=2x fo ‘(w)dr=2xwl=2xm 15.301
A change in the spacing of the reinforcement perpendicular to the radial strip or a
change in the thickness of the plate, at a distance /; from the face of the column, can be
accounted for by having a step in the loading diagram, as shown in Figure 5.8(b). For
this type of loading, the solution of Equations 5.11 and 5.12 results in the following.
P =2x[l x{w,—w)+Ixw] [5.31]

= 21,60, = )+ N, = (wy~ W)W
The punching capacity of a slab-column connection is obtained by summing the

contribution of each radial strip.

P..=ZP, [5.32]

5.4.4 Limits of Bond Model

The bond model assumes that radial strips projecting from the column are loaded on
their side faces by shears resulting from the beam action of the adjacent quadrants of two-
way plate. Under certain conditions, however, the calculated failure load of a slab-
column connection will be greater if it is assumed that the radial strips themselves carry
shear by one-way beam action. Assuming the mechanism of the bond model, with

arching action in the radial strips, will result in a lower predicted ultimate load.
According to the bond model, a loaded length. 1, may be calculated for each radial

strip. For the typical case, where the loading term, w, is constant, / is given by

Equation 5.29. The radial strip is loaded on both faces by what amounts to a one-way

shear. Therefore, for a single radial strip, the total loaded length is 2. If the width of the

radial strip is greater than 2/, then more load can be carried to the column by beam action

of the radial strip than by the mechanism proposed by the bond model.
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Combining Equations 5.13, 5.14, 5.15 in 5.29 and assuming that the flexural depth
of all the reinforcement is approximately equal and that any bottom reinforcement is fully

effective, the width of the radial strip (or side length of the column), ¢, may be solved in

terms of the loaded length.
l_,\/(P++P')><Cdezxﬂ_Vpxcxdxﬁ [5.33]
Tuax X Jd Tnax
_ PX gy [5.34]
¢ T pxf,xd

Combining the above expression with the condition that the side length of the column be

equal to twice the cantilever length gives a relationship between the critical ratio of

column dimension to slab flexural depth.

_(c2) X Ty [5.35]
€= oxf,xd

c _4f, [5.36]

d o

Assuming a concrete strength of 30 MPa, a steel strength of 400 MPa, top and
bottom reinforcing densities of 1 per cent and that the maximum shear stress, Ty, can be
approximated by the ACI code value for one-way shear, the critical ratio of column size
to flexural depth would be in the order of 35. If only the top reinforcement is contributes
to the moment capacity of the radial strip, M,, then the critical ratio is about 17.

The preceding approach assumes that a radial strip acts exclusively in either beam
action or arching action. However, the transition between arching action and beam action
as the column size increases relative to the depth of the plate may not be so sudden.
Imagine a series of tests in which the column size increases incrementally. Each incre-

ment in side length may be used either to carry one-way shear directly to the column or to



increase M, by an increment, AM,. The change between one-way and two way behavior
occurs when the increment of side length (dc) contributing to M, is more than twice the

resulting increment in loaded length (d!).

I X dl X 2d X T, =AM =pf,jd’ x dc (5.37]
d__phid _1 [5.38)

This relationship, when squared and combined with Equation 5.33, gives a critical
value of c¢/d which divides pure arching action from mixed beam action and arching
action within the radial strips.

c_ pfyxJ {5.39]

d T

As before, assuming a concrete strength of 30 MPa, top and bottom reinforcement
densities of 1 per cent and a steel yield stress of 400 MPa, this second method suggests
that the change from radial arching action to radial beam action begins at values of c/d in
the order of 7 for plates in which the bottom reinforcement is fully engaged and 3.5 for
plates in which only the top reinforcement is effective.

It should be noted that if this effect of large columns is ignored, the bond model will
err on the conservgtive side.

There is a second limitation of the bond model requires that the column dimension
have a minimum size relative to the depth of the plate. For an extremely small column, it
is possible that the capacity of the connection will be governed by a splitting failure of
the radial strip. According to the mechanics of the bond modet, each radial strip is loaded
on both faces by the loading term, w. This is an internal load, however, and is distributed
through the thickness of the slab. As a result, part of the load enters the radial strip above
the center of the radial arch while the remainder enters below. That portion that enters
below must be supported by vertical tensile stresses that effectively hang the load from

the arch. These stresses should be maximum at the end of the loaded length, since at this
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position virtually all of the loading term, w, enters the strip below the level of the arch.
The critical value of ¢/d for this type of behavior can be estimated by calculating the ver-
tical tensile stress at the end of the loaded length of a radial strip. This is done in

Equation 5.40, using the loading term w,, and assuming a tensile strength of concrete of

0.5vF".

c x0.5\ff:7=2xwm=2xd x0.166\/j?
This procedure places the critical value of c/d at about 0.66. Most slabs will have

[5.40]

values of ¢/d in excess of 1.5. As a result, this requirement for minimum column size is

not considered to be a serious limitation of the bond model.
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Chapter 6
Application of Bond Model

6.1 Assessment of Bond Model Mechanism

The bond model describes a slab-column connection as a rectangular grillage of
radial strips that cantilever from the column. Each strip is loaded by the adjacent quad-
rants of two-way plate. According to the bond model, there should be a correlation
between the punching load, P, of a slab-column connection and the maximum force
gradient, F, 'y, in the flexural reinforcement perpendicular to the radial strips.

In order to apply the bond model to a test, the loading term, w, and the flexural
capacity of the radial strip, M,, must be determined. These quantities are then related to
the failure load, P,,,, of each specimen by Equations 5.32 and 5.30 or 5.31. The flexural
capacity of each radial strip, M,, is a function of the plate reinforcement and the extent of
rotational boundary restraint. If the value of w is based on measured force gradients, then
the comparison of P,,, and P, provides some assessment of the accuracy of the bond

model mechanism in describing slab-colunin behavior.

6.1.1 Measured Force Gradients

The bond model requires an estimate of the maximum bar force gradient, F,',,,, that

can be maintained in the reinforcement perpendicular to a radial strip. In this investiga-
tion, however, most force gradients are measured over intervals that are within and paral-
lel to the radial strip. Only the first interval and possibly the second interval of the
perimeter bar are in a position to provide information concerning beam action
perpendicular to the radial strip, and even these may be influenced by their close proxim-

ity to the column and the parallel radial strips.
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Since direct measurements of the force gradients perpendicular to the radial strips
were not made, values of F,’,,, are based on the available force gradient measurements
(presented in Appendix C) at other locations. These estimated values are recorded in
Table 6.1. What follows is a detailed discussion on how the values of F,’,,, were chosen.

It is likely that the available force gradient measurements tend to under-estimate the
true values of F,’,,, perpendicular to the radial strips. There are three reasons for this.
(1) All measured force gradients are on bars whose bond is compromised by the flexu-

ral behavior of the plates. The folding pattern of the plates, discussed in Chapter 4,

caused significant cracking along the length of the bars within the radial strips. The

bond model, however, requires the magnitude of force gradients on bars that do not
follow the cracking pattern associated with the yield-line mechanism.

(2) Force gradients are measured in a predominantly radial direction. According to the
mechanics of the bond model, arching action is a dominant feature in the radial
direction. Therefore, the gradients measured at some of the intervals are limited by
the redistribution associated with a shift from radial beam action to radial arching
action.

(3) Many force gradients are measured over intervals that are 300 mm or more in
length. A longer length of interval tends to attenuate the measured values of gradi-
ent.

Because of the above-mentioned problems, an average value of the peak force gra-
dients measured over all the intervals in any test is not a meaningful result. It is more
appropriate to consider only the higher values of peak gradient. The best thit can be
expected is to show that the magnitude of the force gradients required to satisfy the bond
model are not unreasonable. Therefore, values of F,’,,, for each test must satisfy two

criteria: (1) the measured force gradients must meet or exceed the value of F,’,,, and (2)



the value of F,”_ must be sustainable over a range of loading. In the following discus-
sion, the second criterion is assumed satisfied if the gradient is maintained through at
least 5 mm of deflection.

It should be noted that, barring any non-functioning strain gauges, at least four sep-
arate strain gauges contribute each average value of bar force reported in Appendix C.
Each reported value of bar force gradient is based on the average response of at least four
gauges at both the upper and lower gauge locations. Asa result, even a single value
reported in Appendix C may be considered reproducible.

Force gradient diagrams for the first and third interval of the column bar and the
second interval of the perimeter bar for specimen P11F0 (Figures C-13 and C-15) show
fairly good agreement on a maximum value of 100 N/mm. Moreover, the results of the
second interval of the perimeter bar show that this is a sustainable level of bond.

For specimens P11F31 and P11F66, the maximum gradient over the second interval
of the column bar (Figures C-17 and C-21) is about 125 N/mm. Although this gradient
has a peak value of about 140 N/mm for specimen P1 1F31, the sustainable maximum is
only about 110 N/mm. The peak value of gradient over the second interval of the column
bar for specimen P11F66 is about 125 N/mm. However, because of yielding at the upper
gauge location at a deflection of about 20 mm, this value is not sustainable. For both of
these specimens, the maximum gradient over the second interval of the perimeter bar
(Figures C-19 and C-23) is essentially the same as that measured in specimen P11FO0.

Therefore, a more modest value for F,’y,, of 110 N/mm is considered reasonable.

For specimen P38F0, a value for F,'y,, of 130 N/mm is based on the results of the

third interval of the column bar and the second interval of the perimeter bar
(Figures C-25 and C-27). Force gradient diagrams for specimens P38F34 and P38F69
(Figures C-29, C-31, C-33 and C-35) do not appear to be very reliable. The poor per-
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formance of the strain gauges in these two tests is discussed in Chapter 4. Although gra-
dients as large as 150 N/mm and 200 N/mm are recorded along the column bars of these

tests, the maximum gradient on perimeter bar is only about 100 N/mm. This is less than

is recorded for the perimeter bar of specimen P38F0. As a result, there is no convincing

cvidence for assuming a higher value of F,’,, for specimens P38F34 and P38F69 than is
estimated for specimen P38F0.

The second interval of the column bar of specimen P19S150 (Figure C-33) reaches
a peak value of about 120 N/mm. However, the first and second intervals of the perime-
ter bar have maximum values between 80 N/mm and 90 N/mm. An average value for
F, sz Of 100 N/mm is considered reasonable.

The perimeter bars of both specimens P19S75 and P19S50 mark a change in the
spacing of the reinforcement. The spacings of the column bars are 75 mm and 50 mm for
specimens P19S75 and P19S50, respectively. However, for specimen P19S75, the dis-
tance from the perimeter bar to the first adjacent bar on the column side is 75 mm
whereas the distance to the first bar on the other side is 150 mm. Similarly, for specimen
P19S50, the spaces on either side of the perimeter bar are 50 mm and 150 mm wide
respectively. For Table 6.1, average spacings of 112.5 mm and 100 mm are assigned to
the perimeter bars of specimens P19575 and P19S50, respectively.

From Figure C-41, a reasonable value of F,’y,, for the column bar of specimen

P19S75 is about 65 N/mm. For Figure C-43, the average maximum gradient for the
perimeter bar is about 80 N/mm. The force gradient results for specimen P19S50 are

shown in Figures C-45 and C-47. Maximum gradients for the column and perimeter bars

are 45 N/mm and 65 N/mm, respectively.
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As the three specimens of the restraint series, PI9RE, P19RC and P19RB, were cast
from the same batch of concrete and had the same layout of reinforcement, it is consid-
ered that these specimens should have a common value of F}’y,,. The first and second
intervals ¢f the column bar of specimen P19RE (Figure C-49), the first interval of the
perimeter bar of specimen P19RC (Figure C-55) and the second interval of the column
bar of specimen P19RB (Figure C-57) all reach a maximum value of about 125 N/mm.
The fact that the second intervals of the perimeter bars for specimens P19RE and P19RB
(Figures C-51 and C-59) reach a maximum value of only about 90 N/mm is somewhat
offset by the peak gradient of about 160 N/mm over the second interval of the column bar
of specimen P19RC (Figure C-53). A mean value for F’ s Of about 125 N/mm is con-
sidered justified for these specimens.

~ 6.1.2 Boundary Effects

Variations in the rotational restraint at the slab edges have an effect on the flexural
capacity of the radial strip. The quantity M, is the sum of the negative moment capacity
of the radial at the column end, M ", and the effective positive moment capacity of the
radial strip at the remote end, k, xM*. Assuming adequate anchorage and under-
reinforced section, M~ is calculated taking the top mat steel passing through the column
at yield. The value of M* is calculated in the same way as is the negative moment
capacity. The magnitude of the restraint factor, k,, varies between zero and one, depend-
ing upon the amount of rotational restraint provided at the remote end of the radial strip.
Prototype siabs and most test specimens in the literature have displacement boundary
conditions that make k, easy to estimate. An isolated, simply supported column-slab
specimen has no rotational restraint at the remote end of its radial strips; k, is zero. A

fully continuous plate has full restraint at the remote end of its radial strips; , is one.
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The specimens of the present investigation were provided with force rather than dis-
placement controlled boundary conditions. The boundary conditions for most of the test
specimens are somewhere between simply supported and fully restrained. Taking the
bottom reinforcement at yield, the value of M*, given by Equations 5.15 and 5.17, is
about 4.16 kN-m for all specimens in the present investigation. The magnitude of , is
somewhere between zero and one and must be estimated for each test on the basis of
measured boundary loads.

All plates were reinforced with the same bottom mat, shown in Figure A-3. Itis
assumed that only the full-length bottom bars were effective in distributing the positive
edge moments applied by the boundary restraints. Therefore, in any one direction, the
bottom mat reinforcement consists of ten #10M reinforcing bars with an average depth of
125 mm. The total moment capacity of these bars is approximately 52.0 kN-m.

Axis A-A in Figure 6.1 shows the location of the maximum positive moment across
the full width of plate resulting from the edge restraint. It is assumed that, in the absence
of corner restraint, the effect of the edge restraint is spread uniformly across the width of
the plate. The restraint factor, k,, at any point during a test is taken as the fraction of total

available positive moment that is engaged by the edge restraint, as follows.

52.0kN * m [6.1]

ER = =5 go— = 59.1N
6.2
R <10 621

" ERpu
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The corner restraint of specimens P19RC and P19RB tended to fold the plate along
axis B-B, shown in Figure 6.1. Because of this, the corner restraint directly engaged only
the outer three reinforcing bars of the bottom mat. Therefore, the primary shear load for
specimen P19RC is calculated with only top reinforcement contributing to M,. The
magnitude of &, is taken as zero.

For specimen P19RB it is necessary to account for the combined effects of the edge
and corner restraints. Assuming that each corner restraint engages three bottom bars each
way, the magnitude of CR required to form a plastic hinge along axis B-B (CR,,,,) is
approximately 50.4 kN. The total number of bottom bars engaged by the corner restraint

in one direction, N, and the corresponding value of k, are calculated as follows.

CR [6.3]
NCR=6XEIE;
4
b= <10 (641
ERmx(l-—l‘:,i)

The total moment capacity of each radial strip at failure load is recorded in

Table 6.2.

6.1.3 Correlation of Ultimate Load and Measured Force Gradient

Based on the values of F,’,, listed in Table 6.1, the bond model loading term, w,

for each specimen is calculated according to Equation 5.13 and recorded in Table 6.2.
For all specimens except P19575 and P19S50, the maximum load for each radial strip is
given by Equation 5.30.

For specimens P19875 and P19550, there is a change in the spacing of reinforce-
ment at a distance, /,, of 125 mm from the face of the column. This is accounted for by

having a step in the loading diagram and requires two values of w (w and w;). The
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loading term w, applies to the region within J, of the column face and is based on the
force gradient estimates of the column bars. The value of w applies to the more widély
spaced reinforcement farther away from the column. In both specimens P19S75 and
P19850, this wider spacing is 150 mm. Therefore, the value of w for both specimens is
assumed equal to that obtained for specimen P19S150. For specimens P19S75 and
P19850, the maximum load for each radial strip is given by Equation 5.31.

The total load, P,,,, is obtained by summing the contributions from each radial
strip. For interior square or circular column-slab connections with the same reinforce-

ment in each direction, this amounts to muitiplying the contribution of a single radial

strip by four.

6.1.3.1 Specimens Without Fiber Reinforcement

Only specimens P19S75 and P19S50 failed at smaller loads than would be pre-
dicted by the bond model using measured values of force gradient. Anchorage failure of
some of the reinforcement passing through the column, first discussed in Chapter 4, is
considered to be the main reason for the comparatively poor performance of these speci-
mens. There are, however, two other possible contributing factors. First, although addi-
tional steel through the column increases the flexural capacity of the radial strip, M,, it
does not add to the torsional strength of the plate at some distance away from the column.
It follows that, with concentrated reinforcement through the column, the percentage of
total load that is carried by primary shear must increase, reducing the apparent signifi-
cance of torsional shear. Second, for any particular boundary condition, the value of tor-
sional shear should depend greatly on deflection. Concentrating reinforcement through
the column increases the flexural stiffness of the plate, so that development of the

torsional shear mechanism is impaired.
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Results similar to those obtained for specimens P19S75 and P19S50 are available in
the literature. For example, Moe (1961) reports a series of tests in which the total amount
of reinforcement was held constant while its distribution across the width of the plate was
varied. These specimens were approximately 1800 mm square in plan and 150 mm thick,
reinforced with eleven #5 bars (equivalent to #15-M bars) each way. When uniformly
spaced across the width of the plate, the bars were 165 mm apart. The spacings of the
central bars for the tests with concentrated reinforcement were 115 mm, 75 mm and
50 mm. The specimens with higher concentrations of reinforcement through the column
failed at lower loads than did the specimens with uniformly distributed reinforcement.
Similar results are reported by Elstner and Hognestad (1956) for specimens the same size
as those of Moe but reinforced with #8 bars (#25-M bars). The spacing of the central
reinforcement for the tests by Elstner and Hognestad was approximately 65 mm.

As is the case for specimens P19S75 and P19S50, anchorage failure is believed to
be responsible for the poorer performance of the specimens with concentrated reinforce-
ment reported by Moe and by Elstner and Hognestad. In the present investigation,
anchorage proved to be critical for 100 mm? bars spaced at 50 mm and 75 mm with
embedment lengths measured from the center-line of the plate between 1000 mm and
1360 mm. In the tests reported by Moe and by Elstner and Hognestad, the embedment
length is reduced to approximately 900 mm and the bar area is increased to either
200 mm? or 500 mm?®. The reinforcement spacing, however, is similar to that used in the
present investigation. It is reasonable to conclude that if anchorage was critical in speci-
mens P19S75 and P19S50, it must surely have been critical in the tests reported by Moe
and Elstner and Hognestad.

For all the remaining specimens without fiber reinforcement, the failure load

exceeds the calculated load based on measured force gradients. The mechanics of the
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bond model suggest that this additional load is mainly the effect of torsional shear. As
discussed in Chapter 5, the effect of torsional shear is to redistribute primary shear so that
the net loading of each radial strip is applied closer to the column, thereby increasing the
total load that may be carried by each radial strip. The existence of torsional shear is an
undenizable consequence of the plate equations of equilibrium. In Chapter 5, however, no
method is proposed either to measure dkecﬂy or to predict the magnitude of the torsional
shear contribution to punching strength. Instead, the magnitude of the torsional shear
contribution must be estimated experimentally, on the basis of the how much the ultimate
loads exceed the bond model predictions.

There is a temptation to base an estimate of the torsional shear contribution on the
average ratio of P, to P,,, for specimens P19RB, P19RC, P19RE, P19S150, P38F0 and
P11F0. However, most of these specimens underwent large deflections prior to punching
- failure. Large deflections were accompanied by extensive yielding of the reinforcement
in the vicinity of the column. Although large deflections may favour the development of
torsional shear, extensive yielding reduces primary shear. This means that for most of the
test specimens in this investigation, the effects of torsional shear and primary shear may
not be entirely additive. Comparing the ultimate test loads with the predictions of the
bond model may be misleading since neither the magnitude of the loss of primary shear
nor the effect of torsional shear can be determined.

In order to estimate the torsional shear contribution, it is necessary to first deter-
mine which specimens, if any, are most likely to have developed torsional shear while
maintaining the primary shear close to the column. It is assumed that this condition is
satisfied if, for any test specimen, the value of force gradient over the second interval of
the perimeter bar is maintained at or near its maximum value through to failure. It can be

seen in Figure C-59 that specimen P19RB satisfies this criterion convincingly. The mag-
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nitude of the force gradient ranges between 80 N/mm and 100 N/mm from a deflection of
about 15 mm through to failure. The gradient over the second interval of the perimeter
bar of specimen P38F0, shown in Figure C-27, is well maintained up to a deflection of
about 50 mm. Beyond this point, the gradient begins to increase because of a decreasing
bar force at the lower gauge location. Figures C-55 shows that the value of the gradient
over the second interval of the perimeter bar of specimen P19RC is also relatively con-
stant from a deflectior: 4f about 10 mm up to a deflection of about 40 mm. Although in
this case, the magnitude of the gradient is not large, its constancy suggests that force
gradients perpendicular to the radial strips in the vicinity of the column may have been
stable.

If it is assumed that the effects of primary and torsional shear were fuily additive in
specimens P19RB, P38F0 and P19RC, then the average ratio for these tests of the mea-
sured ultimate test load, P, to the calculated punching load, P, using measured force
gradients, is an experimental measure of the ratio of the combined effects of primary
shear and torsional shear to primary shear alone. By this reasoning, the contribution of
torsional shear is estimated at approximately 29 per cent of the bond model load based on
primary shear alone.

For specimens P11F0, P195150 and P19RE, the ratio of P,, to P, although
greater than one, is less than would be expected if primary and torsional shear contrib-
utions were fully additive. Each of these specimens shows a significant drop in the mag-
nitude of the force gradient over the second interval of the perimeter bar. This loss of
gradient is caused by the spread of yielding in the reinforcement close to the column in
the later stages of each test. Declining force gradients close to the column must reduce

the primary shear contribution to punching strength.
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The apparent decrease of shear strength with increased yielding of the reinforce-
ment is an effect that is mentioned elsewhere. Moehle et al. (1988) present data from
Hawkins and Mitchell (1979) that shows a decrease in the shear strength of a slab-column
connection with increasing yielding of the reinforcement. Hawkins and Mitchell consider
the loss of membrane restraint around the column to be the main reason for this effect.
The bond model, however, shows that extensive yielding of reinforcement directly

attacks one of the mechanisms of shear transfer, namely beam action.

6.1.3.2 Specimens With Fiber Reinforcement
As shown in Table 6.1, the addition of steel fibers to the concrete mix had surpris-

ingly little effect on the magnitude of force gradient. Nevertheless, the fiber reinforced
specimens displayed greater strength, stiffness and ductility than the companion
specimens without fibers.

It is considered that fiber reinforcement increases punching strength by reducing the
effects of cracking on the cross-sectional properties. Prior to cracking, it is reasonable to
assume elastic behavior of the gross cross-section, with compatible strains in concrete
and reinforcement. For a beam of width, b, and depth, d, shear is approximately related

to strain gradient according to equation 6.6., obtained by differentiating Equation 6.5.

2 6.5
M =[Ecx£g-]xe=K,,xe (6]

2 6.6

The term €’ is the strain gradient at the level of the reinforcement. For a fully
cracked section under beam action, as is assumed in the bond model, the relationship

between shear and strain gradient is given by:



V=F, xjd=[E,xpbd x jd)x€¢ =K, x¢& [6.7]
’ [6.8]
Kcl/ cr = E, X 6jp

For the fiber reinforced specimens in this investigation, the ratio of K, to K, is in
excess of four. This means that for any particular strain gradient in the reinforcement, the
corresponding shear is over four times greater if uncracked rather than cracked behavior
prevails. The effect of fiber reinforcement is to bridge cracks within the concrete, so that
the fully cracked behavior assumed in the development of the bond model is never
reached. The appropriate relationship between shear and strain gradient for a fiber
reinforced section is somewhere between the fully cracked and the uncracked extremes.

Much of the additional strength of the fiber reinforced plates was realized after very
large deformations. Because fibers improve the toughness and the pbst-cracking strength
of the concrete, the loss of primary shear as a result of bond failure may have been less of
a factor for these specimens In addition to this, it is likely that the fiber reinforcement
improves the torsional strength and torsional stiffness of the plate. This should lead to a

higher torsional shear contribution to punching capacity for the fiber reinforced speci-

mens.

6.2 Ultimate Strength Predictions Based on the Bond Model

In Section 6.1, it is shown that the bond model describes a relationship between
measured force gradients in the reinforcement and the punching failure load of a slab-
column connection. However, in order to use the bond model to predict the punching
capacity of a slab-column connection, it is necessary to estimate the loading term, w,

without benefit of measured force gradients in the reinforcement.
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In Chapter 5, three methods for predicting the loading term, w, are proposed. One,
Wyar, is based on the procedure for estimating splitting bond strength proposed by Morita
and Fujii (1982). The other two, w,c; and wge;y, are derived from code estimates of the
one-way shear strength of beams. Each of these methods assumes that failure precedes
widespread yielding. Ideally, these predictions of w could be assessed by direct compari-
son to the values based on measured force gradients. Unfortunately, many of the punch-
ing failures in the present investigation occurred after extensive yielding of the
reinforcement. As a result, the measured force gradients and the corresponding values of
w are influenced by yielding. The methods for estimating w proposed in Chapter 5 do not
apply to the type of ductile punching failure observed in the present investigation.

In the following sub-sections, the different methods of predicting w are evaluated
by comparing measured failure loads for 116 tests from the literature to failure loads pre-
dicted by the bond model. These results form the basis of a discussion on the relation-

ships between two-way shear, one-way shear and bond.

6.2.1 Test Results from the Literature
Appendix E gives details of 116 test specimens from the literature. All specimens

were orthogonally reinforced with uniformly spaced reinforcement, though not necessar-
ily equally in each direction. All tests had either square or round columns. The scale of
the tests varied widely, with flexural depths ranging from 35 mm to 200 mm.

The tests of Lunt (1988) and Ford and Vanderbilt (1970) had significant rotational
restraint at the slab boundaries. In calculating the term M,, these tests were assumed to
have fully engaged bottom reinforcement (k, = 1.0). Tests by Moe (1961), Elstner and
Hognestad (1956), Regan et al. (1979), Rankin and Long (1987), Gardner (1990) and
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Kinnunen and Nylzader (1960) had no rotational resiraint applied to plate boundaries.
Only the term M~ contributes to M, in these plates, whether or not bettom reinforcement
was provided (k, = 0).

Values of failure load, P,,,., are calculatzd according to the bond model using the
three different estimates of the loading term, wyc;, Waprand wyser. The strength predic-
tions of the bond model are shown in Figures 6.3, 6.4 and 6.5. Each figure shows the
effect on the ratio of measured test strength to predicted strength as a function of the top
mat reinforcing density of the radial strip, p~, concrete strength, £.’, and the ratio of col-
umn dimension to flexural depth of slab, ¢/d. For reference, Figures £.6 and 6.7 show
the trends of the strength predictions for the ACI and BS 8110 code procedires for the
same body of test data. The results of these calculations are presented in detail in
Appendix E and summarized in Table 6.3.

The most consistent result is achieved with the simplest method of estimating w,
namely the ACI code value for one-way beam shear. On this body of test data, the bond
model combined with w,; produces the most reliable estimates of punching strength of
all the proposed methods, with a coefficient of variation of 12.3 per cent. In addition,
Figure 6.3 reveals no consistent trends for the bond model using wic;.

Using wyg, there is a strong relationship between predicted strength and reinfor-
cing density, shown in Figure 6.4(a). As the reinforcing density increases, the ratio of
test to predicted strength decreases. This indicates that using iy places too much
empbhasis on the flexural reinforcement of the slab.

Basing w on a direct estimate of bond strength resulted in the most scattered predic-
tions of punching strength by the bond model. In Figure 6.5(a), it can be seen that there
is considerable scatter for lightly reinforced specimens. However, most of the results

with ratios of test to predicted failure loading excess of 1.5 are from the tests of Rankin
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and Long (1987), raising the possibility that these tests have some feature that causes the
Morita and Fujii procedure to be overly conservative in estimating the critical splitting
bond stress. In fact, if the specimens of Rankin and Long are not included, then the aver-
age test to predicted ratio for the remaining 89 tests is 1.06 with a coefficient of variation
of 14.61 per cent. One reason for tie higher strengths of these tests may be their
unusnally small values =f clear cover. This will be discussed further in Section 6.2.3.
Part (¢) of Figures 6.3, 6.4 and 6.5 shows the trends of bond model predictions with
the ratio of column dimension to slab depth. The results show no distinct trend toward
more conservative predictions of failure load with increased values of ¢/d, as predicted in
Chapter 5. This is not too surprising, however, since the largest value of c/dfor the sim-
ply supported test specimens is less than 3.5. By the criteria developed in Chapter 5, the
mechanism of the bond model should be fully appliczble to all of these tests. All of the
specimens shown in Figure 6.5 with values of c/d in excess of 3.5 are from the tests by
Shilling and Vanderhilt (1970). These specimens were rotationally restrained on the
edges. The largest value of c/d is about 10 (for specimen 8C1-13) and by the criteria
developed in Chapter 5, the corresponding critical value of ¢/d would be in the order of
7. This means that the radial strips of this specimen should be divided between beam and
arching action. Approximately 70 per cent of the radial strip carries load by the bond
model mechanism; the remaining 30 per cent carries one-way beam shear. The portion of

radial strip acting in one-way shear is not large enough to produce a noticeable effect.

6.2.2 One-Way Shear and Two-Way Shear
Two observations make the results obtained with the bond model using w,¢; and

wig Surprising: (1) the relationship between reinforcing density and critical shear stress

is not a significant factor in two-way plates and (2) the magnitude of the critical shear
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stress is smaller for the punching failure of a slab-column connection than it is for the
shear failure of a beam. The purpose of this section is to provide an explanation for these
two observations.

In Figure 6.2 from MacGregor (1988), it can be seen that for beams there is a very
noticeable trend in the magnitude of the critical shear stress with changes in reinforcing
density. The code value of 2\/f? (U.S. customary units) tends to be an unconservative
estimate of shear strength for lightly reinforced sections. With increasing reinforcing
densities, the code value becomes a lower bound of the test data. However, using the
loading term w,c;, which is based on the ACI one-way critical shear stress, the bond
model shows no trend in the ratio of test to predicted load with changing reinforcing den-
sities, as shown in Figure 6.3(a). Figure 6.2 supports the approach used in the BS 8110
code, in which the critical nominal shear stress in a beam is partly a function of
reinforcing density. Comparing Figures 6.3(a) and 6.4(a), however, suggests that for the
bond model, accounting for reinforcing density in the loading term is not required.

The concept of a limiting nominal shear stress is often considered an essentially
empirical approach to shear analysis. In two-way plates, where the nominal shear stress
is combined with an assumed fixed critical section, this is certainly true. However, in a
slender beam, the nominal shear stress is a good measure of the average force gradient in
the plane of the reinforcement. In a beam, there is no problem in defining a critical sec-
tion, and the relationship between moment and shear is fixed by gross geometry. As long
as beam action is dominant, the force gradient in the reinforcement can be calculated
from measured loads and known geometry. The shear stresses on any horizontal section
between the reinforcement and the flexural compression block must approximately equal
the nominal shear stress. Whereas nominal shear stress in a plate is usually regarded as

merely an index of the severity of loading, nominal shear stress in a beam is a reasonably
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accurate estimate of the actual stresses that are required by statics.

In the bond modl, the flexuzal capacity of the radial strips accounts for the effect of
variations in reinforcing density. With increasing levels of reinforcement, the flexural
capacity increases and consequently, the loaded length of the radial strip mcreases This
is equivalent to having a critical section for punching that is a function of ﬂexﬁral capac-
ity. Furthermore, it appears from the results presented in the preceding section that for
two-way plates no further adjustment is required. For beams, however, the crisical
section is not a functior. of reinforcing density and yet there is ample evidence to suggest
a dependancy of critical shear stress on reinforcing density. Assuming that the mecha-
nism of the bond model is correct, this implies that the factor or factors causing the rela-
tionship between critical nominal shear stress and reinforcing density in beams are not
present in two-way plates. A contributing factor is that in Equation 5.30, w, which is
linearly related to critical shear stress, is raised to the 1/2 power. Therefore, the predicted
punching capacity is not overly sensitive to this parameter. In itself, however, this
reduced sensitivity is not enough to compensate for the the variations shown in
Figure 6.2.

The bond model assumes that bond failure and shear failure are essentially synony-
mous. This was the central thesis of Kani (1979) in his work on deep beams. He noted
that for beams, distributed bonding of the reinforcement, as distinct from remote
anchorage, was a necessary prerequisite of shear failure. The explanation for any differ-
ence between one-way and two-way shear should be based on an understanding of how
bond failure in a two-way plate may differ from bond failure in a beam.

For beams, the relationship between critical shear stress and reinforcing density
may be the result of gradual changes in the mode of failure with changing density of rein-

forcement. A bond failure in a lightly reinforced beam may result from a reinforcing bar



near the corner breaking away from the rest of the beam, with either a diagonal split
across the corner or an L-shaped rupture surface. At higher densities of reinforcement in
a single layer, the beam tends to split horizontally at the plane of the reinforcement.

Heavily reinforced beams often have muitiple layers of reinforcement. With multiple

layers of reinforcement, there may be less tendency for the beam to split at any one layer.

There are three reasons why there may be less variability in the critical shear stress
of a two-way plate than in a beam.

{1) Inabeam, the maximum bond stress and hence, maximum shear stress, may be
controlled by splitting across the corner, splitting in the plane of the reinforcement,
or splitting through multiple layers of reinforcement. Such variety is not a feature
of bond failure in two-way plates. Bond failures in two-way plates tend to be the
result of horizontal splitting in the plane of the reinforcement. Since there is typi-
cally only one layer of reinforcement in each of two orthogonal directions, there is
no effect from multiple layers of reinforcement. The corner splitting failure of

beams has no counterpart in two-way plates. The kinematics of such a failure

requires displacements perpendicular to the rupture surface. The horizontal compo-

nents of these displacements must overcome the in-plane restraint provided by the
surrounding slab.

(2) Cracking along the length of a bar is a significant factor in the bond of that bar
(CEB Bulletin d’Information #151, 1982). In a beam, this cracking results from
mechanical bond of the deformed reinforcement and is highly unpredictable. Ina
plate, cracking along the length of each bar is formed and controlled by the two-
way flexural behavior. This makes the longitudinal cracking in a plate less erratic

than it is in a beam.
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(3) The typical range of slab reinforcing densities is smaller than the range given in
Figure 6.2. Heavy reinforcement in the negative moment region of a slab would be
in the order of 2 per cent while light reinforcement would be about 0.5 per cent.
From Figure 6.2, it appears that the ACI one-way shear estimate is reasonably good
for reinforcing densities between about 0.75 and 2.0.

It is concluded that the relationship between critical shear stress and reinforcing
density in beams may be the result of changes in the mode of bond failure. Additional
scatter in beam test may be due to the unpredictability of longitudinal cracking and varia-
tions in the detailing of the beams. In a plate, one mode of bond failure dominates. In
addition, longitudinal cracking is controlled by transverse bending. As a result, there is

no apparent dependancy of critical shear stress on reinforcing density for two-way plates.

The ACI code value for one-way shear is 2\/)—",,—' (U.S. customary units) or 0.166\/}2—’

(SI units). In Figure 6.2, for values of reinforcing density greater than about 0.75, this
appears to be a lower bound value on shear strength. Therefore, one would expect con-
servative estimates of punching strength using the loading term w,.,. However, the aver-
age ratio of test to predicted load for the bond model using w,c, given in Table 6.3 is 1.29
which, from the discussion in Section 6.1.3.1, is exactly the effect that might be expected
from torsional shear. This suggests that the ACI one-way shear stress is very close to the
average value of beam action shear that can be sustained in a two-way plate.

The actual nominal shear stress at failure for beams with reinforcing densities
between 0.75 per cent and 2.0 per cent is on average about 25 per cent higher than the
code value. This means that the critical value of shear stress in a two-way flexural mem-
ber is estimated at about 80 per cent of the comparable value for a one-way member.

This is not a result that is in agreement with building code approaches to shear. The
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BS 8110 code uses the same value for one-way shear and two-way shear. The ACI code
doubles its one-way shear for application to punching failure, on the assumption that the
confinement of the surrounding plate will improve its shear strength.

The underlying assumption in the code approaches is that shear is limited by
stresses on a vertical surface, through the thickness of the member. However, if shear
failure is the result of bond failure of the reinforcement, then it is not surprising that the
critical shear stress in one-way flexure should exceed that of two-way flexure. In either a
one-way or two-way flexural member, a horizontal surface between the steel and the rein-
forcement must supply adequate shear strength to handle the bonding requirements of the
reinforcement. Failure occurs when the resultant shear stress on this surface reaches a
critical value. In two-way behavior, the resultant shear stress is a vector sum of shears in
two directions. This would suggest that the two-way critical shear stress should actually
be only about 71 per cent of the one-way critical shear stress. This theoretical value com-
pares reasonably well to the estimated value of 80 per cent.

Both the BS 8110 code shear provisions and the Morita and Fujii procedure for esti-
mating bond attempt to give accurate estimates of failure in one-way members. Asa
result, these procedures should consistently over-estimate the critical shear in a two-way
plate. On the other hand, the ACI code uses what amounts to a lower bound of the beam
shear results, if one ignores values of reinforcing density less than about 0.75. By coinci-
dence, this happens to be a good estimate of the actual critical shear stress in a two-way
plate.

For completeness, the quantities wc;, Wagrr and wygp are compared to the value of w
based on measured force gradients from the present investigation in Table 6.4. All meth-
ods of predicting force w overestimate the values based on measured gradients. The

value w,, over-estimates measured values by an average of 26 per cent. The degree of
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over-estimate for both wye and wy, is also higher than would be expected. The reason
why the various methods of estimating w do not work for the tests of the present investi-
gation is the fact that there was extensive yielding in most of these tests. Only in speci-
mens P19§75 and P19S50 are the force gradients controlled entirely by the splitting bond

strength of the reinforcement. For the column bars of specimens P19S75 and P19S50,

W, agrees quite well with w,c,.

6.2.3 Beam Action Shear and Bond

In applying the bond model to punching tests reported in the literature, using direct
estimate of bond strength appears to be the least consistent method of estimating the load-
ing term, w. This does not, however, disprove the hypothesis that bond failure and shear
failure are synonymous. In his discussion of cracking in reinforced concrete, Base (1982)
points out that some of the factors that control the average force gradient of a reinforcing
bar are not directly related to bond.

In particular, Base cites the primary crack pattern, which causes strain incompatibil-
ities between the steel and the concrete, as being a major factor affecting the average
bond strength of a reinforcing bar. The primary crack pattern, however, is controlled by
the overall flexural behavior of the specimen rather than by bond. In addition to this, in a
two-way flexural member, the longitudinal cracking along any particular bar is controlled
by the transverse bending. This may explain why code estimates for beam shear, which
are based on the gross performance of complete specimens, can be more successful at
predicting average bond behavior than attempts to predict the bonding behavior of a

single reinforcing bar on the basis of factors such as cover and spacing which intuitively

would seem to be most important.
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A unique feature of the BS 8110 code is that it accounts for scale effects with the
factor (400/d)*%. The importance of bond may help to explain why there appears to a
scale effect in punching shear strengths. Descriptions of bond-slip behavior based on
non-linear fracture mechanics appear to give good results (Gerstle et al. 1982). One of
the implications of the fracture mechanics approach is the existence of a scale effect.

The procedure proposed by Morita and Fujii (1982) is an empirical estimate of the
splitting bond failure of a one-way member. It is therefore appropriate as a basis for esti-
mating w. However, the possible effect of a primary crack pattern on bond strength is not
considered, nor is there any parameter which accounts for scale effect. The importance
of scale effect may in part explain some of the scatter in the predictions of the bond
model with wysr In Section 6.2.1 it was pointed out that most of this scatter could be
attributed to the tests by Rankin and Long (1987). A notable feature of these tests is that
the clear cover of the reinforcement is only about 5 mm, which is slightly less than the
diameter of the reinforcement. If there is a scale effect and it is not accounted for, then
test strengths of specimens with very small values of clear cover should be higher than
those with larger values. To some extent and in spite of extensive yielding, this trend to
improved performance for small values of cover is illustrated in Table 6.4.

If wy,er is an accurate estimate of the loading term, then, in order to account for the
effect of torsional shear, the average ratio of test strength to predicted strength should be
about 1.29. The actual value is 1.16 which is only about 90 per cent of 1.29. This means
that primary shear is overestimated by about 11 per cent. According to Equation 5.30, in
order to over-estimate primary shear by a factor of 1.11, the loading term, w must be
over-estimated by a factor of 1.24. This means that the Morita and Fujii procedure over-
estimates the critical shear stress for splitting bond failure in two-way members by a fac-

tor of about 1.24. However, the Morita and Fujii procedure was developed for one-way



members. This ratio of one-way to two-way critical shear of 1.24 compares very well
with the previous estimate, based on the ACI critical shear stress and Figure 6.2, of 1.25.

It follows that both the Morita and Fujii procedure and the ACI critical shear stress are

estimates of the same phenomenon.
6.3 Comparison of Bond Model with Code Methods

6.3.1 Critical Sections

Code approaches to estimating the punching strength of slab-column connections
assume that there is a limiting nominal shear stress on some critical section, as shown in
Figure 6.8. The British code uses a critical section which is 1.5 d away from the column
face and limits the nominal shear to the same value as is used for beams. The ACI code
places the critical section at 0.5 d from the column face but uses double the beam shear
value as the limiting nominal stress. The equivalent to a critical section in the bond
model would be the loaded length, /, along the side faces of the radial strips, as shown in
Figure 6.9.

In fact, if the same value of one-way shear is used then the only difference Between
the bond model and the code approaches for estimating punching strength is in the defini-
tion of the critical section. The bond model assumes that for the length /, the radial strip
is loaded on two sides by the maximum one-way shear. Therefore, for any radial strip of
an interior column-slab connection, the total length that is loaded by one-way shear is 2.
The length 21 is the equivalent of one face of the BS 8110 critical section, since both are
loaded by one-way shear. Alternatively, it n;ay be said that the radial strip is loaded by
twice the one-way shear over a length of I. Therefore, the loaded length, /, of a radial

strip also compares directly with one face of the ACI critical section, since both are
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loaded by twice the critical one-way shear value.

In building codes, the critical section is fixed by the gross geometry of the plate and
column. The side length of the critical section for the ACI code is ¢ +4 while the corre-
sponding length for the BS 8110 code is ¢ + 34. For the bond model, the length /is cal-
culated from Equation 5.29 and is a function of the flexural strength of the radial strip
and the ability of the plate to transmit a one-way shear.

The quantities (¢ +d)/I and (c +3d)/2l are shear perimeter ratios that describe the

variation between the code and bond model estimates of punching strength, assuming the
same value for one-way shear is used in each case, If the shear perimeter ratio is greater
than one, then the code is less conservative than the bond model. Figures 6.10 and 6.11
show the predicted effects resulting from variations in reinforcing density, concrete
strength and column size.

For average levels of reinforcement and concrete strength, both the ACI and
BS 8110 code procedures are in reasonably close agreement with the bond model. The
bond model predicts that both code procedures become less conservative decreasing rein-
forcing ratio or increasing concrete strengths.

The bond model predicts opposite trends for the two codes regarding column size.
With increasing column size, the ACI code becomes slightly less conservative while the
BS 8110 code becomes marginally more conservative. For column sizes much larger
than those shown in Figures 6.10 and 6.11, the ratio of the BS 8110 to bond model shear
perimeters will eventually start to rise. It should be noted that ACI 318-89 (11.12.2.1)
addresses this problem by reducing the allowable shear stress for columns with larger

perimeters.



126

6.3.2 Effect of Aspect Ratio
For rectangular columns, with column dimensions of ¢, and c;, the bond mode! pre-

dicts decreasing strengths as the aspect ratio of the column deviates from one. The rela-
tive strength of a rei:tangular column is the ratio between its predicted strength and the

strength of a square column having the same total perimeter.

The primary shear load for a square column with column dimension, c, is given by:

Pare = 2{2NM xw} = 8 X\p X € X jd X Ted (6.9]
For a rectangular column, the primary shear capacity is written as follows:

c,=Bx¢ [6.10

Prpey=Z{2NM x w} [6.11]

= 4X VP X X Jd* X Tyl +4 X P X By X jd? X Ty
The relative strength of a rectangular column to a square column is found by calculating

the ratio between P,,, and P, with the condition that the average side length of the

columns be equal.
_atc_c(l+P) [6.12]
T2 2
- at\VBe_ 1+B [6.13]

P =relative strength = e - m

The relative strength factor is plotted against aspect ratio in Figure 6.12. For
comparison, the aspect ratio factor used in the ACI code is also shown as well as test
results from Hawkins et al. (1971). The test results were non-dimensionalized by
dividing the failure load by the area of the ACI code critical section times the critical
two-way shear stress. Although the test data suggest that the ACI code reduction factor
overestimates the effect of column rectangularity, it appears that the bond model slightly
underestimates this effect. In the limit, the bond model value for relative':stmngth



127

approaches 1/4f2. The relative strength factor, however, accounts only for the effects of
aspect ratio on primary shear. It is anticipated that there will be an effect on torsional
shear as well.

Extreme aspect ratios have a pronounced effect on the curvatures of the surrounding
plate. In reporting tests on a nine panel, continuous flat plate specimen with an interior
column aspect ratio of nearly 10, Simmonds (1970) states that there was "substantial one-
way behavior" spanning parallel to the short face of the column. With true one-way
behavior, torsional moments parallel to the reinforcement would be zero and hence, the
torsional shear load would be zero. In Section 6.1.3.1, torsional shear is estimated to be
about 30 per cent of the primary shear load for a square, concentrically loaded column.
The loss of torsional shear would result in a strength reduction of 23 per cent. Combin-
ing the loss of torsional shear and the maximum reduction in primary shear, the effect of

an extreme aspect ratio would be approximately a 45 per cent reduction in punching load.
6.4 Further Discussion of Bond Model

6.4.1 Causes of Punching Failure

According to the bond model, the punching capacity of a slab-column connection is
limited by two independent quantities, namely the flexural capacity of the radial strip and
the capacity of the plate to generate force gradient in the reinforcement. Anything that
reduces or limitsk either of these quantities will affect the punching capacity of the con-
nection.

The flexural capacity of the strip is calculated in the same way as any one-way
beam. Additional flexural reinforcement in the radial strip should improve the punching

strength of a slab-column connection, but only if there is adequate anchorage of this rein-
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forcement. Based on the results of strain measurements on the reinforcement, anchorage
failure of steel in the radlal strip is cited as 2 likely contributing factor to the failures of
specimens P19S75 and P19S50. For these tWo specimens, however, there were no out-
ward indications of anchorage failure; both plates appeared t0 undergo typical punching
failures. Factors that might contribute to anchorage failures are bar cut-offs, close
spacing of steel through the column and flex ural cracking which follows the reinforce-
ment.

Heavily concentrated reinforcement through the column may locally over-reinforce
the slab. Asa result, assuming adequate anchorage, there would be a failure of the canti-
lever beam sub-structure prior 0 yielding of steel through the column. While this type of
failure is not typical of solid slab-column connections, it may become a factor if there are
a significant holes in the slab near the column faces.

v The loading term, W, is the productof 2 horizontal shear stress times the flexural
depth of the plate. The magnitade of the horizontal shear is limited by the bond strength
of the reinforcement. As aresult, the horizontal shear is primarily 2 function of concrete
strength. However, there may also be scale effects, owing t0 the brittle nature of splitting

pond failure. In addition, other factors which reduce bond strength may be expected to
reduce punching strength. For example, epoxy coatmg of reinforcement is reported to
have detrimental effects on bond. Treece and Jirsa (1989) report that for splitting fail-
ures, the bond strength of epoxy coated reinforcement is about 65 per cent of the bond
strength for uncoated rex inforcement. From Equation 5. 30, this would imply that
slab-column connections with €poxy coated reinforcement will have about 81 per cent of

the capacity of similar connections with uncoated reinforcement.



6.4.2 Edge Column-Slab Connections

While it is beyond the scope of this thesis to include a complete treatment of con-
nections under combined shear and unbalanced moment, it is possible to give some indi-
cation as to how the bond model may be used for edge column-slab connections.

At maximum capacity, the only differences between interior, edge and corner col-
umn connections are the number of radial strips and the loading of these strips. An inte-
rior column has four radial strips. The total load on each strip is 2w since each strip has
two adjacent quadrants of two-way plate. An edge coluinn-slab connection has three
radial strips. Two of these are parallel to a free edge of the plate. The loading of these
two strips is limited to w since there is adjacent two-way plate on only one side. The
remaining strip is loaded by 2w since there are sections of two-way plate on both sides.
A comner column has only two radial strips, and each of these is loaded by w.

Based on the discussion above, it may be said that the bond model already handles
one point ¢i: the shear-moment interaction diagrams of both edge and corner columns.
The extension of the bond model to handle the complete interactions of edge and corner
columns would be based on the procedure developed for the truss model. The truss
model was shown to handle the interaction of shear and moment at an edge column-slab
connection very well (Simmonds and Alexander, 1987). The essential feature of this
model, allowing the development of a complete shear-moment interaction, is that it ties
the flexural capacity of the plate in the immediate vicinity of the column to the shear
.. ength of the connection.

The link between flexural capacity and punching strength is also a feature of the
bond model. As a result, no great adjustment to the shear-moment interaction procedure

of the truss model is required in order to incorporate the bond model mechanism for ver-

tical load transfer.
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6.4.3 Relationship Between Other Models and the Bond Model

The bond model is a modification of the truss model. Many of the features of the
truss model are retained, such as the presence of radial arching action and the link
between flexural capacity and shear strength. However, the mechanism of punching fail-
ure proposed in the bond model suggests that the concept of a critical shear stress on a
critical section, an approach favoured by most building codes, is not unrealistic. The
bond model may be viewed as a bridge between two radically different models of behav-
ior, namely the strut and tie model and the critical shear stress model.

The most important distinction between the bond model and most other models is
that the bond model approaches a lower bound estimate for punching shear. There are
three requirements for a lower bound solution: (1) equilibrium must be satisfied at every
point, (2) no element may be loaded beyond its relevant capacity and (3) there must be
sufficient ductility to allow redistribution of load. The development of the bond model in
Chapter 5 is based on the equilibrium of a radial strip. The flexural suepgth of this strip
is estimated according to accepted procedures for reinforced concrete. All loads that can
enter this strip are limited by the shear capacity of the adjacent quadrants of two-way
plate. Equilibrium of the strip is satisfied. Whether or not the bond model constitutes a
lower bound solution for punching depends upon the ductility of the bond mechanisms
that generate moment gradient and hence, the loading term w. If bond is sufficiently duc-
tile, then the procedure for optimizing the loading of the radial strip satisfies the require-

ments of a lower bound solution.

6.4.4 Future Work
It is tempting to suggest a design procedure based on the bond model in its present

state. In fact, for concentrically loaded columns, Equation 5.30 combined with w,g is
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suitable for design without modification. As shown in Table 6.3, it is more reliable as a
predictor of brittle punching failure than either the ACI or BS 8110 codes. This, how-
ever, does not constitute a complete design procedure. There are many effects that must
be better understood before a general design procedure is developed.

- In particular, the factors affecting torsional shear need to be investigated. It is sug-
gested previously that both column aspect ratio and concentration of reinforcement
through the column may reduce the effect of torsional shear. Eccentric loading is also
likely to affect torsional shear.

Openings in the slab are expected to have several effects. If an opening is located
on the side face of the radial strip, then it prevents loading of the strip at this point by the
adjacent plate. An opening within the radial strip near the column may result in an over-
reinforced condition for the radial strip. Finally, the bond strength of reinforcement pass-
ing near an opening may be reduced.

The effects on slab-column behavior from factors such as eccentric loading, aspect
ratio, concentration of reinforcement and slab openings can only be understood if tests
provide some insight into the internal workings of the connection. There is a consider-
able body of test data in the literature but these test results focus primarily on the gross
load-deflection behavior of the specimens. If it is to extend our understanding of the
behavior of slab-column connections, future testing must place more emphasis on strain
measurements and, in particular, measurements of strain gradient. The bond model pro-

vides a tool for relating internal strain measurements on reinforcement to the punching

load of the overall specimen.
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Table 6.1 Measured Force Gradients

Test spacing d d f. Fy o
(mm) (mm) (mnm) (MPa) | (N/mm)
P11F0 150 133 24 33.2 100
P11F31 150 135 23 35.8 110
P11F66 150 134 23 35.0 110
P38F0 150 107 49 35.6 130
P38F34 150 108 48 384 130
P38F69 150 108 47 38.5 130
P19S150 150 127 30 260 100
P19S75 (col.bar) 75 124 31 26.0 65
P19S50 (col.bar) 50 126 31 26.0 45
P19S75 (per.bar) 112.5 124 31 26.0 80
P19S50 (per.bar) 100 126 31 26.0 65
R series 150 127 31 35.3 125
Tshle 6.2 Primary Shear Loads Based on Measured Gradients
Test M, w W, P, P, =
N'm) | Nmm) | Wmm) | &N | &N) ‘
P11F0 9.2 85.2 N/A 224 256 1.14
P11F31 10.8 95.5 N/A 259 324 1.25
P11F66 10.6 94.7 N/A 255 345 1.35
P38F0 79 88.6 N/A 212 364 124
P38F34 9.1 89.7 N/A 230 308 1.34
P38F66 9.8 89.7 N/A 239 329 1.38
P19S150 9.3 80.3 N/A 218 258 1.18
P19§75 14.5 80.3 96.0 287 258 0.90
P19S50 208 80.3 95.6 339 318 0.94
P19RE 9.5 100.1 N/A 247 304 1.23
PI9RC 7.0 100.1 N/A 212 282 1.33
PI19RB 11.2 100.1 N/A 268 343 1.28
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Table 6.3 Summary of Bond Model Results for Tests in Literature (116 Tests)

Bond Model Code Estimates
Morita
basis for w ACI | BS 8110 | & Fujii ACI | BS 8110
Average Test/Predicted 1.29 '1.05 1.16 1.59 1.06
Standard Deviation 0.16 0.17 0.25 0.42 0.16
Coeff. of Variation (%) 12.33 16.29 21.66 2647 15.08

Table 6.4 Measured and Predicted Values of w

WrEsT VYrest Yrast
Test w w — w jm— w,
TEST ACI Wacr BRIT M&F Yyar

P11F0 85.2 1272 | 0.670 | 129.6 | 0.658 | 146.6 | 0.581

P11F31 95.5 1341 | 0712 | 1337 | 0.714 | 149.6 | 0.638

P11F66 94.7 1316 | 0719 | 1323 | 0.716 | 146.7 | 0.645

P38F0 88.6 1060 | 0.836 | 121.1 | 0.731 | 189.5 | 0.467

P38F34 89.7 111.1 | 0.808 | 1247 | 0.720 | 199.5 | 0.450

P38F66 89.7 1112 | 0.807 | 1248 | 0.719 | 199.7 | 0.449

P19S150 80.3 1075 | 0.747 | 117.2 | 0.685 | 1479 | 0.543

P19875(col.) | 96.0 1050 | 0915 | 146.1 | 0.657 | 180.7 | 0.531

P19S50(col.) | 95.6 1067 | 0.896 | 168.3 | 0.568 | 178.0 | 0.537

R-Series 100.1 | 1233 | 0.812 | 1289 | 0.777 | 1769 | 0.566

average 0.792 0.694 0.541
st.dev. 0.080 0.057 0.071
C.O.V. 10.073 8.194 13.055
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Figure 6.1  Geometry for Determining Effectiveness of Bottom Reinforcement
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Conclusions
The major conclusions of this thesis are summarized as follows.
The truss model does not adequately explain the behavior of slab-column connec-
tions.
A modification of the truss model, called the bond model, addresses the inadequa-
cies of the truss model retaining its advantages.
Punching failure results from a loss of force gradient in the slab reinforcement close
to the column. A loss i force gradient in the reinforcement reduces the ability of
the slab to carry shear by beam action.
Force gradient in slab reinforcement, and hence, beam action shear capacity, may
be lost either through yielding of the reinforcement, which leads to a ductile punch-
ing failure, or by bond failure, which leads to a brittle punching failure. The ACI
code value for critical one-way shear stress is an accurate «stimate of beam action
shear strength in a two-way plate.
Anchorage failure of slab reinforcement that passes through the clamn is not dis-
tinguishable from punching failure on the basis of external appearances. Detection
of anchorage failure requires strain measurements at intervals along the
reinforcement.
Steel fiber reinforcement improves the strength and ductility of slab-column con-
nections by reducing the effects of cracking and not by increasing the magnitude of
force gradient in the reinforcement.
If future testing is to contribute to the understanding of slab-column connection
behavior, it must incorporate strain measurements, and in particular, strain gradient

measurements, of the reinforcement.
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The bond model approaches a lower bound solution for punching strength.
The bond model provides an explanation as to why the assumption of a critical
shear stress on a critical section is not unreasonable. It provides some theoretical

justification for the critical shear stress models employed by most building codes.
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Appendix A: Reinforcement Details

Top mat for:
P11R)
P11F31
P11F66 4
P38H0
P38F34
P38F69 11@ 150

P195150 D

Top mat for:
PI9RE
PI9RC 1
P19RB

H , 13@ 150

Figure A-1 Top Mats with Reinforcement Spaced at 150 mm
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Top mat: P19§75

6@75

4@ 150

ree
Do,

Top mat: P19550

4@ 150

9@ 50

4@ 150

Figure A-2 Top Mats for Specimens P19S75 and P19S50
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Bottom mat for ‘
! .
all specimens @300

T S0

'Y

T 2@ 3%
2720
125
— = J
) 95
750 | t
l
Top North-soutt. bar \ Placement of steel
\ K a(mm) { b(mm) | c(mm)
' P11F0 2% 125 | 157
O O P11F31 23 127 158
/ b P11F66 23 125 157
East-west bar P38F0 49 125 156
¢ P38F34 43 125 156
P38F69 47 126 155
{ J P195150 30 125 157
J P19S75 31 125 155
v © P19§50 31 126 157
Y PI9RE 31 128 156
Bottom (top surface for casting) PISRC | 32 127 156
PISRB 30 127 155

Figure A-3 Bottom Mat and Positions of Reinforcement



Appendix B: Load and Deformation Measurements
Diagrams plotting center deflection against average tie rod load, center load and
edge and corner restraint loads are provided for each test. These are complete records in
that unloading sequences have not been edited for clarity.
In addition, plots of the ratio of edge restraint and/or comer restraint against stroke

are given. These ratios are used in the flexural analysis discussed in Chapter 4.

For all tests except PI9RE, measurements were made of the plass edge movéments.

The raw LVDT readings and calculated expansions across the center-line of the plate are

plotted against stroke.
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Appendix C: Strain Gauge Data
All strain data were converted to bar forces on the basis of coupon tests. The results

from geometrically similar gauge locations were then averaged.

Strain gauge results are presented in two ways. In the first part of Appendix C, bar
force profiles at selected load levels for each test are presented. In the second part, dia-
grams showing values of force gradient and bar force plotted against stroke are preserited.
For reference, a load deflection curve for the overall specimen is included in each force

gradient and bar force plot. Details on how the force gradients were calculated are pres-

ented in Chapter 4.

Table C-1 Description of Force Gradient Intervals

Column Bar Perimeter Bar

Interval 1st | 2nd | 3rd | 4th ist | 2nd | 3rd

Distance of upper gauge 85 | 225 | 375 | 675 | 75 | 225 | 525

from center-line (mm)

Distance of lower gauge | 225 | 375 | 675 end | 225 | 525 | end

from center-line (mm)

Length of interval (mm) 140 | 150 | 300 | 685 | 150 | 300 | 475
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Figure C-40 Perimeter Bar Forces: P19S150
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Figure C-42 Column Bar Forces: P19S75
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Figure C-44 Perimeter Bar Forces: P19S75
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Figure C-48 Perimeter Bar Forces: P19S50
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Figure C-50 Column Bar Forces: P19RE
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Figure C-52 Perimeter Bar Forces: P19RE
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Figure C-55 Perimeter Bar Force Gradients: P19RC
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Figure C-56 Perimeter Bar Forces: P19RC
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400
85 mm - .
—— Center load-defle¢tion \
- 300
< 200
4 100
0
40

Deflecti

Figure C-58 Column Bar Forces: P19RB

on (mm)

Center Load (kN)

Center Load (kN)

206



207

120 > 400
Centef load-deflection \\

lm ,l O -
=~y 21 4 -~ -
Z 80 r < il =
- ! g
= - d g
(%) 4 b~
= - 200 g
g Y S
F \ g
bt 40 1’ r\ . 5
© ' \J N R ! &)

b N N e i

g ,’ \\ """ 1st interval 100

20 p 2nd interval

/', ,-". \ 3“1‘.“.‘99"1
. ;
Y EASEEE——— 0
0 10 20 30 40
Deflection (mm)

Figure C-59 Perimeter Bar Force Gradients: PI9RB

100 400
75 mm
| — Center load-deflection
225 mm
80 | e \;»_,/\/\/‘
525 mm 200

Bar Force (kN)
3
' N
—
1
N
=]
Center Load (kN)

8

.
........
ve?
...........
oam
.o
PER R
so®

.

.
........

-

20 ‘ 30 ' 40
Deflection (mm)

Figure C-60 Perimeter Bar Forces: P19RB



208

Appendix D: Demec Data
Demec results are presented as bar force profiles at selected load levels. Results are
available for all tests except PIORE and PI9RB. In these specimens, the quality of
brazing that attached the extension lugs to the reinforcing bars was not as good as in the
other specimens. As a result, there was too much flexibility in the connection between
the lug and the reinforcing bar to permit accurate measurements.
In each diagram, vertical grid-lines indicate the position of transverse

reinforcement.
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Figure D-2 Bar Force Profiles from Demec Measurements: P38F0
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Appendix E: Tests in the Literature

Table E-1 Description of Test Specimens: Moe (1961)

214

Mark Pu, f. [ |p@ | d d d, s (av) ¢
®N) | (MPa) | (MPa) (mm) | (mm) | (mm) | (mm) | (mm)

H1 37 26.1 328 1.15 114 38 16 152 254
$1-60 389 233 399 1.06 114 38 16 165 254
$1-70 392 245 482 1.06 114 38 16 165 254
$5-60 343 222 399 1.06 114 38 16 165 195
$5-70 378 23.0 483 1.06 114 38 16 165 195
R2 311 26.5 328 1.38 114 38 16 127 146
MI1A 433 20.8 481 1.50 114 38 19 165 293

Table E-2 Description of Test Specimens: Elstner and Hognestad (1956)

Mark Pu f, ('Mfi’a p~ (%) d d s (av) c
(MPa) ) @m) | (mm) | (mm) { (mm) | (mm)

A-la 302 14.1 332 1.15 117 35 19 210 254
A-1b 365 252 332 1.15 117 35 19 210 254
A-lc 356 29.0 332 1.15 117 35 19 210 254
A-1d 351 36.8 332 1.15 117 35 19 210 254
A-le 356 203 332 115 117 35 19 210 254
A-2b 400 19.5 321 247 114 38 25 181 254
A-2c 467 374 321 2417 114 38 25 181 254
A-To 512 279 321 247 114 38 25 181 254
A-3c 534 26.5 321 247 114 38 25 121 254
A-3d 547 345 321 247 114 38 25 121 254
A4 400 26.1 332 1.15 117 35 19 121 356
A-5 534 278 321 2417 114 38 25 210 356
B-9 505 439 341 2.00 114 38 22 170 254
B-14 578 50.5 325 3.00 114 38 25 149 254
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Table E-3 Description of Test Specimens: Kinnunen and Nylander (1960)

Mark P, f, £, p™ (%) d d d, s (av) c
(kN) | (MPa) | (MPa) (mm) | (mm) | (mm) { (mm) | (mm)

IA15a-5 255 236 441 0.80 117 32 12 123 106
6| 275 23.0 454 0.79 118 33 12 123 106
IA15c-11| 333 28.8 436 1.53 121 32 12 62 106
-12| 331 277 439 1.54 122 32 12 62 106
1A30a-24| 430 23.2 455 1.01 128 30 12 88 212
25 408 21.9 451 1.04 124 30 12 88 212
1A30c-30] 490 26.8 434 2.16 120 31 12 4 212
31| 539 26.8 448 2.18 119 32 12 44 212
1A30d-32] 258 23.1 448 0.49 123 32 12 193 212
331 258 234 461 048 125 31 12 193 212
1A30e-34] 331 242 460 1.00 120 30 12 96 212
35| 331 21.8 458 0.98 122 31 12 96 212

Table E-4 Description of Test Specimens: Regan, Walker and Zakaria (1979)

Mark P, f, £, p~ (%) d d d, s (av) c
(&N) | (MPa) | (MPa) (mm) | (mm) | (mm) | (mm) | (mm)

S§2 176 233 500 1.20 77 23 10 85 200
S$4 194 334 500 0.92 77 23 10 110 200
SS6 165 21.7 480 0.75 79 21 8 85 200
$S87 186 312 480 0.80 79 21 8 80 200

SS8 825 36.3 530 0.98 200 50 25 250 250
SS9 390 34.5 485 0.98 128 32 16 160 160
SS10 365 35.7 485 0.98 128 32 16 160 160
SS11 117 34.5 480 0.98 64 16 8 80 80
SS12 105 35.7 480 0.98 64 16 8 80 80
SS13 105 37.8 480 0.98 64 16 8 80 80
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Table E-5 Description of Test Specimens: Rankin and Long (1987)
Mark Py fe £, p~ (%) d d d, s (av) c

&N) | (MPa) | (MPa) (mm) | (mm) | (mm) (mm) | (mm)

1 36 31.5 530 042 41 11 6 165 100

2 49 315 530 0.56 41 11 6 125 100

3 57 31.5 530 0.69 41 1 6 101 100

4 56 36.2 530 0.82 41 11 6 85 100

5 57 36.2 530 0.88 41 11 6 79 100
6 66 36.2 530 1.03 41 11 6 68 100
7 n 304 530 1.16 41 11 6 60 100
8 n 304 530 1.29 41 11 6 54 100
9 79 304 530 145 41 11 6 48 100
10 44 30.6 530 0.52 41 11 6 135 100
11 55 30.6 530 0.80 41 11 6 87 100
T 12 e | 306 | s | i | 4 11 6 63 | 100
13 49 353 530 0.60 41 11 6 116 100
14 52 353 530 0.69 41 11 6 101 100
15 85 353 530 199 41 11 6 35 100
1A 45 294 530 0.44 47 11 6 138 100
2A 66 294 530 0.69 47 11 6 88 100
3A 90 294 530 1.29 47 11 6 47 100
4A 97 317 530 1.99 47 11 6 31 100
1B 29 39.6 530 042 35 11 6 191 100
2B 38 39.6 530 0.69 35 11 6 117 100
3B 57 39.6 530 1.29 35 11 6 63 100
4B 73 31.7 530 1.99 35 11 6 41 100
1C 63 283 530 042 11 6 125 100
2C 88 33.5 530 0.69 54 11 6 7 100
3C 124 335 530 1.29 54 11 6 41 100
4C 126 28.3 530 1.99 54 11 6 21 100




Table E-6 Description of Test Specimens: Gardner (1990)
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Mark Pa f. £, P~ (%) d d s (av) c

&N) | (MPa) | (MPa) (mm) | (mm) | (mm) | (mm) | (mm)

8 129 24.1 430 2.05 76 25 13 83 102
9 136 226 430 2.05 76 25 13 83 102
10 129 24.6 430 2.05 76 25 13 83 102
11 311 226 430 2.14 113 39 20 124 152
12 357 248 430 2.14 113 39 20 124 203
13 271 24.8 430 0.66 122 31 1 124 203
14 202 25.0 430 5.01 73 29 20 83 152
15 160 250 430 147 81 21 11 83 152
16 107 23.2 430 045 86 16 6 83 152
17 121 25.5 430 147 81 21 11 83 102
19 271 22.1 430 047 123 29 10 124 203
20 278 15.1 430 214 | 113 39 20 124 203
21 230 16.1 430 0.66 122 31 11 124 203
23 108 14.5 430 147 81 21 11 83 152
25 306 52.1 430 0.66 122 31 11 124 203
26 323 52.1 430 501 73 29 20 83 203
27 243 52.1 430 147 81 21 11 83 152
28 148 52.1 430 045 86 16 6 83 152




Table E-7 Description of Test Specimens: Shilling and Vanderbilt (1970)

Mak | Py | . £ {p@| d d 4 |s@y| ¢ £
N) | (MPa) | (MPa) (mm) | (mm) | (mm) | (mm) | (mm)

2s1-1 | 43 | 276 | 296 | 1.00 | 38 13 6 64 76 | 0.0
3512 | 47 | 230} 296 | 100 | 38 13 6 64 | 114 | 050
4513 | 51 | 208 | 296 | 1.00 | 38 13 6 64 152 | 050
3c14 | 58 | 221 | 296 | 100 | 38 13 6 64 | 145 | 050
6515 | 78 | 212 | 296 | 100 | 38 13 6 64 | 229 | 050
gs16 | 90 | 205 | 296 | 1.00 | 38 13 6 64 | 305 | 050
2527 | 50 | 232 | 296 | 200 | 38 13 6 32 76 | 050
4528 | 69 | 216 | 38 | 200 | 38 13 6 32 | 152 | 050
6C19 | 96 | 257 | 386 | 1.00 | 38 13 6 64 | 285 | 050
8s2-10 | 114 | 263 | 386 | 200 | 38 13 6 32 | 305 | 050
2C1-11 | 39 | 200 | 38 | 1.00 | 38 13 6 64 97 | 050
ac1-12 | 73 | 222 ]| 38 | 1.00 | 38 13 6 64 | 196 | 050
8C1-13 | 101 | 240 | 38 | 1.00 | 38 13 6 64 | 38 | 050
652-14 | 80 | 206 | 38 | 200 | 38 13 6 32 | 229 | 050
ac215 | 97 | 215 | 38 | 200 | 38 13 6 32 | 196 | 050
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Table E-8 Description of Test Specimens: Lunt (1988)

Mak | P, £, f, @[ d d & |s@) ]| ¢ =
(kN) | (MPa) | (MPa) (mm) | (mm) | (mm) | (mm) | (mm)

Al 398 | 249 | 532 | 030 | 143 | 22 | 10 | 200 | 250 | 050
Bl 282 | 284 | 532 | 047 | 108 ] 22 [ 10 | 175 | 250 | 042
B2 299 | 240 | 637 | 046 | 110 | 25 8 150 | 250 [ 036
B3 321 | 247 | 637 | 057 | 110 | 20 8 | 120 | 250 | 029
B4 311 | 239 | 637 | 076 | 110 | 20 8 120 | 250 | 022
BS 319 | 265 | 637 | 057 [ 110 | 20 8 | 120 | 250 | 029
B6 319 | 231 | 637 | 076 | 110 | 20 8 120 | 250 [ 022
Bl0 | 277 | 216 | 637 | 030 | 110 | 20 3 150 | 250 | o0.s5
Bil | 358 [ 207 | 532 | 104 | 108 ] 22 | 10 | 70 | 250 | 019
B12 | 207 | 233 | 656 | 010 | 112 | 18 6 | 210 | 250 [ 1.60
M1 228 | 207 | 346 [ 030 | 110 | 20 8 150 | 250 | 1o1
c1 265 | 227 | 637 | 046 | 110 | 20 8 100 | 175 | 036
2 275 | 220 | 637 [ 046 | 110 | 20 8 100 | 175 | 036
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