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ABSTRACT

In the late seventies and early eighties, the concept of transporting gas
through a chilled pipeline was proposed. While a chilled gas pipeline
satisfies environmental requirements and proves economical from a
thermo-dynamical viewpoint, it introduces a structural problem for the
pipeline itself. This is because the pipeline is subjected to differential
movements (frost heave) when it traverses from a non-frost susceptible soil
to a frost susceptible soil, i.e. discontinuous permafrost. Here this

important aspect is addressed both analytically and experimentally.

The uplift behaviour of a shallow pipeline embedded in an elasto-plastic
medium is examined. An analytical solution for a beam on an elasto-plastic
foundation is developed and a characteristic non-dimensional load
displacement and stress-displacement relationships are presented. An
approximate 3D solution that accounts for embedment and breakaway
condition behind the pipeline is proposed, making use of the load

displacement curves developed for rigid anchors by Rowe and Davis
(1982).

Recognizing that ice and ice rich soils creep, the behaviour of a pipeline
embedded in a creeping medium is examined. Approximate solutions for a
beam in a creeping foundation are developed and characteristic non-
dimensional load-displacement relationships are presented. A comparison
of these approximate solutions provides upper and lower bound solutions

which are consistent with finite element analyses. Furthermore, the



simplified solutions can be readily adapted for analyzing the uplift
behaviour of shallow pipelines. Simulations of laterally loaded steel and
timber piles in frozen ground as well as analysis of a pipeline at Caen,
France, were carried out to demonstrate the robustness of the developed

model.

The experimental behaviour of scaled model pipelines embedded in
polycrystalline ice is studied in order to confirm our understanding of the
behaviour of a chilled buried pipeline subjected to frost heave. Two model
nipelines with slightly different radius to thickness ratios were subjected to
prescribed displacement rates and their behaviour was observed until the
pipeline was strained beyond current acceptable limits. The observed and
predicted responses are compared and acceptable agreement between the

responses is obtained, giving confidence in the predictive Winkler model.



ACKNOWLEDGEMENTS

I am deeply grateful to my supervisor, Dr. N.R. Morgenstern, for his
interest, guidance and encouragement throughout the development of this
thesis. I would like to thank Dr. D.C. Sego for useful discussions on the
aspects of snow preparation and constant load creep tests on polycrystalline
ice. The laboratory work was carried out with the skillful assistance of Mr.
G. Cyre, Ms. C. Hereygers, Mr. S. Gamble and Mr. J. Khajuria of the
Geotechnical Laboratory.

I wish to express my gratitude to my wife, Sonia, and daughters, Asha
and Anjali, for their invaluable support and understanding throughout the
course of this study. Without their patience and encouragement it would
have proved very difficult to finish this thesis. I also recognize and
appreciate the lifelong influence of my parents. Throughout this study,

friends and colleagues have offered encouragement and fruitful discussions.

The research work reported in this thesis was supported by The Natural
Sciences and Engineering Research Council and Esso Resources Canada
Limited. The financial support granted through awards by Gulf Canada
Resources Limited (administered by The University of Alberta) and
Foothills Pipe Lines Limited (administered by The Association of Canadian

Universities for Northern Studies (ACUNS)) is gratefully acknowledged.



TABLE OF CONTENTS

CHAPTER PAGE

1. FROZEN SOIL PIPELINE INTERACTION

Introduction 1
QOutline of thesis

2. PIPELINES AND LATERALLY LOADED PILES IN AN
ELASTO-PLASTIC MEDIUM

Introduction 6
Beam embedded in an elasto-plastic medium 10
An approximate 3D solution for a buried beam 17
Finite element analysis 21
Uplift resistance of a buried pipeline 24
Laterally loaded pile with and without separation 27
Conclusions 33
References 34
Nomenclature 38

3. BEHAVIOUR OF A SEMI-INFINITE BEAM IN A CREEPING
MEDIUM

Introduction 40
Review of previous work 44
Beam embedded in a creeping medium 46
Linear viscous medium i.e.n =1 53
Creeping medium i.e. n#1 55

Upper bound: Rayleigh-Ritz 55



Lower bound: Martin's inequality 57

Finite elements 62
Comparison between the different solutions 65
Conclusions 66
References 75
Nomenclature 20

4. LATERAL LOADS ON PILES AND UPLIFT OF PIPELINES
IN PERMAFROST

Introduction 382
Brief review of previous work 85
Simulation of laterally loaded piles in frozen soil 89
Pile load tests at Inuvik, N.-W.T. 92
Model solid steel piles in ice (Nixon, 1984) 101
Model aluminium and steel piles in sand (Foriero
and Ladanyi, 1991) 105
Simulation of pipeline subjected to differential frost heave 110
Conclusions 129
References 131
Nomenclature 136

5. UPLIFT OF MODEL STEEL PIPELINES EMBEDDED IN
POLYCRYSTALLINE ICE

Introduction 138
Equipment design 141
Proportioning of the model pipeline and polycrystalline
ice block sample 142
Preparation of a polycrystalline ice block sample 146
Loading arrangement 154
Instrumentation 156
Elastic and creep properties of polycrystalline ice 159

Structural properties of pipeline steel 304 167



Observation of strain time histories in model pipelines
Comparison of experimental behaviour with analysis
Conclusions

References

Nomenclature

Appendix

6. CONCLUSIONS

Frozen soil pipeline interaction
Recommendations for future studies

168
186
188
191
197
198

202
204



Table 3.1

Table 3.2

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 5.1

Table 5.2

Table 5.3

Table 5.4

List of Tables

Indentation factors
J integrals for particular values of n
Details on laterally loaded pile tests

Geotechnical properties for clayey silt at Inuvik,
N.W.T.

Elastic and creep properties for ice
Assumed elastic and creep properties for sand

Geotechnical properties for sand and silt at Caen,
France

Summary of critical strain criterion for pipelines

Comparison of prototype and model pipeline
characteristics

Summary of constant load creep test on samples
of polycrystalline ice

Creep properties of polycrystalline ice at - 2°C.

48

57

84

93

102

106

118

145

148

167

168



Figure 1.1

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

List of Figures

A comparison of frost heave and thaw
settlement deformed shapes for pipelines

Vertical uplift of pipeline due to frost heave

Load-displacement curves for rigid anchors - no
separation (after Rowe and Davis, 1982)

Load-displacement curves for rigid anchors -
with separation (after Rowe and Davis, 1982)

Non-dimensional load-displacement curves for a
beamn on elasto-plastic foundation - analytical
vs 3D finite elements

Non-dimensional maximum moment-displacement
curves for a beam on elasto-plastic foundation -

analytical vs 3D finite elements
Finite element model for an embedded pipeline

Non-dimensional load-displacement curves for a

laterally loaded pile with and without
separation - 3D finite elements (data from
Pollalis, 1982)

Non-dimensional load-displacement curves for a
laterally loaded pile without separation -
analytical vs 3D finite elements

12

19

20

22

23

26

30

31



Figure 2.9

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Non-dimensional load-displacement curves for a
laterally loaded pile with separation -
analytical vs 3D finite elements

Differential frost heave at the interface of
discontinuous permafrost

Indentation factors for a semi-infinite creeping
medium (von Mises material)

Beam embedded in a creeping medium
Geometrical interpretation of Martin's inequality

Tip displacement with time for a semi-infinite
beam on a linear viscous creeping foundation -
comparison of different methods

Tip displacement with time for a semi-infinite

beam on a non-linear creeping foundation -
Raleigh - Ritz

Tip displacement with time for a semi-infinite
beam on a non-linear creeping foundation -
Martin's inequality

Tip displacement with time for a semi-infinite

beam on a non-linear creeping foundation -
finite elements

Tip displacement with time for a semi-infinite
beam on a non-linear (n=3) creeping
foundation - comparison of different methods

49

50

59

67

68

69

70

71



Figure 3.10

Figure 3.11

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Tip displacement with time for a semi-infinite
beam on a nomn-huear (n =35) creeping
foundation -comparison of different methods

Tip displacement with time for a semi-infinite
beam on a non-linear (n=7) creeping
foundation - comparison of different methods

Typical signature of pile head displacement and
displacement rate for a laterally loaded pile in
frozen creeping medium

Comparison of predicted and observed pile head
displacement time history for timber pile T-2-
L at Inuvik, NNW.T.

Comparison of predicted and observed pile head
displacement time history for timber pile T-3-
L at Inuvik, NNW.T.

Comparison of predicted and observed pile head
displacement time history for steel tubular pile
S-4-L at Inuvik, N.-W.T,

Comparison of predicted and observed pile head
displacement time history for steel tubular pile
S-5-L at Inuvik, N.W.T.

Comparison of predicted and observed pile head
displacement time history for steel model piles
in ice |

Comparison of predicted and observed pile head
displacement rates time history for steel model
piles in ice

72

73

90

96

97

99

100

103

104



Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14
Figure 4.15

Figure 4.16

Comparison of predicted and observed pile head
displacement time history for aluminium pile
1-A1l (with slurry)

Comparison of predicted and observed pile head
displacement time history for steel rod pile 16-
S1 (no shurry)

Vertical displacement and stress wave history
profiles during 1st freeze period for pipeline
at Caen, France (after Dallimore and
Crawford, 1984)

Vertical displacement and stress wave history
profiles during 2nd freeze period for pipeline
at Caen, France (after Dallimore and
Crawford, 1984)

Vertical displacement and stress wave profiles
for a semi-infinite beam on elastic foundations
as function of the characteristic length 3

Instantaneous elastic modulus for sand and silt at
Caen from constant load and constant
displacement rate tests

Frost heave in sand and silt during 1st freeze
period at Caen, France

Frost heave in sand and silt during 2nd freeze
period at Caen, France

Predicted vertical displacement and stress
history profiles during 1st freeze period
(fixed/free end conditions) for pipeline at
Caen, France

108

109

112

113

116

120

123

124

127



Figure 4,17

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10a

Figure 5.10b

Predicted vertical displacement and stress wave
profiles during 2nd freeze period (fixed/free
end conditions) for pipeline at Caen, France

Exploded view of PVC box for block sample
ice

Schematic diagram for snow production using a
mini-snow gun

Test frame for mounting sample box (not to
scale)

Exploded view of freezing plate wafer (not to
scale)

Typical strain gauge arrangement and hanger
system for applying displacements

Constant load creep test for polycrystalline ice
sample T1-10/91

Constant load creep test for polycrystalline ice
sample B7-02/92

Corrected normalized strain rate versus axial
stress for polycrystalline ice at -2°C.

Experimental stress-strain characteristics of
pipeline models A and B (stainless steel 304)

End displacement and load time histories for
pipeline model A

End displacement and load time histories for

pipeline model B

128

147

151

153

155

157

164

165

166

169

171

172



Figure 5.11a

Figure 5.11b

Figure 5.12a

Figure 5.12b

Figure 5.13a

Figure 5.13b

Figure 5.14a

Figure 5.14b

Figure 5.15a

Figure 5.15b

Figure 5.16

End displacement and temperature time histories
for pipeline model A

End displacement and temperature time histories
for pipeline model B

Strain time histories for points in the immediate
vicinity of the peak strains for pipeline model A

Strain time histories for points in the immediate
vicinity of the peak strains for pipeline model B

Vertical displacement profile histories for
pipeline model A

Vertical displacement profile histories for
pipeline model B

Experimental flexural strain profile histories
for pipeline model A

Experimental flexural strain profile histories
for pipeline model B

Comparison of final ficxural strain profiles
before thaw, strains determined from deformed
shape and predicted strains for pipeline model A

Comparison of final flexural strain profiles

before thaw and predicted strains for pipeline
model B

Out-of-roundness profiles exaggerated 20 times

along the pipeline model A in the final
deformed form

173

174

175

176

177

178

179

180

182

183

185



Figure 5.17a Comparison of measured and predicted flexural
strain profiles for pipeline model A

Figure 5.17b Comparison of measured and predicted flexural
strain profiles for pipeline mode! B

Figure 5.A1 Constant load creep test for polycrystalline ice
sample T2-11/91

Figure 5.A2 Constant load creep test for polycrystalline ice
sample A4-01/92

Figure 5.A3 Constant load creep test for polycrystalline ice
sample B7-02/92

189

190

199

200

201



List of Plates

Plate 5.1 General loading arrangement of an embedded model

pipeline 158
Plate 5.2 Thin sections of ice polycrystalline samples from

upper 0.10 m of block sample A using the hot-plate

and microtome 161
Plate 5.3 Thin sections of ice polycrystalline samples from top

and bottom block sample B using hot-plate 162



Chapter 1

FROZEN SOIL PIPELINE INTERACTION

Introduction

Over the past decade it has become evident that in the not too distant
future the fossil energy demand in the North American Continent will
increase considerably. Concurrently, public concern over the environment
has put greater restraints on the ways and means of the exploitation and
production of these hydrocarbon resources. Consequently, natural gas is
gaining preference over coal and oil since it burns so much cleaner. These
facts make it ultimately imperative to tap the large gas reserves found in

the northern arctic regions of Canada.

In the late seventies and early eighties the concept of transporting gas
through a chilled pipeline was proposed. The principal advantages of using

a chilled gas pipeline system are twofold:

1. An economical throughput is obtained by using low pipeline
temperatures. The energy balance of the system would be aided by the
low ambient temperatures that exist in the northern arctic regions of

Canada during a large part of the year.



2. The environment safeguards are met by not inducing thawing of the
permafrost and thus preserving existing flora and fauna. While 2
chilled gas pipeline satisfies environmental requirements and proves
economical from a thermo-dynamical viewpoint, it does introduce a
structural problem for the pipeline. This is because the pipeline is
subjected to differential movements (frost heave) when it traverses
from a non-frost susceptible soil to a frost susceptible soil, i.e.
discontinuous permafrost. This is schematically shown in Figure 1.1. A
similar problem arises when a warm pipeline traverses previously
frozen ground which subsequently subsides on thawing and thus induces
additional stresses. However, there exists a fundamental difference
between the above mentioned situations. Soils susceptible to a high frost
heave are normally highly saturated soils which, when frozen, have a
fairly high stiffness. Although the localized frozen soil stiffness is not
as high as that of the pipe, there is much more active soil around the
pipe that is frozen and consequently the relative influence is magnified
in the frozen state. The newly heaving frozen soil constrains the
pipeline much more that the unfrozen thawed soil due to both its higher
stiffness and larger active region around the pipe. A given pipeline
configuration can therefore tolerate far more differential thaw
settlement than frost heave since frozen ground is substantially stiffer.
The higher restraint consequently induces higher strains and stresses in

the pipeline.

Ever since the chilled gas pipeline was proposed, the effects of frost
heave on a pipeline were identified as an important issue. While the

mechanics of frost heave, frost susceptibility and mechanical properties of

[ ]
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frozen ground have been well studied, thers is still a lack of proper

understanding of the interaction between frozen soils and pipelines.
Outline of thesis

This thesis is written in paper format and consequently each chapter
describes a particular aspect that is identified with the problem of frozen
soil pipeline interaction. The second chapter describes how the behaviour
of a pipeline embedded at shallow depths can be suitably determined from a
solution of a beam embedded in an elasto-plastic medium. The analytical

model is also used to verify other three dimensional finite element solutions

obtained in relation to laterally loaded piles

The third chapter deals with approximate solutions for a beam
embedded in a creeping medium. Simple analytical models representing
upper and lower bound solutions are developed. These solutions compare
favorably with simple Winkler finite element solutions. In chapter four the
latter solutions are used to evaluate the creep response of laterally loaded
piles and the response of an experimental pipeline subjected to frost heave
at Caen, France. The robustness of the model is demonstrated by

predictions which compare well with the observed performance.

Chapter five describes the experimental and test set-up of scaled model
pipelines subjected to steady displacement. Two model pipelines were
embedded in polycrystalline ice and the experimental responses were
compared to solutions obtained using numerical procedures. Tests were

also carried out to characterize the structural steel as well as the creep



properties of polycrystalline ice. The simple numerical procedures
developed in this thesis are able to reproduce the principal characteristics
of the interaction of a pipeline embedded in frozen materials. Conclusions

and recommendations for future studies are presented in Chapter 6.



Chapter 2

PIPELINES AND LATERALLY LOADED PILES IN AN
ELASTO-PLASTIC MEDIUM!

Introduction

Over the past two decades several proposals have been put forward for
the construction of a gas pipeline from the arctic to the southern populated
areas (ASCE, 1978). These pipelines must be buried because of regulatory
control. One method that has been suggested is to transport gas at below
freezing temperatures and thus avoid the thawing of permafrost soils.
However, this would lead to freezing of previously unfrozen soils in zones
of shallow and discontinuous permafrost. It is to be expected that a frozen
annulus will develop in a frost susceptible soil around the gas pipeline
leading to significant water migration to the freezing front and the
formation of ice lenses. Consequently, frost heave will be induced, thus

forcing the pipeline to move upwards. The pipeline can undergo substantial

1 A version of this chapter has been submitted for publication to The
Journal of Geotechnical Engineering, ASCE.: Rajani, B. and

Morgenstern, N., 1991. Pipelines and laterally loaded piles in an elasto-
plastic medium.



straining leading to wrinkling buckles specially when the pipeline traverses
a transition zone between two soils with different frost susceptibilities or
between unfrozen and already frozen soil. Ever since the chilled gas
pipeline concept was proposed, the effect of frost heave on pipelines has

been identified as an important issue that should be addressed.

However, it is appropriate to note that similar interactions are present in
a variety of situations such as that of a laterally loaded pile embedded 1n a
stiff soil or permafrost, a pipeline subjected to fault movement, a pipeline
subjected to landslide movement, etc. The significant differences between
that of a pipeline and pile would be the imposed loads (prescribed
displacements versus imposed loads) and the near surface effects would

have to be accounted for with the shallow burial of the pipeline.

In order to understand soil-pipeline interaction, specially in the context
of a frozen surrounding medium, a number of aspects need to be
considered. These include (i) the mechanics of frost susceptibility and frost
heave which is essentially constitutes the loading process, (ii) the modelling
of mechanical propertics of frozen ground and (iii) the modelling of
mechanical response of the pipeline. Though each of these aspects has been
well studied individually, there is a lack of proper understanding of the

interaction between frozen soil and pipelines.

Frost susceptibility and frost heave have become reasonably well

understood and have been studied (Penner and Ueda (1978); Nixon et al.,

(1981); Konrad and Morgenstern (1983, 1984)). These aspects will not be

discussed further here. Although the prediction of frost heave is not an



easy task, it can be estimated reasonably with currently available

experience and knowledge.

The mechanical behaviour of frozen soil has been studied by Sayles
(1973), Sayles and Haines (1974), Sego and Morgenstern (1983) and
others. It is now widely accepted that ice-rich frozen soil behaves like a
creeping material. The most likely circumstances of a pipeline subjected to
frost heave will be associated with prima-; and secondary creep phases of
straining. The classical studies of Glen (1955) indicate that the flow law of
ice-rich soils is that of the Norton type. The Norton creep relationship

rewritten in the generalized form as proposed by Ladanyi (1972) is:

2.1] —’f‘—-:(—c’—] or ¢=Bo"

where € is the axial strain rate, ¢ is the axial stress, €, and o, are proof
strain rates and proof stress, B and n are creeping constants. Typically, n is
about 3 (Morgenstern er al., 1980) for ice at low stresses and icy silts
(McRoberts et al., 1978). In search for a dependence of n and B on
temperature, Morgenstern et al. (1980) found from analyses of available
creep data that ice behaves more as a linearly viscous material at
temperatures close to 0° C. The constant B is found to be temperature and
material dependent. Sego and Morgenstern (1983, 1985) have studied the
behaviour of laboratory prepared polycrystalline ice and have indeed
confirmed the applicability of the Norton-type power law. In the past,
considerable attention has also been paid to the behaviour of polycrystalline

ice primarily for glaciology studies as well as laboratory studies related to



geotechnical problems. It provides a good material to work with since
control can be exercised over its characteristics in the laboratory. Sego and
Morgenstern (1985) studied the indentation problem in polycrystalline ice
both experimentally and numerically using finite elements and they were

able to simulate comparable behaviour.

We have seen above that the analysis of the interaction of frost heave
with a pipeline is a complex problem in which many processes need to be
examined for a proper understanding of the complete system. In the
present work, we propose to decouple the frost heave process in the frost
susceptible soil from the pipeline in the non-frost susceptible soil. This
implies that we should apply an attenuated frost heave rate at the transition
zone of the two types of media rather than the free field frost heave rate
(that which is usunally measured in the laboratory). Presently, we assume

that it can be readily approximated.

Previous attempts at solving this problem and specially that related to
pipelines have been made by Nixon er al. (1983) and Selvadurai (1988).
Nixon et al. (1983) simplified the problem to that of plane strain conditions
and applied the free field frost heave over a predetermined section of the
frost susceptible soil and studied its attenuation specifically at the interface
of the frost and non-frost susceptible soils. However, the pipeline was
considered as a passive component of the whole system and hence its
interaction effects were not studied. Using the thermo-elastic analogy,
Selvadurai (1988) analyzed the ¢lastic behaviour of an embedded pipeline
at shallow depth. As indicated previously, frozen soil hardly behaves as an

elastic material and hence the application of this analysis is limited.



The motivation for studying the behaviour of a pipeline (beam) on
elasto-plastic foundation is that for ice, n is found to be within the range of
3 to 4 and this is sufficiently large so as to be analogous to a rigid-plastic
material (1 —= < ). Of course, the material behaviour is linearly viscous
when n = 1 in a Norton type relationship. It is this former aspect that is of
interest because it permits us to establish bounds on the true behaviour. In
this chapter we present the solution for a beam on elasto-plastic foundation
and an approximate 3D solution is also proposed. These results are then
compared with 3D finite element analyses and they indeed confirm the

validity of the simplified 3D solution.

Since the development of the solution is of a general nature in that it can
be readily adapted to the analysis of a pipeline or a pile, we shall refer to
either structure as a beam and the surrounding medium as the foundation.
Yamada (1988) reported an analysis along the same lines where the beam

was of finite length and applied to the problem of bonded-joint cracking.

Beam embedded in an elasto-plastic medium

For the present analysis we assume that the beam is buried in a
homogeneous and isotropic elasto-plastic medium and when subjected to
uplift the beam exhibits a double curvature. We recognize that, in fact, for
shallow pipelines this may not be totally valid. The elasto-plastic behaviour

of the medium is represented by a bi-linear force-displacement relation. If
the elastic subgrade modulus is represented by k_, then the foundation

stiffness, k;, is given by k! =bk_, where b is the beam width (pile or

pipeline diameter). Typically, the maximum force/unit length, F,,

10



11

resistance available for sand (Trautmann er al., 1985) and for clay

corresponding to the undrained state can be expressed respectively by:

[2.2a] F, =ybzN,

[2.2b] F, =N,bs, =N ,bc =N bo,

where z is the depth of embedment and N, is the dimensionless factor that
depends on material properties of the sand, v is the medium weight density,
s, is the undrained strength (= ¢, the cohesion for a purely cohesive

material that follows the Mohr-Coulomb failure criterion) and N, is a

factor analogous to the bearing capacity factor which will be discussed in

detail later. In the case of an elasto-plastic medium the undrained shear
strength could be replaced by the yield strength, G,. Also, the limiting

elastic displacement, U, is expressed as F, /k’.

A consequence of the double curvature mentioned earlier is that the
transition point O (Figure 2.1) is a point of inflexion at which the bending
moment is zerc. If on the other hand, we choose to look at the problem as
that of a pile subjected to lateral load P, then the equivalent problem of a
pipeline subjected to frost heave would be given by a prescribed
displacement of w_ = PB/2k’ where B = W where E and I are beam
elastic modulus and moment of inertia respectively, B is the so called
characteristic length. We also note that the resulting problem is statically
indeterminate. We shall formulate the problem in terms of the load, P, but

the corresponding prescribed end displacement solution can be obtained as
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indicated above. A sequence of events as a result of the interaction between
the beam and the surrounding foundation take place as the load is

monotonically increased and these can be described as follows:

» on initial application of the end load, P (load level P,), the embedded

beam as well as the soil behave elastically.

» as the load is increased to a load level P,, ultimate passive resistance

will be developed in part of the surrounding soil medium but the
pipe will remain elastic. Referring to Figure 2.1, we define an axis
x-x that distinguishes two regions: region A where the medium is in
an elasto-plastic state and region B where the medium is still elastic.
The position of the axis x-x will shift from initial position (s-s)
where it is initially coincident with the edge where the load or
prescribed displacement is applied. The shift from the far edge to the

axis x-x is denoted by X at any particular loading stage.

« as the load is further increased to, say, load level P,, the distance X

increases until a plastic hinge begins to develop in the beam or
wrinkles develop in the beam depending on the structural

characteristics of the beam.

Our object here is to trace this load resistance behaviour for the first

two events.

Stage 0<P<P, andw=<U,

As noted earlier, for a load 0 <P <P, and as long as the displacement w

13



14
does not exceed the elastic displacement limit of the soil, w=U , the
solution for a beam on elastic foundation is perfectly valid and the

corresponding differential equation, boundary conditions and solution
(Hetenyi, 1968) are:

4

4
[2.3] EISY 4 krw=0
dx

and at x = 0, we have —-M=EIw”"=0 and -S=EIw” =P. The

displacement is given by:

[2.4] w= 2—;&«3"‘” cosfx

5

for 0 <x <o,

Stage P, <P<P, andw =T,

As soon as the beam displaces sufficiently so as to exceed the elastic

displacement limit, U,, then a maximum force resistance will be acting on

that portion of the beam while the rest of the beam-foundation is still

elastic. The equilibrium equations for the two regions described earlier are:

d*w

[2.5] region A: —X<x<0 El—A=_F
dx*
4
(2.6] region B: 0<x<eo El d “:B +k/ w, =0

X



where X has been defined earlier.The corresponding solution for the

differential equations are:

Fx* . Cx’ N C,x*

2.7 =
[27] WaTTO4RL " 6 2

+C,x+C,

[2.8] wy =e ™| C; cosPx + C, sinBx]

where C, i =1, 2,...6 are constants. In the above equations we have seven

unknowns: six C, constants and X. The necessary boundary conditions are:

[2.94] at x=-X for moment: -M=EIw”"=0
and shear: -S=EIw” =P

for displacement and slope compatibility, and moment and shear

equilibrium at x =0, we have

[2.9b] displacement: W, =W,
’ —
for slope W =Wy
for moment: W, = Wg
for shear: Wy =Wy

The last boundary condition is obtained from the fact that at x =0 the rate
of variation of shear is equal to the maximum force/unit length. i.e.,
d*w d*w,

[2.9¢] El—3%=El—2=-F
dx dx

15
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The seven boundary conditions given in equations [2.9] permit the

evaluation of the seven unknown constants. They are:

C, =(P-XF, )/EI
C, =%(P - XF, /2)/EX
[2.10] C, =B(-2%B°P +X*B’F, - F,) /K.
C,=C,
Cs=F,/k]
C,=-C,/2p?
and XB=2PB/F, ~ 1

We note from the last equation of set [2.10] that the region A increases (i.e.

X increases) as P increases and that X is zero until at least:
[2.11] P2F,/2B and P, =F, /2B

The displacement at the point of application of the load can be evaluated as
a function of the applied load to determine what is commonly termed as the
characteristic curve. Interestingly enough, the expression so obtained can

be conveniently expressed in non-dimensional form i.e.,

={1 2P 8P
W=N]|-+-=—+=-=
[2.12] c( 3 J

where W = wk,/bc and P =PB/bc. In the design of a pipeline or a pile, we
would normally be interested in the maximum bending moment or stress.

The maximum bending moment in the beam depends on the load level as



well as on which side of the transition axis (x-x) the maximum curvature
develops. Three specific load levels are identified and expressed in non-

dimensional form:

[2.13a] M?B =e™sinfx where Bx=mw/4 and P<P,

-RRT —
[2.13b] 1\;[3=62;° {sinﬁi-}—[Z%—djcosBi}
C(N.-F)
where taan=——_P,—- and P>22P,
MB 3 P 2N
= —— 4 - —=
[2.13¢] P 2N, + 5
. P - = =
where ﬁx=1“—ﬁ— and P, <P<2P,

Equations [2.13z and 2.13b] correspond to the case when the maximum
bending moment occurs to the right of the x-x axis and [2.13¢] corresponds
to the case when the maximum bending moment occurs to the left of the
axis x-x. Nonetheless, the point (X) of maximum moment increases as the

load is monotonically increased.

An approximate 3D solution for a buried beam

Rowe and Davis (1982) examined the undrained behaviour for vertical

uplift as well as horizontal movement of a rigid thizn anchor in a saturated

17

clay. Their study was limited to 2D plane strain conditions and they



considered the influences of anchor embedment, layer depth, overburden
pressure and breakaway condition or separation as well as other aspects on
load displacement behaviour. The numerical solutions were obtained using
finite element techniques assuming that the soil was purely cohesive and
behaved according to the Mohr-Coulomb criterion. Additional assumptions
made in their study can be referred to in the cited reference. In the case of
a cohesive soil and for the specific case of undrained loading response, the
cohesion is equal to the undrained shear strength. Consequently, for the
analysis of the uplift behaviour of the pipeline and the laterally loaded pile
the maximum resistance, F,, can be expressed as indicated in [2.2b]. In the
present analysis we propose to use findings of Rowe and Davis (1982)
related to vertical uplift of anchors to study the uplift behaviour of
pipelines and those related to horizontal movement of anchors to study
lateral pile behaviour. Essentially we make use of the load displacement
curves (commonly referred to as characteristic curves) for vertical uplift
of anchors (Figures 2.2 and 2.3) and horizontal movement of anchors
where full bonding or immediate breakaway is allowed for between the
anchor and soil. The specific solutions were obtained for an anchor lying
on the surface, i.e. Wb = 0 and for an anchor deeply buried. i.e. b/b = oo,
These provide lower and upper bounds solutions for the uplift capacity as
expressed in [2.2b]. For a vertical anchor and embedment ratio of h/b = 0
we have the Prandtl solution and N is 5.14. The corresponding N_ value
for b/b = e is 11.42. Rowe and Davis (1982) found in their analyses that it
was particularly difficult to define failure and they proposed a definition
that failure is considered to be reached when the displacement is a selected
multiple of that which would have been reached had the conditions

remained entirely plastic. In fact, they showed through their analysis that

18
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for /b > 3, the value of N_ (= 11.42) is essentially constant for a vertical
anchor and its variation from 5.14 for h/b = 0 is practically linear till h/b =
3. Consequently, we propose to use the equivalent bi-linear represeniations
of the vertical and horizontal load-displacement curves for anchors to
represent the response of the soil in order to obtain an approximate 3D
characteristic curves for the uplift behaviour of a buried beam and the
response of a laterally loaded pile. As we shall see, this also permits us to
obtain an economical solution for the beam embedded in a medium where
separation is permitted to take place between the beam and the surrounding

soil.

The characteristic curves for uplift resistance of a buried beam obtained
by making use of the above indicated load displacement curves are shown
in Figures 2.4 and 2.5. The effect of separation may be of considerable
importance for the lateral behaviour of a pile, while it is believed that the
pipeline-frozen soil interface could sustain adhesion and thus limit if not
avoid separation. The loads and displacements obtained in Figures 2.4 and

2.5 are within the range of small displacement formulation.
Finite element analysis
The following points should be kept in mind in order to compare the
finite element solutions with the proposed approximate solutions using load

displacement characteristics for anchors developed by Rowe and Davis
(1982):

« finite element solutions for anchors as developed by Rowe and Davis

21
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(1982) represent a plane strain condition. Meanwhile, the embedded
beam (pipeline or pile) in a surrounding medium (frozen soil or soil)

is between a plane stress and a plane strain condition.

» while the load displacements curves for vertical anchors given by
Rowe and Davis (1982) can be directly used for the study of uplift
resistance of the pipelines, the corresponding use for understanding
the behaviour of a laterally loaded pile is not so obvious. For the
latter case, the uppermost part of the pile can be envisaged as an
anchor that steadily grows in depth (Figure 2.8) as the load is

increased.
* a relation between the elastic modulus of the continuum and the so

called foundation subgrade modulus used for the simplified problem

as proposed by Vesic (1961) is given by:

0.65E. “/E b*
2.14 k= n/ :
[2.14] Yo1-vi YV EI

Uplift resistance of a buried pipeline

In order to validate the approximate 3D solution for a beam embedded
at finite depth, a finite element model for the embedded pipe was solved. A
common problem in three dimensional finite elements is that the
computational effort increases dramatically with discretization. This is of
special significance when non-linear analysis is being carried out. As a

consequence, we found that the discretization pattern was largely governed



by the number of shell elements used along the circumference for
representing the tube. We also wanted to ensure that the curvature of the
tube was adequately represented. Hence, a choice was made to use the 4-
noded thin shell element as formulated by Bathe and Dvorkin (1986) and
available in Adina (1987). In order to avoid element locking, a 2 x 2 Gauss
integration rule in the r-s plane was used. The surrounding medium was
represented by 8-node brick finite elements and its material properties
were described by the von Mises failure criterion. The finite element
discretization of 12 x 5 x 12 in the x, y, z directions is shown in Figure
2.6. In fact, only one half of the problem needs to be solved if we take
advantage of the symmetry. In solving the problem, essentially the same
results were obtained when an 8-noded thin shell element and the
corresponding 20-node brick element were used with a coarser

discretization.

The finite element solution for displacement and maximum moment
obtained for embedment ratio of h/b=1.55 are shown in Figures 2.4 and
2.5. An embedment ratio of 1.55 was chosen based on the premise that for
regulatory approval a minimum cover of about 1 m is required and we
envisaged a gas pipeline diameter of, say, 1066 mm. We observe that the
finite element solution falls within the bounds established by the

approximate analytical solutions. Subsequently, the approximate solution
was obtained as indicated above using a depth factor, I‘_~I;, of 6.35. It should

be emphasized that this value of N_ was obtained by trial and error
procedure and without applying any rigorous analysis such as a least square
analysis. We note that though the load-displacement matches quite well, the

bending moment-displacement match is closer to that of h/b = e case. We
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should keep in mind that the stress predictions using the displacement finite
element technique are known to be poor and this would be especially
expected in light of the coarse discretization used for the pipeline. It can be
appreciated that a variety of approximate solutions can be easily obtained

by varying this depth factor that corresponds to the specific h/b ratio.

Laterally loaded pile with and without separation

Pollalis (1982) examined the behaviour of a laterally loaded pile
allowing for separation to take place as the lateral load was increased
monotonically. The soil medium was considered to be elasto-plastic but
both elastic shear modulus and the undrained shear strength increased
linearly with depth since such a situation is usually encountered in normally
consolidated clays. The laterally loaded pile was simulated using cubic
beam finite elements for the pile and solved using 3D brick finite elements
for the surrounding medium. The separation was accounted for by using
springs elements and details can be found in the fore-mentioned reference.
The constitutive model as proposed by Kavvadas (1982) for non-linear
behaviour of the surrounding soil was used. However, before proceeding to
compare the finite element solutions with the approximate solutions it is
important to bear in mind that the solutions obtained by Pollalis (1982)
consider shear strength increasing linearly with depth while the above
proposed solution for a beam embedded in an elasto-plastic medium as well
as the solutions for anchors obtained by Rowe and Davis (1982) are only
pertinent for a homogeneous medium. Also, we shouid keep in mind that
the solutions for an embedded anchor are those corresponding to that of a

plane strain situation. Here, we attempt to obtain (at least qualitatively) a

27



solution for a complex 3D situation using simplified 2D solutions and no
suggestion is made that the analysis is rigorous. Nonetheless, it does
provide insight into the mechanisms involved in the behaviour of a laterally

loaded pile.

Recently, Trochanis et al. (1991a) performed a 3D finite element
analysis of laterally loaded piles that accounts for a non-linear response of
the soil as well as slippage and separation between the pile and the
surrounding soil. Subsequently, Trochanis et al. (1991b) developed a
discrete numerical Winkler model that adequately represents the cited non-
linearities and it was validated by solving the same problem using 3D finite
element analysis. A good comparison was obtained for typical test
problems. A particular problem that was solved using the discrete
numerical Winkler model was that of a laterally loaded pile embedded in

an homogeneous cohesive soil.

The solutions as indicated by Pollalis (1982) are expressed in terms of
different non-dimensional load-displacement parameters that we have
selected in the above solution. Hence, the 3D finite element solution given
by Pollalis (1982) was transformed to conform to our non-dimensional
parameters. It is also important to note that when separation is not allowed
for, Pollalis (1982) obtains an immediate non-linear response since a
linearly varying elastic modulus with depth is used for the surrounding soil
medium. Consequently, data from Pollalis (1982) was adjusted to include

the initial elastic behaviour.

Figure 2.7 shows the 3D normalized finite element solutions as indicated



above. It indeed shows that our normalization is more consistent than that
proposed by Pollalis (1982). His parameter, o =EI/G_ b*, is brought
naturally into our normalization and the response obtained is within a very
narrow band. It is also evident that the responses obtained by Pollalis
(1982) were within a narrow range of parameters and hence to compare
his results with our approximate solution an extrapolation procedure was
used. In order to account for the linear variation of soil properties with
depth and obtain a fair comparison between the approximate analyses and
the 3D finite element method, we amplified the 3D finite element response
by 1.5 ( this factor is based on equivalence of the strain energy for the two
systems). Figure 2.8 shows the 3D finite element solution as compared with
the upper and lower bounds obtained using approximate analysis. The
approximate solution can be seen to steadily increase from the h/b = 0 case
to reach a steady state solution where h/b is in the range .1 to 3. In spite of
the limitations cited above, it can be observed that the approximate analysis
remarkably traces the trend of the more accurate finite element solution.
The data from specific analysis of a laterally loaded pile that accounts for
separation given by Trochanis et al. (1991b) was transformed to our non-

dimensional parameters and the responses are indicated in Figures 2.8 and
2.9.

The separation between the back of the pile and the soil can be
accounted for in an approximate manner if we use the corresponding
limiting solutions for horizontal anchors as given by Rowe and Davis
(1982). Though the limiting resistance depends on the particular collapse
criteria used, the upper and lower resistances can be estimated to be in the

range 2c and 4c. Figure 2.9 shows the comparison of the characteristic
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load-displacement curves obtained using the proposed analytical
approximate solution, the 3D finite element solution (Pollalis, 1982) and
the discrete Winkler model (Trochanis et al., 1991). We note that the trend
of the load-resistance curve is similar to that of the lower bound (/b = 1)
case and perhaps this observation provides a rational understanding of this
commonly used criterion for ignoring the resistance offered by the soil

medium in this region.
Conclusions

A simple analytical formulation for a beam on an elastic-plastic
- foundation is presented. The 2D plane stress load-displacement solutions
developed by Rowe and Davis (1982) have been incorporated with the
analytical formulation to obtain an approximate 3D solution. This
approximate solution was compared with the 3D finite element solution for
a shell pipe embedded in an elasto-plastic medium. We have demonstrated
that the bounds established by the approximate solutions are quite adequate.
The approximate solution can be fine tuned to the finite element solution
using the bearing capacity factor, N,. We found that a value of N_ = 6.35
matches the displacements well but the =atch of the stresses is not all that
satisfactory. The approximate solution was also used to predict the effective

lateral pile head stiffness and similar trends are predicted.
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Nomenclature

The following symbols are used in this chapter:

Hp‘nmmmuoﬂwod

o

L]

z z® v Z

w

“ X g 85 n

P

N

beam width, pipeline or pile diameter
creep proportionality constant
cohesion

constants

beam elastic modulus

soil elastic modulus

medium resistance per unit length
embedment depth

beam moment of inertia

foundation subgrade modulus
bending moment

non-dimensional load parameter
creep exponent in Norton relation
bearing capacity type factor
non-dimensional parameter for evaluating soil resistance
undrained shear strength

shear

displacement in the z-direction
non-dimensional displacement parameter
longitudinal coordinate axis

region in plastic state

point of maximum bending moment

axis normal to x-axis
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a < =% =i

Q Ql
o

non-dimensional parameter defined by Pollalis (1982)
(= EI/S,b*)

proof strain rate

soil weight density

soil Poisson's ratio

proof stress

stress at tip of pile (used by Pollalis,1982)

yield stress of surrounding medium
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Chapter 3

BEHAVIOUR OF A SEMI-INFINITE BEAM IN A CREEPING
MEDIUM!

Introduction

The understanding of soil-pipeline interaction and specially in the
context of a frozen surrounding medium is important for pipeline as well
as pile design. The different aspects that need to be considered, particularly
when involved with the design of pipelines, are: (i} the mechanics of frost
susceptibility and frost heave which essentially constitute the loading
process, (ii) the modelling of mechanical properties of frozen ground and
(iii) the mechanical response of the pipeline. Though each of these aspects
has been well studied individually, there is a lack of proper understanding

of the interaction between frozen soil and pipelines subjected to uplift.

The state of knowledge in each of the identified aspects related to

frozen ground was summarized in the last chapter. The analysis of the

! A version of this chapter has been submitted for publication to The
Canadian Geotechnical Journal: Rajani, B. and Morgenstern, N., 1991,
Behaviour of a semi-infinite beam in a creeping medium.



interaction of frost heave with a pipeline is a complex problem in which
many processes need to be examined for a proper understanding of the
complete system. In the present work, we propose to decouple the frost
heave process in the frost susceptible soil from the pipeline in the non-frost
susceptible soil. This implies that we can apply an attenuated frost heave
rate at the transition zone of the two types of media rather than the free
field frost heave rate (that which is usuvally measured in the laboratory).
This is illustrated in Figure 3.1 using data from the Caen experiments
(Dallimore and Crawford,1984) where the pipeline is embedded in both
sand and silt. The attenuation of the free field frost heave is probably a
function of the dimensions and mechanical properties of the adjacent frozen
ground. Ladanyi and Lemaire (1984) attempted to back-analyze the Caen
experiments using a simplified model based on the elastic Winkler
foundation that accounted for free field frost heave in an idealized manner.
Here, we assume that the attenuated relation can be readily approximated
from the stress dependence of the free field frost heave rate (Konrad and
Morgenstern, 1982).

Previous attempts at solving this problem related to pipelines have been
made by Nixon et al. (1983) and Selvadurai (1988). Nixon et al. (1983)
simplified the problem to that of plane strain conditions and applied the
free field frost heave over a predetermined section of the frost susceptible
soil and studied its attenuation specifically at the interface of the frost and
non-frost susceptible soils. However, the pipeline was considered as a
passive component of the whole system and hence its interaction effects
were not studied. Selvadurai (1988) analyzed the elastic behaviour of an

embedded pipeline at shallow depth using the thermo-elastic analogy.
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Frozen soil hardly behaves as an elastic material and hence the application

of this analysis is limited.

The classical studies of Glen (1955) indicate that the flow law of ice-
rich soils is that of the Norton type. The Norton creep relationship,

rewritten in the generalized form as proposed by Ladanyi (1972), is:

(3.1] € =[EJ or £=RBo"

8]

Q

where € is the axial strain rate, ¢ is the axial stress, £, and ¢, are proof
strain rates and proof stress, B and n are creeping constants. Typically, n is
about 3 (Morgenstern et al., 1980) for ice at low stresses and icy silts
(McRoberts et al., 1978). In search for the dependence of n and B on
temperature, Morgenstern et al. (1980) found from analyses of available
creep data that ice behaves more as a linearly viscous material at
temperatures close to 0°C. The constant B is found to be temperature and

material dependent.

The motivation for studying the behaviour of a pipeline (beam) on an
elasto-plastic foundation is that, for ice, n is found to be within the range of
3 to 4 and this is sufficiently large so as to be analogous to a rigid-plastic
material (n — < ). Of course, the material behaviour is linearly viscous
when n = 1 in a Norton type relationship. The former aspect was studied in
the last chapter and here we confine ourselves to n between the bounds
indicated above. In this chapter we present the solution of a beam on a

creeping foundation and an approximate 3-D solution is proposed.
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Since the development of the solution is of a general nature in that it can
be readily adapted to the analysis of a pipeline or a pile free at the head, we
shall refer to either structure as a beam and the surrounding medium as the

foundation.
Review of previous work

Fliigge (1975) presented the solution of a finite beam on a linear viscous
foundation i.e. n=1. Fliigge's solutions are based on the correspondence
principle which states that, when a viscoelastic system is subjected to a
constant load or displacement, then displacements or stresses depend on
time and are calculated in the same manner as those in an elastic system,
except that the elastic material properties are replaced by viscoelastic
parameters. As indicated by Fliigge (1975), the conditions of equilibrium,
kinematics and constitutive relationships must be satisfied for the
correspondence principle to be applicable for the analysis of viscoelastic
systems. It is important to point out that this procedure, in which the time
variable is separated in the analysis, is also often referred to as Hoff's
elastic analogy (1954). The application of the correspondence principle is
not limited to linear elastic systems as shown by Hoff (1954). A direct
consequence of the correspondence principle or Hoff's elastic analogy is
that the distribution of stresses in space within the system remains constant.
This phenomenon is often referred to as stationary creep and it needs to be

contrasted with secondary creep where creep occurs with a constant rate of

strain.
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In an indeterminate structure where the material behaves according to
the secondary creep law [3.1], a redistribution of stresses occurs during the
transient phase and the structure behaves as though the material were
subjected to primary creep. Hence, to distinguish this phenomenon from
primary creep, which is a material property, it is often referred to as
statical creep. In the present analysis, we are dealing with an indeterminate
structure (i.e. beam in a creeping foundation), we will observe statical

creep which should not be confused with primary creep.

Most of the developments for the solution of a beam in a creeping
medinm have taken place with particular reference to laterally loaded piles
in permafrost. Furthermore, all these developments consider the
foundation to be of the Winkler type and which makes the problem more
amenable to a simple solution. Early solutions proposed by Ladanyi (1973)
and Rowley et al. (1973) were essentially along the same lines as the non-
linear analysis of laterally loaded piles in unfrozen ground i.e. uon-linear
p-y representation of the frozen ground. Nixon (1984) dealt with a short
rigid pile as well as a flexible pile embedded in frozen soil that follows the
secondary creep law [3.1]. In the case of a flexible pile, Nixon (1984)
established a differential equation treating the foundation as a creeping
Winkler foundation and solved it numerically using the finite difference
technique. More recently, Foriero and Ladanyi (1990) have proposed a
solution where the lateral reaction due to creep is represented by Maxwell
springs and the creep displacements of the surrounding medium are
evaluated using finite elements. Almost always, the effectiveness of the
different methods have been demonstrated by comparing the predictions

with pile load test carried out by Rowley et al. (1973, 1975).
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After looking in detail at the different solutions and strategies it is
evident that comparing the solutions on a case by case basis does not permit
us to gain insight and hence develop an understanding of the role of the
different parameters. A more comprehensive analytical framework is

desirable.

Consequently, in the present chapter, we attempt to obtain upper and
lower bound analytical approximate solutions that enhance the
understanding of the behaviour of a laterally loaded beam in a creeping
medium. In a non-linear finite element analysis of lateral loads in unfrozen
soil, discrete springs are often used in which the spring characteristics that
are assigned correspond to the non-linear behaviour of the foundation
response. Using simple energy concepts, we develop simple relations for
defining spring characteristics when the foundation follows the material
law as described by [3.1]. This permits the use of conventional finite
element programs for analyzing these types of problems. In the previous
chapter, the solution to the problem of a beam in an elasto-plastic

foundation, i.e. the limiting solution when n — « was presented.
Beam embedded in a creeping medium

For the present analysis we assume that the beam is buried in a
homogeneous and isotropic, elastic and non-linear viscous medium, and
that when subjected to uplift, the beam deforms anti-symmetrically. We
recognize that, in fact, for shallow pipelines this may not be totally valid.

The creep behaviour of the medium is represented by a Norton-type
relation [3.1]. If the elastic subgrade modulus is represented by k_, then the
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foundation stiffness, k., is given by k! =bk_, where b is the beam width

(pile or pipeline diameter). Nixon (1978) has related the displacement rate

(w) of a long cylinder to the stress on the loaded area and this is given by:
[3.2a] w =(I,Bb/2)p’

where p is the intensity of pressure on the loaded area, I, is the influence

factor dependent on n and the geometry of the loaded beam. Since the beam

width is b, then the reaction per unit length q is given by:

. _(LBb2) .
[3.2b] w—m——(b),, q"=B'q

and B'=([,Bb/2)/(b)" is the creep compliance coefficient for the
foundation. The above relation can be rewritten in the general form:

L \YE
[3.3] F = Inbco( é/bj

]

where F, (= pb) is the resistance per unit length offered by the surrounding
medium and I (=(2/1,)") is the indentation factor. Indentation factors for
a von Mises material as determined by Nixon (1978), Ladanyi (1983),
Ponter et al. (1983) and Foriero and Ladanyi (1989) are shown in Table

3.1. We note from [3.3] that as n — = the indentation factor becomes
Prandtl's bearing capacity factor, N_. While indentation factors for a flat

indenter and a circular disk (plane strain) as determined by expressions in

Table 3.1 approach Prandil's limiting value, the cavity expansion solution
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for a strip footing is unbounded. The slight difference in the solution for
the long cylinder and the flat indenter studied by Ponter e al. (1983) is due
to the shape of the two indenters. The variation of the indentation factor
with creep coefficient n is shown in Figure 3.2 and demonstrates that it is

preferable to use the indentation factor as proposed by Feriero and
Ladanyi (1989).

A consequence of the double curvature mentioned earlier is that the
transition point O (Figure 3.3) is a point of inflexion implying a stress
boundary condition of zero moment. If on the other hand, if we choose to
look at the problem as that of a pile subjected to a lateral load P, then the

equivalent problem of a pipeline subjected to frost heave would be given by

Table 3.1. Indentation factors.

48

Feature Indentation factor I_ Reference
cavity expansion Y Nixon (1978),
strip footing I, = (n/ \/§)(8/ n\@) Ladanyi (1983)
solution
flat indenter on iy ifn Ponter et al.
semi-infinite L. =9/(0y)" where (1983)
half-space 6=(n+2)/3 and

Y =0.445
long cylinder Foriero and
streamline [ = 2/ 8\ n’ Ladanyi (1989)
solution (plane =B N (n+1)(n+3)

strain)
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a prescribed displacement of w, =PB/2k!.where B*=k//4El. We also

note that the resulting problem is statically indeterminate.

The variational approach to determine the governing differential
equation for equilibrium is adopted to establish bounded solutions. We will
invoke the stationary condition for the total potential (I1), i.e. 8II=0. The
problem can be conveniently separated into two time frames. On initial

application of the load P, i.e. @ t = 0 there will be an immediate elastic

response (w_) and this response can be determined by the usual beam on
elastic foundation type solutions. Subsequent creep response (w_) will
depend on the interaction of the beam and the creeping characteristics of
the foundation material. The total (accumulated) response can be estimated

by the application of superposition of states which can be expressed as:

[3.4] w(t) = w,(0)+ [ w, (t)dt

The above approximation defines the superposition of an elastic response,
determined as if there were no creep, and a pure creep response,

determined as if there were no elastic response.

The elastic response can be obtained readilv from Hetenyi (1974). The
total potential (IT) in rate form for the creep steady state response of the
semi-infinite beam under end load P, where the beam follows the small-
displacement elastic Euler-Bernoulli relation and the foundation obeys the

Norton-type creep law, is given by:



[3.5] J w Mdx +

)Joawcdx —Pw_(0)
+n

where W, is the creep displacement rate at the point of application of the
load, P. Upon substituting for the moment, M, according to the Euler-
Bernoulli theory, i.e. - M = EIw" and the medium reaction, q, from

equation {3.2b], we get after integration by parts,

o'w (w )”“
El 4| —£ =0
[3.6a] Ix° B’
(3.6b] Elw” | =0
s Enveep] =0

The governing differential equation is given by [3.6a] and the natural
boundary conditions are the relations in [3.6b] and [3.6c]. We note that
these natural boundary conditions correspond to the physical conditions of
moment and shear equilibrium at x = 0. The differential equation expressed
in [3.6a] is similar to that obtained by Nixon (1984). Analytical solutions
for equation [3.6a] are very difficult to obtain for n 1 and hence we have
to resort to either approximate or numerical techniques. However, for a
linear viscous foundation, i.e. n = 1, an exact solution for the equation can
be found. There exists an interest in a solution for this particular case from
a practical point of view. Morgenstern et al. (1980) have shown that frozen
soil behaviour can be idealized as a linear viscous material when the

temperatures are near freezing (0°C). Moreover, the solution for a linear



viscous foundation is readily comparable to solutions obtaincd by other
approximate methods and provides insight into the general behaviour

which is often obscured by other solution techniques.

Linear viscous medium ie. n =1

We obtain the following solution upon integrating equation [3.6a] with
respect to time and applying the boundary conditions expressed by [3.6b]
and [3.6c¢]:

(3.7 w, =2PB B’te™ cosf, x

where 3! =1/4EIB’t. Hence, the total response can be determined as stated

in [3.4] and is given by:

[3.8] w=(2PB/k!)[e™ cosx +(k/B't)" e cosB.x] for t>0

The end displacement at the point of application of the load is:

[3.9] W=

In the case of a beam on an elastic foundation, the characteristic length, 3,
represents the relative elastic stiffnesses of the beam and foundation. The
solution given by {3.7] for the creeping foundation results in an equivalent
characteristic length that is an inverse function of time, t, and the creep

parameter B'. This solution clearly demonstrates why the technique of
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solving a beam on a creeping foundation using a time-dependent k-modulus

has been successful.

An approximate upper bound solution for a beam on a linear viscous

foundation according to the Rayleigh-Ritz method described later is:

(3.10] e %E[g g

The reason why a separate solution has to be sought when n = 1 will be
discussed when dealing with the Raleigh-Ritz method of analysis. A lower
bound solution for a beam on a linear viscous foundation obtained based on

- Martin's inequality described later is given by:

- 2PB

3.11
[3.11] Y

[1+3k/B’t/7]

The total response as expressed by [3.8] clearly shows that the initial
static response sets up a stationary stress wave along the beam-foundation
system and the subsequent creep response sets up another stress wave that is
of similar shape to that of the elastic response. Furthermore, the creep
stress response is modified by the so-called reduced k-modulus and
propagates with time towards the semi-infinite end. Though this argument
has been demonstrated for linear viscous foundatiors, similar effects will
be present for foundations with n=1. These findings are in complete
accordance qualitatively with field experimental results of a buried chilled

pipeline facility at Caen, France as reported by Dallimore and Crawford
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(1984).

Creeping medium j.e. n # 1

As stated before, for a creeping foundation, direct solution of the
differential equations becomes almost impossible {or n # 1. Consequently,
we have to resort to approximate techniques where we can obtain
reasonable estimates and bounds. In this chapter, we will approach the
problem using two methods that guarantee upper and lower bounds. The
two methods are essentially based on the minimization of the total potential
IT , the first approach being the Rayleigh-Ritz method and the second

approach is based on the application of Martin's inequality.

r nd: Ravleich-Ritz

The theorem of miniinum potential energy dissipation states that, for the
particular case of a beam on a creeping foundation, amongst all
kinematically admissible curvatures (x*) and displacement rates (V'Vk), the

actual curvatures and displacement rates minimize the functional IT of
[3.5]:

¥ o kY _ ™ Kk n__?.V_km.
B-12] (e, )=, {EIK ¢ +(1+n)[5’] W}X

Since k", w* must be kinematically admissible, they must satisfy the
natural boundary conditions obtained in [3.6]. An obvicus choice for w*

that satisfies the required boundary conditions is that which corresponds to

h
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the spatial elastic solution. Hence, we assume for w*:
[3.13] w(x,t) =u(t)w (x)

In the above assumed solution, u(t) is the function that depends on time. We
also note that this assumed solution is also in accordance with the
correspondence principle or Hoff's elastic analogy. Substituting [3.13] in

[3.12] and carrying out the minimization with respect to displacement rate,

i, we obtain:

[3.14] u(t) =2TP:E[8—7(1+II<:B'(PB)“'I t)ua_m]

0.875" (n 1) e
where r= T3E and i -JO (e cosz)*""dz
1

Equation [3.14] identifies the dimensionless time as tk/B’(PB)*"'t and we

shall see that it appears recurrently in the rest of the analysis. Once again,

the static response has been factored out in order to isolate the displacement

amplification due to creep alone. The I, integral can be evaluated for

particular values of n and sample values are given in Table 3.2. The J .

integral given in Table 3.2 is defined after equation [3.24].

Equation [3.14] breaks down for the particular case when n = 1 and it is
necessary to obtain a particular solution [3.9], but the procedure remains
the same. It is to be expected that the solution will deteriorate with

increasing values of n as equilibrium will be steadily violated. The



Table 3.2. J integrals for particular values of n.

Creep exponent, n J, integral J, integral
1 0.375000 0.375000
3 0.538126 0.209375
5 0.595879 0.146635
7 0.625020 0.113014

Rayleigh-Ritz procedure together with a series sclution as proposed by
Heteyni (1974) for beams on elastic foundations could lead to an
improvement in the accuracy of the solution. However, to do so
analytically would be somewhat involved algebraically. An added
advantage of this modified procedure lies in cases of beams of variable

cross section EI or in which a non-linear moment curvature relation exists.

Lower bound: Martin's inequality

In general terms, Martin's inequality (Boyle and Spence, 1983) for the

power creep law can be stated as:

n . 1
—— | g€ dV+——|0,€,dV2 |5,¢,dV
[3.15] n+l£ Be n+11 ATA l ATE
where we identify ¢, €, with the actnal solution o, € and o,, &, with
statically admissible surface tractions along the beam-foundation interface.
Martin's inequality derivation is based on a postulate for material stability

formulated by Drucker (1951) which in turn ensures that the constitutive



relation is monotonic 1.e. the increase in stress causes an increase in strain
rate. A geometrical interpretation of [3.15] can be deduced from Figure
3.4. The first and second terms of [3.12] correspond to strain and
complementary energy dissipations in the areas represented by the
polygons JIMKOL and JNMOL respectively. It then becomes obvious why
the inequality holds true for any monotonic functional relation. In our
particular beam-foundation system, the beam is assumed to behave entirely
elastically and only the foundation is composed of the creeping material.
Rewriting [3.15] in terms of the moments and curvature rates and taking

into account the two different components of the system, we have:

[3.16] -j W’ M dx+_j WM, dx+

JqA

Jqu dx 2 j wi, M dx+JquAdx

(n+1)

where w, w”, M, 4, refer to transverse displacement, curvature, moment
and foundation reaction respectively. Upon substituting for W using the
creep material relation defined by [3.2] and M by the Euler-Bernoulli
moment curvature relation and if we let the B state correspond to the true

solution (without subscript), we obtain:

MM

J’ qn+1

J q‘”"dx>J' w”’M dx+quAdx

1 "
pan heMael ] (n+1)

(n+1)

Integrating the first term on the right and left hand sides of inequality
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[3.16] by parts twice and after rearranging terms, we obtain:

17 1 dM[ . dM, |
= +

—WwM| —=—w -w'M, "+
2 0 2 dX 0 W dx L) v Alo
- d*M, 1d*M n .
[3.18] fi [— PR N —qA+(n+1)q) wdx 2

1-MM, B’ -
[—— dx_ u+1d
A (n+1)Lq" *

The essential boundary conditions are given by the first two terms on the
lhs of the inequality and the netural boundary conditions are given by the
following two terms. We have not imposed any conditions on M, or g,

except that they be statically admissible. One must find adequate functions
of M, and q, that satisfy the integral on the /hs of the inequality [3.18].

We then select a function for ¢ and M on the basis of elastic beam
foundation systems that will ensure that M, and q, satisfy the stated

boundary conditions. Two governing differential equations can be set from

the integral on the /s of the inequality. They are:

d*M, P S
[3.192] & Tmntt
1eM o
[3.19b] 2 dx2 qA -

The true static elastic foundation reaction set up is given by:

[3.20] q =—-4PBe™ cosPx



On substitution in equation [3.19a} and integrating once we find that the

shear at x = 0 is given by:

_ 2oP
(1+n)

[3.21]

We note that the natural boundary condition is satisfied when n = 1 and
deteriorates on increasing n value. Hence, we should expect that the

solution will be poor for high values of n. A further integration of [3.19a]
leads to an expression for M, :

_ 2n P —Px
[3.22] M, = @D Be sin Bx

The expression for M, satisfies the natural boundary conditions stated
earlier. Recognizing that d*M/dx® —q =0 from beam theory, -ve can

subsequently obtain an expression for q,:

(3.23] q, =—2PBe™cosPx

Following substitution of expressions for M, and q, in the rhs of the

inequality and upon application of the correspondence principle as stated in

[3.12], we obtain after integration:

(-1 2 (n+1)

3.24 2
3:24] un= (0’ +4n+2)

J,B’k[t(PB)"”

where J, = | (¢7 cosz)™ dz. I, has been tabulated for different values of
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n in Table 3.2. Once again we note the recurrent dimensionless time
parameter in [3.24]. A much improved solution is obtained if the corrected

shear as stated in [3.21] is used. The corresponding solution is given by:

(-D™2*(n+1)
(4n° +4n-1)

[3.25] u(t)> 1B’k t(PB)™

Nonetheless, it should be emphasized that the solution should deteriorate
for large values of n but, as we shall see later that for the range of values

of n that we are concerned with, a good approximate solution is obtained.

Finite elements

While the above solutions provide insight into the behaviour and
understanding of the system, they do limit the analysis to ideal situations,
i.e. homogeneous medium. In the last three decades the finite element
method has proved immensely useful in solving problems previously
intractable by analytical or approximate means. The solution of beams on
non-linear foundations is now routinely carried out using available finite
element codes. Adina (1984) is one code that has incorporated within it a
truss element with the Norton-Bailey creep law. However, the
characterization, (i.e., spacing of springs, cross section area, length, etc) of
the truss springs has to be done with care so that equivalence is maintained
between the beam on a continuous creeping foundation and the beam on a

discretized foundation.

It is natural to expect that, as the spacing of the discretized truss springs



becomes small, the resulting approximation will be accurate. In a practical
situation we wish to get away with as few truss springs as possible. Boresi

et al. (1978) has shown that spacing, s, of truss springs can be estimated by:

[3.26] s =1/4[3

We note that although the above criterion is developed for a beam on an

elastic foundation, we observe from the development of the solution for a

beam on a iinear viscous foundation that the characteristic length B_ is
essentially the same as 3 except that the effective foundation modulus is
time dependent (inverse relation). Consequently, for the steady state
solution, if necessary, the spacing (s) could be steadily increased with time
and thus the spacing of the springs guided by [3.26] is more than adequate

for the complete analysis.

The material characteristic of the truss spring has to be adequately
represented for the elastic response as well as the creep response. Hence, if
we arbitrarily fix the length of the springs to say, L, then conflicting
definitions of cross-secticnal areas arise in attempting to satisfy both
responses. A plausible way to remedy this situation is to first satisfy the
requirements of creep response and then redefine the elastic modulus of the
spring. In order that the spring represents adequately the creep response,
the rate of work done by the spring should be equal to that done by the

continuous creeping medium, i.e.,

[3.27] (QW)SPﬁﬂS = (bqsw)cmeping foundation
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where Q and q are the axial and foundation reactions in the spring and
continuous medium respectively. If the material properties of both the
spring and the continuous foundation are defined as in [3.1] and [3.2], then
on substitution in [3.27] we obtain the cross section area of the spring,

A as:

spring

I/n
[3.28) A e = bs(2L/bI, )
Subsequently, the elastic modulus of the springs, E in> Bas to be:
[3.29] E o = SLK[ /A oy

The above characterization of creep springs is independent of the particular
geometry and loading of the beam-foundation system. A pertinent question
that may be posed is how long should the beam-foundation system be so as
to simulate a semi-infinite condition. Den Hartog (1952) has provided an
elegant argument for this problem that essentially concludes that if BX =4
(where X is the length of beam-foundation system) then the beam-system
can be treated as a semi-infinite beam. Since we are dealing with a non-
linear viscous creeping foundation the corresponding creep characteristic

length should be used, i.e.:

[3-30] Xsc::f-inﬁnim > 4,\4/4EIBIt(PB}n-1

We note from the above that length (X™* _ ) of the beam-foundation

seri—iafinile

system extends with time and should be added to the length obtained for
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elastic response. Hence, provision should be made at the outset for the time
span of the analysis so that adequate length of the beam-foundation system

is always ensured.

Various techriques have been proposed for carrying out time
irtegration for solving creep problems. An implicit time integration, o.-
method, was used in the analysis, as explained by Bathe (1982). When a =
0 the method reduces to the Euler forward method and when o > 0 it is the
implicit method. One particular advantage of the implicit time integration
scheme is that the method is unconditionally stable for ¢ > 1/2 for any
time step size, though it may not necessarily converge to the correct

solution.

Comparison between the different solutions

As indicated before through the approximate analyses, the non-
dimensional time factor, t, (=k/B’(PB)*'t) has been identified and
conveniently provides a basis for adequate comparisons between the
different methods. It has become customary to evaluate the response for the
types of problems considered in this chapter to either measures of the
displacement or displacement rates and here we use the former measure
since both features can be readily appreciated from a single plot. Figure
3.5 shows the comparison between all the methods discussed in this chapter
for a linear viscous foundation creeping material. The approximate upper
and lower bounds provide reasonably good estimates if we compare them
to the available exact solution. The finite element solution is comparably

close to the exact solution and could be improved with finer discretization
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and using smaller time steps in the time integration procedure. Figures 3.6,
3.7, and 3.8 show displacement-time histories for Raleigh-Ritz, Martin's
inequality and finite element solutions respectively for varying values of n.
The solutions as obtained using the Raleigh-Ritz and the finite element
methods clearly show the role of statical creep indicated earlier. Also, these
methods reveal an interesting phenomenon that there exists a particular
non-dimensional time when the response is independent of the creep
exponent n. As expected this effect is masked when a lower bound solution
is obtained using Martin's inequality. If we compare the steady state
responses in terms of displacement rates then the comparison is good.
Similarly, Figures 3.9 - 3.11 show the same previous responses except that
each solution is compared to each other for particular n values of 3, 5 and
7 respectively. The solution obtained using Martin's inequality is insensitive
to n < 5 but diverges for n > 5 and thus no longer represents a lower
bound. This is 2 be expected as discussed earlier since one of the natural
boundary conditions (end shear) is increasingly violated for increasing n
values. If, on the other hand, the response is measured in terms of steady

state (displacemient rates) then all the approximate methods compare well.
Conclusions

The various solutions have highlighted the role of the different
parameters in the total response of a beam embedded in a creeping
foundation. Simplified analytical upper and lower bounds for a beam in a
creeping foundation subjected to an end load have been developed. A
simple finite element modelling procedure has been outlined that faciiitates

the general solution for this type of problems if a truss spring with
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Norton's creep law is available in a general finite element code. The finite
element analysis confirms the bounds established using variational
principles. While the upper bound established using the Raleigh-Ritz
approach exhibits all the basic characteristics shown to exist by the finite
element method, the lower bound estimates are poor because of the
inability of the selected functions to satisfy the natural boundary conditions
for all values of the creep exponent n. Nonetheless, the analytical solutions
developed here remain upper and lower bounds as long as n<5. All the
results have been obtained in non-dimensional form which permits rapid

evaluation for design purposes.

In the previous chapter we have demonstrated how the bearing capacity
factor, N, can be adjusted to account for finite shallow burial. Through

[3.3] we have shown how the indentation factor I_ tends towards the
Prandtl bearing capacity factor, N_, for large values of n. Consequently,
the indentation factor I, can be similarly adjusted to account for shallow

burial of pipelines.

The solutions permit the rapid evaluation of the amplification of the
elastic response of a beam embedded in a creeping foundation. In order to
obtain an accurate creep response it is equally important to obtain a proper
estimate of the elastic response. The application of the above solutions for

pipelines and laterally loaded piles will be treated in a subsequent

publication.
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Nomenclature

The following symbols are used in this chapter:

x-sectional area for discretized foundation spring
beam width, pipeline or pile diameter

creep proportionality constant

creep foundation compliance for plane strain
cohesion

beam elastic modulus

soil elastic modulus

elastic modulus for discretized foundation spring

embedment depth

beam moment of inertia

creep influence factor

creep indentation factor

integrals dependent on creep exponent n
foundation subgrade modulus

length of discretized foundation spring
bending moment

reaction intensity pressure
non-dimensional load parameter

creep exponent in Norton relation
Prandtl bearing capacity factor

reaction per unit length

axial force in discretized foundation spring

discrete spring spacing



creep
semi ~infinite

shear
non-dimensional time parameter

displacement and displacement rates time dependent functions
creep displacement and displacement rates

elastic displacement
accumulated transverse displacement
transverse displacement in the z-direction
non-dimensional displacement parameter
longitudinal coordinate axis
additional length of beam-foundation system for discretization
during creep

axis normal to x-axis

implicit integration parameter

elastic and linear viscous characteristic lengths
proof strain rate

soil weight density

total potential
soil Poisson's ratio

stress and proof stress

yield stress of surrounding medium
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Chapter 4

LATERAL LOADS ON PILES AND UPLIFT OF
PIPELINES IN PERMAFROST!

Introduction

The first significant interest in understanding the behaviour of laterally
- loaded piles in frozen soil evolved on the initiation of the construction of
the Alyeska oii pipeline in 1975. As the pipeline expands or contracts due
to temperature changes, important lateral movements of the pipeline occur
which impose lateral loads on the piles supporting the elevated pipeline.
The interest in laterally loaded piles has continued as additional

development in frozen terrain has taken place.

The proposal for a chilled gas pipeline to carry gas from the Northern
Canadian frontier regions has been under discussion since the late 1970's.
During the design stage, when the first preliminary studies were carried
out, it was identified that the pipeline would be subjected to significant

differential frost heave and thus inducing high stresses when it crossed

1 A version of this chapter has been submitted for publication to The
Canadian Geotechnical Journal: Rajani, B. and Morgenstern, N., 1991,
Lateral loads on piles and uplift of pipelines in permafrost.



regions of discontinuous permafrost. The mechanism of frost heave for

different soil types is fairly well understood now to enable a reasonable

prediction of frost heave rate.

From the analysis and behavioural viewpoint, striking similarities exist
between the two above-mentioned structures. It is well known that the
behaviour of lateral piles is largely governed by the restraint offered by
the uppermost portion of the surrounding medium. The shallow burial of
pipelines in a stiff creeping medium is similar to the pile problem except
that the piles are oriented vertically as opposed to pipelines which are
horizontal. Another important difference between the two structures lies in
the nature of the loading process: the pipeline is subjected to imposed

displacements while the piles are usually subjected to imposed loads.

In anticipation of the construction of arctic pipelines and a few years
prior to the construction of the Alyeska oil pipeline, a major field study
was carried out in order to understand the behaviour of laterally loaded
piles in frozen soil as reported by Rowley et al. (1973, 1975). Pile lateral
load tests were performed on two timber and three steel tubular piles.
Creep soil properties for the surrounding clayey silt were determined at
the site using pressuremeters. In fact till now, no other comprehensive test
data exist except for an incomplete load test data given by Domaschuk et al.
(1988). Nixon (1984) performed laboratory pile load tests on solid model
steel piles embedded in pure ice. Recently Foriero and Ladanyi (1991) have
reported tests on model piles embedded in frozen sand. The relevant data

for all four sets of pile load tests are summarized in Table 4.1.
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In the early 1980's, plans were made to set up a controlled experimental
facility to study pipeline-frozen soil interaction. This resulted in an
experimental set-up at Caen, France that closely mimics anticipated field
conditions and provides a wealth of experimental data. The details of the
experimental data are available through numerous reports (Dallimore and

Crawford, 1985; Geotechnical Sciences Laboratories, 1986, 1988, 1989).

The field case studies briefly described above provide an opportunity to
validate any proposed solution strategy. In this chapter, we make use of a
model (chapter 3) based on a beam on a Winkler creeping foundation to
simulate field observation of pile head displacements with time and

changing load levels and a pipeline subjected to differential frost heave.
Brief review of previous work

The attempts at replicating the behaviour of laterally load piles
embedded in a creeping medium have been few (Neukirchner and Nixon,
1987; Foriero and Ladanyi, 1991) and the results have been partially
successful. By this we mean that only the pile head displacement rate rather
than both pile head displacement and displacement rate have been
compared. These comparisons have been performed for only one specific

load step, when often, the pile field load tests involved several incremental

load steps.

Rowley et al. (1975) proposed a solution based on p-y curves using a
time dependent reduced subgrade modulus, k;. Nixon (1984) proposed a

solution accounting for the fact that the surrounding medium follows



Norton's creep flow law. The differential equation was solved using finite
difference techniques. Neukirchner and Nixon (1987) used the solution
presented by Nixon (1984) to simulate the field behaviour of pile load tests
reported by Rowley et al. (1973, 1975) and Nixon (1984). Pile head
displacement rates were compared with observed displacement rates while
Rowley et al. (1973, 1975) acknowledged that determining creep rates
from the measured pile head displacement-time history could be subject to
considerable error. Moreover, they examined only one steel pile (S-5-1)
for one specific lateral load at three distinct temperatures and the model

pile tests performed by Nixon (1984).

More recently, Foriero and Ladanyi (1990) have proposed a finite
element model where the lateral reaction offered by the frozen soil is based
on the Baguelin et al. (1977) representation of lateral displacement of a
disk in a creeping medium following the Norton-Bailey flow law. Foriero
and Ladanyi (1990) compared their solution with the observed behaviour
of two timber piles tested at Inuvik, N.-W.T. Although the displacement
rates seem to compare moderately well (visually), the absolute pile head
displacements differ considerably. The more recent work on model test
piles reported by Foriero and Ladanyi (1991) adds much needed data on
laterally loaded piles. They attempted to fit a power-law expression to
describe the stage load-deformation behaviour with ti.ue. These curve-
fitting procedures demonstrate the limited use of this type of
characterization because it is even unable to replicate the displacement time
history description within the time frame that it was derived from. The
finite element analysis achieved a better representation of the displacement

rates but the predicted pile head displacements differed considerably from

36



those observed.

Crowther (1990) presented an analysis of piles tested by Rowley et al.
(1973, 1975) based on the p-y curve type analysis developed by Matlock
(1970) and Reese (1975, 1977) for unfrozen soil. The frozen soil shear
strength used in generating p-y curves reflects the influence of duration of
the load application and soil temperature. It is interesting to note that shear
strength of frozen soil was reduced by the so called correction factor to
match the pile head displacements at high load steps. Crowther's (1990)
approach is essentially based on ultimate resistance of frozen soil which
may be valid when the creep exponent, n, is sufficiently high so as to
reflect elastic-perfectly plastic behaviour. It must be emphasized that the
analysis proposed by Crowther (1990) is quasi-static and does not consider
creep behaviour of frozen soils but attempts to evaluate frozen soil strength
at discrete time steps. Morin et al. (1991) describe creep displacement tests

carried out on a rigid bar pulled laterally in ice but no specific lateral load

pile tests were performed.

It is apparent from the above brief review that the prediction of pile
head displacements has been achieved with only partial success and a
solution strategy that replicates all available field and laboratory data is
warranted. Since only pile head displacements are monitored with time,
excessive liberty exists in selecting frozen soil geomechanical properties to
match observed behaviour. Effectively this means that we should be even
more sfringent in comparing observed and predicted behaviour than we
would otherwise be. As we shali see, this is not the case for the pipeline

field study where stress measurements were accompanied by vertical



displacements along the pipeline.

Nixon et al. (1983) attemptec to solve the problem of a pipeline
subjected to frost heave where the problem was simplified to that of plane
strain conditions and the free field frost heave was applied over a
predetermined section of the frost susceptible soil. Nixon et al. (1983)
studied attenuation specifically at the interface of the frost and non-frost
susceptible soils. However, the pipeline was considered as a passive
component of the whole system and hence its interaction effects were not
studied. Frost heave attenuation was studied by varying elastic moduli,
permafrost thickness and half-widths. Though the study was based on
specific material properties and geometry of the discontinuous permafrost,
it was found that the free field frost heave was significantly attenuated at
the interface of the discontinuous permafrost. The frost heave data from
Caen indeed shows that the atienuation is in the order of 50 to 60%.
Selvadurai (1988) analyzed the elastic behaviour of an embedded pipeline
at shallow depth using the thermo-elastic analogy. Frozen soil hardly
behaves as an elastic material and hence the application of this analysis is

limited.

Ladanyi and Lemaire (1984) attempted to back-analyze the Caen
experiments using a simplified model based on the elastic Winkler
foundation thet accounted for iree field frost heave in an idealized manner.
The proposed procedure did not attempt to simulate observed behaviour

over any particular period of time but it rather attempted to evaluate the
reduced foundation subgrade modulus, k! at a specific time that would

match the measured stresses.
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Simulation of laterally loaded piles in frozen soil

The replication of experimental pile load test data can be a difficult and
challenging task. It has become customary to monitor pile head
displacements only without any accompanying stress measurements. Since
the pile head displacement response is a result of the interaction between
many distinct parameters, any one parameter can be arbitrarily
manipulated to match the observed behaviour. The arbitrary manipulation
of any parameter would certainly reduce any credibility in the proposed
model. Consequently certain guidelines are required for a judicious

selection of the different parameters and these were established prior to the

initiation of the simulation. These guidelines are:

» the field elastic and creep geomechanical data should be varied to a

minimum.

« the pile elastic properties for timber and steel tubular piles should be

varied only within the anticipated range.

+ once an elastic response for the first load step has been established and
is acceptably matched with experimentally observed data, then neither

pile nor soil data can be aitered for subsequent load steps.

The signatures of the pile head displacements with time for all the pile
heads are similar and can be conveniently separated into three distinct
phases. They are: the elastic or instantaneous response, the statical transient

creep response and the steady state creep response (Figure 4.1). The
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distinction between primary material creep and statical structural creep

response has been made previously in chapter 3.

The success of matching observed and predicted responses hinges on
obtaining a satisfactory elastic or instantaneous response. This statement is
in accordance with the correspondence principle for evaluating steady state
creep response of structures. As we shall see, the differences in predicted
and observed responses for all the field and laboratory tests analyzed in this
chapter are primarily due to lack of consistent elastic response. Almost
always the elastic response increases at higher load levels which we are
unable to account for satisiactorily on the sole basis of the elastic properties
of the structure and the surrounding medium. While the structural
properties for piles are generally known with certainty, the same cannot be
said for frozen soil properties. Another problem that appears is how to
translate elastic coatinuum properties (E, v) to that of the Winkler
subgrade foundation modulus, i.e. k.. Vesic (1961) and Biot (1937) have
proposed a solution based on comparison of analytical solutions but these
estimates can differ by as much as 30 to 40%. In the present analysis, we
chose not to vary the available elastic and creep properties of frozen soil
for prediction purposes but instead adjust only the flexural stiffnesses of
piles so that an acceptable elastic response is obtained. The elastic response

is primarily dependent on the characteristic length, 3, and is defined as:

[4.1] B* =k!/4EI

where the foundation stiffness, k/, is given by k; =bk,, where b is the pipe

diameter and EI is the pipe flexural stiffness. Thus the sole adjustment of
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the flexural stiffness, EI, is tantamount to adjustment of the characteristic
length, B, or the ratio of soil medium to beam stiffnesses. The lateral

displacement profile is then proportional to the following function:

[4.2] W ec C-Bx COSBX

Pile load tests at Inuvik, NW.T.

Geotechnical properties

Though the pile load tests were carried out at a single site, vertical
homogeneity of soil is not guaranteed and for prediction we shall assume
that the soil properties (Table 4.2) do not change significantly. In fact, soil
investigation at the Inuvik site indicates that the soil type changes at a depth
of 1.5 m from clayey to peat in ice matrix. The pressuremeter tests were
also carried out at this depth and consequently uncertainty exists as to
whether the test reflects the properties of the clayey silt or peat. On the
other hand the data is considerably more reliable than that from uniaxial
tests since the pressuremeter closely resembles the deformational mode of a
pile under lateral load. Also, a considerable ground temperature variation
was measured during the test period which undoubtedly affects the creep
modulus, B. The Norton-Bailey type creep flow law was adjusted to the

pressuremeter data, i.e.

[4.3] e=¢,(0/c,)'t =Bo"t’

where n and s are exponents and £ and 6 are proof strain rate and proof
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stress respectively. In the present analysis only average suggested values
were used though a range of parameters were reporied by Rowley et al.
(1975).

Table 4.2. Geotechnical properties for clayey silt at Inuvik, N.W.T.

Properties clayey silt
Soil properties
soil classification SP
dry density (laboratory), y kN/m> 18.15
dry density (field), y kN/m> 18.52
range of void ratios (laboratory), 0.40 - 0.44

Elastic properties

Poisson's ratio (assumed) 0.3
Elastic modulus, E, MPa 54 < E, <88
Tensile strength, T, MPa 0.64 < T, <0.88
Cohesion, ¢, (for ¢ = 0), MPa 0.6%<c<1.18
Creep properties
proof strain rate, €, min’! 107
proof stress, 6, MPa 0.31
creep exponent, n 300 <n<3.89
time creep exponent, s 0.85 <5< 0.87
creep coefficient, B, kPa™ year'! 2x 108

Comparison of predicted and observed behaviour for timber piles T-2-L
and T-3-L

The displacement histories for the two timber piles are very similar

qualitatively but several notable differences exist:



« elastic response forms a small proportion of the total response.

» when the magnitude of the load is small, the steady state pile response
is attained fairly rapidly. Hence, pile T-3-L can be classified as a long

term test while pile T-2-L is a short term test.

+ when the lateral load is increased beyond 133.8 kN (15 t), an
unidentified effect seems to kick in and results in a relatively long
statical creep response for pile T-2-L and failure in the case of pile T-
3-L.

The above observed phenomena are perhaps related to the fact that
Rowley et al. (1975) found that the elastic or instantaneous response was
non-linear rather than linearly dependent on the magnitude of the applied
load. It may be that the entrapped moisture within the timber piles led the
pile itself to creep in addition to the surrounding creeping medium. For the
present analyses we assume that the timber piles behave elastically but there

is evidence to svggest that the cited explanation is valid, as we shall discuss

later.

The first step in the simulation procedure was to establish a good match
in the elastic response for the first load step. It is well known that the
elastic modulus of timber (Gdtz et al., 1989) can vary widely from one
specimen to another and often with samples from the same species. Tiie
elastic modulus of timber is found to be influenced by the moisture content

and the elastic modulus can be as high as 3 to 5 times the lowest value. If
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indeed there was significant moisture within the pile as suggested above
then there is sufficient reason to believe that the elastic modulus of the ice-
wood matrix would be somewhat higher. Consequently, timber pile
flexural stiffnesses (EI) were adjusted to 4 and 2 times the value indicated
by Rowley et al. (1973) in order to match the predicted and observed
elastic responses for piles T-2-L and T-3-L respectively. This variation is
within the expected range for different species of timber as indicated by
(Gotz et al., 1989). Only substantially more testing can probably clarify
this point. Observed and predicted pile head displacement time histories for
piles T-2-L and T-3-L are shown in Figures 4.2 and 4.3. The simulation is
in good agreement for the two piles as long as the load is below 133.8 kN.
The inability of the model to represent the observed behaviour at higher
load levels is probably due to the material non-linearity in the pile itself as
explained earlier. Though the steady state response for all load steps for the
two piles compares well, the absolute pile head displacements for pile

T-3-L corresponding to the two intermediate loading steps differ

significantly.

Comparison of predicted and observed behaviour for steel tubular piles §-
4-L and S-5-L

Though Rowley et al. (1973, 1975) seem to have carried out three load
tests on steel tubular piles, pile displacement histories for only two of them
are available. The displacement histories for the two steel piles are very

similar qualitatively but several notable differences are:

» the first pile, S-4-L, load test is a short term load test in the sense that
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sufficient time was not permitted to elapse to obtain a steady state

response.

« the elastic response of the second pile, S-5-L, load test is clearly
evident for the first three load steps but the pile fails to respond in a
similar fashion for higher lcads i.e > 356 kN (40 t).

- though piles S-4-L and S-5-L are similar in all structural and
geotechnical aspects, the elastic response of pile S-4-L is such that it
was much stiffer than pile S-5-L. This could either occur as a
consequence of the stiffer surrounding medium or increased pile
structural stiffness due to infilling with moist sand. But then why

would pile S-5-L not respond equally to either of these effects?

The simulation was carried out along the same lines as for timber piles.
In order to match the much stiffer elastic response of pile S-4-L for the
first step loading, the expected pile flexural stiffness (EI) had to be
increased by 20 times and the elastic soil modulus by 10. This exaggerated
increase in pile flexural stiffness cannot be explained by material properties
or infilling of the tubular piles with moist sand. The predicted response of
pile S-5-L was obtained using the geotechnical properties listed in
Table 4.2 and no change in the properties was required. The predicted and
observed lateral pile responses are shown in Figures 4.4 and 4.5, The
prediction thus obtained for the two steel piles is comparable with the
observed response for load levels till 178 kN, after which it differs

significantly.
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Model solid steel piles in ice (Nixon, 1984)

Ice properties

The elastic or creep properties were not determined for samples of ice
that Nixon (1984) used to test the steel model piles. The ice was produced
by seeding snow crystals and it was grown in layers of 25 mm.
Morgenstern et al. (1980) carried out an extensive review of the creep

properties of ice which can be used for the present analyses. These

properties are listed in Table 4.3.

Comparison of predicted and observed behaviour for steel model piles in

ice.

The three model pile tests were essentially the same except that each was
subjected to a different lateral load. The use of the largest possible value
for elastic modulus for ice listed in Table 4.3 resuited in an elastic pile head
displacement larger than that observed. If we accept the ice properties as
indicated in Table 4.3, then, in order to match the observed elastic
displacement we are left with the only alternative of increasing the flexural
stiffness. We found that the flexural stiffness (EI) would have to be
approximately 3 to 4 times larger than that obtained using given elastic
properties if a good match between the predicted and observed elastic pile
head displacements is to be attained. While the increase in flexural stiffness
for timber piles could be substantiated as explained earlier, we found no
convincing arguments for the suggested values for model steel piles. In

fact, there is no experimental evidence suggesting that the elastic modulus
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Table 4.3. Elastic and creep properties for ice.

Properties ice

Elastic properties

Poisson's ratio (assumed) 0.3
Elastic modulus, E,, GPa 8.93
r I i
proof strain rate, &, min1 107
proof stress, 6, MPa 0.31
creep coefficient, B, kPa3 yr‘1 6.1x1098/ 1-T)
creep exponent, n 3.00

of steel varies significantly within the range of temperatures under
consideration here. Since the pile head displacements were monitored at the
point of load application, simple static structural analysis indicates that
surface pile displacements undergo an amplification of about 3. Hence, any
minor error at the surface is magnified considerably and for this reason the
cited value was accepted for the present analyses. The comparisons between
observed and predicted pile head displacements are shown in Figure 4.6.
The match for displacement and displacement rates for pile load test No. 2
is very good but only moderately comparable for pile load test No. 3. Since
pile load test No. 1 was not of a sufficient long duration, it is difficult to
assess the comparison. Nonetheless, the pile displacement rates (Figure 4.7)
are in good comparison with those obtained by Neukirchner and Nixon
(1987). The pile head displacement rate predictions are slightly closer to
those measured experimentally than those predicted by Neukirchner and
Nixon (1987).
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Model aluminium and steel piles in sand (Foriero and Ladanyi, 1991)

Geotechnical properties

No tests were performed to determine the elastic or creep properties
though the sand used was similar to that described by Ladanyi and Eckardt
(1983). Ladanyi and Eckardt (1983) found the variation in the creep
properties (i.e. n and B values) to be dependent on the particular
interpreting techniques and substantial variations could result. A review of
the available data on creep for different soil types indicates that even within
the same soil type the variations in creep properties can be quite significant
and especially so for sand. However our review of existing data indicated
that there was no evidence that the creep exponent n could be as low as 1.2
as inferred by Foriero and Ladanyi (1991). Indeed data from Ladanyi and
Eckardt (1983) indicates that the value of n lies between 1.8 and 3.6 and
that of B lies between 8.68 x 1077 to 1.86 x 10™2 kPa™ year'!. We chose a
value of 3 for n since other available data on sands confirmed the range of

possible variation and also since this value has been widely accepted for

ice-rich soils.

The value suggested by Foriero and Ladanyi (1991) for the soil
subgrade modulus, k;, is 310 MPa which is equivalent to an elastic

modulus, E_, of 160 MPa (using Biot's (1937) relation with a Poisson’s
ratio of 0.3). This is considerably more than that for polycrystalline ice
(Table 4.3). Sego et al. (1982) determined the secant elastic modulus for

frozen sand samples with different degrees of salinity. They found that the
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elastic modulus was dependent on the strain rate and for samples with zero
salinity the elastic modulus was in the order of 5 to 20 MPa for an axial
strain rate of 10> %/hour. This range of values is also close to that
obtained for SNEC sand discussed later in relation with the pipeline
response subjected to frost heave. The final selected value for elastic
modulus was 8 MPa for the analysis of the two model pile tests and the
selection of this particular value will be discussed in the next section. All

elastic and creep properties have been summarised in Table 4.4.

Table 4.4. Assumed elastic and creep properties for sand.

Properties sand

rr——ini P ——

Elastic properties

Poisson's ratio (assumed) 0.3
Elastic modulus, E_, MPa 8.00

T I 1
creep coefficient, B, kPa™ yr'l 1.3 x 106
creep exponent, n 3.00

Comparison of predicted and observed behaviour for model piles 1-Al and
16-S1

Foriero and Ladanyi (1991) performed 16 lateral stage-load tests on
aluminium and steel piles embedded in sand. The pile installation procedure
followed was similar to that usually used in the field, i.e. the annulus
between the pile and the predrilled hole in the frozen ground was filled

with a mixture of sand-slurry. It should be mentioned that the influence of
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using a sand-water slurry installation on pile behaviour was not discussed
by Foriero and Ladanyi (1991).

The displacement-time signatures for the stage-load tests (Figures 4.8

and 4.9) are very similar and typical of what would be expected as

discussed earlier. In particular we note:

» the pile displacement history for pile 1-Al shows that little creep

displacement took place.

« the elastic response is not consistent with the stage loads. i.e. the plot of
load versus net elastic displacement shows that there is significant
displacement even at zero load. This is evident for both tests but
better consistency is found for pile test 16-S1. We suspect that if the
stage-loads are not applied slowly enough then the elastic resr:onse can
be increased due to dynamic amplification. This demonstrates the need

for applying loads very slowly indeed.

 the analytical power law expressions used to fit experimental data
demonstrates its limited use because the results from 16 pile tests do
not indicate any trends that can prove useful in practice. We also note

that the analytical expressions fail to trace the observed behaviour for

higher load levels.

As mentioned earlier the key to matching displacements is dependent on
the elastic response while the matching of displacement rates is influenced

by the creep properties. Since slightly better net elastic responses were
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observed for pile test 16-S1 an elastic modulus, E_, was selccted that best

traced the observed elastic response for the second stage load.

The value of B was obtained by trial and error so that the creep
displacement observed for pile test 16-S1 matched that with the predicted
response for the second stage load. The second stage load response for pile
16-S1 was used to calibrate the elastic and creep properties for frozen sand
because it scemed to exhibit behaviour in line with criteria for the analysis
of lateral pile tests. Also the steady state response was clearly evident for
this load level. A direct consequence of the selected elastic modulus for
frozen sand is that the non-dimensional characteristic length, L for both
model piles is in the order of 2 as opposed to 15 to 20 as suggested by
Foriero and Ladanyi (1991). Consequently the piles would be classified as

short piles and not as long piles.

The elastic response for each pile is over estimated for the first load
level while it is underestimated for the third and fourth load levels. The
predicted steady state lateral displacements (Figures 4.8 and 4.9) are
comparable to those observed. The experimental observations for pile 16-
S1 seem to indicate that a steady state response at the high load levels was

not achieved.
Simulation of pipeline subjected to differential frost heave
As indicated earlier, the experimental pipeline facility at Caen, France is

the only field study (at least where experimental data is publicly available)

where frost heave and corresponding stresses induced in the pipeline have
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been monitored over a significant period of time and freezing periods. For
ease of reference the vertical displacement and stress profiles are
reproduced in Figures 4.10 and 4.11 for the first and the second freeze
periods respectively. A look at a typical observed vertical displacement
profile of the pipeline in sand indicates that the pipeline beyord 4 m
undergoes minor differential movement. This probably reflects on the
relative stiffnesses of the pipeline and the surrounding frozen sand. In

contrast, the portion of the pipeline embedded in silt shows significant

rotation at the far end.

The observed stress history profiles (Figures 4.10 and 4.11) reveal a
near zero stress state at the interface between the sand and silt. This fact,
combined with the observation that the stress wave is nearly anti-
symmetrical on either side of the sand/silt interface, suggests that near
surface effects are minimal. Meanwhile, the stress wave for the pipeline in
sand is half sinusoid and that in the silt is a distorted full sinusoid. The
stress wave for the portion of the pipeline in silt steadily approaches that of
a distorted sinusoidal wave form but with significant stress in the pipeline
at the far-end as compared to stress at the homologous point in the pipeline
embedded in sand. This is especially true for larger time periods and in
second, third and fourth freeze periods. We also note that the peak stresses
occur at approximately 2 - 2.2 m and 1 - 1.5 m in sand and silt respectively
from the sand/silt interface. It is to be noted that the position of peak stress
is not stationary but steadily propagates with time towards the far ends of
sand and silt respectively. The steady propagation of stress waves towards
the free end may be related to the continually changing elastic and creep

properties of the surrounding solids due to the steady advancement of the
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freezing front.

The above observations are found to be equally valid for the third and
fourth reported freeze periods. From available data for the pipeline
stresses it appears that, due to a probable malfunction of the strain gauges
on the pipeline embedded in silt, the stresses beyond 4.25 m were not

registered during the third and fourth freeze periods.
Idealized vertical displacement and stress wave profiles

The idealized behaviour of a beam embedded in a creeping medium
subjected to an end load was studied in the previous chapter. Various
approximate solutions were obtained based on the correspondence principle
which states that when a viscoelastic system is subjected to a constant load
or displacement, then displacements or stresses depend on time and are the
same as that in an elastic system except that the elastic material properties
are replaced by viscoelastic parameters. Thus, as we saw in the analysis of
piles, it becomes very important to be able to predict elastic response with
certain exactitude and especially in terms of general trends. Consequently,
a close examination of idealized elastic responses as a function of the
characteristic length, 3, permits an easy identification of behavioural trends
noted above and the choice of elastic frozen soil parameters is made rather
easy by visual comparison. The vertical displacement profile is given by
[4.2] and stress wave profiles are then proportional to the following

function;

[4.4] o o< ¢ ™ sin Bx
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The variation of vertical displacement and stress as a function of the
characteristic length, [3, is shown in Figure 4.12. If we require a response
with the special characteristics noted earlier, it becomes evident that [B
should have values close to 0.6 and 0.25 for the portions of the pipeline
embedded in sand and silt respectively. These values would be in
accordance with the fact that sand is found to be stiffer than silt. For a
value of 0.25 for silt, the stress wave only resembles the observed stress
wave form for higher time periods and it could be suggested that the initial
silt stiffness is higher than that of sand. However, there is evidence
available against this possible argument. We recognize that the pipeline
structural properties (E and I) can be established accurately and hence the
only uncertainty lies with the soil properties. Significant observed stress at
the far end of the pipeline in silt suggests possibie restraint but as we shall
see later this can only account for stresses developed for higher time
periods. On the other hand, significant observed negative rotation at the far
end of the pipeline in silt is contrary to the mentioned restraint. These
arguments lead us to conclude that within the silt zone itself there seems to
exist two lateral sub-zones of silt with different frost heave characteristics

or that because of the low stiffness of silt the end effects play a major role

in the interaction.

The rate of increase of flexural stresses in the pipeline is influenced by
the value of the creep exponent, n. A large value necessarily means that the
creep rate will be faster and hence the flexural stresses in the pipeline will
be much higher than those expected for a smaller value of the creep
exponent during the same time span. However, as n gets lurger than three,

the response is not significantly different as shown by approximate methods
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developed in chapter 3.

Consequently, assuming all other pipe and soil properties are known, it
becomes a relatively simple task to simulate observed trends by varying the
elastic soil modulus and the creep exponent, n, within the anticipated range.

This strategy proves particularly useful when reliable geomechanical data

is lacking.
Geotechnical properties

Numerous samples of SNEC sand and Caen silt have been tested
- (Geotechnical Sciences Laboratories, 1986) to determine elastic properties
as well as creep properties. A total of 22 constant load and constant
displacement rate tests were carried out on laboratory prepared samples.
The stress-strain rate data were fitted to an empirical approximation as

proposed by Ladanyi (1972). This expression is given by:

[4.5a] €
[4.5b]

g,(0/c,)" +€,(o/5,)t

or £=¢,/(06/c,)" +Bo"t

where the first term corresponds to the elastic or instantaneous response
and the second term corresponds to the creep response; m and n are the

elastic and creep exponents, €,, €_are the proof elastic strain and creep
strain rates respectively and ©,, ¢  are proof stresses. The constant B

involves the proof strain rate, proof stress and the creep exponent, n.

The data for SNEC sand and Caen silt is summarized in Table 4.5. Since



Table 4.5. Geotechnical properties for sand and silt at Caen, France.

Properties sand silt

Soil properties

soil classification SP ML
dry density (laboratory), kN/m?> 18.15 16.68
dry density (field) 18.52 16.25
range of void ratios (laboratory) 0.40-0.44 0.60-0.63
Elastic properties

Poisson's ratio (assumed) 0.3 0.3
proof strain, €, 0.001 0.001
proof stress, o, kPa 170 140

exponent, m 1.43 2.40
Elastic frozen soil modulus, E_, kPa 2820 960
Creep properties

proof strain rate, €, min™! 106 108

proof stress, ¢, kPa 900 280

creep exponent, n 5.6 10.6

118

creep coefficient, B, kPa™ year'! 1.503 x 10717 6.036 x 1027

the laboratory tests were carried out at -2 °C, their use for the simulation
of the second freeze period will be limited¢ because of the lower operating
temperature at -5°C. Higher sand dry densities for both laboratory and
field samples than that for silt is in accordance with the higher sand
stiffnesses mentioned earlier. Another observation that supports this fact is
that stresses induced in the pipeline embedded in sand are higher than those

induced in the pipeline embedded in silt. Independent dynamic elastic
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moduli for a range of sands and silts (Kaplar, 1969) confirms that sand is
30 to 60% stiffer than silt. The elastic modulus, E, as indicated in [4.5] is
stress dependent and can vary considerably as shown in Figure 4.13. In
fact, though the measured stress in the soil near the pipeline was in the
order of 50 kPa, the laboratory investigations were performed within the
200 - 1300 kPa stress range because of equipment limitations. Ladanyi and
Lemaire (1984) found that an elastic modulus of 2.8 MPa (corresponds to
their value of k! of 1.2 MPa and assuming a Poisson's ratio of 0.3)
matched the observed response. Figure 4.11 also serves to illustrate that
for the stress range of interest, the expression given by [4.5] in fact
predicts a higher stiffness for silt than sand. We note that the value of
elastic modulus, E, used by Ladanyi and Lemaire (1984) is orders of
magnitude lower than that predicted by [4.5]. For the present study, a trial
and error procedure also established that the elastic modulus for sand
within that range adequately represented the observed behaviour. The

pertinent question then to be posed is: why such a difference in the elastic

modulus?

We believe that the elastic moduli given by expressions like [4.5] or
those given by dynamic test methods primarily reflect the compressional
mode of displacement rather than the tensile mode that would be of most
relevance when the pipeline is subjected to uplift. This highlights the
importance of obtaining mechanical properties of creeping media that
adequately represent the possible modes of displacement. The creep
exponent, n, for both sand and silt is unexpectedly high. McRoberts et al.
(1978) have reported creep test data on undisturbed samples of ice-rich silt.
Nixon and McRoberts (1976) suggested that the creep exponent, n, could be
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related to the temperature by an empirically obtained power relation. The
particular relation suggested for ice-rich silt sampies from Norman Wells,
N.W.T. is:

5 1.6x107¢* 1.5x10"¢¢

[46] o AT

However, a careful review by Weaver (1979) concludes that sufficient
data does not exist to indicate that the creep exponent varies significantly
from 3. The creep coefficient, B, has been found (Morgenstern et al.,
1980) to vary significantly with temperature for both ice and ice-rich silt.
Since the laboratory tests on soil samples were carried out at one specific
temperature and due to the fact that the frost heave was steadily imposed as
chilled air passed through the pipeline, the simulations should only be
expected to trace observed trends. The comparison of creep test data for
Caen silt and SNEC sand with that reported by McRoberts et al. (1978)
indeed confirms that the flow law for ice is an upper bound for ice-rich

soils.

Frost heave

The free field frost heave rate can be readily estimated as suggested by
Konrad and Morgenstern (1984). As expected the Caen silt heaves
considerably more than SNEC sand and the free field heave is attenuated at
the sand/silt interface because of the restraining effects of the much stiffer
sand. The amount of frost heave is considerably larger during the second

freeze period than that observed during the first freeze period (Figures
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4.14 and 4.15). The amount and mode of attenuation is closely related to
the geometry and mechanical properties of the two adjacent media as
discussed earlier. In the present stucy we do not attempt to identify the
mechanism of attenuation though this has been studied previously (Nixon et
al., 1983). Instead, we propose to impose prescribed displacements
corresponding to the observed differential frost heave rate on the pipeline

at the sand/silt interface.

Comparison of vertical displacement and stress history

The simulation of the pipeline was carried out individually for each
portion of the pipeline embedded in sand and silt using the corresponding
mechanical properties for each soil type. The pipeline was discretized into
beam finite elements and the surrounding medium was represented by truss
springs with creeping material characterization as explained in chapter 3.
The pipeline was subjected to prescribed vertical displacements which were
obtained by subtracting free field heave in sand and silt respectively from
the heave at the sand/silt interface. This procedure essentially extracts the
rigid body mode of movement which does not contribute to any stresses in
the pipeline. We also assume that the frost heave rate is not significantly
influenced by the differential movement of the pipeline. The differential
frost heave rates calculated using the aforementioned procedure are shown
in Figures 4.14 and 4.15. The free field frost heave rate used for silt was
that determined by Nixon (1985) while that for sand was estimated from

the observed vertical displacement of the pipeline at the far end.
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At the Caen experimental facility, the advance of the frozen front took
place by maintaining the temperature of the pipeline at -2°C and -5°C
during the first and second freeze periods respectively. As expected, the
frost bulb penetration was greater during the second period than during the
first freeze period. Frost front advance data indicates that the steady state
conditions were observed after about 100 days. The soil characteristics are
continually changing during the transient phase when many complex
processes are simultaneously taking place as the soil is being steadily
frozen. One such important process is the migration of moisture associated
with frost heave. Shen and Ladanyi (1987) have analyzed this aspect of the
problem in two dimensions and they find that the hoop stress induced as a
result is in the order of 1.5 MPa, which is relatively insignificant in
comparison with the flexural stresses. In the present analysis we assume
that the frost bulb advance took place instantaneously and that the soil
properties given in Table 4.5 adequately represent the situation for the first
freeze period at the end of the transient response. A more realistic
approach would be to represent material properties for each specific
temperature. Furthermore, the laboratory testing of samples was carried
out at -2°C and consequently the use of the same values for the second
freeze period introduces additional uncertainty in the predicted response.
Besides the definite alternate operating conditions of the pipeline at -5°C,
the freezing and thawing and subsequent refreezing of surrounding sand
and silt substantially changes the soil structure and hence the creep
properties. Therefore, the simulation corresponding to the second freeze
period involves considerable simplifications and our goal was to account
for 90-95% of the stresses that can arise as a consequence of differential

frost heave using a relatively simple method of analysis. For the second

wn
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freeze period we neglected the fact that the pipeline was deformed and had

minor locked-in stresses after the thaw of the first freeze cycle.

The simulation of the pipeline portion embedded in sand during the first
freeze period was a straight forward procedure. The elastic modulus, E, (=
2820 kPa), used was as essentially proposed by Ladanyi and Lemaire
(1984) and it was within the expected range as we saw for the idealized
behaviour (Figure 4.12). The final vertical displacement profile was
obtained by adding the free field frost heave rate as shown in Figure 4.16a.
Similarly the stress wave histories are shown in Figure 4.16b. The analysis
for the second freeze period (Figure 4.17) resulted in lower predicted
stresses than that measured for the initial time intervals but the stresses
were grossly overestimated for the higher time intervals. Since insufficient
laboratory or field data exists on geomechanical properties, we believe that

at present extra effort is not warranted for a better match of field history.

It was exnected that the simulation of vertical displacement stress wave
histories for the portion of pipeline embedded in silt would be much more
challenging because of the observed behavioural characteristics discussed
earlier. A first attempt was made along the same lines as that for sand
except that the elastic modulus was reduced by 70%, ie. E, = 960 kPa.
While significant end rotation was obtained it was still significantly less
than that observed and the stress wave was essentially half sinusoidal, i.e
with zero end stresses. In an attempt to attract more stress towards the free
end, total rotational restraint was imposed at the far end. While this
boundary condition attracted significant stress towards the far end, the

rotational restraint is contrary to the observed end rotation. On the other
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hand, a significant increase in the peak stress was observed and the stress
wave was not of the desired form when we imposed the measured
prescribed end rotation. This leads us to conclude as discussed earlier that
the frost heave characteristics of silt is subdivided into two zones each with

its own particularities.

The simulations were carried with the intention of matching magnitudes
of observed with predicted stresses. The predicted vertical displacement
profile of the pipeline automatically matched the profile for the portion of
pipeline embedded in sand but the predicted displacements were higher at

the far end than those measured for the portion of pipeline embedded in
silt.

Conclusions

The behavioural characteristics of the pile lateral load tests in frozen
soil and a pipeline at Caen subjected to frost heave have been critically
reviewed. Anomalies in the responses of the field tests have been identified
and discussed witn possible consequences in reliable predictions.
Displacement and stress histories have been simulated using a model based
on a Winker model where the discrete springs are characterized by a

material model following the Norton-Bailey relationship.

The primary difficulty in the simulations is in obtaining a satisfactory
elastic response. Once this has been established the subsequent creep
response is comparable with the observed response. The elastic response

establishes a footprint of the stress wave in the creep medium as a result of
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the pile-frozen soil interaction. We found that we had to increase the
flexural stiffness of timber piles to obtain comparable elastic responses.
While the increase in flexural stiffness of timber piles can explain the
difference in elastic response because of entrapped moisture in the wood
matrix, a convincing argument could not be found for the short-term steel
pile test (S-4-L). A similar increase in flexural stiffness of steel model piles
was required to match elastic response. On the other hand, the pile head

displacement rates for all piles was comparable to observed responses.

Unexpected behaviour for the portion of the pipeline embedded in silt is
identified and several explanations are offered to explain this behaviour. A
simple Winkler model based on finite elements is then used to simulate the
response of the pipeline subjected to frost heave. While a good match is
obtained between predicted vertical displacement and stress wave histories
for the portion of pipeline in sand, the simulations fail to trace all the
particularities of the response of the pipeline in silt. An attempt has been
made to explain the differences. We have identified the need for an
analytical procedure to quantify the attenuation of the free field frost heave
to serve as a useful input for the analysis of a pipeline subjected to frost

heave.

The Winkler model for a beam embedded in a creeping medium has
been shown to be sufficiently robust to adequately analyze both piles under
lateral loads and pipelines subjected to imposed frost heave movement
respectively. The finite element discretization also permits the analysis of a

pile embedded in a layered medium.
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Nomenclature

The following symbols are used in this chapter:

b = beam width, pipeline or pile diameter

B = creep proportionality constant

e = height of load application above ground level
E = béam (pile or pipeline) elastic modulus

E, = soil elastic modulus

1 = beam moment of inertia

o = foundation subgrade modulus

L = length of pile below ground Ievel

m = elastic exponent for instantaneous response
n, s = creep exponents in Norton-Bailey relation
T = Temperature in Celsius

t = time

w, = elastic displacement

W = transverse displacement in the z-direction
X = longitudinal coordinate axis

z = axis normal to x-axis



elastic characteristic length
proof strain rate

soil weight density

soil Poisson's ratio

stress and proof stress



Chapter 5

UPLIFT OF MODEL STEEL PIPELINES EMBEDDED IN
POLYCRYSTALLINE ICE!

Introduction

Over the past decade several proposals have been put forward for the
construction of a gas pipeline from the arctic to the southern populated
areas of North America (ASCE, 1978). These pipelines must be buried
because of regulatory requirements which are intended to minimize
environmental damage. It has been suggested that by transporting gas at
below freezing temperatures (i.¢ chilled gas) the thawing of permafrost
soils would be avoided. The transmission of chilled gas would lead to
freezing of unfrozen soils in zones of shallow and discontinuous
permafrost. A frozen annulus will develop in a frost susceptible soil around
the gas pipeline leading to significant water migration to the freezing front

and the formation of ice lenses. Consequently, the induced frost heave will

1 A version of this chapter is to be submitted for publication to The
Canadian Geotechnical Journal: Rajani, B. and Morgenstern, N., 1992.
Experimental Response of Steel Model Pipelines embedded in
Polycrystalline Ice.



force the pipeline to move upwards. The pipeline will undergo substantial
straining which can lead to the formation of wrinkling buckles, specially
when the pipeline traverses a transition zone between two soils with
different frost susceptibilities or between an unfrozen and previously
frozen soil. Ever since the chilled gas pipeline concept was proposed, the
effect of frost heave on the performance of pipelines was identified as an
important issue that should be addressed. A designer would have to
determine the level of strains that can be tolerated in a pipeline before

serviceability is seriously hindered and ultimately if structural integrity is

to be assured.

To date, only one experimental pipeline facility has been setup (Caen,
France) that attempts to monitor the development of strains in the pipeline
as frost heave develops. A lot of economical and experimental effort has
been devoted to obtain this unique set of data and indeed the data can be
very useful in the validation of models on frost heave, frozen soil-pipeline
interaction, etc. The details of the experimental data are available through
numerous reports (Dallimore and Crawford, 1985; Geotechnical Sciences
Laboratories, 1986, 1988, 1989).

The pipeline (0.273 m x 0.0048 m) tested at Caen never experienced
strains beyond the elastic strain limit. The pipeline underwent four freeze-
thaw cycles and since the response of the pipeline during each cycle was
slightly different, the interpretation of the responses led us to infer that
factors such as homogeneity of creep soil properties need to be addressed
as discussed previously in chapter 4. A major source of uncertainty in the

field experimental studies as those performed at Caen, France, is in the

_
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geomechanical (both elastic and creep) properties. As indicated in chapter
3, the elastic and creep properties are crucial to the reliable prediction of
stresses in the pipeline. The elastic moduli obtained from test samples on
sand and silt were unusually high as discussed in chapter 4. In addition, the
reported creep exponent, n, in the Norton creep flow law for silt is
presumed to be on the high side. Small scale laboratory model testing,
where careful control can be exercised over the different aspects of the
frozen soil-pipeline interaction, is warranted and the results would serve to
complement some of the observations at the Caen experimental facility. It
would also lead to a better understanding of the frozen soil pipeline
interaction problem. These tests are also intended to validate findings of
chapter 3 on the behaviour of an embedded beam in a creeping medium.
Another objective of carrying out these tests was to develop sufficient
resistance to uplift in the model pipelines so that portions of the pipeline
would strain beyond the elastic limit and well beyond the currently
accepted strain limits. These arguments provided a basis for carrying out

scaled laboratory testing of model pipelines in polycrystalline ice.

Nixon (1984) performed experiments on solid model piles embedded in
polycrystalline ice but several aspects such as shallow embedment, imposed
displacements or the implications of a thin tubular section (i.e radius
thickness ratio) were not addressed. More recently, Foriero and Ladanyi
(1991) have performed lateral load tests on aluminium (tubular) and steel
(solid) model piles embedded in frozen sand but again aspects of particular
interest to pipelines were not studied. These aspects would not normally be

of major concern for the design of laterally loaded piles.
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In a realistic scenario, frost penetration would proceed on the
commencement of transportation of chilled gas and frost heave in the frost
susceptible soil would develop subsequently. It is reasonable to assume that
the frost advance takes place in a relatively short period of time while the
development of frost heave is a much slower process. The testing of a
model pipeline embedded in polycrystalline ice assumes that the freezing of
the surrounding soil in the field takes place instantaneously. This
assumption may not be too far from reality since the soil adjacent to the

pipeline contributes the most uplift resistance and data available from the

Caen facility supports this view.
Equipment design

The experimental setup to study pipeline-polycrystalline ice interaction
involves three basic aspects: (i) the proportioning of the model pipelines
and of the surrounding polycrystalline ice sample, (ii) the preparation of
the ice block sample itself and (iii) the loading arrangement that adequately
represents frost heave. Each of these aspects will be described in detail
followed by experimental observations of the model pipelines subjected to

an end prescribed displacement rate,

A prototype pipeline crossing the zone of discontinuous permafrost
would be subjected to high strains in that portion of the pipeline embedded
in a previously unfrozen soil. The response of the pipeline subjected to a
steady frost heave at the interface of the discontinuous permafrost would
have nearly double curvature if the stiffness of the frozen soil were quite

high. The experience at the Caen experimental facility (Dallimore and
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Crawford, 1985) indicates that the nearly double curvature response exists
in spite of the relatively shallow burial of the pipeline. The plane strain
study, performed by Nixon et al. (1983) of a continuum where one half of
the soil was frost susceptible and the pipeline was considered to be passive,
indicated that the response had double curvature. These considerations
indicate that it would suffice to model only one-half of the pipeline thus

leading to a much simplified experimental design.

Proportioning of the model pipeline and polycrystalline ice block sample

Pipeline structural integrity must be assured at all time during the
operation of the pipeline. In the present context, we do not consider the
effects of internal pressure or the temperature differential since the worst
case scenario would be when these conditions are absent. Flexural strains
are induced in the pipeline wall as the pipeline is subjected to increasing
differential frost heave movement and thus eventually causing wrinkling
(local buckling) in the pipeline. Hence, the design criterion in order to
contain damage due to rupture and leakage of contents is to limit the
compressive strain. Two distinct buckling fajlure modes (Yun and
Kyriakides, 1990) have been found to occur for buried pipelines. One
failure mode is when the pipeline buckles as an overall beam (Euler-type
buckling) and usually this mode would be expected when the pipeline is
stocky (low R/t ratio) and very large axial icads are present. The other
failure mode is when the principal «ction is flexural and the resistance is
through shell action (thin-walled pipelines), thus enhancing the formation
of local wrinkles. It is the latter approach that is more appropriate in the

present context. Several criteria have emerged over the years (Southwell,
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1614; Wilson and Newmark, 1933; Bouwkamp and Stephen, 1973;
Kennedy et al., 1977; Hall and Newmark, 1978: Langner, 1984; Nyman
and Lara, 1986; Gresnigt, 1986) for limiting flexural strain in tubular
pipes. It is not the intent here to provide an exhaustive review of the
wrinkling strain criterion since a brief review has been recently undertaken

by Kim and Velasco (1988). The critical strain is expressed in two general

forms:
[51] £ = 0605Ct/R
[5.2] e, =(2¢R)’

The first expression corresponds to the form of a theoretical solution based
on elastic buckling developed by Southwell (1914). The second expression
stems from a best fit of the experimental data (Sherman, 1976; Langner,
1984) that distinguishes failures between whether local buckling was
observed or not. The constant 0.605 has been determined by Southwell
(1914) for elastic buckling and the constant 'c’ was introduced by Wilson
and Newmark (1933) to account for experimental deviation. The value of ¢
varies from 1.0 for perfect tubes to 0.25 for manufactured tubes. The
lower values of 'c’ reflect the importance of initial imperfections present in
the geometry of the pipe as shown by Kyriakides er al. (1983). It is also
important to note that all criteria based on limiting strain were established
from experiments on steel tubes performed in air, i.e. with no restraint
from the surrounding medium. The different existing criteria based on
experimental tests are summarized in Table 5.1. Since the critical strain is

predominantly a function of the radius-thickness ratio, the present model
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pipelines were proportioned so that the model design would be within the
range of probable prototype design. For instance, the pipeline at Caen has a
R/t ratio of 28.44. Consequently, for the present experiments two model
stainless (seamless) steel pipelines with R/t ratios of 21.43 (19.05 mm x
0.89 mm) and 20.40 (254 mm x 1.24 mm) were selected. These sizes
were readily available in the market and yet of adequate size that permitted

the easy installation of resistance strain gauges on the model pipelines.

An important aspect that needed to be addressed was to suitably
dimension the box where the model pipelines were to be embedded in the
polycrystalline ice block sample. The length of the box was sized in
accordance with the stress wave length that would be set up along the
pipeline. The elastic modulus of polycrystalline ice is dependent on the rate
of loading, porosity, salinity and temperature (Michel, 1978). It can vary
as much as 8 to 10 times less than that of pure ice as shown by Michel
(1978) and Sinha (1989). Sego (1982) demonstrated that the secant elastic
modulus for frozen sand is highly dependent on strain rate and that the
reduction can be quite large. We conservatively selected the range of 40 to
50 MPa for the elastic modulus of polycrystalline ice for determining the
size of stress wave that would be setup as a result of the prescribed
displacement rate. The analysis of a pipeline embedded in a creeping
medium discussed in chapter 3 indicated that we would require a pipeline
length of approximately 32 to 40 diameters to represent the semi-infinite
length of the pipeline. We note that the pipeline at Caen, France, had an
approximate length/diameter ratio of 33. The width and the height of the
box were based on the premise that, when considering the interaction of

two adjacent laterally loaded piles, the interaction effects are disregarded if
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the piles are spaced at least 3 to 4 diameters. In order to satisfy this
criterion as well as to ensure minimal boundary effects, the box was sized
to 0.60 m in width ard 0.40 m in height. The box for the sample was
manufactured from 18 mm (3/4") thick PVC sheets as shown in Figure
5.1. Table 5.2 compares the principal characteristics of the pipeline at Caen

and the model pipelines tested in this study.
Preparation of | lline ice block sample

The mechanical behaviour of frozen soil has been studied by Sayles
(1973), Sayles and Haines (1974), Sego and Morgenstern (1983) and
cthers. It is now widely accepted that ice-rich frozen soil behaves like a
creeping material. The frozen-soil surrounding the pipeline subjected to
frost heave will be associated with primary and secondary creep phases of
straining. The classical studies of Glen (1955) indicate that the flow law of
polycrystalline ice is that of the Norton type. The Norton creep
relationship rewritten in the generalized form as proposed by Ladanyi
(1972) is:

[5.3] —:— = [E-J or &=Bc®

where € is the axial strain rate, ¢ is the axial stress, £, and ¢, are proof

strain rates and proof stress, B and n are the creep constants. Typically, n
is about 3 (Morgenstern e al. 1980) for ice or icy silts (McRoberts et al.
1978) subjected to low stresses. In search for a dependence of n and B on

temperature, Morgenstern et al. (1980) found from analyses of available
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Table 5.2. Comparison of prototype and model pipeline characteristics.

Parameter Prototype Model Model
at Caen _ A B
Pipeline structural characteristics
pipeline diameter, D, m 0.273 0.0381 (1.5") 0.0508 (2")
pipeline thickness, t, mm 4.8 0.889 1.245
(0.035™) (0.049™)
Pipeline material steel stainless steel ~ stainless
304 steel 304
R/t pipeline ratio 28.44 21.43 20.40
Elastic modulus, E, GPa 210 193 193
Poisson's ratio, v 0.3 0.3 0.3
Yield strength, 6y, MPa 240 193 193
Bin size
half width, m 9.0 (33D) 1.6 (42D) 1.6 31D)
width, m 8.0 (29D) 0.6 (16D) 0.6 (12D)
height, m 1.7 (6D) 04 (10D) 0.4 (8D)
embedment, h, m 0.33 (1.2D) 0.04 (1.05D) 0.06 (1.18D)
Soil/ice characteristics
elastic modulus, E;, MPa 2.82 - sand 3-7GPa 3-7GPa
0.96 - silt
dry density, ¥, kN/m3 18.52 - sand 8.54 8.46
16.29 - silt
void ratio, ¢ 0.40 - 0.44 - sand 0.06 0.07-0.08
0.59 - 0.63 - silt
Poisson's ratio, v 0.3 0.32 0.34
Creeping material sand/silt ice ice
creeping exponent, n 5.6/10.6 2.84 2.84
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creep data that ice behaves close to a linearly viscous material at
temperatures close to 0°C. The constant B is found to be depen-lent on
temperature and soil type. Sego and Morgenstern (1983, 1985) have
studied the behaviour of laboratory prepared polycrystalline ice and have
indeed confirmed the applicability of the Norton-type power law. In the
past, considerable attention has also been paid to the behaviour of
polycrystalline ice primarily for glaciology studies as well as laboratory
studies related to geotechnical problems. Polycrystalline ice is a good
material to work with since control can be exerciszd over its characteristics
(grain size, porosity, etc) in the laboratory. Sego and Morgenstern (1985)
studied the indentation of a rigid disk on polycrystalline ice both
experimentally and numerically using finite elements and they were able to

obtain comparable behaviour.

The preparation of the block sample required the manufacture of ice
that is commonly classified as T1 snow ice. The manufacture of
polycrystalline ice has been reported by Sego (1980) and Jacka and Lile
(1984). The most common technique is to provide snow crystals as seed,
saturate the sample with near 0°C deaired water and subsequently freeze
the sample unidirectionally. It was desirable to produce snow crystal seeds
so that the final ice crystal size in the ice block sample was in the range of
1 to 2 mm since Sego and Morgenstern (1985) had previously studied the
experimental indentation of a rigid disk in polycrystalline ice of this type.
This meant that the snow crystals had to pass sieve #20 and be retained on
sieve #40 as suggested by Sego (1980). However, past experience with the
snow manufacturing has involved the production of only small guantities of

snow which were usually obtained by scraping accumulated hoar frost on a



150

cold plate in a freezer. Considering that a relatively large quantity
(0.384 m>) of snow crystals had to be manufactured, a first attempt at
manufacturing snow was made using a mini-snow gun (Figure 5.2)
supplied by Huff (1990). The chilled water channelled through the central
nozzle of the gun is essentially atomized by the cold air entering through
the annulus. The production was carried out in a cold room at -30°C. It
was found that the water flow rate greatly influenced the snow crystal size
and basically determined if the snow produced was wet or dry. Chen and
Kevorkian (1971) and O'Byrne and Haynes (1973) also found that the
air/water ratio had a significant influence on the quality of snow produced.
Snow crystals with the desirable size were produced after several trials by
adjusting the flow rate to 2 litres/minute and maintaining the air and water
pressures at about 276 kPa (40 psi). The air flow rate was not controlled.
A slight change in the above parameters determined if the snrow was dry or
wet and if snow production was possible at all. It is most probable that each
particular snow gun would have its own specific set of air/water ratios and
pressures to produce the desired quality of snow. The snow crystals were
kept in a plastic bag for 72 hours before trial polycrystalline ice samples
were prepared using a 0.10 m diameter moul!d. Trial samples were
prepared by mounting the mould containing the snow-water slush on a
freezing plate fed by liquid nitrogen. Subsequently, thin sections of
polycrystalline ice samples were obtained as described by Sego (1980) to
examine the grain size distributions. This method of snow production was
abandoned since comnsiderable effort would have to be dedicated to
manufacture the quantity of snow required for the ice block sample.
Consequently, similar sample moulds were prepared from natural snow

and snow collected from an ice rink mechanized scraper from a nearby
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recreational facility. Thin sections prepared from these two alternative
sources of snow showed no visible differences in polycrystalline ice grain
size distribution. Therefore we proceeded to use natural snow because of

abundant availabiiity.

The next step was to prepare the polycrystalline ice block sample using
the sieved snow crystals as described above. The PVC box was mounted on
a loading frame arrangement as shown in Figure 5.3. Lateral struts ensured
that the walls did not yield inwards while the vacuum was applied, thus
avoiding any disturbance to the sample which could result in additional
settling of the snow crystals. The natural snow crystals were sieved and
those that passed sieve #20 but were retained on sieve #40 were collected.
These pre-sieved snow crystals were rained from a large sieve (#20)
positioned on top of the box until the box was filled. The application of a
vacuum at the top of the box helped draw cold water at near 0°C into the
sample through two copper tubes (6.35 mm} with holes placed at the
bottom of the sample box above the freezing plate (Figure 5.1). Normally
it took about an hour to saturate the sample with an applied vacuum of
300 mm of mercury. The box was sealed very well using vacuum silicon

in order to minimize air entry into the sample.

It was essential to freeze the sample unidirectionally as rapidly as
possible to obtain a homogeneous block sample of ice. Snow crystals would
otherwise grow beyond the de:zired size if too much time was allowed to
elapse before freezing the snow-water slush. Unidirectional freezing was
made possible by positioning the freezing plate at the bottom of the box and

by thoroughly insulating the side panels of the box. The freezing plate
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consisted of 4 -6.35 mm copper tubes with holes (I mm) at 45°
sandwiched between two aluminium 12.7 mm plates. The sample was
frozen by feeding liquid nitrogen through 6.35 mm copper tubes so that
the liquid nitrogen squirted out towards the upper aluminium plate
(Figure 5.4). Several spacers between the aluminium plates tied the plates
together to avoid their separation as the nitrogen was drawn into the
aluminium wafer at a slight pressure. The design of the freezing plate was
based on the principle of delivering liquid nitrogen equally throughout the
surface of the freezing plates to ensure uniform freezing. It was also found
necessary to bolt down the freezing plate to the bottom frame in order to
avoid significant warping of the plate during freezing and hence minimize
the disturbance of the rained snow particles saturated with near 0°C water.
Two layers of insulation were placed between the test frame and the
freezing plate to ensure that heat was extracted principally from the snow-
water slush. This particular design was adopted after attempting several
alternative designs that produced non-uniform freezing. The pipeline was
positioned on guides attached to the front and back panels of the sample
box so that the polycrystalline ice cover was approximately equal to the
external diameter of the pipeline. It normally took four days to freeze the
sample and one nitrogen bottle (160 litres) was changed every 24 hours.
The final freezing trial was only carried out with the mode! pipeline placed
in the snow-water slush after the several operational problems with the

freezing system }ad been weeded out.

Loading arrangement

It was essential to apply a displacement rate at the pipeline end that
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closely resembled possible field displacement rates as a result of frost
heave. At the same time the displacement rate should be slow enough so
that strains are in the ductile range of ice deformation The frost heave rate
in Caen silt observed at Caen, France, was in the order of 3 x 1074
mm/minute which is fairly typical for silty soils. Sego (1980) carried out
punch tests on polycrystalline ice at typical penetration rates of 3.83 - 18.3
x 10"% mm/minute. Consequently, a Wykeham Farrance 10 kN capacity
press was adapted using a slow motor of 24 minutes/revolution to obtain a
displacement rate of 1.72 x 10"4 mm/minute. The loading arrangement is
shown in Figure 5.5 and Plate 5.1. The horizontal bars (0.025m x
0.025 m) of the hangar system were not as stiff as initially anticipated for
the test on pipeline model A. After completion of the test on pipeline model
A, it was observed that the bars had undergone permanent plastic
deformation. A calibration test was carried out on the hangar system and it
was found that the displacement rate at the pulling end of the pipeline was
about one third of that measured at the platen of the Wykeham Farrance
machine, This reduced displacement rate was used for the finite element
analysis discussed later. As a consequence, much stiffer horizontal bars
(0.025 m x 0.050 m) were used for pipeline model B with the intention of

reducing the compliance in the loading hangar.
Instrumentation

The model pipelines were instrumented with resistance strain gauges
along the length of the pipeline. Strain gauges were located at both top and
bottom for the first model pipeline (19.05 mm x 0.89 mm) and a full

wheatstone bridge was established between them so as to avoid problems
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with temperature compensation. Though this approach permitted the use of
a reduced number of strain gauges, it was recognized that the true local
strain in the pipeline would be difficult to ascertain. Consequently,
independent top and bottom strain gauges were used for model pipeline B
(25.4 mm x 1.24 mm) in order to remove any possible uncertainty. The
strain gauges on the model pipeline A were protected by wrapping the pipe
with a heat shrink teflon type material (FIT 221 produced by Alfa Wire
Corporation). The teflon material was also chosen to represent some sort
of field coatings. Since an adequate size of heat shrink was not available for
the model pipeline B, a different wrapping material (Nitto Butyl - 2" self
vulcanization rubber tape) was used. The model pipelines were calibrated

prior to testing under a cantilever loading arrangement. In addition, the
| movement of the platen of the compression machine and the corresponding
force imposed on the pipeline were monitored by a LVDT (Linear Voltage
Displacement Transducer) and a load cell respectively. The displacements
along the pipeline close to the loaded end were monitored using closely
spaced LVDTs. The LVDTs were placed at the crest of the pipes through
holes drilled in the ice block sample A. An alternative procedure was used
for pipeline model B where thin tubular stems were attached to the crest of
the pipeline prior to freezing. These tubes acted as guides for free
movement of the LVDT rods. The Hewlett Packard 24 DCDT LVDTs are
capable of measuring displacements to an accuracy of 0.0012 mm. All the

data was logged automatically every two hours by a PC for easy retrieval

using an electronic spreadsheet.

Elastic and creep properties of polycrystalline ice

Intact core samples of 0.1 m (diameter) x 0.3 m (height) were taken
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from the ice sample blocks where the pipeline models were tested using a
CRREL coring barrel. Thin sections obtained from typical samples
(Plate 5.2 and 5.3) examined under polarized light showed near unifcrmity
of crystal size and the background grid (10 mm x 10 mm) permitted a
rough estimate of the size of the individual crystals. The thin sections were
obtained by the hot-plate method as described by Sego (1980). There were
concerns that perhaps the hot-plate may modify the ice crystal structure
and therefore thin sections were also obtained using microtome equipment.
Plate 5.2 shows that if indeed there were any changes in the ice crystal
structure either due to thermal or mechanical stresses they are not readily
perceptible to the naked eye. It was difficult to produce very thin sections
with the microtome without the risk of cracking as the section got thinner.
The rest of the thin sections were prepared using the hot-plate procedure
because it was found to be very amenable. The sonic elastic properties were
obtained using piezoelectric crystals that detected the arrival of P- and S-
waves. The testing procedure used is given in detail by Instanes (1992).
Typical value for dynamic elastic moduli were within 3 to 7 GPa range.
Typical constant lcad tests were carried out on 0.10 m (4") samples
(typically height diameter ratio was 2) at different loads. The procedure
for the constant load creep test was essentially as outlined by Sego (1930),
except that a multi-staged loading procedure was applied on most samples.
Normally, the load was increased or decreased after considerable
deformation at steady state had taken place. Typical axial strain time
histories for two of the samples are shown in Figures 5.6 and 5.7 while the
axial strain time histories for other samples are included in the Appendix.
The strain histories indicate that at low stresses (i.e. < 210 kPa) primary

creep had terminated after about 100 to 150 hours. The constant load creep
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(b) thin section of ice using microtome

Plate 5.2. Thin sections of ice polycrystalline sampies from upper 0.10 m

of block sample A using the hot-plate and microtome.



(b) thin section at bottom of ice bleck sample using hot-plate

Plate 5.3. Thin sections of ice polycrystalline samples from top and bottom

block sample B using hot-plate.
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test at 400 kPa (Figure 5.A1) shows that the primary and secondary
portions of creep were very small and, in fact, tertiary creep approached
after approximately 300 hours. The experimental results of the creep
multi-staged constant load tests are summarized in Table 5.3. The samples
were tested at a temperature as close as possible to that of the pipeline
which was essentially at -3°C. The performance of RTDs was found not to
be very satisfactory because, though all three test cells were fed from the
same bath, the RTD from each sample responded differently. The strain
rates were calculated from the steady state response of each sample and
were corrected only for temperature as suggested by Sego (1980). Sego's
correction formula was used since in the present set of experiments
sufficient data on temperature variation was not available to apply an
alternative correcting procedure. A giain size correction was not deemed
necessary since the ice crystals in present samples were within the 1 mm
range and the fact that Sego's (1980) data is normalized with respect to a
crystal size of 1 mm. The corrected normalized displacement rates are
shown in Figure 5.8 together with data from Sego (1980) and others.
Morgenstern et al. (1980) have reviewed thoroughly available data on
creep properties of ice and they have determined the influence of
temperature. The creep test results from the present series of tests on
polycrystalline ice were analyzed together with other relevant data shown
in Figure 5.8 and the creep constant B and n were obtained. Table 5.4
shows these creep properties together with those obtained by
Morgenstern et al. (1980). The data from tests on poiycrystalline ice
reported here serves to confirm that the creep properties of the ice block
samples prepared for testing the model pipelines are within the expected

range. The creep properties (corrected for temperature) established by
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Figure 5.8. Corrected normalized strain rate versus axial stress for

polycrystalline ice at -2°C.



Table 5.3. Summary of constant load creep test on samples of
polycrystalline ice.

Sample density temperature stress corrected
Mg/m3 °C kPa strain rate
T1-10/91 0.876 -2.7 (1.20) 115 0.495
-3.0 (1.28) 213 0.882
-3.0 (1.28) 230 1.193
-2.0 (1.00) 130 0.351
T2-11/91 0.864 -4.3 (1.61) 400 12.98
A4-01/92 0.862 -5.0 (1.77) 106 0.216
-5.0 (1.77) 250 2.977
-3.2 (1.33) 320 3.945
B5-01/92 0.848 -3.4 (1.38) 105 0.519
-4.0 (1.54) 170 0.843
B7-02/92 0.853 -3.3 (1.36) 103 0.622
-3.3 (1.36) 250 1.903

The values beside test temperatures are correction factors for strain rates

normalization at -2°C.
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Morgenstern et al. (1980) were used in the finite element analyses for

predicting strains in the pipeline since these properties were based on an

exhaustive review of the data on polycrystalline ice available then.

A 03 m long section from each of the model pipeiines was

instrumented with strain gauges in order to determine the structural

Structural properties of pipeline steel 304
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Table 5.4. Creep properties of polycrystalline ice at - 2 °C.

creep creep
Reference exponent coefficient
n B, kPa™ x year’!
Morgenstern et al. (1980) 3.00 2.03x 108
present creep tests and others  2.84 5.98 x 108
reported by Sego (1980)
parameters used for 3.00 153x10%

analysis (- 3 °C)

properties of stainless steel 304, Custom made stems were welded to both
ends of the test specimen so that specimens could be tested in the available
MTS testing machine. The loading speed was slightly increased at about 2%
strain for the first specimen and the tests were prematurely terminated
when a weld failure occurred at the stem-specimen connection. The

structural steel characteristics determined from the tests (Figure 5.9) are
summarized in Table 5.2. The yield stress (Gy) as defined by CSA Z245.1-

1979 is in the 228 - 315 MPa range at a strain of 0.5% (ey). Steel 304

maintains stress-strain elastic proportionality till 0.1% (eep) axial strain. It

is interesting to note that a much lower yield strength was attained by the

pipeline model B.
Observation of strain time histories in model pipelines

The displacement and load time histories monitored at the free end of

the pipeline models A and B are shown in Figures 5.10a and 5.10b. While
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the pipeline A and B were being steadily displaced, the end load increased
for about 1000 hours when it stabilized at load levels of 2744 N and 5600
N respectively. During the test on pipeline model A, the monitoring of the
ice temperature (Figures 5.11a and 5.11b) commenced after problems were
detected in the refrigeration system. The temperature was monitored by
setting a thermistor (RTD) in the ice block sample at a depth of 0.10 m. A
gap was noted to develop at the back of the pipeline as it was steadily
displaced upwards. The flexural strain time histories for pipeline models A

and B are shown in Figures 5.12a and 5.12b.

The deformed shapes of the pipelines obtained from the LVDTs placed
at the crest of the pipeline are shown in Figures 5.13a and 5.13b. The
deformed shape measured after the completion of the test? (pipeline modei
A) compared well with the last monitored shape and provided additional
evidence on the reliability of the LVDTs during the test that lasted for
about 90 days.

The flexural strain profile histories developed along the pipeline models
A and B for different time intervals are shown in Figures 5.14a and 5.14b.
The stress imposed on the ice as a result of the load developed at the end of
the pipe (pulling end) can be estimated approximately from statics if a fully
plastic moment is assumed to develop at the point of maximum strain. This
approach gives an estimate of the average resistance due to uplift of the

pipeline. The average reaction intemsity calculated in this manner for

2 Test for pipeline model B had not been terminated at the time of the
completion of this thesis. The final data will be published in the paper
referred to in footnote 1 on page 138.
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end load, kN
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end load, kN

g 1opowr surjadid 10§ S3LI0ISIY oW} Peo] pue Juswoor|ds1p pus ‘O[S N3]

Inoy “own

0002 00<T 0001

00¢

0

N I

Aepan , Of X 6S°T
sunpadid jo pu2 @ tuswsoejdsip

L sinoy LS @ dojaaap 01
uidaq surens dNsejaul

e

g [opow surpadid ]

4

] o1

61

0c

Y4

ww queraoe[dsip pus



173

"y [opow durjadid 10y saLioisy 2w} dnjeradwd) pue Juswodeydsip pusg ‘81 [°¢ 08I

temperature, °C

Inoy ‘own
00ST 000z 00s1 0001 00¢& 0
Wl %' T T T T T T T _ T T T T _ T T T
L i [
i
| _*
Ol ,
- b h |
v . ] “ ._...:
" I .ALI.__ __: B
- |. __ " _._._.E_..—__....J.?f_,_a;. iy ey ;
| - ]
[ \ ]
| '
T !
a | B
1 ]
: ]
MI I _ !-“
ﬁ __ %.mﬁb\: ?OM X Q¢ g =9l Eo_.:ooﬂ.um% 1
i v epow ampadid 4

]|

0c

0%

ov

0s

wur “Justrsoe]dsip puo



174

temperature, °C

¢ [opowt sutjadid 10§ saojsty awng armjersdua) pue juawadeldsip puyg "q[ ' AndLf

oy ‘sun

0002 00<1 0001 00¢ 0
S
b
L -
o
.

. \ Aep/ur , QT X 67 = A1 Juswoedsip ]

] ¢ 1opour aurjadid ]
0 14

Ut ‘JUSUIaoe[dSIp pud



175

v 1opour aurjadid 1oy surens yead

JO AHUIOIA ajeipawir o1 ul sjutod JOJ SILIOISTY own) ureng eg['¢ Ingny

0082

sinoy ‘owrn

0002 00S1 0001 00S 0 0
. /\ I . .
N 0002
4
) 000y &
_ \\\\n e ’ - M
N _ (£L6]) usydmg pue dutreymnog > s
' B - 0009 @
/ - . (€£61) NIPWMON PUR UOSIIM ] )
' o - 0] SUIPICIOE PUNO( IIMO] »> | B
L —o008 F
LT > wSHTe® - ¢ v -
L (986 1) 131usarny wore®@ - —|
N wWore® ------- — 00001
. weziio® - - - - |
woro@ — | |
00021




176

g [epowt

aurpadid 10j surens yead

Jo Anurora ayerpawut oy ur sjurod Joy SALIOISIY Sw UtRNS ‘q7 ¢ 23y

00s1

sInoy ‘au}

0001 00¢ 0

wOTod - ——
Wepre® oo
WeOrod - - - -
e —

- pue dweyMnog

-~ (cL61) uaydals

(E€61) IPWMON pUE UOSIIA
01 SUipiooJE puUNoq JoMO|

0009

0008

00001

00021

3N ‘wrens [eInxsyy



177

v [epowr aurjadid 1o] sautoisiy ojrjord juowaoedsip [BONIOA "BET'C 2N

w ‘auyjodid Suore aour)sIp

I 8'0 9°0 zo;.
s T ]
—z
—9
- o1
1590 190J2 O[1JOM e .
SIOY 9¢[T & O e
sanoy 0oz ® - -O - o
smoy gos1 @ - O - .
S0y 0001 ® —O —
SIOY 3G9 @ - -0— l._w_”
ot o & o SU—
HOOL® -0 (,S£0°0 X ,,§°T) WW 688°Q X UIWL [6'8E
w

ww quawaoeidsip [BonIeA



178

-g 1opow autpadid 10y sauoisiy aj1jord JuauraoedsIp [BSILAA "qE S dInTi

w ‘surjadid Suoje aouw)sIp

[ 8'0 90 1AY 0 0 m.ow-
_ r - 1 _ ST “
Q=B e - Shahl s S o L ST | I 0
= .lll -~ e S . i
o e @
N hO) ~ . 1 W
I
N .
S — or
\ . i
) ]
o] ]
Vo —| ST
v o ]
VO ”
$Ioy 961 @ - -O- - _, oz
SINOY OOST @ - -O- - . ]
IOy 0001® —O — o ]
sImoy 009 @ - -o— ]
smoy 00z @ --0-- — 5C
SINOY Q01 @ ---O--- F0€ 19918 ssaquiels |
(.650°0 X ,7) WU SyT'T X WW 805
0t

WU “JUSUI0R[ASIP [BOTII0A



179

"y 1opows surpadid Joj senosty opjoid urens jeinxopy jejucwirodxs ey ¢ ANy

w ‘ourjadid Suoje aoue)sip

I 2'0 9'0 0 70 0 70
N [ T . ]
da
310001 = 3
(gL61) voydalg .w
SINOY OCIZ @ —— pue dwejymnog H
smoy )00z @ — — (EE6T) YrewmoN 1
smoy QOs1 @ - —— PUR UOS[IAN ]
S0y OO @ — - — Ol SUPIOTE >
smoygu9 ® -- — punoq 12mo] ]
smoy Qg @ ----- —
SINOY O] @ =-=--- - 3
(9861) 18ws21)

00001

00071

3 ‘urens [BINXI[J



180

‘g [opow suradid Joj sonojsty 9j1joid utens jeinxayy [EuawWLRdXy "qp ' 3IngL]

LA

w ‘ouipadid Suopr aouwisip

(AR I 80 90 ¥ o 70 0 0
e T T T
- M —_——

WICY0q - $INOY HOGT - - —— doy (9861) 18wsa1n |
doj - simoy gosI — - — ]
doy - sxnoy 0001 —— (EE61) JPWMON —]

Eozmﬁ_ - smoy 0001 —— DUB UOS{IAA >

01 - SIN0Y ()09 ———— ]
wI0)Oq - SINOY 009 - — — — (gL61) uoydarg
\ pue dueymnog

doy-sinoy ooz - - - -
woioq - smoy )z - - — -

arlgoor =3

wojjoq

:
1S fRINXa])

0008

a1 ‘urel



181

pipeline model A is within the 100 - 300 kPa range. As noted before, the
constant load creep data on polycrystalline ice indicates that primary creep
is over after about 150 hours and consequently the application of Norton's
secondary creep flow law for analysis is satisfactory for practical purposes.
The strain profile is observed to be fairly smooth for the first 600 hours
approximately for pipeline moJels A and B when the strains are below
0.1%. Thereafter the material of the pipeline model response is non-linear.
After the tests were completed, the deformed profile of the bent pipeline
models was obtained along the crest of the pipeline at 25 mm intervals.
The final curvature was then estimated from the deformed shape using a
three point finite difference formula. Since the determination of the
curvature essentially involves numerical differentiation, the results can be
very sensitive to small variations in the original data. However, the purpose
of determining the flexural strains from the permanent deformed shape of
pipeline models was only to confirm the final strains measured using
electrical resistance strain gauges. A more elaborate procedure, such as
fitting a cubic spline or a high order polynomial to the deformed shape,
was not attempted for the same reasons stated earlier. The fiexural strains
were estimated from curvatures assuming that the neutral axis was still at
the centre of the pipe. A comparison of the peak strains (Figures 5.15a and
5.15b) obtained from the two different methods indeed confirmed that the
electrical resistance strain gauges had perfcrmed satisfactorily throughout

the tests.

Circumferential measurements at different sections along the model
pipelines were obtained to determine if significant ovality of the circular

cross section had taken place. Figure 5.16 shows the deformed cross
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sectional shape (exaggerated 20 times) of the pipeline at different sections
of the pipeline. The circumferential reading. were performed with a
displacement dial gauge with an accuracy of 0.0254 mm (0.001"). These
measurements were also confirmed independently using an electronic
caliper. The maximum ovality, & (inward) registered is in the order of
0.15 mm. In terms of the net diametrical change, d,(%) = 2(8/b)100 , this
amounts to a change of 0.78%. In fact the ovality is hardly discernable and

no wrinkles or substantial local deformations were present.

If pipeline models A and B were to represent the prototype, then it is
most probable that the pigging serviceability of these pipeline models
would not be affected. Serviceability is not hindered in spite of the fact that
all strain limits, as suggested by Wilson and Newmark (1933), Bouwkamp
and Stephen (1973), Sherman (1976) and Gresnigt (1986), were exceeded
(Figure 5.15a). It is most probable that the restraint offered by the
surrounding stiff medium arrests the formation of wrinkles and
substantially more flexural strain, as a result of frost heave, can be
tolerated before serV’iceability would be severely hindered. Yun and
Kyriakides (1990) found through analysis of shell buckling that
imperfections have a dominant effect over the restraint offered by a stiff
medium for the load carrying capacity for a pipeline subjected to axial
loads. Even though the restraint offered by the surrounding stiff medium
does not effect the load carrying capacity, it has a notable effect on the
critical strain. It is important to make this distinction because design
criteria are based on serviceability with respect to pigging as well as the

need to avoid rupture when subjected to uplift due to frost heave. A similar
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situation (Yudovich and Morgan, 1989) arises for deep oil/gas casings
where loading on the casings is imposed by the collapse of high porosity
chalks in reservoirs at the Ekofisk site in the North Sea. Since these
reservoirs are deep, the stiffness of the surrounding chalk would be high
because its elastic modulus is dependent on the confining stress. Statistical
analyses of casing serviceability and critical strain indicated that strains as

high as 5-6% could be tolerated without posing a major hindrance for

casing service.

Comparison of experimental behaviour with analysis

The numerical Winkler model developed for a beam embedded in a
creeping medium in chapter 3 was used to evaluate the response of the
model pipelines subjected to steady displacement for over 2000 hours. The
finite e¢lement analyses were performed using Adina (1984) where the
polycrystalline ice is represented by discrete creeping springs and the
pipeline itself is represented by beam elements. Adina (1984) permits the
specification of a tubular cross section whereby the material non-linearity
can be taken into account in the simplest form. The material non-linearity
of steel was limited to a bi-linear relationship along the lines suggested by
the Committee on Gas and Liquid Fuel Lifelines (1984). All the pertinent
data for individual components of the pipeline-polycrystalline ice that were

discussed earlier helped to define all the relevant properties with minimal

uncertainties.

The strain wave profile during the initial period, i.e. before 512 hours,

helped to establish the elastic subgrade foundation modulus (i.e. elastic
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modulus of the surrounding ice). Since the solution for a beam embedded
in a creeping medium is based on the correspondence principle, it is
essential to match the elastic response with the form of the initial observed
response. The procedure used was essentially the same as that discussed in
chapter 4. Identification of the location of the peak strain permitted the
determination of the most appropriate value of elastic or instantaneous
modulus qf ice which was estimated to be 61 MPa for both models A and
B. The marked difference between the elastic modulus determined from
sonic measurements and from pipeline-ice interaction is related to strain
rate effects. Another source of discrepancy is perhaps in the limitation of
Biot's (1937) or Vesic's (1961) formulae to translate the elastic continuum
~ properties to foundation subgrade modulus. In the non-linear analysis an
integration order of 5 x 3 x 5 (1, s, ©) was used for the pipe beam element.
Tawfik (1986) argues that the tri-linear material model as proposed by the
Committee on Gas and Liquid Fuel Lifelines (1984) for steel can lead to
considerably higher estimated strains than would be obtained by a curvi-
linear material model like the Ramberg-Osgood model. This is primarily
due to the fact that at large strains (> 4%) no stiffness is attributed to the
material. This effect need not be of concern in the present analysis since the
strains do not approach this strain limit. Nonetheless, Tawfik (1986)
observes that when the material model is represented by the curvi-linear
form, the strain wave is of an oscillatory nature near zonss where plastic
deformations takes place. A bi-linear stress strain relation for steel was
selected for the finite element non-linear analysis and the prediction of
peak strain was largely dependent on the elastic limit established from the
uniaxial tests discussed earlier. If a bi-linear stress strain relation as

suggested by the Committee on Gas and Liquid Fuel Lifelines (1984) is
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used, then the predicted peak strains are considerably reduced. This
observation also confirms Tawfiks's (1986) findings that a discontinuous

representation of the stress-strain relaticn for steel is not quite appropriate

for realistic predictions.

Figures 5.17a and 5.17b shows the comparison of predicted and
measured strain profiles at different time periods. The predicted and
experimental flexural strain profiles match quite well for strains below the
elastic strain proportionality limit (sep) of 1000 pe. However for sirains
beyond the elastic strain proportionality limit, the peak flexural strains
(predicted vs measured) also compare well except that the extent of
predicted plastic deformation is considerably less than that observed. The
principal reason for this discrepancy is due to the fact that the pipeline is
represented by a 2D beam elements in the finite element analyses and since
the discretization is too coarse (typically one diameter of pipe) it is unable
to account for stress redistribution that takes place in the pipeline as
significant plastic strains develop. However, a 3D analysis, where the pipe
is represented by shell elements and surrounding medium by 3D brick
elements, would perhaps reproduce this redistribution of stresses more

realistically, the analysis would be prohibitively costly.
Conclusions

A thorough description of the experimental procedure for carrying out
model pipeline tests has been provided. Two different model size pipelines
were tested in polycrystalline ice with continuous monitoring of flexural

strains, displacements and temperature. The experimental data obtained
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generally confirms the findings of the simplified model of a beam
embedded in a creeping medium. It seems that though the burial of the
pipeline is shallow, for the purpose of this analysis it can be regarded as
being deeply buried if the surrounding medium is very stiff. Though the
strains exceeded currently accepted strain limits, the serviceability was not
hindered. We therefore infer that the surrounding stiff medium retards the
formation of wrinkles. This suggests that the critical strain limit can be
increased considerably without jeopardizing the reliability of the pipeline.
However, further tests need to be carried out with model pipelines of

higher R/t ratios to further confirm these findings.
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The following symbols are used in this chapter:

o m

cp

< < =2

Nomenclature

creep proportionality constant
critical strain criterion constant
pipeline diameter (=2R)

beam elastic modulus
steel strain hardening modulus

soil elastic modulus

embedment depth

beam moment of inertia
foundation subgrade modulus
creep exponent in Norton relation
radius of model pipelines

pipeline wall thickness

proof strain rate
elastic proportionality strain limit
soil weight density

steel Poisson's ratio

soil Poisson's ratio
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Oep elastic proportionality stress limit

c, = steel yield stress

proof stress

Appendix

Figures 5.A1, 5.A2 and 5.A3 show constant load multi-staged creep

time histories for three more samples that were tested.
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Chapter 6

CONCLUSIONS

Frozen soil pipeline interaction

The principal problem associated with the design of a chilled buried gas
pipeline subjected to frost heave is to identify the role of the specific
characteristics of the frozen ground that significantly influence the
behaviour of the pipeline. In order to improve the understanding of the
problem, the pipeline frozen ground interaction study was undertaken in
several stages with the development of simple analytical solutions that were

later validated with the more complex finite element method.

In the first stage, particular attention was paid to the fact that the
pipeline has a finite shallow buria! and that the surrounding medium can be
assumed to be an elastic perfectly-plastic material. It was found that the
shallow burial can be accounted for by adjusting a bearing type capacity
factor to evaluate the response of a pipeline embedded in an elastic
perfectly-plastic medium. The developed model based on the beam on an
elastic perfectly-plastic Winkler foundation was validated using a three-
dimensional finite element discretization. Though the finite element model
was coarse, it captures the principal characteristics of the response. The

versatility of the Winkler model was demonstrated by solving the different
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problems of lateral loaded piles. The influence of the separation of the

surrounding medium from the back of the pile was also demonstrated.

The next obvious step was to develop a similar model of a beam
embedded in a creeping Winkler foundation to account for the specific fact
that real frozen ground creeps according to Norton's flow law. The creep
response obtained was based on the applicaﬁon of the correspondence
principle. Upper and lower bound estimates were obtained using Raleigh-
Ritz and Martin's inequality procedurés since it is very difficult to obtain
the exact solution for the resulting differential equation. These estimates
were validated with the formulation of the discrete springs that can be
readily used in the finite element method. The approximate solutions also
established the non-dimensional parameters that clearly define the response

of a beam embedded in a creeping medium subjected to an end load.

Several field and laboratory studies of timber, steel and aluminum piles
subjected to lateral loads at the pile head have been performed in the last
two decades and a few as late as 1991. These tests were carried out on piles
installed in frozen silty clay, frozen sand and polycrystalline ice. The
discrete Winkler finite element analyses of these pile tests were able to
reproduce with good overall measure the observed behaviour using the
available geotechnical data for frozen ground or polycrystalline ice.
Subsequently, the application of the model to match the stress histories of
the experimental pipeline at Caen, France, confirmed the robustness of the
model in spite of its simplicity. These analyses demonstrated that the
applicability of the correspondence principle is quite valid for the kind of

problems under study in this thesis.



Two model pipelines embedded in polycrystalline ice and subjected to a
steady upward displacement were tested. The models were thoroughly
instrumented for flexural strains and upward displacements. Several
constant load creep tests were performed on polycrystalline ice to
determine its creep properties. The creep properties were found not to be
too different from those obtained previously. The pipeline models were
displaced so as tc surpass currently stated strain limits on operational
pipelines. Significant ovalization was not observed though the model
pipelines were subjected to flexural strains exceeding 1%. These
experimental results seem to suggest that large strains can be tolerated in
the pipeline without significantly hindering its operation. The experimental
results also confirm that, though the pipeline is buried at a shallow depth,
as far as the analysis is concerned, it can be assumed that the overlying
medium is semi-infinite because frozen ground is usually very stiff. The
application of the solution for a beam embedded in a creeping medium

demonstrated once again the robustness of the Winkler model as long as the

model pipeline remains elastic.

Recommendations for future studies

The simple analytical solutions representing the pipeline as a beam
embedded in a creeping medium have limitations because they do not
account for material non-linearity of the pipeline material. Throughout the
thesis it has been assumed that the elastic and creep properties are the same

in tension as well as in compression. Since portions of the frozen medium
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are expected to be in tension, effort should be made to investigate whether
there are significant changes in elastic and creep properties when the
frozen material is in tension. Improvements should be attempted so as to
take into account the effects of material non-linearity as well as ovalization,
Nonetheless, every effort should be made to maintain the simplicity of the
analytical solutions because a very complex finite element analysis is not
always warranted for preliminary designs. Of course, these simple models
should always be validated either with experiments or analyses of the finite

element type.

There is a need for carrying out more experiments of the type described
in this thesis but using model pipelines which have higher radius to wall
thickness ratios, i.e. R/t in the range of 40 - 50. These model pipelines
should explore the accentuated effects of wrinkling strain and whether the
surrounding resistance by the stiff frozen medium significanily alters

pipeline behaviour.



