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ABSTRACT

This dissertation presents a method of analysis to predict
the complete load-displacement response for large multi-story structures.
The structures are composed of sets of planar bents arranged in twb
perpendicular directions. The structure is assumed to deform in these
two principal directions and twist about a vertical axis. The bents
may contain both uncoupled frame and coupled frame-shear wall elements.

The actual structure is replaced by an analytical model in
which the number of unknown displacements have been considerably re-
duced. Slope-deflection equations are used to relate the member dis-
placements to the end moments. Equilibrium equations are written as
Tinear functions of the unknown displacements. The slope-deflection
equations are modified in the presence of plastic hinges. The secondary
moments due to the column axial loads acting through the sway displace-
ments are considered, however, the effects of axial shortening, changes
in axial load, variations in stiffness and carry over factors, and
shear deformations are not considered.

The equilibrium equations are symmetric and only one half band
width of the stiffness matrix is generated. The equations are solved
using a modified Gauss Elimination technique. A computer program has
been developed to perform the analysis; its validity has been verified
by analyzing several structures for which data is available in the

1iterature.



An extensive behavioral study is performed using a ten and
a twenty-four story structure as its basis. The influence of various
structural parameters are considered. The results indicate the
importance of considering the torsional displacements when predicting
the ultimate load carrying capacity for asymmetric structures. The
torsional Toads increase the net sway displacements which increase

the P-A moments and reduce the ultimate load carrying capacity.
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CHAPTER I
INTRODUCTION

A typical arrangement used for contemporary multi-story
buildings is shown in FIGURE 1.1. The structure consists of a service
core, surrounded by, and coupled to, a three dimensional space frame.
The service core is commonly formed by several open or "semi-closed"
reinforced concrete shear walls.

Because of the complexity of such structures it has been
common practice to analyze the structure as a number of planar bents,
such as that shown in the elevation in FIGURE 1.1. The lateral load
to be resisted by a particular bent is based on its tributary area; or
alternatively; on the stiffness of the bent relative to that of the
complete structure. The selection of member sizes for a particular
bent would normally proceed on the basis of allowable stress criteria.

The introduction, and consequent adoption, (1,2), of plastic
strength methods provides a more rational approach to structural design.
Load factors are selected to ensure the attainment of a particular col-
lapse load. In addition, the deflections of the structure are checked
under the working load conditions. Because of the increase in economy
that results from a consideration of the inelastic action, plastic de-
sign methods are gaining increasing acceptance (13).

In tall slender structures the secondary effects of axial load



may become of primary concern (3). Simple plastic theory does not con-
sider stability effects. However, many computer oriented analyses
have been developed for predicting the collapse loads of tall planar
frames (4,5,6,7). These analyses considered various axial load effects,
such as; member shortening, changes of member stiffness and finally
the additional overturning moments produced by the gravity loads acting
on the displaced structure. Because the inelastic behavior of a
structure depends on the loading history, incremental load procedures
were employed to trace the behavior of the structure up to its ulti-
mate load. These procedures detect, and modify the structure for,
successive yield violations. The behavior of the structure is depicted
by the Toad-displacement curves shown in FIGURE 1.2. In FIGURE 1.2 the
Toad factor, A, is plotted against a characteristic displacement, A.
The dashed curve presents the response for a structure where the second-
ary moments have been ignored. This curve approaches the load corres-
ponding to the formation of a mechanism in the structure. In the solid
curve, the effect of the secondary overturning moments reduces the col-
lapse load, as well as the stiffness of the structure. The mechanism
condition is generally not reached until after the ultimate load has
been attained and the structure is unloading. .

The presence of shear walls, which have finite width and
large stiffnesses, relative to those of the frame members, modifies
the response of a real structure. The shear deformation of the frame

must be compatible with the cantilever type of deformation of the shear
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wall. Analyses for coupled frame-shear wall structures, which consider
the resulting interaction, have been presented (8,9).

The above methods imply that all bents in the structure
translate only in the plane of the applied loads. This condition is
rarely met. Rotation of floor diaphragms due to asymmetry of structural
lTayout and/or loading is unavoidable. The resulting complex interaction
between stiffening elements cannot be predicted by a planar analysis.

First order elastic analyses, which consider the out-of-plane
and twisting action of coupled frame-shear wall structures, are avail-
able (10,11,12). Results obtained by these methods indicate that in-
creasing asymmetry will develop between the lateral load and center of
stiffness as loading progresses. External bents undergo larger dis-
placements, resulting in earlier formation of plastic hinges, thus
reducing the bent stiffness and shifting the center of stiffness of
the structure. The complete load-displacement relationship must there-
fore be predicted to rationally assess the ultimate load capacity of
actual structures.

The Targe number of unknowns, together with the number of
separate analyses necessary to trace the progression of inelastic be-
havior, has retarded the development of procedures to predict the
complete response. This dissertation will present a second-order
elastic-plastic analysis for three dimensional, coupled frame-shear
wall, structures. The method is computer oriented, and is suitable

for the analysis of large structures.



Extensive analytical and experimental work has been performed
to investigate the behavior of multi-story structures. A review of
that work, applicable to this dissertation, is presented in CHAPTER II.
The main aspects considered are; the behavior of biaxially loaded
beam columns, the behavior of shear walls, and the methods of pre-
dicting the load-displacement response for planar frames and complete
structures.

By considering the floor diaphragms to be infinitely stiff
(in their own planes) each floor of the structure has only three de-
grees of freedom. Further simplification is obtained by lumping the
members within each bent, thus replacing the actual structure by a
simplified analytical model. The simplifying steps, and the assumptions
regarding member behavior are outlined in CHAPTER III.

The displacement method of analysis, developed in CHAPTER IV,
is based on the slope-deflection equations. Equilibrium is formulated
on the deformed structure, thus considering the overturning, due to
the vertical loads. Shear deformations, axial shortening, and changes
in axial load are neglected. The slope-deflection equations are modi-
fied in the presence of plastic hinges. An incremental loading pro-
cedure is used, which locates the plastic hinges individually in their
order of formation.

The analysis has been programmed for the computer. Algorithms
and flow diagrams are presented in CHAPTER V. Because of symmetry only

one half band of the coefficient matrix is stored. The equations are



solved by a modified Gauss Elimination technique.

To verify the accuracy of the procedure, several structures
have been analyzed and the results compared with those previously re-
ported in the literature. This is discussed in CHAPTER VI.

The influence of various parameters on the response of three
dimensional structures is considered in a behavioral study, which forms
CHAPTER VII. Particular attention is paid to the effect of the assump-
tions made, their validity and the influence of asymmetry of load and
structural layout.

In CHAPTER VIII the results from the behavioral study are
presented and discussed. The influence of lumping within a bent is
considered. A method is presented which will modify the analysis to
consider non-uniform torsion for those shear walls where warping is
restrained.

CHAPTER IX presents the limitations of the method of analysis
and discusses the accuracy of the computer program. Consideration is
given to utilizing the program in design. Recommendations are made re- -
garding the conditions under which the torsional displacements may be-

come of primary concern.
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CHAPTER 11
REVIEW OF PREVIOUS INVESTIGATIONS

2.1 Introduction

The review is limited to investigations related to the be-
havior and analysis of, three dimensional structures and their com-
ponent elements. The review of component behavior will include; bi-
axial bending of beam columns, bending and torsion of open and semi-
closed shear walls, and the interaction of coupled frame-shear wall
bents. The methods of determining the collapse loads of planar bents
and three dimensional structures will also be briefly reviewed. Code
requirements, as to loads, and methods of load distribution to the

stiffening elements will also be considered.

2.2 Beam Columns

In a building frame a beam column may be subjected to an
axial load, bending moments about both axes and twisting forces. The
column ends may or may not be permitted to translate and twist. The
forces on the individual members must be in equilibrium and the defor-
mations of the member ends must be compatible with the surrounding
structure. No solution exists to predict the behavior of'wide flange
beam columns deformed into the inelastic range under these conditions.

The behavior of wide flange beam columns subjected to uni-



axial bending (both strong and weak axis) has been well documented (47).
The basic building block in beam-column analysis is the Moment-Thrust-
Curvature (M-P-¢) relationship for the cross section. Moment-Thrust
interaction relationships are established from analyses of individual
members, with the end moment ratio and effective column length as
parameters (14,15). These serve to define solutions for the limiting
case of biaxial bending, where the moment about one of the principal
axes is equal to zero.

A review of the past investigations (analytical and experi-
mental) performed on the biaxial bending of beam columns is presented
by Chen and Santathadaporn (16). Most of the work to date (September
1970) deals with isolated columns subjected to biaxially eccentric
loads. Baker et al (15) reported the results, obtained in 1950 by
Roderick (18), of a series of tests on elastically restrained columns
bent in single curvature about both principal axes. For both rectangu-
lar and I shaped cross sections failure occurred by bending about the
weak axis, without any noticeable twisting of the cross-section. How-
ever, the columns were connected to heavy end plates, which would re-
strict warping and contribute to the torsional stiffness of the column.
Nine cases of column loading were considered, ranging from the pin
ended column to the more general case of a biaxially loaded column
with elastic restraints a% both ends. Approximate design rules are
presented for each case. Milner (46) performed an analytical and

experimental study of restrained biaxially loaded H columns. A nu-
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merical integration procedure was used for solving the equations of
equilibrium. The order of load application had a significant effect
on the failure load. The predicted maximum loads agreed closely with
those obtained in the experimental program.

Harstead et al (17) presented a numerical procedure for
predicting the ultimate strength of biaxially loaded isolated H columns.
The analysis assumes that the material is elastic-perfectly plastic and
that the load is applied with equal eccentricities at both ends. Various
degrees of warping restraint at the column ends may be considered. The
predicted results compared closely with experimental values. The warp-
ing restraint increased the ultimate carrying capacity of the members.
It was also concluded that the residual strains had a considerable
influence on the response of isolated columns.

Sharma and Gaylord (19) assumed a sinusoidal shape for the
lateral displacement and twist of the cross section. The equilibrium
conditions for the deformed member were enforced only at the ends and
mid-height of the column. The results compared favorably with those
obtained by the more exact method of Harstead et al (17).

Although the above methods provide a good indication of the
ultimate strength of the column, they are not suitable for incorporation
into an analysis of three dimensional structures. In the analysis of
planar structures the use of an interaction equation, relating the
axial load to the reduced plastic moment capacity, has proved satis-

factory (5,6). Drucker (20) states that, interaction curves are not
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unique and depend on the loading condition along the entire length of
the member. Despite this, Santathadaporn and Chen (21) point out that
the use of interaction curves is warranted since present design pro-
cedures (22), neglect completely the biaxial bending effect. The upper
and lower bound theories of limit analysis are appiied to obtain in-
teraction curves for wide flange sections. The lower bound theory re-
sults in interaction curves similar to those obtained previously by
Pfrang and Toland (23).

- Interaction curves are correct only for columns of zero
length and do not take into account the effect that change of geometry
may have on equilibrium. Despite this, interaction curves can easily
be used in the elastic-plastic analysis of three dimensional structures.
If desired, a more complete investigation may then be performed on
critical individual columns within the structure, using the results of
the overall analysis. This procedure will ensure that the predicted
load capacity is maintained throughout the range of deformation required

for the entire structure to reach its ultimate load.

2.3 Shear Walls

Two factors distinguish the behavior of shear walls from that
of columns. First, the high ratio of wall to beam stiffness causes the
displacements in a particular story to be highly dependent on the dis-
placements in the stories above and below. This results in a canti-
lever type of deformation for the free shear wall as opposed to a

shear (portal) type of deformation for a column. Secondly, the width



12

of the shear wall is generally of the same order as the story height;
consequently as the wall rotates the adjacent floor beams undergo a
sway displacement. This increases the rotational restraint of the
beam on the wall.

Methods have been proposed for the analysis of shear walls
with one or more rows of openings (24,25,26). In these methods the
beams, formed by the openings, are treated as an equivalent elastic
medium, distributed along the story height. The problem can then be
formulated as a second order differential equation. The assumptions
generally made in the solution require that the walls, link beams and
story height are uniform throughout the structure. Girijavallabhan {(27),
however, has applied a Tinite element technique to the analysis of
shear walls with openings. This provides a better indication of the
stress distribution, particularly in the areas where the beams, join
the wall.

Rosman (28) presents an elastic analysis for symmetric three
dimensional performated shafts subjected to an arbitrary torsional load.
The solution combines the solution for the bending and torsion of thin
walled bars with that for the bending of pierced shear walls (26). The
peripheral stiffening elements of the building are ignored and the beams
linking the walls are replaced by a continuous lamella. The system is
then singly indeterminate with a function representing the angle of

twist along the height of the shaft being used as the unknown.
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2.4 Planar Bents

The behavior of planar bents was investigated extensively
during the sixties. Many factors influence the response of planar
bents. The axial loads in the various members influence the carry
over and stiffness factors; these must be continually revised as the
structure is loaded. When the yield condition is violated at parti-
cular locations in the structure, the overall stiffness is reduced.
Both these factors result in increased displacements and a consequent
increase in the overturning moments due to the vertical loads. The
presence of strain hardening in a real structure, however, permits the
development of a finite yielded zone and limits the magnitude of the
plastic flow. The response of planar bents may be further complicated
by the presence of shear walls. Because of their high stiffness and
finite width the cantilever type of deformation of the walls modifies
and must be compatible with the shear type of deformation of the frame

elements.

2.4.1 Uncoupled Frames

An extensive literature survey on the stability of frames
was presented by Le-Wu Lu (3 ). Particular attention was given to the
methods of determining the buckling loads of partially plastic frames.

Parikh (5) applied the slope-deflection equations to obtain
a second order elastic-plastic analysis procedure for frames subjected
to vertical and lateral loads. Plastic hinges were assumed to form at

discrete points, when the yield condition was violated. Hinges were in-
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serted at the particular locations and the structure analyzed under the
next increment of load. The procedure was continued until the maximum
Toad was reached.

Davies (4) used a displacement analysis to determine the maxi-
mum Toad. The matrix solution was adopted from earlier work presented
by Jennings and Majid (32). An incremental loading procedure was used
to locate successive plastic hinges. The response of the structure
(in a given increment) is linear since the axial loads are assumed to
remain constant in this interval. The load increment required to raise
the moment, at each elastic section, to the corresponding plastic moment
value was computed at each step of the analysis. The minimum value of
the load increment was then added to the previous load in order to
locate the next hinge. Corresponding moment increments were added at
the remaining elastic sections. If hinge unloading is detected, the
analysis treats the particular section as elastic, but carrying a ro-
tational discontinuity. Instability is defined by a change of sign in
the determinant of the stiffness matrix. The determinant is recalcu-
lated as successive hinges are inserted in the structure.

A similar technique for defining collapse was adopted, in a
study on planar frames, by Korn and Galambos (6). In this study it was
concluded that although axial deformations may substantially alter the
structure sways at working loads, at collapse the increases in deflection,
due to axial deformatiors, are less significant. The maximum load capa-

city was not affected greatly by axial deformations. Curvature shorten-
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ing had a negligible effect on the frame behavior.

2.4.2 Coupled Frames and Shear Walls

Khan and Sbarounis (33) used an analytical model as the basis
of a first-order elastic analysis of coupled structures, which con-
siders the interaction between frame and shear wall elements. The
frames and shear walls in a structure are lumped into an equivalent
frame and shear wall. The entire lateral load is applied to the wall
and its deflected position calculated. The loads necessary to force
the frame to assume the same deformation are calculated, and the loads
on the wall are modified until the frame and shear wall are compatibie,
and in equilibrium,

A similar model was used by Guhamajumdar et al (8) for a
second-order elastic-plastic analysis. As well as lumping member
stiffnesses the plastic moment capacities are also lumped. In the
case of columns the plastic moment capacities are reduced in accordance
with the Moment-Thrust interaction relationships (34). The effect of
vertical loads is considered by applying an eguivalent lateral load to
the structure (48). In applying the method, the entire structure is
Tumped into a single equivalent bent, consequently it is assumed that
all bents translate equal amounts and no allowance is made for twisting
of the floors.

Clark and MacGregor (9) used a deformation method to solve
for the second-order elastic-plastic response of planar bents. The

analysis includes allowances for axial shortening as well as the effect
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of the axial loads on the member stiffness. The equilibrium equations

are formulated on the deformed structure and are solved by an iterative

procedure.

2.5 Three Dimensional Structures

In actual structures the floor diaphragms possess relatively
large stiffnesses in their own planes, thus each floor has basically
three degrees of freedom. Translation may occur in the two principal
directions and the structure may rotate about its vertical axis. The
distribution of shear to the stiffening elements is dependent on the
layout of the structure, the point of load application and the inter-
action between the various structural elements. Resistance to trans-
lation and rotation of the structure is provided by the flexural stiff-
nesses of the elements and the torsional stiffness of the columns and
shear walls.

It has been common practice to analyze three dimensional
structures as a series of planar bents. A problem arises as to what
portion of the total lateral load to assign to a particular bent. For
elastic analyses recommendations were made that based this distribution
on equilibrium of moments in the plane of the floor diaphragm (29,30).
For buildings that exhibited reasonable symmetry the load has also
been distributed on the basis of the area tributary to the bent. Al-
ternatively, providing the layout and Toading do not result in twisting
of the floor diaphragm, it is possible to analyze an entire structure

by enforcing equal lateral displacements on all bents.
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2.5.1 \Uncoupled Frames

Weaver and Nelson (35) have developed a first-order elastic
analysis for three-dimensional structures, using a stiffness approach.
As both axial shortening and torsional deformations are considered,
the member stiffness matrices are 6 by 6 for the beams and 12 by 12
for the columns. The member stiffness matrices are transformed into
a floor stiffness matrix and the resulting equilibrium equations are
solved by a forward elimination process, starting at the top of the
structure and working to the base, where it is assumed that column
ends are fixed. This permits all the floor displacements to be ob-
tained by back-substitution (floor by floor) and member forces are ob-
tained by multiplying the member stiffness matrices by the correspond-
ing displacements. For an example structure of 20 stories and a height
to width ratio of 10, the neglect of axial strains in the columns re-
sulted in considerable errors (20 percent for the floor translations).

Before an elastic-plastic analysis procedure can be-developed
interaction relationships must be established to represent the member
response. The introduction of a third parameter, My, in the Moment-
Thrust equations complicates considerably the relationship among the
axial load, P, and the bending moments, Mx and My, about the principal
x and y axes.

Harrison (37) investigated the biaxial bending of rectangular
sections (38) and extended the approach to predict the maximum load

carrying capacity of simple space frames. The predicted ultimate Toads



18

agreed with failure loads obtained in model tests. The model frames
consisted of three rectangular columns, Tinked by beams, in an L shaped
plan. Bruinette (36) has also formulated a first-order elastic-plastic
analysis for space frames, first developing yield surfaces, in terms

of stress resultants.

Jonatowski and Birnstiel (39) presented a second-order
elastic-plastic analysis for space frameworks. The biaxial moment-
axial force interaction relationships developed by Santathadaporn and
Chen (21) were used in the program. The equations are formulated in
matrix displacement form. Allowance is made for the non-linear ef-
fects caused by the axial loads by using successive corrections to
account for the out of balance forces due to the joint displacements (40).
A similar iterative procedure has been used by others (8). The plastic
moment capacities of the members are revised at the start of each load
increment and are held constant for the convergence cycle. Loads are

applied only at the joints.

2.5.2 Coupled Frames and Shear Walls

Gluck (41) has extended the technique used to analyze pierced
shear walls to coupled frame-shear wall structures. The frame is re-
placed by a continuous elastic medium which is assigned lateral stiff-
nesses in the two principal directions and a torsional stiffness. In
calculating the properties of this elastic medium, points of inflection
are assumed at mid story height. The equilibrium of the system is ex-

pressed as three nonhomogeneous differential equations in terms of the
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displacement functions. The displacement functions are assumed to be
continuous throughout the height of the structure. The differential
equations are applicable only in a region of constant member pro-
perties. Where the member properties are not uniform, equilibrium
equations are written for each zone having uniform properties. The
boundary conditions are satisfied at the zone junctions and the dif-
ferential equations are solved for the particular form of loading ap-
plied to the structure. The contributions of both pure and warping
torsion are considered in calculating the torsional stiffness of the
walls. Excellent agreement was obtained between the results of this
method and those obtained from a computer solution developed by Clough,
King and Wilson (10).

Results of analyses presented by Winokur and Gluck (11), and
Wynhoven and Adams (12) have shown that a redistribution of shears occurs
among the various stiffening elements during the application of load.
This redistribution is most significant when the layout and/or loading
is asymmetric and in many cases cannot be ignored. Indeed, as the
structural stiffness changes (as a result of yielding), the asymmetry,
between the center of rigidity of the structure and the point of ap-
plication of the load, may be increased. This aggravates the problem.

A method is not available to predict a first or second-order

elastic-plastic response for three dimensional, coupled frame-shear wall

structures.
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2.6 Structural Failures and Code Requirements

In reports of structural failures of multi-story buildings
reference is often made to the observed modes of collapse (42). Cata-
strophic failures due to torsional displacements have occurred during
earthquakes (43). Exterior members are subjected to larger relative
floor displacements as a result of the torsional motion. The center
of rigidity and the center of mass in these cases did not coincide and
mention has been made of the change in stiffness distribution as col-
lapse progressed.

Building codes and design manuals reflect the severity of
the problem. Canada (44) requires that torsional effects be included
in regions where earthquake loading is considered. In California (45)
the shear assumed to be resisted by external bents must be increased

to account for the torsional effects caused by earthquakes.

2.7 Summary
A brief review has been presented of the work leading up to

the elastic-plastic analysis of three dimensional structures. Tools
are available to develop an analysis for coupled frame-shear wall
structures. Many contemporary multi-story structures would fall into
this classification. Structural failures have indicated that more at-
tention must be paid during design to torsional deformations.

The complete load-displacement relationship for the structure
must be predicted in order to rationally predict the ultimate strength

and to obtain a knowledge of the energy absorption capacity of the
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structure, and the lateral displacements at various ]oad levels,

This dissertation presents such an analysis. Simplifying as-
sumptions are made in order to analyze relatively large structures.
The effects of these assumptions are checked and, where required, al-

lowance can be made for the influence of the assumptions in the de-

sign process.



CHAPTER III
ANALYTICAL MODEL

3.1 Introduction

In an actual structure each stiffening element has 12 de-
grees of freedom (35). Thus, the number of degrees of freedom for a
structure is equal to 6 times the product of the number of stiff-
ening elements and the number of stories. In analyzing the structure
each degree of freedom requires one equilibrium equation. When lateral
load is applied the axial force in each member varies so that the carry
over and stiffness factors are continually changing. In addition, as
the response enters the inelastic range the relationships between end
forces and displacements also change. It is apparent, therefore,
that the number of equations and the need to continually revise the
coefficients as the loading progresses, makes the application of a
"rigorous" analysis to large structures difficult.

However, the analysis of the structure may be simplified
greatly because of the following assumptions:

(a) Floor slabs link the stiffening elements at each floor

level; the slabs behave as deep beams with extremely high

stiffnesses. Consequently the floor diaphragms deform as

rigid bodies with only three degrees of freedom (in their

own planes).

22
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(b) Beams linking columns and walls have negligible torsional
stiffnesses relative to their bending stiffnesses.

(c) Structural arrangements are generally regular so that within
each bent the joints at a particular floor level undergo

similar rotations on the application of load.

By applying the above conditions to a real structure the
number of degrees of freedom may be corisiderably reduced. Further
idealizations may be made. Because of the low slenderness ratio of
most stiffening elements the influence of changes of axial load on the
carry over and stiffness factors is negligible. Furthermore, the
total vertical load on a structure does not vary greatly during the
application of lateral load, so that the increase in axial load in
some of the stiffening elements is accompanied by a corresponding de-
crease in axial load in other elements. And finally, the behavior
of members may be idealized by assuming an elastic-perfectly plastic
response.

The above simplifications can be used to reduce the real
structure to an analytical model, whose behavior closely follows that
of the real structure. However, in the model, the number of degrees
of freedom have been considerably reduced and the member forces may
be expressed as linear functions of the displacements. It wi:l now be
possible to analyze large structures and study the influence of the

important factors on the response.
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3.2 Structure Representation

The structural arrangement is defined with respect to a
system of co-ordinate axes X, Y and Z, shown in FIGURE 3.1. The
displacements, u and v, are positive in the positive X and Y directions,
respectively, and the rotation about the vertical or Z axis, ¢, is
positive in accordance with the Teft hand screw rule. An arbitrary
point, 0, is chosen, which forms the origin of the co-ordinate system.
The structure consists of bents Tying in the XZ or YZ planes.

~In the analysis it is assumed that; |
(a) Each floor uiaphragm is infinitely stiff in its owh plane but
offers no resistance to forces applied perpendicular to the
plane. |
(b) The beams possess heg]igib]e torsional stiffnesses.
(c) The éxia1 shortening of beams, column and wall elements,
is negligible.

(d) The member response is elastic-perfectly plastic.

These assumptions effectively reduce the three dimensional
structure to a series of intersecting planar bents, as shown in FIGURE
3.2. Each bent resists only in-plane loads. The columns and walls,
however, provide torsional resistance as well as resisting the in-p]ane
bending moments and axial loads.

The floor diaphragm has three degrees of freedom, defined by

displacements Ugs V and ¢ at the reference point. The displacements

0
of each bent may be expressed as follows:
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ji * ¢-i (3-])

v (3.2)

(]
<
1
x
.
-
-

ji oi Jj

where u and v are displacements in the X and Y directions, x and y
Tocate bent j, and i refers to the particular floor. EQUATIONS (3.1)

and (3.2) are coupled through the rotation, ¢.

3.3 Lumping Procedure

To further simplify the analysis each bent is replaced by a
simplified equivalent bent. At each floor level it is assumed that,
within each bent, all beam to column joints and all beam to wall joints
have equal rotations. Thus the equivalent bent has two joint rotations
per floor (this is reduced to a single rotation if the bent does not
contain a wall). Guhamajumdar et al (8) used this procedure to analyze
symmetric structures; in fact, in this analysis the entire structure was
Tumped into a single equivalent bent. The original and lumped arrange-
ments of a frame bent and a coupled frame-shear wall bent are shown: in

FIGURES 3.3 and 3.4 respectively.

3.3.1 Beams

For a coupled frame-shear wall bent, the beams linking the
wall to the columns are lumped into a single beam, referred to as a
wall beam. The beams linking one column to another are Tumped into a

single, equivalent beam, referred to as a frame beam. Because the ro-
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tations at all beam to column joints are assumed equal, a point of in-
flection occurs at mid span of the frame beam. In the equivalent bent
shown in FIGURE 3.4 the free end of the frame beam is placed on a pin

ended roller to simulate the point of inflection.

The properties of the Tumped beams are as follows;

L= XN .mzl Lm (3.3)
LB
L= ) Ly (3.4
n
ki =2 mZ] kmi (3.5)
My
Kyg = mZT Kpmi (3.6)

where L, Lb’ ki and kbi are the properties of the lumped equivalent
bent, n and n, are the number of column to column, and column to wall
spans respectively, m refers to properties of members before lumping,

L is the span length, k is the stiffness (I/L) and i refers to a parti-
cular floor. The factor 2 in EQUATIONS (3.3) and (3.5) is derived from
the fact that only half the equivalent frame beam is represented in the
lumped model. Consequently, the span length is halved and the moment
of inertia is doubled as is the plastic moment capacity in EQUATION
(3.7).

The plastic moment capacities of the lumped beams are,
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My=2 - mg] Mo (3.7)
Ny
M = L Moo (3.8)

where Mp and Mpb are the plastic moment capacities for the frame and

wall beams, respectively.

The axial force in the beams is neglected. The lumping of
the plastic moment capacities is only valid if no transverse load is
applied to the beams. The influence of this assumption and the manner
in which the error may be reduced to a minimum, when transverse loads
are present on the beams, has been considered by Nikhed (51).

For the case of lumping an uncoupled bent (FIGURE 3.3),
EQUATIONS (3.4), (3.6) and (3.8) are not applicable.

3.3.2 Columns

The stiffness of the equivalent column, kci’ is obtained

by the following summation,
c
ko= ) k.. (3.9)

where kcmi is the column stiffness of an individual column in the
original frame, i is the particular story and ne is the number of
individual columns in the original frame.

It is assumed that the interaction equations for wide flange

sections subjected to an axial force and biaxial bending moments may
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be represented by the dashed lines in FIGURE 3.5. The plastic moment
capacities for bending about the x and y axes, have been divided by'
the plastic moment capacities in the absence of biaxial bending; the
interaction between the non-dimensionalized plastic moment capacities,
m, and my, respectively, are plotted for various ratios of P/Py. The
curves obtained by Santathadaporn and Chen (21) are shown as solid curves
in FIGURE 3.5. The differences between the two sets of curves are most
noticeable at low axial load ratios. For values of P/Ey above 0.5,

the approximations are fairly close to the rigorous curves, especially
when bending about one axis dominates. Neglecting the influence of bi-
axial bending (dashed line in FIGURE 3.5), the plastic moment capacity

of the column is reduced, in accordance with the following equations,

for strong axis bending, (47):

- [ ] * - L -—P—
Mo =M+ 108+ (1-g) 0.5 << 1.0 (3.10)
y y
_ P
e = My 0.0 < F- < 0.15 (3.11)
y
and
Moo= M - 109 - (1- (22 0.8 << 1.0 (3.12)
pc p P P
y y
_ P. :
M = M 0.0 iF;i 0.4 (3.13)

for weak axis bending. In EQUATIONS (3.10) to (3.13), and in FIGURE 3.5
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P represents the axial force in the column, Py is the yield load and -
Mp is the plastic moment capacity in the absence of axial load. The
above expressions are based or the equilibrium of the fu]]y plasticized
cross section of the column, ahd thus denote the limits of the biaxial
interaction relationship. The reduction in'mdment capacity due to the
stability effect is insignificant provided that the slenderness ratio
is below 80 and the column is in double ‘curvature with an axial load

ratio of 0.60 or less (49). For heavily loaded, slender columns a

more exact analysis which includes the slenderness effects, may be re-
J

quired.
The plastic moment capacity, Mpci’ for the lumped column is
given by,
s (3.1
M .= M. 3.14
pci 2y “pemi
where Mpcmi is the plastic moment capacity, of the individual columns

of the original frame, reduced in accordance with EQUATIONS (3.10) to

(3.13) where applicable.

3.3.3 Shear Walls

The analysis of structures containing shear walls is compli-
cated by the cross-sectional shape. Most shear walls have open cross-
sections but the shape is maintained by a stiff diaphragm at each floor
level. Often the shear center of the wall cross-section does not lie

in the plane of the bent but in the present analysis it is assumed that
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the shear center and the plane of. the bent do coincide.
The total torsional resistance, Mt’ of thin walled open
sections may be expressed as: (47)

M, = Cro - Co (3.15)

where CT = G KT and Cw = EIw, and ¢' and ¢" are the first and
third derivatives of- the rotation, ¢, with respect to the length. G
and E represent the modulus of rigidity and the modulus of elasticity
respectively while KT and Iw denote the torsional and warping constants
of the section respectively.
In the analysis it is assumed that;
(a) The angle of twist per unit length, ¢|, is constant through-
out the story height of a column or wall segment.
(b) The St. Venant torsional resistance, GKT, remains constant
throughout the loading history.

(c) The contribution of the warping resistance, EIw, is neglected.

Since the warping resistance is neglected the torsional re-
sistance can be expressed as a linear function of the displacements.
In designing the lower stories of the walls, however, allowance must
be made for the extra shear and normal stresses that will result due-
to the warping action.

The CT value for the lumped model is equal to the sum of the

CT values for all of the vertical elements in the structure.
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The flexural stiffness of the equivalent wall, kwi’ is ob-
tained by the following summation,
"§ (3.16)
k'= : .
wi =1 kwm1

where kwmi is the stiffness of an individual wall in the original bent,
i is the particular story and Ny is the number of individual walls in
the original bent., The width of the equivalent wall, Lw’ is equal to
the average of the widths of the individual walls.

The plastic moment capacity of individual walls is obtained
by applying ultimate strength theory (50) to each wall cross-section.
Allowance is made for the presence of axial load, where necessary.

The plastic moment capacity, M ., of the equivalent wall is obtained

pw
by the following summation,

n

M (3.17)

W
pwi = mZ] Mpwmi

where M is the ultimate moment capacity, of an individual wall in

pwmi
the original bent.

3.4 Loading
The lateral loads applied to the structure are specified as

concentrated loads acting in the planes of the floor diaphragms. The
load may be applied in either or both co-ordinate directions.

The overturning effect caused by the vertical loads, is con-
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sidered by applying an equivalent shear in each story of a particular

bent. This additional shear, Vji’ is given by,

vj'i =—J'1‘h—_']l (3.18)

is the vertical load in story i of bent j, Aji is the story

where Pji
expressed by EQUATIONS (3.1) and (3.2), and h, re-

sway displacement,

presents the story height.

3.5 Summar,
An analytical model has been described that considerably

reduces the effort involved in the solution of large structural systems.

In the model, internal resisting forces are expressed as linear functions

of the structural displacements. The technique used to analyze the model

will be described in CHAPTER 1V.
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CHAPTER 1V
METHOD OF ANALYSIS

4.1 Introduction

The analysis presented herein is based on the simplified
model described in the previous chapter. Equilibrium is formuldted
on the deformed structure using the standard slope-defiection equations,
modified to account for the presence of plastic hinges as they develop.
These equations are used to express the equilibrium of the moments at
each joint and the equilibrium of the forces in the plane of each
floor diaphragm. The equilibrium equations are arranged in matrix
form and solved for the unknown displacements. The member end forces
are then obtained by back substituting the displacements in the slope
deflection equations.

The vertical Toads remain constant during the analysis. The
lateral loads are incremented until the determinant of the coefficient
matrix becomes negative. At this point the incrementation procedure
is modified to trace the unloading branch of the load-displacement re-
lationship. The analysis is terminated when the displacements become

excessively large.

4.2 Slope Deflection Equations

In applying the slope-deflection equations to the individual

38
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members in the structure, the following assumptions are made:

(a) The influence of the axial forces on the carry-over and
stiffness factors is ignored.

(b) The members are prismatic.

(c) The influence of transverse beam loads on the bending
moments and forces is not considered.

(d) The member response is elastic-perfectly plastic.

(e) The bending moments and rotations at the member ends are

clockwise positive.

The slope-deflection equations for moments at the ends of

member 1, 2, shown in FIGURE 4.1, may be written as:

A
_ 12
Mz = Cpy 81 % Cip 8g = (Cqq + Cpp) =+ Moy, (4.72)

C,y 6, +C 8, - (c21 + c22) -t MF21 (4.1b)

Myy = Co1 87+ Cyp

where M]Z and M21 are the moments at ends 1 and 2 respectively, 6] and
6, are member end rotations, b5 is thé sway displacement between ends 1
and 2, MF]Z and MF21 are the fixed end moments at ends 1 and 2 respectively.
As a result of assumption (a), coefficients Ciqs Cqoo 02] and C,, may be

defined as follows,
= 4E] (4.2a)

Ch=C=T
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= ¢y = &L (4.2b)

where E, I and L are the modulus of elasticity, moment of inertia and

member length respectively.

4.2.1 Analysis in the Elastic Range

Because of assumption (c) the fixed end moment terms, MF12
and Moy in EQUATIONS (4.1a) and (4.1b) are equal to zero, as long
as the bending moments are below the plastic capacities of the members.
For a frame beam, the form of the equations may be further
simplified since the sway displacement is equal to zero and the far
end of the beam is supported on a roller. The moment at the column

end of the frame beam is given by,
M S —— e'l (4-3)

where L is the length from column center line to the roller end.

As the wall possesses a finite width, any rotation of the
beam to wall joint results in a sway displacement between the wall

beam ends. The displacement is given by,

” = (4.4)

where Lyis the wall width and 62 is the rotation of the beam to wall

joint. The negative sign reflects the anti-clockwise sway deflection



of the wall beam which is associated with a positive joint rotation.
The moments at the ends of the wall beam may be expressed in terms

of the end rotations by substituting EQUATION (4.4) into EQUATIONS
(4.1):

_ 4EI 2E1 3EI lw (4.52)

= 2EL A1 3EI Ly (4.5b)

where L is the beam length, measured from the column center line to

the wall face.

The moment equations for the columns and walls include a
term resulting from the floor translations. The end moments, M]2 and

M21‘ may be expressed by,

My, =2ELe + &Ly _EELL (4.6a)
My = Gtoy + e, - SR (4.6b)
where A=uy- oy (4.7a)
or b=y -V (4.7b)

depending on the plane of the particular bent in which the columns,

41
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and/or walls, are located, and h is the story height.

EQUATIONS (4.3) to (4.7) are applicable while the structure
deforms within the elastic range. As loading continues the yield
condition is violated at the ends of various members and the above

equations must be correspondingly modified.

4.2.2 Frame Beam Hinging

When the moment at the end of the frame beam, computed by
EQUATION (4.3), has increased to the plastic moment capacity of the
section, the moment at that point remains constant for additional de-
formation. The frame beam no Tonger supplies restraint for additional

rotations of the beam to column joint. The moment at the_member end

is given by,
M =+ M (4.8)

where Mp is the plastic moment capacity of the section. The sign is

that of the moment at the point of plastic hinge formation.

4.2.3 Wall Beam Hinging

The moment in the wall beam may be equal to the plastic
capacity at either or both ends. The equations for the three cases
are as follows:

(a) Plastic hinge at end 1 only,
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M L
M =1-ZE+(3—EI-+J‘—EQL—V$ 6, (4.9b)

21 L

(b) Plastic hinge at end 2 only,

M L

_ . p o 3l 1,561 Lw
UPR A A T - (4.9c)
My = £ My (4.9d)

(¢) Plastic hinges at both ends,

=+ M (4.9¢)

M12 -'p

(4.9f)

)
+
=

My =2 p

where Mp is the plastic moment capacity of the member. The sign of Mp

is determined by the sign of the moment at the point of plastic hinge

formation.

4.2.4 Column and Wall Hinging

As the effect of the axial load on the member stiffness is
ignored, the possibility of a plastic hinge forming at a point within
the height of a column or wall, is not considered. The three cases for
the presence of plastic hinges are as follows:

(a) Plastic hinge at end 1 only,

My, = i_Mp (4.10a)
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M =+£;P-+3Ele 3L 4 (4.10b)
N TR %R :

(b) Plastic hinge at end 2 only,

M12=iy22*gﬁlel -FH (4.10c)
My = £ M, (4.10d)
(c) Plastic hinges at both ends,
My, = i_Mp (4.10e)
My = £ M) (4.10f)

4,3 Joint Equilibrium Equations

In FIGURE 4.2 a bent is shown which forms part of a three
dimensional structure. The displacements are numbered by starting
at the base of the structure; numbering column joint displacements
before wall joint displacements; moving from the first to the last bent;
then numbering the three translational displacements of the first floor
followed by the joint displacements of that floor. This procedure is
repeated floor by floor. The number of displacements per floor amount
to Nd of which Nd'3 are joint displacements. By labelling the rotation

at a particular column joint in FIGURE 4.2 as i, then, from the convention
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adopted, the rotation of the wall joint is i+1, and corresponding dis-
placements below and above this floor differ by the number of unknown
displacements per fioor for the entire structure, Ny

At each joint in the structure the member end moments must
be in equilibrium throughout the load-displacement response. The
springs at the base of the column and wall are introduced in order

to simulate the rotational restraint offered by the foundation.

4.3.1 Beam to Column Joint

Equilibrium of moments at joint i, is expressed by,

+ M +.M, (4.11)

. + M.
1,1+Nd i

M = Mi,i-Nd i,i+1 i

where Mi is the resultant moment and the individual contribution of

each member end is given by EQUATIONS (4.3) to (4.10), whichever is

applicable. The equation is modified at the base of the column to

allow for the base spring where,

M, =M

T, N the 8y (4.12)

i

and kc represents the rotational stiffness of the spring. At the top

of the structure the term M, is deleted from EQUATION (4.11) as

1,'i+Nd
the column does not continue above the roof line.
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4.3.2 Beam to Wall Joint

Because of the finite wall width, the shear developed in
the wall beam produces a moment contribution about the center of the
wall, which must be included in the moment equilibrium equation. For
joint i+1, in FIGURE 4.2 the resultant moment, Mi+]’ is expressed by,

Mivr,i * M i Lw

Miv1 = Miy 5 * y 7t M

i+1,i+]-Nd

+M (4.13)

i+1.i+]+Nd
where the second term represents the moment contribution due to the
beam shear. In EQUATION (4.13) L, andL,are the wall beam length and
wall width respectively. The equation at the base of the wall is modi-
fied to,

M. . =M + kw * 0, (4.14)

i+l i+1,i+1+Nd i+l
where kw represents the rotational stiffness of the spring. At the

top of the structure the term Mi+1,i+1+Nd’ is deleted.

4.4 Floor Equilibrium Equatijons

The equilibrium of those forces acting on the floor diaphragm
is expressed in terms of the shears developed by the columns and walls
of the story immediately above and below each floor. The resultant

force exerted on the floor diaphragm by the shears in each bent must
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be in equilibrium with the applied lateral loads. It is further re-
quired that the resultant torque of the forces acting on each floor
diaphragm, about any point in the plane of the diaphragm, must be
equal to zero. The overturning moments caused by the vertical loads
(P-A moments) on each bent, are introduced into the equilibrium
equations in the form of additional shears to be resisted in each
story of every bent. The forces acting on a typical vertical member

are shown in FIGURE 4.3,

M., + M A
e tMy Ay
v =P h (4.15b)

where V is the story shear available to resist lateral load. The
vertical load reduces the shear available to resist lateral load by

an amount given by the second term of EQUATION (4.15b).

4.4.1 Lateral Forces

The resisting force component, developed at each floor level,
in each of the two principal directions is obtained by summing the forces
applied to the floor diaphragm by the bents spanning in the correspond-

ing direction. The resultant forces, in and Fyi’ are defined by,

N

X
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Nx+Ny
vi® jZan AR REY (4.16b)

where vd.i and vj,i+l are the shears in stories i and i+1 of bent j,
and are expressed by EQUATION (4.15b), in and Eyi are the total re-
sisting forces at floor i in the X and Y directions respectively, Nx
and Ny are the total number of bents whose planes 1ie in the X and Y
directions respectively.

In order to satisfy equilibrium, the sum of the applied
lateral loads and the resisting floor forces must be equal to zero,
at each floor, throughout the load-displacement response. This is

expressed as:

in + Hxi =0 (4.16¢)
and Fyi + Hyi =0 (4.16d)

where Hxi and Hyi are the applied lateral Toads in the X and Y di-

rections, respectively.

4.4.2 Rotational Equilibrium

For convenient reference the equilibrium of torque about a
vertical axis is taken about the origin of the co-ordinate system.
The torques-applied to the structure are produced by the lateral loads

and may be defined as,
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e Y H . X (4.17a)

Ty =H Hi = Tyi =~ “Hi

i xi
where Ti is the applied torque at floor i, YHi and XHi are the per-
pendicular distances,.between the origin and loads Hxi and Hyi re-
spectively.

Resisting torques are developed firstly by the St. Venant
torsion generated in the columns and walls, and secondly, by the re-
sisting shears in each bent. The St. Venant torsion exerted on a

floor diaphragm may be expressed as,

biq = O
. ( i+] 'l)

Ry = (G Kr)
v T4 #1

- (G Kp) - (ﬁ#l) (4.17b)
1

i
where Rvi is the St. Venant torsion exerted on floor i, (G KT) is the
total uniform torsional stiffness of all the column and wall elements
in story i, ¢; is the rotation, about the vertical axis, of floor i.
The resisting torque developed by the shears in the bents may be ex-

pressed as,

N N, +N
X XY
ik Y M 2N g G V) (79

where Rsi is the resisting torque at floor i, Xy and y; are the bent co-

ordinates.



50

In order to satisfy equilibrium, the sum of the applied torque
and the resisting torques must be equal to zero, at each floor, throughout

the load-displacement response. This is expressed as,

Ti +R.+R.=0 (4.17d)

for floor 1.

4,5 Matrix Formulation and Solution

The equilibrium equations may be conveniently arranged in

matrix form.

(4.18)

il
(=

As

where A is the square coefficient matrix whose size is equal to the
total number of unknown displacements in the structure Nu’ d is a
vector of unknown displacements and b is the load vector. Each row
of EQUATION (4.18) corresponds to a single equilibrium equation. Be-
cause the vertical load remains constant throughout the analysis and
the structure is linearly elastic, the coefficient matrix is symmetric.
The method adopted for solving EQUATION (4.18) is a modified
Gauss Elimination technique. A direct solution technique was selected

so that the computation time could be determined for a particular size

of structure.
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For large matrices the use of an iterative solution, such as
Gauss Seidel, may take considerable time to converge to an acceptable
result (52). The accuracy of a direct method is more often influenced
by error propagation during solution and for large systems of equations
this aspect must be considered before accepting the answers obtained.
The commonly used Choleski's square root method (53) was not attempted
for this problem since the method requires complex algebra when the
determinant of the coefficient matrix becomes negative. This condition
will arise on the unloading branch of the load-displacement curve as

discussed in SECTION 4.6.

4.6 Loading Procedure

Two load incrementing procedures may be used in the analysis.
The first consists of increasing the lateral load by a predetermined
increment. With this procedure, the yield condition may be violated
at several points during a particular load increment. The stiffness
matrix is changed after the increment has been applied and thus the
load-displacement relationship obtained is an upper bound to the
"rigorous" solution. The second procedure increments the load by an
amount sufficient to raise the moment at one particular point to the
corresponding plastic moment value. In this manner the "rigorous”
curve may be obtained in a point by point fashion. However, each cycle
requires two, instead of one, analyses. The procedure may be described
by considering the load-end moment curve in FIGURE 4.4. At a particular

load, H], the structure contains Ny hinges. The load H is desired that
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results in the formation of the next hinge, Nh+]. For each member end
in the structure the moment at load H] is recorded. The load is then
incremented by an amount AH which is predetermined. The structure is re-
analyzed at load H, = Hy + AH, and the member end moments are calcu-
lated. It is then possible to determine the load increment H1 re-
quired to bring the moment to each member end to the plastic moment

capacity. This may be expressed by,

[] M - M
H o= ()« oH = R+ 2H (4.19a)
> - N

The total load at thisstage is then:
H = H] + R+ MH (4.19b)

where H is the Toad required to bring the moment to the plastic moment
capacity, Mp, of the member. The value of R is calculated for all
member ends that remain elastic. The minimum R value is chosen and
this is then substituted in EQUATION (4.19b) to yield the next load
value.

The determinant of the coefficient matrix, A, is calculated
after each increment. The magnitude of the determinant decreases as
the structure enters the inelastic range and plastic hinges form. This
reflects a decrease in the structural stiffness.

Each floor of the structure has two degrees of translational
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freedom and one. degree of rotational freedom.  When the sign of any
of . the three corresponding stiffness contributions becomes negative,
the sign of the determinant changes also. This provides a convenient
criterion for determining the maximqm load carrying capacity of the
structure. When the determinant changes sign the load is decremehted
using a procedure similar to the loading process. Exceptions to the
general criterion have occurred and consideration of this problem is:
discussed in CHAPTER VIII. The analysis is-terminated when the de-
formations are several times the values at the formation of the first
plastic hinge. This 1imit is chosen so that the unloading portion of

the load-displacement curve.is obtained.
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FIGURE 4.3 TYPICAL COLUMN AND WALL ELEMENT
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CHAPTER V
COMPUTER PROGRAM

5.1 Basic Algorithm

The method of analysis described in the previous chapter was
programmed in FORTRAN IV for the IBM 360/67 system. This section will
describe the basic algorithm which consists of the steps followed by
the program in incrementing the load so that the structure follows the
load-displacement curve from point 1 to point 2 shown in FIGURE 5.1.

If at point 1, Nh hinges exist in the structure then point 2 corresponds
to the load and displacement at which the member end moment at one ad-
ditional location has just attained its plastic moment capacity.

The loading procedure is described in SECTION 4.6 and in the
program is controlled by subroutine RECYCL. The Toading procedure
uses load factors instead of absolute loads, a load factor of 1.0 cor-
responding to the applied working load which is read in at the start
of the analysis. The steps in moving from point 1 to point 2 are as
follows:

1. A1l member end moments, corresponding to point 1 on the load-
displacement curve, are recorded.

2. Thé coefficient matrix, A, is generated for the elastic
structure, then modified so that the equilibrium equations,

which are affected by the Nh plastic hinges, conform to the
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slope deflection equations developed in CHAPTER IV for elastic-
plastic members.

The load vector, b, is generated for the elastic structure
and modified for the presence of plastic hinges. The lateral
load factor, however, has been increased by an amount AH
above the load factor at point 1.

The matrix equation, AS = b, is solved, for the displacement
vector &, using a modified Gauss Elimination algorithm which
is described in SECTION 5.3.

The displacements, obtained in step 4, are substituted into
the slope-deflection equations. The equations have been
modified for those members containing one or more of the Nh
hinges.

The ratio R, EQUATION (4.19) is calculated for all member
ends: where M, and M, correspond to the moments obtained in
steps 1 and 5 respectively.

The minimum R value is selected and substituted into EQUATION
(4.19b), to obtain the load, H, corresponding to point 2 on
the load-displacement curve of FIGURE 5.1. To allow for
numeric errors in the program, the load factor H was increased
by an additional 0.001, to ensure formation of the next hinge.
The equation, A§ = b, is then generated again using steps 2
and 3 with a load factor, H +'0.001, obtained in step 7.

Steps 4 and 5 are repeated.
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10. The end moments obtained are then checked against the cor-
responding plastic moments and a hinge inserted where the
plastic moment is attained. It is possible that several
hinges will form simultaneously.

11. The structure is now at point 2 on the Toad-displacement
curve and will contain Nh + M hinges, where M is the
number of hinges found in step 10. To continue along the
load-displacement curve steps 1 to 11 are repeated. Be-
fore advancing to the next cycle the rotational discon-

tinuities across all plastic hinges are calculated.

The above procedure is applicable between points a and b on
the load displacement curve. Some modifications are necessary for the
remainder of the curve. Before starting the analysis, all member pro-
perties, structural dimensions and loads are read into the program by
subroutine READ. The required data and format is listed in APPENDIX A.2.
and the nomencliature is presented in APPENDIX A.3.

The response between points 0 and a on FIGURE 5.1 is entirely
elastic and point a may be located directly. The equilibrium equations
are generated and solved at the working load level (load factor equal to
1.0). Ratios of member end moments to corresponding plastic moments are
calculated for all member ends. The inverse of the maximum value of
these ratios, corresponds to the load factor at which the first hinge
will theoretically form. The load factor is set equal to this value

(plus 0.001 to allow for numeric errors), and the structure is re-analyzed.
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The member end moments are calculated and checked against the corres-
ponding plastic moment capacities. Where the plastic moment is attained
a hinge is inserted in the structure. The structure is now at point a
on the load-displacement curve.

Before proceeding with the basic algorithm described above,
subroutine RECYCL reads in the parameters that are used for control.
The first of these, INCR, indicates whether the monotonically increasing
loading procedure, described in SECTION 4.6, is to be used, or whether
hinges are to be located individually as described above. The other
parameters DISX, DISY, ISTEP, NCYCL respectively control the maximum
displacements in the X and Y directions, whether the load is to be
decremented when the determinant changes sign, and lastly the number
of cycles at which the analysis is to be terminated.

When the structure reaches point b, on the load-displacement
curve, the basic algorithm is slightly modified to allow for the de-
creasing load. The response on the unloading branch of the curve is
stable (as for the loading branch) and plastic hinges may still be lo-
cated individually. However, the following changes are required:

(a) In step 3 the lateral load factor is decreased by an amount

AH in order to move from point 3 to point 4 on the curve.

(b) In step 7 to allow for numeric errors in the program the

load factor H is reduced by an additional amount, 0.001.

Flow diagrams for most subroutines are presented in APPENDIX

A.1. A description of the task performed by each subroutine is given in
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APPENDIX A.2 and the nomenclature and complete program listing are pre-
sented in APPENDICES A.3 and A.4. The flow charts for simpler subroutines
are not presented. These may be understood by examining the program

listing in conjunction with the nomenclature.

5.2 Numbering Convention

Before the equilibrium equations are formulated, the unknown
displacements are numbered. The convention adopted, illustrated in
FIGURE 5.2, results in a minimum band width for the coefficient matrix,
A. The rules for numbering the displacements are as follows:

1. The displacements are numbered story by story starting at

the bottom of the structure.

2. The joint rotations are numbered first in each story, moving
from bent to bent.

3. The bents are numbered consecutively from minimum to maximum
co-ordinates, commencing with the bents in the X direction.

4. Where a bent contains both a column and wall element the
column joint rotation is numbered before the wall joint
rotation.

5. The joints at the base of the structure are numbered first,
then the three displacements at the first floor followed by
the joint rotations of that floor. This procedure is repeated

floor by floor.

The program must distinguish between coupled and uncoupled
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bents in order to establish the numbering convention. This is achieved

by a parameter, IND, which is read in before each set of data for a

particular bent.

5.3 Method of Solution

Because of the assumptions discussed in CHAPTER III the
structure behaves in a linearly elastic manner during each stage of
loading. Consequently, the coefficient matrix is symmetric and one-
half is sufficient for solution. The half band width, above, and in-
cluding the major diagonal, is generated and stored by the program.
The coefficient matrix is reduced to the upper triangular form with a
unit diagonal, using a modified Gauss Elimination procedure, which
proceeds row by row. This algorithm was selected primarily because
of its simplicity, however, it is also valid even after the determinant
becomes negative. A direct method of solution was preferred to re-
duce the time needed to obtain an acceptable degree of accuracy.

As the slope of the load-displacement curve approaches the
horizontal, the coefficient matrix, A, approaches a singular condition
and solution of the system of equations normally becomes difficult, if
not impossible (4,7). In the present method, however, the structural
stiffness is reduced (during loading) by the formation of successive
plastic hinges. Hence, the change in stiffness (for each hinge) is
discrete and the possibility of the determinant of the coefficient
matrix becoming zero is remote. In fact, this has not occurred for

the structures analyzed to date (September 1970). The “"normalized"
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determinant becomes smaller as each successive hinge forms and, at the
maximum load, it changes sign but always displays a finite and relatively
large value.

The significance of the change in the sign of the determinant
was also noted by Davies (4). Once the load was increased beyond the
value at which the determinant changed sign, hinge reversal occurred in
the structure and although continuation of the solution was possible
mathematically the analysis was no(1onger valid structurally. As the
determinant changes sign the lateral stiffness becomes negative and the
structure can only support a reduced lateral load at increasing dis-
placements. If an attempt is made to increase the lateral load (in the
analysis) the structure can only attain an equilibrium position if the
influence of the P-A term is decreased; this requires a decrease in dis-
placements with an increase in lateral load; a condition that is not
possible structurally. The load at which the determinant changes sign
can therefore be considered as the maximum load carrying capacity of a
structure. Beyond this point, increasing displacements require corres-
ponding decreases in the lateral Toads to attain equilibrium positions
along the unloading branch of the load-displacement curve. Exceptions
to this general rule were found during the behavior study; the cause
of this, and the method used to determine the maximum load for these
cases, is discussed in CHAPTER VIII.

Although the determinant has changed sign the coefficient
matrix is not singular and no apparent difficulty arises in the solution

of the equations.
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FIGURE 5.2 NUMBERING CONVENTION FOR LUMPED MODEL
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FIGURE 5.2 NUMBERING CONVENTION FOR LUMPED MODEL



CHAPTER VI

COMPARATIVE ANALYSES

6.1 Introduction

The method of analysis developed in CHAPTERS IV and V is de-
signed to consider large multi-story structures. In its most general
form the method is able to perform a second-order elastic-plastic
analysis of structures which consist of planar bents spanning in two
perpendicular directions. The bents may consist only of beam and
column elements or may contain shear walls as well, The bents are
assumed to be tied together at each floor level by diaphragms of in-
finite rigidity. A reference point, located on each diaphragm, is
assumed to be subjected to deformation components in the two perpendi-
cular directions and the diaphragms are free to twist about the longi-
tudinal axis of the structure.

The methods of analysis available to date (September 1970)
cannot be used to check the present method, including all of the above
aspects, directly. Therefore, it is necessary to specialize the analysis
and compare the influence of each aspect separately.

. The validity of the first-order elastic analysis of the lumped
planar bents, described in CHAPTER III, has been previously verified (12)
and will not be considered. The second-order elastic-plastic response

of planar bents (both uncoupled and coupled), is verified by suppressing
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the three dimensional aspects of the method and analyzing two bents

for which data is available in the literature. The three dimensional
aspect of the method is then verified by suppressing the second-order
and elastic-plastic aspects and performing first-order elastic analyses
of a three dimensional space frame and a three dimensional coupled
frame-shear wall structure. A comparison of the results of a three
dimensional analysis, considering second-order and elastic-plastic
aspects, could not be performed directly because published data is

not available for structures which include rigid floor diaphragms.
However, a one story space frame has been analyzed, indirectly, using

the present method and the results compared with the published data

for this structure.

6.2 Planar Bents
The three story plamar frame, shown in FIGURE 6.1 (Frame B

in reference 54) was tested at Lehigh University. The member properties
used in the analysis were taken from the measured values and are pre-
sented in TABLE 6.1. For the analysis, a modulus of elasticity of
29,600 k.s.i. was adopted, and the moments of inertia, I, were adjusted
so that the EI values in the analysis would correspond with the measured
values. The material was A36 steel and a yield stress of 36 k.s.i. was
used to calculate the reduced plastic moment capacities, Mpc' In the
test, concentrated loads were applied to the beams as shown in FIGURE
6.1. In the analytical model, developed in CHAPTER III, transverse

beam loads are considered as equivalent concentrated loads applied to
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the co]umhs and walls; the fixed end moments exerted on the joints are
ignored. For large multi-bay structures the effect of this assumption
is not expected to cause large discrepancies when considering the gross
behavior of the structure. However, in the particular frame being con-
sidered, the beam moments have a considerable influence on the load-
displacement response. Consequently, the effect of fixed end moments
was temporarily included in the present method, and moments corresponding
to a uniformly distributed load of 0.306 kip per lineal inch were applied
at the beam ends. In FIGURE 6.2 the lateral load, H, is plotted against
the first floor displacement, A. Ignoring the fixed end moments, the
present method overestimates the ultimate load for the frame by 35 per-
cent as shown by the dashed curve. Including the fixed end moments in-
creases the moments in the columns and beams (on the leeward side) re-
sulting in earlier yielding and increased story sways. These, in turn,
increase the P-A moments, and reduce the ultimate carrying capacity of
the frame. v

The quantitative effect of beam load moments on the ultimate
load of planar structures was studied by Nikhed (51). The use of a re-
duction factor was proposed, which, when applied to the plastic moment
capacities of the beams would result in a conservative value for the
ultimate load of the structure. This approach, however, was not used
in allowing for the beam load moments in the present method (temporarily),
as the former makes no allowance for earlier hinging in the columns

which would occur for strong beam weak column structures, such as the
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frame considered.

The present method, with fixed end moments included, closely
predicted the load-displacement response for the frame as shown by the
solid curve in FIGURE 6.2. The experimental curve is shown by the
broken line with dots. The unloading branch obtained from the analysis
(with or without the effects of fixed end moments) followed the same
mechanism line (sway mechanism in the bottom story) and was only slightly
steeper than the unloading branch obtained in the test. The hinge con-
figuration obtained was in reasonable agreement with that predicted in
Reference 54 and shown in FIGURE 6.1.

The twenty-four story structure shown in FIGURE 6.3, was
used by Guhamajumdar et al (8) in a behavioral study of coupled frame-
shear wall bents. The member properties and vertical loads are listed
in TABLES 6.2 and 6.3. The modulus of elasticity was 30,000 k.s.i. for
the frame members and 3,000 k.s.i. for the wall, The shear wall had a
constant width of 8'-0" throughout the height of the structure, although
the moment of inertia was varied so that it was 50 times the column
moment of inertia, in each story. The vertical loads were maintained
constant during the analysis, while the lateral loads were incremented
to collapse. The results obtained by both methods are plotted in
FIGURE 6.4. The lateral load, H, is plotted against the top floor dis-
placement, A. The load-displacement response obtained by Guhamajumdar
et al (8) is shown by the dashed curve (FIGURE 6.4), while the solid

line represents the response obtained by the present method. The curves
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predicted by the two methods are almost identical until a value of

H = 10.6 kips is attained. At this point a hinge forms at the base
of the wall, in both methods. The determinant in the present method
changes sign and the structufe begins to unload, with increasing
displacements. The analysis by Guhamajumdar et al (8) does not cal-
culate the unloading branch and at a slightly higher load value failed

to converge to an equilibrium position.

6.3 Three Dimensional Structures

The twenty story structure shown in FIGURES6.5 and 6.6 was
used by Weaver and Nelson (35) to illustrate the first-order elastic
analysis of space frames. In determining member properties for the
present analysis, the structural steel sections were considered to be
surrounded by a concrete fire proofing providing a minimum of one inch
cover, as shown in FIGURE 6.5. The modulus of elasticity for the steel
was 30,000 k.s.i. and a modular ratio of 9 was used for the concrete
fire proofing. The structure was analyzed under a lateral load of
20 p.s.f. applied to the south face. For the present method it was
necessary to iump each bent into an equivalent bent, as described in
CHAPTER III. The displacements of point A (FIGURE 6.5), in the north
direction, are plotted for each floor in FIGURE 6.7. The two trans-
lations and the rotation for the top floor of the structure (Point A)
are listed in TABLE 6.4. The results obtained by both methods are in
close agreement, with a maximum difference of less than 4 percent.

Gluck (41) used the sixteen story structure, shown in FIGURE
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6.8, to illustrate a continuous method of analysis, developed for
three dimensional coupled frame-shear wall structures. Member pro-
perties for each wall and frame are presented in TABLE 6.5. In both
analyses the moment of inertia for the top beam was half of the value
for the remaining beams. The height of each story is 3 meters, and a
lateral load of 4 tons (per meter of height) is applied at the center
of each floor along the widest face. The modulus of elasticity used
for all members was 205 ton per cmz. Because the internal columns
have a moment of inertia equal to twice that of the external columns,
and the beams are symmetrical, no error is introduced when the members
are lumped within individual frames. In FIGURE 6.9, the lateral de-
flections and torsion angles are plotted for each floor, while in
FIGURE 6.10 the story shears for Frame 1 (FIGURE 6.8) are plotted
for each story. In both, FIGURES 6.9 and 6.10, the present method is
represented by the dashed curve, while the results obtained by Gluck (41)
are represented by the solid curve. The results obtained indicate ex-
cellent agreement between the two analyses.

The elastic-plastic response presented by Jonatowski and
Birnstiel (39), for a one story space frame, shown in FIGURE 6.11,
could not be checked directly by the present method since the column
tops are not constrained to maintain their relative positions. How-
ever, due to the low lateral bending stiffness of the beams, little
transfer of horizontal shear is expected to occur between the parallel

bents. The structure could therefore be considered as two separate
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planar bents, with column 4 being subjected to biaxial bending, while
column 1 makes little contribution in resisting the applied loads.

In calculating the Mpc values for column 4, the biaxial interaction
curves developed by Santathadaporn and Chen (21) were used. The axial
load on each column was assumed to remain constant at 107 kips. The
modulus of e]asticity'and yield stress used were 29,000 k.s.i. and

36 k.s.i., respectively. The displacements of points 3 and 4, obtained
by both methods, are plotted against the lateral load, H, in FIGURE

6.12. The present method predicts a collapse load which is 3 percent

higher than that obtained by Jonatowski and Birnstiel (39).

6.4 Summary
The validity of the method of analysis was verified in this

Chapter. Several structures, for which data is available in the literature,
were analyzed by specializing the present method, for each particular
structure, so that one aspect could be checked at a time. Close agree-

ment was obtained in all cases. The limitations on the validity of

the program, are imposed by the simplifying assumptions made in developing

the analytical model. These limitations will be discussed in CHAPTER IX.



Measured Measureq
Section EI kip 1.nz MP kip in
X 104
10WF25 390 1100
5M18.9 73 400
TABLE 6.1

PROPERTIES OF BEAM AND COLUMN SECTIONS
THREE STORY PLANAR FRAME

7%



Flgor Moment of Inertia (1'n4) Plastic Moment Capacity (kip in)
Story Beam AB Beam BC  Column Beam AB  Beam BC CoTumn
M) ) )
1 888 1170 14814 5404 4940 27300
2 888 1170 14814 5404 4940 27300
3 888 1170 13278 5404 4940 25400
4 888 1170 13278 5404 4940 25400
5 888 984 11452 5404 4560 21900
6 888 984 11452 5404 4560 21900
7 888 984 9716 5404 4560 18400
8 888 984 9716 5404 4560 18400
9 888 890 8306 5404 4020 15750
10 888 890 8306 5404 4020 15750
11 888 890 7098 5404 4020 13500
12 888 890 7098 5404 4020 13500
13 888 890 5850 5404 4020 11500
14 888 890 5850 5404 4020 11500
15 888 890 4850 5404 4020 10800
16 888 890 4850 5404 4020 10800
17 888 890 4130 5404 4020 10300
18 888 890 4130 5404 4020 10300
19 888 890 2970 5404 4020 6960
20 888 890 2970 5404 4020 6960
21 888 890 1620 5404 4020 5580
22 888 890 1620 5404 4020 5580
23 888 890 1100 5404 4020 5260
24 630 584 1100 3900 2960 5260

TABLE 6.2
BEAM AND COLUMN PROPERTIES TWENTY-FOUR STORY STRUCTURE



Wall Properties Loads (kips)

Floor 1 Mp . Vertical Horizontal

or
Story (1n4x106) (kip inx105) (constant) (incremented)

1 7.20 3.600 12680 1.0
2 7.20 3.600 12330 1.0
3 6.47 3.235 11600 1.0
4 6.47 3.235 11000 1.0
5 5.74 2.870 10540 1.0
6 5.74 2.870 10000 1.0
7 5.01 2.505 9440 1.0
8 5.01 2.505 8930 1.0
9 4,28 2.140 8400 1.0
10 4.28 2.140 7860 1.0
1 3.55 1.775 Y7320 1.0
12 3.55 1.775 6790 1.0
13 2.946 1.623 6260 1.0
14 2.946 1.623 5720 1.0
15 2.227 1.473 ~ 5180 1.0
16 2.227 1.473 4650 1.0
17 2.083 1.173 4120 1.0
18 2.083 1.173 3590 1.0
19 1.485 0.873 3050 1.0
20 1.485 0.873 2520 1.0
21 0.807 0.573 1980 1.0
22 0.807 0.573 1450 1.0
23 0.548 0.274 1050 1.0
24 0.548 0.274 370 0.5
TABLE 6.3

WALL PROPERTIES AND LOADS TWENTY-FOUR STORY STRUCTURE



Method Displacements of Point A
of .
Analysis North West Rofgt1on
(in) (in) (107° rad.)
Weaver
and Nelson 11.88 1.22 0.57
Present 11.45 1.23 0.59

TABLE 6.4
DISPLACEMENTS OF TOP FLOOR POINT A
TWENTY STORY STRUCTURE
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Moment of Moment of Inertia (dm4)
Wall Inertia Frame Lateral Center Beam
4 Column Column
(m”)
1 5.7166 1 26.579 53.158 18.985
2 2.0834 2 26.579 53.158 18.985
3 2.0834 3 26.579 53.158 18.985
4 5.7166 4 26.579 53.158 18.985
5 1.2348 5 26.579 53.158 18.985
TABLE 6.5

MEMBER PROPERTIES SIXTEEN STORY STRUCTURE
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CHAPTER VII

BEHAVIOR STUDY

7.1 Introduction

This chapter describes the structures and the program of in-
vestigation used to study the load-displacement response of three di-
mensional coupled frame-shear wall structures. Two basic structures
were chosen as examples; the program of investigation considered:

(a) The effect of increasing asymmetry of lateral load on
structures with symmetric layouts.
(b) The effect of increasing asymmetry of. structural layout

on structures subjected to symmetrically applied lateral

Toads.

(¢) The influence of increasing the St. Venant torsional stiff-
ness of structures subjected to loads causing torsion.

(d) The effect of increasing the vertical Toad on structures
subjected to symmetrically applied lateral loads.

(e) The effect of changing the distribution of the vertical
loads, so that the vertical load taken by each bent is no

Tonger proportional to its tributary area.

(f) The influence of increasing the torsional stiffness of the
structure by moving the stiffer shear wall bents toward the

exterior faces of the structure.
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A ten story structure and a twenty-four story structure
were used to illustrate the above effects. Because of the arrange-
ment of the ten story structure, the influence of variable (f) will
not be considered for this case. The results of the study will be

presented and discussed in CHAPTER VIII.

7.2 Basic Structures

The structures to be analyzed are divided into two series.
The first series is denoted by the letter M, and refers to analyses
performed on the ten story structure, while the letter L is used for
the second series, which studies the behavior of the twenty-four story
structure. Each analysis, within a series, is distinguished numerically.
The basic structures are described first and variations will be described

in the section discussing the influence of a particular variable.

7.2.1 Series M

This ten story structure has been used previously to illu-
strate the influence of torsional action in the elastic range (12).
The plan and elevation of the structure are shown in FIGURE 7.1. The
modulus of elasticity was 29,000 k.s.i. for the steel members and
3,160 k.s.i. for the concrete shear wall. A yield stress of 40 k.s.i.
was- adopted for the steel members. The vertical load on the structure
was 100 p.s.f. acting on the planareas of each level as shown in FIGURE
7.1 and the working lateral load on the long side was 16 p.s.f. resulting
in the total lateral loads shown in elevation in FIGURE 7.1. The St.

2

Venant torsional stiffness (GKT) was 10.3 x 106 kip in® for the bottom
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6 2

five stories and 6.3 x 10" kip in~ for the five remaining stories.
The structure was reduced to an analytical model as described in
CHAPTER III. The properties of the equivalent lumped bents, and
the total vertical loads, are presented in TABLES 7.1 to 7.3. The
total vertical load was assumed to be taken equally by bents 1 to
4. In computing the reduced plastic moment capacities for the shear
wall bent, bent 2, one-half of the vertical load was assumed to be
resisted by the two columns and half by the wall. The position of
bent 2, denoted by X in FIGURE 7.1, will be varied to modify the
structure in the various stages of the program of analysis. For
simplicity, therefore, the columns of bent 2 were not included in

assessing the strengths and stiffnesses of bents A and B.

7.2.2 Series L

This twenty-four story structure, shown in FIGURES 7.2 and
7.3, uses the braced frame presented as frame C, in Reference 22.
However, the diagonal bracing used in Reference 22 was replaced by
two channel shaped reinforced concrete shear walls, placed in bents
3 and 4, as shown in FIGURE 7.2. The thickness of these walls was 12
inches throughout the height of the structure. The vertical loads
on the structure (at the working load level) are 30 p.s.f. and 95
p.s.f. live and dead load, respectively, applied to the roof, while
100 p.s.f. and 120 p.s.f. live and dead load, respectively, are ap-
plied to all other floors. The external cladding is considered to

have a weight of 85 p.s.f. The vertical loads on each column, are
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the factored working loads (1.30 for combined loading), presented in
TABLE 6.13 of Reference 22, and reproduced in TABLE 7.8. The column
live loads were reduced using the formula presented;in ASA-A58.1 (55).
The bents are spaced at 24'-0" which is the same spacing adopted in
Reference 22. The floor beam sizes, spanning betwegn adjacent bents,
are shown in FIGURE 7.2, and are constant throughoui the structure.
The vertical loads are maintained constant during the analysis, while
the lateral load (20 p.s.f. at working load) is incremented. The width
of the structure, for calculating loads (lateral and vertical) was
taken as 132 feet. This width is based on an overhang of 6 feet, on
each side of the structure, and was selected so that equal vertical
loads would act on each of bents 1 to 6. |

For the analysis, each bent (in both perpendicular directions)
is lumped into an equivalent bent, as described in CHAPTER III. The
member properties for all Tumped bents are presentea in TABLES 7.4

6 .4

in’ about

to 7.7. The moment of inertia of each wall is 11.3 x 10

6

the axis of symmetry, and 1.51 x 10 in4 about a perpendicular centroidal

axis, which was calculated to be 22 inches from the outside face of the
wall. The St. Venant torsional stiffness (GKT) is 230 x 10 kip in2
for each wall. The torsional stiffness of the columns is small, in
relation to that of the walls, and was neglected. Consequently, the

total St. Venant torsional stiffness for the structure is 460 x 106

kip inz. The plastic moment capacity of the wall was taken as 0.34 x 106

6

kip in and 0.26 x 10" kip in, about the strong and weak axes, respectively;
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for the bottom six stories. For the eighteen remaining stories, the
plastic moment capacities were set at one half of these values. The
modulus of elasticity was 29,000 k.s.i. for the structural steel
members and 3,160 k.s.i. for the reinforced concrete shear walls.

The yield stress of the steel was 36 k.s.i., the specified minimum
for A36 material. In Tumping bents B and C, the effective wall width
was set at 44 inches, twice the distance between the centroidal axis

and the outside face of the wall.

7.3 Program of Investigation

The influence of each of the variables listed in SECTION 7.1
is studied by analyzing several structures. The structures used are
the two basic structures described above but either the structural
arrangement or the loading condition is altered where necessary to
illustrate the influence of a particular parameter. The modified
structures, which are used to study the load-displacement relation-

ship, are described below.

7.3.1 Asymmetry of Lateral Load

To investigate the influence of this parameter the arrange-
ment of the structure is symmetrical, while the point of application
of the lateral load is varied. The eccentricity of lateral Toad is
expressed as the perpendicular distance between the point of applica-
tion of the lateral load and the center of the structure and will be

denoted as e. For series M, the stiff shear wall bent is Tocated at
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the center of the structure (X = 0). The structures considered are:
(a) Series M: M1, M2, M3, M4 and M5; the eccentricity of la-
teral load, e, is 0, 36, 72, 144 and 360 inches, respectively, where
360 inches corresponds to one-half of the width of the structure.
(b) Series L: L1, L2, L3 and L4; the eccentricity of Tateral
load, e, is 0, 72, 144 and 288 inches, respectively, where 288 inches
corresponds to 20 percent of the width of the structure. The
ultimate load carrying capacity for a structure with a St. Venant
torsional stiffness, GKT, approaching the value for a closed section
was examined by re-analyzing structure L2. The GKT value, however,
was set equal to.10 times the value for the basic structure. This

revised structure was referenced as L8.

7.3.2 Asymmetry of Structural Layout

For this set of analyses, the lateral load is applied at the
center of the face of the structure (e = 0). The structural arrange-
ment is varied, however, as follows:

(a) Series M: The stiff shear wall bent (bent 2) is moved from
the center of the structure (X = 0) towards the outside, by 90 inches,
for each successive analysis. The structures are referenced as: MI,
M6, M7, M8 and M9; where the location of the shear wall bent (defined
by X in FIGURE 7.1) is 0, 90, 180, 270 and 360 inches, respectively.

(b) Series L: The coupled frame-shear wall bents (bents 3 and
4 in FIGURE 7.2) are moved, from the center to the outside of the

structure, by simply exchanging locations with the uncoupled bents
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(5 and 6). The structures are: L1, L5 and L6; where the locations

of the shear wall bents are 3 and 4, 4 and 5, and 5 and 6, respectively.

7.3.3 St. Venant Torsional Stiffness

For this phase of the jnvestigation, the structural arrange-
ments are asymmetric and the lateral load is applied at the center of
the face of each structure (e = 0). The St. Venant torsional stiffness,
GKp s ijs varied as follows:

(a) Series M: The shear wall bent (bent 2) is located 360 inches
from the center and the structures considered are; M9, M0, Mil, Mi2
and M13 with GK; values of 1, 10, 20, 50 and 100 times the GKT values
of the basic structure.

(b) Series L: The shear wall bents (bents 3 and 4, FIGURE 7.2)
are placed at locations 4 and 5. The structures are referenced as;

L7, L5, L9 and L10 with GK; values of 0, 1, 10 and 100 times the GKT

values of the basic structure.

7.3.4 Magnitude of Vertical Loads

The layout of the structures and the lateral loading are
both symmetric, only the magnitude of the vertical load is varied. For
comparison purposes the reduced plastic moment capacities of the columns
are not changed, but remain constant at the values calculated for the
basic structures. The structures considered are:
(a) Series M: M1, M4, MI5 and M16 with vertical loads equal

to 1.0, 0.0, 1.7 and 2.8 times the working load.
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(b) Series L: L1,L11 and L12 with vertical loads equal to

1.3, 0.0 and 1.43 times the working load.

7.3.5 Asymmetric Vertical Load Distribution

In this group the total vertical load (and the reduced plastic
moment capacities of the columns) is the same as for the basic struc-
tures, but the load applied to half of the structure (in plan) is in-
creased, while the load on the other half is decreased, The structural
layout is symmetrical, while the lateral load is applied both at, and
away from, the center line towards the more heavily loaded half. The
structures considered are:

(a) Series M: M1, M3, M7 and M18; where Mi (e = 0) and M3
(e = 72) have been previously described, and structures M17 and M18
have a vertical load of 90 p.s.f.on one half and 110 p.s.f. on the
other half of the structure. This corresponds to a decrease and an
increase, respectively, which represents 10 percent of the total
vertical load. For structure M17 the lateral load is applied without
eccentricity and for structure M18 the lateral load is applied with
an eccentricity of 72 inches, from the center of the structure.

(b) Series L: L1, L2, L13 and L14; where L1 (e = 0) and L2
(e = 72) have been previously described, and L13 and L14 are sub-
jected to a vertical load of 315 p.s.f. on one half and a corresponding
reduction to 257 p.s.f. on the other. The changes in vertical load
represent 10 percent of the vertical load on the basic structure (at
a load factor of 1.30). Structure L13 has a symmetrically applied

lateral load, while the lateral Toad on structure L14 is applied
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with an eccentricity of 72 inches from the center of the structure.

7.3.6 Torsional Stiffness and Strength

This phase of the investigation studied the effect of in-
creasing both the torsional stiffness and strength of a structure by
moving the stiffer, and stronger, shear wall bents towards the ex-
terior faces. Analyses were performed on Series L structures having
the lateral loads applied with an eccentricity of 72 inches from the
center of the structure. The following bent arrangements were in-
vestigated:

Series L: L2, L15, L16, L17 and L18; where L2 has been previously
described. L15 and L16 have the shear wall bents placed at locations
2 and 5, and, 1 and 6, respectively. Structures L17 and L18 have the
same layout as L2 and L16, respectively, but the plastic moment capa-
cities of the shear walls have been increased by 20 percent above the

corresponding values for the basic structure.

7.4 Summary
The structures to be used in a behavioral study have been de-

scribed in this Chapter. The behavioral study is performed on two basic
series of structures, to determine the effect on the load-displacement
response of several structural parameters. The results of the study

are presented and discussed in CHAPTER VIII.



Floo S (1) colms ('
Story A8 T1,3,4 1,2~ A,B  1-4
1 3208 1602 678 708 1446
2 3208 1602 678 708 1446
3 3206 1602 678 708 1846
4 3204 1602 678 708 1446
5 3204 1602 678 708 1446
6 3204 1602 678 150 702
7 3204 1602 678 150 702
g 3204 1602 678 150 702
9 3204 1602 678 150 702
10 3208 1602 678 150 702
TABLE 7.1

MOMENTS OF INERTIA STRUCTURE M
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Beams (Mp)(kip in) Columns (Mpc)(kip in)
Floor Bent Bent

or
Story A8 1,3,4 2 A,B 1,3,4 2

16160 8080 4360 7000 9435 10320
16160 8080 4360 7000 9710 10320
16160 8080 4360 7000 9984 10320

—

16160 8080 4360 7000 10258 10320
16160 8080 4360 7000 10320 10320
16160 8080 4360 2230 4825 5192
16160 8080 4360 2230 5085 5192
16160 8080 4360 2230 5192 5192
16160 8080 4360 2230 5192 5192

O W 00 ~N OO o As~Ww N

16160 8080 4360 2230 5192 5192

—

TABLE 7.2
PLASTIC MOMENT CAPACITIES STRUCTURE M



Vertical

Wall Properties

. Moment of Plastic

Story Loag:h£§1ps) LE;:S:] {nzrtig M?ment

A,B 1-4 (kips) (in"x10%) (kip in)
1 900; 450 11.52 0.442 25800
2 8]0. 405 11.52 0.442 25800
3 720 360 11.52 0.442 25800
4 630 315 11.52 0.442 25800
5 540 270 11.52 0.442 25800
6 450 225 11.52 0.442 25800
7 360 180  11.52 0.442 25800
8 270 135 11.52 0.442 25800
9 180 90 11.52 0.442 25800
10 90 45 5.76 0.442 25800

TABLE 7.3

LOADS AND WALL PROPERTIES STRUCTURE M
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Bent Number

Floor 1,2,5,6 3.4 AD B,C BC
Frame(in4) Na]](in4) Frame(in4) Wa11(1n4) Frame(1n4)
] 2698 1409 2900 1166 2332
2 2698 1409 2900 1166 2332
3 2698 1409 2900 1166 2332
4 2698 1409 2900 1166 2332
5 2432 1249 2900 1166 2332
6 2432 1249 2900 1166 2332
7 2432 1249 2900 1166 2332
8 2432 1249 2900 1166 2332
9 2300 1170 2900 1166 2332
10 2300 1170 2900 1166 2332
11 2300 1170 2900 1166 2332
12 2300 1170 2900 1166 2332
13 2300 1170 2900 1166 2332
14 2300 1170 2900 1166 2332
15 2300 1170 2900 1166 2332
16 2300 1170 2900 1166 2332
17 2300 1170 2900 1166 2332
18 2300 1170 2900 1166 2332
19 2300 1170 2900 1166 2332
20 2300 1170 2900 1166 2332
21 2300 1170 2900 1166 2332
22 2300 1170 2900 1166 2332
23 2300 1170 2900 1166 2332
24 1559 791 2900 1166 2332

TABLE 7.4
MOMENTS OF INERTIA BEAMS STRUCTURE L



Bent Number

Story 3,4 1,2,5,6 A B C D
(in%)  (inh) anhy el Ginhy (inh
1 10413 20826 9786 6524 8680 13020
2 10413 20826 9786 6524 8680 13020
3 9366 18732 8796 5864 7944 11916
4 9366 18732 8796 5864 7944 11916
5 8438 16363 7986 5324 6524 10842
6 8438 16363 7986 5324 6524 10842
7 6854 13708 6750 4500 5864 8796
8 6854 13708 6750 4500 5864 8796
9 5768 11536 5880 3920 4908 7362
10 5768 11536 5880 3920 4908 7362
11 4948 9896 5028 3352 4292 6438
12 4948 9896 5028 3352 4292 6438
13 4189 8136 4212 2640 3532 5580
14 4189 8136 4212 2640 3532 5580
15 3378 6756 3168 2112 2980 4470
16 3378 6756 3168 2112 2980 4470
17 2859 5718 2730 1820 2272 3408
18 2859 5718 2730 1820 2272 3408
19 2117 4234 1242 828 1820 2730
20 2117 4234 1242 828 1820 2730
21 1139 2278 642 428 864 1296
22 1139 2278 642 428 864 1296
23 786 1572 265 176 428 642
24 786 1572 265 176 428 642

TABLE 7.5

MOMENTS OF INERTIA COLUMNS STRUCTURE L
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Bent Number

Floor 4 5 5.6 3,4 A,D B,C B,C
Frame Wall Frame Wall Frame
(kip in) (kip in) (kip in) (kip in) (kip 1in)

1 15254 6885 16940 5900 11800
2 15254 6885 16940 5900 11800
3 16254 6885 16940 5900 11800
4 15254 6885 16940 5900 11800
5 14244 6380 16940 5900 11800
6 14244 6380 16940 5900 11800
7 14244 6380 16940 5900 11800
8 14244 6380 16940 5900 11800
9 13464 5990 16940 5900 11800
10 13464 5990 16940 5900 11800
1 13464 5990 16940 5900 11800
12 13464 5990 16940 5900 11800
13 13464 5990 16940 5900 11800
14 13464 5990 16940 5900 11800
15 13464 5990 16940 5900 11800
16 13464 5990 16940 5900 11800
17 13464 5990 16940 5900 11800
18 13464 5990 16940 5900 11800
19 13464 15990 16940 5900 11800
20 13464 5990 16940 5900 11800
21 13464 5990 16940 5900 11800
22 13464 5990 16940 5900 11800
23 13464 5990 16940 5900 11800
24 9786 4382 16940 5900 11800
TABLE 7.6

PLASTIC MOMENT CAPACITIES BEAMS (Mp) STRUCTURE L
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Bent Number

Story 34 1,2,5,6 A B c D
(kip in)  (kip in) (kip in) (kip in) (kip in) (kip in)
] 20440 40810 42540 28160 38680 58260
2 22150 44190 45420 30040 41120 61800
3 19010 37850 38460 25600 36400 54960
4 20630 41180 41340 27520 38800 58320
5 17900 33220 35880 23800 27400 51660
6 19480 36370 38700 25600 29680 55020
7 13380 26610 28620 18920 25640 38880
8 14970 29790 31500 20800 27960 42240
9 10910 21710 25080 16440 20280 30840
10 12510 24850 27960 18400 22600 34260
1 9760 19350 21540 14120 18600 28260
12 11270 22400 24180 15960 20800 31500
13 8640 15880 19120 9840 14960- 25740
14 10120 18870 20760 12040 17200 28920
15 7140 14150 15060 9800 13520 20580
16 8660 17150 17520 11440 15640 23820
17 7220 14210 15000 9600 12160 18540
18 8710 17270 17160 11320 14000 21240
19 5740 11300 7770 5000 10880 16620
20 7210 14230 9540 6216 12520 19020
21 4125 8105 5688 3660 6720 10266
22 5340 10570 6810 4520 7728 11592
23 3968 7802 3558 2308 4620 6930
24 5182 10319 3558 2372 4620 6930
TABLE 7.7

PLASTIC MOMENT CAPACITIES COLUMNS (Mpc) STRUCTURE L
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Bent Number

Story 1-6 A B c D
(kips)  (kips)  (kips)  (kips)  (kips)

1 9936 13382 13419 16438 16376
2 9517 12816 12854 156746 15683
3 9098 12250 12290 15054 14991
4 8679 11683 11725 14362 14299
5 8259 11117 11161 13670 13606
e 7840 10550 10596 12979 12914
7 7421 9984 10031 12287 12221
8 7002 9418 9467 11595 11529
9 6583 8851 8902 10903 10837
10 6163 8285 8338 10211 10144
1 5744 7718 7773 .- 9520 9452
12 5325 7152 7208 8828 8759
13 4906 6586 6644 8136 8067
14 4486 6019 6079 7444 7375
15 4067 5453 5515 6752 6682
16 3648 4886 4950 6061 5990
17 3229 4320 4385 5369 5297
18 2810 3754 3821 4677 4605
19 2390 3187 3256 3985 3913
20 1971 2621 2692 3293 3220
21 1552 2054 2127 2602 2528
22 1140 1536 . 1562 1909 1835
23 752 982 1058 1265 1205
24 294 356 433 527 450
TABLE 7.8

VERTICAL LOADS STRUCTURE L
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CHAPTER VIII

PRESENTATION AND DISCUSSION OF RESULTS

8.1 Introduction

For the behavioral study, described in the previous chapter,

a total of 36 structures were analyzed. The results obtained are
presented primarily as load-displacement curves; the displacements are
plotted for the center of the top floor of each structure. As a sum-
mary, the load factors and structure sways (displacement of the center
of the top floor divided by the total structure height) at the forma-
tion of the first hinge and at the ultimate load carrying capacity for
all of the structures are presented in TABLES 8.1 and 8.2, respéctively.
In order to illustrate the three dimensional aspect of the behavior,
the load-floor rotation responses of the top floors are also presented
where pertinent.

The data obtained for the basic structures (M1 and L1) are
presented and discussed first., The influence of each of the structural
parameters considered in the behavioral study is presented and discussed
in the same order as in the previous chapter. The effects of the as-
sumptions made in the analysis are discussed and methods are described

that may be used to assess the influence of the major assumptions.
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8.2 Basic Structures

For all structures discussed in this chapter, a load factor,
A, of 1.0 corresponds to the working lateral load, while the displace-
ments, v, are plotted for the center of the top floor, and the floor
rotations, ¢, when plotted, also refer to the top floor of the structure.

The load-displacement response for structure M1 (FIGURE 7.1)
is shown in FIGURE 8.1, while the hinge configuration is shown by the
dots in FIGURE 8.3. The numbers adjacent to the dots represent the
order of hinge formation. Because the loading and layout of this
structure are symmetrical, no in-plane displacements occur in bents A
and B and the floor rotations are zero. Bent 2 is a coupied frame-
shear wall bent, which is much stiffer than the three uncoupled bents.
As a result the first hinge formed at the base of the wall at a load
factor of 1.34. The moments in the beams then increased rapidly with
increased lateral load and considerable hinging occurred. The hinging
was- accompanied by a gradual decrease in the stiffness of the bent with
a resulting increase in the proportion of the load carried by the re-
maining bents. Finally a hinge formed ( A =3.04) at the base of the
column in each of the uncoupled bents (bent 1, 3 and 4). Hinging then
occurred in the frame beams of the uncoupled bents ( A = 3.67): at
this stage the rotational restraint on the column vanishes (at the
joint where a hinge forms), which causes a rapid decrease in lateral
stiffness. The structure reached its ultimate carrying capacity at a

load factor of 3.79. At this point the top floor sway was 0.011.
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The unloading branch of the load-displacement curve was
flat, which may be attributed to the relatively low vertical loads
on the structure. This, in turn, produces low P-A moments (relative
to the primary moments) even at the large story sways. The rotational
discontinuities across the plastic hinges, calculated at various load
factors are presented in TABLE 8.3, for some of the earlier hinges
formed. Hinge reversals did not occur. At the ultimate load the total
rotational discontinuities ranged from 3 to 5 times the member end
rotations at first yield. The entire load displacement response for
this structure was developed in just under 5 minutes computing time.

The load-displacement curve obtained for structure L1
(FIGURES 7.2 and 7.3) is plotted in FIGURE 8.4. The hinge configu-
ration is shown in FIGURES 8.6 and 8.7. Because of the symmetrical
loadiﬁg and sfruciura] layout no displacements occur in bents A to D
(FIGURE 7.2), ahd the floor rotations are zero. The first hinges form
(X = 1.05) at the base of the shear walls in bents 3 and 4. As bents
3 and 4 are still stiffer than the uncoupled bents (bents 1,2,5 and 6),
a small increase in lateral Toad results in a series of hinges forming
in the beams. At a load factor of 1.37 the stiffness of bents 3 and 4
has been reduced (24 hinges in each bent) so that hinges form at floors
8 to 11 in the beams of the uncoupled bents. Beyond this point the
lTateral stiffness of the structure rapidly decreases, and at a load
factor of 1.39 the normalized determinant changes sign. The structure

sways are 0.0042 and 0.0059 at load factors of 1.0 and 1.30, respectively.
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The rotational discontinuities for the earlier hinges to form are
presented in TABLE 8.4. No reversal is shown, and the hinge rotations
at maximum load factor are 50 percent of the member end rotations at

the formation of the hinge. This strycture was analyzed in.15 minutes

computing time.

8.3 Program of Investigation

The results obtained from the analyses of the structures de-
scribed in SECTION 7.3 will now be presented and discussed. The order
of presentation is the same as that adopted in describing the modi fica-
tions to‘the basic structures, in CHAPTER VII, and the same subsection

headings are used. A summary of the results obtained for all structures

is presented in TABLES 8.1 and 8.2.

8.3.1 Asymmetry of Lateral Load

(a) Series M: M1, M2, M3, M4 and M5; the load-displacement curves,
shown in FIGURE 8.1 are identical in the elastic range. The structural
arrangements for all structures are symmetrical, and the twist caused
by the asymmetry of the lateral loads results in rotation of the floor
diaphragms about the center of the structure. The increase in the
twisting motion is shown by the load-floor rotation curves plotted in
FIGURE 8.2. The torsional stiffness (in the elastic range) is the
same for each of the structures, however, the applied torque is di-
rectly proportional to the asymmetry of the Toad. Consequently, the

floor rotations increase with the degree of asymmetry.
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As the load is increased (for structures other than M1) the
exterior bent, bent 1, undergoes larger displacements due to the floor
rotations. This bent yields first, and as a result the center of stiff-
ness moves from the center of the structure. This effectively increases
the torque and results in increased floor rotations to maintain equili-
brium. The hinge configurations, are shown in FIGURES 8.3 and 8.8 for
structures M1 and M3, respectively. Hinging in bent 1 of structure
Ml is initiated at A = 3.58, while for structure M3 the first hinge
forms (in bent 1), at A = 2.85.

The load carrying capacity is reduced as the eccentricity
of loading increases by the increased P-A moments which result: from
the increased floor displacements. The increased floor displacements
result from the movement of the center of rotation from the center of
the structure as hinging progresses. The reduction in the load carrying
capacity is clearly illustrated by FIGURES 8.1 and 8.2 and the corres-
ponding load factors.are listed in TABLE 8.1.

A negative normalized determinant was observed at point 1
(A = 2.07) on the load-displacement curve for structure M5 (FIGURE 8.1).
When the load was decremented, the curve 1-3 was obtained, suggesting
that the lateral stiffness was still positive at this stage. The
structure was then re-analyzed by increasing the load (even though the
normalized determinant was negative), until the sign of the normalized
determinant became positive. The curve obtained is shown as 1-2 in

FIGURES 8.1 and 8.2; where 2 is the point where the normalized deter-
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minant changes sign from negative to positive. For all practical pur-
poses this structure reaéﬁes its ultimate load carrying capacity at
point 1. However, this example illustrates the fact that a negative
normalized determinant does not necessarily signify attainment of the
ultimate Toad carrying capacity. Due to the coupling of the lateral
and torsional stiffnesses in the coefficient matrix, an increase in
load may be(obtained even with a negative determinant.

As a summary for this group of structures; the reductions
in ultimate load carrying capacities are; 3, 8, 19 and 38 percent
for structdres L2, L3, L4 and L5, respectively. The asymmetry of
load corresponds to 5, 10, 20 and 50 percent of the width of the
structure, respectively.

(b) Series L: L1, L2, L3 and L4; the 1oéd-disp1acement curves
for these structures (FIGURES 7.2 and 7.3), plotted in FIGURE 8.4,
are again identica] in the elastic range. The load-floor rotation
curves, shown in FIGURE 8.5, exhibit behavior similar to that of the
Series M structures. The notable difference is the greater reduction
in ultimate load carrying capacity as the asymmetry of load is in-
creased. This is caused by the higher axial loads that exist in the
columns of Series L (P/Py approximately 0.6 compared with 0.2 for
Series M), and the corresponding increase in the severity of the P-A
effect. The unloading branches of the load-displacement curves are

also steeper.

The hinge configurations presented in FIGURES 8.6 and 8.7
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for structure L1, and in FIGURES 8.9 and 8.10 for structure L4, clearly
show the earlier hinging that occurs in the exterior bent (bent 6),
as a result of the increased displacements caused by the floor rota-
tions. Fewer hinges are formed in structure L4 than L] (33 and 90,
respectively) at the maximum load carrying capacity. With increasing
asymmetry of load a smaller reduction in torsional stiffness (and the
accompanying shift in the center of rotation) will reduce the lateral
stiffness to zero, due to the increased severity of the P-A moments.
This trend, discussed above specifically for structure L4, is also
apparent, but less severe, for structures L2 and L3. The reductions
in ultimate load carrying capacity, with increasing asymmetry of
Toad, are; 17, 33 and 53 percent for structures L2, L3 and L4, re-
spectively. The asymmetry of load corresponds to 5, 10 and 20 per-
cent of the width of the structure, respectively. For structure L8
(equivalent to structure L2, but with the GKT value increased by a
factor of 10), the reduction in load carrying capacity was oniy 9

percent.

8.3.2 Asymmetry of Structural Layout

When the center of stiffness of a structure does not coincide
with the point of application of lateral load an applied torque results.
The behavior of these asymmetric structures will be similar to that of
the symmetric structures subjected to asymmetrically applied lateral
loads, however, the two effects cannot be compared directly because of

the differences in the interaction between shear wall and frame elements
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in the structure.
(a) Series M: M1, M6, M7, M8 and M9; the load-displacement

curves for these structures (FIGURE 7.1) are presented in FIGURE 8.11.
The response of the structures differ in the elastic range, as the
center of rotation is offset relative to the center of the structure.
After yielding occurs the severity of the P-A moments are increased
by the increasing asymmetry of layout (due to the additional shift in
the center of rotation), resulting in a reduction in ultimate load
carrying capacity. The reductions in ultimate Toad carrying capacity
are; 3, 12, 23 and 34 percent for structures M6, M7, M8 and M9, re-
spectively. These structures correspond to eccentricities of bent 2
(from the center of the structure) of 90, 180, 270 and 360 inches,
respectively. Because bent 2 carries 25 percent of the total vertical
load; when its location is changed, the distribution of the vertical
load is no longer symmetrical. The effect of this is to slightly
modify the torsional load due to the P-A moments.

(b) Series L: L1, L5 and L6; the Toad-displacement curves for
these structures (FIGURES 7.2 and 7.3) are presented in FIGURE 8.12.
The change in the effective stiffnesses in the elastic and inelastic
range is again apparent. The reductions in ultimate load carrying
capacity are; 51 and 66 percent for structure L5 and L6 respectively.
In these structures, the shear wall bent is located 1 and 2 bays, re-
spectively, from the center of the structure.

For structures subjected to torsion, the reduction in ulti-
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mate load carrying capacity is similar under increasing torsional Tload,
regardless of whether the torsional load is due to asymmetry of load
or structural arrangement. The important factor is the eccentricity
between the center of stiffness (and strength) and the point of appli-

cation of the lateral load.

8.3.3 St. Venant Torsional Stiffness

An increase in the St. Venant torsional stiffness, GKT,
(which is assumed to remain constant as the structure is deformed in
the inelastic range) reduces the rotation of the floor diaphragms, for
a particular value of the applied torque. This increased stiffness
delays the yielding process and the accompanying shift in the center
of rotation.

(a) Series M: M9, M0, MI1, M12 and Mi3; the load-displacement
curves for these structures (X = 360, FIGURE 7.1) are presented in
FIGURE 8.13. In the elastic range the stiffness of the structure in-
creases only slightly with a relatively large increase in GKT. This
is because in the elastic range the greatest contribution to the tor-
sional stiffness comes from the in-plane stiffnesses of the bents.
However, once the structure enters the inelastic range, the higher
(and constant) GKT values contribute significantly to the torsional
stiffness of the structure, since the proportion of the torque re-
sisted by the in-plane strength of the bents is reduced. With in-
creasing GKT values the reductions in ultimate load carrying capacity

(relative to M1, X = 0) are 34, 29, 22, 7 and 3 percent for structures
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M9, M10, MI1, M12 and MI3, respectively.

(b) Series L: L7, L5, L9 and L10, the load-displacement curves
for these structures (shear wall bents at location 4 and 5, FIGURE
7.2), are presented in FIGURE 8.14. The lateral stiffness of the
structures is increased only slightly in the elastic range, however,
the significance of the increased torsional stiffness is clearly
shown by the load-floor rotation curves plotted in FIGURE 8.15. The
reductions in ultimate load carrying capacity (relative to structure
L1) are 53, 51, 40 and 3 percent for structures L7, L5, L9 and L10,
respectively. The corresponding GKT values are 0, 1, 10 and 100 times
the value for the basic structure. The small contribution of the usual
St. Venant torsional stiffness to the overall torsional stiffness of
the ctructure can be seen by comparing curves L7 (GKT = 0) and

L5 (GKT =1).

8.3.4 Magnitude of Vertical Load

The vertical loads on a structure reduce the plastic moment
capacities of the columns resulting in earlier hinging. In addition,
the P-A moments reduce the story shear available for resisting the
applied lateral loads. In this section only the second (or stability)
effect is considered; the plastic moment capacities are not changed
from those of the basic structures.

(a) Series M: M1, M14, M15 and M16, the load-displacement curves
for these structures, (FIGURE 7.1) are presented in FIGURE 8.16. 1In

the absence of vertical load (M14) the maximum load approaches that
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‘corresponding to a mechanism (A = 4;]8). As the vertical load is in-
creased the ultimate load carrying capacity is reduced (10 perceri
for structure M1, and 14 and 27 percent for MI5 and Mi6, respectively).
The unloading branches of the curves become steeper as the vertical
load is -increased.

(b). Sérigé L: L1, L11 and L12; the load-displacement curves
for these.structures (FIGURES 7.2 and 7.3), shown in FIGURE 8.17,
show the same trends as for the Series M structures. With zero verti-
cal load (L11) a mechanism load factor of 2.28 is approached. As the
verticéliload fs increased, the sway displacements in the elastic range
are increased (by 37 percent for L1) while the ultimate load carrying
capacity is reduced (by 39 percent for L1 and 42 percent for L12).

Structure L12 is subjected to a vertical load 10 percent above that

of the basic structure (L1).

8.3.5 Asymmetric Vertical Load Distribution

(a) Series M: M1, M3, M7 and M18; the load-displacement curves
for these structures (FIGURE 7.1), are plotted in FIGURE 8.18. Be-
cause of ;he 1ow vertical loads the change in behavior between structures
M1 and M17 is insignificant, while for structures M3 and M18 (lateral
load applied with 72 inch eccentricity) the reduction in ultimate
load carrying capacity, due to the eccentric application of the verti-

cal load, is less than 2 percent.



122

(b) Series L: L1, L2, L13 and L14; the load-displacement and
load-floor rotation curves for these structures (FIGURES 7.2 and 7.3),
are presented in FIGURES 8.19 and 8.20, respectively. The increased
torsional load, that results from the eccentrically applied vertical
load is clearly shown by the load-floor rotation curves in FIGURE 8.20.
The reduction in ultimate load carrying capacity is 5 percent for
structure L13 with respect to that of L1. For structures L2 and -L14,
the lateral load is applied with an eccentricity of 72 inches. The
reduction due to the increased effective torque is similar to a re-
duction due to increased vertical load. In both cases the effective
P-A moments are increased. The load carrying capacity of structure

L14 was 7 percent below that of L2.

8.3.6 Torsional Stiffness and Strength

This phase of the study investigates the increase in load
carrying capacity that results when the stiff shear wall bents are
moved towards the exterior faces of the structure.

Series L: L2, L15, L16, L17 and L18; the load-displacement
curves for these structures (FIGURES 7.2 and 7.3) are presented in
FIGURE 8.21, while the load-floor rotation curves, are plotted in
FIGURE 8.22. The increased torsional stiffness, in the elastic
range is clearly shown in FIGURE 8.22. As the structures are de-
formed inelastically, the shear walls form hinges at their bases, at
essentially the same load factors (0.90 to 0.95). This reduces the

torsional stiffness to virtually the same value for each structure.
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Consequently, the,ihcrease in ultimate load carrying capacity is.
minimal., The load-displacement curves in FIGURE 8.21 show the effect
of increasing_tﬁe torsional stiffness of the structure and the strength
of thé.sheaf wa11s,‘.The shear wall plastic moment capacities are in-
éreased,by 20»percent‘for_Structures Li? and L18. The increase in ulti-
mate load carrying capacity is 5 percent for structure L17 (compared

with L2), and 10 percent for structure L18'(compared with L16).

8.4 WQrping Torsion

In the analytical model described in CHAPTER III the contri-
bution of the warbing resfstance was- ignored. The effect of warping,
however, can be checked. The analysis calculates the floor rotations,
¢, at each loading stage; these floor rotations may be differentiated,

e

using a numerical procedure, to obtain the third derivative, ¢

EQUATION (3.15), may be expressed as,

, EIw [ |

M= Ge - (1 g -<9:.—)) (8.1a)
or
M= G v ¢ (8.1b)

]
where KT may be considered as a modified torsional constant incor-
porating both the uniform and non-uniform torsion components. The

[ B | ]
term (¢ /¢ ) may be calculated using a forward difference table or

an interpolating polynomial. Having calculated KT' for each story,
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the structure is re-analyzed, using the revised values and the process
repeated as necessary.

Using this procedure for structure L2, the torsional con-
stant was increased for the bottom 10 stories, while for all the re-
maining stories (except story 17) the torsional constant was decreased,
due to the negative contribution of the warping resistance. The
structure was re-analyzed using the revised values of GKTI (instead
of GKT). The change in the load-displacement response was insigni-
ficant, while the floor rotations for the revised structure were
approximately 3 percent less at each floor, as shown in FIGURE 8.23.
However, because the contribution of GK; is small, relative to the
overall torsional stiffness of the structure, and since the EI; term
is relatively small for this particular channel shaped shear wall,
the effect of warping torsion for this particular structure (Series

L) is negligible.

8.5 Bi-axial Bending of .Columns

In the analysis procedure, all columns within a bent are
Tumped and the resulting model is assumed to simulate the in-plane
resistance of the bent. A particular column, therefore, is lumped
into two (perpendicular) bents and the interaction between the two is
ignored. Yet the columns (particularly the exterior columns) are sub-
jected to bi-axial bending moments and these effects may reduce the
strength of the member so that it cannot attain its computed capacity.

In order to assess the influence of bi-axial bending any
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particuiar column may be isolated from.the structure together with
the beams framing into the ends of the column in both perpendicular
directions. The beams are assumed to have points of inflection at
midspaﬁ,’ The cb]umh is then subjected to the transverse displace-
ments (in both perpendicular directions) - imposed upon it during the
: ‘ané]ysi51qfvthefsfruhfu?é;‘ The twiﬁtingfof;thé'c01umn“about its
vertica1¥axi§ isfiganed. The jointArotétions are unknown, these
are determined from the equilibrium of mdments at the joints. The
equations are modified if hinges have formed in either the column

or beams; In this manner it is possible to obtain the bending
moménts;'about'bpfh perpendicular directions, for each story of the
column. If fhe hinges formed during the checking procedure differ
from thosé obtained in the overall analysis, the bending moments may
be checked againSt the rigorous interactioh relationship_(FIGURE 3.5).
If the discrepanéy is significant, the Mpc values of the Tumped bent
may be revised and the structure re-analyzed.

The external column (common to bents 4 and B, FIGURE 7.1)
of structure M9 was analyzed using a program based on the above
method. At the ultimate load carrying capacity (A = 2.50), the hinging
in the model was almost identical to that obtained in the overall
analysis. For the iéo]ated column, however, a hinge existed at the
base of the column (at A = 2.50), while for the lumped column in the
main analysis, an extra hinge had formed at the top of the second story

column, as well as at the base (of bent B). This indicates, that for
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this particular column, the lumping procedure is conservatiVe.

8.6 Summary
The results obtained from the behavioral study, described

in CHAPTER VII, have been presented in this chapter. The influence of
several pertinent variables on the load-displacement response was
illustrated and discussed. Methods were proposed to study the severity
of two of the major simplifying assumptions made in developing the

analytical model.

It was found that, mathematically an increase in lateral load
was possible, for one particular structure, even though the determinant
of the coefficient matrix had changed sign. However, for a practical
structure this theoretical increase in load carrying capacity is mean-
ingless, as the structure must be able to resist load applied simul-

taneously in both principal directions.



Top F]o?; Sway Load Factor Number of
Structure Firs:]OUItimate First Ultimate ﬁ%:?ﬁ:tgt

Hinge  Load Hinge Load Load
M 0.18 1.1 1.34 3.79 35
M2 0.18 1.53 1.34 3.68 37
M3 0.18 1.84 1.34 3.48 39
M4 0.18  1.53 1.34 3.06 39
M5 0.17 0.92* 1.26 2.34* 49*
M6 0.21 1.67 1.40 3.66 40
M7 0.31 1.81 1.66 3.32 33
M8 0.44 1.81 1.92 2.92 31
M9 0.45 1.74 1.70 2.50 18 .
M10 0.45 1.87 1.70 2.71 22
M 0.46 2.02 1.80 2.95 30
M12 0.48 2.29 1.90 3.54 38
M3 0.50 1.87 2.12 3.66 38
M14 0.18 2.62 1.37 4,18 44
M15 0.18 0.97 1.30 3.60 35
M6 0.18 0.94 1.28 3.04 28
M7 0.18 1.84 1.34 3.79 37
M8 0.18 1.69 1.33 3.43 37

*Point 2
TABLE 8.1

SWAY, LOAD AND HINGE PARAMETERS

STRUCTURE-SERIES M
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Top Floo; Sway Load Factor Number of
Structure X10” A Hinges at
' First Ultimate First Ultimate Ultimate

Hinge Load Hinge Load Load
L1 0.44 0.77 1.05 1.39 90
L2 0.38 0.54 0.90 1.15 39
L3 0.33 0.43. 0.78 0.93. 33
L4 0.21 0.33 0.50 0.66 33
L5 0.30 0.38 0.60 0.68 25
L6 0.26 0.35 0.40 0.47 13
L7 0.29 0.36 0.58 0.66 14
L8 0.44 0.64 1.05 1.26 81
L9 0.33 0.45 0.70 0.84 23
L10 0.39 0.77 0.88 1.35 18
L1 0.34 1.74 1.32 2.28 224
L12 0.37 0.75 1.02 1.33 144
L13 0.43 0.65 1.03 1.32 77
L14 0.37 0.49 0.88 1.07 40
L15 0.46 0.64 1.08 1.22 61
L16 0.40 0.46 0.95 1.24 61
L17 0.44 0.55 1.06 1.21 57
L18 0.44 0.67 1.06 1.36 68

TABLE 8.2

SWAY, LOAD AND HINGE PARAMETERS
STRUCTURE-SERIES L



Hinges in Structure M1
(10'3 radians)

Load.
Factor
Hinge at Hinge in Wall Hinge in Wall
Base of Wall Beam, Floor 1 Beam, Floor 4

Member end

Hinge
1.34 0.0
2,21 2.05 - 0.22 - 1.05
2.46 3.20 - 2.22 - 2.73
2.84 4.75 - 4.58 - 5.04
3.03 5.50 - 5,72 - 6.14
3.55 7.34 - 8.23 - 9.70
3.57 7.42 - 8.34 - 9.90
3.67 8.20 - 9.40 - 10.59
3.69 8.42 - 9.70 - 10.79
3.74 9.79 - 11.57 - 11.75
3.76 10.90 - 13.09 - 12.42.
3.78 14.02 - 17.33 - 14.87
3.77 18.80 - 23.86 - 17.52
3.59 35.83 - 47.08 - 34.1
3.58 36.12 - 47.47 - 34.38
3.41 49,38 - 65.56 - 48.18
2.41 108.48 -146.15 -130.74

TABLE 8.3

ROTATIONAL DISCONTINUITIES FOR HINGES IN STRUCTURE Mi
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Hingeiin Structure L1
(10'3 radians)

Load
Factor Hinge at Hinge in Wall  Hinge in Wall
Base of Wall Beam, Floor 9 Beam, Floor 11

Member End

Hinge
1.06 0.0
1.12 0.34
1.14 0.46
1.17 0.63
1.22 0.92 -0.05
1.23 0.97 -0.16 -0.02. -
1.24 1.02 -0.30 -0.14
1.26 1.14 -0.54 -0.43
1.28 1.28 -0.81 -0.71
1.29 1.35 -0.94 -0.83
1.31 1.48 -1.19 -1.08
1.32 1.53 -1.41 -1.27
1.34. 1.66 -1.79 -1.62
1.37 1.84 -2.36 -2.15
1.38 1.96 -2.75 -2.51
1.39 2.10 -3.27 -3.00-
1.40 2.46 -4.61 -4.24
1.38 2.59 -5.17 -4.77
1.36 2.89 -6.31 -5.84
1.35 3.00 -6.76 -6.27

TABLE 8.4

ROTATIONAL DISCONTINUITIES FOR HINGES IN STRUCTURE L1
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FIGURE 8.23 FLOOR ROTATIONS AT ULTIMATE LOAD STRUCTURE L2



CHAPTER IX

LIMITATIONS, CONCLUSIONS AND RECOMMENDATIONS

9.1 Limitations of Analysis

The method of analysis presented in this dissertation is
able to predict the complete load-displacement response for large
multi-story structures. The validity of the analysis is directly
dependent on the validity of the assumptions made to simplify the method.
Many of the assumptions are those common to the analysis of planar
bents (6,9), and will not be discussed here. Effects such as; axial
shortening, changes in axial load, changes in stiffness and carry
over factors, and strain hardening of the material fall into this
category and must eventually be considered. However, only the as-
sumptions which directly affect the torsional aspects of the behavior

will be discussed in this Chapter.

9.1.1 Floor Slab Stiffness

In the analysis, all column and wall elements within a bent
are assumed to undergo equal Tateral displacements. This implies
that the floor diaphragms have infinite extensional stiffness. Since
the axial forces in the beams and slabs are small the relative dis-
placements between the column and wall elements, within a bent, will

be negligible and thus the original assumption is essentially satis-

154
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fied. For a symmetric structure the assumption of infinite floor
diaphragm stiffness results in equal lateral displacements for all
parallel bents. For an asymmetric structure, however, this same
assumption implies that displacements of all bents will conform to a
rigid body motion of the floor slab. The floor slabs form deep beams,
spanning between the bents, with an effective depth generally well

in excess of the bent spacing, consequently shear deformations dominate
the action. If the shear stiffness of the floor diaphragm is not
infinite the above motion is modified and the amount of the lateral
load resisted by a particular bent will tend to be influenced more

by its tributary area, and less interaction will occur between adja-
cent bents. Benjamin (31) has shown that a floor slab to bent stiff-
ness ratio of approximately 2 is sufficient so that the floor slab
may be considered as infinitely stiff. However, it follows that the
floor slab must be designed to transmit the shear forces and bending

moments that are generated between adjacent bents.

9.1.2 Lumping Procedure

The lumping of members within a bent, as described in CHAPTER
IIT, has been studied over the complete range of behavior of the structure
(51). A method has been proposed to allow for the changed hinging
pattern in the floor beams due to the presence of transverse beam loads.
Using this method, the adjusted lumped model conservatively predicts
the ultimate load carrying capacity. The accuracy of the lumping pro-

cedure (in the elastic range) as applied to a space frame, was illustrated
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by the results obtained for a twehty story example structure analyzed
in SECTION 6.3. In Tumping bents of a three dimensional structure,
which is to be loaded into the inelastic range, problems will arise
due to the different bi-axial bending moment ratios that will occur

in the columns within each bent. This effect is discussed in SECTION

9.1.4.

9.1.3 Shear Deformations

Shear deformations will reduce the stiffness of the structure
and through the P-A moments will also reduce the ultimate lToad carrying
capacity. The magnitude of the reduction will depend on the depth to
height ratios of the stiffening elements. The shear deformations.may
be estimated for particular members, after the structure has been
analyzed, considering only bending deformations. If the shear defor-
mations are excessive (greater than 10 percent), the structure may be re-
analyzed by reducing the moments of inertia of the stiffening elements
to obtain the correct total deformations. For structure L1 (CHAPTER VIII)
the shear deformations exceeded 5 percent of the bending deformations

only in the bottom story of the shear walls.

9.1.4 Biaxial Bending Moment-Axial Force Relationship

The biaxial bending-axial load interaction relationship, as-
sumed in the analytical model and shown i FIGURE 3.5, may overestimate
the flexural capacity of the section for lower ratios of P/Py (less

than 0.6). The critical columns will be those at the corners of the
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structure, which are subjected to significant biaxial bending moments.
As the torsional load increases (due to asymmetry of load and, or,
structural layout), the external columns will hinge earlier than pre-
dicted. This is caused by the floor rotations, which increase the
displacements perpendicular to the main direction of Toading.

The influence of this action may be checked by analyzing
the isolated column, using the method described in SECTION 8.5, and com-
paring the bending moment ratios at various stages of the load-displace-
ment response. If the ratios fall within the range where significant
differences exist between the rigorous and assumed interaction relation-
ships, the Mpc values of the lumped bents are adjusted and the structure
re-analyzed. For the critical columns of the structures analyzed,

bending about one axis normally predominated. Thus the rectangular

interaction relationships produced a close approximation of the flexural

capacity.

9.2 Analysis of Computing Errors

In addition to the above simplifying assumptions, the validity
of the load-displacement response may be influenced by numerical errors:
generated in the solution of the large system of simultaneous.equations.

As a check on the accuracy of the computer program, the re-
sisting floor forces and the resultant torque about the vertical axis,
are calculated and printed at the end of each loading stage. Using
single precision arithmetic (6 significant figures), the resisting

floor forces for structure M1 differed from the applied loads in the
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fourth significant figure (less than 1 percent). This is well within
the acceptable tolerance. For structures in Series L, however, for
single precision arithmetic the discrepancies between the applied loads
and resisting floor forces varied from 4 to 14 percent.

An error study was performed on the equation, A§ = b; the
off-diagonal elements, of matrix A, may be several orders of magnitude
larger than the main diagonal elements. This difference in relative
magnitudes may lead to a loss of accuracy in solving the system. A
convenient measure of i1l conditioning is provided by the conditioning

number, K, which is defined by the ratio of the extreme eigenvalues of

matrix A (56).

K = |%E%% (9.1)
The logarithm, to the base ten, of this conditioning number, is an
index of the maximum number of significant digits lost in solving the
system of equations (56). The conditioning number K, was calculated
for series M and L structures, by making minor changes to subroutine
SOLVER 1in the computer program (CHAPTER V). The largest eigenvalues
of A and A”] were calculated using the power method (52); the inverse
of the maximum eigenvalue of A'] corresponds to the minimum eigenvalue
of A. The values obtained were:

{a) Series M

10

K=33°T0"_57.10 (9.2a)
1.3 -+ 10
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(b) Series L

k=228 ‘OI] = 1.8+ 102 (9.2b)
3.2+10
_ The logarithms of the conditioning numbers indicate that the
maximum loss of significant figures is 9 and 12, respectively. As a
consequence, double precision arithmetic is required for both Series.
To obtain a closer bound on the expected error for structures of Series
L, the following procedure was adopted: The system AS = b was solved

for the displacement vector, Gc(ca1cu1ated): the residual, r was then

calculated, where,

r= ASC -b (9.32)

this may be written as,

5, - alb=a e (9.3b)

where A‘1b represents the true value of the displacement. vector. An
estimate of the error in the displacement vector, is obtained by taking

the norm of both sides (52).

18, - A7bl1 < 1A« el (9.4)
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where, for a symmetric matrix A,
Y -1
max [A; (A7) = [[A77]] (9.5)
i

[lr]| was 4 10" and from EQUATION (9.2b) flA']ll is 3.2. There-

fore, the error is given by,
|16, - Ab[] <3.2 -4+ 107 <1.28- 1076 (9.6)

EQUATION (9.6) implies that using double precision arithmetic, the re-
sults should be correct to the sixth decimal place. This was in fact
s0, with the resisting floor forces differing from the applied loads
only in the fifth decimal place (seventh significant figure). Series
L structures were re-analyzed using double precision arithmetic. The
significant difference between the structures of Series M and L is the
increased wall moments of inertia for Series L (11.3 x 106 in4). To

analyze unusually large structures, an error study should be performed

as described above.

9.3 Conclusions

A method of analysis has been presented to predict the com-
plete load-displacement response for large three dimensional coupled
frame-shear wall structures. The validity of the analysis was verified
by analyzing structures for which data is available in the literature.

The analysis was then used to study the influence of several structural
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parameters on the behavior of multi-story structures.

The structures considered in the study were of two basic
types, having different structural arrangements and loading conditions.
In spite of the relatively small number of structures analyzed, several
trends of a general nature were evident.

The ultimate load carrying capacity of a structure is reduced
when it is subjected to a torsional load. The torsional load results
in- twisting of the structure (about its vertical axis) as well as trans-
lation in the direction of the applied lateral load. Because of the
twisting motion, the lateral displacements of the exterior bents (on
one side of the structure) will be increased. This results in earlier
hinging in the members of these bents, which reduces the torsional
(and Tateral) stiffness and causes a shift in the center of rotation
of éhe structure. The combined effect of this action (the shift in
center of rotation and correspondingly increased torsional load) pro-
duces a net increase in the sway displacements and a corresponding in-
crease.in the P-A moments. This increase in the P-A moments causes
a decrease in the ultimate load carrying capacity of the structure.

For an asymmetry of lateral load corresponding to 5 percent
of the width of the structure, the reduction in ultimate load carrying
capacity (due to the torsional load), was 3 and 17 percent for the
structures of Series M and L, respectively. The St. Venant torsional
constants for the shear walls of the Series L structures were increased

to the value appropriate for a closed section. Under this condition,
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the reduction in ultimate load carrying capacity was 9 percent.

Many code provisions require a symmetrical structure to be
designed for the torque produced by the equivalent static earthquake
(1ateral) load acting with an eccentricity equal to 5 percent of the
building width (44,45). When the two basic structures were subjected
to this minimum torsional load, the reductions in ultimate load carrying
capacity obtained, (approximately 10 percent), suggest that these structures
may be analyzed under symmetrically applied lateral load without the
minimum eccentricity requirement.

The response of a structure under the action of a torsiohal
load was similar regardless of whether the torsional load was caused
by asymmetry of lateral or vertical load or asymmetry of structural
layout. The important factors are; the distribution of stiffness and
strength within the structure in relation to the point of application
of the lateral loads, and the severity of the P-A effect.

For the particular structures considered (rectangular in
plan), hinging in the bents perpendicular to the direction of the ap-
plied lateral load, occurred only after large torsional displacements.
Consequently, the error in assuming a rectangular bi-axial bending
moment interaction relationship, will only be significant for similar
structures, whose layout is such that significant sway displacements

occur perpendicular to the direction of the applied lateral load.
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9.4 Recommendations

As the behavioral study was Timited to two basic structural
types, it is recommended that further studies be performed on dif-
ferent types, particularly on structures with plan layouts that differ
~ from those of Series M and L. Additional studies should be directed at
structures in which the distribution of strength does not correspond to
the distribution of stiffness among the bents. Consideration should
also be given to the influence of base rotations on the ultimate load
carrying capacity.

In the light of the behavioral study, some general design
recommendations may be made:

(a) Large degrees of asymmetry should be avoided in slender
structures, as significant reductions in ultimate load carrying capa-
city will result.

(b) If the designer is not prepared to assess the ultimate load
carrying capacity of the structure then a distribution of strength
should be provided which corresponds to the distribution of stiffness.

(c) For load asymmetry not exceeding 5 percent (the minimum
torsional load requirement of several design codes (44,45)), structures
similar to those considered, which have symmetrical Tayouts and normal
torsional stiffnesses, may show a reduction in ultimate load carrying
capacity of approximately 10 percent.

(d) From the results of this study the hinge rotation capacity
required for a structure to reach its ultimate load carrying capacity

is within practical limits.
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A.1 Flow Diagrams for Computer Program

N=NX+NY

(CALL READ )

NN=N+NW
ND=NN+3
NU=NS*ND+NN
NB=2ND-1

READS IN MEMBER
PROPERTIES ,STRUCTURE
GEOMETRY, AND LOADS

{ CALL wRITEi)

{

EVALUATE STIFFNESS
COEFFICIENTS (EI/L)

(CALL SETUP )
( CALL CALFOR)
(CALL CHECK1)

(CALL WRITE2)
(CALL RECYCL’

STOP

PRINTS DATA READ IN
BY READ]

FIGURE A.1 FLOW DIAGRAM MAIN PROGRAM



EVALUATE COEFFICIENTS
FOR MOMENT EQUATION

AT BASE OF STIFFENING
ELEMENT J

[

J=J+]

_NO ?

J>N

YES
J=1

EVALUATE COEFFICIENTS
FOR MOMENT EQUATION

AT FLOOR K=1,NS FOR
COLUMN ELEMENT J

NO

[ YES
EVALUATE COEFFICIENTS '
FOR MOMENT EQUATION
AT FLOOR K=1,INS FOR
WALL ELEMENT J

Y
J=J+1

NO ? YES
e U

FIGURE A.2 FLOW DIAGRAM SUBROUTINE SETUP
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K=1

I= K*ND-2
I1=I+1
12=142

B(I)=FX(K)*PALL
B(I1)=FY(K)*PALL
B(I2)=(FX(K)*Y(K)-FY(K)*X(K))*PALL

‘ K=K+]

?
<—N0 K>NS

YES
(CALL SETUP 1)

Y

(CALL MODIFY )

4

(cALL SOLVER )

RETURN

FIGURE A.2 FLOW DIAGRAM SUBROUTINE SETUP (continued)



YES

-,

NS=1

K=1

I=-2+K*ND
I1=I+]

12=1+2

EVALUATE COEFFICIENTS
A(I,d),d=1,NB

\

EVALUATE COEFFICIENTS
A(11,d),d=1,\B

EVALUATE COEFFICIENTS
A(12,d),0=1,NB

K=K+1

[=NS*ND-2
11=1+1
12=142

J

FIGURE A.3 FLOW DIAGRAM SUBROUTINE SETUP 1
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Y

EVALUATE COEFFICIENTS
A(I,J),J=1,NB

EVALUATE COEFFICIENTS -
A(I1,J),d=1,NB

EVALUATE COEFFICIENTS
A(12,J),J=1,N8B

RETURN

FIGURE A.3 FLOW DIAGRAM SUBPOUTINE SETUP 1 (continued)
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BWMW(J,

EVALUATE
BFMC(J,K) ,CMB(J,
CMT(J,K) ,BWMC(J,
BWMW(J ,K) ,WMT(J,
WMB(J,K)

K)
K)
K)

FIGURE A.4 FLOW DIAGRAM SUBROUTINE CALFOR
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0 b

EVALUATE
BFMC(J,K) ,.CMB(J
CMT(J, K) BWMC (4
BNMN(J K) WMT(J

WMB(J,K)

@ EVALUATE
PDEL (J,K)

FIGURE A.4 FLOW DIAGRAM SUBROUTINE CALFOR (continued)
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&
P

EVALUATE
PDEL(J,1)

(_CALL MODFOR )

EVALUATE
BFF(J,L)
J=1,N
L=1,NS

EVALUATE
T(J,K)
J=1,N
K=1,NS

y

EVALUATE THESE ARE RESPECTIVELY
BFFgNX,K) RESULTANT RESISTING
BFF(N,K) FORCE IN X & ¥
T(1,K) DIRECTION AND MOMENT
K=1,NS ABOUT VERTICAL AXIS

>

FIGURE A.4 FLOW DIAGRAM SUBROUTINE CALFOR (continued)
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[=1+]

NO

?
I>NS
YES
RETURN

FIGURE A.4 FLOW DIAGRAM SUBROUTINE CALFOR (continued)
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NB1=NB-1

TRANSFER NB ROWS
OF LOWER TRIAN-
GULAR MATRIX A
INTO ARRAY D

[>——c=n(L1)

I1-1

C(11)=D(L,II)-

C(M)fA(I-NB+M,I-NB+1-M)

o

[1=11+]

~NB1
[10-—{AL,0)=A(1,0)= T C(M*A(T-NB#HNB+-1)

Uy

FIGURE A.5 FLOW DIAGRAM SUBROUTINE SOLVER
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YES

NB1
B(I)=(B(1)-Mz]c(M)*B(I-NB+M))/A(1,1)

ALIMLO/ALY]
J=2.NB

NB 1/2
DET=DET*A(I,1)/(KZ] A(I,K)fA(I,K))

i

D(L ,d)=A(I+J NB+]-J)
J=T,NB1

L=1

FIGURE A.5 FLOW DIAGRAM SUBROUTINE SOLVER (continued)
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X(N)=B(N)

I[=N-1

1

- _
X(1)=B(1)- % A(L,M)*X(1-1+M)
M=2

1 I=I-1

YES
RETURN

FIGURE A.5 FLOW DIAGRAM SUBROUTINE SOLVER (continued)



S

READ AND PRINT
INCR,DISX,DISY/
\ISTEP ,NCYCL

DETI=DET
IL=0

CALL

\ PRI
IH,PALL
PAA

CALL HINROT

CHECK )

NT
L

IN X
DIREC
>DISX,

DISPLACEMENT

P1=PALL

RV
TION
DISY

[EEJ

FIGURE A.6 FLOW DIAGRAM SUBROUTINE RECYCL
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(1)

ALL=-ALL
ISTEP=ISTEP+1

ALL=-ALL

ALL1=ALL -

DET1=DET
PALL=PALL+ALL1
PAAL=PAAL+AAL

P=PALL

YES ?
-~ INCR=

NO
RECORD END

MOMENTS AT CALL SETUP

LOAD FACTOR |

P1
( CALL CALFOR)
1

IL=IL+]

> { CALL SETUP CALL CHECK2

~—— CALL CALFOR)

FIGURE A.6 FLOW DIAGRAM SUBROUTINE RECYCL (continued)
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A.2

10.

11,

Al6

Subroutine Listing and Data Cards

MAIN

READ

WRITE1
SETUP

SETUP1

MODIFY

MODFY1

SOLVER

CALFOR

MODFOR

CHECK

Calls subroutines to read and print data, initializes
analysis then hands control to RECYCL subroutine,
which performs load incrementation procedure.

Reads member properties, structure geometry and
loading.

prints data read in by READ.

Calculates and stores the coefficients for the moment
equilibrium equations of the elastic structure.
Calculates and stores the coefficients for the floor
force equilibrium equations of the elastic structure.
Modifies the coefficients of the equilibrium equations
where plastic hinges have formed in the beams and
columns.

Modifies the coefficients of the equilibrium equations
where plastic hinges have formed in the walls.
Modified Gauss Elimination algorithm. Solves the
equilibrium equations, stored as a banded upper tri-
angular array.

Computes member end forces for displacements assuming
the structure to be elastic.

Modifies member end forces where the presence of
plastic hinges change the equations used in CALFOR.
Checks member end moments against corresponding plastic
moment values. Where the yield condition is attained

a plastic hinge is inserted in the structure and noted.
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12. CHECK1 - Calculates the load factor that will result in the
formation of the first hinge. This requires computa-
tion of the moment to plastic moment ratio for each
member end; then selecting the maximum.

13. CHECK2 - Selects successive load factors, which will result
in the formation of one additional hinge during
each cycle.

14. RECYCL - Controls the load incrementation procedure and is the
main subroutine in developing the load-response curve
for the structure. Controls to select the type of
load incrementation, number of cycles, maximum dis-
placement before termination, and when unloading is
to commence, are read in by this subroutine.

15, WRITE2 - Prints all the member end moments when called.

16. HINROT - Calculates the rotational discontinuities that
exist across the plastic hinges after each load

change.

Data is transmitted to the program by means of punched cards.
The information on, and format of, each card and the order in which
they must be read is as follows:
1. NS,NX,NY,E,EW,YS,ALL,AAL; Format (3I5,5F8.2)
2. H;Format (10F8.2)
3. IND,ESC,ESW; Format (110,2E11.4)
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4. BF,BW,W,CI,WI,BFI,BWI,CM,WM,BFM,BWM; Format (3F5.1,F8.1,E12.5,
2F8.1,F6.0,E11.4,2F6.0)

5. PC; Format (10F8.3)

6. GKT; Format (6E12.5)

7. FX; Format (10F8.3)

8. FY; Format (10F8.3)

9. YFX; Format (10F8.3)

10. XFY; Format (10F8.3)

11. Y; Format (10F8.3)

12. X; Format (10F8.3)

13. INCR,DISX,DISY,ISTEP,NCYCL; Format (I10,2F10.2,2110)

For each bent there will be one card number 3, and NS times
card number 4, corresponding to the number of stories. The bents will
be placed in numeric order starting with the bent in the X direction
having the minimum co-ordinate and finishing with the bent in the Y
direction having the maximum co-ordinate, see FIGURE 3.2. Al1l bents

will be read in before card number 5.

A.3 Nomenclature for Fortran IV Program

In the following nomenclature, subscript I refers to a parti-
cular floor or story and subscript J refers to a particular bent.
E,EW - Modulus of elasticity of frame and wall respectively
(ksi).

YS - Yield stress of frame members (ksi).
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PALL ,PAAL - Load factors; lateral and vertical load.

ALL ,AAL - Preset load factor increments; lateral and vertical
load.

DET - Determinant of coefficient matrix.

ut,vt - Displacement of top floor in X and Y directions re-
spectively (in).

P - Load factor.

X(3),Y(J) - Bent co-ordinates (in).

ESC(J),ESW(J) - Stiffness of rotational springs at base of column and
wall respectively (kip in radian']).

H(I) - Story height (in).

GKT(I) - St. Venant torsional stiffness (kip inz).

FX(I),FY(I) - Applied lateral load; X and Y directions (kip).

YEX(I),XFY(I) - Co-ordinates of lateral loads (in).

RIH(K) - Rotation of member end at formation of plastic hinge,
(radian).

PMH(K) - Moment at formation of plastic hinge (kip in).

BF(J,I) - Frame beam span (in).

BW(J,I) - Wall beam span {in).

W(J,I) - Wall width (in).

ci(J,I) - Column moment of inertia (in4).

WI(a,1) . - Wall moment of inertia (in4).

BFI(J,I) - Frame beam moment of inertia (in4).

BWI(J,I) Wall beam moment of inertia (in4).



cM(d,I)
WM(J,I)
BFM(J,I)
BWM(J,I)
PC(J,I)
A

B

XX
PDEL(J,I)
BFMC(J,I)
BUMC{J,I)
BWMW (J,1)
CMT(J,I)
CMB(J,I)
WMB(J,1)
WMT(J,1)
BFF(J,I)
BFC(J,I)
BWC(J,I)
BWW(J,I)
cT(J,I)
CB(J,I)
WB(J,I)
WT(J,1)
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Plastic moment of column (kip in).

Plastic moment of wall (kip in).

Plastic moment of frame beam (kip in).
Plastic moment of wall beam (kip in).
Vertical load on bents (kip).

Coefficient matrix.

Load vector.

Displacement vector.

Story shear caused by P-delta moments (kip).
Frame beam moment at column end (kip in).
Wall beam moment at column end (kip in).
Wall beam moment at wall end (kip in).
Moment at top of column (kip in).

Moment at bottom of column (kip in).

Moment at bottom of wall (kip in).

Moment at top of wall (kip in).

Resisting floor force exerted by bent (kip).
Frame beam moment at plastic hinge formation.
Wall beam moment at plastic hinge formation.
Wall beam moment at plastic hinge formation.
Column moment at plastic hinge formation.
Column moment at plastic hinge formation.
Wall moment at plastic hinge formation.

Wall moment at plastic hinge formation.



NS
NX,NY
NX1
NS1

N
NN
ND
NU

NB
IH
IND(J)

IK(J)
IHF (K)
PINC(K)
IHB(K)
IHL(K)

c,D
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Number of stories.

Number of bents, X and Y -directions.

NX+1, number of first bent in the Y direction.
NS-1, number of stories minus one.

NX+NY, total number of bents.

Number of wall elements ber story.

N+NW, number of joint rotations per floor.
NN+3, number of displacements per floor.
ND<NS+NN, number of displacements for complete

structure.

"NDe2-1, band width of coefficient matrix.

Total number of plastic hinges formed.

Indicates whether a particular bent contains a wall;

1 - yes, 0 - no.

Indicates number ordering of column and wall elements.
Floor on which hinge, K, is located.

Load factor at which hinge, K, formed.

Bent in which hinge, K, is located.

Location of hinge K; 1-bottom of column, 3-top of
column, 4-frame beam, 5-bottom of wall, 7-top of wall,
8-wall beam at wall end, 9-wall beam at column end.

Temporary storage arrays in subroutine SOLVER.



BFMC1(J,I)
BWMC1(J,I)
BWMW1(J,I)
CMT1(J,1)
CMB1(J,I)
WMB1(J,1)
WMT1(J,1)
INCR

DISX,DISY

ISTEP

NCYCL
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- Temporary storage arrays in subroutines RECYCL and

CHECK2, used in the incremental loading procedure

to Tocate plastic hinges individually.

Indicates type of loading procedure to be used;
0-locate hinges individually, 1-increment load by
preset amount (ALL).

Maximum displacement in X and Y direction at which
analysis is to be terminated. Expressed as ratio
of displacements at formation of first hinge.
Indicates whether loading is to be decremented at
change in sign of determinant. O0-reduce load at
first change in sign, -1 - do not reduce load until
second change in sign. |

Number of cycles in loading procedure before analysis

is to be terminated.



A23

A.4 Listing of the Program

COMMON EoEWyYSoPALLy PAAL ¢DET4DETLyUTyUTLoVT4VT1,PyPLeX{12),Y(12),H
1(30)sESC{12),ESW(12)4GKT(30),FX{30),FY{30),YFX(30)4XFY(30),RIH{300
2),PMH(300),PINC{300),8F(12,30),BW(12,30),W(12,30),BWC(12,30),ALL
3,C1(12930)4WI(12,30)4BF1(12,30)BWI(12430),CM{12,530)4WM{12,30),BFM
4{12,30)sBWM(12+30),PC(12,30),WB(12430),A(422+33)9B(422)9XX{422),HT
5{12,30),PDEL(12,30),BFMC(12,30),BWMC(12,30),BWMW(12,30),CMT(12,30)
69CMB{12,30),WMT(12,30),WMB{12,30),BFF(12,30),CB(12,30),CT{12,30),B

TFC{12930) 9 BHW(12,30) sAAL¢NSyNXyNYNXLyNS1oNoNDyNNyNUsNBoIH,IND{(12)

10

11

21
20

8yIK(12),IHF(300),IHB{300), IHL{300)
CALL READ

NS1=NS-1

NX1=NX+1

PALL=1.0

PAAL=1.0

IH=0

NW=0

DO 10 I=1,N
NW=NW+IND(T)

CONT INUE

NN=N+NW

ND=NN+3

NU=NS*ND+NN

NB=2#*ND-1
IK(1)=1+IND(1)

DO 11 I=2,4N
IK(I)=IK({I-1)+IND(I)+1
CONTINUE

CALL WRITE1

DO 1 J=1,NS
GKT(J)=GKT (J)/H{J)
CONT INUE

DC 20 I=14N

DO 21 J=14NS
CI(I4J)=E*CI(I,J)/H(J)}
WI(I,J)=EW*HI(I,J)/HJ)
BFI(1,J)=E*BFI(I,J}/BF(I,J)
BWI(I,J)=E*BWI{I,J)/BN{I,J)
CBl{1,J)=0.0
CT(I,J)=0.0
BFC(I,J)=0.0
WB(I,J)=0.0
WT(I,J)=0.0
BWW(I,J)=0.0
BWC(I,J)=0.0

CONTINUE

CONTINUE

CALL SETUP

CALL CALFOR

CALL CHECK1

CALL HRITEZ2

urti=urt



VT1=VT A24

WRITE(6,22)

CALL RECYCL
22 FORMAT(1HO//4T5, *HINGE LOCATION LEGEND :'//T5,%1= BOTTOM OF COLUMN

1 , 3= TOP OF COLUMN , 4= FRAME BEAM 5 S= BOTTOM OF WALL '/T5,'7=
2TOP OF WALL o 8= WALL BEAM AT WALL END , 9= WALL BEAM AT COLUMN ')
WRITE(6,23)
23 FORMAT {1HO//,T75, *HINGE NUMBER® »T20, * BENT NUMBER? ,T35,' FLOOR NUMBER
179750, *LOCATION® »T65,'LOAD FACTOR"')
DO 24 I=1,1H
WRITE(6125)I,IHB(I)pIHF(I)'IHL(I),PINC(I)
25 FORMAT(IHO/,T9'13,725;12,T39,12,T53,11,T68,F5.3)
24 CONTINUE
sTQoP
END

SUBROUTINE  READ-
COMMCN EyENvYS'PALLsPAAL,DETyDETlvUToUTl:VT'VTloP,PI,X(lZDoY(lZ)gH

1(30’tESC(IZ)pESN(IZ)oGKT(30’9FX(30),FY(30)yYFX(30)9XFY(30).RIH(300
Z)QPMH(BOO)IPINC(BOO,'BF(12’30,’BH(12’30,'H(lZ’BO"B“C(lZ,BO,’ALL
3,CI(12.30),NI(IZ.30),BFI(12,30).Bw1112.30).CM(IZ,SO)'HM(IZ,BO).BFM
4(12930)95“”(12,30)9PC(12v30’,WB(12’30)1A(422933’9B(422’1XX(422)1"T
5(12'30)1PDEL(12930)9BFMC(12930);BNMC(12’30)gBﬂMN(lZv30)'CMT(IZ)30,
6|CMB(12130,1NMT(12130),NMB(12930)1BFF(12930)aCB‘12030),CT(12930)93
7FC(12,30)1BNN(12¢30)gAALvNSoNXvNYvNXl'NSloNoND:NNyNUyNBg[H'IND(IZ)
8.IK(IZ):IHF(300).IHB(300):[HL(300)
READ(S’I’NS’NX!NY’E'EN'YS!ALL’AAL
1 FORMAT{315,5F8.2)
READ({593)H{1)y1=1,NS)
3 FORMAT(10F8.2)
N=NX+NY
DO 4 I=1N
READ(S99)IND(I)ESC(I)ESWIL)
9 FORMAT(I1052E11.4)
DO 5 J=1,NS
READ(516)(BF(I!J),BH(I’J)VH‘I’J)'CI‘I'J"Nl(I'J)'BFI(I’J)'B“I(I’J’
IQCMlle)1NM(11J)9BFM(IvJ)13WM1I:J’,
6 FORMAT(3F5.1,F8.1'ElZ.5y2F8.l'F6.01E11.4p2F6.0’
5 CONTINUE
READ(598)(PC{I,J)sJ=14NS)
4 CONTINUE
READIS,7T)IGKT(I)I=14NS)
7 FORMAT (6E12.5)
READ{5,8)(FX{I),I=1,NS)
READ(5,8){FY{1),I=14NS)
REAC(5,8) (YFX{I)s1=14NS)
READ{(5,8) (XFY(I),I=1,4NS)
READ(5,8){Y{1),I=1,4NX)
READ(5,8)(X{I),I=14NY)
8 FORMAT{10F8.3)
RETURN
END
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SUBROUTINE WRITEL '
COMMON E +EW,YSsPALL,)PAAL+DETyDETLyUTsUTL1 VT oVT14PyPLyX(12),4Y(12),4H
1(30)4ESC(12)4ESW{12),GKT(30)+FX(30),FY(30),YFX(30),XFY(30),RIH(300
2)yPMH{300) ,PINC(300),BF(12,30)+BW(12+30)sW(12,30)9BWC{12,30)yALL
3,CI1(12,30)yWI(12430),BFI{12,30),BWI(12430)+CM{12,30)4+WM{12,30),BFM
4(12,30)9BWM(12,30),PC(12930)sWB{12930)9A1422433)4B(422)9XX(422),NWT
5(12,30),PDEL(12,30)4BFMC(12,30),BWMC(12,30),BWMW(12,30),CMT(12,30)
6sCMB(12,30),WMT{12,30),WMB{(12,30)4BFF(12,30),(B(12,30),CT(12,30),B
TFC(12530) yBWW(12430) AAL ) NS)NX ¢ NYsNX1yNSLyNyNDyNNyNUsNBy IH, IND(12)
85IK(12): IHF(300),IHB(300), IHL{300)

WRITE(6,41)

1 FORMAT{1H1,T50,"% % % % % %%, /T50,*INPUT DATA", /T50,'% * * * %

1%7)
WRITE (692 )NS9NXyNY

2 FORMAT(1HO//,T15,*NUMBER OF STORIES = '412,6Xy *NUMBER OF X BENTS =

1 '412,6X,*NUMBER OF Y BENTS = ',12)
WRITE(643)

3 FORMAT(1HO//,T30,"UNITS ARE KIP ,INCH 4AND KIP PER SQUARE INCH.')

WRITE(694)EsEW,YS

4 FORMAT{1HO//,T15,'MODULUS OF ELASTICITY IS *',F8.1,' FOR FRAME MEMB

35

5

7

6
16
17
19
20

21

24

10

1ERS AND *yF8.1,%' FOR THE WALLS'y ', YEILD STRESS FOR COLUMNS IS ',
2F8.2//7)

WRITE(6,35)ALLAAL

FORMAT(1HO/,T15, *LATERAL LOAD INCREMENT IS ",F6.3,* AXIAL LOAD IN
1CREMENT IS ',F6.3//)

WRITE(6,45) .
FORMAT{1HO// TS5, *FLOOR NUMBER® 4T23,*STORY HEIGHT',T40,*'TORSIONAL C
10EFFICIENT®*3T72,"APPLIED LOAD(KIP)*,T101, *POINT OF APPLICATION(IN)
2V /gT2T3 " IN® 3T424*GKY (KIP-IN.SQ)*,T68,7X DIRECTION®*,T83,'Y DIRECT
3I0ON'yT100," LOAD FX ',T115,' LOAD FY ")

DO 6 I=1,NS

WRITE{OT)IsHIT) oGKTUI) oFX(I)oFY(I),YFX(I) XFY(I)

FORMAT{1HO yT99129T23,F8.29T43,E12.54T68,F8.3,T83,F8.3,T101,F8.3,T1
116,F8.3)

CONT INUE

WRITE(6,16)

FORMAT{1H1,75,*AXIAL LOADS ON X BENTS'//)

WRITE(6,17)(I41=1,4NX)

FORMAT{(1HO TS5, *STORY "3 T12,10(2X,s *BENT *y12,2X))}

DO 19 I=1,NS

WRITE{6,20) I (PClJsTI)sJ=14NX))

CONTINUE

FORMAT{1HOT7,12,T12,10{2X4F8.1,1X))

WRITE(6,21)

FORMAT{1H1,75,*AXI AL LOADS ON Y BENTS'//)

WRITE(G6s1T7){141=1,NY)

DO 24 I=1,NS

WRITE(6920)M(1,(PCLJy1)eJ=NX1,N))

CONT INUE

DO 8 I=1,N

IF(I.GT.NX)GO TO 9

WRITE(6910)I,Y(I)},ESC(I) ESWI(I)

FORMAT (1HL 32X 4" BENT X NUMBER', I5,2X, "MEMBER PROPERTIES®///3X,*DIST
LANCE FROM REFERENCE POINT = *,F8.2///3Xy'SPRING CONSTANTS; COLUMN
2= Y4Elle4s? WALL = %Ella4///)



GO TO 11 A26

9 L=I-NX
WRITE(6,12)LyX{L),ESCII)ESWII) :

12 FORMAT(1H1,2X,'BENT Y NUMBER®y15,2X, *MEMBER PROPERTIES®///2X,y*DIST
1ANCE FROM REFERENCE POINT = *4F8.,2///3X, *SPRING CONSTANTS; COLUMN
2= ',E1l.4y" WALL = *,E11.4///) '

11 CONTINUE

WRITE(6y14)

14 FDRMAT(lHO/yTZ,'STORY',TIOy'BEAM-SPAN(IN)'oT25o'HALL—HIDTH'.T49,'M
LOMENTS OF INERTIA(IN4)®,T89, *PLASTIC MOMENT CAPACITIES(KIP-IN)*//
272.'NUMBER'.T11,'FRAME',Tl8.'HALL',T28,'(IN)'1T401'C0LUMN',T51,'NA
3LL',T60,'FRAME-BEAM',T73,'HALL-BEAM'.T84"COLUMN(MPC)',T98.‘HALL',
4T1064" FRAME~BEAM" 4 T119, "WALL-BEAM®)

DO 13 J=1,4NS
HRITE(69IS’J.BF(IpJ),BN(IoJ)pW(IoJ)gCI(IoJ);HI(I.J)'BFI(I,J),BHI(I
19J) sCMIT 9J) o WM(I4J)9BFM{ Iy J)9BHMIT,J)

15 FORMAT(1HO .T4,IZ,TIO.FS.I.TlB'FS.1,TZb,FS.I,T38)FB.0,T47,E12.5,T6
12,F8.0.T74'F8.0,T86,F7.0.T94.E11.4'T109,F7.0'TlZO,F?.O)

13 CONTINUE

8 CONTINUE
WRITE{6,25)

25 FORMAT{LH0//7//,T50,%% % * % % %9,/T50,'0UTPUT DATA',/T50, % * * ¥

1 * x')
RETURN
END

SUBROUTINE SETUP
COMMON E,EH’YS)PALL’PAAL’DET'DETI'UT!UTI'VT'VTl’P’PIfX(IZ)QY‘IZ,QH
1(30"ESC(12)1ESH(12’1GKT(30’OFX(30’1FY(30’)YFX(BO”XFY(30’,R!H(3OO
2)1PMH‘300)1PINC(300’OBF(12'30)98”(12’30""(12'30”8“6(12’30”ALL
3vCl(12930)|NI(12'30)18F1(12v30’98H[(12930’7CM(12:30’.WM(12930)98FM
4(12130,9BHM(12130)9PC(12130)QWB(12930)9A(422933)1B(422’9XX(422),HT
5(12130):PDEL(IZ:BO),BFMC(12730,yBHHC(lZo30)QBWHH(12'30)'CMT(12'30)
6tCMB(12v30)1NMT(12930)1""8(12,30)18FF(12930)1CB(12130);CT(12,30)oB
7FC(12'30,,BNN(12930)9AAL9N59NxqNY’NleNSI,N,ND,NN,NU,NB,IH,IND(IZ)
8,1K(12),IHF(300),IHB(300), IHL(300)
DO 4 I=1,NU
DD 5 J=1,NB
AlI,J1=0.0
5 CONTINUE
B{1)=0.0
4 CONTINUE
DO 7 J=1,N
I=1K{J)-IND{J)
Cl=CI{J,1)
C2=6.0*C1/H{1)
L=2+NN-1
Ll=L+1
L2=L+2
A{l,1)=4,0%C1l+ESC(J)
A(I,1#ND)=2.0%Cl
IF{J.GT.NX)GO TO 8

AlT,L)==C2
A{1,L2)==C2%xY(J)
GO TO 9

8 AlI,L2)=C2*X(J=NX)
AlI,L]1)==C2



9

12
50

20

15

51
14

17

21

IF(IND(J).EQ.0)GO TO 50
I=1+1

Wl=WI{J,1)
W2=6.0%W1/H{1)

L=24NN-1I

Li=L+1

L2=L+2
A{I,1)=4,0%H1+ESKW(J)
A{I,14ND)=2,0%Wl1
IF{J«GT.NX)GO TO 12
AlT,L)=-W2
AlI,L2)=-W2%Y(J)

60 T0 50
AlT,L2)=W2%X{J=-NX)
A(I,L1)=-W2

CONTINUE

CONTINUE

DO 13 J=1,sN
I[=1IK{J)-IND{J)
L1=NN+2-1

L2=L1+1

L3=0L1+2

DO 14 K=1,NS

I=1+ND

C1=CI{J,yK)

Bl=BWI(J,K)
B2=3.0*B1%W{JsK) /BH{JsK)
IF{K.LT.NS)GO TO 20
AlI,1)=4,0%C1+3,0%BFI(J,K)+4.0%*B1
A(1,2)=2.0%B1+B2

60 TO 51

C2=CI{JyK+1)
C3=6.0%C2/H(K+1)
AlT41)=4,0%Cl+4,0%C2+3,0%BFI{J4K)+4.0%*B1
Al{l1,2)=2.0%B1+B2
A{I,1+ND)=2.,0%C2
IF(J.GT.NX)GO TO 15
AlI,L1)=-C3
A(I,L3)==-C32Y(J)

GO0 TO 51
AlLI,L3)=C3%X{J-NX)
A(I,L2)=-C3

CONTINUE

CONTINUE
IF{IND(J).EQ.0)GO TO 52
I=1K{J)

L1=NN+2-1

L2=L1+1

L3=L1+2

DO 18 K=1,4NS

I1=1+ND

Wl=WI{J,K)

Bl=BWI(J,K)
B2=3.0%B1*W{J oK) *¥W (J oK)/ {BW(Jy K)*BW(JsK))
IF(K.LT.NS)GO TO 21

AlT1,)1)=4.,0%W1+B2+6.0*B1*W(J,K) /BW{J»K)+4.0%B1

63 TO 53
W2=WI(JsK+1)

A27



19
53
18

52
13

22
23

24

103

W3=6.0*%H2/H{K+1) A28

A{TI,41)=4.0%H144.0%W2+B2+6. 0*BL1*W(J4K)/BW(J ¢K) +4,.0%B1
A(Io1+ND)=2.0%N2
IF{J.GT.NX)GO TO 19
A(I,L1)=-NW3
AlI4L3)==W3%Y(J)
GO TQ 53
A{IyL3)=N3*X(J-NX)
AlIsL2)=-W3
CONTINUE
CONTINUE
CONTINUE
CONTINUE
DO 22 K=14NS
=2
I=1+K*ND
I1=1+1
12=1+2
B{I)= FX(K)*PALL
B{Il)= FY(K)*PALL
BLI2)=(~=FY(K)*XFY{K) +FX {K) *YFX (K] ) *PALL
CONTINUE
CALL SETUPL
CONTINUE
CALL MCDIFY
CALL SOLVER{AyBsXXsNUyNB,DET)
UT=XX{NS*ND-2)
VT=XX(NS*ND-1}
CONTINUE
WRITE(69103) (XX{I)yI=1,NU)
FORMAT (1HO (TS5 *"DISPLACEMENTS ARE *,8{El2.5,1X)))
RETURN
END

SUBROUTINE  SETUP1
COMMON EEWyYS,PALL,PAAL+DET,DETLoUTUTL4VT,VT1,P,P1,X(12),Y(12),H

1{30),ESC{12)¢ESW(12)sGKT(30),FX{30),FY(30),YFX{30)XFY(30),RIH(300
2)PMH{300),PINC{300)4BF(12,30)+BW(12430)yW(12430),BWC{12,30)ALL
3,CI(12430)4WI(12,30)4BFI{12430),BWI(12430),CM(12,30),WM(12,30),BFM
4(12930)sBWM{12530)4,PC{12930)sWBI12+y30)9A(422933)4B(422)yXX(422)sWT
5(12+30)4PDEL(12,430)yBFMC(12,30)4BWMC(12430),BWMW(12,30),CMT(12,30)
6,CMB(12,30),4WMT(12,30)yWMB(12,30),BFF(12,30),CB(12,30),CT(12+30),8B
TFC(12930)yBWW(12930) yAALyNSyNX sNYsNX1sNS1y NsNDyNNyNUsNBoIH,IND(12)
8,1K(12)yIHF(300),IHB(300), IHL{300)

IF{NS1.EQ.0)GO TO 70

DO 23 K=1,NSl1

H1=H{K)

H2=H(K+1)

H3=H1%*H]

H4=H2%*H2

I==2

I=I+K*ND

I1=1+1

12=1+2

SUL=0.0

SU2=0.0



24

55
25

26

57
27

SU3=0.0 A29

SU4=0.0

DO 24 J=1,NX |
SUL=SU1+{12.0/H3)*(CT{J,K) +WI{J,K) I+ (12.0/HE) R {CT(JpK+1)+HI [JoK+1)

1)-PAAL#PC(JeK)/H1-PAAL*PC{JyK+1)/H2
SU2=SU2+Y(J)*{+12. 0% {CI(Jy K) +WI(J9yK))/H3#212.0%(CI(JgK+L)+WI{JsK+])

1)/H4-PAALRPC(J4K)/H1-PAAL*PC({J K+1)/H2)
SU3=SU3-(12.0/H4)*(CT{J,K+1) +WI{JyK+1) ) +PAAL*PC(JyK+1)/H2
SU4=SU4=-YII)*(12.0*%(CI{JyK+1)+WI{JyK+1))/HL4—-PAALXPC(JyK+1)/H2)

CONT INUE

A(I,1)=5Ul

A{l,3)=5U2

A{I,1+ND)= SU3

A(I,3+ND)= SU4

DO 25 J=1.NX

JJ=1K{J)-IND(J)

Al{1434JJ)==6.0%(CI(J4K) /HL-CI{JyK+1)/H2)

A(Iy3+JJ¢ND)=4+6.0*CI (JyK+1)/H2

IFUIND(J).EQ.0)GO YO 55
AlT,4+40J)==6.0%{HI{JsK)/H1-WI{JyK+1)/H2)

A(I+44JI+ND)=+6.0%WI (J,K+1)/H2

CONTINUE

CONTINUE

SU1=0.0

SU2=0.0

SU3=0.0

SU4=0.0

DO 26 J=MX1,N

L=J-NX
SUL=SUL+({12.0/H3)*{CI{JsK)+WI{JyK))#(12.0/HA)*(CI(JyK+1)+WI(JyK+1)
1)-PAAL*PC{JyK) JH1-PAAL*PC(JyK+1}/H2
SU2=SU2=XIL)*(12.0%(CI(JyKI+WI {J9K) ) /H3+12.0%(CI(JyK+1)+WI(J4K+1))
1/H4-PAAL*PC{J4K) /HI-PAAL*PC(J,K+1)/H2)
SU3=SU3~{12.0/H4 ) *{CI{JsK+1) +WI(JyK+1) }+PAAL*PC(JyK+1)/H2
SU4=SU4+X(L)*(#12. 0% (CI(JyK+1) +WI(JyK+1) )/ He~PAAL*PC(J,K+1)/H2)
CONTINUE

A{Il,1)=SUl

A(I1,2)=SU2

A{1l,14ND)= SU3

A{1142#ND)= SU4

DO 27 J=NX1,N

JJI=IK{J)-IND{J)

AlI15240J)==6.0%(CI{J3K)/HI-CI(J,K+1)/H2)
A(I1,2¢JJ+ND)=4+6.0%CI(J,K+1)/H2

IF{IND(J).EQ.O0)GO TO 57
A(11934JJ)==6.0%(HWI(JsK)/HI-WI{JsK+1)/H2)
A(I1,34JJ+ND)=46.0I(J,K+ 1) /H2

CONTINUE

CONTINUE

SU1=0.0

SU2=0.0

SU5=0.¢C

DO 28 J=1.NX
SUL=SUL+(Y{JI*Y(J))*({+12.0/HI)*(CI(JyKI+WI{JyK))+(12.0/HL)*(CIJ,
IK+1)+WI(J9K+1))~PAAL*PC(J,K)/H1-PAAL*PC{JyK+1)/H2)
SU2=SU2-(Y(J)*Y(J))*((12.0/H4) *(CI(JsK+1)+WI(JyK+1) )} =PAALXPC(JsK+]

1)/H2)
SU5=SU5=12.0%Y{J)*(CI(J oK+ 1)+ WI(JyK+1) ) /HG+Y (J)%PAAL*PC(J,K+1) /H2



28

29

58
30

59
31
23
70

32

60
33

CONT INUE A30

SU3=0.0

SU4=0.0

SU6=0.0

DO 29 J=AMX1,N

L=J-NX
SU3=SU3+{X(L)*X(L)I*{{+12.0/H3)*(CI{JsK)+WI{JsK))+{12.0/H4)*(CI(J,
LK+ 1) +WI{J,K+1))-PAAL*PC(JyK)/HL1-PAAL*PC{JyK+1)/H2)
SU4=SU4=(XIL)*X(L))*{(12.0/H4) *{CI (JyK+1)+WI(JoK+1} ) -PAALXPC{J,K+1
1)/H2)
SU6=SU6+12.0%X(LI*{CI(JyK+1)+WI{JsK+1))/HG=X(L)*PC(JK+1)*PAAL/H2
CONTINUE

Al12,1)=SUL+SU3+GKT(K)+GKT(K+1)

A{I2914ND)= SU2+SU4~-GKT(K+1)

A{I2,ND-1)=8U5

A{I2,ND)=SU6

DO 30 J=1,NX

JJ=1K{J)-IND{J)
AlI29143J)==6.0%Y{J)*(CI(JyK)/HL-CI{JyK+1)/H2)
A{12914JJ+ND)=+6.0%CI{JyK+1) %Y (J)/H2
IF(IND(J).EQ.0)GO TO 58
A({T129240J)==6.0%Y(J)*(WI(JyK)/HL-WI(J9gK+1)/H2)
A{I2,24JJ4ND)I=4+6. 02T (J 4K+ 1) XY (J)/H2

CONTINUE

CONTINUE

D0 31 J=NX1,yN

L=J~-NX

JJI=IK{J)~IND(J)
AlT2,14JJ)=6.0%X{L)I*{CI(JsK)/H1=-CI(JyK*+1)/H2)
AlTI2914JJ+ND)==60%CI{JoR+11#X{L)/H2
IF{IND{J).EQ.0)GO TO 59
Al1252400)=6,0%X(L)*(WI(JyK)/HL=WI(JsK+1)/H2)
A{I2424JJ+ND)=~60%WI{JK+1)%X{L)/H2

CONTINUE

CONT INUE

CONT INUE

I=NS*ND-2

H1=H{NS)

H2=H1*H]}

I1=]+1

12=1+2

SUl=0.0

SU2=0.0

DO 32 J=1,yNX

SUL=SUL+(12./H2)*({CI{JyNS) +HI(JyNS))-PClJy NS)*PAAL/H]
SU2=SU2+({12/H2)*(CI{JgNS)+WI (J4yNS))-PC(JsNS)%*PAAL/HL )I*YiJ)
CONTINUE

All,1)=SUl

Al1,3)=SU2

DO 33 J=1,NX

JI=TK{J)-IND{J)

AlT934J3)=~6.0*%CI(JyNS)/HL

IF{IND(J).EQ.0)GO TO 60

AlIy4403)==6.0%WI(J,NS)/H1

CONT INUE

CCNTINUE

SULl=0.0

SU2=0.0



39

61
34

35

36

62
37

63
38

DO 39 J=NX1,N A3l
L=J-NX

SUL=SU1+{12./H2)*{CI(JyNS)I+WI{JyNS))}-PC{ Iy NS)*PAAL/H1
SU2=SU2-({12./H2)%(CI(JyNS)+HI {JyNS))=-PCLI,NS)*PAAL/HL)*X(L)

CONTINUE

A(Il,1)=5U1

A(l1,2)=5U2

DO 34 J=NX1,N

JJ=IK{J)=-IND(J)
A({I1,24JJ)==6.0%CI{JyNS)/H1
IF(IND{J).EQ.0)GO TO 61
A{I1,34JJ0)==6,0%WI(J4NS)/H1
CONTINUE

CONTINUE

SU1=0.0

DO 35 J=14NX
SUI=SU1*Y(J)*Y(J’*((12.0/H2’*(Cl(JoNS’+Hl(JyNS)"PC(J,NS)*PAAL/Hl)
CONTINUE .
SU2=0.0

DO 36 J=NX1yN

L=J=NX
SU2=SU2+X(L)*X(L)*((IZoO/HZ)*(CI|J1NS’*WI(J1NS,)'PC(JvNS’*PAAL/Hl)
CONTINUE

A{12,1)=SU1+SU2+4GKT(NS)

DD 37 J=14NX

JJ=IK(J)-IND(J)
Al12,14JJ)=-6.0%CI (Jo,NS)*Y(J)/H]
IF{IND(J).EQ.0)GO TO 62
A{12,24JJ)==6.0%WI (JoNSI*Y(J)/HL
CONT INUE

CONTINUE

DO 38 J=NX1,N

L=J=NX

JJ=IK(J)-IND(J)
A{129140J0)=46.0%CT (JyNSI®X(L)/H]
IF{IND{J).EQ.0)GC TO 63
AlI12,240J)=46.0%WI {JsNS)*X{L)/HL
CONT INUE

CONTINUE

RETURN

END

SUBROUTINE SOLVER{AyByXyNyNByDET)
DIMENSION Al422,33),B(422)4X(422)yC{33),D(33,32)
NBl=NB-1 '

DO 2 [=24NB

D(l,1-1)=A{I,NB+2~-1)

DO 2 J=1,NBl

C{1,J)=0.0

I1=I-NB+J

IF(Il.LT.1)GO TO 50
DI{I,J)=A{114NB+1-J)

CONTINUE

CONTINUE

DET=1.0

t=1

DO 14 I=1,N

C(1)=D(Ls1)
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[1=1-NB

N0 4 11=24NB1

SUM=0.0

J=11-1

IF(NB1.LT.2)GO TO 30
DO 5 JJ=1,J
IF(I14JJ.LT.1)G0O TO 5
SUM=SUM-CIJJI*A(I1+JJ, 11 41-JJ)
CONTINUE

ClII)=D(L, I1}+SUM
CONT INUE

IM=NB

IF(I .GToN-NB)IM=N-1+1
CO 6 J=1,IM

SUM=0.0

N0 7 JJ=J,NBl
IF(J.GT.NB1)GO TO 31
IF(I1+JJ.LT.1)GO TO 8
SUM=SUM-C{ JJ)*AlT14JJsNB+I=JJ)
CONTINUE

CONTINUE

A(T o J)=A{I,J)+SUM
IF(J.GT.NB1)GO TO 32
CONTINUE

SUM=0.0

DO 9 JJ=1,NB1
IF((I14JJ).LT.1)GO TOQ 26
SUM=SUM-C(JJ)*B(T11+JJ)
CONTINUE

CONT INUE
B{I)=(B(I)+SUMI/AlI,1)
DO 10 J=2NB

A I,J)=A{1,J)/A(I,41)
CONT INUE

AL=0.0

DO 61 K=1,NB
AL=AL+A{I,K)*A{],K)
CONTINUE

DET=DET*A{I,1)/SQRT(AL)
CONTINUE

A{I,1)=1.0

IF{I GT.N-NB)GO TO 12
DO 11 J=1,NBl
D(LyJ)=A(I+Jy,NB+1-J)
CONTINUE

L=L+1

CONTINUE

BACK SUBSTITUTION TO SOLVE FOR UNKNOWN X

X{N)=B(N)

[I=N-1

DO 20 I=1,11

Nl1=N-1

SUM=0.0

DO 21 J=2,NB
IF((NL-14J).GT.N)GO TO 27

A32



SUM=SUM=AIN1 5 J) X (NL=1+J) A33

27 CONTINUE

CONT INUE
X{N1)=B{N1)+SUM

20 CONTINUE

WRITE(6,28)DET

28 FORMAT(1HOsTS,'NORMALISED DETERMINANT = *,El1.4//)
RETURN

END

SUBROUTINE CALFOR
COMMON E,EWsYSoPALLy PAAL yDET,DETL,UT,UT1,VTVT1,P,P1,X(12),Y{12)H

1(30),ESC(IZ’,ESN(IZ’QGKT(3O)1FX(3O’1FY(3O)1YFX(30’9XFY(30’;RIH(300
2)’PMH(300)lPINC(300’1BF(12130,’B“(12)30)1”(12'30)18HC(12930,QALL
39CI(12$30)9N[(12130),BFI(12130‘yBHI(12930)vCH(12030)9UM(12'30"3FM
4(12730’1BHM(12930)1PC(12130)1WB(12v30)1A(422v33)98(422)1XX(422)1HT
5(12130,’PDEL(12'30,98FMC(12930”BHMC‘12'30)18”“”(12130)'CMT(12'30)
6:CMB(12130)1HMT(12130)1HMB(12130"BFF(12'30)'CB(12'30)9CT(12:30)93
7FC(12130)’BHN(12930)9AAL1NSQNX'NY1NX1'NSlvN,NDpNN'NUoNB'IH'IND(IZ)
8,IK(12), IHF{300),IHB(300), IHL{ 300)

DIMENSION T(12,30)

D0 50 J=14N

DO 51 K=1,NS

BWMC{J,K)=0.0

BWMH(JyK)=0.0

WMB{J,K)=0.0

WMT(J,K)=0.0

CONTINUE

CONTINUE

DO 1 K=1,4NS

Hi=HI(K)

DO 2 J=1,NX

J1=IK{J)-IND(J)+{K-1)*ND

J2= (K=2) *ND+NN+1

X1=XX{J1)

X2=XX{J1+1l)

X3=XX{J1+ND)

X4=XX{J1+1+ND)

IF(K.EQ.1)GO TO 80

X5=XX(J2)

X6=XX{J2+2)

X7=XX{J2+ND)

X8=XX{J2+2+ND)

BFMC(J9eK)=3,0%BFI(JsK)*X3

IF(K.EQ.1)GO TO 3
CMB{JsK)=CT{JsKI* (40 0kX142.0¥X3+(6.,0/HL)%( XS=XT+Y{J) *{X6-X8)))

CMT(JsK)=CI(JgK)*( 2, 0%X1+4o0%X3+{6,0/HL)H(X5=XT+Y{J) *(X6~-X81)))
GO TO 4

CMB(JgK)=CI{JaK)*(4o0%X1+2.0%X3=(6.0/HL)*(XT+Y(J)*X8))
CMT(JoK)=CI{J oK) %{2,0%X1+4,0%X3-(6.,0/H1)*{(XT+Y(J)*X8))
IF(IND(J).EQ.O0)GQ TO 6

BWMC {J9K)=BWI (JyK) *(4,0%X3+({2,043.0%W(JoK)/BW(JyK))%X4)

BWMW{J oK )=BWI (JpK) *(2,0%X3+{ 4, 0+3. 0%W( JsK) /BW( J4K) ) ¥X4)
IF{K.EQ.1)GC TO 5

WMT(J oK) =WIJ 9K) % (2, 0%X2+4 ., 0%X4+(6.0/HL) ¥ X5-XT+Y(J) *(X6-X8)))
WMB{ JsK)=HI(J oK) % {4e 0%X242 ,0%X4+{6.0/HL) £UX5=-XT+Y{J) *{X6~-X8)))

GO TO 6
WMT(J oK) SHEQJpK) (2, 0%X2+44,0%X4—~(6.0/H1)*¥{XT+Y(J)*X8))



WMB{Js K)=WI{JgK) ¥ (4,0%X242,0%X4~(6.0/H1) X[ XT+Y(J)*XB)) A34

6 CONTINUE
2 CONTINUE
1 CONTINUE
DO 7 K=1,4NS
Hl=H{K)
00 8 J=NX1,N
L=J-NX
J1=IK(J)=-IND(J)+(K-1)%ND
J2={K=2)*ND+NN+2
X1=XX{J1)
X2=XX{J1¢+1)
X3=XX{J1+ND)
X4=XX{ J1+1+ND)
IF{K.EQ.1)GO TO 81
X5=xXX1J2)
X6=XX{(J2+1)
81 X7=XX(J2+ND)
X8=XX{J2+1+ND)
BFMC{JyK)=3,0%BFI(JyK)*X3
IF(K.EQ.13G0O TO 9
CMB(J.K)=CI(J.K)*(#.O*x1+2.0*x3+(6.0IH1)*(XS-XT-X(L)*(X6-X8)))
CMT(JoK)=CI{JyK) %2, 0%X1+4 O*X 34 (6.0/HL) X[ X5=XT-X(L) *(X6~X81))
G0 TO 10
9 CMBlJyK)=CI(JgKI®{4,0%X1+2.0%X3=(6,0/HL)*(XT-X(L)*X8))
CMT{JyK)=CI{JyK)*(2,0%X1+4,0*X3=(6.0/HL)*(XT-X(L)*X8))
10 IF(IND(J).EQ.Q0)GO TO 12
BUMC (J oK) =BWI (J oK) %(4,0%X3+{2.043,0%W({JyK)/BH(JsK))I*X4&)
BHMWIJ 9 K)=BWI(JK) ¥{2,0%X3+ (4. 0+3,0%W(J,K)/BWIJoK) ) %X4&)
IF(K.EQ.1)GC TO 11
HMT(J.K)=NI(J,K)*(2.0*X2+4.0*X4+(6.0/H1)*lXS-X?-X(L)*(Xb-XB)))
wMB(J,K)=WI(J.K)*(4.0*x2+2.0*x4+(6.0/H1)*(x5—x7-X(L)*(X6-xa)))
G0 TO 12
11 WMT(JoK) =WIJ oK) R(2,0%X244 JO¥X4~(6,0/HL) *{ XT-X(L)*X8B))
WMB(Js K)=WI(JgK) % 4, 0%X242,0%X4={6.0/H1 )% (XT-X(L)*X8))
CONTINUE
CONTINUE
CONTINUE
DO 21 J=1,N
L=J-NX
IFI(NSL.EQ.C)GO TO 70
DO 22 I=1,NS1
K=NS-I+1
J2={K~2 ) *ND+NN+1
IF(J.GT.NX)GC TO 23
PDEL(J,K)=PCLJIoKI®[XXTI2+ND) =X X{J2)+Y (J)*(XX(J242+ND)-XX(J2+2)))*
1PAAL
GO TO 24
23 J3=J2+1
PDEL(J,K)=PC(J.K)*(XX(J3+ND)-XX(J3)-X(L)*(XX(J2+2+ND)-XX(J2+2))l*
1PAAL
24 CONTINUE
22 CONTINUE
70 IF(J.GT.NX)GC TO 25
PDEL {J91)=PCLJp1 )X {XXINN+L)+Y(JIRXX{NN+3))*PAAL
G0 TO 26
25 PDEL {Jp1)=PC(Jy1 ) {XXINN+2)=X{L)*XX(NN+3))*PAAL
26 CONTINUE

—
~wN



21 CONTINUE A35
1F (IH.EQ.0)60 TO 30
CALL MODFOR

30 GMANEL N

EFF(J,NS)=(CMB(J:NS)*CMT(J:NS)+NMB(J.NS)+NMT(J,NS)+PDEL(J.NS))/H(N
15)

IFINS.EQ.1)G0 TO 72

DO 14 K=24NS

L=NS+1-K
BFF(JoL’=(CMB(J.L)+CHT(J.L)+HMT(J1L)+HMB(J:L)+PDEL(JyL))/H(L)-(CMB
1(JyL+1)+CMT(J;L+1)*HMB(J,L+1)+HMT(J.L+l)+PDEL(J.L+1))/H(L+l)

14 CONTINUE
72 CONTINUE
13 CONTINUE
DO 40 K=1,4NS
00 41 J=14NX
T{JsK)=BFF{J,K)*Y(J)
41 CONTINUE :
DO 42 J=1,NY
L=J+NX
T{LyK)==BFF(L,K)%*X{J)
42 CONTINUE
SuUM=0.0
DO 43 J=14N
SUN=SUM+T(JsK)
43 CONTINUE
T(19K)=SUM4(FX(K)*YFX(K)-FY(K'*XFY(K)’*PA(L
40 CONTINUE
[FINS1.EQ.0)GO TO 71
IFINS1.EQ.1)GO TO 73
T(17N5)=T(lsNS)-GKT(NS)*(XX(NS*ND)'XX((NS'I’*ND)'
D0 44 K=2,4NS1
L1=K%ND
L2=L1-ND
L3=L1+ND
T(laK)=T(11K)‘GKT(K)*(XX(L1)‘XX(LZ))*GKT(K*I)*(XX(L3)-XX(L1),
44 CONTINUE
73 T(l'1)=T(lrl)-GKT(1)*XX(ND)*GKT(Z)*(XX(ND+ND)-XX(ND))
71 CONTINUE
DO 15 K=1,4NS
SUM=0.0
DO 16 J=1,NX
SUM=SUM+BFF{JyK)
16 CONTINUE
BFF{NX,K)=SUM
15 CONTINUE
DO 17 K=1,4NS
SUM=0.0
DO 18 J=NX1sN
SUM=SUM+BFF{J,yK)
18 CONTINUE
BFF{N,sK)=SUM
17 CONTINUE
WRITE(6519)(BFF{NXK)K=14NS)
19 FORMAT(1HO,T5,'RESISTING FORCE X= ', 10F10,.5)
WRITE(6,920) {BFF(NyK) ¢K=14NS)
20 FORMAT(1HO,T5,'RESISTING FORCE Y= ', 10F10.5)
WRITE(6,45)(T{1,K)yK=14NS)



45 FORMAT(1HO,T5,*RESULTANT MOMENT = 9,10E10.3) : A36

WRITE{6,27)

27 FORMAT{1H1,75,'FLOOR NUMBER',T22,'DISPLACEMENT X*,T39,'DISPLACEMEN

1T Y*,T58,*FLOOR ROTATION'/)

DO 28 I=14NS

L=1%ND
WRITE(6529) 1, XX(L=2) 4XX{L=1)4XX(L)

28 CONTINUE
29 FORMAT(1HO,T11,12,723,E11.49T409E11.4,T619E11.4)

33

41

40

42

RETURN
END

SUBROUTINE MODFOR
CCMMCN E,EN.YSpPALL.PAAL,DET,DETI:UT,UTI9VT.VT19PoP1pX(IZ)pY(lZ),H

l(30),ESC(12),ESN(12)'GKT(3011FX(3031FY(30),YFX(3O),XFY(303.RIH(300
Z)pPMHKBOOJQPINC(BOO)oBF(lZnBO)vBH(lZoBO)9H(12730),BHC(12930)0ALL
3,CI(12.30).WI(12,30)'BFI(12030)pBHI(12030)9CM(12:30)1NM(12'30)yBFM
4(12,30).BWM(12o30).PC(IZvBO),WB(12v3O)pA(422933)'B(4ZZIpXX(422)oNT
5(12.30),PDEL(12,30),BFMC(12930)1BWMC(12130)'BHMH(IZoBO)'CMT(12o3O)
61CMB(12o30)9HMT(12930)oHMB(lZ:3OlpBFF(lZvBO)aCB(IZ'BODpCT(12930)98
7FC(12'30,'BHH(12930)OAALvNSvNX!NY,NXIQNSIQNOND)NNQNU,NB'[HcIND(IZ’
8,1K{12), IHF(300),IHB{300), IHL(300)

00 31 I=1,IH

J1=1HF(1)

J2=1HB(I)

J3=1THL(I)

11=IK(J2)-IND(J2)+{J1-1)*ND

[12=(J1-2)*ND+NN+1

[3=12+1

H1=H(J1)

X1=XX{I1+ND)

X2=XX{I2+ND)

X3=XX{13+NO)

X4=XX{11+1+ND)

X5=XX{12+2+ND)

C1=3.0*CI(J2,J1)

W1l=3,0%WI{J2yJ1)

IF{J3.EQ.1)G0 TO 33

IF(J3.EQ.3)1G0 TO 34

IF{J3.EQ.4)G0 TO 35

IF(J3.EQ.5)G0 TO 36

1F{J3.EQ.7)G0 TO 37

IF{J3.EQ.8)G0 TO 38

IF{J3.EQ.9)G0 TO 39

GO TO 32

PM=CBl(J2yJ1)

CMB1J2,J1)=PM

IF(CT(J2,J1)NE.0.0)GO TO 32

IF(J2.GT.NX)GO TO 40

IF{JL.EQ.1)GO TO 41
CMT(J2,J1)=0.50%PM+C1* XL+ (XX{12)-X2+Y{J2)*(XX(12+2)-X5))/HL)

GO TO 32

CMT(J2,J1)=0.50%PM+C1#(X1-(X2+Y(J2)%X5)/H1)

GO TC 32

IF{J1.EQ.1)G0 TO 42 ,
CMT(JZ'J1)=0.50*PM+C1*(X1+(XX(13)-X3-X(J2-NX)*(XX(lZ+2)—X5)lIH1)

GO T0 32
CMT{J2,J1)=0.50%PM+C 1*{X1= (X3~ X{J2-NX) *X5) /H1)



34

44

43

45

35

36

47

46

48

37

50

49

51
38

39

32

GO TO 32 A37

PM=CT(J2,J1)
CMT(J2,J1)=PM
1FI{CB(J2,J1) .NE.0.0)GO TO 32
IF{J2.GT.NX)GO TO 43
IF{J1.EQ.1)GO TO 44
CMB(JZ,Jl)=0.50*PM+Cl*(XX(Il)*(XX(IZ)-X2+Y(J2)*|XX(IZ*Z)-XS))/HI)

GO TO 32
CMB(JZ,J1)=O.50+C1*(XX(ll)-(XZ+Y(J2)‘X5)/H1)

GO 7C 32
IF{J1.EQ.1)G0 TO 45
CMB(J21J1)=.5*PM+C1*(XX(Illf(XX(13)-X3+X(JZ-NX)*(XS-XX(I3+I)l)/Hl)

GO 1O 32

CMB(J29J1)=0.50*PM+C1*(XX(Il)+(-X3+X(JZ—NX)*X5)/Hl)

GO TO 32

PM=BFC{J2,J1)

BFMC(J2,J1)=PM

GO 70 32

PM=WB(J2,J1)

WMB(J2,J1)=PN

IF{WT(J2,J1) .NE.0.0)GO TO 32

IF{J2.GT.NX)GO TO 46

IF{J1.EQ.1)GO TO 47
HMT(JZ:JI)=.50*PM+N1*(X4+(XX(IZ)-X2+Y(JZ)*(XX(12+2’-X5))/H1)
GO 10 32

HMT(JZ.Jl’=0.50*PM+Nl*(XG-(X2+Y(JZl*X5)/H1)

GO TO 32

IF{J1.EQ.1)GO TO 48
HMT(JZ,J1)=0.50*PM+H1*(X4+(XX(I3)-X3—X(J2—NX)*(XX(13+1)—X5))/Hl)
GO 10 32

HMT(JZ.JI)=0.50*PM+H1*(X4*(-X3+X(J2~NX)*X5)/Hl)

GO 1O 32

PM=KT{J2+J1)

WMT(J2,J1)=PM

IF(WB(J24J1).NEL.O.0)GO TO 32

IF(J2.GT.NX)GO TO 49

IF{J1.EQ.1)GO TO 50
HMB(J2.J1)=.50*PM+N1*(XX(ll+l)0(XX(IZ)-X2+Y(JZ)*(XX(12+2)-X5))/H1)
GO 1O 32 )
NMB(JZ.J1)=O.50*PM+H1*(XX(Il+l)-(X2+Y(J2)*X5)IH1)

GO TO 32

IF{J1.EQ.1)G0 TO 51
HMB(JZ,J1)=0.50*PM+H1*(XX(Il+ll+(XX(I3)-X3-X(J2~NX)*(XX(1301)-X5))

1/H1)

GG To 32

HMB(J2,J1)=0.50*PM+H1*(XX(Il+l)-(x3—X(J2-NX)*X5ilHl)

GO TO 32

PM=BWW{J2,d1)

BWMW(J2,J1 )=PM

IF(BWC{J2,J1).NE.O.0)GO TO 32
BHMC(JZ:JI)=.5*PMGBHI(J2'JI)*(3.0*X10l.5*H(JZ:JI)*X4IBN(J29J1))
GO TO 32

PM=BWC{J24J1)

BWMC(J2,J1)=PM

IF{BHW(J29J1)«NE.0.0)GO TO 32
BHMH(JZ'J1)=0.50*PM+BHI(JZ.JI)*X4*(3.0+1.5*N(J2oJ1)/BH(JZ'JI))

CONT INUE



31 CONTINUE A38

RETURN
END

SUBROUTINE WRITEZ2
COMMON E oEW,YS oPALL s PAAL ¢ DEToDET1,UToUTLoVTsVTLyPyP1yX{12)5Y(12),H

l(30)pESC(12),ESW(12),GKT(3C)oFX(30ivFY(30),YFX(30)'XFY(30)yRIH(300
2),PMH(3OO),PINC(3OO).BF(12130),3"(12:30)gH(lZvBO)gBHC(lZ,BO)yALL
3:CI112030)vNI(12130),BFI(12930’,BNI(12930),CM(12v30)1HM(12'30)'BFM
4(12.30).BHM(12:30)pPC(12930)9WB(12:30)oA(422733’pB(422"XX(422),HT
5(12130)oPDEL(12'30)'BFMC(12p30)1BNMC(12930),BHMH(lZo30),CMT(12y30)
6,CMB(12,30)9HMT(12,3OI,NMB(12,30)yBFF(lZvBOlpCB(12.30),CT(12o30’v8
7FC(12,30).BNH(12,30),AALpNSoNX.NYvNXl»NSl:NaND.NN,NUpNBaIH,IND(IZ)
8,1K(12), IHF(300),1HB(300), IHL(300)
DO 1 I=1,NX
WRITE(6,2)1
2 FORMAT(1HO0/,2Xs"BENT X NUMBER',T23,12//)

WRITE(643)
3 FORMAT{1HO,T2, *STORY NUMBER®,T27,*WALL MOMENTS®,T57,'COLUMN NOMENT

15,788, WALL-BEAM MOMENTS',T117,*FRAME-BEAM'//T22,*80TTOM®,T39,°'T0
2P',T54,'BOTTOM'.T?I,'TOP'pT84.'COLUMN-END'.TlOl,'HALL-END'pTll8.'M

30MENT')
00 4 J=14NS$S
WRITE(695)JsWMB(T14J) gWMT (1 ¢J) s CMB(I9J) sCMT {L5J)yBHMC{I+J),BUMAIT,J

1)¢BFMC{I,J)
5 FORMAT(IHO.T7,IZ.TZO'EIIo4,T35gEllo4gT52pE11.4'T679E11.4vT84yE11o4
19sT99,E11.49T116,E11.4)
4 CONTINUE
1 CONTINUE
D0 6 I=NX1,N
L=I-NX
WRITE(6,7)L
7 FORMAT{1HO/92Xs*BENT Y NUMBER® 4T23,12//)
WRITE(6,3)
D0 8 J=1,NS
WRITE(6v5)JvNMB(IvJ)oﬂﬂT(ItJ)pCMB(IaJ)'CMT(le).BHMC(IleyBNMH(lpJ
1),BFMC(I,J)
8 CONTINUE
6 CONTINUE
RETURN
END

SUBRCUTINE RECYCL

COMMON E yEWsYSsPALL,PAAL 9 DET4DETLyUTUTL, VT VT1,PyPLleX(12),Y(12),H
1{30)9ESCI12) sESW{12)4GKT(30)4FX(30),FY{30),YFX(30),XFY{30),RIH(300
2)sPMH(300),PINC{300)yBF(12,430)4BW{12,30),W{12,30)4BWC(12,30),ALL
3,C1(12,30),WI(12,30),B8F1(12,30),BWI({12,30),CM(12,30),WM(12,30),BFM
4(12:30),3“"(12930),PC(12130)'NB(12930)vA(4ZZt33’98(422)9XX(422)9HT
5(12930)yPDEL(12430)yBFMC(12430),BWMC{12,30),BWMW(12,30),CMT(12,30)
69CMB{12,30) 3 WMT(12,30),WMB112,30),BFF(12,30),CB(12,430),CT(12,30),8B
7FC(12130’15“”(12030)'AAL1NS)NX'NYvNXl'NSIvNyND,NN,NUoNBpIH,IND(IZ)
8,1K(12), IHF{300),1HB(300), IHL{300)

DIMENSIGON BFMC1{11424)sBWMC1{11,24)sBWMW1(11,24),CMT1(11y24),CMBI(
111924)3WMT1(11,24) yWMB1(11,24)
READ(5,11)INCRyDISX,DISY,ISTEP,NCYCL
11 FORMAT(I110,2F10.2,2110)
WRITE(6413)INCRy ISTEP,NCYCL



A39
13 FORMAT{LHO//4T5, %%k INCR = Vyl2,? %*%x% 0= HINGE BY HINGE, 1= INC
LREMENT BY ALL®//T5,0%k% ISTEP = 1,12, *%kx -1= MISS FIRST NEGATIV
2E NORMALIZED DETERMINANT, 0= REDUCE LOAD WHEN DETERMINANT IS NEGAT
JIVEV//TS, v &kk NCYCL = '913y! *%k? ) '
WRITE(6,14)DISX,DISY
14 FORMAT(1HO// 4TS, LIMIT ON U =1,F9,14' LIMIT ON V ='yF9,1)
DET1=DET '
IL=0
1 CALL CHECK
WRITE(6,2)IH,PALLyPAAL
2 FORMAT{1HO0///sT5,'TOTAL HINGES FORMED = ',13,733,'L0OAD FACTOR = )
1F6.34T60,'AXIAL LOAD FACTOR = ' ,F6.3)
CALL HINROT
WRITE(6,17)IL
17 FORMAT(1HO//,T5,%%%* END OF OUTPUT DATA FOR CYCLE ?,14,! *%k%4//)
IF(UT/UTI-GT.DISX.OR.VT/VTI.GT-DISY)GO T0 7
IF(IL.EQ.NCYCLIGO TO 15
P1=PALL
IF(DET/DET1.LT.0.0)ALL==ALL
IF(DET/DETI.LT.0.0)[STEP=ISTEP+1
IFIISTEP.EQ.1)GO TO 10
IF(DET/DET1.LT.0.0)ALL==-ALL
10 ALL1=ALL
DET1=DET
PALL=PALL+ALL]
PAAL=PAAL+AAL
P=PALL
IF{INCR.FQ.1)G0 TO 12
DO 3 I=1,N
DO 4 J=1,NS
CMB1{I,J)=CMB(1,J)
CMT1{I,J)=CNT(I,J)
IF(BFItI,1).EQ.0.0)GC TO 5
BFMC1(1,J)=BFMC{I,J}
5 IF(IND{I).EQ.O0)GO TO 6
WMTL(I,J)=HNT(I,J)}
WMBL(1,J)=WMB(I,J)
BWMCL{I,J)=BWMC{I,J)
BWMW1{1,J)=BWMW(I,J)
CONT INUE
CONTINUE
CONTINUE
CALL SETUP
CALL CALFCOR
CALL CHECKZ(ISTEP'BFNCI’BHMCI'BNMleCMTlvCMBleMTI,WMBl)
12 CALL SETUP
CALL CALFGR
IL=1L+1
60 T0 1
15 WRITE(6,16)
16 FORMAT{1HO//,T5, v%%% ANALYSIS TERMINATED BY LIMIT ON CYCLES *%x°¢)
7 RETURN
END

SUBROUTINE  CHECK

COMMON E,EH,YS,PALL,PAALpDET,DETl,UT'UTI,VT.VTlpP,PI'X(IZ),Y(lZ).H
1(30),ESC(12):ESN(12)pGKT(BC),FX(3O)1FY(30)'YFX(BO)pXFY(BO)'RIH(BOO
2),PMH£300)9PINC(300)9BF(12o30)yBH(lZ’30)yH(12’3O)sBWC(12930),ALL
39C!(12930)'WI(12’30’,BFI(12|30,|BHI(12930)!CM(IZ!3O)!NM([2$30).BFM

w o



A40

4(12930)yBWM{12930),PCl12530)4WB(12+30)9A(422433),B{422)4XX(422)4WT
5(12,30),PDEL(12,30),BFMC(12,30),BWMC{12,30),BWMW(12,30),CMT (12, 30)
69CMB(12,30)yWMT(12430)yWMB(12,+30),4BFF{12430),CB{12,30),CT{12,30),B
TFC(12930) BWW(12,430) AALyNSyNX sNYyNX1oNSL1yNyNDyNNyNUyNBsIH,IND(12)
89 IK(12),IHF(300),IHB(300),IHL{300)

DO 1 J=14NS

DO 2 I=1,N

J1=IK(I)=IND(I)+{J-1)*ND

J2=J1+ND

J3=J1+1

J4=J2+1

IF{ ABS(CMBlIsJ)).GE.CM{I,J))GOD TO 3

IF( ABS(CMT(I,J)).GE.CM(I,J))GC TO 5

IF{BFM({1,J).EQ.0.0)GO TO 8

IF{ ABS(BFMC(I+J)).GE.BFM(I,J))GO TO 7

IFUIND(I).EQ.0)GO TO 9

IF( ABS({WMB(IsJ))eGE.WM({I,J))GC TO 10

IF( ABS{WMT(IyJ)).GE.WMII,4J))GGC TO 12

IF( ABS(BWMW(I sJ)) .GE.BWM({I,J))GO TO 14
IF{ ABS(BWMC(I4J)) «GE.BWM(I,J))GO TO 16

GO TO 9
IF(CB(I,J).NE.0.0)GO TO 4

IH=TH+1

THF (TH)=J

IHB{IH) =1

THL{IH)=1

RIH(IH)=XX{J1)

PINC(IH)=PALL
CB(I,J)=CM(1,J)*CMB(1,J)/ ABSICMB(I,J))
WRITE(6917) [Hy TyJdy IHLUIH) ¢ RIH(IH)

GO TO 4

IF(CT(1,J).NE.0.0)GO TO 6

[H=IH+1

IKF(TH)=J

THB(IH)=1

IHL(IH)=3

RIHLIH) =XX(J2)

PINC(IH)=PALL
CT(1,J)=CM(1,J)*CMT{1,J)/ ABS(CMT{I,J))
WRITE(6917)IHy [yJy IHLEIH) 5 RIH(IH)

GO TO 6

IF(BFC(I,J).NE.0.0)GO TO 8

IH=TH+1

THF (TH)=J

IHB{1H)=1

THL{IH)=4

RIH(IH)=XX 1J2)

PINC(IH)=PALL
BFC(T5J)=BFM(T,J)*BFMC(I,d)/ ABS(BFMC(I,J))
WRITE(6518) EHy Iy Jy IHLUIH) 4 RIH( IH)

GO TO 8

IF(WBII,J).NE.0.0)GO TO 11

TH=IH+]

IHF(IH) =

IHB(IH)=1

IHL(IH)=5

RIH{IH) =XX{J3)

PINC(IH)=PALL
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WB(T»J)=WM{T,J)*WMBLI,J)/ ABS{WMB(I,J))
WRITE(6917)IHyI9Jy IHLUIH) yRIHLIH)

GO 10 11

IF(WT(I,J).NE.0.0)GO TO 13

IH=1H+1

IHF{IH)=J

IHB(IH)=1

IHL(IH) =7

RIH{IH)=XX(J4)

PINC(IH)=PALL
WT{IyJ)=WM{T,yJ)*UWMT(I,J)/ ABS(WMT{I,J))
WRITE(6417)THy IsJy THLUTH) o RIHITH)

GO 70O 13

IF(BWH(IyJ).NE.O.0)GO TO 15

IH=1H+1

IHF(IH)=J

IHB{ IH)=1

IHL({IH)=8

RIH{IH)=XX{J4)

PINC{IH)=PALL

BHWW(T ¢J)}=BWM(I,J)*BUMW{IyJ)/ ABS(BWMW(I,J))
WRITE(6918)IHyIsJdy IHL{IH) yRIH(IH)

GO T0 15

IF(BWC(I,4J)«NE.O.O)GO TO 9

IH=TH+1

IHF{IH)=J

IHB({IH)=1

IHL(IH)=9

RIH(IH)=XX(J2)

PINCIIH)=PALL
BWCIIJ)=BWM(T,J)%BWMC{I,J)/ ABS(BWMC(I,J)]}
WRITE(6918)IHy Iy Jy IHLIIH) yRIH{TH)
CONTINUE

CONTINUE

CONTINUE

A4l

FORMAT{1HO,T5,*HINGE NUMBER '4,13,' FOUND IN BENT *,I3,* IN STORY !

1,13,* AT LOCATION *,I3,*, ROTATION OF MEMBER END =

'yE12.5)

18 FORMAT(1HO,T5,'HINGE NUMBER ', I3,* FOUND IN BENT *,I3,* AT FLOOR °*
1y13,% AT LOCATION '41I3,*, ROTATICON OF MEMBER END = ',E12.5)

RETURN
END

SUBROUTINE CHECK1

COMMON ESEWyYSsPALLyPAAL s DETyDETLyUT sUT1yVT,VT14PsPLyaX(12),Y(12),H
1(30)4ESC(12)4ESW(12) 4GKT{3C)4FX(30),FY{30),YFX{30),XFY{30),RIH(300
2)PMH(300),PINC(300)4BF{12+430),BW(12,30)yW({12,30),BWC(12,30),ALL
3,C1(12,430),WI(12,30),4BFI(12,30),BWI(12430),CM(12430),WM(12,30),BFM
4(12530)9BWM(12,30)4PC(12430) yWB(12530)9A(422+33) 4B422)+4XX(422)4WT
5(12,30),PDEL(12,30)4BFMC(12430),BWMC{12430),BWMH{12+30),CMT(12,30)
6,CMB(12,430),WMT{12,30),WMB(12,30),BFF(12,30),CB8(12,30),CT(12,30),B
TFC(12930)yBHW(12930) AAL yNSoNX ¢NYyNXL9NSL9yN,ND¢NNyNU,NBoIH, IND(12)

89 IK{12),IHF{300)+IHB(300), IHL(300)
DO 1 I=1,N

DO 2 J=1,NS

CMB(I,J)= ABS(CMB(I,J)}/CM(1,J))
CMT(I,J)= ABS(CMT(I,J)}/CMI,J))
IF{BFMC(1,J).EQ.0.0)GC TO 3
BFMC{IsJ)= ABS(BFMC(I,J)/BFM(I,J))



N
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Ut oN o

IFCIND(IY.EQ.0)GO TU 4
WMB{I,J)= ABS({WMB(I,J)/WM(I,J))
WMT{I4Jd)= ABS{WMT(I,J)/WM(I,J4))
BWMC(I9J)= ABS(BWMC(I,J)/BWMLT,J))
BWMW(IL,J)= ABS(BWMW(I,J)/BWM{I,J))
CONTINUE

CONTINUE

CONTINUE

R=0.0

INS=NS1

IF{NS1.EQ.Q) INS=1

DO 5 1=1,N

DO 6 J=1,INS

IFINS.GT.1)GO TO 10
CMB(I4J+1)=0.0

CMT{I,J+1)=0,0

BFMC(I,J+1)=0.0

WMB(I,J41)=0.0

WMT{I,J+1)=0.0

BWMC(I,J+1)=0.0

BWMW({I,J+13=0.0
X1=AMAXL1{CMB{I4J)4CMB(I,J+1))
X2=AMAXL(CMT(1,J)sCMT(I,J+1))}
X3=AMAX1 (BFMC{14J),BFMC(I,J¢1))
IF(IND(I).EQ.0)GO TO 7
X4=AMAX1{WMB(I,J)y WMB(I,J+1))
XS=AMAX1 (WMT (1 5J)y WMT(IyJ+1))
X6=AMAX1(BWMC(T4J) yBWNC(I,J+1))
XT=AMAX1{BWMW(IsJ) ,BRMH{TyJ+1)})
R=AMAXL{RsX19X29X3¢X49X59X65X7)
GO 10 8

R=AMAX1(RyX19X24X3)

CONTINUE

CONTINUE

CONTINUE

PALL=1.0/R

PALL=PALL+0.0001

CALL SETUP

CALL CALFOR

RETURN

END

A42

SUBROUTINE  CHECK2{ISTEP,BFMC1,BWMC1,BWMW1,CMT1,CMBL,WMTL,WMB1)

COMMON EsEW,YS,PALLyPAAL ¢ DET4DET1UToUTL VT VT14P,PLyX(12),Y(12),H
1(30)4ESC(12),ESWI12),GKT{3C),FX{30),FY{30),YFX{30),XFY{30),RIH(300
2) 4 PMH(300)4PINC(300)4BF{12,30)+8W{12,30) yW(12430),BWC{12¢430),ALL

3,C1(12930)9WI(12430),BF1(12,30),8WI{12,30),CM(12430),WM(12,30),BFM
4(12930),BHM{12,30),PC(12430)WB{12+30)9A(422933),B(422)yXX{422)WT
5{12,30)4PDEL{12,30),BFMC(12,30),BWMC(12,30) 4BWMW(12,30),CMT(12,30)
6yCMB{12430),WMT(12,30),WMB(12,30)4BFF(12,30),CB(12,30),CT(12,30),B
TFC{12530)5BWW(12+30) yAALsNSyNXyNYoNX1yNSLyNyNDyNNyNUyNBsIH,IND(12)

8+ IK{(12)5IHF(300)»IHB{300), IHL{300)

DIMENSION BFMCL(11,24),BWMC1(11,24),BWMNL1(11,24),CMT1{11,24),CMBL{

111,24) yWMT1(11,24) yWMBL{11,24)
DO 1 I=1,N

DO 2 J=1,4NS
DEN=CMB{1,J)-CMBL(1,J)
IF(CB(14J) NE.0.0)GO TO 15
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CMBL(I,J)= ABS({CM(I,J)- ABS{CMBL(I,J)))/DEN) A43

GO 1O 10

CMB1(1,J)=100.0

DEN=CMT{1,J)=CMTL(I,J)

IF(CT(1,J).NE.0.0)GO TO 16

CMT1{I,J)= ABS{{CM(I,4J)- ABS(CMT1(I,J)))/DEN)
GO 70 11

CMT1{I,J)=100.0

DEN=BFMC{TI,J)-BFMC1(1,J)
IF(BFC(I,J).NE.O.0)GO TO 17
IF{BFMC1(I,J).EQ.0.0)G0 TO 3

BFMC1{I,J)= ABS({BFM(I,J)- ABS(BFMC1{(I,J)))/DEN)
GO TO 3

BFMC1(I,J)=100.0

IF{IND(I).EQ.0)GO TO 4

DEN=WMB{I,J)-WMBL(IyJ)

IF(WB{I,J).NE.0.0)GO TO 18

WMB1(1,J)= ABS{(WM(I,J)- ABS{WMBL1{1,J)))/DEN)
GO T0 12

WMB1{(I,J)=100.0

DEN=WMT (I, J)-WMT1(I,J)

IF(WT{I,J).NE.O.0)GO TO 19 .

WMT1(I,J)= ABS{(WM{I,J)- ABS{WMT1(I,J)))/DEN)
GO 70 13

WMT1(1,J)=100.0

DEN=BWMC (I ,J)-BWMCL(I,J)
[F{BWC(I4J).NE.0.0)GO TO 20

BWMC1(IyJ)= ABS({BWM{I,J)- ABS(BWMCL{I,J)))/DEN)
GO TO 14

BWMC1(1,J)=100.0

DEN=BWMW(I ,J)-BWMW1(I,J)
[F(BWW(I4J).NE.O.0)GO TO 21

BWMW1{IsJ)= ABSU{BWM(I,J)- ABS(BWMW1(I,J4)))/DEN)
GO TO 4

BWMW1(I,J)=100.0

CONTINUE

CONTINUE

CONTINUE

R=100.0

INS=NS1

IF{NS1.EQ.Q) INS=1

DO 5 I=1,N

DO 6 J=1,INS

IF(NS.NE.1)GO TO 40

CMB1(I,J+¢1)=100.

CMT1lI,J+1)=100.

BFMC1(1,J+1)=100.

WMB1(I,J+1)=100.

WMT1(I,J+1)=100.

BWMC1(1,J41)=100.

BWMWL(I,J+1)=100.
X1=AMINL(CMB1(I,J)4CMBL{I,J+1))
X2=AMINL(CMT1(I,J),CMTL(I,J+1))
IF(BFI(I,J).EQ.0.0)GC TO 9
X3=AMIN1(BFMC1(I,J),BFMCL(1,J+1))

GO T4 30

X3=100.0

IF{IND(I).EQ.0)GO TO 7



X4=AMINL (WMB1(1,J),WMBL{I,J+1)) Ad4

XS5=AMINL(WMTL(I4J) yWNTL(I4J+1))
X6=AMINL {BWMCL{1,J)yBWMCLlI4J+1))
XT7=AMINL (BWMWL1 (I ,J)yBWMWL{I,J+1))
R=AMINL(RyX19X29 X3 9y X4y X59 X694 XT)
GO YO 8

R=AMINL(RsX19X24X3)

CONT INUE

CONTINUE

CONTINUE

PALL=P14R*{P-P1)

PALL=PALL+0.0001
IF(ISTEP.EQ.1)PALL=PALL-0.0002
RETURN

END

SUBROUTINE  HINROT
COMMON E o EW)YSsPALLyPAALyDET)DETL,UTUT1 VT 3VTL1,PyPLyX(12),Y(12)H
1(30)4ESCUL2),ESW(12)+GKT(30),FX(30),FY(30),YFX{30),XFY{30),RIH(300
2),PMHU300) ,PINC{300) +BF(12,30),BW(12,30)4W(12,30),BWC(12,30),ALL
3,C1(12,30),WI(12430)4BFI{12430)sBWI{12,30)4CM(12530),WM{12,30),BFM
4(12930) ¢BWM(12430)4PC(12+30)yWBI12930),A1422533),B(422)yXX{422),WT
5(12430)4PDEL(12,30)4BFMC(12+30) 4BWMC{12,30) yBWMW(12,530),CMT (12,30)
6yCMB(124y30),WMT(12,430),WMB(12,30),BFF(12,30),CB{12,30),CT{12,30),8
TFC(12530) 4 BWW(12430) yAAL ¢ NSy NX yNYyNX1yNSLyNoyNDyNNsNUyNBy IHy IND(12)
8yIK(12), IHF(300),IHB(300), IHL(300)
DIMENS ION RIH1{300),RIH2(300)
IF(IH.EQ.O)RETURN
DO 1 I=1,IH
J1=THF(I)
J2=IHB(1)
J3=1IHL(T)
I1=IK(J2)-IND(J2)+({J1-1)*ND
I12=(J1-2)%ND+NN+1
13=12+1
Hl=H{J1)
H2=3.0/H1
X1=XX{I1+ND)
X2=XX{12+ND)
X3=XX(I3+ND)
X4=XX{12+2+ND)
X5=XX(I1+1+ND)
IF{J3.EQ.1)G0 TO
IF{J3.EQ.3)G0 TO
IF(J3.EQ.4)G0 TO
IF(J3.EQ.5)G0 TO
IF{J3.EQ.7)GO TO
IF{J3.EQ.8)G0 TO
IF{J3.EQ.9)G0 TO
G0 TO 9
2 C1=CB{J2,J1)/12.0%CI(J2,J1))
IF{CT(J2,J1).NE.0.0)GO TO 10
IF{J2.GT.NX}GO TO 11
IF(J1.EQ.1)G0 TO 12
RIHI(I)= o50%(Cl=X1+H2*{X2-XX(I2)+Y(J2)*{X4~XX{12+42))))-XX(I1)
GO YO 9
12 RIHI{I)= 50%{CL=X1+H2%(X24Y(J2)%X4))=XX(I1)
GO TO 9
11 IF(J1.EQ.1)G0 TG 13
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A4S
RIHL{I)= SO*(C1-X14+H2¥( X3=XX{I3)=X{ J2=-NX) ®(X4=XX{T2+2})))=XX(I1)
GO TO 9
RIHL(I)= o50%(CL-X1+H2% (X3=X{J2-NX)%X4))-XX(I1)
GO TO 9
IF(J1.EQ.1)GO TO 40
SW={X2=XX{ [2)+Y{J2)*(X4=XX (1242 ) ) /H1
IF(J2.GT JNX)SH=(X3=XX( [3)-X{ J2-NX) #{ X4=XX{ I2¢2) ) ) JHL
GO 70 44
SW={X2+Y1J2)%X4) H1
IF{J2.GT NX)SW={X3=X{J2~-NX)*X4})/H1
IF(CB(J2,J1)%*CT(J2,J1).6T.0.0)60 TO 14
RIH1(I)= CLl+SW-XX(I1)

GO 70 9

RIH1(I)= C1/3.0+SW-XX(I1)

G0 TO 9
Cl=CT{J2,J1)/(2.0%CI{J2,J1))
IF(CB{J24J1).NE.0.0)GO TO 15
IF(J2.6T.NX)GO TO 16

IF{J1.EQ.1)GO TO 17
RTHL(I)= o50%{CLl-XX{IL1)+H2*(X2-XXCI12)+Y(J2)*(X4=XX(I2+42))))-X1

GO Y0 9

RIHL(I)= <50%(C1l-XX{I1)+H2#(X2+Y(J2)*X4))-X1

GO 10 9

IF(J1.EQ.1)GO TO 18

RIHL(I)= 50%{CL-XX{T1)+H2*{X3-XX{I3)=-X(J2=NX)*{X4=XX{12+2))))-X1
GO 10 9

RIH1(I)= 50%(CL-XX{IL1)+H2*(X3-X(J2=-NX)*X4))-X1

GO TO 9

IF{J1.EQ.1)GO TO 41

SW={X2=XX{I2)+Y(J2)*(X4=XX(12+2)))/H]

IF (J2.GTNX)SH=(X3-XX(I3)=-X{J2-NX)*(X4=XX{12+2)))/H1
GO TO 45

SH={X24Y{J2)*X4) /H]

IF(J2.GT«NX) SH={X3-X{J2-NX)*X4)/H1
IF(CB{J2,J1)*CT(J2,41).GT.0.0)GO TO 19

RIHL(I)= Cl+SW-X1

GO TO 9

RIHL(I)= C1/3.0+SH~-X1

GO T0 9

RIHL(I)= BFC(J2,J1)/(3.0%BFI(J2,J1))~=X1

GO T0 9

W1=WB(J24J1)/(2.0%WI(J2,J1))

IF{WT(J2,J1).NE.0.0)GO TO 20

IF{J2.GT.NX1GO TO 21

[F{J1.EQ.1)G0 TO 22

RIHL(I)= 50%({W1-X5+H2*(X2-XX{I2)+Y(J2)*(X4=-XX(12+42))))=-XX(11+1)
GO 10 9

RIHL(I)= 50%{WI-X5¢H2%(X2+4Y{J2)*X4))=-XX(I1+1)

GO T0 9

IF(J1.EQ.1)G0 TO 23

RIHL{T)=.50%{WL-XS+H2%{ X3=XX(I13)=X(J2=NX)*(X4=XX{1242))))-XX(I1+1)
GO TO 9

RIHL{I)= ,50%(WL-XS5+H2*(X3-X{J2-NX)*X4))=-XX{I1+1)

GO TO 9

IF{J1.EQ.1)GO TO 42
SW={X2=-XX(I12)+Y(J2)*(X4=-XX(12+2)))/H]

IF1J2.GT NX)SW={ X3=-XX{I3)-X{J2=-NX)*{X4=XX(12+2)))/H1
GO TO 46



42 SH=(X2+4Y(J2)*X4)/H1 A46

[F{J2.GTNX)SH={X3-X(J2=~NX)*X4)/H]

46 IFIWB{J2,J1)%WT(J24J1)eGT.0.0)GO TO 24
RIHLUI)= WL+SW=XX(Il+l)
GO TO 9

24 RIHL(I)= W1/3.0+SW-XX(I1l+1)
GO T0 9

6 WI=WT(J2,J1)/(2.0%WI(J2,J1))
[F{WB(J2,J1).NE.0.0)GO TO 25
[F{J2.GT.NX)GO TO 26
IF{J1.EQ.1)GO TO 27
RIHL{I)= 50%(W1-XX(I14+1)+H2*{X2-XX{I2)+Y{J2)*(X4-XX{12+2))))=-X5

GO 70 9
27 RIHL(I)= 50%(Wl-XX{I1+1)%H2%{X2+Y(J2)*X4))-X5
GO 76 9
26 IF({J1.EQ.1)GO TO 28
RIHI(I)= 5% {WI1-XX{I1+1)*H2%(X3-XX(I3)-X{J2-NXDI*{X4-XX{12+2))))-X5

GO 10 9

28 RIH1(I)= oS0%{WL1-XX{I1+1)*H2*(X3-X{J2-NX)*X4))-X5
GO TO 9

25 IF{J1.EQ.1)GO TO 43
SW=(X2-XX{I2)+Y(J2)*(X4=-XX(12+2)))/H]1
IF{J2.GTNX)SH={ X3=XX{I3)=-X{J2-NX)*{X4=-XX{12+2)))/H1

GO TO 47
43 SW=(X2+Y(J2)*X4)/H1
IF(J2.GT .NX)SW=[X3-X(J2-NX)*X4}/H1
47 IF(WB(J2,J1)%NT(J24J1).GT.0.0)G0 TO 29
RIHL(I)= W1+SW-X5
GO TCQ 9
29 RIHL1{I)= W1/3.0+SW-X5
GO TO 9
7 IF(BWC({J29J1).NE.O.0)GO TO 30
RIHL(I)= .S%{BWW(J2,J1)/(2.%BWI{J2+J1))-X1-(1.5%H(JI2,31)/BUH(JI24J1)
1)*X5)-X5
GC TC 9
30 SW==W{J2,J1)%X5/(2.0%BW{J2,J1))
IF(BWC{J2,J1)%BWW(J2,J1).6GT.0.0)GO TO 31
RIHL{I)= BWW(J2,J1)/{2.0%BKI(J24J1)) +SW=X5
GO 70 9
31 RIHL{I)= BWW(J2,J1)/(6.0%BNI(J24J1)) +SH-X5
GO T0 9
8 IF(BWW{J24J1).NE.0.0)GO TO 32
RIHL(I)= .50%(BWC{J2,J1)/(2.0%BHI{J2,J1))-X5%(1.0+1.5%W(J2,J1)/BU(
1d24J1)))-X1
GO T0 9
32 SW=—W(J2,J1)%X5/(2.0%BW(J2,J1))
IF(BWC(J2,J1)*BWW(J2+J1).6GT.0.0)G0 TO 33
RIHL{I)= BWCI{J2,J1)/1{2.0%BWI(J29J1))+SW-X1
G0 T0 9
33 RIHL{I)= BWC(J2,J1)/(6.0%*BHI(J2,J1))+SKW-X1
9 CONTINUE
RIH2(I)=RIHL(I}/RIH(I)
1 CONTINUE

WRITE(6435)PALL
35 FORMAT(1HO//,T75,*ROTATION OF HINGES AND ROTATION RATIOS AT LCAD FA

1CTOR "yF6e3¢4* ARE AS FOLLOWS®/ /TS5 "HINGE 'y T15y *"HINGE ROTATION',T35
23'RATIO PLASTIC/YIELD®)
DO 36 I=1,41IH



36
37

oW
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WRITE(693T7HI,RIHL(I)RIH2(T) A47
CONTINUE

FORMAT{1H0,T75,13,T154E12.5,738,E12.5)

RETURN

END

SUBROUTINE MODIFY

COMMON E+EVWsYSoPALLy PAAL ¢ DETDETLyUTsUTLoVT,VT1,PyPLyX(12),Y(12),H
1030),ESCL12)ESW(12)sGKTI3C)+FX{30)5sFY(30) ,YFX(30)4XFY{30),RIH(300
2) 4 PMH{300) yPINC(300)+BF(12,30),BW{12,30),W(12,30)yBWC(12,30)4ALL
3,C1(12,30),WI{12,430),BFI{124,30),BWI(12,30),CM{12,30),WM(12,30),BFM
4{12+30),BHM(12,30),PC{12+30),WB(12,30)9A{422933)4B(422)9XX{422),WT
5{(12,30) 4 PDEL{12,30)sBFMC(12,30)4BWMC{12,30),BWMW(12,30),CMT(12,30)
6,CMB(12,30),WMT(12,30),WMB(12,30),8FF{12,30),CB(12,30),CT(12,30),B
TFC{12,30),BWW(1230) yAALyNSyNX ¢NYyNX1,NS1yNyNDyNNyNUyNBsIHy IND(12)
8,IK(12),IHF(300),IHB(300}, IHL(300)

IF(IH.EQ.O0)RETURN

DO 1 I=1,NS

DO 2 J=1,4N

11=IK{J)-IND(J)

12=(1-1)*ND-2

13=12+2+11

IF{CB{Js 1) eNEeO.Q0sORCT{JyI)NE.O.0)GO TO 22

IF(BFC({J,1)eNE.0.0)GC TO 4

IF{IND(J).EQ.0)GO TO 16

IF(HB(J,[).NE.0.0.0R."T‘JO[’ONE.0.0)GD TD 7

IF(BWW(J »I)eNEe0.OsOReBWC{JyI).NE.O0.0)GO TO 9

GO TO0 16

C=CI(J,1)

Ci=C/H(I)

C2=C1l/H( 1)

IF{CB(JsI) e NE.OO.AND.CT(Js1).NE.0.0)GO TO 10

IF(CT{J, 1) «NE.O0.0)GO TO 11

Sli=-4,0 i

S$12=-2.0

S13=+6,0

$14=-6.0

S15=+1.0

$16=0.0

S21=-2,.0

$22=-1.0

$23=43,0

§24=-3.0

§25=40.50

§26=0.0

GO TO 12

S11=-1.0

S12=-2.0

S13=+3.,0

S$14=-3,0

S15=0.0

516=0.50

SZI=-200

522=‘4.0

S23=+6.0

S24=-6.0

$25=0.0

$26=1.0



10

12

14

13

GO TO 12

S11==4.0

S$12=-2.0

S13=+46,0

S14=-6.0

515=+1.0

S16=0.0

$21=-2.,0

$22=-4.0

$23=+6.0

$25=0.0

S$26=1.0

S1=511+S21

$2=512+522

$3=S513+S523

S$4=514+524

§5=515+5825

§$6=S16+526

[F{J.GT.NX)GO Y0 13

IF{I.EQ.1)CO TO 14

L=I1+3

AlI2,1)=A(12,1)+54%C2
A(T12,3)=A(12,3)+54*C2%Y(J)
A(I2,L)=A(12,L)+S1*C1
AlI2,1+ND)=A(12,1+4ND)+S3%C2
A{I243+ND)=A{I2,3+#ND)+53*C2%Y(J)
A(I2,L+ND)=A{I2,L+ND)+52%Cl
B(I12)=8(12)-( S5#%CB(J,I)+ S6*CT(Jy1))/H{(])
L=12+2

L1=I1+1
AlL,1)=A(Ly 1) #S4%C2%Y( J)*Y (J)
ALL,L1)=A(L,L1)+S1%C1*Y(J)

AL yND-1)=A{LyND-1)+53%C2%Y(J)
A(LoND+1)=A(LyND+1 )14+S3%C2%Y(J)*Y(J)
A(L L1+ND)=A(L,L1+ND)+52%C1*Y(J)
BIL)=BIL)-( SS*CB(JsI)+ SO6*CT{JyI))%Y(J)I/HII)
L=NN~I1+2

A(I3,1)=A(13,1)+S11*C
A{I3,L)=A(1I3,L)+S13%C1
A(I3,L+2)=A{I3,L+2)+S13%CL*Y(J)
AlLI3,1+ND)=A(13,1+ND)+S512*C
B{I3)=8(13)-S15%CB(J,1)-516*CT(J,1)
L=12+ND

Ll=L+2

Af{Ly1)=A(Ls1)-S3%C2
AlL,3)=A(L,3)-S3%C2%*Y{J)

AL, ,1143)=AlL,1143)-52%C1
BIL)=B(L)+( S5%CB(Jy[)+ S6¥CT(J,I))I/HII)
A(L1,1)=A(LL,1)-S3%C2%Y(J)*Y(J)
A(LLyT1+1)=A{L1,I141)-52*C1*Y{J)

BILL)=B{LL)+( SS5*CB(JyI)+ S6*CT(Jy 1) )*Y(J)/HI(I)

L=13+ND

A(Ly1)=A(L,1)+522%C
BIL)=B{L)-S25%CB{JsI1)-S26%CT(J,[)
GO TO 17

M=J=NX

IF(I.EQ.1)G0 TO 15
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18
17

L=12+1

L1=11+2

A{L,1)=A(Ly1)+54%*C2
AlLy2)=A(L2)-S4%C2%X(M)
AlLsLL)=A(L,L1)+S1%C1
A{LyL+ND)=A(L,1+ND)+S3%C2
ALL32+ND)=A[L424ND)=-S3%C2% X (M)
A(LyL1+ND)=A(L,L1+ND}+S2%C1

B(L)=B(L)={ S5%CB{Js 1)+ S6#CT(JyI))/HLI)
L=12+2

L1=11+1

AlLs1)=AlLol)+S4*C2%X{M)*X (M)
A{LyL1)=A{L,L1)=S1*C1%X{M)
A{LyND)=A(LyND)-S3*C2%X(M)

A{LyND+1)=A(L ND+1)+S3*C2%X (M) *X (M)
A[LoL1+ND)=A{L,L1¢ND)=-S2%C 1% X( M)
B{L)=BIL)+{ S5*%CB{Jy 1)+ S62CT(Jy1))%X(M)/H(T)
L=NN-11+3

A{I3,1)=A(13,1)+511%C
AlI3,L)=A013,L)+S13%C1
ALI34L+1)=A(13,L+1)-S13*%C1*X{M)
ACI3,1+ND)=A(13, 1+ND)+512%C
B(I3)=B(13)-S15%CB(J,1)~-S16*CT(J,yI)
L=12+1+ND

A{Ly1)=A{Ly1)-S3%C2
AlLy2)=A(L42)+S3%C2%X(M)
AlLyI1+2)=A(L,11+42)-S2%C1

B(L)=B(L)+{ S5*CB{Js 1)+ S6#CT(J,1))/H(I)
L=1242+ND

A(Ly1)=A(L1)=S3%C2xX(M)*X (M)

AL I1+1)=A(L,I1+1)+S2%C1*X(M)
B(L)=B(L)={ S5%CB(Jy[)+ S6¥CT{JyI)¥%RX(M}/H(I)
L=13+ND

A(Ls1)=A(L,1)+S22%C
BIL)=BI{L)~S25%CB(Js1)-S26%CT{J,1)

GO TO 17

L=I%ND+11

AlLo1)=A(L41)=3,0%BFI{J,1)
B(L)=B{(L)=BFC{J, 1)

GO TO 18

CALL MODFY1l(I1912,135J,1)

GG 70 8

GO T0 5

GO 10 3

L=I1%ND+11

C=BWI(J,1I)

Cl=CxW(J,1)/BH(J,1)

C2=C1l*W{J,1)/BW{J, 1)

IF{BWHI{J yI) eNEeOOANDBWC (JoI ) eNE.0.01IGO TO 30
IF(BWW(J4I)NE.O.O0)G0 TO 31

S11=-4.0%C

$12=-2.0%C-3.0%C1

S13=4BUHCI(J,I)

$22=~1.0%C~3,0%C 1-2.25%C2
S23=4BHC(Jy1)%(0.50+0.25%¥W{Je11/BHW{J,1))
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31

$4=0.0 ASO
$5<0.0

GO TO 32

S11=—1.0#C

$12=-2.0%C~1.50%C1

$13=40.50%BHKW{ J,1)
§22==440%C4 o 50%C1=2 « 25%C2
S23=4BHW{Jo 1) *(1.04075%H{Js 1) /BH(Js 1))
S4=0.0

$5=0.0

GO TO 32

30 Sll=~4.0%C

32

$12=<2,0%C-3,0*C]
S13=+8BWC{J,I)
$22=-4,0*C-6.0*%C1-3,0%C2
S23=4+BUNI(J s I)*(1e405*{Jy I)/BW{JyI))4+BUC(J,I)%0.50%W(Jy1)/BH(J,y])
S$4=0.0

55=0.0

CONT INUE

AlL,y1)=A{L,1)+S11
A(Ly2)=A(L,2)+512
B(L)=B(L)-S13+54
AlL+1,1)=A(L+]1,1)+S522
B{L+1)=B(L+1)-523+S5

CONTINUE

CONTINUE

CONTINUE

RETURN

END

SUBRQOUTINE MODFY1(I1,124134J41)

COMMON EyEWyYSsPALLyPAAL yDEToDETL,UTyUTL4VT,VTL,P,PL1yX(12)yY(12)yH
L(30),ESC(12),ESWI{12)sGKT{30)4FX{30),FY(30),YFX({30)¢4XFY(30),RIH(300
2) yPMH(300),PINC{300),8F(12,30)+BW(12,30),W(12,30),BWC(12,30),ALL
3,CI1(12430)4WI(12430),BFI(12,30)4BWI(12,30),CM(12430),WM(12,30),BFM
4(12+30)9BWM(12,30),PC{12+30)4WB{12,30)¢A{422533)4B(422),XX(422)4NWT
5(12430) 4PDEL{12,30),BFMC{12,30),BWMC(12530),BHMW({12430),CMT(12,30)
6yCMB(12430)yWMT{12,430),WMB(12,30)4BFF{12,30),CB{(12,30),CT(12,30),8B
TFC(12930)yBWW(12,y30) AALyNSyNXsNYyNX1yNS1yN,NDyNNyNUyNBsIH, IND(12)
89IK(12),IHF(300),IHB(300), IHL{300)

[3=13+1

IF(WB(JsT) e NEcOeOsANDHWT (JyI)eNE.O.0)GDO TO 1

IF(WT{JyI}).NE.O.Q)GO TO 2

Sll=-4.0

S12=-2,0

S13=+6.0

S14=-6.0

S15=+1.0

$16=0.0

$21=-2.0

S22=-1.0

$23=+3.0

$24=-3,0

$25=+0.5

$26=0.0

GO TO 3

511=~1.0

S12=-2.0



S13=43,0
S14=-3,.0
S15=0.0

S16=+0.5
521=-2q0
§22=-4,0
§23=4+6.0
$24=-6.0
$25=0.0

S26=+1.0
G0 70 3

Sll=‘400
S12=-2.0
S13=+6.0
S14=-6.0
S15=+1,.0
$16=0.0

$21=-2.0
$22=~4.0
523=+46,0
524=-6.0
$§25=0.0

$26=+1.0

3 CONTINUE

11

S$1=S11+S521

$2=512+522

$3=513+523

S4=514+524

$5=515+525

S6=516+526

WO=WI{J, 1)

W1=WO/H{I)

W2=W1/H(1)

IF(J.GT.NX)GO TO 10

IF(I.EQ.1)GO TO 11

L=11+4

AlI251)=A11241)454%UW2

AlI243)=A11243)+54*W2*Y(J)

ALI2,L)=A{12,L)+S1*W1
A({I2,1+ND)=A{12,1+ND)+53%W2

AU12,34ND)=A{12,3+ND)+S3*W2¥Y{J)
A(I2,L+ND)=A(I12,L+ND)+S52%W1]
B{I2)=B(12)=(S5*WB(J,1)+S6*NT(J,I))/H(I)

L=[2+2

Ll=11+2
AlLy1)=A(Ly1)+S4%H2%Y(J) *Y (J)

AL L1)=ALL,L1)+SLAWL*Y(J)
A(L4ND=1)=A(LyND-1)+S3*H2%Y(J)

ALL ND+1)=A(LyND+1)+S3%W2%V(J) *Y{J)
AL, L1+ND)=A(L,L1+ND) +S2%W1%*Y(J)
BIL)=B{L)-(S5*WB(J I )+SO6*¥WT(Jy ) )*Y(J}/H(I)
L=NN-I1+1

AlI3,1)=A(13,1)+S11%*HW0
AUI3,L)=A{I3,L)+513%W1

A(I3,L+2)=A(13,L42)+S13*WLl*Y(J)
A(I3,1+ND)=A(13,1+ND)+S12%W0
B(I3)=B(I3)-S1E*WB(J,I)-SLE*WT(JyI)
L=I2+ND
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13

12

Ll=L+2
A(Ls1)=A(L,1)-S3*H2
AlLy3)=AlL3)-S3*W2%Y(J)
ALy I144)=A{L,I1+4)-S2%NH1
BIL)=BIL)+(S5%WB{JyI)+S6*¥WT{Jy[))/H{IT)
A(LLs1)=AlL1,y1)-S3%H2%Y(J) *Y(J)
A(LL»I142)=AlLL,y11+42)-52%H1%Y{J)
BILL)=BILL)+{SS*WB(JI)+S6*WT{J,1))%Y{J)/H(I)
L=I3+ND
AlLy1)=AlL+1)+522%W0
B(L)=BIL)-S25%WB{J,1)=-526*KT{J,I)
GO 7O 12
M=J-NX
IF(I1.EQ.1)G0 TQ 13
L=12+1
L1=11+3
A{Ly1)=A(L,1)+S4%W2
AlLy2)=A(L42)-S4*W2%X (M)
A(LyLL)=A(L,LL)+S1*NW]
A(Ly1+ND)=A{Ls 1 +ND)+S3%W2
A(Ly2+ND)=A(L,2+ND)~S3*W2%X{M)
AlLsLL1+ND)=A(L,L1+ND)+52%NW1
BIL)=B(L)-(S5%WB(J,1)+S6*WT{Js1))/HII)
L=12+2 :
L1=11+2
ALy 1)=A{L31)+S4%N2%X( M) *X (M)
A{LoLL)=A(LyL1)~S1*H1%X (M)
A(LyND)=A{LyND)-S3*HW2%X(M)
A(LyND+1)=A(LyND+1)+S3*W2kX( M) %X (M)
A(LoL1+ND)=A(LyL1+ND)~-S2%WL%X{M)
BIL)=BIL)+(S5*WB(J I )+S6XNT(JyI))%RX{M)/H(T)
L=NN-T1+2
A{13+1)=A(13,1)+511%K0
A{I3,L)=A013,L)+S513%nhl
ALT34L+1)=A1I3,L+1)-S13%H1#*X{M)
Al{I3,1+ND)=A(I3,1+ND)}+S12*K0
B{I3)=B(I3)-S15%¥WB(J,1)-S1E6XWT{J,I)
L=12+ND+1
A{L,1)=A(L,1)-53%K2
A(L2)=A(L2)+S3*H2%X(M)
AlLoI143)=A(L,1143)-S2%W1
BIL)=BIL)+(SS*WB(J I )+S6XWT(Jy1))/H(T)
L=12+2+ND
A(LyL)=A(Ls1)=-S3%W2%X (M) %X (M)
A(LoI142)=A(L,1142)+S2%W1%X(M)
BIL)=B(L )~ (S5%WB{J s I )+SO*¥NT{Jy 1) )%X(M)/H(I)
L=13+ND
AlLs1)=A(Ls1)4522%W0
BIL)=B(L)-S25%WB{J1)~526%WT{J,1)
RETURN
END
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