| Submitted to KDD’03 - Paper ID #290 |

Inverted Matrix: Efficient Discovery of Frequent Items in
Large Datasets in the Context of Interactive Mining

Mohammad El-Hajj
Department of Computing Science
University of Alberta
Edmonton, AB, Canada, T6G 2E8

mohammad@cs.ualberta.ca

ABSTRACT

Existing association rule mining algorithms suffer from many
problems when mining massive transactional datasets. One
major problem is the high memory dependency: either the
gigantic data structure built is assumed to fit in main mem-
ory, or the recursive mining process is too voracious in mem-
ory resources. Another major impediment is the repetitive
and interactive nature of any knowledge discovery process.
To tune parameters, many runs of the same algorithms are
necessary leading to the building of these huge data struc-
tures time and again. This paper proposes a new disk-based
association rule mining algorithm called Inverted Matrix,
which achieves its efficiency by applying three new ideas.
First, transactional data is converted into a new database
layout called Inverted Matrix that prevents multiple scan-
ning of the database during the mining phase, in which find-
ing frequent patterns could be achieved in less than a full
scan with random access. Second, for each frequent item,
a relatively small independent tree is building summarizing
co-occurrences. Finally, a simple and non-recursive mining
process reduces the memory requirements as minimum can-
didacy generation and counting is needed. Experimental
studies reveal that our Inverted Matrix approach outper-
form FP-Tree especially in mining very large transactional
databases with a very large number of unique items. Our
random access disk-based approach is particularly advanta-
geous in a repetitive and interactive setting.

1. INTRODUCTION

Recent days have witnessed an explosive growth in generat-
ing data in all fields of science, business, medicine, military,
etc. The same rate of growth in the processing power of
evaluating and analyzing the data did not follow this mas-
sive growth. Due to this phenomenon, a tremendous volume

Osmar R. Zaiane
Department of Computing Science
University of Alberta
Edmonton, AB, Canada, T6G 2E8

zaiane@cs.ualberta.ca

of data is still kept without being studied. Data mining, a
research field that tries to ease this problem, proposes some
solutions for the extraction of significant and potentially use-
ful patterns from these large collections of data. One of the
canonical tasks in data mining is the discovery of associa-
tion rules. Discovering association rules, considered as one
of the most important tasks, has been the focus of many
studies in the last few years. Many solutions have been pro-
posed using a sequential or parallel paradigm. However, the
existing algorithms depend heavily on massive computation
that might cause high dependency on the memory size or re-
peated I/O scans for the data sets. Association rule mining
algorithms currently proposed in the literature are not suf-
ficient for extremely large datasets and new solutions, that
do not depend on repeated I/O scans and less reliant on
memory size, still have to be found.

1.1 Problem Statement

The problem of mining association rules over market bas-
ket analysis was introduced in [1]. Association rules are not
limited to market basket analysis, but the analysis of sales
or what is known as basket data, is the typical application
often used for illustration. The problem consists of find-
ing associations between items or itemsets in transactional
data. The data could be retail sales in the form of cus-
tomer transactions or even medical images [14]. Association
rules have been shown to be useful for other applications
such as recommender systems, diagnosis, decision support,
telecommunication, and even supervised classification [4].
Formally, as defined in [2], the problem is stated as follows:
Let I = {i1,142,...im } be a set of literals, called items. m is
considered the dimensionality of the problem. Let D be a
set of transactions, where each transaction 7 is a set of items
such that T C I. A unique identifier TID is given to each
transaction. A transaction T is said to contain X, a set of
items in I, if X C T. An association rule is an implication
of the form “X = Y”, where X CI,Y CI,and XNY = 0.
An itemset X is said to be large or frequent if its support s is
greater or equal than a given minimum support threshold o.
The rule X = Y has a support s in the transaction set D if
s% of the transactions in D contain X UY. In other words,
the support of the rule is the probability that X and ¥ hold
together among all the possible presented cases. It is said
that the rule X = Y holds in the transaction set D with
confidence ¢ if ¢% of transactions in D that contain X also
contain Y. In other words, the confidence of the rule is the

conditional probability that the consequent Y is true under
the condition of the antecedent X. The problem of discover-
ing all association rules from a set of transactions D consists
of generating the rules that have a support and confidence
greater than a given threshold. These rules are called strong
rules. This association-mining task can be broken into two
steps: 1. A step for finding all frequent k-itemsets known
for its extreme I/O scan expense, and the massive computa-
tional costs; 2. A straightforward step for generating strong
rules.

1.2 Related Work

Several algorithms have been proposed in the literature to
address the problem of mining association rules [10, 8]. One
of the key algorithms, which seems to be the most popular in
many applications for enumerating frequent itemsets is the
apriors algorithm [2]. This aprior: algorithm also forms the
foundation of most known algorithms. It uses a monotone
property stating that for a k-itemset to be frequent, all its
k-1-itemsets have to be frequent. The use of this fundamen-
tal property reduces the computational cost of candidate
frequent itemsets generation. However, in the cases of ex-
tremely large input sets with outsized frequent 1-items set,
the apriori algorithm still suffers from two main problems
of repeated I/O scanning and high computational cost. One
major hurdle observed with most real datasets is the sheer
size of the candidate frequent 2-itemsets and 3-itemsets.
Park et al. have proposed the Dynamic Hashing and Prun-
ing algorithm (DHP) [13]. This algorithm is also based on
the monotone apriori property, where a hash table is built
for the purpose of reducing the candidate space by pre-
computing the proximate support for the k+1 item set while
counting the k-itemset. DHP has another important advan-
tage, the transaction trimming, which removes the transac-
tions that do not contain any frequent items. However this
trimming and the pruning properties cause problems that
make it impractical in many cases [16].

The partitioning algorithm proposed in [6] reduced the I/O
cost dramatically. However, this method has problems in
cases of high dimensional itemsets (i.e. large number of
unique items), and it also suffers from the high false positives
of frequent items. The Dynamic Itemset Counting (DIC)
reduces the number of I/O passes by counting the candidates
of multiple lengths in the same pass. DIC performs well in
cases of homogenous data, while in other cases DIC might
scan the databases more often than the apriori algorithm.

Another Innovative approach of discovering frequent pat-
terns in transactional databases, FP-Growth, was proposed
by Han et al. in [9]. This algorithm creates a compact
tree-structure, FP-Tree, representing frequent patterns, that
alleviates the multi-scan problem and improves the candi-
date itemset generation. The algorithm requires only two
full I/0 scans of the dataset to build the prefix tree in main
memory and then mines directly this structure. This special
memory-based data structure becomes a serious bottleneck
for cases with very large databases.

1.3 Motivations and Contributions

Apriori-like algorithms suffer from two main severe draw-
backs: the extensive I/O scans for the databases, and the
high cost of computations required for generating the fre-

quent items. These drawbacks make these algorithms im-
practical in cases of extremely large databases. Other algo-
rithms like FP-Tree based depend heavily on the memory
size as the memory size plays an important role in defining
the size of the problem. Memory is not only needed to store
the data structure itself, but also to generate recursively in
the mining process a set of smaller trees called conditional
trees. As argued by the authors of the algorithm, this is
a serious constraint [12]. Other approaches such as in [11],
build yet another data structure from which the FP-Tree is
generated, thus doubling the need for main memory. One
can argue that the tree structure, such as FP-tree, could be
stored on disk. Indeed, using a B+tree, as suggested by the
original authors of FP-growth, one could efficiently store the
prefix tree. However, no one has really experimented this
approach or reported on it. We have analyzed the use of a
B+tree to store the FP-Tree and found out that the num-
ber of I/Os increases significantly in the mining phase of the
tree, defeating the purpose of building the tree structure in
the first place.

The current association rule mining algorithms handle only
relatively small sizes with low dimensions. Most of them
scale up to only a couple of millions of transactions and
a few thousands of dimensions [12, 7]. None of the exist-
ing algorithms scales to beyond 15 million transactions, and
hundreds of thousands of dimensions, in which each trans-
action has an average of at least a couple of dozen items.
This is the case for large businesses such as Walmart, Sears,
UPS, etc.

In this paper we are introducing a new association rule min-
ing disk-based algorithm that is based on the conditional
pattern concept [9]. This algorithm is divided into two main
phases. The first one, considered pre-processing, requires
two full I/O scans of the dataset and generates a special
disk-based data structure called Inverted Matrix. In the
second phase, the Inverted Matrix is mined using different
support levels to generate association rules using the In-
verted Matrix algorithm explained later in this paper. The
mining process might take in some cases less than one-full
I/0O scan of the data structure in which only frequent items
based on the support given by the user are scanned and
participate in generating the frequent patterns.

The reminder of this paper is organized as follows: Section
2 illustrates the transactional layout and the motivations of
the Inverted Matrix approach. Section 3 describes the de-
sign and constructions of the Co-Occurrence Frequent Item
Trees. Section 4 depicts the Inverted Matrix algorithm. Ex-
perimental results are given in Section 5. Finally, Section 6
concludes by discussing some issues and highlights our fu-
ture work.

2. TRANSACTION LAYOUT

2.1 Observations on Superfluous Processing

Frequent itemset mining algorithms mine the database on
a given fixed support threshold. If the support threshold
changes, the mining process is repeated. In practice, since
the minimum support is not necessarily known and needs
tuning, the mining process is interactively repeated with
different values for the support threshold. In particular, if
the support is consecutively reduced, & new scans of the

database are needed for the apriori-based approaches, and
a new memory structure is built for FP-growth like meth-
ods. Notice that in each run of these algorithms, previous
accumulated knowledge is not taken into account. For in-
stance, in the simple transactional database of Figure 1A,
where each line represents a transaction (called horizontal
layout), we can observe that when changing support one can
avoid reading some entries. If the support level is greater
than 4, then Figure 1B highlights all frequent items that
need to be scanned and computed. Non-circled items in
Figure 1B are not included in the generation of the frequent
items, and reading them becomes useless. It is known that
all of the existing algorithms scan the whole database, fre-
quent and non-frequent items more than once generating a
huge amount of useless work [12, 7, 8]. We call this super-
fluous processing. Figure 1C represents what we actually
need to read and compute from the transactional database
based on a support greater than 4. Obviously, this may not
be possible with this horizontal layout, but with a vertical
layout avoiding these useless reads is possible.

(14| items | [1#] items | [1#] items
11| AalB[c[p[E| [m2[a)B(c)p[E] [m][Aa]c]E
2| alelc|n]c] [2(AlelclH|c]| [r2[alE
13| Blc|p[a[E| [13]Blc|p(alE] [T3[c|aAlE
14| Flalnlclo| [malFla)n]s]s]| [Ta]aA
15| AlB|ClE]l 75 (A)B(c[E] 5/ Al Cc|E
6| klale[1 [c| |6 k(ale)i(c) |6/AalE
17| AlH|E[G]I 17(AJH(E) G| 17 AlE
18| k|L|[m[N[o [18[k|[L|mM[N[O [To]A
19| L|R[Q[A[0 [19[L|R[Q[A)oO [TdA
10PN [B[Aa[M] [TgP|N[B(A]M

A ® ©

Figure 1: A: Transactional database (B): Frequent
items circled (C): Needed Items to be scanned,
o> 4.

The transaction layout is the method in which items in
transactions are formatted in the database. Currently, there
are two approaches: the horizontal approach and the verti-
cal approach. In this section these approaches are discussed
and a new transactional layout called Inverted Matrix is
presented and compared with the existing two methods.

2.2 Horizontal vs. Vertical layout

The relational database model consists of storing data into
two-dimensional arrays called tables. Each table is made
of N rows called features or observations, and M columns
called attributes or representing variables. The format of
storing transactions in the database plays an important role
in determining the efficiency of the association rule-mining
algorithm used. Existing algorithms use one of the two lay-
outs, namely horizontal and vertical. The first one, which
is the most commonly used, relates all items on the same
transaction together. In this approach the ID of the trans-
action plays the role of the key for the transactional table.
Figure 1A represents a sample of 10 transactions made of 18
items. The vertical layout relates all transactions that share
the same items together. In this approach the key of each
record is the item. Each record in this approach has an item

Table 1: Transactions presented in vertical layout

[Ttem | Transaction ID |
A 1 2 (3|4 |5[|6|7]|9]10
B 1 3 | 5|10
C 1 213|516
D 1 3
E 1 2 3|5 |67
F 4
G 2 4 |7
H 2 4 |7
I 5 6 |7
J 4
K 6 8
L 8 9
M 8 | 10
N 8 | 10
O 8 9
P 10
Q 9
R 9

with all transaction numbers in which this item occurs. This
is analogous to the idea of inverted index in information re-
trieval where a word is associated with the set of documents
it appears in. Here the word is an item and the document
is a transaction. Transactions in Figure 1A are presented
by using the vertical approach in Table 1. The horizontal
layout has a very important advantage, which is combining
all items in one transaction together. In this layout and by
using some clever techniques, such as the one used in [9], the
candidacy generation step can be eliminated. On the other
hand, this layout suffers from limitations such as the prob-
lem mentioned above that we called superfluous processing
since there is no index on the items. The vertical layout,
however, is an index on the items in itself and reduces the
effect of large data sizes as there is no need to always re-scan
the whole database. On the other hand, this vertical layout
still needs the expensive candidacy generation phase. Also
computing the frequencies of itemsets becomes the tedious
task of intersecting records of different items of the candi-
date patterns. In [15] a vertical database layout is combined
with clustering techniques and hypergraph structures to find
frequent itemsets. The candidacy generation and the addi-
tional steps associated with this layout make it impractical
for mining extremely large databases.

2.3 Inverted Matrix Layout

The Inverted Matrix layout combines the two previously
mentioned layouts with the purpose of making use of the
best of the two approaches and reducing their drawbacks as
much as possible. The idea of this approach is to associate
each item with all transactions in which it occurs (i.e. an
inverted index), and to associate each transaction with all
its items using pointers. Similar to the vertical layout, the
item is the key of each record in this layout. The differ-
ence between this layout and the vertical layout seen previ-
ously is that each attribute on the Inverted Matrix is not the
transaction ID, but a pointer that points to the location of
the next item on the same transaction. The transaction ID
could be preserved in our layout, but since it is not needed

Table 2: Phase 1, Frequency of each item

[Item | Frequency || Item [Frequency || Item | Frequency |

1 1 1

Q Qg - = v
OY | DN DO =
= o 2|)| | =
O QO DN DO =
> | —| | OO
Of | W DN N

for the purpose of frequent itemset mining, it is discarded.
The pointer is a pair where the first element indicates the
address of a line in the matrix and the second element indi-
cates the address of a column. Each line in the matrix has
an address (sequential number in our illustrative example)
and is prefixed by the item it represents with its frequency
in the database. The lines are ordered in ascending order
of the frequency of the item they represent. Table 3 repre-
sents the Inverted Matrix corresponding to the transactional
database from Figure 1A.

Building this Inverted Matrix is done in two phases, in which
phase one scans the database once to find the frequency of
each item and orders them into ascending order, such as
in Table 2 for our illustrative example. The second phase
scans the database again once to sort each transaction into
ascending order according to the frequency of each item, and
then fills in the matrix appropriately. To illustrate the pro-
cess, let’s consider the construction of the matrix in Table 3.
The first transaction in Figure 1A has items (A, B, C, D,
E). This transaction is sorted into (D, B, C, E, A) based
on the item frequencies in Table 2 built in the first phase of
the process. Item D has the physical location line 7 in the
Inverted Matrix in Table 3, B has the location line 15, the
location of C is line 16, E is in line 17 and finally A is in line
18. This is according to the vertical approach. Item D has
a link to the first empty slot in the transactional array of
item B that is 1. Consequently, (15,1) entry is added in the
first slot of item D to point to the first empty location in the
transactional array of B. At the First empty location of B
(15,1) an entry is added to point to the first empty location
of the next item C that is (16,1). The same process occurs
for all items in the transaction. The last item of the trans-
action, item A produces an entry with pointer null (¢,4).
The same is performed for every transaction.

Building the Inverted Matrix is assumed to be pre-processing
of the transactional database. For a given transactional
database, it is built once and for all. The next section
presents an algorithm for mining association rules (or fre-
quent itemsets) directly from this matrix. The basic idea
is straight forward. For example, if the user decides to find
all frequent patterns with support greater than 4, it suf-
fices to start the mining process from location line 16. Line
16 represents the item C which has the frequency 5. Since
the lines of the matrix are ordered, along with C, only the
items that appear after C are frequent. All the other items
are irrelevant for this particular support threshold. By fol-
lowing in the Inverted Matrix the chain of items starting
from the C location, we can rebuild parts of the transac-
tions that contain only the frequent items. Thus, we avoid
the superfluous processing mentioned before. Table 4 rep-

resents the sub-transactions that can be generated from the
Inverted Matrix of Table 3 by following the chains starting
from location line 16. The mining algorithm described in
the next section targets these sub-transactions, and passes
over all other parts dealing with de-facto non-frequent items.
The sub-transactions of frequent items such as in Table 4
are never built at once. As will be explained in the next
section, these sub-transactions are considered one frequent
item at a time. In other words, using the Inverted Matrix,
for each frequent item z, the algorithm would identify the
sub-transactions of frequent items that contain x. These
sub-transactions are then represented in a tree structure,
that we call co-occurrence frequent item tree, which is mined
individually.

Table 4: Sub-transactions with items having support
greater than 4. (A) List of sub-transactions; (B)
Condensed list.

C|E|A
C|E|A
CIETA ‘Frequentltems‘ Occur#
ClIE|A C E A 5
C|E|A E A 1
E A

(A) (B)

3. CO-OCCURRENCE FREQUENT-ITEM-
TREES: DESIGN AND CONSTRUCTION

The generation of frequencies is considered a costly oper-
ation for association rule discovery. In apriori-based algo-
rithms this step might become a complex problem in cases
of high dimensionality due to the sheer size of the candi-
dacy generation [8]. In methods such as FP-Growth [9], the
candidacy generation is replaced by a recursive routine that
builds a very large number of sub-trees, called conditional
FP-trees, that are on the same order of magnitude as the fre-
quent patterns and proved to be poorly scalable as attested
by the authors [12].

Our approach for computing frequencies relies first on read-
ing sub-transactions for frequent items directly from the In-
verted Matrix, then building independent relatively small
trees for each frequent item in the transactional database.
‘We mine separately each one of the trees as soon as they are
built, with minimizing the candidacy generation and with-
out building conditional sub-trees recursively. The trees are
discarded as soon as mined.

The small trees we build (Co-Occurrence Frequent Item
Tree, or COFI-Tree for short) are similar to the conditional
FP-tree in general in the sense that they have a header
with ordered frequent items and horizontal pointers point-
ing to a succession of nodes containing the same frequent
item, and the prefix tree per-se with paths representing sub-
transactions. However, the COFI-trees have bidirectional
links in the tree allowing bottom-up scanning as well, and
the nodes contain not only the item label and a frequency
counter, but also a participation counter as explained later
in this section. Another difference, is that a COFI-tree for a
given frequent item & contains only nodes labeled with items
that are more frequent or as frequent as z.

Table 3: Inverted Matrix

| loc | Index || Transactional Array |
1 2 3 4 5 6 7 8 9
T | (P1) |[(10,2)
2 [(F1) || (D)
5 @) | @D
I ®D | 69
5 10,0 (13,2
6 | (0,2) | (82) | (92)
7 (0.2 |[(15,1) | (152)
5 (&) (122 | O
9 | (L,2) |[(10,1) | (18,7)
10 | (M2) [(AL,1) | (11,2)
1| (N2) | (6.6) | (15.4)
12 | (L,3) || (15,3) | (16,5) | (13,3)
13 | (G,3) || (14,1) | (14,2) | (14,3)
14 | (H3) || (16,2) | A7,4) | (17,6)
15 | (B,4) || (16,1) | (16,3) | (16,4) | (18,9)
16 | (C5) || (17,1) | (17,2) | (17,3) | (17,4) | (17,5)
17 | (E,6) || (18,1) | (18,2) | (18,3) | (18,5) | (18,6) | (18,7)
18 | (A9) || (69) | (60) | (6,8) | (6:8) | (8,9) | (69) | (6,9) | (6,8) | (6.0)

Table 5: Example of Sub-transactions with frequent
items

[Frequent items | Occurs together |

CD 2
CB 1
EA 2
FB 2
CDA 1
CBA 4

To illustrate the idea of the COFI-trees, let us consider an
example of sub-transactions of frequent items. Assume we
have a transactional database that has the following frequent
items (A, B, C, D, E, and F), where A is the most frequent
item, and F is the least frequent item in the database. As-
sume also that these frequent items occur in the database
following the scenario of Table 5. These sub-transactions
are generated from a given Inverted Matrix. To generate
the frequent 2-itemsets, the apriori algorithm would need to
generate 15 different patterns out of the 6 items {A, B, C, D,
E, F}. Finding the frequency of each pattern and removing
the non-frequent ones is necessary before even considering
the candidate 3-itemsets. In our approach, itemsets of dif-
ferent sizes are found simultaneously. In particular, for each
given frequent 1-itemset we find all frequent k-itemsets that
subsume it. For this, a COFI-tree is built for each frequent
item except the most frequent one, starting from the least
frequent. No tree is built for the most frequent item since
by definition a COFI-tree of an item x contains items that
are more frequent than x.

With our example, the first Co-Occurrence Frequent Item
tree is built for item F. In this tree for F, all frequent items
which are more frequent than F and share transactions with
F participate in building the tree. The tree starts with the
root node containing the item in question, F. For each sub-
transaction containing item F with other frequent items that

are more frequent than F, a branch is formed starting from
the root node F. If multiple frequent items share the same
prefix, they are merged into one branch and a account for
each node of the tree is adjusted accordingly. Figure 2 il-
lustrates all COFI-trees for frequent items of Table 5. In

(COFI-Treefor F)

(COFI-Treefor E)
_(ea0)
TN
i

@

(es0)

(COFI-Treefor D)
(COFI-Treefor C)

/

(COFI-Treefor B)

Figure 2: COFI-Trees

Figure 2, the round nodes are nodes from the tree with an
item label and two counters. The first counter is a support
for that node while the second counter, called participation-
count, is initialized to 0 and is used by the mining algorithm
discussed later. The nodes have also pointers: a horizontal
link which points to the next node that has the same item-
name in the tree, and a bi-directional vertical link that links
a child node with its parent and a parent with its child. The
bi-directional pointers facilitate the mining process by mak-
ing the traversal of the tree easier. The squares are actually
cells from the header table as with the FP-Tree. This is a
list made of all frequent items that participate in building
the tree structure sorted in ascending order of their global
support. Each entry in this list contains the item-name and

a pointer to the first node in the tree that has the same
item-name.

Notice that the COFI-tree for F, Figure 2, is made of only
two nodes: the root node containing F and one child node
for B with frequency = 2, this is because item F occurs twice
only with item B in the database presented in Table 5. The
same thing happens with item E, but it occurs with item
A twice. Item C occurs with 3 items, namely A, B and D,
and consequently 4 nodes are created as CBA: 4 forms one
branch with support = 4 for each node in the branch. CDA.
1 creates another branch with support =1 for the branch
except node C as its support becomes 5 (4+1). Pattern
CD: 2 already has a branch built, so only the frequency
is updated, C becomes 7, and D becomes 3. Finally CB:
1 already shares the same prefix with an existing branch
so only counters are updated and thus C becomes 8 and
B becomes 5. The D tree is made of one branch as item
D occurs once with an item that is more frequent than D,
which is in DA: 1 in CDA: 1. Finally item B occurs 4 times
with item A from CBA: 4 (C is ignored in the last two cases
as it is less frequent than B and A). The header in each
tree, like with FP-Trees, constitutes a list of all frequent
items to maintain the location of first entry for each item
in the COFI-Tree. A link is also made for each node in the
tree that points to the next location of the same item in the
tree if it exists.

The COFlI-trees of all frequent items are not constructed
together. Each tree is built, mined, then discarded before
the next COFI-tree is built. The mining process is done
for each tree independently with the purpose of finding all
frequent k-itemset patterns that the item on the root of the
tree participates in. A top-down approach is used to gen-
erate and compute maximum n patterns at a time, where
n is the number of nodes in the COFI-tree that is being
mined excluding the root node of the tree. The frequency
of other sub-patterns can be deduced from their parent pat-
terns without counting their occurrences in the database.

Steps to produce frequent patterns related to the C item
for example, are illustrated in Figure 3. From each branch
of the tree, using the support count and the participation
count, candidate frequent patterns are identified and stored
temporarily in a list. The non-frequent ones are discarded
at the end when all branches are processed. Figure 3 shows
the frequent itemsets containing C discovered assuming a
support threshold greater than 2. Mining the “COFI-tree
of item C” starts from the most frequent item in the tree,
which is item A. Item A exists in two branches in the C tree
which are (A: 4, B: 5, and C:8) and (A: 1, D: 3, and C: 8).
The frequency of each branch is the frequency of the first
item in the branch minus the participation value of the same
node. Item A in the first branch has a frequency value of 4
and participation value of 0 which makes the first pattern
ABC frequency equals to 4. The participations values for
all nodes in this branch are incremented by 4, which is the
frequency of this pattern. In the first pattern ABC: 4, we
need to generate all sub patterns that item C participates
in which are AC: 4 and BC: 4. The second branch that
has A generates the pattern ADC: 1 as the frequency of A
on this branch is 1 and its participation value equals to 0.
All participation values on these nodes is incremented by

1. Sub-patterns are also generated from the ADC pattern
which are DC: 1 and AC: 1. The second pattern already
exists with support value equals to 4, and only updating its
value is needed to make it equal to 5. The second frequent
item in this tree, “B” exists in one branch (B: 5 and C: 5)
with participation value of 4 for the B node. (BC: 1) is pro-
duced from this branch and since BC pattern already exists
with a frequency value equals to 4, then only its frequency is
updated to become 5. Finally, the D item is the last item to
test as it exists in one branch, (D: 3, C: 8) with participation
value of 1 for the D node. A pattern DC: 2 is produced and
its value is added to the existing DC: 1 pattern to make it
DC: 3. Finally all non-frequent patterns are omitted leaving
us with only frequent patterns that item C participate in.
The COFI-Tree of Item C can be removed at this time and
another tree can be generated and tested to produce all the
frequent patterns related to the root node.

&
D ec3:, @)
Participation =

Participation = 5-4=
Candidate list
ABC: 4 @

AC:5

C Frequent list
Support > 2
ABC: 4

AC:5

BC:5

D,C:3

Figure 3: Steps needed to generate frequent pat-
terns related to item C

4. INVERTED MATRIX ALGORITHM

The Inverted Matrix association rule algorithms are sets of
algorithms with the purpose of mining large transactional
databases with minimal candidacy generation and reducing
the effects of superfluous work. These algorithms are divided
among the two phases of the mining process namely the
pre-processing in which the Inverted Matrix is built and the
mining phase in which the discovery of frequent patterns
occurs.

4.1 Building the Inverted Matrix

The Inverted Matrix is a disk-based data layout that is made
of two parts: the index and the transactional array. The in-
dex contains the items and their respective frequency. The
transactional array is a set of rows in which each row is as-
sociated with one item in the index part. Each row is made
of pairs representing pointers, where each pair holds 2 infor-
mation: the physical address in the index part of the next
item in the same transaction, and the physical address in the
row of the next item in the same transaction. Building the
Inverted Matrix is done in two passes of the database dur-
ing the pre-processing phase. The first pass scans the whole
database to find the frequency of each item. The item list

is then ordered in ascending order according to their fre-
quency. Pass two of the database reads each transaction
from the database and orders it also into ascending order
based on the frequency of each item. In the index part,
the location of the first item in the transaction is sought
and an entry to its transactional array is added that holds
the location of the next item in this transaction. For the
second item the same process occurs, in which an entry in
the transactional table of the second item is added to hold
the location of the third item in the transaction. The same
process is repeated for all items in this transaction. The
following transaction is read next and the same occurs for
all its items. This process repeats for all transactions in the
database. Algorithm 1 depicts the steps needed to build the
Inverted Matrix.

Algorithm 1: Inverted Matrix (IM) Construction
Input : Transactional Database (D)
Output : Disk Based Inverted Matrix

Method : Pass I
1. Scan D to identify unique items and determine their
frequencies.
2. Sort the list of items in ascending order of their fre-
quency.
3. Create the index part of the IM using the sorted list.
Pass 11
1. While there is still a transaction T in the database (D)
do
1.1 Sort the items in the transaction T into ascending
order according to their frequency
1.2 while there are items s; in the transaction do
1.2.1 Add an entry in its corresponding
transactional array row with 2- parameters
(A) Location in index part of the IM of the next
item s;41 in T null if s;+1 does not exist.
(B) Location of the next empty slot in the
transactional array row of s;4+1, null if s;4+1
does not exist.
1.3 Goto 1.2
2. Goto 1

4.2 Mining the Inverted Matrix

Association rule mining starts by defining the support level
o. Based on the given support, the algorithm finds all fre-
quent patterns that occur more than o. The objectives be-
hind the Inverted Matrix mining algorithm are two fold:
first, minimizing the candidacy generation; second, elimi-
nating the superfluous scans of non-frequent items. To ac-
complish this, a support border is defined. This border indi-
cates where to slice the Inverted Matrix to gain direct access
to those items that are frequent. In other words, the bor-
der is the first item in the index of the Inverted matrix that
has a support greater or equal to o. For Each item Z in
the index of the slice of the inverted matrix is considered
at a time starting from the least frequent, a Co-Occurrence
Frequent Item Tree for Z is built by following the chain of
pointers in the transactional array of the Inverted Matrix.
This Z-COFI-tree is mined branch by branch starting with
the node of the most frequent item and going upward in the
tree to identify candidate frequent patterns containing Z. A
list of these candidates is kept and updated with frequencies

of the branches where they occur. Since a node could belong
to more than one branch of the tree, a participation count
is used to avoid re-counting items and patterns. Algorithm
2 presents the steps needed to generate the COFI-trees and
mining them.

Algorithm 2: Creating and Mining COFI-Trees

Input: Inverted Matrix (IM) and a minimum support thresh-
old o

Output: Full set of frequent patterns

Method:
1. Frequency Location = Apply binary search on the
index part of the IM to find the Location of the
first frequent item based on o.
2. While (Frequency Location < IM_Size) do
2.1 A = Frequent item at
location (Frequency_Location)
2.2 A _Transactional = The Transactional array of
item A
2.3 Create a root node for the (A)-COFI-Tree with both
frequency-count and participation-count = 0
2.4 Index_Of_TransactionalArray = 0
2.5 While (Index_Of_TransactionalArray < Frequency of
item A)
2.5.1 B = item from Transactional array at location
(Index_Of_Transactional Array)
2.5.2 Follow the chain of item B to produce
sub-transaction C
2.5.3 Items on C form a prefix of the (A)-COFI-Tree.
2.5.4 If the prefix is new then
2.5.4.1 Set frequency-count= 1 and participation-
count= 0 for all nodes in the path
Else
2.5.4.2 Adjust the frequency-count of the already
exist part of the path.
2.5.5 Adjust the pointers of the Header list if needed
2.5.6 Increment Index_Of_Transactional Array
2.5.7 Goto 2.5
2.6 MineCOFI-Tree (A)
2.7 Release (A) COFI-Tree
2.8 Increment Frequency Location //to build the next
COFI-Tree
3. Goto 2

Function: MineCOFI-Tree (A)
1. nodeA = select_next_node //Selection of nodes
will start with the node of most frequent item and
following its chain, then the next less frequent item
with its chain, until we reach the least frequent item
in the Header list of the (A)-COFI-Tree
2. while there are still nodes do
2.1 D = set of nodes from nodeA to the root
2.2 F = nodeA. frequency-count-nodeA.participation-count
2.3 Generate all Candidate patterns X from
items in D. Patterns that do not have A
will be discarded
2.4 Patterns in X that do not exist in the A-Candidate
List will be added to it with frequency = F
otherwise just increment their frequency with F
2.5 Increment the value of participation-count
by F for all items in D

2.6 nodeA = select_next_node

2.7 Goto 2

3. Based on support threshold o remove non-frequent
patterns from A Candidate List.

In our previous example In Table 3, If o is greater than 4
then the first frequent item will be item C at location 16 in
the index part of the Inverted Matrix. The first element in
the transactional array for item C denotes that it shares the
same transaction with the item at location 17 which is E.
At location (17,1) we find that the other item A at location
18, shares with them the same transaction. From this, the
first child node of C is created holding an entry for item E,
and another child node from E is created holding an entry
for item A. The frequency of all these items are set to 1
and their participation is set to 0. The second entry of the
transactional array of item C is (17,2), and at location (17,2)
we find an entry of (18,2). This means that items E, and
A also share another transaction with item C. Since entries
for these items have already been created in the same order,
then there will be no need to create new nodes as we will
only increment their frequencies. By scanning all entries for
item C with their chain, we can build the C-COFI-Tree as
in Figure 4A. Methods in Algorithm 2 are applied on the
C-COFI-Tree to generate all frequent patterns related to C,
which are CE:5, CA:5, and CEA:5. The C-COFI-Tree can
be released at this stage, and its memory space can be used
for the next tree.

. SO
3
(aso)

Figure 4: COFI-Trees (A) Item C, (B) Item E

(A (B)

The same process happens for the next frequent item that
is at location 17 (item E). Figure 4B presents its COFI-Tree
which generates the frequent pattern EA:6.

5. EXPERIMENTAL EVALUATIONS AND

PERFORMANCE STUDY

To test the efficiency of the Inverted Matrix approach, we
conducted experiments comparing our approach with a two
well-known algorithms namely: Apriori and FP-Growth. To
avoid implementation bias, third party Apriori implementa-
tion, by Christian Borgelt [5], and FP-growth [9] written by
its original authors are used. The experiments were run on
a 733-Mhz machine with a relatively small RAM of 256 MB.

Transactions were generated using IBM synthetic data gen-
erator [3]. We conducted different experiments to test the

Inverted Matrix algorithm when mining extremely large trans-

actional databases. We tested the applicability and scala-
bility of the Inverted Matrix algorithm. In one of these
experiments, we mined using a support threshold of 0.01%
transactional databases of sizes ranging from 1 million to 25

million transactions with an average transaction length of
24 items. The dimensionality of the 1 million transaction
dataset was 10,000 items while the datasets ranging from 5
million to 25 million transactions had a dimensionality of
100,000 unique items. Table 6 and Figure 5 illustrate the
comparative results obtained with Apriori, FP-Growth and
the Inverted Matrix. Aprior: failed to mine the 5 million
transactional database and FP-Tree couldn’t mine beyond
the 5 million transaction mark. The Inverted Matrix, how-
ever, demonstrates good scalability as this algorithm mines
25 million transactions in 2731s. None of the tested algo-
rithms, or reported results in the literature reaches such a
big size.

Table 6: Time needed in seconds to mine different
transaction sizes

Mining different sizes Support (0.01%)

Algorithm 1M | 5M | 10M| 15M | 20M | 25M
Apriori Timeg 2100| N/A| N/A| N/A| N/A| N/A
FP-Tree In [907 | 2401| N/A| N/A| N/A| N/A
Inverted Matrix | Sec | 430 | 730 | 1280] 1830] 2200| 2731

@ Apriori @FP-Tree [OInverted Matrix

3000
2500

2000 -
1500 -
1000 -

Time in seconds

500

0

iM 5M 10M 15M 20M 25M

Size in Millions

Figure 5: Time needed in seconds to mine different
transaction sizes

To test the behavior of the Inverted Matrix vis-a-vis differ-
ent support thresholds, a set of experiments was conducted
on a database size of one million transactions, with 10,000
items and an average transaction length of 24 items. The
matrix was built in about 763 seconds and it occupied a
size of 109MB on the hard drive. The original transactional
database with a horizontal layout uses 102MB. The mining
process tested different support levels, which are 0.0025%
that revealed almost 125K frequent patterns, 0.005% that
revealed nearly 70K frequent patterns, 0.0075% that gen-
erated 32K frequent patterns and 0.01 that returned 17K
frequent patterns. Table 7 reports the time needed in sec-
onds for each one of these runs. The results show that the
Inverted Matrix algorithm outperforms both Apriori and
FP-growth algorithms in all cases. Figure 6 depicts the re-
sults of Table 7. It is true that there was an overhead cost
which was not recorded in Table 7, namely the cost of build-
ing the Inverted Matrix. In this particular reported result
we meant to focus on the actual mining time. The Inverted
Matrix is built once for all and used to mine with four differ-
ent support thresholds. The total execution time needed for
FP-Growth to mine these four cases is 15607s, while Aprior:
needed 22500s, and the Inverted Matrix needed only 4540s,

in addition to the 763s needed to build the matrix on disk.
This makes the total execution time for the Inverted Matrix
algorithms about 5303s, one third of the time needed by FP-
Growth. Building the disk-based data structure once and
mining it many times by using different supports, saves the
overall execution time in comparison with other algorithms.
This total time for all runs is illustrated in Figure 5. More
time improvements could be achieved if more support lev-
els are tested, amortizing the building time over many runs.
Notice that given the highly interactive nature of most KDD
processes, a “build-once-mine-many” approach is always de-
sirable.

Table 7: Time needed to mine 1M transactions with
different supports level

Support (%)

Mining 1M transactions

Algorithm 0.0025 | 0.005 | 0.0075 | 0.01
Apriori Time| 11300 | 6200 2900 2100
FP-Tree In 6800 5600 2300 907

Inverted Matrix | Sec. | 2300 1030 780 430

mApriori mFP-Tree Olnverted Matrix

12000

04
0.01 0.0075 0.005 0.0025
Support (%)

Figure 6: Time needed to mine 1M transactions
with different supports levels

25000

20000 ~

15000 -]

10000 -

0 L

Apriori FP-Tree Inverted
Matrix

Time in seconds

Algorithm

Figure 7: Accumulated time needed to mine 1M
transactions using four different support levels

6. DISCUSSION AND FUTURE WORK

Finding scalable algorithms for association rule mining in
extremely large databases is the main goal of our research.
To reach this goal, we propose a new set of algorithms that
uses the disk to store the transactions in a special layout
called Inverted Matrix. It also uses the memory to inter-
actively mine relatively small structures called COFI-Trees.

The experiments we conducted showed that our algorithms
are scalable to mine tens of millions of transactions, if not
more. Our study reinforces that in mining extremely large
transactions; we should not work on algorithms that build
huge memory data structures, nor on algorithms that scan
the massive transactions many times. What we need is a
disk-based-algorithm that can store the massive size and al-
low random access, and small memory structures that can
be independently created and mined based on the available
absolute memory size.

‘While the results seem promising, there are still many im-
provements that can be done to further develop the Inverted
Matrix approach. We are currently focusing on building a
parallel framework for association rule mining for large-scale
data that would use the matrix idea in a cluster context.
The improvements we are currently investigating are issues
related to the reduction of the Inverted Matrix size (i.e.
compression), the reduction of the number of I/Os when
building the COFI-trees, the update of the matrix by addi-
tion and deletion of transactions, and the parallelization of
the construction and mining of the Inverted Matrix.

6.1 Compressing the size of Inverted Matrix
Compressing the size of the Inverted Matrix without losing
any data is an important issue that could improve the ef-
ficiency of the Inverted Matrix algorithm. To achieve this,
one could merge similar transactions into new dummy ones,
or even merge sub-transactions. For example in Figure 1A,
we can find that the first two transactions contain items A,
B, C,D, Eand A, E, C, H, G. Ordering both transactions as
usual into ascending order according to their frequency pro-
duces two new transactions, which are D, B, C, E, A and G,
H, C, E, A. Both transactions share the same suffix, which is
C, E, and A. Consequently, we can view them as one trans-
action consisting of% (C(2), E(2), A(2)), where any num-
ber between brackets represents the occurrences of the item
preceding it. Using the same methodology we can find that
the Inverted Matrix can be compressed. The compressed
Inverted Matrix corresponding to Figure 1A is depicted in
Table 8. With such compressed matrix we can dramatically
reduce the number of I/Os and thus improve further the
performance.

6.2 Reducing the number of 1/0Os needed

The Inverted Matrix groups the transactions based on their
frequency. Frequent items are clustered at the bottom of the
Inverted Matrix. Traversing one transaction can be done by
calling more than one page from the database. We are cur-
rently investigating the possibility of reducing the number of
pages read from the database by clustering the same trans-
actions on the same pages at the database level.

6.3 Updateable Inverted Matrix

With a horizontal layout, adding transactions is simply ap-
pending those transactions to the database. With a verti-
cal layout, each added transaction results in updates in the
database entries of all items in the transaction. The Inverted
Matrix is neither horizontal nor vertical but a combination,
making the addition of new transactions a complex opera-
tion. Updateable Inverted Matrix is an important issue in
our research. One of the main advantages of the Inverted

Table 8: Compressed Inverted Matrix

[loc | Index || Transactional Array |
1 2 3

1 (P,l) (10,2)(1)

2 | (FD] G.1HA)

3 1 Q1) | 41)®)

4 (R,1) (6,2)(1)

5 (J,1) (13,2)(1)

6 1 (0,2) || (82)(1) [(9,2)(1)

7 | (D,2) || (15,1)(2)

8 | (K,2) || (12,2)(1) | (9,1)(1)

9 | (L,2) | (10,1)(1) | (18,1)(1)

10 | (M,2) || (1L,1)(1) | (11,2)(1)

11 | (N,2) || (9,9)(1) | (15,2)(1)

12 (1,3) (15,1)(1) (16,1)(1) (13,3)(1)
13 | (G,3) || (14,1)(1) | (14,2)(2)

14 | (H3) || (16,1)(1) | (17,1)(2)

15 | (B4) || (16,1)(3) | (18,1)(1)

16 | (C,5) (17,1)(5)

17 | (E,6) || (18,1)(6)

18 | (A9) || (9:6)(9)

Matrix is that changing the support level does not mean re-
scanning the database again. Changing the database either
by adding or deleting new transactions changes the Inverted
Matrix, leading to the need of re-building it again. We are
investigating efficient ways to update the Inverted Matrix
without having to rebuild it completely or jeopardizing its
integrity.

6.4 Parallelizing the Inverted Matrix

The Inverted Matrix could be built in parallel. Each pro-
cessor could build its own Inverted Matrix that reflects all
transactions on its node in the cluster. The index part of the
small Inverted Matrices would reflect the global frequency
of the items in all transactions. Building these distributed
Inverted Matrices would also be done using two passes over
the local data. The first pass or scan to generate the local
frequency for each item. Generating the global frequency of
each item could be done either by broadcasting or scattering
these local supports. The second pass for each local node is
almost identical to the second pass of the sequential version,
where communication between nodes is minimal.

7. ACKNOWLEDGMENTS

We would like the thank Jian Pei for providing us with the
executable code of the FP-Growth program used in our ex-
periments. This research is partially supported by a Re-
search Grant from NSERC, Canada.

8. REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large
databases. In Proc. 1998 ACM-SIGMOD Int. Conf.
Management of Data, pages 207-216, Washington,
D.C., May 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. 1994 Int. Conf. Very Large
Data Bases, pages 487-499, Santiago, Chile,
September 1994.

[3] I. Almaden. Quest synthetic data generation code.
http://www.almaden.ibm.com/cs/quest/syndata.html.

[4] M.-L. Antonie and O. R. Zaiane. Text document
categorization by term association. In IEEE

International Conference on Data Mining, pages
19-26, December 2002.

[6] C. Borgelt. Apriori implementation.
http://fuzzy.cs.uni-
magdeburg.de/~borgelt/apriori/apriori.html.

[6] S. Brin, R. Motwani, J. D. Ullman, and S.Tsur.
Dynamic itemset counting and implication rules for
market basket data. In Proc. 1997 ACM-SIGMOD
Int. Conf. Management of Data, pages 255—264,
Tucson, Arizona, May 1997.

[7] E.-H. Han, G. Karypis, and V.Kumar. Scalable
parallel data mining for association rule. Transactions
on Knowledge and data engineering, 12(3):337-352,
May-June 2000.

[8] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufman, San Francisco, CA,
2001.

[9] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In ACM-SIGMOD,
Dallas, 2000.

[10] J. Hipp, U. Guntzer, and G. Nakaeizadeh. Algorithms
for association rule mining - a general survey and
comparison. ACM SIGKDD Ezplorations, 2(1):58-64,
June 2000.

[11] H. Huang, X. Wu, and R. Relue. Association analysis
with one scan of databases. In IEEE International
Conference on Data Mining, pages 629-636, December
2002.

[12] J. Liu, Y. Pan, K. Wang, and J. Han. Mining frequent
item sets by oppotunistic projection. In Eight ACM
SIGKDD Internationa Conf. on Knowledge Discovery
and Data Mining, pages 229-238, Edmonton, Alberta,
August 2002.

[13] J. Park, M. Chen, and P. Yu. An effective hash-based
algorithm for mining association rules. In Proc. 1995
ACM-SIGMOD Int. Conf. Management of Data,
pages 175-186, San Jose, CA, May 1995.

[14] O. R. Zaiane, J. Han, and H. Zhu. Mining recurrent
items in multimedia with progressive resolution
refinement. In Int. Conf. on Data Engineering
(ICDE’2000), pages 461-470, San Diego, CA,
February 2000.

[15] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li.
New algorithms for fast discovery of association rules.
In 8rd Intl. Conf. on Knowledge Discovery and Data
Mining, 1997.

[16] M. J. Zaki. Parallel and distributed association
mining: A survey. IEEE Concurrency, Special Issue
on Parallel Mechanisms for Data Mining, 7(4):14-25,
December 1999.

