I+l e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Weliington
Ottawa (Ontario)

Your hle Volre retdtence

Our il Nolre 1éfdrence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer ung qualité
supérieure de reproduction.

&'l manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a ['aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

University of Alberta
The Enterprise Code Librarian

by

Enoch Chan @

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the req:iirements for the degree
of Masters of Science

Department of Computing Science

Edmonton, Alberta
Fall 1992

< National Libx. Bibliothéque nationale
I* of Canada il du da
Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4g

Canad4

The author has granted an imevocable noa-
exclusive licence aliowing the National Library
of Canada to reproduce, lodn, distribute or sell
copies of his/her thesis by any means and in

any form or.format, making this thesis available
to interested persons, '

The author retains ownership of the copyright
in hisfher thesis. Neither the thesis nor
substantial extracts from it may be printed or

otherwise reproduced without histher per-
mission. N

-L'auteur a accord® une ficence irévocable et
- qion exclusive permettant 4 {a Bibliothéque

naticnale du Canada de reproduire, préter,

-distribuer ou vendre des coples de sa thése

de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
celte thése & fa disposition des personnes’
intéressées.

L'auteur conserve fa propriété du droit d‘auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celleci ne doivent é&tre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-77278-6

(ot

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Enoch Chan

TITLE OF THESIS: The Enterprise Code Librarian
DEGREE: Masters of Science

YEAR THIS DEGREE GRANTED: 1992

Permission is hereby granted to the University of Alberta Library to reproduce single copies
of this thesis and to lend or sell such copies for private, scholarly or scientific research
purposes only.

The author reserves all other publication and other rights in association with the copyright in
the thesis, and except as hereinbefore provided neither the thesis nor any substantial portion
thereof may be printed or otherwise reproduced in any material from whatever without the

author’s prior written permission.
it (ZM\ n

Permanent Address:

Box 60723, U of A Postal Outlet,
Edmonton, Alberta,

Canada. T6G 258

(Signed)

Date: -3\4/\1 {lnw,ﬂcf&

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Facuity of Graduate
Studies and Research for acceptance, a thesis entitled The Enterprise Code Librarian
submitted by Enoch Chan in partial fulfillment of the requirements for the degree of Mas-
ters of Science.

_dondtha .haeffel(j‘mporvksol
/‘ Al - /i,._,\

Dr. Bruce Cockburn (EI Ctrical lsngmv(ring)

/JW;

Dr. Duane Szafron

Date: Ju \/‘1 34 , 4.

Abstract

Enterprise is a programming environment for writing parallel/distributed software that is
suitable to run on a network of workstations. The environment facilitates the rapid con-
struction of distributed programs by taking care of issues such as low-level communication
protocols, synchronization problems, and deadlock avoidance. An Enterprise program is writ-
ten in familiar sequential language, which can be compiled for sequential execution usually
without modifications. The parallelism of the program is specified separately by attaching
templates, called assets, to sequential modules through an Enterprise graph. Each asset
represents a high-level parallelization technique that is frequently used by many distributed
programs. The term asset comes from an analogy between a distributed program and the
working of an crganization. The low-level communication code is generated by the system
automatically according to the specified asset types. The separation of the specification of a
program’s source code and its parallel structure allows the program to be restructured easily
without changes to the source code. This also allows a program to be adapted easily to the
changing resources available in a workstation environment.

This thesis presents the work on the design of the system architecture of Enterprise, the
design and implementation of the Enterprise code librarian, and the Enterprise pre-compiler.
The design of the architecture allows different components of the system to be implemented
individually. Currently, several components have been implemented to allow Enterprise
applications to be developed and icsted. The Enterprise code librarian is designed for man-
aging the source and object code of Enterprise applications. Since Enterprise appiications
are designed to run on a heterogeneous network of workstations, the code librarian takes this
into account and provides a makefile generation utility to maintain multiple executable files
for a variety of architectures. The Enterprise pre-compiler is used for converting sequential
calls into remote procedure calls, changing return statements into reply statements, and
substituting the function declarations with a suitable format to allow remote invocations.
Several applications have been developed using the Enterprise environment. Experimental
results show that Enterprise offers a cost effective and easy to learn method for the rapid
construction of distributed software.

Contents

1 Introduction
1.1 Introduction
1.2 TheProblem
1.3 The Enterprise Approach
1.4 Contribution of the Thesis
1.5 Organization of the Thesis
1.6 Conclusion

....................................

............................

2 Reviews of Parallel Programming Tools

2.1 Introduction e e e e e e e e e
2.2 Types of Parallel Programming Tools
2.2.1 Expressing Parallelism in Programming Languages
2.2.2 Dependency Analysis Toals
223 Automatic Parallelizer
2.24 Integrated Parallel Programming Environment
2.2.5 Other Tools for Workstation Environment
2.3 Support for Conceptual Models
23.1 Task-OrientedModels
2.3.2 Task-Oriented Programming Tools
233 Data-Oriented Models
234 Data-Oriented Programming Tools
23.5 Object-BasedModels Ce
2.3.6 Object-Based Programming Tools
2.4 Other Issues in Parallel Programming
2.4.1 Explicit and Implicit Parallelism.
242 ExXpressiveness. it e e e e
2.4.3 Ease of Programming vs. Full Programming Control
25 Conclusion. e e
3 The FrameWorks System
3.1 The FrameWorksModel
311 Modules e

3.2

13
3.4
3.5
3.6

The
4.1
4.2
4.3

4.4
4.5
4.6

4.7
4.8

312 Templates L e
Developing Applications using FrameWorks
3.2.1 Mod_Craft: The Graphical User-Interface.
3.2.2 Compiling FrameWorks Applications
3.2.3 Code Generation in FrameWorks
Debugging facility
Communications Between Different Components
Limitations of FrameWorks
Conclusion e

Enterprise System

Introduction e
ModuleCalls
Module Rolesand Assets
4.3.1 Individual e e e e e e e e
432 Line e e e e
433 Pool e e e e e e e e e
434 Contract e e e e e e e e e
435 Department
43.6 Division e e
4.3.7 Service e e e e e e
438 OtherAssetKinds
Enterprise Graphs and Parallelism.
Enterprise Program Construction
The Architectureof Enterprise
4.6.1 InterfaceManager.
4.6.2 Application Manager
463 CodelLibrarian0....
4.64 ExecutionManager,
4.6.5 ResourceSecretary
4.6.6 Monitor/Debugger Manager
System Implementation.,
Conclusion i i e e e e

Source Code and Object Code Librarian

5.1
5.2

5.3
5.4

Introduction e
Management of Source and Object Code
5.2.1 Using ArchitectureKeywords
5.2.2 Using Architecture-Specific Directories
Makefile Management for Enterprise Applications
Creating the Sub-directories and Imakefiles
5.4.1 Generation of the Imakefiles
5.4.2 Contents of the Imakefile.

5.5 Limitations of the Gen_make Utility
5.6 Conclusion

.......................

.....................................

6 Implementation of the Enterprise Compiler
6.1 Introduction
6.2 Comparison between FrameWorks and Enterprise
6.2.1 The FrameWorks Approach
6.2.2 The Emteeprise Approach
6.3 Interface to the Compiler

...............

.......................

.........................

.............................

6.3.1 First Passof the Compiler
6.3.2 Second Pass of the Compiler
6.4 ImplementationDetails
641 TheGNUCCompiler
6.4.2 Implementation Procedures

6.4.3 Recognition of Function Names and Function Calls
6.4.4 Recognition of RETURN Statements
6.4.5 Recognition of Parameter Tvpes
6.4.6 Another Approach to Handling Parameter Types
6.4.7 Recognition of Variables for Delay Blocking
6.4.8 Interface to ISIS Code
6.5 Semantic Issues
6.6 Conclusion

..........

..................

...........
..............
..........................
..................................

.....................................

7 Conclusions and Future Research
7.1 Introduction i
72 ThesisSummary
7.3 Recommendations for Future Research

Bibliography

A The Configuration File of Gen_make
B The Generated Imakefile

C The Generated Check File

D Example of User Seurce Code

E Example of Enterprise Inserted Code

100
100
101
103

108
110
111
113
114

116

Chapter 1

Introduction

1.1 Introduction

As local area networks of personal workstations become increasingly popular these days,
their main usage is the sharing of information and peripherals, and the facilitating of com-
munication among users. In this kind of computing environment, computation-intensive
work is usually done on a personal workstation. While more powerful personal workstations
are appearing on the market in a rapid pace, there is still a large number of applications
which require more processing power than a single workstation can offer. These applications
often require the power of large time-sharing mainframe or parallel computers to run them
effectively. However, this power is also available on a network of workstations. In fact, a
network of workstations possesses a large amount of combined processing power which may
even exceed that of some supercomputers. In spite of the availability of this power, it is not
easily utilized by the users on the fietwork.

A major obstacle in utilizing this processing power lies in the complexity of writing par-
allel/distributed applications. To write an error-free parallel application, a programmer has
to take care of issues such as synchronization and communication between processes. Much
recent research (for example ParaScope [6], PIE [41}, and Paralex [4]) is targeted toward a

better and integrated programming environment for developing parallel/distributed applica-

tions, such that this processing power can be harnessed in an easier fashion. Among these
programming environments, the FrameWorks system is one of the earlier systems having the
above objectives in mind [44, 43, 45]. The development of a new parallel and distributed

programming tool which allows users to utilize the shared processing power available on a

network is the concern of this thesis.

1.2 The Problem

It has long been realized that parallel/distributed software offers many advantages which
cannot be found in comparable sequential software. For example, a distributed program
is likely to run faster because of the opportunity o utilize the additional shared processing
power. The use of distributed processing may alsa #liminate the need for expensive, but high-
performance, specialized computers, the only source for the required processing power in the
past. Replacing these specialized computers with workstations allows the same computing
environment to be used regardless of problem size, and the cost of hardware maintenance to
be reduced.

On the other hand, the use of distributed software is not without drawbacks. The develop-
ment of distributed software is much more complicated than sequential software. i design,
implementation and testing of a distributed application usually requires a large amount of
time and effort from the programmers. Although many parallel/distributed algorithms have
been developed, few of them are actually being used in practice. Actually, the design of an
algorithm may represent only a small portion of the overall cost of development. The rest
of the costs are often due to issues such as deadlock avoidance, synchronization, commu-
nications, heterogeneous computers and operating systems, and the difficulties involved in
testing and debugging the software due to non-deterministic executions.

The utilization of the shared processing power in a network also poses some additional
problems. A distributed programming environment has several unique problems which do not

appear in tightly coupled multi-processor computers, such as multiple-instruction multiple-

data-stream (MIMD) computers:

(A

. The run-time environment of distributed software changes frequently. The processors

and their capabilities available to an application may vary from one execution to an-
other. In addition, the cost of sending a message from one workstation to another

depends largely on the amount of traffic on the network.

. The execution of a distributed application has to consider the ownership of individual

workstations on the network. Usually. the owner of a workstation would allow other
users to use his computer when it is idle, but there may be situations in which he would

prefer to be the only user of the machine.

. The use of a computer network implies a high inter-process communication cost. This

higher communication cost restricts the types of parallelism which may be efficiently
implemented. For example, most small-grain parallel programs cannot take advantage of

the shared processing power on a network becaase of the high communication overhead.

. The low-level communication codes are usually hard to master for non-expert users.

Most users do not want to become experts in networking or low-level communication
packages only for exploring the potential parallelism. Usually, they would prefer to con-
centrate on the functionality and correctness of their application, rather than focusing

on the low-level communication protocols.

1.3 The Enterprise Approach

This thesis is concerned with the design and implementation of a distributed programming

environment, called E'nterprise, that is suitable for shared processing in a workstation envi-

ronment. Enterprise represents the complete redesign and re-engineering of the FrameWorks

system. While Enterprise uses many of the ideas developed in FrameWorks, there are ma-

jor changes in the user's view of a program and refinements in the tools (such s the user

interface) available to the user.

Enterprise provides a programming environment for designing, coding, debugging, test-
ing, profiling, and executing programs in a distributed environment. Enterprise appiications
run on a network of workstations tryving to utilize the combined processing power and re-
sources. Each Enterprise application is divided into two parts: the program source code
modules, and a computation graph. The first part is the program source code which looks
like familiar sequential code. The second part is the graphically specified parallel structure
of the appli-ation. The system automatically generates the communication codes used by
the specifie.. structure and inserts them into user’s source code. This arrangement ensures
the correctness of the communication code, and ailows the rapid construction of distributed
programs.

Enterprise also keeps in view the constraints described in Section 1.2 such that they will

not be violated. The Enterprise system is designed with four basic principles in mind (12, 49]:

1. to provide a simple high-level mechanism for specifying parallelism that is independent

< f low-level synchronization and communication protocols,

2. to provide transparent access to heterogeneous computers, compilers, languages, net-

works, and operating systems,

3. to support the parallelization of existing programs to take advantage of the investment

in the existing software legacy, and

4. to be a complete programring environment, eliminating the overhead that arises from

switching between it and other programming environments.

There are several distinct features that separate Enterprise from other parallel and dis-

tributed programming tools:

1. Enterprise programs are written in a familiar sequential language that is augmented by
new semantics for function and procedure calls. The new semantics allow a function

call made to a remote function, which may be running in parallel on another machine,

™o

to appear as a normal sequential call. The distributed code used for handling the

communication or synchronization between processes will be inserted by Enterprise.

. Enterprise supports a set of commonly used parallel structures and generates the low-

level communication code accordingly. These structures correspond to the regular par-
allelization techniques, such as pipelines and master/slave relationships, which could
be used to structure most of the large-grain parallel programs. The desired technique
is specified graphically through a graphical user interface, and is independent of the
user written code. The de-coupling between the user’s code and the desired paralleliza-
tion technique allows an application to be restructured without changes to the original
source. This also has the added flexibility that applications can be adapted easily to

the changing resources available on a network.

Enterprise uses an analogy between the structure of a parallel program and the structure
of an organization to simplify the way parallelism is expressed. This analogy is used
because of the inherently parallel and hierarchical structure of an organization, and a
consistent set of names can be used to describe the parallel constructs. For example,

traditional terminologies such as:
pipelines, masters, slaves, etc.
can be replaced by:
divisions, departments, individuals, etc.

This analogy is also known as anthropomorphic programming which has both advocates
(8] and detractors [17) in computing science. In fact, the use of analogies has proven

useful in object-oriented programming.

. Enterprise supports the dynamic distribution of work in environments with changing

resources. The dynamic distribution of wosk is supported through some of the par-

allelization techniques defined in Enterprise. For example, a contract may be used to

distribute work to a changing number of identical co-workers (processes). A contract
could use as many idle workstations as available to complete the assigned work. For
instance, when the network is heavily loaded, only a handful of workstations may be
available to fulfill the contract. As the load decreases, many more workstations could

be used by the contract to finish the task.

5. Enterprise uses a hierarchically structured cornputation graph to specify the paralleliza-
tion techniques used by an application. This graph is constructed in a different way than
the graphs used in other parallel programming tools. The user of Enterprise does not
construct the graph by connecting nodes (processes) by arcs (communication paths).
Instead, an Enterprise graph always starts with a single node in the diagram. The user
edits the diagram by either coercing or expanding the node. Coercing a node allows the
communication structure between neighbors to be expressed. Expanding a node allows

the hierarchical structure of the application to be explored.

6. Enterprise allows users to have complete control on the mapping of processes to pro-
cessors. As pointed out by Jones and Schwartz {26], hiding the underlying hardware
details from the users may result in major performance degradation of distributed sys-
tems. Enterprise users can control the mapping either by doing a partial mapping,
doing a complete mapping, or letting the system to handle the mapping on its own.
Similar to the use of parallelization techniques, the processes to processors mapping is

independent of the user-written source code.

In short, Enterprise provides a high-level programming tools for developing parallel and
distributed programs. Enterprise users do not deal with the low-level communication or
synchronization code when writing distributed programs. Instead, Enterprise inserts the
code needed for handling distributed processing into user’s source code. Enterprise starts the
execution of a program by dynamically assigning processes to processors, and establishing the
necessary communication channels. Processes will be running in the background on remote

workstations to make use of the additional processing power. Furthermore, Enterprise also

monitors the global status of the network to perform load balancing. Enterprise processes
running on one heavily load workstation could be moved to a less busy one without affecting
i1~ execution of the program. In this way, the normal users of the workstation will not be

disturbed by Enterprise processes.

1.4 Contribution of the Thesis

Enterprise is an ongoing research project at the University of Alberta on the development of
an easy to use programming environment for developing distributed programs. This thesis
represents part of the research work being done on the development of the system. This
thesis will be focused on the implementation of the code librarian and the compiler used by

Enterprise. In this section, we outline the major research contributions of the thesis:

1. Describes the Enterprise programming model used for distributed applications. This
model separates the specification of the program source code from that of the program’s

parallel structure, encouraging users to experiment with different forms of parallelism.

2. Designs and specifies the overall architecture of the system such that the functional

requirements of each subcomponent can be identified and implemented individually.

3. Designs and implements the Enterprise Code Librarian. The librarian is designed for
managing the source and object code of Enterprise applications. It uses Imake [19]
to generate makefile templates, and takes into account the possible heterogeneity of

computers available on a network of workstations.

4. Develops the compiler used by Enterprise to insert codes for handling distributed oper-
ations into user programs. This compiler is responsible for translating function calls to
a modified /extended form of remote procedure calls. It is also responsible for packaging

the parameters of a call into messages being passed from one workstation to another.

1.5 Organization of the Thesis

The main focus of this thesis is on the design and implementation of the source and .object
code librarian and the compiler used by Enterprise. The rest of the thesis i orgamized as
follows:

Chapter 2 of this thesis discusses the issues involved in parallel programming, and reviews
some existing parallel programming tools.

Chapter 3 gives an overall description and a review of the FrameWorks System.

Chapter 4 provides an overview of the Enterprise programming model, and presents the
overall architecture of the system.

Chapter 5 gives a discussion of issues involved in managing the source and object code
of Enterprise applications. This chapter also outlines the implementation of the Enterprise
Code Librarian.

Chapter 6 describes the implementation of the Enterprise compiler used for inserting
distributed code into user programs. Also, semantic issues resulted from overloading the
syntax of function and procedure calls are discussed.

Chapter 7 provides a summary of the thesis, and future research topics will be discussed.

1.6 Conclusion

Together with the growing popularity of workstation environments, there comes with an
increase in the availability of idle processing power. Although this power could be used
by distributed programs, it is not easily utilized by general users. The development of
distributed software is often complicated by low-level communication details. In general,
users would prefer to avoid the extra complexity involved in developing distributed programs.
As a result, a large portion of this processing power is being wasted. This thesis describes
a new programming environment which can be used to bridge the complexity gap between
distributed and sequential programming so that the unused power can be more profitably

utilized.

Chapter 2

Reviews of Parallel Programming

Tools

2.1 Introduction

In recent years, many tools have been developed to ease the writing of new parallel programs
as well as to parallelize sequential programs. These tools range from pure dependency anal-
ysis tools to integrated parallel programming environments. In effect, these tools are used
by a programmer to aid in transforming a problem solution from one’s “mental model” into
a “second model in the form of workable code” [37]. This process of transformation was once
very difficult because of the increased complexity involved in writing parallel programs. The
programmer often needs to deal with low-level operations to handle issues such as commu-
nication, synchronization, and deadlock avoidance among parallel processes. The processes
could be running either on different processors in a parallel computer or on workstations in a
distributed environment. Furthermore, the decision on optimal process partitioning, process
to processor mapping, and process identification are also important factors which affect the
efficiency of a parallel program [24].

With the introduction of parallel programming tools, the user can write parallel software

at a much higher level than before. These tools are designed to handle most of the low-level

operations for the user. These tools also provide a more stable programming environment
for writing parallel software. It is generally agreed that architectures of parallel computers
change more rapidly than software programming environments. If an application is devel-
oped in the context of the underlying physical computation model, it is most probable that
the application will have to be re-engineered every time it is ported to another parallel ar-
chitecture. As Ahuja [1] pointed out, scmetimes it may be necessary for the implemented
application to be “conceptually reformulated” for it to run on other parallel computers.
Writing applications by using parallel programming tools increases the portability of the
application programs. Moreover, programmers often prefer a “familiar and convenient” soft-
ware development environment with reasonable performance over an environment which
gives maximum performance but require a significant amount of additional programming
effort [38].

From another perspective, these tools provide the user an abstract view of the underlying
parallel architecture. Many of these tools encourage the user to write applications in terms
of an abstract view, which can be mapped to different underlying physical hardware, to
reduce the hassle of porting the applications. This abstraction, which may be called a
conceptual model or a virtual machine, shifts the focus of parallel programming from dealing
with hardware details to the design of the overall parallel structure of a program. This is
similar to sequential programming where the low-level operations, such as reading a byte
form the disk, are handled by the operating system. This shifting of focus not only relieves
the user from programming hardware details, but also allows the program to be expressed
in its most natural way [51].

In the following sections, the types of tools available today, the conceptual models that

they support, and their strength and limitations will be discussed.

10

2.2 Types of Parallel Programming Tools

Many different kinds of parallel programming tools, such as new parallel programming lan-
guages or integrated parallel programming environments, are available today. Since the de-
sign and implementation of these tools are closely related to the type of parallel programming
languages that they support, a discussion of how parallelism is expressed in programming

languages will be presented first.

2.2.1 Expressing Parallelism in Programming Languages

Parallelism can be expressed in a programming language either by using new parallel pro-
gramming languages, or by adding high-level parallel constructs as an extension to existing
sequential languages [13, 36]. The latter approach may be implemented by creating commu-
nication libraries such as NMP [32] ot ISIS [7]. Yet another way of supporting parallelism is
by using an optimizing compiler or an automatic parallelizer to perform the parallelization
of sequential programs. Each of these approaches has its own merits and problems.

On the one hand, new parallel programming languages, such as Linda [1] and Strand 88
[22, 21}, have the advantage of employing the latest concepts and new ways of specifying
parallel constructs in the languages. On the other hand, new languages are often incom-
patible with old sequential languages. This makes the parallelization or transformation of
existing sequential programs an error-prone and time-consuming task. In addition, new pro-
gramming languages often demand a large amount of learning time from the programmer.
For example, the strength of Strand 88 is its recursive nature, which allows it to express the
creation of dynamic processes in a natural way. However, Strand 88 is also hard to learn
and to program with because it requires the programmer to think recursively [13].

The language extension approach is more compatible with traditional sequential program-
ming languages, and is usually easier for the programmer to master. In addition, because
parallel programs are written in a language familiar to the programmer, it opens up the

opportunities to fine tune the performance of the programs. By using the language exten-

11

sion approach, not only are new parallel programs easier to write, but it also increases the
reliability of the programs. The simplicity of a language is an important feature according to
Hoare, who has quoted that “if programs are to be reliable, the languages they are written
in must be simple to understand and use” {2, 18].

Although the language extension approach is easier for users to understand, it may be
hard or even impossible to express some of the commonly used parallel constructs. One
commonly used parallel construct, often missing in the tools using such an approach, is the
tree-like structure. This structure is being used widely in parallel search, divide-and-conquer,

and other classes of algorithms.

According to Chang & Smith [13], the language extension approach can be further clas-

sified into:
1. pre-processors, e.g. FORCE [28],

2. pre-compilers/automatic parallelizers, e.g. the Cyber 205 Fortran compiler {16}, or

3. language features, e.g. ADA.

The easiest approach to implement is the pre-processor approach. It uses compiler directives
or macro-processors to generate the necessary parallel code for the application, and then uses
a sequential compiler together with some low-level parallel library routines (such as NMP or
ISIS) to produce the target machine code. The automatic parallelizer is more expensive to
build as it requires dependency checking and knowledge of code segments (i.e. the semantics)
in the context of the original program. Finally, the language features approach is even more
expensive to implement for it usually requires new compilers rather than using existing
compilers as one of its building blocks.

Having discussed how parallelism is supported in programming languages, the following
sections describe the different types of available tools. There are generally three types of
parallel programming tools: (1) pure dependency analysis tools, (2) automatic parallelizers,

and (3) integrated parallel programming environments.

12

2.2.2 Dependency Analysis Tools

Pure dependency analysis tools are generally targeted toward making the parallelization of
an existing sequential program easier. The parallelization of a sequential program generally
involves repartitioning and remapping. Although it may not be difficult to repartition a
sequential program written in a high-level structural language, problems may appear if the
program is written in older languages such as Fortran. Several tools are designed to uncover
the design of a sequential program and display it graphically for further analysis. Examples
of these tools are E/SP, MIMDizer, and PRETS [24].

The programmer typically uses the dependency analysis tools in an iterative manner. An
existing sequential proz-am is first passed into a dependency analysis tool to collect initial
dependency information. This information is gathered by performing static data and control
flow analysis on the program. Some of the dependency analysis tools also collect run-time
statistics to aid the analysis process. The collected information will be used to identify
parallelization possibilities and display them to the programmer through a graphical idisplay.

The dependency analysis tools usually use a conservative approach in identifying the
parallelization possibilities because it is generally impossible to determine at compile time if
a data dependency exists between two variable references [3]. The programmer may supply
additional information to the tool to “replace conservative assumptions” about the program
[24]. The program can then be restructured and re-analyzed according to the collected
information. This restructuring and redesigning process may be repeated until a suitable
parallel structure for the program is found. Because the dependency analysis tools are not
automatic parallelizers, the programmer must perform the final parallelization step manually

to produce a parallel program.

2.2.3 Automatic Parallelizer

Another type of parallel programming tool is the automatic parallelizer or the optimizing
compiler. An automatic parallelizer performs all the necessary dependency analysis and opti-

mization of a sequential program for the user. Although this approach seems to be attractive

13

for converting existing programs, it may be unable to obtain the maximum performance from
a given parallel processing environment. Another limitation of an automatic parallelizer is
that the programmer is given few opportunities for exploiting different forms of parallelism
and in fine tuning their parallel programs [3]. Examples of automatic parallelizers are the
EXPRESS C automatic parallelizer [13]. the Alliant FX Fortran compiler [24], and the Cyber
205 Fortran compiler [16].

An optimizing compiler is relatively easy to use, but the programmer often has to be
concerned about the underlying hardware architecture to use the compiler effectively. For
example, the Cyber 205 Fortran compiler compiles an otherwise sequential program and
outputs the parallelized target code for the Cyber 205 supercomputer. The compiler tries
to parallelize the sequential program by doing dependency analysis and locating loops that
are parallelizable. The quality of the target code depends largely on the structure of the
sequential program. Often a large performance improvement can be realized simply by doing
subscript alignment in a do-loop [3], by distributing loops (i.e. dividing a non-parallelizable
loop into multiple loops where some of the loops may be parallelizable), by making a scalar
variable into an array (breaking scalar dependencies), or by exchanging the inner-loop with
the outer-loop of a nested do-loop (changing the granularity of the program). The perfor-
marce improvement is due to new parallelization opportunities resalting from restructuring
the program, and maximal use of hardware features such as using the hardware pipeline and
reducing the amount of memory paging activities. The use of sn optimizing coripiler tends
to mask the underlying hardware from the user. However, i{ the user does not understand

the hardware, he will not know enough to restructure his 7:zogram to get better performance.

2.2.4 Integrated Parallel Programi:uii:g Environment

The third type of parallel programming tools is the integrated parallel programming envi-
ronment. These environments provide the programmer a set of tools to edit, test, debug
and visualize the execution of a parallel program. While the set of tools in an integrated

environment often share a consistent and uniform set of user interfaces, some environments

14

provide them in the form of a uniform graphical display. A structural graph, in the form of
a control flow graph or a data dependency graph, is used to define the parallel structure of a
program. The run-time behavior of the program can be visualized by animating the defined
structural graph. The visualization of program execution is particularly important, because
it provides an easy alternative for the programmer to identify performance bottlenecks and
potential synchronization problems of parallel progratns.

In addition to the advantage of visualizing the execution of parallel programs, most of
these tools, such as Paralex (4] and FrameWorks [44, 43, 45|, allow the independent definition
of functional modules and the parallel program structure. Every functional module has a
well defined interface (i.e. the function's header) to other modules; also, the module does
not assume any synchronization properties in its source code. This feature has the added
flexibility of being able to restructure a finished parallel program and to experiment with
different forms of parallelism to achieve a better performance. The separation of the two
definitions also enhances the reusability of the functional modules [10], and helps to make
a parallel program become more portable. The programming models represented by these
tools are usually conceptual models rather than a specific physical model. Most of the newly

developed tools fall into this particular type.

2.2.5 Other Tools for Workstation Environment

In the above discussion, we did not distinguish between the tools which are designed for
shared memory parallel computers from the tools designed for distributed memory parallel
computers or even a network of workstations. The tools discussed so far are used for wyiting
efficient parallel programs, and every tool tries to fully utilize the available processing cycles
in the parallel computing environment. There exists, however, yet another kind of tool which
tries to fully utilize the computational power available in a workstation environment. These
tools, such as the Engineering Network Computer (ECN) [23], the Butler system [35] and
WORM [42], usually provide to a user a mechanism for executing processes transparently

on a remote idling workstation [23, 35).

15

The difference between using these tools and simple remote procedure calls is in the
selection of a workstation. In using remote procedure calls, for example remd in UNIX,
the user has to explicitly specify which workstation is to be used. However, a tool such
as the ECN will automatically choose a workstation for the remote process based on some
pre-defined criterion. Some of these tools. such as WORM, even provide a mechanism to
migrate a remote process from one heavily loaded workstation to anotber workstation (42].
These tools are useful in reducing the overall response time of a workstation-based computing
environment, but they are not designed for developing large parallel programs which often

require a huge amount of computation power.

2.3 Support for Conceptual Models

We have discussed so far the types of parallel programming tools and the merit of program-
ming in terms of conceptual models. In this section, we will discuss the different conceptual
models available and the specific support available through parallel programming tools.

In general, there are three different conceptual models available for writing parallel pro-
grams: task-oriented models, data-oriented models, and object-based models [37). Although
there are several conceptual models available, most parallel programming tools have direct
support for only one model. Sometimes additional features are added to the tools such that

some degree of freedom can be achieved.

2.3.1 Task-Oriented Models

In the task-oriented model, a parallel program is viewed as a collection of serial processes
and each of these serial processes has its own unique thread of control. When some of the
serial processes are replicated and executed in parallel, parallelism can be achieved. Some
basic forms of this model, the independent processes model and the cooperating processes
model, are supported by programming languages such as Algol 68, Smalltalk, Occam, Ada,
and PL/1 (37).

16

In the independent processes model, each process executes independently and terminates
without any interaction between concurrent processes. This is similar to the fork and join
used in many UNIX systems. Typically, a parent process forks off a number of child processes.
Each of these child processes may continue to execute without any interaction with other
chfld processes. Synchronization points, such as a join, may be used to control the flow
of the program. When the child processes are terminated. a join may be performed and
the control is returned back to the parent process. In the cooperating processes model,
concurrent processes can communicate with other processes by means of message passing
or shared storage area. A parallel program in the task-oriented model can be represented
by a directed graph with each node representing a task or a procedure call, and each arc
representing an operation which advances the state of the program. Since the independent
process model is a subset of the cooperating process model, the latter is usually the model

being implemented [37].

2.3.2 Task-Oriented Programming Tools

PISCES 2 (Parallel Implementation of Scientific Computing Environments) (38] is one of
the tools which uses the task-oriented model. The main concept of PISCES 2 is to allow
the programmer to write programs in terms of a well-defined virtual machine. The virtual
machine is independent of the underlying hardware such that programs should be easy to
be ported to other computers. A parallel program in PISCES 2 is viewed as a collection
of tasks, and the tasks are grouped into different clusters. The clusters in a program run
in parallel and communicate through asynchronous message passing. The tasks in a cluster
also run in parallel, but they communicate through shared variables. An individual task can
be further divided into “forces” which represent parallel running “code segments” such as
parallel loops or subroutines. PISCES 2 is implemented on the Flexible FLEX/32 system, a
MIMD computer, as a set of Fortran extensions.

SCHEDULE {24, 38) and POKER |13, 38) are systems similar to PISCES 2. POKER was

originally designed for use on the CHiP computer, but it was later used as an environment

17

for programming different MIMD computers. While POKER has a graphical interface for
user interactions, PISCES 2 requires users to structure their applications through textual
interfaces. SCHEDULE is a set of Fortran extensions which allow a program to be parti-
tioned into independent tasks. The programmer specifies the dependencies of the tasks and
SCHEDULE uses a global queue to control the execution sequence of the tasks. The process
(task) to processor mapping is hand'2d automatically by SCHEDULE. If possible, the tasks
are scheduled to run in parallel and communicate through shared variables. SCHEDULE
also supports a visualization tool for monitoring the execution of a program.

PAT (Parallelizing Assistant Tool) [3, 24] is a collection of tools which aid Fortran pro-
grammers in writing, debugging, and fine tuning applications. An interactive parallelizer is
used in PAT to perform control and data flow analysis. The parallelizer uses the information
to make suggestions concerning potential modifications for enhancing the parallelism in the
program. PAT also uses a static analyzer to simulate the execution of the program to locate
potential errors such as deadlock conditions. A graphical user interface is used to show the
information gathered form the parallelizer and the static analyzer. The user interface also
allows the programmer to restructure his program interactively.

E/SP [24] is a semi-automatic Fortran parallelizer. A Fortran program is displayed as a
graphical hierarchical dependency graph. E/SP uses a graphical user interface to allow users
to interactively restructure his program. Code segments that are not possible for E/SP to
perform automatic parallelization will be displayed as highlighted icons o:: the dependency
graph. The programmer can decide on actions such as separating loops, or reorganizing
nested loops to increase parallelism. E/SP then performs a “source-to-source” translation
to create the parallel program source for the Fortran VII compiler, an optimizing compiler

for the Concurrent 3200MPS computer.

2.3.3 Data-Oriented Models

A parallel program written in the data-oriented model is parallelized by concurrent execution

of an operation on multiple data items [37]. This is similar to the computational model of

18

a SIMD computer. Different from the task-oriented model, where a parallel program has
multiple threads of control, a data-oriented parallel program exhibits only one thread of
control. When the size of the data items is large enough for parallelization, the program
diverges temporarily into parallel actions to operate on the data subsets, and converges when
the actions finish [37].

A data-oriented program can be expressed as a data dependency graph with each node
representing a computation uait and each arc representing the flow of data. Furthermore,
a “ata-oriented program can belong to either one of the demand-driven, data-driven, or
the protocol-specified models 25, 5, 10, 4]. In the demand-driven model, the execution of a
program is initiated by having the terminating node to send a request for data to the initial
node and the initial node responds [25]. The terminating node and the initial node in the
dependency graph are represented by the sink node and the source node respectively. A
source node is a node which has no incoming edges, and the sink node is a node which has
no outgoing edges.

In fact the sink node, in the demand-driven model, does not send its demand for data
request directly to the sonice node. The sink node first sends the data request to its parent
in the dependency graph. The request is then propagated up toward the source node, and
finally the result of computation is propagated back down to the sink or the terminating
node {25].

The data-driven model [5] takes an opposite approach to the demand-driven model. The
computation of the data-driven model is initiated when the starting node sends data or
results to its children, and eventually the computation is ended when a result is received at
the terminating node. A computation unit (i.e. a node) is never called or activated directly
by another computation unit. The computation unit is activated by sending data items
to it. The advantage of using the data-driven model over the demand-driven model is the
reduction in the total number of messages. Since the data request messages are no longer
necessary, for a similar data-dependency graph, the data-driven model uses only one half of

the messages used by the demand-driven model [25, 51].

19

Whereas the data-driven model has the advantage of using fewer messages, there may be
situations where the demand-driven model provides a more natural way of expressing the
structure of a program. The latter is more general for it can support different forms of parallel
evaluations. Both “call-by-value” and “call-by-need” function evaluations are supported in
the demand-driven model, but only “call-by-value” evaluation can be naturally supported
by the data-driven model [25]. “Call-by-value” function evaluation means the arguments of
a function are evaluated before the function is executed; “call-by-need” function evaluation
means that the arguments are not evaluated until they are needed in the function.

The protocol-driven model, used by CODE (10, 11] and Paralex [4], combines the advan-
tages of the two data-oriented models. The protocol-driven model allows the programmer
to specify both data-driven and demand-driven dependencies in a data dependency graph.
The programmer specifies a “firing rule” for every edge in the graph. The rule is used to
describe the type of dependency associated with an edge. In CODE. an edge can represent

either a data, a demand, an exclusion, or a control dependency [10].

2.3.4 Data-Oriented Programming Tools

CODE (Computation-Oriented Display Environment) {10, 11] is designed to provide an “uni-
fied approach to parallel programming.” It tries to combine the results of software engineering
and visual-programming research to help write parallel programs. CODE is a data-flow ori-
ented programming environment, in which a parallel program is divided into two different
basic elements. The first element is a set of computation units, each containing a func-
tionality and a firing rule. The functionality of a computation unit can be viewed as the
computation carried on the input data, and the firing rule specifies the condition of when
the computation unit should be executed. The second element consists of the dependency
relations, which specify the dependencies among different computation units. The depen-
dency relations can be any one of data, demand, mutual-exclusion, or control dependency.
A dependency graph is used to define the dependency specifications of a program. A node

in a dependency graph can be either a computation unit or a sub-graph. An edge in the

20

dependency graph shows the dependency between various nodes. Finally, CODE encour-
ages the programmer to design his programs in a “top-down” manner by writing them as
“hierarchical graphs”.

In a CODE program, the dependency specification is separated from the computation
unit specification, and the firing-rule specification is separated from the functionality spec-
ification in computation units. Because of these separations, reusability of the source code
and design modules is strongly enhanced [10]. CODE is frequently being used with ROPE
(Reusability-Oriented Parallel Programming Environment) [11] which is designed to select
and reuse CODE modules. Currently, CODE supports four programming languages: Ada,
C, Fortran, and Pascal. One special feature of CODE is that the programmer writes only
the sequential algoritt:m code and CODE generates the function’s header. However, CODE
does not provide mechanisms for dynamically creating processes at run-time.

DGL (Directed-Graph Language) [25] is another tool which uses the data-oriented model.
An application in DGL is composed of a small number of large-grain function modules
written in a traditional sequential language. Large-grain functions are used because of the
high overhead involved in transmitting messages across a netwotk. Function modules of an
application are connected by a directed-graph language to specify the dependencies among
the modules. A dependency graph can be used to represent the overall structure of a program.
A node in the graph corresponds to a function module and an edge corresponds to the
dependency between the modules. The distributed execution of a program is controlled by
using the demand-driven approach. The DGL environment uses implicit parallelism such
that the distribution of processes is transparent to the programmer. A session manager in
DGL provides the programmer an interface for programming, debugging, visualizing, and
executing programs.

LGDF (Large-Grain Data Flow) [5] is an environment for writing parallel Fortran pro-
grams using macro expansion and the data-oriented approach. The LGDF environment
combines the data flow concept and sequential subroutines to produce a parallel program.

A subroutine in LGDF is typically 5 to 50 lines of Fortran code. LGDF is data-driven as

21

the subroutines are not called directly for execution, but are activated by the arrival of data
items. In other words, if the value of all the arguments of a subroutine are available, the
subroutine starts to execute. A LGDF program can also be expressed as a hierarchical data
flow graph. The nodes in the graph can either be functional modules or other sub-graphs.
The edges in the graph represent dependencies and data paths between the nodes. and shared
memory is used in LGDF to implement the data paths. One serious drawback of the LGDF
environment is in the construction of the dependency graphs. In LGDF, for each argument
passed between two nodes, a new edge has to be constructed to specify the data dependency.
Since a subroutine usually takes more than one input/output argument to execute, multiple
edges are often required in a LGDF graph to connect two individual nodes. This may result
in a complicated or an inconsistent dependency graph for even a relatively simple program.

Paralex [4] is another programming environment that uses the data-driven approach.
Different from other data-oriented models, a node in a Paralex dependency graph can either
be a computation node or a filter node. The computation node starts its execution when
the required arguments have arrived. The filter node is used to allow data values to be
examined before they are actually transmitted to reduce the amount of communication
overhead. Paralex is used for developing parallel C programs by inserting ISIS library calls
[7] to handle remote procedure calls. A graphical user interface is provided in Paralex to

ease the development process of a program.

2.3.5 Object-Based Models

Object-based models are probably the newest conceptual model available to parallel pro-
grammers. The idea behind this model is similar to that of object-oriented programming
in writing sequential programs. An object-based program is composed of modularly de-
composed units. These units are independent and self-contained entities which may contain
data, operations or both [36). The basic function of such an entity is to interact with other
entities by sending and receiving messages.

Although this model was developed along the lines of object-oriented programming, not

22

all tools which fall into this categories are truly object-oriented. An object-oriented modet
requires an object to have an external (public) and an internal (private) views. These views
are similar to the use of abstract data types where data can only be accessed through a well-
defined interface. Furthermore, the model also uses the notion of member functions, which
allows the same interface {external view) to be shared by different object types (classes of
objects) to perform different actions. Tools such as FrameWorks [44, 43, 45] and Enterprise
[12, 49] can be classified as object-based models for they allow the programmer to define
a functional module which may contain its own data set. However, they do not have the
support for designing high-level object types. Similarly, Linda provides a means for doing
abstraction and system decomposition [37], but it is not an object-oriented parallel pro-
gramming language. It lacks the ability to allow an interface to be shared among different
abstractions. Each abstraction requires its own unique interface to be used for accessing the

defined data or functions.

#.3.6 Object-Based Programming Tools

FOG (Fragmented Object Generator) [31] is built on the object-oriented model, and is
mainly used to write distributed systems and distributed applications. A program in FOG is
composed of different objects, called fragmented objects. These objects have both an external
view and an internal view. The external view is the interface which may be used by other
objects to communicate with the fragmented object. The internal view is the implementation
of the object itself. A fragmented object may be shared or used by several objects at the same
time. The fragmented objects may be created dynamically during run-time by a “binding”
procedure similar to a “constructor” in the language C++.

FOG is implemented as an extension to the C++ programming language. A set of low-
level communication objects are also implemented as a tool set to handle communications
between distributed processes. The communication objects of similar functions are “orga-
nized as a class hierarchy, with the same interface” [31). The object-oriented approach used

by FOG is a powerful approach because additional objects, such as shared memory for dis-

23

tributed applications, may be implemented by using low-level objects if they are needed.
As FOG is relatively new in the group of parallel programming tools, not many types of
low-level communication objects are currently available. The lack of these objects might
cause difficulties in developing new programs and in converting existing progranis.

Linda [1] is a new parallel programming language to the extent that the “pre-processor or
compiler recognizes the Linda operations, checks and rewrites them on the basis of symbol
table information, and can optimize the pattern of kernel calls” {1]. Although Linda is not
built on a truly object-oriented model, it provides abstractions such that processes act as
“black boxes” receiving and sending messages [37]. Parallelism in Linda is often realized
by the replication of parallel processes. Linda views a parallel program as a “spatially
and temporally unordered bag of processes” (1], but not a process graph. Linda processes
tommunicate implicitly by putting tuples into a virtual shared memory region called the
tuple space. The tuple space may be implemented by using real shared memory or may be
distributed across a network. A tuple is similar to a record, an ordered set of values, in
relational databases. When a process wants to retrieve a data value, a matching operation
is performed on the tuples in the tuple space. If a tuple in the tuple space matches the
specification, it is retrieved and the process continues to execute. Otherwise, the process
will be suspended until a matching tuple is put into the tuple space by another process.

Frameworks {44, 43, 45] is another tool which uses a model similar to the object-oriented
model. An application graph is used to represent the structure of a program. The nodes in
the application, representing computation units, are associated with different source modules
written in sequential C. The sequential modules may also contain the additional call or reply
keywords to indicate the locations of remote procedure calls and locations of waiting for
replies from the calls. The application graph in FrameWorks differs from other similar
dependency graphs in that the application may be restructured by attaching templates to
the nodes. A node is typically composed of three separate templates: the input, output, and
body template. The power of FrameWorks lies in the ease of converting sequential programs

and restructuring parallelized programs. However, FrameWorks suffers from a user interface

24

which is hard to use, and the need for additional keywords in the source modules. Because
Enterprise is a new generation of FrameWorks, a detailed review of FrameWorks will be
given in a later chapter.

PIE (Programming and Instrumentation Environment) [41] shares a similar template
attachment approach with FrameWorks. An application in PIE also consists of a collection
of functional modules. Templates may be used to encapsulate the functional modules to add
new meanings to the modules. For example, a functional module may represent a part of a

pipeline or a master-slave structure depending on the chosen template.

2.4 Other Issues in Parallel Programming

Besides the conceptual models described in the previous sections, there are other issues in
the domain of parallel programming that affect the usefulness or the ease of use of different

parallel programming tools.

2.4.1 Explicit and Implicit Parallelism

Explicit parallelism is accomplished by adding ezplicit calls or directives, by the user, into
the source code of parallel programs. Examples of explicit parallelism are the pardo loop used
on the Myrias SPS-2 computer [34], or the call and reply statements used in FrameWorks
[44, 43, 45]. This approach makes the programmer know exactly how a program is being
parallelized. The programmer is given complete control on the parallelization technique
to be applied to the program. However, when the program is being restructured, minor
modifications on the source code may be required.

On the other hand, implicit parallelism relieves the programmer from rewriting or editing
his program even when the program is being restructured. For example, an optimizing
compiler will try to parallelize user programs regardless of the structure of the program.
However, the structure of the program has a large influence on the quality/performance of

the compiled code. Yet another way to support implicit parallelism is to provide users a

25

conceptual model on top of the hardware layer. By using the tools which facilitate the use of
conceptual models, a user writes his program in terms of functionality and defines the parallel
structure of his program by using a structured graph. The locations of the parallel code
segments, such as call and reply, are already specified implicitly in the dependency graph.
The tools, therefore, should be able to insert the calls into the source code without any
help from the programmer. Thus, it is possible for this kind of tools to employ the implicit
approach. Moreover, the implicit approach makes it even easier to convert a sequential

program into a parallel program and vice versa.

2.4.2 Expressiveness

The expressiveness of a parallel programming tool decides what kinds of parallelism can
be supported by such a tool. Although a tool may not be able to express all forms of
parallel constructs, it may sti}l be useful if it covers most of the commonly used constructs
and is convenient to use. Except for languages like Strand 88 {22, 21] and some parallel
programming environments such as Enterprise, most of the tools or models do not support

the expression of recursive calls or dynamic use of divide-and-conquer parallelism.

2.4.3 Ease of Programming vs. Full Programming Control

The tools which are designed for parallel programming often provide to the programmer an
abstract view of the underlying physical machine. This abstraction helps the programmer
to concentrate on the parallel structure of his program rather than spending most of his
efforts in dealing with hardware details. This ease of programming does not come without
a cost. In the study of Jones and Schwartz [26], they point out that the masking of the
hardware architecture in a distributed system often comes with a severe performance penalty.
To achieve good performance in a parallel computing environment, the programmer must
have some control over the mapping between processes and processors. Ideally, a parallel
programming tool should provide both the options of automatic processor allocation for

naive users and full processor allocation control for advanced users.

26

2.5 Conclusion

In this chapter we have looked at various issues in designing tu ; for <. . Joping parallel
programs. One important issue is to provide the programmer with a ¢table and familiar
programming environment. The environment should also encourage the user to wtiie paraliel
programs in terms of a virtual machine. The advantage of using a virtual machine - the
increased portability of the programs. Several models of virtual machines are available and
are used in various parallel programming tools. The iask-oriented model represenis parallel
processes as concurrent tasks. The data-orientea model views a program as a collection
of computation nodes, and the nodes are activated by sending data to them. The newest
available model is the object-based model. The object-based model seems to be the most
powerful mode] among the three. Programs developed under the object-based model can be
restructured easily and new objects may be implemented by using other basic objects.
Many of the recently available parallel programming tools try to provide the programmer
with an integrated programming environment. Older parallel programming tools often only
allow the programmer to perform one specific operation, such as analyzing or debugging
a program, in the environment. The programmer must switch to another environment to
perform other actions such as modifying the source code or compiling the program. The
newer generation tools allow the programmer to edit, compile, execute, debug, and mon-
itor a parallel program without switching from one environment to another environment.
The integrated programming environment, therefore, provide a better and more intuitive

environment for the programmer.

27

Chapter 3

The FrameWorks System

The FrameWorks system is a programming environment for developing distributed appli-
cations [44, 43, 45]. FrameWorks allows users to separate the code of their distributed
applications and the specifications of their distributed structures. In FrameWorks, a user
writes applications in terms of functional modules. Each of these modules represents a collec-
tion of sequential procedures and are enclosed by templates. The templates are used to hide
the implementation details such as the communication and synchronization among other
modules. This approach reduces the complexity of developing distributed applications sig-
nificantly. The separation of the functional modules and their relation to other modules also
makes the developed applications much easier to modify and to adapt to different processor
constraints.

This chapter serves to provide an overall description and a review of FrameWorks. The
system is of particular interest because it is the predecessor of Enterprise. Many useful ideas
developed in FrameWorks have been corporated and improved in Enterprise. In addition,

some of the limitations in FrameWorks have either been eliminated or solved in Enterprise.

28

3.1 The FrameWorks Model

The FrameWorks model allows a user to write distributed applications in terms of functional
modules, and delay the concern of issues such as synchronization to a later time. This
separation is realized by employing the concept of template attachment. An application in
FrameWorks is separated into two parts. The first part can be represented by a high-level
directed graph, called an application graph. A node in the graph represents a computation
unit, and an edge in the graph represents a communication path between two nodes. Two
computation units may communicate only if there is an edge connecting the two units. The
communication is handled by a way similar to the remote procedure call (RPC) protocol. The
second part of an application includes the functional modules. Nodes in the application graph
are associated with functional modules. These modules represent collections of sequential
procedures necessary to perform the computations. Each module is enclosed by templates
to define its communication and synchronization properties. The implementation of these

properties, however, is hidden from the user.

3.1.1 Modules

Modules in FrameWorks, called FW inodules, are collections of sequential procedures. Every
FW module contains exactly one entry procedure which can be called by other modules in
an application. Other procedures are treated as local procedures, and can be called only
within the module itself. During the execution of a FrameWorks application, every module
(functional unit) is represented by an individual process. Therefore, the interaction between
the modules represents the interaction of different processes running on different processors.

FW modules are similar to ordinary C modules. However, there are several major differ-
ences. All FW modules end with the “.f" suffix, wiile C modules end with the “.c” suffix.
Furthermore, in a FW module, the entry procedure has to be the first procedure appearing
in that particular module. The syntax of a FW module looks almost identical to a C mod-

ule, except for two additional keywords, call and reply. The call statement is used to call an

29

entry procedure, which resides in a different FW module and may be running on a different

workstation on the network.

For example, if in an application module X calls another module Y, the call can be made

in X by the statement:

call Y (input);

where input contains the parameters to be sent to Y. In FrameWorks, the parameters passed
between different modules are called frames. A frame is a structured message, in the form
of a C structure. It contains all the parameters to be passed to another module. In other
words, each module call may contain only one arbitrarily complex parameter. Furthermore,
the user of FrameWorks is responsible for explicitly packaging the parameters into frames.
Different from simple RPC calls, the calling module in FrameWorks may choose to con-
tinue its execution or to wait until a frame is returned from the called module. Asynchronous
communication is assumed when the call statement is used in its basic form as described
above. The calling module continues its execution without waiting for the called module to

finish. When a return frame is expected from a module call, the
output = call Y (input);

statement may be used, with output being the frame to be returned from Y. In this case, the
calling module (i.e. X) will be suspended until the output frame is received from Y. This

is similar to the use of synchronous communication between the two modules. The repiy

statement,
reply (output);

is used in Y to return an output frame (answer) back to X, the calling module. Similar

to the input frames, the user is responsible for packaging the return values into an output

frame.

30

3.1.2 Templates

For a distributed application to function properly, it must handle the synchronization, com-
munication, and scheduling of messages being passed between different processes. As de-
scribed in the previous section, the only distributed information contained in FW modules
appears in call and reply statements. Additional information is contained in templates. The
templates are used to hide the low-level implementation details, such as how a message is
sent to other modules, from the user. Up to three different kinds of templates may be at-
tached to a FW module: an input, output. and optional body template. The input template
specifies how incoming messages are handled by the mcdule. The output template specifies
the handling of outgoing messages. Commonly used structures in parallel programming, such
as a pipeline or a master-slave relationship, can be specified by using different combinations
of the input and output templates.

An optional erecutive body template may be used to modify the behavior of a FW module.
The executive template is used to re-direct the input and output of an application to the
user’s terminal. If the template is not used, the application can be running in the background
without user interaction.

There is also a contractor body template which may be attached to a FW module. The
application grapl used in FrameWorks is a static specification of the interaction between
different modules. Thke number of concurrent processes is fixed and cannot be changed dur-
ing execution time. However, the contractor body template may be used to change a FW
module’s behavior. This template tells the system to contract out work dynamically to dif-
ferent workstations according to the size of the problem. Therefore, when more computation
power is needed, additional employee processes will be created to share the work if an idle
workstation is available. When the additional computation power is no longer necessary,
the employee processes will be removed by FrameWorks. This mechanism allows a Frame-
Works application to adapt easily to the changing processor constraints in a workstation
environment.

One important feature in FrameWorks is that the use of templates does not require any

31

changes to the FW modules. The templates simply attach additional meanings to the FW
modules. The use of the template attachment approach also encourages restructuring of a

finished application. An application could be restructured to adapt it to the distributed

environment or for fine-tuning performance.

3.2 Developing Applications using FrameWorks

In developing a distributed application using FrameWorks, two types of input are needed
from the user. The first one is the source code modules (i.e. FW modules). The modules
usually have few changes from their sequential versions. The user is required to modify the
modules by adding the call and reply keywords ai their proper locations, and changing the
parameters of these calls into frames. It may also be necessary to reorganize the source code
and to group the procedures into different FW mouules.

After each of the FW modules is developed, FrameWorks requires the user to specify
a communication graph between the modules. This graph describes how one module is
related to the others in the program. The graph can be constructed by using the Mod_Craft
program, a graphical interface in FrameWorks for creating communication graphs. After
both of the FW modules and the communication graph are created, the user may compile
the application by the commands fwconfigure, fwpp and compile. Details of these commands

and the Mod_Craft program will be described in the following sections.

3.2.1 Mod_Craft: The Graphical User-Interface

Mod_Craft is a graphical user-interface in FrameWorks that allows users to specify the ap-
plication graphs of their programs. The different input, output, and body templates are
represented by icons in the interface. A graph is constructed by creating nodes and by
drawing edges between the nodes. A node in the graph is formed by combining the icons
of an input template and an output template together. Each node is associated with a FW

module, and additional resource utilization constraints can be specified in the interface. For

32

example, the user can specify that there should be three copies of a particular FW module
running in parallel and none of them should be running on workstation X. The output of
the interface is a file named as “application.name_templates.” This file is a textual repre-
sentation of the graph specified in Mod_Craft. The file will be used later by the commands
fwconfigure, fwpp and compile to produce an executable version of the program.

The graphical user-interface of FrameWorks for Sun workstations is implemented by us-
ing Diction, Chisel and Vu [46, 47] which are collections of user interface management tools.
These tools allows rapid prototyping of graphical user-interface under the SunView environ-
ment. The use of these tools shorten the development time of FrameWorks. However, these
tools also limit the portability of the system, because they are not commonly supported in

other computing environments.

3.2.2 Compiling FrameWorks Applications

While Mod_Craft can be considered as the front-end of FrameWorks, there is a back-end of
the system. The back-end of the system is responsible for inserting the low-level distributed
code, compiling the application, and setting up the runtime environment for the application.
There are three commands used for accessing the back-end of FrameWorks to produce an
executable distributed application. They are fwconfigure, fuwpp, and compile. After the
executable is created, the user can invoke the application by simply using the application
name, and the distributed processes will be created automatically by the system.

The functions of each of these commands are listed as foilows:

1. fwconfigure <application-name>: This command takes the output of Mod.Craft, the

application_name.templates file, and outputs the following files:

application_name.allocation: this file contains the specifications as to how many
processes are 2ssigned to a particular wurkstation. One entry is needed for every

workstation used.

application_name._config: this file contains the information needed to start up the
application. This file is actually the “config” file used by NMP [32]. the low-level

library used by FrameWorks to handle message passing,

application_name_congraph: this file contains the information on the input, output,

and body templates of each FW module. The connections between the modules

are included in this file.

application_name_list: this file contains the names of the FW modules. It is needed

for “compiling” the application by using the compile command.

application_name_node_table: this file contains the names of every node in the ap-

plication graph and an unique identification number is assigned to each node.

2. fwpp <application_name>: fwpp is actually a C pre-processor which takes the FW mod-
ules and translates them into normal C modules with the “.c” suffix. The translation
from FW modules to C modules involves adding the code necessary for handling the
call and reply statements. Since the code used for the two statements depends on the
structure of the program, fwpp consults the application_name_templates file so that it

may generate the distributed code accordingly.

3. compile <application.name>: This command compiles all the C modules generated by
fwpp and produces a distributed program which can be run on a network of workstations.
“Compile” knows what modules, by using the application_.name_list file, are included
in the program; thus the user does not have to construct a makefile for the program
manually. Users of FrameWorks can specify the necessary libraries or compilation flags
in a file called fw.env which has to be located in the same directory as the program

itself.

3.2.3 Code Generation in FrameWorks

The back-end of FrameWorks is responsible for generating the code needed to handle the

communication and synchronization between different processes (FW modules). The coc'e

currently generated are NMP calls [32]. NMP is a package of high-level interprocess commu-
nication routines designed for UNIX systems. Using NMP has the advantage that if a user
is familiar with the package, he may further optimize the generated code without learning
sockets. On the other hand, there is also a portability problem when NMP is used as the
backbone of FrameWorks. If a user decides to port Frame\Works to another system, he has

to port the NMP package onto that particular system first.

3.3 Debugging facility

The debugging facility in FrameWorks s provided by the program View.Graph. 1t is a
post-execution analysis tool for FrameWorks applications. The tool is used to replay the
execution of a program, through its application graph, on a color graphic terminal. The
tool changes the color of the link between two modules to reflect the fact that a message
is passed between the modules. Similarly, it changes the color of an icon in the graph to
reflect the status of a process, such as a module is waiting for an input frame to arrive.
The animation of the program execution could be used to detect deadlock conditions and
potential performance bottlenecks. The user js allowed to step forward or backward through
the program animation. Besides the graphic display, there is also a status command in the
tool which allows users to query the current status of a FW module. The command can be
asked to return performance statistics or to display program trace information. View_Graph
is still in its preliminary stage when the development of FrameWorks was stopped, but it

provides a valuable means for debugging FrameWorks applications.

3.4 Communications Between Different Components

In the current implementation, communication between different components of FrameWorks
is mainly through files. This approach has the drawback that most communications between
the modules are virtually one way channels. Because of these channels, FrameWorks cannot

provide dynamic information back to the users. In other words, these channels limit the func-

tionality of FrameWorks, and provide little feedback to the users of the system. Currently,
the user-interface only allows users to specify the communication graph of an application.
Users must leave the FrameWorks environment to make changes to their source code. or to
compile their applications.

FrameWorks generates many small files such that one component may interact with other
components in the system. These small files not only clutter the directory in which an
application resides, but also confuse the users as they look into the directory. If these files
are either hidden or grouped together into a bigger file, it should be easier for a user to

extract important information by simply looking into the directory itself.

3.5 Limitations of FrameWorks

Although the FrameWorks system provides users a better programming environment for
writing distributed applications, FrameWorks has several limitations in its own right. The
current version of FrameWorks supports only a homogeneous network of workstations. This
is usually not the case in a real life computing environment. It is very common in workstation
environments for a network to contain several different kinds of workstations which are not
binary compatible. Another major limitation of the FrameWorks system is the fact that the
communication graph is static, with the exception of when the contractor body template
is used. This restriction makes the creation of dynamic processes limited to the use of the
contractor body template. However, because of the limitations of NMP, the full functionality
of the template is restricted.

There are also other limitations in the FrameWorks system. These limitations do not
directly affect the functionality of the system, but merely make the system less convenient
to use. One of these is that an entry procedure must appear as the first procedure in a FW
module. FrameWorks also imposes a strict naming convention on the FW modules. A FW
module must be named as its entry procedure name ended with the “.f” suffix. However,

the “.f” suffix is often being used to name Fortran code modules. Finally the icons used in

drawing the application graphs and the lack of textual labels make the distributed structure
of a FrameWorks application less easier to understand.

Enterprise was developed to eliminate the many limitations of FrameWorks. Enterprise
represents an evolution of FrameWorks, and uses many ideas developed in the earlier system.
For example, the concept of template attachment is also used in Enterprise. Programming
in Enterprise, however, provides a higher level of abstraction for the user. The application
graph in Enterprise is also easier to construct and understand when compared to Frame-
Works. Application graphs in Enterprise show not only the communication links between
the modules, but also represent the high-level parallelization techniques graphically. In an
Enterprise graph, a node is a single entity containing a combination of the input, output,
and body templates. The user is not required to draw any links in constructing the graph.
To represent different commonly used parallel programming structures in the graph, the user
changes the icon by either coercing or ezpanding it using the graphical interface. In fact,
the icons in Enterprise contain the set of all legal combinations of input, output and body
templates in FrameWorks. The Enterprise icons also support a hierarchical structure in a
way that a single icon may be used to represent another subgraph and to avoid presenting
too much information to the user.

Another major difference separating Enterprise from FrameWorks is the removal of addi-
tional keywords from the sequential programming language. Enterprise uses the information
in the application graph and a compiler to insert the low-level distributed code at the proper
locations. The removal of the keywords has two major effects. First, a functional mod-
ule is now exactly the same as its sequential version. Therefore, to parallelize an existing
application, the only actions required from the user are the regrouping of procedures into
different functional modules and the construction of the application graph. To restructure
an Enterprise application, the user is not required to insert or to remove keywords from the
functional modules. Second, because there are no additional keywords, Enterprise modules
can be compiled for sequential execution with no or little changes in the source code. In other

words, the conversion between the sequential or the parallel version of an application can

be performed easily. In general, Enterprise offers a better programming environment over
FrameWorks. The major strength of Enterprise lies in its simplicity of use. This simplicity

not only allows programs to be constructed more rapidly, but also reduces the possibilities

of user errors.

3.6 Conclusion

The FrameWorks system was one of the earliest systems designed for providing an easy ap-
proach to writing distributed programs for a network of workstations. It achieves the goal by
separating the source code of the distributed program from its underlying distributed struc-
ture. This allows a program to be restructured easily for different parallelization techniques
or for different processor constraints. The implementation details of low-level communication
protocols are handled by using template attachment. This approach facilitates the writing of
distributed applications or the paralielization of existing applications. On the other hand,
FrameWorks has several limitations at its current status. These limitations restrict the over-
all usefulness of the system. As a result, the system was redesigned and re-developed into
a new system, called Enterprise. While only some of the major differences hetween the
two systems have been outlined to this point, a detailed description of Enterprise will be

presented in the next chapter.

Chapter 4

The Enterprise System

4.1 Introduction

In Enterprise, a parallel/distributed program is organized like a sequential program. The
structure of a program does not depend on whether it is designed for sequential or distributed
execution. This allows a compiler to be used to compile the program if sequential execution
is desired, or Enterprise to be used for distributed execution. The easy conversion between a
sequential and a distributed program is possible because none of the distributed information
of an application is stored in its source code. Any communication or synchronization code
for distributed process interactions is removed from the user’s responsibility. Instead, the
information is specified in an asset graph, which is similar to a control-flow graph in other
parallel programming tools. Enterprise then automatically generates the necessary code to
handle the process interactions.

An Enterprise program consists of a collection of sequentially executed modules. Par-
allelism in an application program is introduced by allowing the modules (communicating
processes) to run concurrently on different workstations. Each of these modules has a single
entry procedure and a set of internal procedures. The entry procedure is the only procedure
which is visible to and may be called by external modules. A module may contain any num-

ber of internal procedures, but they can only be accessed locally within the module itself.

There are no common variables allowed among Enterprise modules. The communication be-
tween the modules is handled by a modified form of remote procedure calls. The user views
a remote procedure call just as any normal procedure call, and does not worry about the
distributed nature of the call. Enterprise generates the communication code that is needed
for translating it into a distributed call, while the implementation details are hidden from
the user. At the lowest level, Enterprise calls are translated into messages passed among
modules. However, the user can specify the way that a module interacts with other modules.
The interaction among modules is specified by the role of a module and the call to the
module. To specify the role of a module, the user selects one of the parallelization techniques
(asset kinds) available in Enterprise to be used when the module is invoked. The call to a
module, similar to a procedure call, defines the identity of the called module, the information
(arguments) to be passed, and the information (return values) to be returned. The role of
a module is similar to a template in FrameWorks, and is specified graphically in an asset
graph. The call to a module is specified as a procedure/function call in the source code.
The following sections will be used to describe the programming model used in Enterprise
and the overall architecture of the system. Section 4.2 describes the module calls, section
4.3 describes the roles (asset types) of a module, and section 4.4 describes the properties of
an asset graph of an Enterprise program. Section 4.5 describes the overall architecture of

Enterprise. The implementation of part of the system will be presented in section 4.6.

4.2 Module Calls

Enterprise augments the C programming language with new semantics, rather than new
syntax, for function and procedure calls. Since Enterprise does not use additional keywords,
such as the call and reply statements used in FrameWorks, an Enterprise program has the
identical syntax of a sequential C program. Enterprise module calls and normal function
calls are syntactically indistinguishable. Enterprise uses the information stored in the asset

graph to differentiate the two types of calls. In sequential programming, a function call is a

subroutine call which returns a result, and a procedure call is a subroutine call which does
not return a result explicitly. A similar distinction is made in Enterprise, where a f-call refers
to a module call that returns a result back to its caller, and a p-call refers to the one that
does not.

Although an Enterprise call and a sequential call share the same syntax, they differ in

the following ways:

1. Pointer type parameters, or structures which contain pointers, are not allowed to be used
as arguments in Enterprise calls. Therefore, in the C language version of Enterprise, a
result can only be returned through the use of a f-call, but not by side effects (because

the parameters of a function call in C are passed by value).

2. The value returned by an f-call must not be a pointer type. In other words, the return

value must be a variable of a predefined type or a C structure with a fixed size.

3. A module call in Enterprise does not suspend the calling module. For example, if
module A makes a call to module B, module A continues to execute. However, if the
call is a f-call, and module B has not finished its computation, module A would suspend

itself when it tries to use the return value.

Because of the syntax used by an Enterprise call, the task of transforming sequential
programs into parallel ones or of changing the parallelization techniques being used becomes
trivial. The user transforms a sequential program by breaking it into smaller modules, and
by associating the parallelization technique used by each module through a graphical user-
interface. In general, the selection or the change of the desired parallelization techniques
associated with an module may require only minor or no modification on the original source
code.

The f-call in Enterprise is not necessarily blocking. Instead, the calling modules blocks
only if the result is needed and the called module has not yet returned. Consider module A

containing the following code segment:

result = B (data);
/* Some other code */

ansver = result + 1;

If the “some other code” section does not use the value of “result”, module 4 may continue its
execution without any effect on the correctness of the program. Therefore, the calling module
A only has to block when the statement “answer = result + 1" is reached, and the called
module B has not returned the value of “result”. This concept allows more parallelism to be
introduced into Enterprise programs. However, this idea is not totally new, but is similar to

the work on futures in object-oriented programming [14]. In the case that module A makes

a p-call to module B, as in the statement

B (data);

the call is non-blocking, so that both A and B may continue to execute concurrently. Again,
the concurrent execution of the two modules does not affect the correctness of the program,
because there are no common variables allowed among modules. However, the use of the
delayed blocking creates some semantic ambiguities in some programs. These problems will
be addressed in a later chapter which describes the implementation of the compiler used in

Enterprise.

4.3 Module Roles and Assets

The role of a module defines the parallelization technique used and is independent of its
call. A fixed number of predefined roles, represented by different asset kinds, are available
in Enterprise. The use of the term “assets” corresponds to the analogy of how work is
divided, distributed, and executed in an organization. This analogy was chosen because of
the inherently parallel and hierarchical structure of an organization. Moreover, the names

used for describing the module roles will be easier for new users to understand.

An organization usually has various resources, or assets, to perform its assigned work.
The work is often divided into smaller sub-tasks, and these smaller tasks are then distributed
to different parts of the organization, such as departments, divisions or individual workers, to
work in parallel. In the case where the organization has no direct concern on the number or
the nature of individual workers who perform the tasks, it contracts out the tasks to different
contractors. The contractor may utilize a suitable number of resources, which depends on
the size of the task, to fulfill the contract. Besides the different assets, an organization
often has some standard shared services (for example, time keeping, information storage,
and equipment supplies) available to its workers for completing the tasks.

Currently, Enterprise supports seven asset types: individual, line, department, pool, con-
tract, division, and service. The following sub-sections will be used to describe the properties

of the assets.

4.3.1 Individual

An individual asset is similar to an individual worker in an organization. This asset con-
tains no other assets, and it represents a sequential process in an application. Therefore, a
sequential program can be constructed by using a singie individual asset, and whose entry
procedure is main(). When an individual is called, it handles the call sequentially to com-
pletion. Any subsequent call to the same individual cannot be started until the previous call
is finished. An individual is visible to external assets as a normal procedure and may be

called by using its name.

4.3.2 Line

A line asset is similar to an assembly line which contains a fixed number of stages or stations.
Each station is responsible for refining the work of the previous station. For example, the
making of a car may be divided into three stages: the first stage builds the frame of the ca,
the second stage adds in mechanical parts, and the last stage adds the interior aud finishes

the body work. A line in Enterprise contains a fixed number of heterogeneous assets in a

fixed order. Each asset calls the next asset in the line using module calls. The first entry
in the line represents a receptionist, who receives work form external assets, and sends the
work to the first asset in the line. Subsequent calls to the line wait only until the first asset
finishes its work, but not until the entire line is finished. A line is commonly referred to as

a pipeline in the literature.

4.3.3 Pool

A pool asset is similar to a pool of workers, such as a group of bank tellers, in an organization.
Each member of the pool performs an identical task. In Enterprise, a pool contains a fixed
number of identical assets. Every asset shares the same asset name and the common code
module. Since the pool members are externally indistinguishable and share the same name,
a call made to a pool asset cannot select a specific pool member to perform the task. When
a call is made to a pool, an idle asset executes the cail. However, if all member assets are
busy, then the call waits for one of the assets to finish. A pool is analogous to a2 master-slave

relationship, where the number of slaves is fixed at compile time.

4.3.4 Contract

A contractin Enterprise is similar to an agreement used in building constructjon firms or that
used in courier companies. Although a pool of workers could be used to handle the assigned
work, the use of a pool requires the organization to allocate a number of workers to finish
the work. The number of workers is defined statically in the structure of an Organizatio'n,
and cannot be adjusted for different problem sizes. A contract relieves the organization from
specifying the exact number of workers required by the work, and allows the contracted
company to allocate a variable number of workers to accomplish the work according to the
work load. Additional workers may be hired when the load increases, or existing workers
may be laid off when the load decreases. A contract would be useful when there is only
a limited amount of resources in the organization, and ths amount of work involved in a

particular task has large variances. For example, when an organization has a task to be

finished, such as the delivery of merchandise, the contracted company is informed and it
may use as many resources as needed to complete the contract. The delivery time could be
affected by the amount of merchandise to be delivered and the number of resources available
to the contracted company. Similarly, the execution time of a contract in Enterprise depends
on both the size of the task and the amount of resources available to the contract.

A contract asset is similar to a pool asset in that each member asset has the same name
and the same code. However, the number of assets contained in a contract is dynamic. This
number depends on the amount of parallelism involved and the number of idle warkstations
currently available on the network. When an Enterprise call is made to a contract, an idle
member asset executes the call. If all assets in the contract are busy, then the call cannot
be started until one of the assets finishes its work. However, since the number of assets
contained in a contract is dynamic, a new asset may be added to the contract to handle new
calls. A new member asset is added when all assets are busy and an idle workstation becomes
available in the network. A contract is equivalent to a dynamic master-slave construct, where
the number of slaves varies in response to the size of the problem and the amount of available

resources.

4.3.5 Department

A department is an asset which contains a fixed number of heterogeneous member assets.
The tasks assigned to a department are directed to the member assets to work in parallel.
A department asset in Enterprise is different from a line asset in which a member asset does
not call other assets in the department directly. The member assets can only be called by
the receptionist of the department. The receptionist is the only asset which is visible and
is callable by external assets. It is responsible for receiving work from other assets, and
for assigning the work to the appropriate member asset in the department. A department
is similar to the fork and join construct commonly found in some programming languages.
Member assets in a department are not restricted to being individual assets. Each member

can assume any predefined role in Enterprise, such as a line, a contract, or a department.

4.3.6 Division

A division represents a collection of hierarchically organized identical assets. These assets
are organized in a tree-like structure with a fixed breadth and depth. A receptionist, who
shares the same name of the division, is responsible for receiving work from external assets.
The received work is divided and distributed at each level of the division. Unlike other assets,
a division may call an instance of itself recursively. A division is used to parallelize divide
and conquer computations. The maximum level of distributed recursion, however, is set at
compile time because the user specifies the fixed breadth and depth. When the maximum
depth of recursion is reached, local procedure calls rather than remote procedure calls are
used to finish the computation. The first reason of using local procedure calls is to reduce
the overhead involved in sending messages across a network. As the recursion goes deeper,
the granularity of the divided work may become to small to be benefited from additional
distributed processing. The second reason is due to the limited number of workstations
available on a network. A division generally contains a lot more workers (computation
nodes) than the number of available workstations. Therefore, if only remote procedur: calls
are used, multiple Enterprise processes will be put on each workstation creating unnecessary
context switching activities and inter-process communication overheads. Local procedure

calls allow the workstations to be used in a more efficient manner.

4.3.7 Hervice

A service 1+ Enterprise contains no other assets. It is similar to an individual asset, but it
may be accessed by more than one asset in parallel. A service has the special properties that
it is not consumed by use, and the order of use does not affect the correctness of a program.
A notice board in an organization can be considered as a service. Each individual worker
may look at the notice board to obtain the latest information about the organization. A
service is designed to be accessible by any asset in an application. This makes it possible for

other assets to access the global state of the program at any time, or even the implementation

of a virtual global memory across the network.

4.3.8 Other Asset Kinds

In the current design of Enterprise, a pool asset is designed to be a synchronous pool; results
produced by Enterprise calls must be collected in a fized and ordered fashion. The order
of the results being collected is specified in the user written code, and is fixed at compile
time. An example of receiving the results in a fixed order is by using a for-loop to collect
the outstanding results. However, this may not be the desirable behavior in some Enterprise
programs. If each Enterprise call involves a variable amount of work, the collection schedule
specified by the user may hinder the overall performance of an application program. In the
example above, the program must wait for the first result to return, before the rest of the
results can be used (received). If the first result being collected is the one that requires the
longest computation time, a large amount of waiting time would be spent needlessly.

The asynchronous pool is designed to solve the above scheduling problem. An asyn-
chronous pool allows outstanding return values to be collected in an unordered fashion.
When a return value is needed, an unordered bag is searched for any valid values. If such a
value can be found, the value will be used by the program; otherwise, the program will wait
until any valid value is returned. In other words, the program will spend less time waiting for
replies, and spend more time doing computations. The exact semantics of an asynchronous
pool is still under construction.

Another asset which is under construction is the dynamic division. The current imple-
mentation of a division has a fixed breadth and depth. The advantages and disadvantages of
using a division which has a fixed breadth but a dynamic depth are currently being investi-
gated. The depth of a dynamic division varies according to the task size and the number of
idle workstations available in the network. A static diwision is similar to a pool which may
call itself recursively, and a dynamic division is similar to a contract which may call itself

recursively.

47

4.4 Enterprise Graphs and Parallelism

Enterprise allows the user to construct an asset graph using a simple graphical tool. There
is a significant difference between the graph used in Enterprise and the dataflow graphs
used in many other parallel programming tools. Other tools, in general, require the user to
construct a graph by drawing nodes, and by using edges to join the nodes in the graph. The
nodes in the graph represent processes, and the edges represent communication channels.
The asset graph used in Enterprise is constructed in a novel way. A graph starts with a
single individual asset, and the rest of the graph is constructed by changing the role of the
asset to introduce parallelism into the program. For example, an individual may be coerced
into a line asset with three members. The members can be coerced further into other asset

kinds. The asset graph in Enterprise has the following properties:

1. Each asset (icon) in the graph represents a high-level parallel construct. For example,
the construct can be a line, a pool, or a contract. These constructs allow a graph to be
constructed at a higher level of abstraction, and ensure that the communication code

will be generated correctly.

2. The user is relieved from drawing the nodes and connecting the nodes by edges. The
dataflow graph used in other parallel programming tools are usually dense, and some-
times multiple edges are needed to connect two nodes together. The approach used in
Enterprise results in a graph that is easy to understand, and reduces drawing errors in

constructing the graph.

3. The inherent hierarchical structure of an asset graph allows the user to look at the graph
at different level of abstraction. An asset in the graph can be ezpanded or collapsed to

control the level of abstraction and to manage the complexity of the program.

4. The asset graph shows a clear picture of data flow and parallelists in a program. The
flow of information (data) of a program is expressed from top to kottom, and parallelism

is expressed from left to right. In other words, the length of the graph reflects the critical

48

path of an application, and the width reflects the degree of parallelism.

5. The parallelization technique used for a module can be easily changed through the asset

graph, because the technique is specified graphically and is independent of the code.

4.5 Enterprise Program Construction

A distributed application in Enterprise consists of two separate components: an asset graph
and source code modules. The asset graph is created by editing icons through a graphical
user-interface, and the source code modules are written in the C programming language.
In this section, we will illustrate the construction of an Enterprise program through an
Animation example.

The Animation program was contributed by a research group in our Department. This
program is used to model and animate the behavior of a school of fish swimming across a
display screen. There are three major operations in the program: Model, PolyConv, and

Split. The functions of the operations are:

Model: Generates a frame for the animation by computing the location and the motion of
each object in the display according to its behavior. Model stores the created frame in

a disk file, calls PolyConv to process the frame, and proceeds to the next frame.

PolyConv: Reads in a frame created by Model, performs graphical transformations such as
data transformations, viewing transformations, and projection transformations. Poly-
Conv then calls Split, passing to it a transformed frame and a sequence number, to

render the final image.

Split: Performs the final refinements on the transformed frame by doing hidden surface

removal and anti-aliasing, and outputs the rendered image in a file.

The animation program can be parallelized by separating it into three different Enter-

prise modules: Model, PolyConv, and Split. These modules are simply created by selecting

49

and grouping the appropriate functions into the right modules. The user then creates an
application graph tn describe the relations between the different modules. Finally, the infor-
mation in the application graph and the source modules are used by Enterprise to generate
the necessary low-level communication code, producing a distributed animation program.
In this example, Model does not need to wait for PolyConv to finish before it can start
computing the next frame. Similarly, PolyConv does not need to wait for Split. Furthermore,
Split is responsible for most of the computation-intensive work for the program. Because
of these observations, a line asset can be used to structure the program. The last member
of the line is coerced to a contract such that more workstations may be used to share the
computation-intensive work. Figure 4.1 shows an Enterprise window, consisting of a canvas

containing the asset graph and an asset palette ~ontaining one icon for each asset kind. The

X Enterprise: Animation I

(A
' Modei
L)
PolyConv
Split
T
v

pC———— —— — 18

Ll
" §

2

Figure 4.1: A Line with a Contract

50

graph actually shows a line of three members with the first two being individuals, and the
last one being a contract. The asset graph also has a textual representation that is read by

other components in Enterprise and the textual graph is shown as follows:

line 3 Model PolyConv Split
contract Split
Model

library -1UTILITY -1fb -1lm
PolyConv

library -1UTILITY -1fb -1m
Split

library -1UTILITY -1£fb ~-1lm
CFLAGS = -£68881

For the asset graph shown above, at least three processes will be running in parallel when
the program starts up: one for Model, one for PolyConv, and at least one for Split. As
the program runs and processors become available, the number of Split processes will grow
dynamically. Enterprise also allows the user to restructure a program without modifying the
source modules. For example, the user may coerce the contract in Figure 4.1 into a pool of
two workers as shown in Figure 4.2. In this case, exactly four processes will be used by the
program: one for Model, one for PolyConv, and two for Split. This example shows only some
of the possible schemes that can be used to parallelize the Animation program. Of course,
other asset graphs can also be used to structure the program to adapt it to the network of

workstations.

4.6 The Architecture of Enterprise

In Enterprise, the analogy of an organization is used in the structuring of application pro-
grams as well as in the design of the system itself. The architecture of Enterprise consists of
six logical components: an interface manager, an application manager, a code librarian, an
execution manager, a monitoring/debugging manager, and a resource secretary, as shown in

Figure 4.3.

)

B3 Enterprise: Animation IR

A
Model
m o,
) teen 3
PolyConv
(A}
Split
- o
&

<| R | >

Figure 4.2: Coercing a Contract to a Pool

52

Interface Manager

3

/
Application Manager
/ ’ \
Monitor/Debugger <—— Execution Manager Code
Manager { Librarian

1

/
Resource Secretary
! 3

§
Machine Registry

Figure 4.3: The Architecture of Enterprise

53

4.6.1 Interface Manager

The interface manager is responsible for managing the graphical user-interface used in Enter-
prise. This interface provides an environment for editing, configuring, compiling, executing,
monitoring, and debugging applications. It allows the user to develop and maintain parallel
programs in a single unified programming environment. The interface manager allows the
user to access the functions provided by other logical components in the system. An asset
graph editor is also included in the tool for users to develop their pplications using the
organization analogy.

The asset graph editor uses the object-oriented concept to manage the assets in the
graph. Each asset is an instance of an asset class, and is responsible for managing its name,
attributes (such as the length of a line asset), components (such as the components of a
line), source code, drawing itself, and exp-r-ling itself, etc. Inheritance is used extensively
in managing the assets because many responsibilities, such as redrawing itself, are shared
among different asset classes. Similarly, the other interface components, including windows,
menus, and dialogues, are also objects in the editor.

The current user interface was implemented under the X window system (Scheifler and
Gettys 1986) on Sun workstations. This increases the portability of the interface to different
workstations. The implementation is written in C++ using the Motif libraries. The com-
bination is chosen for easy integration to the rest of the system (written in C), for greater

portability and for minimizing the overall development time of the interface.

4.6.2 Application Manager

The application manager is the control center for Enterprise. All of the information about
a parallel application is maintained by the application manager. This includes the asset
graph, locations of source and object files, runtime status, and performance statistics of an
application. Application specific information can only be accessed through the application
manager. In other words, the application manager also acts as a communication channel for

the different components in Enterprise.

54

4.6.3 Code Librarian

The role of the code librz;.an is to manage the source and cbject code of the different
functional modules in a parallel spplication. Since Enterpri:: is designed with networks of
heterogeneous workstations in mind, the code jibcas:iw msy need to maintain multiple object
codes intended for various architectures. The code librarian inclu =« a pre-processor which
transforms an otherwise sequential program into a parallel program, and a makefile creation
utility which creates makefiles according to the asset graph of a program. The makefiles can
be parameterized to support the different target machines.

The librarian has to know the locations of the source code and corresponding object files
for a particular function module. When an Enterprise application is about to started, the
librarian determines whether all of the required executables are available, or if it has to per-
form some compilations for the user. The compilation of a module requires the information
stored in the asset graph, which is available from the application manager, to determipe the
role of the asset and the code to insert. To compile an asset, the librarian uses a pre-processor
to insert the appropriate Enterprise (parallel) code into the module according to the role of
the module. Re-compilation of an asset is only necessary when either the code of the asset
has been changed, the asset has been coerced to a different role, or when the asset is to be
run on a machine for which an executable is not yet available.

Compilation requests may come from two sources: either from the user or from the
execution manager. First, the user could request a compilation through the application
manager, to reveal syntax or semantic errors of a program. Second, the execution manager
can request an executable on demand at runtime. The execution manager could request
an executable when a machine becomes available in the network. If the executable is not
available, the execution manager decides whether to request the compilation or to use an

alternate machine.

55

4.6.4 Execution Manager

The execution of an Enterprise application is managed by the execution manager. It is
responsible for creating remote processes, controlling runtime behavior, and setting up the
required communication channels between the processes. Since the decision on where a
process should be executed is determined by the execution manager at runtime, the source
code does not contain any machine specific information.

Although the execution manager determines where a process should be executed, a user
can associate a machine preference list with an asset. The list specifies the selection criteria
in choosing a suitable machine for executing a process. The user can select the desirable
machines by using the names of the machines, the processing speed of the machines, the
amount of memory in the machines, or by other physical properties. If a machine preference
list is not used, an asset may be executed on any machine in the network. The technique
used in performing the machine selections is similar to the one used in FrameWorks.

Choosing the appropriate workstation for running the remote processes is an important
duty of the execution manager, especially in the case of a contract, where hiring or re-
moving additional workstations may occur frequently. In a heterogeneous network, some
workstations have a higher processing power than other workstations. It is desirable for the
execution manager to choose the fastest available machine on the network. It is also de-
sirable to migrate processes from heavily loaded machines to less busy machines. However,
the cest involved in migrating a process from one machine to another could be expensive.
For example, if a faster machine becomes available, a re-compilation may be required to
migrate the process. In general, it is not easy to estimate the cost and benefit resulting from
migrating a process from a slower machine to a faster one, or from a heavily load machine

to a less busy one. These are issues for which we still do not have good answers.

4.6.5 Resource Secretary

The resource secretary provides a list of available machines to the execution manager in a

machine registry. The machine registry contains a list of specifications for the machines in

56

the network. This list includes the machines’ physical properties, such as the architecture
and processor type, the operating system, the amount of physical memory, and the latest load
averages of the machines. The load average information is used by the execution manager to
make decisions on where a process should be started, or where a process should be migrated.

In addition, every machine which can be used by Enterprise also has a configuration file.
This file can be used by the owner of the machine to set up user privileges. For example, a
particular machine may not be used by others, except the owner, during office hours. If no

special restrictions are set, the machine can be used by any users at any time.

4.6.6 Monitor/Debugger Manager

Because of the complexity of parallel programs, the monitoring and debugging facilities
are very important in Enterprise. These facilities allow the user to discover performance
bottlenecks and potential synchronization errors by monitoring the execution of a program.
The monitoring of a program is done by program animation. When a message is being passed
from one asset to another, or when an asset is changed from idle to busy, these activities are
time stamped and may be sent to the user-interface or logged to a file. The collected events
can be used to display the execution of a program dynamically, or to replay the execution
at a later time. The debugging facility in Enterprise allows the user to step through the
animation of a program’s execution by setting break points at the message level, and allows

the user to examine the contents of the trapped messages.

4.7 System Implementation

Enterprise uses the ISIS package [7] to handle the invocation and communication between
different processes. ISIS is a package of high-level library routines for handling processes cre-
ation, termination, communication, synchronization, and fault tolerance in a heterogeneous
network of workstations. In ISIS, processes are grouped into different process groups. A

process group may be formed by just a single process, but usually a process group is formed

57

by a number of remote processes in the network. Messages are passed by broadcasting to a
process group, and collecting replies in the same call. The broadcast of a message can either
be blocking or non-blocking. A broadcast that is blocking suspends the calling process until
a reply is received. A non-blocking broadcast forks off a child task which is responsible for
waiting for the replies. The calling process may continue to execute. and to interact later
with the child process to collect the results.

The pre-processor used to insert the appropriate code into the module source is actually a
modified GNU C compiler [48]. A compiler is needed because Enterprise has to distinguish a
f-call from a p-call through the syntax of a program. Enterprise also generates warnings when
a f-call is made to a module which does not return a result. If such a situation occurs, the
program could deadlock because a module is waiting for an event which will never happen.
A compiler is also required because Enterprise needs to know the types of the variables being
passed to package them into a corresponding ISIS message. A user no longer has to package
the variables into messages (frames) as required in FrameWorks.

The executable produced by Enterprise, and part of the Enterprise system itself, are
implemented as ISIS programs. The logical components described in the previous sub-
sections can be considered as communicating processes. However, for efficiency reasons, only
some of the components communicate through message passing. When message passing is not
used, the processes communicates though the application manager to obtain the necessary

information.

4.8 Conclusion

The programming model used in Enterprise has been presented in this chapter. The model is
described by using the organization analogy because of the inherent parallel and hierarchical
structure of an organization and the familiar names used in describing it. An Enterprise
program consists of functional modules and an asset graph. The functional modules contain

module calls which use the same syntax of normal function calls. A module call can either

58

be a p-call or a f-call. A p-call allows concurrent execution of both the called and the calling
modules. A f-call allows current execution of the two modules until the calling module
uses the return value of the called module, and the called module has not finished. An asset
graph is used to describe the asset kinds of the modules. The asset kind of a module specifies
the parallelization technique employed. Currently seven asset kinds, representing commonly
used parallel constructs, are supported in Enterprise. These asset kinds and their semantics
were discussed in this chapter. Finally, the overall architecture of Enterprise. and the tools
used in the implementation of the system were also presented. The subsequent chapters will
be used to discuss in detail the actual implementation of the Enterprise librarian, and to

discuss some of the semantic issues raised in the implementation of the Enterprise model.

59

Chapter 5

Source Code and Object Code

Librarian

5.1 Introduction

The source and object code librarian is a separate module in Enterprise designed to ease the
user’s task of managing Enterprise applications. An Enterprise application typically consists
of a set of individual assets. Each of these assets represents a process which could be run
on a single workstation and coﬁld communicate with other assets through the inserted ISIS
code.

Since Enterprise applications are designed to be run on a heterogeneous network of work-
stations, several copies of the object files or executatle files of the same asset may have to
co-exist at the same time. Typically, there is one executable file for each of the supported
architectures. The executable copies of an asset differ not only in the compiled code of the
module itself, but also in the libraries that are linked in. Furthermore, hecause we can-
not overload filenames in the UNIX environment, we need to find a way to distinguish the
different executable copies of a single asset and a way to manipulate the Makefile used to
manage these files. Finally, the pathnames of the libraries used by different architectures

may be organized in different ways. In general, one makefile is needed for each supported

60

architecture to reflect these differences. To generate generic makefile templates for different

architectures, /make [19] is used as an implementation tool to create the Makefiles.

5.2 Management of Source and Object Code

There are many possible schemes which can be used for managing the source and object code
of an Enterprise application. In the domain of sequential programming, the management
of source and object code of an application is often done by using the make [20] utility. A
Makefile is used to specify the dependencies of different object files, and thus provide a way
to re-make or re-compile the application upon the user’s request. The source and object code
management of an Enterprise application, however, is more complicated in several aspects.

First, an Enterprise application is designed to run on different architectures in parallel.
To support this feature, different executable copies of the same asset may have to co-exist
during the execution of the Enterprise application. A mechanism for distinguishing among
these different executable copies of an asset has to be provided.

Second, the intermediate object files (i.e. the *.0” files) of an asset will have to be
distinguished as well. Many programmers choose to keep the intermediate object files around
to reduce the overall compilation time involved in re-making a program. For example, a large
program may be divided into a number of smaller modules. These modules are then compiled
separately to produce the intermediate object files. When a re-compilation is needed. and
the object files are not deleted, only the modules that were recently modified have to be
re-compiled to reflect the changes in the corresponding object files. The new object files
may then be linked with the older unaltered object files to create the new program.

The convention for naming these object files in sequential programming is to use the same
name of the source module ended with different extensions. For example, the object file of
the module “Model.c” will be named as “Model.o”. In an Enterprise application, however,
the intermediate object files needed to build an asset may in fact be compiled for different

architectures. This situation happens easily if some of the object files or source modules are

61

used by more than one asset. Therefore, it may be necessary t re-compile a source file to
generate a new object file, even if the corresponding source was not modified.

Although the file command in UNIX may be used to find out the ir:ended architecture of
an object file, this method is neither an efficient nor a reliable one. Its ineffectivencss is due
to the fact that the command must be repeated for every object file in the directory before
they can be linked together. It is also unreliable because the file command returns the CPU
type rather that the actual architecture that the object code is compiled for. In some cases,
the file command may also return the wrong file type. For example, when the command is
used to check the file type of a SPARC executable. the file type is determined correctly on
a Sun SPARC workstation. However, when the same file is checked on a Silicon Graphic
machine, the file type is incorrectly determined to be a data file. Due to these limitations,
alternate methods of naming the multiple executable copies of an asset will be discussed in

the next section.

5.2.1 Using Architecture Keywords

To solve the naming problem, two alternatives were considered. The first was to distinguish
the object and the executable files by inserting appropriate architecture keywords into the
filenames. For example, the executable of the asset PolyConv may be represented by Poly:
Conv.sun3 and PolyConv.sun4, where “sun3™ and “sun4” represent the architectures which
the asset can be run on. However, this scheme of managing the source and object code of
Enterprise assets suffers from many disadvantages.

One disadvantage is due to the increased number of files located in a single directory.
As the number of the supported architectures and the number of assets in an Enterprise
application increase, the number of object files and executable files in that directory will
increase rapidly. Another disadvantage is due to the difficulties in maintaining the Makefile
of an Enterprise application. Because of the increased number of object files located in the
directory, the dependency relations may become excessively complicated and the Makefile

eventually becomes hard to maintain.

5.2.2 Using Architecture-Specific Directories

An alternate way of distinguishing the different uisievt files for the same asset is to group the
files into different directories. This is the approach used in the current version of Enterprise.
In this approach, sub-directories are created for every one of the supported architectures. The
names of the sub-directories, such as “SUN4" and “MIPS", are used to identify the supported
architectures, and the object files are put into their p: er directories. For example, all the
object files and executable files compiled for a SPARC workstation can be found in the
“GUN4” directory. Similarly, the compiled code for a MIPS workstation can be found in the
“MIPS” directory.

Since the object files compiled for different architectures are stored in separate directories,
the naming problem of the object code and executable can be avoided. The naming of these
files may now follow the same naming convention as used in sequential programming. This
approach also has the advantage of not cluttering the original directory and makes the
directory listing much easier to read.

Although the object codes of an Enterprise application are stored in different sub-directories,
the source codes of the assets are still stored in the original directory of the Enterprise appli-
cation. Symbolic links to the source modules are created in the sub-directories. On the one
hand, we may perform the compilation in the source directory to avoid the need of the links,
and move the object files to the proper directory when done. On the other hand, because
the Makefiles used for building user programs may contain architecture-specific information
(such as the pathnames of some libraries), the Makefiles used for each architecture may
also differ slightly. The use of symbolic links to the source files has the advantage that it
allows all architecture-specific files to be located in the sub-directories, and the architecture
independent source files to be located in one source directory.

The use of symbolic links not only saves disk space by avoiding unnecessary duplication
of the source modules, but also prevents any inconsistency among the source files if they
are duplicated in different directories. This arrangement is particularly important from the

debugging point of view. As it is comparably harder to debug a parallel program than

63

Application Directory

PN

SU\' SUN4 ------ MIPS

Figure 5.1: The Directory Structure of Enterprise

a sequential one, potential user errors. such as having an inconsistent set of source files,
may make the debugging process even harder. It is often better to prevent the errors from
happening rather than trying to eliminate the errors later [33]. The symbolic links to the
source files prevent the possible error of having an inconsistent set of source files.

The overall directory structure of an Enterprise application is shown in Figure 5.1. where
the “Application” directory stores the Enterprise graph and the assets’ source code (*.c”
and “.h” files); the sub-directories store the ohject files and executable files of the Enterprise
application for different architectures.

We have discussed, so far, how the source code and object code of an Enterprise application
are organized. In the next section, we will describe the management of the makefiles of an

Enterprise application.

5.3 Makefile Management for Enterprise Applications

As we discussed earlier, the object code of an Enterprise application is architecture de-
pendent. The Makefiles used for managing the source and object files also may contain
architecture-specific information. Because the executable copies of an Enterprise asset differ
in both the compiled code and the libraries being linked, the Makefiles have to reflect these
changes. The pathnames of the libraries and includes files, therefore, have to he changed
slightly for each of the Makefiles. Similar to the object files, the Makefiles are put into the

architecture-specific sub-directories.

64

Although we can specifically generate the makefiles for every sub-directory. it is much
more convenient to use some readily available tools: imake, makedepend, and rmkmf. These
tools not only help in generating makefiles in the sub-directories, but best of all. these tools
provide exactly the service required in Enterprise.

Imake is a utility designed to eliminate the need to write makefiles directly [19]. It uses the
C pre-processor, cpp. to generate the makefiles by using its include-file and macro-processing
facilities. A direcisy-specific file, which is called the Imakefile, is used by the users to supply
a specification to /make Gescribing how the programs in the directory are to be huilt. The
specifications are usually written in the form of Imake rules (the rules will be described in
a later section). The Imakefile is used together with some machine-dependent configuration
files (Imake.tmpl, platform.cf, site.def, Project.tmpl and Imake.rules, which come from the X
Window distribution) to create the appropriate Makefile for the programs in that directory.

Furthermore, Imake is meant to be architecture independent; it puts the architecture
dependencies of the programs in one single location (the configuration files) to minimize the
effort required in porting a program across different architectures. The imakefiles, used for
generating conventional Makefiles, therefore. can be created in every one of the architecture-
specific sub-directories of an Enterprise application. Each of these imakefiles differs slightly
to reflect the different locations of the include files and the libraries on different workstations.

A Makefile is generated from an Imakefile by using rmkmf. Xmkmf is normally used to
build X Window applications, but it can also he used to build other user-written programs
from outside of the X Window source tree. \When rmkmf is started from the command line,
it tries to read in the Imakefile in the current working directory and calls /make to generate
the Makefile automatically.

To generate a proper Makefile, the dependencies of the object files and the header files have
to be specified. Although the dependencies of the object files can be listed in the Imakefile,
those of the header files cannot. The reason is that in the C programming language, the
header files included by a source file are allowed to include other files. Besides, the system

files to be included may also be organized differently on different systems. It will be hard for

65

a user to list all of the header file dependencies manually. Makedepend is a tool which scans
source files and include files to produce a list of header file dependencies suitable to be used
in a makefile. By using Imake, a depend target may be created in the generated makefile.
The command “make depend” can then be used to invoke makedepend to insert the header
file dependencies into the makefile automatical'y.

In summary, a Makefile can be generated from an Imakefile by performing the following

steps:

zmkmf
make Makefile
make depend

In the first step, rmkmf generates an initial Makefile which is used to generate the final
Makefile for managing user programs. If a \Makefile already exists in the directory, the
original Makefile will be copied to Makefile.bak to avoid overwriting the original file. It is
important to note that the command rmkmf must he executed on the target machine to
ensure correctness of the Makefile, because the machine-specific information is read in when
this command is being executed. The second step. make Makefile, generates the Makefile
for managing or building user programs. Similar to the first step, if a Makefile exists, the
file will be renamed as Makefile.bak. The last step, make depend, inserts the header file

dependencies into the Makefile such that it will be able to build and manage user programs.

5.4 Creating the Sub-directories and Imakefiles

Although it is relatively easy to use the above steps to generate Makefiles for different archi-
tectures, it would be hard to create the appropriate Imakefiles manually. The implementation
of the source and object code librarian includes a utility called gen_make, which takes a tex-
tual Enterprise asset graph as its input. Gen_make is designed for generating the required

Imakefiles and for creating the necessary sub-directories for Enterprise applications.

66

The user of Enterprise can type in “gen.make <application_graph>" at the UNIX com-
mand prompt, and the program will create the sub-directories needed for different architec-
tures, create one [makefile in each sub-directory. and create in those sub-directories links
which point to the source files. The user can then use rmkmf, and subsequent commands to
create the Makefiles in the sub-directories.

The generated Makefile will be regarded as an input file to the commonly used make utility
to manage user programs. The file contains a set of targets, and each target represents a
sequence of actions to be executed for building or managing programs. When the command
“make <target>" is issued, make will determine if the actions defined for the target have
to be executed. For example, “make Model” will cause the asset Model to be compiled and
built for execution.

After t ‘akefile is created, the normal make command can be used to build the exe-
cutable copizs of the assets in the Enterprise application. The request for compilation may
come from either the execution manager or the user directly. The request can specify whether
every asset in the directory is to be built or only some of the assets are to be built. The com-
mand “make all” could be used to specify that all assets in the directory should be built, if
they do not exist or their source codes are modified. The command “make <asset_name>"
is used to specify that the asset named as assef_name should be built. A clean target is
also available in the Makefile if the user or the execution manager decides to clean up the
directory. The clean up process generally involves the removal of all object files. executable

files, and backup files in that directory.

5.4.1 Generation of the Imakefiles

The generation of the Imakefiles will be described in this section. The first step in generating
an Imakefile is to read in the textual Enterprise graph. The textual graph contains the names
of the assets to be built, the libraries to be linked in for different assets, the optional CFLAGS
used in the compilation of an asset, and also other additional information. The gen.make

utility parses the graph and saves the information for use in the subsequent steps. A more

67

detailed description of the textual Enterprise graph can be found in Wong’s thesis [52).
The gen_make program also reads in a configuration file that restdvs in the current di-
rectory. The file is named as gen_make.cfg. This file is used to specify the default values,
for example the pathnames of the ISIS directories. used in the Imakefile. This allows the
program to adapt itself easily to different environments. The format of the configuration file
is similar to that of a conventional makefile. The default value is set by specifyving the name

of a variable, followed by an equal sign. and followed by the assigned value. For example,
ISIS.PATH = [usr/samson-pk/misc/distsys/src/isis/isisv2.]

specifies where the ISIS libraries can be found in the file system. The definitions of the
variables can appear in any order in the configuration file. Furthermore, comments may be
inserted into the configuration file by preceding them with the “#" character. Currently,

the configuration file supports the definition of the following variables:

1. ISIS_.PATH, specifies the path name of the ISIS libraries and include files which are

needed for the compilations.
2. CC, specifies the default compiler to be used when compiling the assets.

3. CFLAGS, specifies the default CFLAGS options to be used. For example, the “-0O"
(optimize) option or the “g” (debug) option.

An example configuration file is included in Appendix A.

The second step in generating the Imakefiles is to create the sub-directories for different
architectures. The program first scans through the current directory to see if a directory or a
file of the same name already exists. If such a name can be found, an error condition occurs;
the named directory, as well as the Imakefile and symbolic links in that directory will not he
created. The program skips that particular directory and proceeds to create the next one.
If the directory can be created successfully, the program proceeds to the steps which create

in the sub-directory an Imakefile and the symbolic links to the source files.

68

5.4.2 Contents of the Imakefile

A particular Imakefile created by gen_make can be divided into three sections. The first
section contains the header information. This section is used to specify the values of the
architecture-specific variables. Currently a variable ARCH is used to specify the architecture
in that directory (e.g. ARCH = SUN3). This variable will be used in the subsequent sections
of the Imakefile to further define other architecture specific values.

The second section of the Imakefile is the definition section. In this section, the pathnames
of the libraries and include files are defined. Because the libraries are architecture specific,
the pathnames of the libraries are defined by using “$§(ARCH)” as part of the pathname
definition. The value of “${ARCH)” will be automatically expanded by Imake to specify
the proper pathname to the libraries. Other definitions such as the system libraries (e.g.
-lm for math libraries) and optional CFLAGS used in building the assets are also defined
in this section. After these definitions, the names of the source files and object files for the
assets are assigned to variables such as SRCS1 and OBJS1 (see Appendix B). All of these
definitions will be used in the last section which contains a set of Imake rules to be described

later. The variables defined in this section are listed as follows:

1. INCLUDES, this variable specifies the paths of the include files which may be scanned
by makedepend to figure out the header file dependencies.

o

. CC, this variable specifies the compiler to be used when building the assets. The default

of the variable is to use the cc C compiler to compile the assets.

3. CFLAGS, this variable specifies the optional CFLAGS to be used when compiling the
assets. The default value of this variable specifies the “-I" command line options of the
cc compiler, such that the include files can be found correctly. The CFLAGS option

specified in the application graph will be inserted before the default value.

4. ISISD, this variable specifies the pathname of the ISIS directory where the architecture

specific ISIS libraries can be founded. An example entry will be (note: the pathname

69

is read from the configuration file, and ${:ARCH) means that the value defined for the

variable A RCH should be used):
ISISD = /usr/samson-pk/misc/distsys/sre/isisfisisv2.1 /$(ARCH)

5. ILIBS, this variable specifies the names of the ISIS libraries to be included. The value of

the variable ISISD is used here to locate the libraries, such as “$(I1SISD)/clib/libisisl.a".

6. SRCS. this variable specifies the names of the source files (i.e. the “.c” files). The

variable will be used by makedepend to figure out the header file dependencies.

-]

. PROGRAMS, this variable contains the list of the names of every asset (executables)
in an Enterprise application. The list is used in generating the all target, which allows

all assets to be built by issuing “make all” at the command line.

The final section of the Imakefile contains Imake rules used to specify the actions to he
generated in the final Makefile. An Imake rule is a predefined macro which will be expanded
by the C pre-processor to produce the actions to be performed by a specific target. While
some of these rules require variables to be passed to them explicitly, other rules operate on
the values of the variables defined in the preceding section. Variables may be passed to the
rules in a way that is similar to a C function call. If the number of variables being passed to
a rule is less than that specified in the rule's definition. the sequence “/**/” may be used to
replace a missing variable. Since the Imakefile will be passed through the C pre-processor,
the sequence will be replaced by a NULL string and the missing variable will not he passed.
Currently, three sets of rules are included in this section by gen.make.

The first set of rules is used to generate the actions for building the executable assets in
the directories. The necessary actions are generated by using the NormalProgramTarget()
rule. It is one of the predefined Imake rules, and is intended for building a single program
(asset) in the current directory. One rule per asset is generated in the Imakefile, and the

rules assume the following format:
NormalProgram Target(program,objects,deplibs,locallibs,syslibs)

70

where program is the name of the executable copy of an asset, objects contains the names of
the object files needed to build the asset. deplibs are the libraries that have to exist before
the linking process, locallibs are the libraries in the source tree to be linked in. and syslibs
are the system libraries needed when building the asset. An example of the locallibs to be
linked into an Enterprise asset would be the ISIS libiaries.

The second set of rules contains a rule used to generate an all tar, et in the final Makefile.
This target allows every asset in a directory to be built by issuing the command “make all”
at the UNIX command prompt. The “AliTarget(programs)” rule, another predefined Imake
rule, is us=d to generate the necessary actions. The variable programs specifies the names
of the assets to be built in the directory. To generaie the actions correctly, the variable
PROGRAMS defined in the earlier section is used, because the variable PROGRAMS is
already assigned (with) the list of asset names in an earlier section. Therefore, the rule
“AllTarget($(PROGRAMS))” is added into the Imakefile.

The final set of the rules is used to generate the depend target for invoking the makedepend
command to find out the header file dependencies. A predefined /make rule, Depend Target(),
is used in this section to generate the required actions. This rule does not require variables
to be passed to it explicitly. However, it assumes that a special variable, SRCS. has been
set to contain the names of all the source modules (“.c” files) used to build the individual
assets. The value of this variable is assigned in the second section of the generated /makefile,
therefore. the rule Depend Target() rule is added to the Imakefile to create the depend target.
A sample Imakefile created for a particular Enterprise graph (as described in Chapter 4) can

be found in Appendix B.

5.5 Limitations of the Gen_make Utility

The current implementation of the gen.make utility does have a few limitations. First,
the program is limited by the structure of the Enterprise application graph. The current

structure does not provide a mechanism to specify the names of the local libraries and system

libraries required by an asset separately. The libraries specified in the application graph by
the library keyword are assumed to be system libraries.

There also does not exist a mechanism to specify some of the machine specific variables
in the application graph. For example, when the animation example is compiled on a SUN
3/50 workstation, the assets have to be compiled with the -f68881 option. This option can be
specified in the application graph using the CFLAGS kevword and gen_make will handle it
properly. On the other hand, if the animation example is compiled on a SPARC workstation,
the -f68881 now becomes an invalid option. This problem can be avoid by using symbolic
CFLAGS instead of architecture-specific CFLAGS. For example, the “-float” flag may he
used in the CFLAGS section in an Enterprise graph. The generation of the actual CFLAGS
then depends on the target architecture. For a SUN 3/50 workstation, the -float may be
translated into -f68881; while for a SPARC workstation, the option may be translated into
an empty string. Other options such as the optimization flags and the debugging flags should
also be defined symbolically. The expansion of symbolic CFLAGS has not been implemented

in the current version of gen_make.

5.6 Conclusion

We have discussed in this chapter the problems encountered iti managing the source code
and object code of Enterprise applications. The naming problem of the object files and
different copies of the same asset is solved by using sub-directories. The files are grouped into
different directories according to the architecture for which the executable and object files
are compiled. Although the executable and object files are located in different directories,
the source code of the assets remains in the application’s original directory. This is done to
avoid the possible error of having an inconsistent set of source files.

The executable and object files in the sub-directories are managed by using normal Make-
files, and the generation of the Makefiles is handled by the gen_make utility. The utility reads

in an application graph and generates an Imakefile in every sub-directory accordingly. Imake

can then be used to generate the Makefiles needed to manage the executable and object files.
On the one hand, the current implementation of gen.make does have some limitations, and
it should not be difficult to remove these limitations in a future version. On the other hand,
the gen_make utility also provides the users of Enterprise an easy to use utility to manage

the source files and object files of Enterprise applications.

Chapter 6

Implementation of the Enterprise

Compiler

6.1 Introducticv

In an Enterprise application, we need to insert code into the user’s source module to make
a sequential program into a distributed program. The inserted code handles proper commu-
nication, synchronization, and other low-level communication protocols for the distributed
program,; this allows a distributed program to be built rapidly. In general, the insertion of
the code can be accomplished either by using the pre-processor or the pre-compiler approach
described in Chapter 2. The use of a pre-processor requires the users to insert in their code
some additional keywords. These keywords are used to identify where and what code is to
be inserted into the user’s programs. The use of the latter approach can avoid the use of
additional keywords at the expense of analyzing the context of the users’ code and higher im-
plementation cost. Both of these approaches have been used by other parallel programming
tools. For example, FORCE [29, 27] and MONMACS [9] use the pre-processor approach,
while Dino [40, 39], PAT (3], and MIMDizer [15, 50} use the pre-compiler approach [13].
The pre-processor approach is often implemented by using a low-level library, which im-

plements a set of higher level parallel constructs. Compiler directives or macros are used to

74

specify the location and the type of distributed code to be inserted into the users’ source
modules, With the help of the compiler directives. macros, and high-level parallel constructs,
a paralle]l programming tool can then transform a sequential program into a distributed pro-
gram. Although the distributed code is inserted into the source modules automatically by a
pre-processor, users of the system still have to add in compiler directives or macros explicitly
into their source modules. The languages used to develop the distributed program are often
augmented by new keywords or macro definitions. Because of these new keywords, it is a
common scenario that the users have to rewrite part of their sequential programs before they
can be parallelized.

As noted by Chang and Smith [13], it is easier to implement the pre-processor approach
than the pre-compiler approach. The latter approach is more difficult to implement because
it often requires knowledge concerning the context of the user’s source modules. Rather than
using compiler directives or macros, a pre-compiler tries to analyze the source module and
determines the locations of the distributed code automatically.

Both the inserted code and its locations are context dependent. For example, local variable
A iu function X is differext from another variable 4 in function Y. The analysis process of
a pre-compiler is often more difficult to implement. On the other hand, the pre-compiler
approach requires less modification to the existing sequential programs before they can be
parallelized by using a parallel programming tool. Moreover, users will be able to develop
their new parallel programs by using a traditional and familiar sequential programming

language, requiring less learning effort from the user’s point of view.

6.2 Comparison between FrameWorks and Enterprise

While Enterprise is an evolution of FrameWorks. the compiler approach is used in Enterprise
to replace the pre-processor approach used in the latter. The operations and the merits of

both system will be discussed in the following sections.

6.2.1 The FrameWorks Approach

The general process of developing 2 FrameWorks application begins by separating a sequen-
tial application into different functional modules. Minor modifications to the each of these
modules. such as adding the call statements as described in an earlier chapter. are needed
and performed by the user to identify the distributed calls or replies between modules. A
FrameWorks application graph is then created by the user to represent the parallel structure
of his application. A pre-processor in FrameWorks, fu_compile, is then used to insert the
appropriate distributed code into the user’s source code to create a distributed application.
Because of the pre-processor approach used by FrameWorks, two additional keywords are
needed to augmented the syntax of the sequential programming language used. Users of the
system have to use these additional kevwords in developing their applications.

The keywords used in FrameWorks are call and reply. They are used to identify a remote
procedure call and a return statement from a remote procedure respectively. Furthermore,
users of the FrameWorks system have to package by hand the parameters of a cali or a reply
statement into frames. A frame is a structure in C which contains all the input/output
parameters for a given call or reply statement. Although FrameWorks uses a pre-processor
to take away the burden of handling proper synchronization and communication from the
users, they are still responsible for the manual conversion of everyone of the distributed calls.

This approach has two major disadvantages. The first disadvantage is due to the added
keywords to sequential programming language (C). FrameWorks has been successful in trying
to reduce the number of modifications done to the programming language by using only
two additional keywords. However, since the parallel structure of the program has bheen
specified in the application graph, the keywords can he considered redundant. Furthermore,
the call and reply statements imply a weak relation between the implementation of parallel
procedures of a parallel program and its overall structure. The second disadvantage appears
when the user wants to modify the parallel structure of the program. On one hand, it can
be achieved by modifying only the application graph, if the design of the modules are left
unchanged. On the other hand, both the application graphs and the call/reply statements

76

have to be modified. if the user wants to change the design of the source modules (say
changing from 3 modules to 4 modules). In addition. call and reply statements have an
undesirable effect that if a parallel routine is now used sequentially, the statements have to
be removed first.

One may think that it is possible to use a pre-processor, search for the name of the
function call, and add in the call statement automatically. However, this is not true because
the name of the function may appear anywhere in comments or in string constants. We do

need a compiler in this case to recognize the location of function calls and return statements.

6.2.2 The Enterprise Approach

In the process of developing the Enterprise system, we have tried to improve on what had
been achieved by FrameWorks. Our goal is to remove all keywords (call and reply) and save
the user the hassle of making frames and making modifications to the program. By using
the compiler approach. the call and reply statements can be removed. We can also eliminate
the need for explicitly packaging parameters into frames. The symbol table in our compiler
determines the parameter types in user written source code and packages the parameters
automatically. In this way, users of Enterprise are now programming in traditional sequential
C rather than dealing with augmented languages. The modules of an Enterprise application
are normal C source files using the *.c” extension, not the “.f” extension as in FrameWorks,
which can be compiled sequentially usually without any modification. One important advan-
tage of this approach is the “real” separation of an application’s distributed design and the
source code used to implement the parallel procedures. The source code no longer contains
any parallel structure information of the application. Instead, the information now resides
totally in the Enterprise application graph. This separation allows an :pplication to be
changed easily in order to adapt to a dynamically changing environment such as a network

of workstations.

77

6.3 Interface to the Compiler

The compiler used in Enterprise is actually a two-pass pre-compiler and is part of the Code
Librarian. Both passes of the compiler are responsible for inserting the Enterprise code into
user modules. In fact, almost all of the necessary Enterprise code is inserted during the first
pass. The second pass is responsible for inserting Enterprise code to allow the use of delayed
blocking or future variables described in an earlier chapter. The second pass is necessary only
if there is a f-call in the module. To avoid using the value of a delayed blocking variable hefore
it is returned from another module, wait statements must be inserted into the source code
every time the value is accessed. The wait statement would block if the value has not been
returned. Otherwise, the module may continue its execution and access the value safely.
The input to the Enterprise compiler is a source module and information on the par-
allel <isn7 e wF the application (application graph). With this information. the compiler
prodi.:s 2 new li:*ing of the source module with the appropriate distributed code inserted.
Then the new listing can either be passed on to the next pass, or in turn be compiled by a
normal C compiler to produce an executable version of the program. The first pass of the
compiler determines if there is a f-call in the module. and generates a shell script to handle
the second pass of the compilation. Therefore, users do not have to decide if the second
pass is necessary, but the system will perform the second pass autcmatically if it is needed

(Figure 6.1).

6.3.1 First Pass of the Compiler

In the first pass, a “-F” option is used to specify the names of the distributed functions or
function calls in that particular module. The compiler parses the whole module and inserts
the necessary code at their proper locations, either transforming the named functions into
distributed functions or distributed calls. In addition, if the distributed function returns
a value to its caller, the first pass will also convert the return statement, packaging the

return value into a message to be sent back. Because the code inserted into the module

78

Application Graph

|

User Modules| ———— | Compiler’s
First Pass

Converting sequential calls into
Enterprise calls.

Enterprise
Modules

No

Need Second | ————+ | Done
Pass?

Yes. need to insert bc_wait()
statements

Compiler’s
Second Pass

|

Done

Figure 6.1: The Compilation of User Modules

also depends on the asset type of the function, the same option is also used to specify the
asset type information. This is done by appending the asset tvpes to the function names.
Consider the animation example described in Chapter 4. if there is a call to “Split” in the
module “PolyConv.c”, and “Split” is configured as a pool. We can invoke the compiler by

using:
Ent_gcc -FSplit.pool PolyConv.c

(":.rently, the Enterprise compiler supports the following asset types: Individual. Line,
trepartment., Pool, Contract, and Service.

If there is more than one function to be coiverted in the module. a comma can be used
to separate the differer: function names. St~ ii: “PolyConv.c” the function *PolyConv" is

called by other modules and is configured as . pool, we invoke the compiler by:
Ent_gcc -FSplit.pool,PolyConv.pool PolyConv.c

Note that the order of specifying the names of the interested function is not important. The
output of the compiler will be put into a file called ~_ent_input_filename™ located in the users
current working directory. For the example given above, a file called *_ent_PolyConv.c” will
be generated.

An assumption is made by the compiler that if a function specified by the “-F" option
is being called by other modules. then the definition (code) of the function also appears in
that module. Otherwise, the option specifies the name of an Enterprise call made to other
modules. Therefore, the need of the call and reply statements in FrameWorks can be safely
eliminated.

Furthermore, the same pass is also used to identify the variables whick are used for f-
calls. F-calls is a new concept used in Enterprise. This concept allows all Enterprise calls to
be translated into non-blocking distributed calls. For example, we could have the following

statement in the module:

output = F (input);

80

While FrameWorks will translate the statement into a blocking call to function F. Enterprise
translates the statement into a non-blocking Enterprise call (f-call) of F. The calling module
will continue to execute until the value oufput is needed but the called module has not yet
returned. The delayed blocking is achieved by adding a wait statement every time before
the variable is accessed. The statement blocks. if the output value have not yet returned;
otherwise, the module will procezd to the next statement and continue to execute. For
example, consider the following code segment. which makes an Enterprise call to function F.
puts the return value into variable output. and the return value is not used right after the

call:

output = F (input);
/* some other code */
result = output + 1;

will be translated into:

output_token = call F (input);
/* some other code */

vait (output_token);

result = output + 1;

Note that the code listed in the ahove example is only the pseudo-code of what is actually
generated by Enterprise. The actual code is much more complex, and will be described in a
later section of this chapter. The output.token in the example above is an integer allocated
by Enterprise. For every variable used for receiving a value from a f-call, an integer must be
declared to hold the status of the variable. Its status tells Enterprise if the return value has
been returned.

if there is a loop in the program, the value of outru«? may actually be accessed after,
but appeared before the call statement. The insertion of the wait statements, therefore, is
performed in the second pass to avoid semantic ambiguity. Although the statements are
inserted in the second pass, the first pass must record the names of the variables used in a
f-call (for delayed blocking) and the names of the functions where the variables are declared.

Both of :hese names are needed to distinguish between other variables with the same name

81

but declared in other functions belong to the same module. This information is passed on
to the second pass of the compiler where the insertion of the wait statement is performed.
The last function of the first pass of the compiler is to output a check file named as
the same module name but ended with the “.chk™ extension. For example. the check file
of “test.c” will be called “test.chk’ in the same directory. This file is used for checking the
consistency of Enterprise calls and replies. Since if a module makes a f-call to another module
and the latter module does not reply. then a deadlock situation may occur. Conversely. if a
function makes replies to a p-call. the replies will be queued up and may cause a program
to exit abnormally. To avoid these undesirable effects. a utility called Ent_check is used to
parse the generated check files and issues warnings if it finds any inconsistent Enterprise
calls. Because an Enterprise program is separated into different modules, the consisiency
checking can only be performed after each of the modules has been compiled. The utility
reads in the application graph to identify the names of the check files and to perform the

consistency check. Two kinds of information are included in the check files:

1. Declaration of an Enterprise function or procedure: If the subroutine is a procedure,
i.e. it does not return a value (but a statement like “return;” is allowed in a procedure),
it is classified as a P.PROC. The output of the compiler will be an entry in the file
started with the keyword P_.PROC, followed by the name of the procedure. and then
the number of parameters specified in the declaration. For example if PolyConv is a

procedure there are two parameters specified in the declaration, then the entry will be:

e.g. P.PROG PolyConv 2

If the subroutine is a functian, the keyword will be replaced by F_.PROG, and the rest

of the information remains the same.
e.g. F.PROG PolyConv 2

2. Asset calls information: Depends on the type of the call, it can be either a P.CALL
or a F.CALL in the check file. The format of the entry will be the keyword P.CALL

82

or F.CALL, followed by the name of the caller, then the name of the called function,
and finally the number of parameters specified in the call. For example, if procedure X

makes a P_.CALL to Y and specifies two parameters in the call, then the entry becomes:
PCALL X Y 2

Similarly, if the call is a f_call, then the entry will be

FCALL X Y 2

An example of a generated ".chk” file can be found in Appendix C.

6.3.2 Second Pass of the Compiler

The second pass of the compiler is invoked by the “-V" aption. The option is used to
specify the names of the variables and the functions in whick they are declared. The syntax
of the option is similar to the “-F” option used in the first pass. Again if there is more
than one variable, a comma can be used to separate each pair of the variables and function
names. Consider the case when function “PolyConv” returns a value back to “Model” and

the variable result appeéars in the function “Model”, that is we have in moduie Model:
result = PolyConv();

then we will invoke the second pass by:
Ent_gcc -VModel.result _ent Model.c

Note that because we would like to leave the user-written source code intact, the input to
the second pass is the temporary listing file generated by the first pass of the compiler. The
output file of the second pass is named as “_ent2_Model.c” and can be compiled by using a
normal C compiler. As mentioned earlier, a shell script is generated to handle the second
phase of compilation automatically. After the second pass is performed, the shell script also

renames the “_ent2_Model.c” file back to “.ent_Model.c” to avoid any confusion. The delayed

83

blocking used in Enterprise helps to improve the resource utilization and the efficiency of a
distributed application. However. because of semantic issues which will be discussed later.
some restrictions have to be imposed on the properties of the variables that can be appeared
on the left-hand-side of a f-call. These restrictions will be discussed in the semantic issues

section.

6.4 Implementation Details

The compiler used in Enterprise is actually a modified version of the GNU gcc (version 1.38)
compiler [48]. Two options are added to the compiler for inserting code into Enterprise
modules. A “-F” option is used to invoke the first pass of the Enterprise compiler, and a

“-V” option is used to invoke the second pass of the compiler.

6.4.1 The GNU C Compiler

To implement a C compiler from scratch is fairly expensive. We chose to implement our pre-
compiler on top of the GNU C compiler because it is in the public domain and the possibility
of reduced implementation cost. By using the GNU C compiler, we can also take advantage
of its symbol table ‘o extract the necessary type information. Most of the modifications
done on the compiler are in the files “toplev.c” and “c-parse.y”. The file “toplev.c” contains
the code used to accept the new options. The file “c-parse.y” contains the C grammar rules,

actions, and procedures used to insert the code needed for distributed processing.

6.4.2 Implementation Procedures

On our first attempt, we tried to use only the grammar of the GNU C compiler by stripping
out all the actions in the grammar file (c-parse.y). Once the actions were removed, we dis-
covered that the GNU C compiler uses the symbol table built by the compiler to distinguish
between an “identifier” and a “type” declaration. Therefore, a lot of the actions in the

grammar file are needed for the compiler to parse a C program correctly.

84

To preserve the correctness of the compiler. we decided to leave the actions in the file intact
and add in new actions for inserting Enterprise code. This results in a slower compilation
because each modules must be c~mpiled two or three times to produce the corresponding
executable files. On the other hand, this approach allows us to construct a working compiler
in a shorter time span. The new actions in the grammar file have to perform the following

functions:

1. Recognizes the name of the function that is being parsed and the name of the function

that is being called.
2. Recognizes the return statements in a function.
3. Recognizes the types of the parameters and constants used in a function call.

4. Recognizes the name of the variable which appears on the left-hand side of an assign-
ment statement followed by an Enterprise call. The compiler has to distinguish between

a f-call and an Enterprise call without a return value (i.e. a p-call).
5. Recognizes array references and, if possible, calculates the size of a given array.

6. Inserts ISIS {7] code accordingly. As mentioned in Section 4.6, ISIS is used as the

back-end of Enterprise.

The implementation of the above functions will be discussed and described in details in the

following subsections.

6.4.3 Recognition of Function Names and Function Calls

The first thing that the Enterprise compiler needs to perform is to build a table of the function
names to be recognized. The table is built before the parsing of a module is started. The
asset types of the functions are stored in the same table. In most situations, few functions
will need to be recognized in a particular module. Therefore, a dynamically created link list

is used to store the table of function names, and the list is searched by linear probing. The

85

link list allows unlimited number of function names to be stored in the table. The definition

of the link list is:

struct flist {

char *name; /* function name */
char *type; /* asset type */
struct flist =*next;

};

There are two variables in the GNU C compiler which allow us to access the name of the
function or function call that is being parsed. The variable, in GNU C. current_func_decl
contains the name of the function that is currently being parsed. The variable lastiddecl
contains the last identifier encountered which, depending on the context, can be the name of
a function call. Whenever a funciion definition or a function call is encountered. its name is
checked against the table of function nanies. If the names match. Enterprise code is inscrted
into the new listing automatically.

An example of the user-written source code and the code inserted for the Animation

example is included in Appendix D and Appendix E respectively.

6.4.4 Recognition of RETURN Statements

Whenever a return statement is encountered in a given module, the Enterprise compiler
checks if the current_func.decl exists in the table of function names. If the name exists, then
the compiler is parsing an Enterprise function which sends replies back to its caller. The
type of the return variable is checked and an Enterprise statement used to return the value
is added accordingly. Only the type of the return variable is used in constructing the reply
messages. The Enterprise compiler does not check the consistency between the type of the
return variable and the declared type of the function. However, since the original actions of
the GNU C compiler are left intact, any inconsistency will trigger the GNU C compiler to
issue a warning. The generated listing can still be compiled successfully, but the correctness

of the program cannot be guaranteed.

86

6.4.5 Recognition of Parameter Types

The type of the parameters, of an Enterprise call or a function declaration, are extracted from
the symbol table built by the GNU C compiler. Because of the representation used by the
GNU C compiler, some type information cannot be easily extracted. Different procedures
are needed to extract the type of, say a character array, user defined structure, simple
parameters, and the type of an expression. This type information is needed to package
the parameters into frames or messages to pass to other modules. Two approaches were
developed to do the packaging of parameters automatically.

The first approach conforms to the ISIS standard. In the ISIS documentation, a parameter
in an Enterprise call has to have a corresponding type character to specify its type. This
is similar to the printf() statement commonly used by C programmers. For example if an

Enterprise call is made to another module and cntr is an integer, the call
F (entr);

Will be translated into:

call F (“%d", cntr);

For simplicity reason, we use call F to represent the translated Enterprise call. In the actual
generated code, the call will be translated into either a call to beast() or beast.lf). The
two functions are ISIS library calls, where the first one uses synchronous broadcast and the
second one uses asynchronous broadcast, to send a message across the network. The “%d”
is used in ISIS to specify that “cntr” is in fact an integer. ISIS uses a lower case letter to
specify a single element, and an upper case of the same letter to represent an array of the
element. The number of elements in the array is needed in the latter case. There are two
special cases in the use of the formatting characters in ISIS. The formatting character used
for a single element of either the type float or double must be treated as a single element
array. The definitions of the type characters is listed in Table 6.1 (where size is equal to

number of elements in the array):

87

Variable Type | Single Element Arrays
int %d %D|[size
long Tod %D[size
short %h % H|size
float %F1 %F [size
double %Gl1] %Glsize
char %oc %Csize
others User defined | User defined

Table 6.1: Definitions of type characters in ISIS.

As in the table, if there is a user defined type or a structure in the module, and a variable
of such a type is used as a parameter in an Enterprise call, ISIS requires a new letter be
assigned for the type. The same letter should be used whenever the use: defined type is
used again in a call or a reply statement. User defined type can be created by using typedef
statements in C. New types are frequently used for one of two purposes. First, the new
types can be used for documentation purpose and provide “mnemonic synonyms for existing
predefined, derived and user-defined types”[30]. The new types can increase the readability
of a program by grouping related variables into a single structure. For example, a structure
of a student record may contains information such as name, age, identification number, and
other related information. Second, new type names may be used to hide hardware details.
For example, on some machines an integer of type int may be a 32 bits integer, but on
other machines the type long may be needed to represent the same integer. By using typedef
statements, the changes can be localized in only one statement to handle the changes in
hardware {30].

To make sure that the letter for a given type is common for each module, a file “.ent.def”
is used to record the user defined types. When the Enterprise compiler comes across a new
user defined type, the name of the structure is added to that file. The file is read in before the
compilation starts, such that the letters used in earlier compilation can be used to describe
the same types again.

On the other hand, the existence of the “.ent.def” file creates some possible concurrency

problems. If two modules are being cumpiled concurrently, which is perfectly acceptable if

88

the modules do not depend on each other, then the “.ent.def” may be accessed and updated
by the two compilation processes at the same time. Even if only one process has the right
to write to the file at any single time instance, both processes may have chosen the same
letter to represent two different user defined types. Therefore, the only solution is for the
Enterprise compiler to read the whole “.ent.def” file every time before it attempts to update
the file. This solution is expensive and inefficient. Moreover, there are only a limited number
of letters which can be used to describe user defined types in a program using ISIS. Only
14 letters can be used for the new types. because other letters are predefined in ISIS and

cannot be reused in this manner.

6.4.6 Another Approach to Handling Parameter Types

Because of such disadvantages as a limited number of user defined types and the concurrency
problems described in the previous section, another approach is used to handle the parameter
types. The second approach, although not mentioned in the ISIS manual, solves our earlier
problems. The normal base types in C are still handled by the earlier method as outlined
above, but user defined types are treated differently.

User defined types are treated as arrays of characters instead. The length of the character
array is the total number of bytes of the specified type, if the variable to be passed is a single
element. This length can be calculated easily by using the sizeof() function in C. If the

variable is an array of a user defined type, then
Length of Array = Number of elements * sizeof (user_defined_type).

The number of elements is obtained by using the symbol table generated by the GNU C
compiler. By using this method, more than 14 user defined types are allowed in an Enterprise
program and the concurrency problem is eliminated as well. This method is used in the
current version of the Enterprise compiler.

As of the current version of Enterprise, the issue of byte ordering and the way that

different compiler allocates memory for the variables have not yet been addressed. For

89

example, a nine-byte structure on a SUN SPARC workstation requires twelve bytes to store
the structure, but on a SUN 3/50 workstation the structure requires only ten bytes of
memory to store it. The difference in storage spaces is due to the memory alignment schemes
used by different hardware. Furthermore. different compiler may organize the memibers
in a structure differently. Currently, the ISIS package used by Enterprise has no direct
support for exchanging data between heterogeneous computers. One possible solution to the
problem is by using Sun’s XDR (eXternal Data Representation) library routines to package
the variables. The XDR routines can be used to package arbitrary data structures into a
hardware-independent manner. The possibilities of using these routines together with the

current back-end have not been explored due to resource constraints.

6.4.7 Recognition of Variables for Delay Blocking

In a statement, such as
output = F (input);

the call to function F is processed by the compiler before the “=" operator is detected. In

other words, we need to store the name of the function call somewhere, so that our compiler

can determine whether or not the variable output is being used in a f-call. The name of

the function call F is stored in a variable called func.name when the compiler is running.

The translation of a function call into an Enterprise call can assume one of two forms. The

actual translation depends on whether or not the call returns a value to its caller. Thus,
“"

the translation is performed after the compiler determines if an “=" sign exists, but not

immediately after the function call is recognized.

6.4.8 Interface to ISIS Code

This section is used to describe the actual code inserted by the compiler to transform a

sequential call into an Enterprise call. In the previous sections, we described the translation

90

of a function call by adding the call keyword in front of the corresponding function call.

However, this is different from the actual generated code.

Enterprise Calls

Since ISIS is used as the back-end of Enterprise, the code generated for the f-call and p-call
are either ISIS library calls, or calls to functions that are built on top of ISIS. Enterprise
calls are translated into different forms of the ISIS library calls: beast(), or beastlf). An

Enterprise call which does not return a value, that is a p-call, is translated into:
bcast (.e.name, _e_.CALL, format, parm, e NREPLY);

Where _e_name is the string “_e_” followed by the function name, format is the formatting
string for the parameters parm, and _e. NREPLY specifies that the call is indeed a p-call. For

example the function call F(z), where z is an integer and no reply is expected, is translated

into:
bcast (_e.F, _e.CALL, "%d", x, _eNREPLY);

An Enterprise call which returns a value, that is a f-call, is translated into a call to
beast_l(). The function bcast.l() is used because it allows the idea of delayed blocking to be
realized. When compared to beast(), the function bcast_l() has a higher communication cost,
but the function also increases the potential parallelism of the program.

As mentioned in Section 6.3.1, the realization of f-call requires an integer token to be
declared for every outstanding return values. The tokens can either be declared statically
at compile time, or allocated dynamically at run time. If the tokens are declared statically,
a lot of memory storage is required. Consider the example “MAT = F(x)", and MAT is
an iuteger matrix of 512 x 512. To ensure correct access to the matrix, every element of
the matrix must be assigned with a unique token. In other words, an additional of 262,i44
integers need to be added to the program. However, only a small portion of the tokens may
actually be used by the program. These tokens may quickly become a major factor in the

amount of memory for doing real computations.

91

The approach used in Enterprise is by using a dynamically created data structure to store
the addresses of delayed blocking variables. Since efficiency is not yet a major concern in
the current implementation, a linked list is used to store the addresses. However, other data
structures, such as a tree or a hash table, can be used later to improve the efficiency when
it becomes a factor affecting the overall performance of an application. An element in the
linked list contains the address of a delayed blocking variable, the token for telling the return
status of the variable, and a link to the next element in the list. An Enterprise supplied
function _ent__insert() is used to create and add new elements into the linked list. New
elements are always added at the head of the list.

An Enterprise call which returns a value, that is a f-call, is translated into:

-ent__addr = & out_parm;
_ent__insert (_ent__addr);

_ent__list->token = bcast_1l ("f", _e_name, _e_CALL, formatl, in_parms,
_e_REPLY, format2, _ent__addr);

where _ent__addrstores the address of the return variable out_parm, the function _ent._.insert()
inserts the address of the variable into the linked list, format! is the formatting string for the
input parameters in_parms, .e.REPLY specifies that the call is a f-call, format2 is the for-
matting string for the output parameter out_parm, and finally _ent._list—token is the token
used to store t* : return status of the variable.

The use of the variable _ent__addr is used to prevent possible side-effects. It is possible
in C that ouf_parm is an expression by itself, such as the statement “x++ = F(x,y)". If
we simply attach the address of operator (&) to the expression on the left-hand-side of the
equal sign, use the new expression in place of _ent__addr in the second and third statements,
then z will be incremented twice producing erroneous results.

For example, the f-call “z4++ = F(z,y)”, where z and y are integers, is translated into:
-ent__addr = & x++;
-ent__insert (_ent__addr);

_ent__list->token = bcast_1 ("f", _e_F, _e_CALL, "%d¥d", x, y, -e_REPLY,
wYd", _ent__addr);

92

In an earlier version of the Enterprise compiler, only the ISIS function *bcast_1" is used to
construct both the p-calls and the f-calls. The different types of calls are differentiated by
using the “.e_.REPLY” and “.e NREPLY" keywords. However, this approach was replaced

by the current version to reduce the unnecessary overhead involved in making p-calls.

Enterprise Wait Statements

The Enterprise wait statements must be inserted into a function that makes f-calls to other
Enterprise modules for the function to execute correctly. The statements are inserted every
time before a delayed blocking variable is being accessed. The insertion of the statements is
similar tc the translation of a f-call, where the address of the variable is first stored in the
Enterprise variable _ent__addr. The variable is again used to avoid undesirable side-effects.
The code inserted for accessing integer z, say “y = x + 1", will be:

-ent__addr = & x;

-ent__ptr = _ent__lookup (_ent__addr);
y = *(int *) _ent__addr + 1;

In the generated code, the function _ent__lookup() tries to find an entry containing the same
address of z. If such an entry is found, the function will block until the variable is returned;
when it returns, the entry will be deleted from the link list. If a corresponding entry cannot
be found in the link list, then the value is already returned and the program may proceed
safely. In the last generated statement, the variable r is replaccd by the expression *(int *)
-ent__addr for the same reason as described in the previous section. The type used in the
expression (int) and the type of the original variable must agree with each other. Therefore,
the compiler is responsible for finding the type of the variable and generating the correct

expression accordingly.

Enterprise Return Statements

Return statements, used in a function which may be called by a f-call, to return a value back
to its caller is translated into:

93

replyl ("f", msg.p, format, parm, .e NREPLY);
return;

For example the statement “return x:”, where x is an integer, is translated into:

replyl ("f", msgp, "%d", x, _e NREPLY);

return;
The additional return statement is needed to force the function being called to exit properly.
Otherwise, the function may continue to execute after sending the message and may create
unexpected results.

In some cases, a function that is called by a p-call may contain return statements in it.
These return statements do not reply a message back to its caller, but simply cause the
function to exit. To handle this scenario, instead of using the reply.l () statement, a simple
return statement is inserted into the user’s source code. Note that the reply statement is
designed to return a value to its caller without knowing the name cf the caller. The details
concerning the implementation of each asset and the use of ISIS library calls can be found

in Wong's thesis [52].

Funetion declarations

The function declaration of an Enterprise entry procedure is also modified by the Enterprise
compiler. Although the function is written in sequential code, the function declaration must
be changed such that it can receive parameters sent by remote procedures. To allow a func-
tion to use received messages as input parameters, the fiunction header must be changed (o
accept only one input parameter of the ISIS defined type message. The required parameters
are then extracted from the message by using the msg_get() function in ISIS. This function
will be inserted as the first statement to be executed by the entry procedure. The function
has a similar format to the sscanf() function in C, except that the values are extracted from

a message using the ISIS defined formatting characters.

94

As an example, the following function:

test (choicel, choice?)
int choicel;
int choice?2;

{
/*
* Local variable declarations.

x/
/*

* Code to be executed by the program.
*/
}

will be translated into:

/*
* test (choicel, choice2)
*/

test (msg_p)

message *msg._P;

{

int choicel;

int choice?2;

{
[*
* Local variable declarations.

*/
msg_get (msg_p,"%d%d", &choicel, &choice2);

/*
* Code to be executed by the program.
*/

}

}

Notice that the original declaration of the function is commented out by the compiler and
extra brackets are inserted to maintain the correct syntax in C. Appendixes D and E contain
the source code of the Animation example before and after it is compiled by the Enterprise

compiler to show the differences.

95

6.5 Semantic Issues

Although the programming language (C) used in Enterprise has no additional keywords, it
has been augmented by new semantics. The obvious changes in semantics can be found in
the f-call and p-call described above. The new semantics allow users to develop distributed
applications in a way that is similar to writing sequential programs. The low-level commu-
nication protocols will be handled by the system automatically. These semaatics, however,
require some restrictions to be imposed on the use of some variables. The restrictions are
needed to ensure the correctness of a parallel program.

One of the restrictions is that a variable, called as a “call.var”, which appears on the

left-hand-side of a f-call cannot be a global variable. Consider the following example:

AQ main()
{ {
x = 3; x = F(1);
} AQ);
printf ("%d", x);
}

If F() is an Enterprise call, then depending on the timing, the printfstatement may actually
print out the value 3 or the value of F(!). The non-deterministic result is because wait
statements will be inserted into the main program only. When the second pass of the
compiler is invoked, the option “-Vmain.x” will be used for the above example. The option
tells the compiler to insert wait statements for variable z into the main program. However,
when the variable is reassigned in procedure A4, the procedure does not check if the values
is returned or not. If the value was returned before the execution of function A, then z
will be assigned the value of 3; otherwise, the value of z will be overwritten by the value of
F(1). Since it is not easy for the compiler to deduce from the above example the intention
of the programmer, it is not possible to ensure the correct execution of the program. A
sophisticated control flow analysis is needed to deduce the required information, but most
compilers do not provide such a mechanism. To avoid the ambiguity, a global variable cannot

be used as a “call.var”.

96

The second restriction is that address aliasing cannot be performed on a *call_var”. This
restriction is designed to avoid the problem of non-deterministic result due to address alias-
ing. In Enterprise, only the name of a variable rather than the address of a variable is
recorded. A C programmer, however. can use address aliasing to reference the same variable
by using variables of different names. The effect of address aliasing can also be changed
from time to time during the execution of a program and causes the program to gencrate
non-deterministic results.

Furthermore, if the address of a “call_var” is used to keep track of the status of the variable,

problem of non-deterministic results may still occur. Consider the following example:

AQ) B() main()
s { {
int x; int y,x; AQ);
BO);
x = F (3); y =G (1); }
} x=y+1;
}

If both A() and B() are local functions. and both F() and G() are f-calls, then, depending
on the timing, y may get the value of F(3) but not G(1). The reason for this effect is due to
the way that a C program manages its memory. In a normal C program, when function A
is being called, the memory needed to accommodate the function’s variables is pushed onto
a stack. The memory is popped from the stack when the function exits, and the memory
needed for the next function is then pushed onto the same location. In the above example,
when function A is finished and function B starts its execution, the memory used for the
variable y in function B has the same address of the variable z used in function A. As
a result, the value of y cannot be determined until run time. To avoid this problem, all
outstanding f-calls are cancelled upon the return of local procedures. The calls are cancelled
by emptying the list which stores the addresses of delayed blocking variables. The effects of
J-calls, therefore, are limited to within the scope of a single procedure.

There are still other semantic issues yet to be resolved. One example is the semantics of

97

loops and arrays. In the following code segment:

for (i

= 0; 1 < 10; i++)
ali] =

F(i);
/* other user code */

for (i 10; i++)

= 0;
b[i] =

i<«
alil;
if £(i) is a f-call, then the second for-loop in the example will continue to execute until all
of the calls to function F are returned. Even though there are no semantic ambiguities, the
performance of the program may be decreased. As it stands, the for loop will wait for the
a[i]'s sequentially, that is a[0], a[l], ..., a[9] to return from F(i) regardless of their timings;
but during execution, a[9] may actually be returned first with a[0] returned last. This shows
the undesirable effect of having to wait for the results to return in sequence. This situation
should be handled by an asynchronous pool asset which uses a statement like “array_wait(a,
i)". The statement waits for the first value returned from a f-call, and updates the value of

“i” and “a[i]” accordingly.

6.6 Conclusion

The overall cost of compiling an Enterprise module is relatively high. Part of the cost is due
to the fact that the Enterprise compiler is built on top of the GNU gce compiler. Therefore,
a given module may in fact be compiled three times in order to produce a correspondiﬁg
executable. While this increases the compilation time, this approach provides us a quick way
to produce a working prototype of the compiler. Also, because ~f the general availability of
the GNU gcc on many different hardware platforms, it should be easy to port the compiler
onto other computers (the current version was developed and tested on Sun 3 and Sun 4
workstations running Sun OS 4.1.1).

There are some other limitations on the use of parameter types for an Enterprise call

resulting from the use of ISIS as the back-end. First, ISIS limits the number of user defined

98

types allowed in an Enterprise program. Second, ISIS has no direct support for passing multi-
dimension arrays. These limitations have been removed in Enterprise by casting user defined
types and multi-dimension arrays into single dimension arrays. However, the problem of byte
ordering and memory alignment problems have not be solved in the current implementation.
Finaily, the code generated by Enterprise. and the semantic ambiguities resulted from the

use of delayed blocking variables were described in this chapter.

99

Chapter 7

Conclusions and Future Research

7.1 Introduction

This thesis presented the design and the development of part of a new programming environ-
ment, called Enterprise, for writing distributed applications. The Enterprise code librarian
is implemented as part of this thesis. The code librarian consists of a source and object
code management utility, and a compiler used to parallelize user programs. The source and
object code management utility manages the object files of Enterprise applications while
taking into account the possibility of heterogeneous network of workstations. The Enter-
prise compiler relieves the user from programming the low-level communication pratocols.
The user writes a distributed program using the sequential C language, and specifies the
parallelism of the program through a structured asset graph. The compiler then petforms
the parallelization, according to the asset graph, by inserting additional distributed code
into the user’s program.

Although Enterprise is still in its prototyping stage, major components of the system
have been implemented. They are the graphical user-interface {12, 49}, the execution man-
ager {52], and the code librarian. These components allow programs to be constructed using
the Enterprise model and provide the means to assess the usefulness of the system. Sev-

eral applications have been developed using Enterprise, and experimental results - ave been

100

gathered. The results showed that the system requires programmers to think and program

in a less conventional manner, but the new manner is relatively easy to learn and master.

7.2 Thesis Summary

Tkis thesis includes the description of the model, the design of the architecture, and the
implementation of tools to support the system. The main emphasis of this thesis is on the
development of some of these tools. The first part of the thesis describes the Enterprise pro-
gramming model and the architecture of the system. The system is divided into well-defined
subcomponents such that the functioms of each subcomponent can be specified and be imple-
mented separately. The remaining part of the thesis presents the design and implementation
of the code librarian of the system.

The earlier part of the thesis describes the Enterprise programming model, the design
principles of the system, and the architecture of the system. Enterprise is designed as a
high-level programming model for writing distributed programs. It has the unique feature
of allowing the total separation of application code and parallel structuring information.
The application code itself is written in familiar sequential languages, and the structuring
information is specified in a hierarchically organized asset graph. The Enterprise graph is
at a much higher level when compared to those being used in other parallel programming
tools. Users no longer draw the graph by connecting processes with communication channels.
Instead, the graph is constructed by using two basic operations: coercion and expansion.
These operations are used in Enterprise to support the notion of parallelization by partitions
and replications.

An organization analogy is used in Enterprise to describe the structures of distributed
applications. This analogy has the benefit of allowing a consistent set of names to be us'
to describe the commonly used parallel constructs. These constructs are called assets in
the analogy, and they represent high-level parallelization techniques such as lines or depart-

ments. Chapter 4 explains this analogy and describes the meaning of the supported assets.

101

The chapter also presents the architecture of Enterprise and outlines the functions of each
subcomponent. Several subcomponents have been implemented to allow programs to be
constructed and to gather initial experimental results.

The later half of the thesis presents the design and implementation of the Enterprise
code librarian. The librarian includes a utility for managing the source and object code
of Enterprise applications. It is implemented using the Imake [19] utility. The librarian
manages different binary executable files by grouping them into architecture-specific sub-
directories. An Imakefile is created in each sub-directory to generate the Makefile uscd for
managing the executable and object files. Chapter 5 describes the implementation of the
source and object code librarian in detail.

A compiler is also developed as part of the librarian for inserting low-level communication
codes into user programs. The codes that are being inserted are calls to the ISIS distributed
library package [7]. The Enterprise compiler recognizes and generates codes for remote
procedures, remote procedure calls, and return statements from remote procedures. It is
also capable of packaging the parameters of a module call into messages to be passed across
a network. The current compiler is implemented by modifying the GNU gcc compiler.

In Enterprise, no additional keywords are needed in the user-written sequential code. The
use of a compiler showed that a distributed program can be separated into two independent
parts: the sequential source code, and the parallel structure. This total separation of ap-
plication code and parallel structuring information allows the user to restructure a finished
application without modifying the source code. Furthermore, existing sequential programs
can be parallelized easily because of this separation. The removal of additional keywords
provides an easy way for automatic sequential to parallel transformation and vice versa.
Finally, the user is also encouraged to experiment with different configurations for an appli-
cation. Our initial experience with Enterprise showed that distributed applications can be
built quickly using the environment and reasonably good speedup can be achieved. Chapter
6 of this thesis presents the implementation of the Enterprise compiler and discussion of

related semantic issues.

102

7.3 Recommendations for Future Research

Although the major components of Enterprise have heen implemented, the whole system
is far from complete. Research is still taking place to refine the system. For example,
the definitions of the assets are being revised, the graphical interface is being enhanced,
test cases are being developed, and possible extensions are being considered. This section

presents some of the possible refinements and enhancements to the system.

1. Currently, only several components of the Enterprise system have been implemented.
For example, the graphical user interface is partially functional and still under con-
struction. The current resource secretary chooses the workstations by checking only
their load averages. A more capable resource secretary should provide more detailed
selection criterion, such as the processor speed or the amount of installed memory, for
choosing the suitable workstations. Currently, research effort is actively taking place in

both implementing and refining the Enterprise system.

2. In general, we need to re-compile an asset if its source code has been modified, or if
the role of an asset has been coerced. Furthermore, not every coercion operation, such
as coercing from a pool to a cortract, requires re-compilation of the asset. Changing a
pool to a contract changes only the runtime environment of the program, but not the
source code of the program. The code librarian handles the re-compilation of an asset
if its source code has been changed. However, it is not easy to determine if an asset has
been coerced in the current textual Enterprise graph. Stronger support for determining

when to re-compile an asset is needed.

3. The makefile generation utility is limited by the use of machine-specific compilation
flags. It needs a mechanism for specifying the flags, such as -f68881, symbolically. The
utility can be extended to accept the symbolic flags and to expand them according to

the intended architecture of the program.

103

4. One of the goals in designing Enterprise is to provide transparent access to hetero-
geneous computers on a network. Since different hardware uses different schemes of
byte-ordering and memory alignment schemes, Enterprise applications currently run
only on a homogeneous network of workstations. The ISIS library package handles
the byte-ordering problem but not the memory alignment problem. The compiler can
be improved to handle the different schemes automatically. One possible solution is
by using SUN XDR (eXternal Data Representation) to handle the memory alignment

problem.

5. The Enterprise model limits the types of variables that may be passed from one pro-
cess to another. The model only supports the passing of non-pointer type variables.
However, supporting pointer type variables should prove to be a useful feature because
they are used frequently in C programs. The current compiler can be enhanced to allow
the passing of pointers by copy'ng the contents of the pointer to a message explicitly.
The major difficulty in handling pointers is determining the size of the contents. A C
programmer can easily allocate a large block of memory by using malloc(). A compiler,
however, cannot correctly determined at compile time the size of the memory being
allocated. To generate the correct code for passing pointers, the user must specify the
pointer to be passed and the total number of bytes to be passed in an Enterprise call
explicitly. One way to support the passing of pointers is to impose the restriction that
a pointer argument in an Enterprise call must be followed by an argument specifying

the size of the contents.

6. Enterprise can be extended to accommodate other programming languages. The imple-
mentation of the current compiler is based on the GNU C compiler which also contains
grammar rules for the language C++. In other words, it may be possible to modify
the Enterprise compiler to handle user’s C++ programs without too much trouble.
However, a shorter compilation time could be expected if the Enterprise compiler is re-
developed from scratch. The improved performance could provide a stronger support

for compilation-on-demand.

104

7. As discussed in Chapter 4, several new asset kinds are under construction. The seman-
tics of a asynchronous pool, a static division, and a dynamic division is still under active
research. Additional asset kinds may also be introduced to allow greater flexibility in

structuring applications. Since each asset kind is a self-contained entity, adding new

asset types to Enterprise can be done in an easy way.

8. The low-level communication protocols are currently implemented using the commercial
version of ISIS libraries. Although a public domain version of ISIS is available, its many
limitations forced us to use the commercial one. This implies that users must install
ISIS before they can use Enterprise to write programs. In fact, the current version of
ISIS still imposes some limitations on the applications. Using other communication
libraries may be a potential solution to the limitations, but the fact that there still does
not exist a standard package for handling the low-level protocols makes choosing the

right package a difficult task.

105

Bibliography

[1] Sudhir Ahuja, Nicholas Carriero, and David Gelernter. Linda and friends. I[EEE Com-
puter, pages 26-34, 1986.

[2] Gregory R. Andrews, Ronald A. Olsson, Michael Coffin, Irving Elshoff, Kelvin Nilsen,
Titus Purdin, and Gregg Townsend. An overview of the SR language and implementa-
tion. ACM Transaction on Programming Languages and Systems, 10(1):51-86, January
1988.

(3] Bill Appelbe, Kevin Smith, and Charlie McDowell. Start/pat: A parallel-programming
toolkit. JEEE Software, pages 29-38, July 1989.

[4] O. Babadglu, L. Alvisi, A. Amoroso, and R. Davoli. Paralex: An environment for parallel
programming in distributed systems. Technical Report UB-LCS-91-01, University of
Bologna, 1991.

[5] Robert G. Babb II, Lise Storc, and Robert Hiromoto. Developing a parallel Monte Carlo
transport algorithm using large-grain data flow. Parallel Computing, 7:187-198, 1988.

[6] Vasanth Balasundaram, Ken Kennedy, Ulrich Kremer, Kathryn Mckinley, and Jaspal
Subhlok. The parascope editor: An interactive parallel programming tool. ACM, pages
540-550, November 1989.

[7] K. Birman, R. Cooper, T. Joseph, K. Marzullo, M. Makpangou, K. Kane, F. Schmuck,
and M. Wood. The ISIS System Manual Version 2.1. Computer Science Department,
Cornell University, 1991.

[8] K. S. Booth, J. Schaeffer, and W. M. Gentleman. Anthropomorphic pregramming.
Technical Report CS-82-47, Department of Computer Science, University of Waterloo,
1982.

[9] James Boyle, Ralph Butler, Terrence Disz, Branett Glickfeld, Ewing Lusk, Ross Over-
beek, James Petterson, and Rick Stevens. Portable Program for Parallel Processors.
Holt, Rinehart and Winston, Inc.

[10] J. C. Browne, Muhammad Azam, and Stephen Sobek. CODE: A unified approach to
parallel programming. IEEE Software, pages 10-18, July 1989.

106

[11] James C. Browne, Taejae Lee, and John Werth. Experimental evaluation of a reusability-
oriented parallel programming environment. I[EEE Transactions on Software Engineer-
ing, 16(2):111-120, February 1990.

[12] Enoch Chan, Paul Lu, Jimmy Mohsin, Jonathan Schaeffer, Carol Smith, Duane Szafron,
and Pok Sze Wong. Enterprise: An interactive graphical programming environment for
distributed software development. Technica! Report TR 91-17, Department of Comput-
ing Science, University of Alberta, June 1991.

[13] Long-chyr Chang and Brian T. Smith. Classification and evaluation of paralle! program-
ming tools. Technical Report CS90-22, University of New Mexico, 1990.

(14] A. Chatterjee. A mechanism for concurrency among objects. In Proceedings of Super-
computing ‘89, pages 562-567, 1989.

(15] Richard H. Chill. MIMDizer - A new tool for parallelization. Supercomputing Review,
pages 26-28, April 1990.

[16] CYBER 205 supercomputer introduction. R515.1187, Computing Services, University
of Alberta, 1987.

(17} E. E. Dijkstra. Selected Writings on Computing: A Personal Perspective. Springer-
Verlag, New York, 1982.

(18] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J.,
1976.

[19] Paul DuBois. Using Imake to configure the X Window System Version 11, Relcase 4.
Wisconsin Regional Primate Research Center, August 1990.

[20] S. I. Feldman. Make - A program for maintaining computer programs. Software Practice
and Ezperience, 9:255-265, 1979.

[21] Ian Foster and Stephen Taylor. Strand: A practical parallel programming tool. Technical
Report MCS-P80-0889, Argonne National Laboratory, 1989.

[22] Ian Foster and Stephen Taylor. Strand: New Concepts in Parallel Programming.
Prentice-Hall, 1989.

[23] Jason Gait. A distributed process manager for an engineering network computer. Journal
of Parallel and Distributed Computing, 4:423-437, 1987.

[24) Warren Harrison. Tools for multiple-cpu environments. JEEE Software, pages 45-51,
May 1990.

[25] R. Jagannathan, A. R. Downing, W. T. Zaumen, and R. K. S. Lee. Dataflow-based
methodology for coarse-grain multiprocessing on a network of workstations. In 1989
International Conference on Parallel Processing, 1989.

107

[26] A. Jones and P. Schwartz. Experience using multiprocessor system - a status report.
Computing Surveys, 12(3):121-166, June 1980.

[27] Harry F. Jordan. The Force. Department of Electrical and Computer Engineering,
University of Colorado at Boulder.

[28] Harry F. Jordan. Structuring parallel algorithms in an MIMD, shared memory environ-
ment. Parallel Computing, 3:93-110, 86.

(29] Harry F. Jordan, Muhammad S. Benten, Norbert S. Arenstorf, and Aruna V. Ramanan.
Force User’s Manual. Department of Electrical and Computer Engineering, University
of Colorado at Boulder.

[30] Stanley B. Lippman. C++ Primer. Addison-Wesley Publishing Company, 1991.

[31) Mesaac Makpangou, Yvon Gourhant, Jean-Pierre Le Narzul, and Marc Shapiro. Struc-
turing distributed applications as fragmented objects. Technical Report Rapport de
Recherche INRIA 1404, INRIA, January 1991.

[32] T. A. Marsland, T. Breitkreutz, and 5. Sutphen. NMP - A network multi-processor.
Technical Report TR-88-22, Department of Computing Science, The University of Al-
berta, December 1988.

[33] C. E. Mcdowell and D. P. Helmbold. Debugging concurrent programs. ACM Computing
Surveys, 2(4):593-622, 1989,

[34] Myrias. Parallel Programmer’s Guide. Myrias, Research Corporation, Edmonton, Al-
berta, Canada, 1990.

[35] David A. Nichols. Using idle workstations in a shared computing environment. Comm.
ACM, pages 5-12, November 1987.

[36] Cherri M. Pancake. Conceptual models in parallel programming languages. In Proceed-
ings ACM Southeast Region 26th Annual Conference, pages 369-375, 1989.

[37] Cherri M. Pancake and Sue Utter. Models for visualization in parallel debuggers. ACM,
pages 627-636, November 1989.

[38] Terrence W. Pratt. The PISCES 2 parallel programming environment. In Proceedings
of the International Conference on Parallel Processing, pages 439-445, 1987.

[39] Matthew Rosing, Robert B. Schnabel, and Robert P. Weaver. The Dino parallel pro-
gramming language. Technical Report CU-CS-457-90, Department of Computer Sci-
ence, University of Colorado at Boudler, April 1990.

[40] Matthew Rosing, Robert B. Schnabel, and Robert P. Weaver. Massive parallelism and
process contraction in Dino. Technical Report CU-CS-467-90, Department of Computer
Science, University of Colorado at Boudler, March 1990,

108

[41] Zary Segail and Larry Rudolph. PIE: A programming and instrumentation environment
for parallel processing. IEEE Software, pages 22-37, November 1985.

[42] J. F. Shoch and J. A. Hupp. The Worm programs-early experience with a distributed
computation. Comm ACM, 25(3):172-180, March 1982,

[43] Ajit Singh. A Template-Based Approach to Structuring Distributed Algorithms Using a

Network of Workstations. Ph. D. Thesis, Department of Computing Science, University
of Alberta, March 1991.

[44] Ajit Singh, Jonathan Schaeffer, and Mark Green. Structuring distributed algorithms in
a workstation environment: The FrameWorks approach. In Proceedings of the Interna-
tional Conference on Parallel Processing, pages 89-97, August 1989.

[45] Ajit Singh, Jonathan Schaeffer, and Mark Green. A template-based approach to the gen-
eration of distributed applications using a network of workstations. IEEE Transactions
on Parallel and Distributed Systems, 2(1):52-67, January 1991.

[46] G. Singh and Mark Green. Visual programming of graphical user interfaces. In Workshop
on Visual Languages, pages 161-173, Linkoping, Sweden, August 1987.

[47] G. Singh and Mark Green. A high-level user interface management system. In ACM
SIGCHI'89, New York, April 1989.

[48] R. M. Stallman. Using and Porting GNU CC (for V. 1.35). Free Software Foundation,
Inc., 1989.

[49) D. Szafron, J. Schaeffer, P. S. Wong, E. Chan, P. Lu, and C. Smith. The Enterprise
distributed programming model. In Working Conference on Programming Environments
for Parallel Computing, International Federation for Information Processing, Edinburgh
Parallel Computing Centre, April 1992,

[50] Joel Williamson. MIMDizer tools aid Fortran code redesign. /EEE Software, page 50,
May 1990.

[51] Pok Sze Wong. A study of the conceptual computation models of parallel programming
environments. CMPUT 507 Project, Department of Computing Science, University of
Alberta, 1991.

[52] Pok Sze Wong. The Enterprise Executive. M. Sc. Thesis, Department of Computing
Science, University of Alberta, 1992.

109

Appendix A
The Configuration File of Gen_make

An example of the gen_make configuration file, gen.make.cfg, read by gen_make.

SRRRRABRABERARRRENRERRRRRBRRRERARRERRRRRRRRRRRANRRIUS
*

Configuration file used by gen_make.

s
SERRRRURRRERRRNRRRRRRREREARARARRRERRRRRRARARRRRRAR RS S

ISIS_.PATH = /usr/samson-pk/misc/distsys/src/isis/isisv2.1
cC = cC
CFLAGS = -I/usr/therien/operations/src/X11R4/contrib/toolkits/xview2/
build/usr/include \
-I/usr/samson-pk/misc/distsys/src/isis/isisv2.1/include \

-I../../ -g

110

Appendix B
The Generated Imakefile

The Imakefile generated by gen_make and the textual graph described in Chapter 4:

RRRARRRENBRBERRRBRRARURRRERRERRARERURRARRERRARRANRRES
*

Imakefile created for an Enterprise application.

#
RRARRBARREREREARRRRARARRERARRRRARAARARRARARARRARRARNER

ARCH = SUN3

INCLUDES= -I/usr/samson-pk/misc/distsys/src/isis/isisv2.1/include \
-I../../

cC = cc

CFLAGS = -£68881 \

-I/usr/therien/operations/src/X11R4/contrib/toolkits/xview2/build/usr/include \

-I/usr/samson-pk/misc/distsys/src/isis/isisv2.1/includa \

-1../../ -g

ISISD = /usr/samson-pk/misc/distsys/src/isis/isisv2.1/\$(ARCH)

ILIBS = \$(ISISD)/clib/libisisl.a \$(ISISD)/cliv/libisis2.a \
\$(ISISD)/mlib/libisism.a

SRCS1 = ~ent_Model.c
0BJS1 = -ent_Model .o
LIBS1 = =1UTILITY -1fb -1m
SRCS2 = ~ent_PolyConv.c
0BJS2 = -ent_PolyConv.o
LIBS2 = <1UTILITY -1fb -1m

SRCS3 = -ent_Split.c

111

0BJS3 -ent_Split.o
LIBS3 = -1UTILITY -1fb -1m

SRCS -ent_Model.c _ent_PolyConv.c _ent_Split.c
0BJS -ent_Model.o _ent_PolyConv.o _ent_Split.o
PROGRAMS= Model PolyConv Split

Rules to compile an Enterprise application.
NormalProgramTarget (Model, $(0BJS1), /#*/, $(ILIBS), $(LIBS1))
NormalProgramTarget (PolyConv, $(0BJS2), /**/, $(ILIBS), $(LIBS2))
NormalProgramTarget (Split, $(0BJS3), /*+/, $(ILIBS), $(LIBS3))

Define all the targets for the programs
AllTarget ($ (PROGRAMS))

Generate the dependencies rules for makedepend.

DependTarget ()

112

Appendix C
The Generated Check File

This appendix includes an example check file that is generated by the consistency check utility
described in Chapter 6. This check file is generated for a test program, and it contains a
number of inconsistent calls. If this file is passed to the utility, errors will be reported. The
generated check file is listed as follows:

F_PROC test 1

P_PROC set_name 4
F_CALL main test i
F_CALL main set_name 0
F_CALL main test 1
P_CALL main test 1
P_CALL main set_name 2

113

Appendix D

Example of User Source Code

This appendix shows the pseudo code of the Animation example. For the sake of readability,
only the main procedure calls of Model, PolyConv, and Split are shown.

Asset Code: Model
/* Model asset */
#include “£igh h*

#define NUMBER _STEPS 4
#define NUMBER FISH 10
#define NUMBER_FRAMES 20

?ﬁodel()

float timeperframe;
int frame;
int result;

/® Generate the school of fish */
MakeFish (NUMBER _FISH, 0);

/® Loop through each frame */

timeperframe = 1.0 / NUMBER STEPS;

;or (frame = 0; frame < NUMBER_FRAMES; frame++)
/* Do model computations */
InitModel (NUMBER_FISH);
MoveFish (NUMBER FISH, timeperframe);
DrawFish (NUMBER_FISH, timeperframe * frame);
WriteModel (frame);

/® Done! Send work to PolyConv process */
result = PolyConv (frame):

if {result == -~1)
exit(~1);

}

}

main()
Model();

114

Asset Code: PolyConv

/* PolyConv asget */
#include “fish.h"
#define MAX_POLYGONS 1000

PolyConv (frame)

int frame;

{
polygon polygontable [MAX_POLYGONS);
int npoly;

/* Convert polygons and send to Split */
DoConversion (frame);

npoly = ComputePolygons (polygontable);
Split (frame, npoly, polygontable);

Asset Code: Split

/* Split asset =/

#include “£ish.h"

#define MAX_POLYGONS 1000
Split (frame, npoly, polygontable)
int frame, npoly;

polygon polygontable;

HiddenSurface (frame, npoly, polygontable);
AntiAlias (frame, npoly, polygontable);

115

Appendix E

Example of Enterprise Inserted Code

This appendix shows the code inserted into the .:ser’s source code as described in Chapter 6.
This section contains only the code that is inserted by the Enterprise compiler, but not the
header code generated by the Enterprise executive [52]. The code of the animation example
after it is processed by the Enterprise compiler is listed as follows (Enterprise inserted code
are listed in italic):

Asset Code: Model

* Additional declarations added in by
* Enterprise for handling futures.
*

#include *'Ent_list .h?’

_ent_List _ent_list = NULL;

_ent_List _ent_ptr = NULL;

unsigned int _ent_addr = 0, _ent_dummy = 0;

/* Model asset */
#include “fish.h"
#define NUMBER_STEPS 4

#define NUMBER_FISH 10
#define NUMBRER FRAMES 20

Model()

{
float timeperframie;
int frame;
int result;

/* Generate the school of fish */
MakeFish (NUMBER _FISH, 0):

/* Loop through each frame */
timeperframe = 1.0 / NUMBER_STEPS;
for (frame = 0; frame < NUMBER_FRAMES; frame++)

/* Do model computations */
InitModel (NUMBER _FISH);

116

MoveFish ({JUMBER _FISH, timeperframe);
DrawFish (NUMBER _FISH, timeperframe * frame);
WriteModel (frame);

/* Done! Send work to PolyConv process */
/*
"

Function call of PolyCony()

. result = PolyConv (frame);
&*
ent_addr = 8 result

_ent_insert (_ent_addr);
_ent_list—>token = beast l(?727?, e PolyConv, e CALL,?’Xd?’ frame, e REPLY,?’%d"*, _ent_addr);
/"

* Waiting for reply

b sf (result == -1)
L)
_ent_addr = Hresult;

_ent_ptr = _ent lookup (_ent_addr);

if (*(int *) _ent_addr == -1)
exit(—1);

}

main()

/*** Enterprise code inserted for main() ***/
_einit ();
Model();

|* ISIS code inserted for ezit in "main”. */
exit(0);

117

Asset Code: PolyConv

.

* Additional declarations added in by
¢ Enterprise for handling futures.

*/
#include YIEnt_list.h??
_ent_List _ent_list = NULL;
_ent_List _ent_ptr = NULL;
unsigned int _ent_addr = 0, _ent_dummy = 0;

/* PolyConv asset */
#include “fish.h"

#define MAX_POLYGONS 1000
/*

This is an Enterprise asset. The original
declaration of the function is commented owut

.
*
* and is replaced by the inserted code.
.
¢

PolyConv (frame)
*

PolyConv(msg_p)
message *mag_p;

{

int frame;

{
polygon polygontable [MAX_POLYGONS]);
int npoly;

/* Convert polygons and send to Split */

/*** ISIS code inserted. Al
/*** Asset type : Pool se0)

msg_get(msg_p,’ *%d?? Lframe);

DoConversion (frame);
npoly = ComputePolygons (polygontable);
*

* Function call of Sphit()
. Split (frame, npoly, polygontable);
*

beast(_e_Sphit,_e CALL,’ *%4%4%C’ * frame,npoly,polygontable sizeof(polygontable *)*1000, e NREPLYY);

}] *** Enterprise inserted bracket. hidd)

118

Asset Code: Split

L 4

* Additional declarations added in by
* Enterprise for handling futures.

*
#Hinclude MEnt_list.h??
_ent_List _ent_list = NULL;
_ent_List _ent_ptr = NULL;
snsigned int _ent_addr = 0, _ent_dummy = 0;

/* Split asset */

#include “fish.h"

#define MAX_POLYGONS 1000

/*

This is an Enterprise asset. The original
declaration of the function is commented out

and is replaced by the inserted code.

Split (frame, npoly, polygontabdle)

RN N)

Split(msg_p)
message *msg_p;

{
int frame, npoly;
polygon polygontable;

/°** ISIS code inserted. hdd)
]*** Asset type : Pool vaef
mag_get(msg_p,? *%d%d%C? ? &Lframe,&npoly,&polygontable. & ent_dummy);

HiddenSurface (frame, npoly, polygontable);
AntiAlias (frame, npoly, polygontable);

} /*** Enterprise inserted bracket. ves)

119

