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Abstract

A number of industrial processes involve variables that cannot be reliably measured

in real time using online sensors. Many such variables are required as inputs in

control schemes to ensure safe and efficient plant operation. Laboratory analysis,

which is a reliable method of measuring these variables, is slow and infrequent. Thus,

mathematical models called soft sensors which can estimate these hard to measure

variables from the abundantly available online process measurements have been used

in a number of industrial applications. Among the various soft sensor applications of

online prediction, process monitoring, fault detection and isolation, the focus of this

thesis is on online prediction and parameter estimation applications.

Just-In-Time (JIT) modeling is a unique framework wherein a local model is cre-

ated every time a prediction is required. One of the most critical components of

JIT models is the similarity criterion which determines the data used in the local

models and their associated weights. To handle nonlinear and time varying systems

simultaneously under the JIT framework, a new similarity metric which incorporates

time, along with the traditional space distance, to evaluate sample weights, is pro-

posed. Further, a query based method to determine the bandwidth of the local models

adaptively, as an alternative to the offline global method, is also developed.

Next, the distance-angle similarity criterion used in modeling dynamic systems

under the JIT technique is studied. An improved weighing scheme is then proposed

which enables a more accurate selection of data for local modeling and provides a

better interpretation of results. Again, for this proposed weighing scheme also, an

alternative to the global bandwidth estimation, called the point-based method, is

proposed.

In the field of online soft sensor prediction and parameter estimation applications,

adaptive linear regression algorithms such as recursive least squares and moving win-
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dow least squares are widely used because of their simplicity and ease of implemen-

tation. However, these methods are not robust to outlying values. We develop a new

robust and adaptive algorithm with a cautious parameter update strategy. The pro-

posed algorithm is also quite flexible and a number of variants are easily formulated.

Finally, advantages of the methods are clearly illustrated by applications to nu-

merical examples, experimental data and industrial case studies.
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Chapter 1

Introduction

1.1 Motivation

In recent years, the development and application of soft sensors has gained increasing

attention. Modern industrial processes are data rich and a large number of fast rate

online process measurements are recorded and stored for the purpose of carrying out

detailed analysis. However, there are many critical variables that cannot be measured

reliably. The existing online analyzers generally have high maintenance requirements

and are not reliable. An alternative to online analyzers is laboratory analysis, but the

low frequency of sampling and testing presents challenges. Besides, typically in in-

dustries, such procedures are a process hazard because of high pressure/temperature

conditions, or properties of the process fluids which are generally flammable or cor-

rosive in nature. Hence, availability of reliable and fast rate measurements of these

hard to measure variables without depending on laboratory analysis would not only

increase production efficiency but also reduce the risks associated with such sampling

procedures. Soft sensors have, over the years, proven to be a suitable solution. Essen-

tially, soft sensors are mathematical models that take the easy to measure variables

as input and predict the hard to measure variables. Based on collected historical

data, once a soft sensor has been validated and approved for online implementation,

the laboratory analysis can be done away with or the online analyzer taken offline.

Soft sensors have wide ranging applications from online prediction, process moni-

toring and process fault detection to sensor fault detection and reconstruction. Con-

sequently, a large array of soft sensors dealing with complex processes have been

developed to handle issues such as nonlinearity or multiple operating modes. How-
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ever, one of the most important issues surrounding the use of soft sensors is the ability

to adapt to changing process conditions. Hence, in order to maintain accuracy, soft

sensors either need to have an adaptation mechanism or need to be re-trained peri-

odically when performance objectives are not met.

It is with this perspective that the major portion of the work in this thesis has

been carried out, i.e., the development of adaptive models for building soft sensors

for online prediction and/or parameter estimation applications.

1.2 Thesis outline and contributions

The thesis is organized as follows.

Chapter 2 provides a brief overview of the Just-In-Time modeling framework. A

new similarity metric which takes into account time, along with the traditional Eu-

clidean distance, to calculate weights of the database samples is proposed. This new

space-time metric for similarity calculation enables soft sensors based on JIT models

to deal with the issues of nonlinearity and time varying property simultaneously. The

smoothing parameter in JIT models determines the bandwidth or region of validity

of the local model. A query based method to determine this parameter adaptively is

further developed. Applications, with both ordinary least squares and partial least

squares as the local models, are provided to evaluate the methods.

Continuing with the theme of JIT modeling, the distance-angle similarity criterion

used to calculate sample weights is introduced in Chapter 3. The shortcomings of

this criterion are highlighted and a more general weight formulation which provides a

better representation of the process is proposed. Further, point-based estimation as

an alternative to the global method of smoothing/bandwidth parameter selection is

explored. The chapter ends with the applications section where the different methods

are compared.

In Chapter 4, a novel adaptive linear regression algorithm for online soft sensor

prediction and parameter estimation applications is proposed. The new algorithm

is robust to outliers in the output, or predicted variable, and follows a cautious

parameter update strategy so that minor process disturbances do not affect prediction

accuracy. The methods are then applied to numerically simulated and industrial case

2



studies and a detailed analysis of the results carried out.

Finally, Chapter 5 summarizes the thesis and highlights some areas for future

work and improvement. In all chapters, the performance of the different methods is

compared based on the correlation coefficient, R, and the root mean square error of

prediction, rmsep.
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Chapter 2

Space-Time Similarity Criterion
for Just-In-Time Modeling of Time
Varying Systems∗

2.1 Introduction

In this chapter, we discuss the Just-In-Time or JIT modeling framework and propose

a novel way to improve its ability to handle time varying systems. One of the key

features of JIT modeling methods [1], also known as lazy learning, memory based

learning or locally weighted learning [2, 3], is that model building is delayed until the

query variable for which prediction is required, is received. This is in sharp contrast

to the offline modeling approach, where a single or multiple models are built on

available historical data. These offline models extract all the meaningful information

from the historical data which can then be discarded. We carry this discussion forward

with the focus on application of these modeling methods for building soft sensors or

inferential sensors [4]. In recent years, there has been an increasing interest in the

development of soft sensors to provide online estimates of otherwise hard to measure

quality variables [5, 6]. The measurement of these variables can then be used for a

variety of applications from online prediction, process monitoring and process fault

detection to sensor fault detection and reconstruction [7].

Linear multivariate modeling techniques such as principal component analysis

(PCA) and partial least squares (PLS) have been widely used to build soft sensors for

∗This chapter is an extended version of the under review paper: Shekhar Sharma, Swanand
Khare, and Biao Huang. Just-In-Time modeling with space-time metric for similarity calculation.
AIChE Journal (submitted, 2015).
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monitoring and control applications [8]. However, since many systems encountered

in the process industry are nonlinear, methods such as neural-networks [9], support

vector regression (SVR) [10], polynomial functions [11] and fuzzy set [12] have also

been used for soft sensor applications. These models are what is called global models

and have certain drawbacks. Finding a suitable model structure and selecting the

optimal parameters of the model is complex, especially if the process consists of

multiple modes. An alternative to global modeling is the use of relatively simple local

models to approximate a nonlinear system at different operating points or regimes. T-

S fuzzy model and neural fuzzy network are two such modeling techniques. However,

this approach has the drawback that expert prior knowledge is required to partition

the operating space [12, 13].

Irrespective of what type of model is used for building the soft sensor , the initial

step consists of selecting the historical data and pre-processing it to address issues such

as missing data, outlier detection and replacement, and selection of relevant variables

[5]. A suitable model is then trained on this data and deployed for online application.

Models built using this strategy are called offline models since the model building

stops once online implementation has begun. However, offline approach works well

only when the historical data is representative of all the possible operating modes and

drifts of the process plant [7]. This is almost certainly never the case because in most

industries, processes exhibit time varying characteristics due to a variety of reasons

such as catalyst activity changes, equipment aging and changes of raw materials [13].

Hence, the performance of offline models deteriorates over a period of time. It has

been pointed out in literature that one of the key issues surrounding the use of soft

sensors is their ability to cope with these changes in process characteristics [5, 13, 14].

Therefore, a number of adaptive techniques to deal with this time varying issue have

been proposed in the literature.

It is clear that soft sensors need to have an adaptation mechanism to be able to

maintain accuracy for long periods. These mechanisms have been broadly categorized

into three different types [15]:

• Instance selection or moving window techniques

• Instance weighting or recursive techniques
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• Ensemble methods

A detailed description of the above approaches and review of other issues dealing with

adaptation mechanisms in data driven soft sensors has been provided in [7]. We briefly

discuss some points associated with adaptive soft sensors here. Given their simplicity

and low computational burden, adaptive versions of linear models using the moving

window technique and recursive technique are widely used. The block-wise moving

window and the recursive versions of linear least squares, principle component analy-

sis (PCA) and partial least squares (PLS) are among the most popular adaptive soft

sensors. Versions of adaptive PCA and PLS, modified to handle nonlinearity, such as

the moving window kernel PCA [16] and the recursive nonlinear PLS [17] have also

been proposed. On the other hand, adaptation of nonlinear models is generally diffi-

cult. For example, nonlinear modeling approaches such as fuzzy set, artificial neural

networks (ANN) or neuro fuzzy networks, which are one of the most popular nonlin-

ear types, are not easy to adapt due to the difficulties of model structure selection

and computational complexity involved in training [7, 12]. Support vector machines

(SVM) are an alternative to ANN and possess better generalization property [13].

Recently, adaptive versions of SVM such as online kernel learning (OKL) algorithm

[18] and recursive SVR have also been proposed.

A completely different approach to handle the above mentioned issues of nonlin-

earity and time varying property is the Just-In-Time (JIT) framework of modeling.

The first step for building a JIT based soft sensor is similar to the one mentioned be-

fore. Available historical data is collected and pre-processed. Next, model building is

delayed until the output for a query variable is requested. Hence, this type of models

are also called model-on-demand since no offline model exists and no data process-

ing takes place until a query is received [12]. Generally, the models built within the

JIT framework exhibit a local structure. Only a subset of the historical data which

is most relevant to the query variable is used for model building. Since typical JIT

models employ a local model structure, they are able to handle nonlinear systems and

track abrupt process changes as well [13, 14]. A number of modeling methods can be

employed within the JIT framework [2]. Among the most popular ones are the locally

weighted versions of linear least squares and partial least squares. Specifically, PLS
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under the JIT framework has been used for several industrial applications including

those related to near infrared spectroscopy [19]. Nonlinear models such as SVR and

least squares support vector regression (LSSVR) have also been used under the JIT

method [13]. However, since JIT modeling involves performing all data processing

online at the time of prediction, it is computationally heavy. A major portion of the

lookup cost is the cost associated with the local model training. In this regard, locally

linear models with their low computation provide a significant benefit over nonlinear

models.

The rest of the chapter proceeds as follows. In Section 2.2, a general overview

of JIT modeling is provided which lays the basis for the next section. In Section

2.3, we describe two local JIT methods and discuss the problem of handling non-

linear systems with time varying parameters under the JIT framework. An existing

method in literature to handle the issue is described and its shortcomings discussed.

A novel method of selecting the relevant data set for local model building to address

the highlighted issues is then proposed. Further, two techniques for estimating the

bandwidth of the local models are also discussed. Advantages of the proposed meth-

ods are demonstrated in Section 2.4 by application to a numerical simulation and an

industrial case study followed by the concluding remarks in Section 2.5.

2.2 Just-In-Time modeling

In this section, an overview of the JIT modeling framework is provided. Once a query

is received, the key steps involved during prediction can be summarized as [12]:

• Select samples in the database which are relevant to the query based on some

similarity criterion

• Build a local model on the relevant samples thus selected &

• Calculate the output based on the local model and query

The local model is typically discarded after the prediction has been made. The

critical components that facilitate the above steps, and determine the accuracy of

prediction are: the historical database, similarity criterion, weight function, local
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modeling technique and the database update strategy. Figure 2.1 shows the links

between these steps and components. In the following sections, the JIT modeling

steps and components are briefly reviewed.

2.2.1 Historical database and database maintenance

Collection and pre-processing of historical data is the first step while building a JIT

model. As is the case with offline models, the quality of the JIT model also depends

on this historical data. Hence, the database should, if possible, represent all possible

operating modes and regimes of the process under study. In the offline modeling

approach, the historical data is discarded once the model has been obtained. On the

other hand, in the case of JIT models, it is stored and used every time a prediction

is required. Also, since only a subset of the data is used for the local model, compu-

tational cost and time can be saved in some cases by constructing the database using

techniques like k-d trees [2, 3].

Previously, we discussed the need for adaptive models and some related strategies

in Section 2.1. JIT based soft sensors should also be able to meet this need. In the

absence of a global or multiple offline models, the ability to adapt depends on the how

the initial historical database is maintained. Unless the database is adapted to new

conditions, the JIT model cannot be expected to maintain accuracy for long periods.

Hence, database maintenance is an important component of JIT modeling. In the

traditional approach, all new samples are stored into the database, but this approach

has two major drawbacks:

• Over time, the size of the database will become very large. This will increase

memory requirements on the one hand, and computation costs for similarity

calculations on the other.

• Most real life processes show time varying property to some degree and extent.

With this approach, very old data that may no longer be relevant can end up

participating in the local model and result in decreasing prediction accuracy.

An alternative is the moving window database approach. Here, the database size

is limited to a fixed number which is usually based on memory and computation

8
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considerations. Every time a new sample is received, it is stored in the database

and the oldest one removed. The size can be chosen to be large enough so that

minor process upsets do not replace all useful data and small enough so that memory

requirements are not exceeded. This approach is simple and unlike the selective

update strategy discussed next, does not increase the computation load during online

prediction.

An improved database update strategy is proposed in [20]. In this work, the au-

thors propose a selective update strategy. Only when certain conditions indicating the

change of process conditions are met, the database is updated. To prevent database

size from increasing continuously, a threshold is specified in advance to keep its size

limited.

2.2.2 Similarity criterion and weighting function

Given a historical database and a query, the next step is to select a subset of the

data for building the local model. The similarity criterion and weighting function

work together to select and prioritize the samples that are relevant or similar to the

query variable. The similarity criterion is a qualitative measure of this relevancy

or similarity between query and historical samples whereas the weight function is

a mathematical function that, given a similarity criterion, assigns weights to the

samples. However, both these terms have been used interchangeably in literature.

Similarity Criterion

One of the most commonly used similarity measure is the Euclidean distance (being

inversely related to the similarity) [21]:

di,E =

√
(xi − xq) (xi − xq)

T (2.1)

where xi & xq are row vectors representing the ith database sample and the query

variable respectively. This measure suffers from the fact that variables with large

magnitudes can dominate the distance calculations. Hence, if the variables have

different scales of magnitude they are usually mean centered and normalized before

distance calculation. A more general form of the Euclidean distance leads to the

diagonally weighted Euclidean distance [2, 22]:
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di,Edw =

√
(xi − xq) D (xi − xq)

T

D = diag (θ1, θ2, ..θi, ..θm)
(2.2)

where θi is the weight for distance calculations in the the ith dimension. Finally, the

most general form is given by the fully weighted Euclidean distance [2]:

di,Ew =

√
(xi − xq) D (xi − xq)

T (2.3)

where D is a positive semi-definite matrix which determines the shape and size of the

relevant subset of data. For the sake of clarity, we will refer to the above forms of

similarity measures as distance in space. The angle between samples in a dynamic

system has also been used as a measure of similarity [12]. The similarity in this case

is calculated as:

si = γ
√
e−di

2
+ (1− γ)cos(θi) (2.4)

where di is the Euclidean distance, and θi is the the angle between the query, xq, and

database sample, xi.

cos(θi) =
∆xq∆xi

T

‖ ∆xq ‖2.‖ ∆xi ‖2
∆xq = xq − xq−1, ∆xi = xi − xi−1

(2.5)

If cos(θi) < 0, the sample is discarded. γ is a balancing parameter between 0 & 1

which defines the role of distance or angle in the similarity measure. Besides distance

in space and angle, the correlation among variables has also been used as a similarity

measure in a method called correlation-based JIT modeling (CoJIT) [23].

All the above similarity measures use the input space for similarity calculation.

A few methods that utilize output space information for similarity calculation have

also been proposed. Wang et al. [24] used the estimated output from an initial global

model for the similarity calculation:

si = λdi,x + (1− λ) di,y (2.6)
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di,y =
| yi − ŷq |
N∑
i=1

| yi − ŷq |
(2.7)

where di,x is the Euclidean distance in the input space from xq and ŷq is the estimate

corresponding to xq calculated from an initial global model.

Weighting Function

Once the similarity criterion has been finalized, the next step is to assign weights to

the database samples. Essentially, the weighting function takes the similarity measure

of a sample as input and produces the weight of the sample as the output. Atkeson

et al. [2] provide a comprehensive review of the weighting functions used in locally

weighted learning. Some key properties of the weighting functions are listed below

[2]:

• The output of weighting functions and the similarity measure should be directly

proportional, i.e., the greater the similarity between samples the higher should

be the weight assigned.

• Discontinuities or smoothness of the weighting function are reflected in the

discontinuity or smoothness of prediction

• The output of the weighting function should always be non negative

One of the most commonly used weighting function is the Gaussian kernel [2]:

e−di
2

(2.8)

where di is the distance calculated by any one of the previously mentioned measures.

A number of variations of the Gaussian kernel have been proposed. Kano et al. [19]

have used the following form:

e
− diφ
σdi (2.9)

where di is the Euclidean distance in the input space, σdi is the standard deviation

of the distances from this query, i.e., σdi = std (d1, d2, ...dn), n is the total number of
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samples and φ is the smoothing or bandwidth parameter. φ determines the shape of

the weighting function and consequently the rate at which the weight falls off with

an increase in the distance. For φ = 0, all samples receive an equal weight of 1 and

for large φ values, the weight falls sharply with increasing distance. For extremely

large values of φ, all samples other than the nearest one receive a weight tending to

zero resulting in nearest neighbor prediction.

There are a large number of weighting functions besides the Gaussian kernel and

its variations. Those interested in a more detailed review are referred to [2]. Besides

satisfying the properties listed above, the choice of the weighting function does not

have a significant impact on the performance of JIT models [2, 3].

2.2.3 Local modeling technique

In this section we discuss how the prioritized samples can be used to make a prediction.

One of the simplest technique is the weighted average prediction [2]:

ŷq =

∑
yiwi∑
wi

(2.10)

where yi and wi are the ith sample output and its weight respectively. Atkeson et al.

[2] give a very generalized formulation of the training criterion for the estimation of

the local model. Since, for many systems, no single global model is a good fit for the

complete data, the local modeling approach is a suitable alternative. This is done

by emphasizing data points around the query which results in different models for

different queries.

C (q) =
∑
i

[
Lq
(
fq
(
xi,βq

)
, yi
)
wi,q
]

(2.11)

where C (q) is the training criterion for query xq, L is the cost function, f
(
xi,βq

)
is

the prediction function, βq is the local model parameter vector and wi,q is the weight

of the ith sample corresponding to the query, xq.

A host of cost and prediction functions can be combined to form the training

criterion through the above formulation. The training, cost and prediction functions

can even be changed from query to query. But for most practical purposes these
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are chosen in advance and kept fixed during online operation. Only the local model

parameters, βq, change with the query. Because of the weighted formulation, the

linear models can be emphasized to predict more accurately around the query by

giving the accuracy of prediction near it more importance. The nonlinearity exhibited

by most industrial processes can be reasonably approximated by linear models around

different operating points and since JIT models delay all data processing till prediction

time, the simplicity and low computation required for linear models makes them ideal

candidates for the JIT framework.

2.3 Just-In-Time modeling with space and time

weights

Before proceeding further, we first describe two local modeling techniques that are

commonly used under the JIT framework, locally weighted least squares (LWLS) and

locally weighted partial least squares (LWPLS). Both of them will be used later on

in the applications section.

2.3.1 LWLS and LWPLS

LWLS

Let us assume that the database, query and the weighting matrix are given as: X ∈

Rn∗m, y ∈ Rn∗1 , xq ∈ R1∗m & W = diag (w1, ..wi, ..wn), where the input matrix,

X, consists of n row vectors representing the observations and the output vector, y,

is a column vector of n scalar values and wi is the weight of the ith database sample.

The equation involved in LWLS to calculate the local regression vector is [3]:

β̂ =
(
XTWX

)−1
XTWy (2.12)

LWPLS

In cases where the input dimension is very large or the variables are highly correlated,

LWLS becomes unsuitable because of high computation and numerical instability

caused by the matrix inversion in Eqn. (2.12). PLS is a technique that is able to

handle the above issues. A locally weighted version of PLS called LWPLS suitable
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for use under the JIT framework has been derived by Schaal et al [3]. With the

query, database and weights defined as in LWLS earlier, the algorithm for making a

prediction, ŷq, with the LWPLS method is described below [3]:

1. Mean center the historical data around the query, xq

x̄ =

n∑
i=1

wiixi

n∑
i=1

wii

(2.13)

ȳ =

n∑
i=1

wiiyi

n∑
i=1

wii

(2.14)

X =


x1 − x̄
x2 − x̄
...
...
...

xn − x̄

, y =


y1 − ȳ
y2 − ȳ
...
...
...

yn − ȳ

 (2.15)

2. Calculate the weights (pls weight vector), scores, loadings and the regression

parameters of the local PLS model and make the prediction iteratively.

Repeat the steps below till the specified latent factors, say l, have been ex-

tracted:

Initialize prediction: ŷq = ȳ

For k = 1 : l

Extraction Steps:

uk = XTWy (2.16)

tk = Xuk (2.17)

pk =
tk

TWX

tk
TWtk

(2.18)
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qk =
tk

TWy

tk
TWtk

(2.19)

Deflation Steps:

Xk = Xk − tkpk (2.20)

yk = yk − tkqk (2.21)

Prediction Steps:

tq,k = xquk (2.22)

ŷq = ŷq + tq,kqk (2.23)

xq = xq − tq,kpk (2.24)

2.3.2 Space and time weights

Soft sensors need to be adaptive in order to address changes in process character-

istics. Various recursive methods which update models by prioritizing new samples

have been proposed. However, the most common ones such as recursive least squares,

recursive PCA and recursive PLS are all linear. Another issue with recursive methods

is that their performance deteriorates if there are sudden changes, such as equipment

cleaning, in the process characteristics [14]. This is because there is a significant

difference in the query and the most recent database samples, and since the prior-

itization of recursive methods is based on time only, the data samples in the past

that might contain information relevant to the query will always get lower weights

whereas recent samples will always get higher weights. On the other hand, because

of the use of localized models, JIT based soft sensors are able to handle nonlinearity

well. However, there are some drawbacks. Typically, the database size is dictated by
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memory and computation requirements associated with distance calculations required

for local modeling. As such, if the system under study is time varying, older samples

in the database may be relevant in space, but may not be so in time. Therefore, JIT

applications generally involve time-invariant static or dynamic nonlinear systems and

time varying property is rarely addressed.

RLWPLS

To handle the issue of time varying property and nonlinearity together, a modified

JIT technique, called RLWPLS has been proposed by Chen et al. [25]. Consider

a moving window database with size n. The weighing scheme in RLWPLS involves

dividing the database into two sections, the first containing the recent k samples and

the second containing the remaining n− k samples. Next, time weights are assigned

to the first section and space weights to the second section. The final weighing ma-

trix for the complete database is obtained by combining the time and space weighted

sections using a balancing parameter ρ as follows:



ws(x1)
. . . 0

ws(xn-k)
ρλk−1

0
. . .

ρλ0



where, ws is the space weight, normalized between 0 and 1, based on the Euclidean

distance of the sample, xi, from the query, xq. ρ lies in [0, 1] and denotes the impor-

tance of the time weighted section of the database. Finally, λ is the forgetting factor

for the time weights calculation. We make a few observations regarding the above

approach:

1. The weighing scheme treats nonlinearity and time varying property separately,

but not simultaneously. If the system is time varying, older samples should not

be given large weights. However, the above algorithm forces time weights of 1
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to all the past database samples. On the other hand, there are no space weights

for the most recent samples, essentially ignoring any nonlinearity in them.

2. The algorithm uses a fixed bandwidth/smoothing parameter for space weight

calculations, thus making it unable to adjust the space weight curves according

to the system noise. Even then, 3 parameters are used, all of which are proposed

to be selected based on offline optimization which is computationally heavy.

To address the above drawbacks we propose a new generalized framework to in-

corporate time into the weighing scheme. The essential concept is to give each data

sample, space weight as well as time weight, which, working together, prioritize the

samples. Considering time as another variable, it can be introduced by simply adding

an extra dimension to the input vector. This dimension, the time dimension, can be

said to represent the age of the sample. Recent samples have lower age and older

samples have higher age. We call the traditional JIT using space weights only as

JITs and the new formulation using space and time weights as JITst to signify the

difference.

JITst

For a database of size n where the input variable, x, is an m dimensional row vector,

the addition of the time dimension is done as:

xq = [xq, 0] = [xq,1, xq,2, ...xq,m, 0]

xn = [xn, 0] = [xn,1, xn,2, ...xn,m, 0]

xn−1 = [xn−1, 1] = [xn−1,1, xn−1,2, ...xn−1,m, 1]

.

xi = [xi, n− i] = [xi,1, xi,2, ...xi,m, n− i]

.

x1 = [x1, n− 1] = [x1,1, x1,2, ...x1,m, n− 1]

(2.25)

The last entry added to the query and the input variable represents the time index.

Hence xn, the latest sample, has the time index of 0 which makes it closest to the
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query in time. Similarly, x1, the oldest sample in the database is farthest in time

from xq. The Euclidean distance of the ith sample from xq is:

d2i = (xi − xq) (xi − xq)
T (2.26)

d2i = (xi,1 − xq,1)2 + ..... (xi,m − xq,m)2 + (n− i)2 (2.27)

The distance without the time dimension is denoted as the distance in space, di,s,

and the distance in time as di,t

d2i = d2i,s + d2i,t (2.28)

Next, introducing different smoothing/weighting parameters for the space and time

dimensions as φs and φt we have:

d2i = φsd
2
i,s + φtd

2
i,t (2.29)

Since the focus here is on time as an added dimension, we have used a common

smoothing parameter, φs, for all the space dimensions in the input variable. Using

a different φ for every dimension will result in the diagonally weighted Euclidean

distance mentioned earlier. Next, using the Gaussian kernel for the weight function

we have:

wi = e−di
2

= e−(φsd2i,s + φtd2i,t) (2.30)

wi = e−φsd
2
i,s .e−φtd

2
i,t (2.31)

Thus we see that the weight of any sample in the database is determined by

two components, distance in space, di,s, and distance in time, di,t. Without loss of

generality, one could also write Eqn. (2.31) above as:

wi = e−φsdi,s .e−φtdi,t (2.32)

wi = wi,s.wi,t (2.33)
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We name this new weighting scheme as the space-time metric for similarity calcula-

tion. Ultimately, the weight can be expressed as a combination of space weight and

time weight, each of which can be calculated using a specific exponential form. The φs

& φt parameters can be manipulated to control the smoothing along space and time

respectively. Table 2.1 shows how the values of the smoothing parameters, φs and φt,

reflect the degree of nonlinearity and time varying property of the system respectively.

Table 2.1: φs , φt interpretation
Case φs φt Nonlinearity Time varying property
1 low low low low
2 low high low high
3 high low high low
4 high high high high

Comparing the approach proposed above with RLWPLS, the advantages become

obvious. First, unlike in RLWPLS, every database sample is assigned both, time

weight and space weight. Second, whereas RLWPLS introduces 3 additional param-

eters, k, λ, & ρ, JITst introduces only 1 additional parameter, φt (φs is ignored as it

can be added in RLWPLS as well for specifying the bandwidth with respect to the

space dimension). This decrease in the number of parameters not only makes offline

selection less computationally heavy but also makes adaptive query based parameter

selection feasible which is discussed next.

2.3.3 Bandwidth/Smoothing parameter estimation

Given the query variable and the choice of the local model, say LWLS or LWPLS,

the value of the bandwidth parameter, φ, is required to make a prediction. There are

a number of ways to select this value, such as [2]:

1. Fixed bandwidth selection

2. Nearest neighbor bandwidth selection

3. Global bandwidth selection
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4. Query-based local bandwidth selection

5. Point-based local bandwidth selection

Among these, we discuss global and query-based bandwidth selection.

Global bandwidth selection

In this method, the value of φ is selected by minimizing a cost function, such as the

root mean square error of prediction (rmsep), on the training data. It is a popular

method and simple to use if the number of smoothing parameters are few. However,

the method becomes unwieldy for cases when different smoothing parameters are used

for weights on different dimensions.

Query-based bandwidth selection

The methods in this class select the smoothing parameters adaptively for each query.

One such technique is based on minimizing the locally weighted leave-one-out cross

validation (loocv) error for every query. In the least squares framework, the loocv

error [26], and its weighted version [2], for a linear model of the type, y = Xβ are

given as:

el =
1
n∑
i=1

n

n∑
i=1

(yi − xiβ (i))2 (2.34)

el =
1

n∑
i=1

wi

n∑
i=1

wi(yi − xiβw (i))2 (2.35)

where el denotes the loocv error, n is the sample size and wi are the weights. β

and βw are the ordinary and the weighted least squares regression coefficient vectors

respectively. The subscript i denotes the ith observation whereas (i) denotes that this

observation is not involved in calculations. Hence, βw(i), in Eqn. (2.35) is calculated

as:

βw(i) =
(
X (i)TW (i)X (i)

)−1
X (i)TW (i)y (i) (2.36)
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Therefore, to calculate el by Eqn. (2.35), one would have to compute the matrix

inverse in Eqn. (2.36),
(
X (i)TW (i)X (i)

)−1
, n times for every time an observation

is removed. For online applications, this is not practical due to the high computation

load. However, using the PRESS statistic [27], one can compute the exact value of

el without having to perform the calculation given in Eqn. (2.36) n times. The local

version of el using the PRESS statistic is given as:

el =
1

n∑
i=1

wi

n∑
i=1

wi

(
yi − xiPXTWy

1− wixiTPxi

)2

(2.37)

where W is the diagonal weighting matrix with the weights calculated with respect

to the given query xq. P
(

=
(
XTWX

)−1)
is the inverse of the weighted co-variance

matrix of all the samples. Hence, in Eqn. (2.37), the matrix inversion has to be

performed only once which is a computationally efficient way to compute el. We also

see that given the query xq, and the database (X,y), el is dependent only on the

smoothing parameter. Hence, for the JITst method proposed earlier, a grid search

can be performed over φs and φt and the pair that minimizes el can be selected as

the optimum one. As an example, the time weight curves for a database consisting

of 300 samples are shown in Figure 2.2, the distance in time and the corresponding

weight being calculated as given in Eqn. (2.28) and Eqn. (2.32) respectively. Figure

2.2 displays 10 weight curves corresponding to 10 φt values. The φt range is from

0 representing a time-invariant system to the upper limit of 0.1 at which the time

weight of the 250th sample reduces to nearly zero.

For the case of LWPLS however, there is no exact computationally efficient version

of el like the one above for weighted least squares. In LWPLS, el can be approximated

under the assumption of independent projections by the following term [3]:

el ≈
1

n∑
i=1

wi

n∑
i=1

l∑
k=1

wi res
2
k,i

(1− wi t2k,i
tk

TWtk
)2

(2.38)

where wi are the sample weights making up the diagonal weight matrix W, tk is the

kth score vector and tk,i is the ith element of this vector, and res2k,i is the ith element of

the residual y vector, (yk − tkqk). Again, only one LWPLS model has to be computed

to calculate el corresponding to one φs , φt pair. Similar to weighted least squares,
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Figure 2.2: Time weight curves variation with φt. The steepness of the curves in-
creases with increase in φt. 300:most recent & 1:oldest database sample

the φs , φt pair corresponding to the minimum el is selected. The greater the number

of φs & φt pairs on the grid, the higher the computation. The computation load is

not a major concern for the global selection method since it is performed offline. For

the online case, however, it can be impractical to calculate loocv for every query if the

number of pairs is too large. Also, the loocv criterion has some undesirable properties

such as the tendency for overfitting [14, 28]. Fortunately, there are certain guidelines

that can be used to tackle these issues and expert knowledge can be used to limit the

grid search within reasonable bounds. This will be discussed further in the results

section.

2.4 Results and discussion

In this section, the proposed JIT method with space and time weights is applied on

a simulated and an industrial data set. The results clearly bring out its advantage.

2.4.1 Numerical simulation

Here, a time varying non linear static system is generated as follows:

yi = 3 + at sinxi + εi (2.39)
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where, xi, the input, is a uniformly distributed random number in the interval[
π
2
− 0.5, π

2
+ 0.5

]
, εi is zero mean white noise, & at is a time varying parameter.

A total of 1050 samples are generated for the training and test sets. For prediction

during training and testing, the initial 300 points of each set are used as the historical

database. Using the moving window approach, the size of the database is restricted to

300, with the newest sample being added and the oldest removed from the database.

The value of at is varied as shown in Figure 2.3 and Figure 2.4 displays the time vary-

ing nonlinear relationship between the noise free training output y, and the training

input x. In this numerical example, the relationship between y and x changes from

the bottom of Figure 2.4 to the top indicating an increase in nonlinearity with time.

Next, LWLS regression is used under the JIT framework for the evaluation of the

different methods. The following weighting function is used for the calculation of the

space and time weights:

wi = e−φdi (2.40)

For JITst, the sample weight is the product of the space weight and time weight given

by Eqn. (2.32).

The following methods are compared.

• JITs: Traditional JIT with space weights only. Global φs is obtained offline by
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minimizing rmsep on the training set.

• RLWPLS: JIT with space and time weights as proposed by Chen et al. [25],

with linear least squares as the local model. k, ρ, λ are obtained offline by

minimizing rmsep on the training set.

• JITstglobal: JIT with space and time weights. Global φs & φt are obtained

offline by minimizing rmsep on the training set. A grid search over φs & φt

pairs is performed for the training set. The pair that minimizes the rmsep is

selected as the optimal.

• JITstpress: JIT with space and time weights. φs & φt are determined online.

For every query, el is calculated using the PRESS statistic over a grid of φs &

φt values. The pair that minimizes this cross validation error is used to predict

the response for the given query. The grid used in this numerical simulation is:

φs = {2, 4, ..., 38, 40}, φt = {0, 0.0006, ..., 0.05, 0.1}

The φt values are the same that represent the time weight curves shown in

Figure 2.2.

Table 2.2 presents the test set results. JITstglobal handles nonlinearity and time

varying property simultaneously and hence performs the best. Let us analyze the
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Table 2.2: Test Results: Numerical simulation
Model φs φt rmsep
JITs 16 - 0.316
RLWPLS (k = 300, λ = 0.97, ρ = 1) - - 0.216
JITstglobal 6 0.05 0.204
JITstpress - - 0.236

weights of JITstglobal for one query case where its prediction is much better than

JITs. The query considered is the 914th and the errors in prediction by JITstglobal and

JITs are 0.22 & 0.62 respectively. Figure 2.5 displays the weights of the 300 samples

in the database corresponding to the 914th query under the JITstglobal method. The

vertical green lines represent space weights and the black line represents the time

weight curve corresponding to φt = 0.05. Consider the sample highlighted in red,

sample 22, in Figure 2.5. The space weight of the sample is nearly one. The y value

corresponding to this sample is 4.89 whereas the y value corresponding to the query

is 5.53. Hence, considering only space weights can lead to high weights being assigned

to samples that should not be included in the modeling due to the time varying nature

of the system. The final weights under the JITstglobal concept, given by the product

of the space and time weights, (all weights are scaled between 0 & 1, the maximum

getting 1 and the minimum 0 weight) are shown in Figure 2.6.

We see that the previous database sample with large space weight gets zero weight

because of its large age or distance in time. However, it is also noted that it is not

necessary that older samples always get lower weight than newer ones. As can be

seen in Figure 2.6, some very recent samples do not get high weights because of

their large distance in space. Hence, the above formulation is able to handle both,

nonlinear and time varying system. Another interesting observation is the result of

JITstpress. Even without any offline selection of smoothing parameters and a wide

grid range of φs & φt, it gives a much better result than JITs. It shows clearly that

the PRESS statistic can be used for adaptive query based selection of both the space

and time smoothing parameters. In the case of RLWPLS, training leads to a k value

of 300. Since the window size itself is also 300, this indicates that RLWPLS considers

only time varying property and ignores the system nonlinearity. This confirms the

earlier observation that RLWPLS does not address system nonlinearity and time
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Figure 2.5: Space & Time weights for query 914. Green lines indicate space weights
and the black curve represents the time weight curve corresponding to φt = 0.05.
300:most recent & 1:oldest database sample
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Figure 2.6: Final weights for query 914 under JITstglobal

27



varying property simultaneously but attempts to treat them separately by dividing

the database into 2 different sections. Since in this simulation the system is highly

time varying, RLWPLS ignores the nonlinearity completely and is consequently less

accurate than JITstglobal.

2.4.2 Industrial case study

NIR (Near Infrared Spectroscopy) data set for diesel, from a refinery in Edmonton,

Canada, is used for performance evaluation of the algorithms in this industrial case

study. The data set consists of the absorbance values corresponding to 901 wave-

lengths from 800 to 1700 nm. The diesel density is the variable of interest. The

objective is to be able to predict the density given the absorbance values of a par-

ticular sample. Hence, the aborbance values can be treated as the input, X, and

the diesel density as the output, y. The spectrum, i.e., the absorbance values, of

the sample can be obtained online whereas the corresponding target value, density,

is typically measured through offline laboratory analysis. As the frequency of the lab

analysis is generally quite low, it is an advantage to be able to predict the density

reliably from the available fast rate measurements. Savitzky-Golay method [29] was

used to pre-process the data. Outliers were detected and removed based on the 3σ

rule [30] and density values were normalized due to proprietary reasons.

Nearly 500 samples form the training and the test sets. As in Section 2.4.1, the

initial 300 points are used as the historical database during both training and testing.

The moving window database approach with a size of 300 samples is used. The weight

function used is as before:

wi = e−φdi (2.41)

Because of the large input dimension and highly correlated absorbance values, the

LWPLS method with 5 latent factors (based on % variance explained), described in

Section 2.3.1, is used. The φs and φt grid over which the search for optimal smoothing

parameters in JITstglobal is carried is:

φs = {25, 50, 75..., 475, 500}, φt = {0, 0.0004, ..., 0.05, 0.1}
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Figure 2.7: Time weight curves variation with φt. The steepness of the curves in-
creases with increase in φt. 300:most recent & 1:oldest database sample

Figure 2.7 represents the time weight curves corresponding to the φt values mentioned

above.

With 15 time weight curves and 20 φs values, there are a total of 300 φs, φt

pairs. Depending on the available computational capability, this number can be in-

creased/decreased by either increasing/decreasing the φs, φt range, or increasing/decreasing

the resolution of the grid, i.e., by fitting more/less time weight curves within the ex-

treme two curves (highlighted in red) in Figure 2.7. In this case study, the search with

respect to φt is limited by the value of 0.1, which corresponds to the steepest time

weight curve in Figure 2.7. With this curve, the time (and hence the total) weight of

the 50th most recent sample reduces to almost zero.

Based on experience and to make the predictions more robust, if it is preferred

to include a certain minimum number of samples for modeling, prior knowledge can

be used to restrict the grid accordingly. It was pointed earlier that use of loocv for

prediction can lead to overfitting. Especially for physical processes, high φ values,

though reduce the bias in prediction, make the prediction less robust to noise or other

disturbances and outliers. Hence, selection of φ is a tradeoff between prediction bias

and variance, with low φ values leading to biased but robust prediction and high
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φ values leading to a prediction with less bias but higher variance. Consequently,

in practical applications, the φ value that is selected as the optimum is not usually

the one that exactly minimizes the cost function. If an increase in φ brings about an

insignificant decrease in training error, the lower value of φ is selected as the optimum.

Thus, for JITstpress, the optimum φs, φt pair is changed only if the loocv decreases

by more than 5%. Based on this, for every time curve, starting with the least φs value,

an optimum φs, φt pair is selected. 15 such pairs corresponding to the 15 φt values are

so obtained. Next, starting with the φs, φt pair corresponding to the least time varying

system, i.e. φt = 0, as the optimum, it is changed only if a 5 % or greater decrease in

loocv is observed along these 15 pairs. The 5 % criterion is general and the results are

not very sensitive to this value. One may also use other guidelines for selecting the

bandwidth based on loocv while avoiding overfitting. For example, since the variation

in the nonlinearity or the time varying property of physical systems is not very large,

restricting φs, φt values around the global ones obtained from offline optimization can

be used as an alternative. Similarly, in the cases of JITs & JITstglobal, a lower value

of φs and of {φs, φt} is selected respectively, if the decrease in rmsep for the training

set is not appreciable. Table 2.3 shows the performance of the methods on the test

set.

Table 2.3: Test Results: Industrial case study
Model φs φt rmsep R
JITs 150 - 0.568 0.76
RLWPLS (k = 275, λ = 0.97, ρ = 1) - - 0.554 0.77
JITstglobal 150 0.023 0.526 0.79
JITstpress - - 0.547 0.78

To analyze the results, a subsection of the predicted density values where JITstglobal

performs considerably better than the others is displayed in Figure 2.8. It is observed

that JITs causes a bias in the prediction which is especially strong between the 380th

and the 390th samples. Since JITs considers only space weights, past data samples

which are not relevant, end up getting high weights. Figure 2.9 shows the database

weights with respect to 3 such queries, 382, 383 & 384 for JITs & JITstglobal. Again,

based on the results, we see that JITstglobal is able to handle time varying property

and nonlinearity simultaneously. Old samples are given low time weights as shown by
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Figure 2.8: Test set prediction performance

the red weight curve in Figure 2.9. However, it is not necessary that older samples will

always have lower weights. We can see from Figure 2.9 that some older samples get

higher weights than newer samples thus taking into account the system nonlinearity.

As a result, JITstglobal with time and space weights performs better than JITs which

uses only space weights. JITstpress, which does not have any explicit training period

also gives results which are better than JITs. In fact, JITstpress does not even observe

the training set, and still gives reasonable results over a wide range of possible φs &

φt values.

In the case of RLWPLS, training leads to k = 275, λ = 0.97 & ρ = 1. The

sample weights corresponding to the queries 382, 383 and 384 in the case of RLWPLS

are shown in Figure 2.10. The weighing scheme demonstrates that RLWPLS treats

time varying property and nonlinearity separately. Old samples end up having high

weights whereas only a linear model is fit on the most recent samples thus decreasing

prediction accuracy. These results clearly demonstrate the superiority of the proposed

JITst method.
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Figure 2.9: Figures (a), (b) & (c) display sample weights for queries 382, 383 &
384 respectively. - JITs weights, - JITstglobal weights. 300:most recent & 1:oldest
database sample.
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Figure 2.10: Figures (a), (b) & (c) display sample weights in RLWPLS for query 382,
383 & 384 respectively. 300:most recent & 1:oldest database sample.
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2.5 Conclusion

In this chapter, the need for adaptation in soft sensors has been highlighted. Various

mechanisms for adaptation in linear and nonlinear sensors are briefly discussed. Next,

the JIT modeling framework and its steps and components are reviewed after which

a new method for similarity calculation is proposed. The proposed method is able

to deal with nonlinear and time varying systems simultaneously. Two popular local

modeling approaches, LWLS and LWPLS, using the new similarity calculation are

used under the JIT framework. Besides the typical offline method of parameter

selection, it is shown that computationally efficient loocv using the PRESS statistic

can be employed to calculate optimal parameters adaptively for every query. Finally

the performance of the algorithms is evaluated on a numerical simulation and an

industrial NIR data set. The results indicate that the proposed method of similarity

calculation performs better than the traditional methods.
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Chapter 3

Just-In-Time Modeling using
Distance-Angle Similarity and
Point-Based Bandwidth Estimation

3.1 Introduction

This chapter continues with the theme of JIT modeling explored in the previous chap-

ter, i.e., with a focus on JIT based soft sensor modeling for prediction applications.

Again, among the various constituents that make up a JIT model, the focus is on de-

veloping a new similarity criterion and method for bandwidth estimation of the local

model involved. Having already discussed the JIT modeling steps and components

at some length in Chapter 2, we skip these details here.

One of the most crucial elements of a JIT model is the similarity criteria used

to select the subset of data for building the local model. As such, it is a key com-

ponent on which the estimation accuracy of the model depends, and has therefore

received a lot of research focus [14, 31]. This focus has led to the development of

a number of similarity measures besides the traditional Euclidean distance (distance

being inversely proportional to similarity), the distance (or space) and angle metric

introduced by Cheng et al. [12] being one such criterion. This approach is applicable

for dynamic systems and leverages the fact that for dynamic processes, the output

not only depends on the current inputs but also on the evolution of the inputs. Hence,

in a way, the angle and distance measure captures both the similarity of the inputs

and also their evolution history.

The rest of the chapter is organized as follows. In Section 3.2, the distance-angle
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similarity metric is briefly described and some shortcomings discussed. To address the

highlighted issues, an improved distance-angle weight formulation is then proposed,

followed by a discussion and comparison with the original form to highlight its ad-

vantages. Further, a novel point-based method to estimate the bandwidth/smoothing

parameter of the JIT local model is also proposed. For this study we have consid-

ered time-invariant dynamic processes and Section 3.3 presents the application results

followed by the concluding remarks in Section 3.4.

3.2 Space and angle weights

We now discuss the distance-angle similarity measure proposed in [12] to calculate

database weights for dynamic systems. For a query, xq (anm dimensional row vector),

the similarity number, si, or the weight, wi, of the ith sample is given as:

wi = γ
√
e−di

2
+ (1− γ)cos(θi) (3.1)

where di is the Euclidean distance, and θi is the the angle between the query, xq and

database sample, xi, calculated as:

cos(θi) =
∆xq∆xi

T

‖ ∆xq ‖2.‖ ∆xi ‖2
∆xq = xq − xq−1, ∆xi = xi − xi−1

(3.2)

If cos(θi) < 0, the sample is discarded. γ is a balancing parameter between 0 & 1 that

defines the relative importance of distance or angle in the similarity measure. When γ

is 1, only distance measure defines similarity and for γ = 0 only angle measure is used.

For all other γ values, a combination of distance and angle collectively determines

similarity and hence the weight. Cheng et al. [12] propose carrying out an offline

search over a number of γ values on the training set and the value that gives the

least validation error is selected as the optimum one. This offline global approach to

determine the parameters of a JIT model is computationally light and simple and is

therefore commonly used. For convenience we denote the above mentioned modeling

approach, i.e. the weight formulation in Eqn. (3.1) and the global offline method to

determine the balancing parameter γ, as M1.
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In the next section, we propose a new weight formulation to use angle information

for calculating the sample weights. As will be seen later, this approach provides a

better framework to assign sample weights and hence gives better results.

3.2.1 Angle as an additional variable

Since it is essential to the discussion that follows, we first define the role of the band-

width/smoothing parameter in JIT modeling. The bandwidth/smoothing parameter

determines the bandwidth or the region of validity of a local model. When the weight

falls off very sharply with increase in distance, a very small subset of data is used to

build the local model and the model is said to have a low bandwidth. Conversely,

for a gradual decrease in weights with respect to increasing distance, a larger num-

ber of historical samples end up having high weights leading to a local model with

a high bandwidth. Thus, the bandwidth in locally weighted models represents the

tradeoff between robustness and prediction performance [14]. A local model with a

high bandwidth is likely to give a biased but robust prediction whereas for a low

bandwidth, the prediction will be less biased but with a higher variance. Choice of

optimal value of the bandwidth/smoothing parameter depends on the system under

study. Generally, for highly nonlinear systems or systems with low noise, a weight

function with a steeper slope or short bandwidth is preferred. On the other hand, a

weight function with a larger bandwidth is preferred for systems with a lesser degree

of nonlinearity or high noise systems.

Given the above observation, the motivation to change the weight equation in (3.1)

stems from the fact that cos(θ) used in M1 is a specific weight curve for the angle

similarity. As shown in Figure 3.1, it is a weight curve with a fixed bandwidth. This

fixed bandwidth, therefore, does not allow freedom for the tradeoff between robustness

and prediction performance mentioned earlier. To address the above shortcoming, we

propose a new formulation based on the Gaussian kernel [2] to compute the sample

weights.

wi = e−φsdi
2

. e−φθθi

wi = ws. wθ
(3.3)
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Figure 3.1: cos(θ) weight function

where di and θi are the Euclidean distance and angle as calculated in Eqn. (3.2), and

φs and φθ represent the smoothing parameters/bandwidths of the Euclidean space and

angle respectively. The Euclidean distance is calculated after scaling the variables to

avoid variables with large magnitude dominating distance calculations. Weighted

Euclidean distance has also been used for calculating di [2], but since the focus here

is on space distance and angle similarity as two different similarity criterion, we use

the Euclidean distance with a single smoothing parameter.

θ can be thought of as an extra variable that contains information about the dy-

namics of the process. Thus, the formulation in Eqn. (3.3) is a more generalized

representation incorporating angle information and appropriate setting of φθ will re-

duce Eqn. (3.3) to different cases. For example, e−φθθi , can quite closely approximate

cos(θi) for φθ = 0.8, see Figure 3.2. The weight of any sample in Eqn. (3.3) is com-

posed of two components, ws and wθ, the distance (or space) weight and the angle

weight respectively. φs and φθ individually control how the two similarity criterion

affect the weight calculations. For example, for φs = 0 and φθ = 0, the regression

becomes unweighted in both space and angle. As either of them increases, their
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Figure 3.2: Weight functions comparison. - cos(θ), - e−0.8θ

individual weight curves become steeper with respect to increase in space and angle

respectively. We call JIT models using the weight formulation described in Eqn. (3.3)

as M2. In terms of structure, it bears a close resemblance to the space-time similarity

metric developed earlier in Chapter 2.

A comparison and analysis of the two weighting schemes in M1 and M2 is now

carried out.

1. The weight calculation in Eqn. (3.3) is a generalized approach. By adjusting

the φθ parameter, it is possible to adjust the bandwidth of the local model ap-

propriately. For noisy systems, the optimum φθ is expected to be small whereas

for systems with less noise, a large φθ is expected. It is worth noting that for

the exponential weight function in Eqn. (3.3), φ is inversely proportional to the

bandwidth. In the original approach however, the shape of the weight curve,

and hence the bandwidth, with respect to angle, is fixed.

2. When it comes to the selection of the parameters, M2 has a more intuitive basis.

At φs = φθ = 0, neither space nor angle plays any role in weight calculations

leading to unweighted regression. As either of them increases from 0, their
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relative importance in the weight calculations rises. The selected values of φs

and φθ should represent the optimum bias-variance tradeoff. On the other hand,

in the case of M1, there is no such basis. As will be shown in the results section,

there are situations when the training error is almost constant within a given

range of values of the balancing parameter, γ. In such cases, there is no basis

to favor γ selection towards either space or angle similarity.

3. Assuming angle as the dominant measure of similarity, i.e., γ & φs =0, the

wight function in M1 goes to zero at a finite distance. Thus, points that are

away from the query than that distance (where the weight drops to zero) can

be ignored leading to faster implementations [2]. However, since in the case of

M1 the bandwidth is fixed, there is always the risk that not enough points are

present in the area with non zero weights. In the case of M2 however, the weight

function has an infinite extent. Thus, it will be computationally heavy when

database size is large since all samples will have non zero weights. This problem

is easily addressed. In applications, generally the database size is kept fixed to

some number and is not allowed to grow indefinitely. Alternately, one could

impose a cut-off value so that samples with very low weights can be ignored

without any error.

3.2.2 Bandwidth/Smoothing parameter estimation

Cheng et al. [12] use a global strategy to select the balancing parameter, γ, offline. In

this section, we explore two strategies for estimating the bandwidth, i.e. the φs and

φθ values. Both the strategies are applicable for time-invariant systems only. The

first method is similar to the one used by Cheng et al. [12] and is based on a single

global bandwidth that minimizes validation error on the training set. However, as

demonstrated by Kim et al. [31], if the system has different degrees of nonlinearity at

different operating points, then using a single bandwidth is not sufficient. Ideally, a

low bandwidth ( or high φ ) should be selected at regions of high nonlinearity so that a

small relevant neighborhood is selected. Similarly, for regions where the nonlinearity

is not high, a high bandwidth should be selected so that maximum relevant points

can take part in the local model and give a robust prediction. Figure 3.3, similar to
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that used in [31], is generated to clearly illustrate and explain the concept.

In Figure 3.3, two queries, 1 & 2 are considered. Around query 1, the input-output

relationship is relatively less nonlinear and hence a larger neighborhood should be

selected. Using more points will reduce the affect of noise and increase prediction

accuracy. For query 2 however, selecting a smaller neighborhood is more appropriate

as the input-output relationship has a higher degree of nonlinearity. Thus, for the type

of systems depicted in Figure 3.3, different bandwidth for different query variables

should be used. The global strategy on the other hand leads to the selection of a

single bandwidth that is a balance between all the local ones. This observation serves

as the basis and motivation for the point-based local bandwidth estimation that is

discussed next.

Point-based local bandwidth estimation

In this strategy each sample in the database is assigned a bandwidth associated with

it [2]. Cross validation can be used to select the bandwidth parameter with respect

to every database sample and stored with it. The steps for the bandwidth selection

during the training phase and those during the prediction phase are described below.
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Training Phase

Leave-one-out cross validation is used to select the bandwidth corresponding to any

data point. Every sample in the database in turn acts as the query, xq . The φs, φθ

pair that minimizes the prediction error for this query is then selected as the optimal

pair associated with it. The following steps describe the training algorithm:

For i = 1 : n

φsi , φθi = arg min
φs,φθ

| yi − xiβ (i) | (3.4)

β (i) =
(
X (i)TW (i)X (i)

)−1
X (i)TW (i)y(i) (3.5)

W (i) = diag {w1, .., wi−1, wi+1, .., wn} (3.6)

wj = e−φsdj
2

. e−φθθj j = 1, .., i− 1, i+ 1, .., n (3.7)

where the subscript i denotes the ith observation and (i) denotes that this observation

is not involved in calculations. Therefore, for example, yi in Eqn. (3.4) denotes the ith

output and y(i) in Eqn. (3.5) denotes all outputs except the ith. The range of φs, φθ

over which the minimization is performed depends on the system. High φs, φθ values

can lead to overfitting and hence expert process knowledge, if available, should be used

while selecting them [32]. φs, φθ values obtained from the global estimation method

can be used as a guideline, and the range over which the minimization is performed

can be selected around the global values. After the training phase is complete and a

specific φs, φθ pair has been stored with each database sample, the prediction for a

query variable is made as follows.

Prediction Phase

The prediction phase involves using a weighted approach to select the optimal φs, φθ

pair for the given query. First, weights are calculated for every database sample with

respect to the query and the weighted average of the φs, φθ values associated with the

samples taken. However, since the initial weight calculation itself requires a φs, φθ
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value, this leads to a Catch-22 situation. To avoid this, we use the φs, φθ value from

the global estimation strategy to calculate sample weights for the initial step. For

the time being, let us call the global smoothing parameter values as φsG , φθG . The

following steps describe the prediction algorithm:

For query xq:

1. Calculate the initial database weights based on φsG , φθG :

wi = e−φsGdi
2

. e−φθGθi (3.8)

W = diag {w1, .., wi, .., wn} (3.9)

2. Calculate φsq , φθq for the query, xq, using weighted average:

φsq =

∑
i

φsiwi∑
i

wi
, φθq =

∑
i

φθiwi∑
i

wi
(3.10)

3. Re-calculate database weights using φsq , φθq :

wi = e−φsqdi
2

. e−φθq θi (3.11)

W = diag {w1, .., wi, .., wn} (3.12)

4. Make prediction, ŷq, using weighted regression with weights from Eqn. (3.12):

βq =
(
XTWX

)−1
XTWy (3.13)

ŷq = xqβq (3.14)
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3.3 Results and discussion

In this section, the different approaches are applied on a simulated and real life data

set. In both cases, the system considered is time-invariant, i.e., the training/historical

database is representative of all process characteristics. The general steps during

prediction are:

1. Receive query, xq, from the test set

2. Calculate the weights of the database samples with respect to the query

3. Build local model (linear least squares) and make prediction corresponding to

the query

4. Discard query and local model and return to step 1

Since we are considering time-invariant systems, the query does not represent new

information and is not added into the database which is therefore kept fixed.

3.3.1 Numerical simulation

Here, the proposed methods are tested on a continuous stirred tank reactor (CSTR)

simulation which has been used in literature for nonlinear system identification and

control [33]. The coolant flow rate, qc, and the product concentration of component

A, CA, respectively form the input, x, and output, y, of the irreversible, exothermic

reaction. The following differential equations represent the CSTR dynamics [33].

dCA(t)

dt
=
q(t)

V
(CA0(t)− CA(t))− k0CA(t)exp

(
−E
RT (t)

)
(3.15)

dT (t)

dt
=
q(t)

V
(T0(t)− T (t))− (∆H)k0CA(t)

ρCp
exp

(
−E
RT (t)

)
+
ρcCpc
ρCpV

qc(t)

{
1− exp

(
−hA

qc(t)ρCp

)}
(Tc0(t)− T (t))

(3.16)

An ARX model of order (1, 2) is used to represent the SISO (single input single

output) system.
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yt = a1yt−1 + b1ut−nd + b2ut−nd−1 + εt (3.17)

where ut is the input, a1, b1 & b2 are the ARX model coefficients, nd = 1 is the model

delay & εt is white noise which is artificially added to the data set. Two cases, with

and without noise, are considered to illustrate the role of the smoothing parameters.

500 samples are generated for the training and test sets respectively. The input is

generated by a random uniform distribution in the interval [101, 103] with a switching

probability of 0.3 at every sampling time. Figure 3.4 shows the input-output data

generated with no additive noise. The following methods are tested:

1. M1: Existing JIT approach with space and angle weights. Single global γ

is obtained offline by minimizing the leave-one-out cross validation error on

the training set. Every sample is removed once from the training set and the

remaining samples are used to predict its value. The γ value that minimizes

the rmsep is selected as the global optimum.

2. M2: Proposed JIT approach with space and angle weights. Global smoothing

parameters, φs and φθ, are obtained as in M1 above.

3. M3: Proposed JIT approach with space and angle weights with point-based

local smoothing parameters. Estimation of the bandwidth and prediction is

carried out as explained in Section 3.2.2 earlier.

Case I: εt ∼ N(0, 0.0012)

Figure 3.5 displays the noisy vs. clean output plot for the training set and Figures

3.6 & 3.7 show the training results for models M1 and M2 respectively. In Figure 3.7,

the rmsep value is plotted against different φs and φθ pairs. φs = [0.0, 0.1, 0.2, 0.3, 0.4]

and φθ = [0, 1, 2, 3, ..., 9] giving a total of 50 pairs. Each stem plot within the black

grid lines displays the rmsep variation with φθ (shown on the bottom x axis) for a

fixed value of φs (shown on the top x axis). The rmsep value decreases very slightly

with respect to φs initially and then increases (not evident from the figure). Hence, it

is reasonable to pick φs = 0 as the optimum value. With respect to φθ, the minimum
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error is obtained at φθ = 2 but 1 is selected as the optimum. As discussed earlier, a

higher φ tends to lead to a noisy estimate and hence, if an increase in the value of the

smoothing parameters does not lead to appreciable decrease in rmsep, the lower value

is selected. Thus, the optimum {φs, φθ} pair is {0, 1} , implying that the prediction is

unweighted with respect to distance in space. From the M1 training result in Figure

3.6, it is observed that minimum rmsep is obtained around γ = 0.40. We make the

following observations regarding the training results:

1. Angle similarity is dominant in comparison to space similarity.

2. The selection of φs and φθ in the case of M2 is based on the bias-variance tradeoff

as discussed earlier. However, in the case of M1, although the minimum rmsep

value occurs at γ = 0.4, its value is almost the same for γ = 0.5 to 0.0. There

is no guideline for favoring either space or angle similarity in such cases.

3. The training results show that rmsep decreases slightly with increase in φθ till

around 2 and that space similarity has a minor role. Hence, the range of φs and

φθ for M3, based on the training results obtained for M2, is:

φs = {0, 0.2, 0.4, 0.6, 0.8, 1}
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Figure 3.8: Angle weight curves of M1 & M2, Case I. - cos(θ), - e−θ

φθ = {0, 0.4, 0.8, 1.2, 1.6, 2}

Table 3.1 shows the results on the test set.

Table 3.1: Test Results: Numerical simulation - Case I
Model γ φs φθ R rmsep
M1 0.40 - - 0.83 0.516
M2 - 0 1 0.83 0.517
M3 - - - 0.83 0.517

For this case the performance of all three models is nearly the same. Although the

weight curve for M1 is not exactly the same as the cos function weight curve, it is very

similar (since the balancing parameter in favor of angle similarity is 0.60). Figure 3.8

shows that the angle weight curves of M1 and M2 are similar and this is reflected

in the near identical performance shown in Table 3.1. The query-wise plots of φs

& φθ for model M3 are shown in Figure 3.9. We can see that the φ values for M3

are concentrated around the global value obtained for M2 which results in a similar

performance. A possible reason is that the variation in the degree of nonlinearity at

different operating regions is not high and is masked by the presence of noise.
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Case II: εt = 0

For Case II, no noise is added to the system. Figures 3.10 and 3.11 show the training

results for M1 & M2. We can see from the training results that the optimum value

of γ for M1 is 0.65. Again, for M2, a similar figure as in Case I earlier is obtained.

Following similar guidelines for selection of φs, φθ, the optimum pair for M2 in Case

II is {0, 6}. One can also note that for M2, there is a slight decrease in rmsep initially

with respect to φs which is consistent with the training result of Case I. The following

points are noted:

1. From the training results of model M2, angle similarity seems dominant whereas

space similarity seems dominant in the case of M1 (γ value of 0.65). The only

difference between Cases I & II is the addition of noise. As such, the system

properties are not affected in any way. Also, since Case II has zero noise, it

is expected that selecting a smaller relevant subset for local modeling should

increase prediction accuracy. M2 results are consistent with this observation.

φs in Case I & Case II is nearly zero indicating that similarity calculations

are unweighted with respect to distance in space. φθ increases from 1 to 6

indicating a decrease in bandwidth and hence a smaller neighborhood selection

which, given the same system, indicates a decrease in noise. Figure 3.12 shows
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the weight curves for M2 for the 2 cases. M1 on the other hand does not give

results consistent with the above observations. The influence of noise causes a

shift in the optimum balancing parameter value from 0.40 in Case I to 0.65 in

Case II. Although, this causes improvement in M1 prediction results from Case

I to Case II, the results are hard to interpret. Without prior knowledge of the

fact that Case I is simply Case II with additional noise, inferring this from M1

training results is not possible. This is because the cos(θ) weight function used

in M1 is fixed and is unable to adjust to the changing noise levels. Overall,

this is reflected in a better performance of M2 over M1, not only in terms of

prediction accuracy but also in terms of interpretation of the results.

2. Similar to Case I, the selection of φs and φθ for M2 is based on the bias-

variance tradeoff. For M1 however, although the minimum rmsep value occurs

at γ = 0.65, it remains almost unchanged for γ = 0.5 to 0.75.

3. For M2, the training results show that rmsep decreases slightly with increase in

φθ till around 12 and that space similarity has a minor role. Hence, the range

of φs and φθ for M3, based on the training results obtained for M2, is:

φs = {0, 0.2, 0.4, 0.6, 0.8, 1}

φθ = {0, 2, 4, 6, 8, 10, 12}

Table 3.2 shows the results on the test set. Clearly, M2 is able to adjust the angle

weight curve to the lower noise in Case II and give a more relevant subset for local

modeling than M1. The effect of this is that the prediction by M2 is more accurate

than M1. The performance of M3 is better than either M1 or M2. Figure 3.13, which

displays the query-wise plots of φs & φθ for M3, helps explain this.

Table 3.2: Test Results: Numerical simulation - Case II
Model γ φs φθ R rmsep
M1 0.65 - - 0.986 0.150
M2 - 0 6 0.988 0.139
M3 - - - 0.990 0.126
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Figure 3.13: Query-wise φs & φθ values for M3, Case II

A larger variation in φθ values is observed around the global value of 6 which was

obtained for M2. This is reflected in a better prediction performance as displayed in

Figure 3.14, where a section of the prediction results is plotted against the reference

values.
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3.3.2 Experimental case study

In this section, the methods are applied to data obtained from an experimental setup.

The system studied is the 4-tank system and Figure 3.15 shows the schematic [34].

There are 2 inputs and 2 outputs forming a MIMO (multiple input multiple output)

system.

Outputs: y1 and y2

y1: output1, water level of bottom left tank, metres

y2: output2, water level of bottom right tank, metres

Inputs: x1 and x2

x1: flow rate of left pump, litre/min

x2: flow rate of right pump, litre/min
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Figure 3.15: Schematic of Four-Tank System

Based on the first principles model, it is known that the system is nonlinear, and

because of symmetry, there are two identical single output multiple input systems

formed by y1,x1,x2 and y2,x1,x2 respectively. Figure 3.16 shows the plots of the

two outputs. Although the two systems are identical, Figure 3.16 shows that output

y2 is noisier than y1. One should then expect results similar to the ones obtained

for the numerical simulation in Section 3.3.1. An ARX model of order (2, 2) with

delay as [1, 2] & [4, 1] is used as the local model structure in the JIT framework. A

total of nearly 1100 samples are obtained with a random binary signal being used as

the input signal for sample generation. The first 700 samples form the training set,

and the remaining 400 form the test set and the models M1, M2 and M3 described

previously are tested.

Case I: Output y2

For Case I, the output considered is y2. Figures 3.17 & 3.18 display the training

results. From Figure 3.17, it can be seen that a lower training error is obtained for

low γ values in the case of M1 indicating that angle similarity is dominant while
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Figure 3.17: M1 training result, Case I

space similarity plays a minor role. The minimum error is obtained for γ = 0.2 which

is selected as the optimum. In the case of M2, the space weights do not cause any

reduction in training error. 0 & 2 are therefore selected as the optimum φs & φθ values

respectively for M2. For M3, based on Figure 3.18, the following range of φs, φθ is

selected:

φs = {0}

φθ = {0, 0.4, 0.8, 1.2, 1.6, 2}

Table 3.3 presents the test set results. All models give very similar results. As before

in Case I of Section 3.3.1, the weight curve of M2 with φs = 0 & φθ = 2 is quite

similar to that of M1 with γ = 0.2. In the case of M3, the query-wise plot of φθ,

shown in Figure 3.19, indicates that the φθ values are concentrated around the value

of 1 which is why the performance of M3 is similar to that of M1 and M2.

Table 3.3: Test Results: Experimental case study - Case I
Model γ φs φθ R rmsep
M1 0.2 - - 0.99 0.104
M2 - 0 2 0.99 0.103
M3 - - - 0.99 0.103
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Case II: Output y1

For Case II, y1 is the predicted output variable. It was mentioned before that the

systems associated with the two outputs, y1 & y2, are symmetric and the only

difference is that y2 is contaminated by more noise than y1. Therefore, one should

expect better performance in this case and the model parameters should also reflect

this change in noise level. Figures 3.20 & 3.21 display the training results for models

M1 and M2 respectively.

For M1, the optimum γ value of 0, which is evident from Figure 3.20, is not

consistent with its value of 0.2 in Case I. For M2, {0, 4} is selected as the optimum

φs, φθ pair, which is consistent with the results of Case I earlier. φs remains constant

at 0 and the increase in φθ from 2 in Case I to 4 in Case II reflects the decrease in

noise in the output, y, from Case I to Case II. For M3, the range of φs, φθ values

selected is:

φs = {0}

φθ = {0, 1, 2, 3, 4, 5, 6}

Table 3.4 shows the results on the test set.

As expected, both M2 and M3 perform better than M1 and all 3 models perform

better than in Case I. From the query-wise plot of φθ in Figure 3.22, it is observed

that the φθ values for M3 do not have a large spread and are close to the global value
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Figure 3.21: M2 training result, Case II

Table 3.4: Test Results: Experimental case study - Case II
Model γ φs φθ R rmsep
M1 0.0 - - 0.99 0.050
M2 - 0 4 0.99 0.047
M3 - - - 0.99 0.048

of 4 obtained for M2. This indicates that the degree of nonlinearity for this system

stays more or less constant and is the reason why M3 does not perform better than

M2 unlike in the CSTR simulation of Section 3.3.1.

3.4 Conclusion

The chapter begins with an introduction to the space (or distance) and angle based

similarity metric used to calculate sample weights for JIT modeling of dynamic pro-

cesses. A discussion of the role of the bandwidth in local models serves to point

out the shortcomings of the metric and provides the motivation for an alternate ap-

proach. A new weight formulation using distance and angle is therefore developed to

address the issues highlighted. Further, a novel point-based, local bandwidth estima-

tion method is proposed. At an increased computation cost during offline training,
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the point-based method determines query specific bandwidth as opposed to a single

bandwidth obtained from the global strategy. The advantages of the methods are

demonstrated by application to a CSTR simulation and experimental data.
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Chapter 4

Adaptive Linear Regression:
Cautious and Robust Parameter
Update Strategy∗

4.1 Introduction

Mathematical models are implemented in a variety of industries like the steel, refinery

and pharmaceutical industries for the purpose of process control, product quality

estimation or fault detection. The purpose of these models, also called soft sensors, is

to estimate process variables that are either not possible to measure using hardware

analyzers or are too expensive to measure [4]. In the presence of sufficient process

knowledge, white box models which are based on first principles are used for these

mathematical models. First principle models require detailed knowledge about the

physical and chemical phenomena underlying the processes and typically describe

the ideal or desired state of operation of the process plant [5]. However, due to the

complexity of industrial scale processes and influence of external factors, this is rarely

the case and the necessary information required for white box models is generally not

available. In such cases, black box modeling is a suitable alternative. Black box

models are data driven models and can be built solely on the available data. Grey-

box modeling is a middle path which combines available process know-how with the

data driven modeling technique to build useful mathematical models [5].

As discussed in earlier chapters, among data based approaches, global modeling,

∗This chapter is an extended version of the under review paper: Shekhar Sharma, Swanand Khare,
and Biao Huang. Robust Online Algorithm for Adaptive Linear Regression Parameter Estimation
and Prediction. Journal of Chemometrics (submitted, 2015).
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also called offline or batch modeling, has been the traditional choice [7]. However,

models such as artificial neural network (ANN), built using historical data have certain

disadvantages.

• First, if the historical database contains operation in multiple operating modes

then use of a single offline model for all the operating modes is inefficient.

• Second, for satisfactory performance of the model, the historical database should

contain all possible operating states and conditions, which is generally not the

case due to the time varying nature of industrial processes

Typical causes of such time-varying behavior are [7]:

1. changes of process input (raw) materials;

2. process fouling;

3. abrasion of mechanic components;

4. changes in catalyst activities;

5. production of different product quality grades;

6. changes in external environment (e.g. weather, seasons).

These points highlight the need for model maintenance and re-training of model

parameters. Hence, equipping soft sensors with some adaptation strategy has become

almost a necessity. The adaptation or re-training of complex nonlinear models like ar-

tificial neural networks or neuro fuzzy networks is not convenient [7]. The complexity

and high computation load associated with such models also limits their applications.

On the other hand, adaptive versions of linear models are simple and easy to im-

plement, thus making them a popular choice for soft sensor applications. Blockwise

linear least squares or moving/sliding window least squares (MWLS) and recursive

least squares (RLS) are two such popular adaptive linear regression techniques. For

high dimensional and or highly correlated data, moving window and recursive ver-

sions of principal component analysis (PCA) and partial least squares (PLS), which
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are essentially linear techniques, have found wide applications. In this chapter how-

ever, we concentrate on adaptive linear regression techniques where dimensionality

reduction is not a requirement and focus on soft sensor applications, specifically, on

online prediction and parameter estimation in the presence of unknown process drifts

or parameter changes.

Least squares cost function based regression techniques, though widely used, are

not robust. Robustness refers to the insensitivity of the estimates produced by a

method to outlying or abnormal data points or model misspecifications [35]. Least

squares estimates are optimal and coincide with the maximum likelihood estimate

under the assumption of independent and normally distributed error terms [35, 36, 37].

However, in practical scenarios, this assumption does not always hold and just a single

outlying observation can distort the least squares estimate [37]. Therefore, robust

alternative regression techniques are needed. L1 or least absolute deviation (LAD)

and the online passive aggressive algorithm (OPAA) [38] are two such adaptive linear

regression methods, though they are not as widely used. As will be shown later in

the chapter, both LAD and OPAA in their current forms have certain disadvantages

when it comes to practical applications. In this chapter, we propose a new algorithm

called Smoothed Passive Aggressive Algorithm (SPAA) which overcomes some of

these shortcomings making it suitable for practical implementation, though at the

expense of additional computational cost. SPAA is not only robust but also follows

a cautious parameter update strategy and is not influenced by minor disturbances

by skipping the parameter update step. Further, it will be shown that the proposed

SPAA framework is a general one, and for specific values of the tuning parameters,

it reduces to OPAA or a moving window version of the LAD algorithm.

The rest of the chapter is organized as follows. Section 4.2 describes some of the

popular adaptive linear regression techniques. Section 4.3 begins with a comparison

of these techniques followed by the new proposed algorithm. The application results

and discussions are presented in Section 4.4 and finally, the chapter closes with the

concluding remarks in Section 4.5.
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4.2 Adaptive linear regression

Ordinary least squares is one of the most popular linear regression techniques. How-

ever, for system identification and parameter estimation in the presence of unknown

parameter changes, its adaptive versions, namely the sliding or moving window and

recursive least squares have been widely used [39]. Another less known, from indus-

trial application point of view, adaptive linear regression technique is OPAA. A brief

overview of these algorithms is provided in the sections below.

4.2.1 Recursive least squares (RLS)

Consider the case where the relation between the output y (or difficult-to-measure

variable) and the input X (or easy-to-measure variables) can be reasonably approxi-

mated by the following linear form:

y = Xβ + ε (4.1)

where ε, the residual vector, consists of independent and Gaussian distributed entries.

Next, let us assume that n number of observations have been accumulated. The least

squares (LS) estimate of the regression vector, β̂ can be obtained as [40, 41]:

β̂ =
(
XTX

)−1
XTy (4.2)

For the case of online prediction applications, new observations are continuously avail-

able. Consider the next available observation, yn+1 & xn+1. This new information

can be incorporated into the old one and a new estimate of the regression vector,

β̂n+1, can then be obtained as follows [40]:

[
yn
yn+1

]
=

[
Xn

xn+1

]
βn+1 +

[
εn
εn+1

]
(4.3)

β̂n+1 =
(
Xn+1

TXn+1

)−1
Xn+1

Tyn+1 (4.4)

where Xn+1 & yn+1 represent the updated input & output information containing the

latest observation.

65



Instead of estimating β̂ using Eqn. (4.4) for every new available observation, it

can be calculated recursively [40] as:

Pn+1 = Pn −
Pnxn+1

Txn+1Pn

1 + xn+1Pnxn+1
T

(4.5)

β̂n+1 = β̂n + Pn+1xn+1
T
(
yn+1 − xn+1β̂n

)
(4.6)

where Pn =
(
Xn

TXn

)−1
. This is the recursive formulation of the linear least squares

regression algorithm called RLS. It is a simple and computationally efficient technique

for the cases where the regression vector, β, is a function of time. However, as the

value of n becomes larger, the influence of new observations decreases and the ability

to track the changes in β is lost. To mitigate this, a forgetting factor λ [42], is

introduced into Eqn. (4.5) as follows:

Pn+1 =
1

λ

(
Pn −

Pnxn+1
Txn+1Pn

λ+ xn+1Pnxn+1
T

)
(4.7)

where λ ∈ [0, 1]. The above is the RLS algorithm with a forgetting factor and is

a widely used adaptive regression technique. The role of λ is to discount the past

data and emphasize new samples. For small values of λ, the model will be highly

adaptive to abrupt process changes but less robust to noise and outliers. Also model

prediction will suffer since it means discounting past knowledge. In the extreme case,

a very small value of λ will mean discounting all samples except the latest and will

consequently result in a large prediction variance. On the other hand, large values of

λ will give a smooth and robust but biased prediction as it will be unable to adapt

quickly to process changes. Hence, λ is the bias-variance tradeoff parameter and

appropriate selection of its value is critical.

4.2.2 Moving window least squares (MWLS)

The moving window formulation of the ordinary least squares algorithm is another

popular adaptive parameter estimation technique. In this formulation, the model

parameters are estimated again when a given number, s (step size), of new data

samples have been collected. The number of samples used for model training is called

the window size, w [7]. Suppose that initially we have n samples and an initial
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estimate of the model parameters. Next, all but the most recent w samples are

discarded. Every time a new sample becomes available, it is stored and the oldest

one removed. This keeps the database size fixed at w. One can also think of this

as a window of width w sliding on the stream of data, hence the name, moving

window. Once s new samples have been collected, the model is re-trained on the

current database.

The moving window formulation of the least squares estimate for the system de-

scribed by Eqn. (4.1) is written as:
yn+s−w+1

yn+s−w+2

.

.

.
yn+s

 =


xn+s−w+1

xn+s−w+2

.

.

.
xn+s

βw +


εn+s−w+1

εn+s−w+2

.

.

.
εn+1

 (4.8)

Writing Eqn. (4.8) in matrix form:

β̂w =
(
Xw

TXw

)−1
Xw

Tyw (4.9)

where Xw & yw denote the latest w samples and β̂w denotes the least squares estimate

on this window of w points. When another step has been taken (i.e., s new samples

received), the regression vector is re-estimated. The length of the window signifies the

size of the database which is used for parameter estimation and the step size signifies

the frequency of the estimation. If s is set to 1, the model is re-trained sample-wise

(i.e., as soon as a new sample is available) and for larger values of s, the model is re-

trained in a blockwise fashion [7]. Choosing both the parameters, w and s, is critical

as inappropriate setting can lead to decrease in performance [43]. Together, they play

a role similar to the role of λ in RLS. Large window size means less adaptability, more

robustness and more computation whereas the opposite is true of a small window size.

Selecting a large step size leads to lower computation cost since it means decreased

frequency of model training but it also means that the model will be slow to respond

to system changes. A model with a low s value will be quicker to respond to changes

but the high frequency of model training will cause the computation cost to rise.
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4.2.3 Online Passive Aggressive Algorithm (OPAA)

Here, we introduce the Online Passive Aggressive Algorithm (OPAA) for regression

problems [38], an adaptive parameter tracking algorithm from the machine learning

literature. Similar to the scenario for the formulation of the RLS algorithm, suppose

we have n observations and an estimate for the regression vector in Eqn. (4.1) as β̂n.

The recursive update to β̂n is then obtained as follows:

• Calculate the loss, ln+1, based on the error of the current prediction from the

following loss function [38]:

lξ(β̂n) =

{
0 |yn+1 − xn+1β̂n| ≤ ξ

|yn+1 − xn+1β̂n| − ξ otherwise
(4.10)

where xn+1β̂n gives the prediction, ŷn+1, corresponding to the latest predictor

variable xn+1. This loss is zero when the predicted target deviates from the

true target by less than ξ and otherwise grows linearly with |yn+1 − ŷn+1|. The

threshold parameter, ξ , is a positive real number that controls the sensitivity

of the algorithm to inaccuracies in the prediction.

• Next, find the new updated regression vector, β̂n+1 such that the loss for the

current term is zero while minimizing the distance of β̂n+1 from β̂n [38].

Hence, the update to β̂n is made as follows:

β̂n+1 = arg min
β

||β − β̂n||
2

2
s.t. lξ (β) = 0 (4.11)

Using Lagrangian optimization, the closed form expression for the updated re-

gression vector is obtained as:

β̂n+1 = β̂n + sign (yn+1 − ŷn+1) xn+1τn+1 (4.12)

where τn+1 =
lξ(β̂n)

||xn+1||2
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From Eqn. (4.12) we see that the change in β̂n is proportional to τn+1. Crammer et

al. [38] also introduce two variants of the update strategy called OPAA-I & OPAA-II

respectively. The only difference is in the computation of τn+1, which for the two

cases respectively is:

OPAA-I: τn+1 = min{C, lξ(β̂n)

||xn+1||2
} (4.13)

OPAA-II: τn+1 =
lξ(β̂n)

||xn+1||2 + 1
2C

(4.14)

where C is a positive parameter that controls the aggressiveness of the update to

β̂n. For very large values of C, OPAA-I & OPAA-II reduce to the original OPAA

algorithm while smaller C values cause a less aggressive update.

4.3 Proposed algorithm

Before proceeding further, following remarks about the parameter update strategies

used in RLS/MWLS and OPAA are in order:

1. The form of the update to β̂ in both RLS and OPAA is very similar. In both

cases, the magnitude of the change to β̂ is proportional to the error in prediction

using the previous estimate of β̂. However, one difference is readily observed.

Whereas in RLS, the update occurs for each and every prediction error and for

every step size in MWLS, in the case of OPAA, the update occurs only when the

prediction deviates from the target by more than the threshold, ξ. This can be

an advantage in situations where it is undesirable for minor process fluctuations

to cause changes in the parameter estimates.

2. In the case of the RLS, the update term takes into account the history of the

input variables in the form of the covariance matrix. This does not happen in

the case of the OPAA and the update considers only the prediction error for

the current input variable.

3. The RLS algorithm minimizes the squared error cost function for all the samples

in the database and the MWLS does the same for the samples in the window.
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The OPAA, on the other hand, minimizes within a threshold, the absolute

value of the prediction error for the latest sample. Thus, the RLS algorithm

will be sensitive to large errors because of the squared error cost function. The

OPAA, due to the absolute deviation loss term and cautious update will tend

to be robust. However, since it updates β̂ based on the performance of a single

sample, it is still vulnerable to arbitrary process fluctuations.

From the above observations we see that OPAA has certain attractive features as

a predictive algorithm. However, in its current form it is not ideally suited for use in

practical soft sensor design. We propose certain modifications to OPAA and call it

SPAA (smoothed passive aggressive algorithm) for reasons that will be evident later.

4.3.1 Smoothed Passive Aggressive Algorithm (SPAA)

It was highlighted previously that OPAA uses a single observation for its parameter

update. It is a generally accepted rule that overfitting occurs when the ratio of

model parameters to training data size is very high. Since, in OPAA, the regression

parameter has to always fit the latest observation, it is equivalent to using a single

sample for model training. It has also been pointed by Kim et al. [14], that overfitting

occurs when the bandwidth of the local model used in Just-In-Time models is very

low, i.e., very few points participate in building the local model. For industrial

applications therefore, it is generally required to have a minimum sample size for

model training to avoid overfitting and high prediction variance. We deal with this

issue by modifying the loss function in OPAA to take account of a window of points

instead of a single sample. The new formulation based on a window will be reduced

to the original formulation if w is set as 1. The new loss term is formulated as follows:

le

(
β̂n

)
=


0

n+1∑
i=n−w+2

|yi − xiβ̂n| ≤ sadw + e

n+1∑
i=n−w+2

|yi − xiβ̂n| − (sadw + e) otherwise
(4.15)

where, sadw is the sum of the absolute deviations given by the least absolute devia-

tions (LAD) solution for the set of w points contained in the window,

{(xn−w+2, yn−w+2) , ... (xn+1, yn+1)}, i.e.
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sadw =
n+1∑

i=n−w+2

|yi − xiβlad| (4.16)

βlad = arg min
β

n+1∑
i=n−w+2

|yi − xiβlad| (4.17)

e, the threshold parameter for SPAA, is a % (percentage) of the sadw value for

the current window. The reader is reminded that the threshold ξ in OPAA described

earlier is not calculated as a percentage, though both, ξ and e, serve a similar purpose.

Finally, the update to β̂, the regression vector, is obtained as follows:

β̂n+1 = arg min
β

||β − β̂n||
2

2
s.t. le (β,Xw,yw) = 0 or

β̂n+1 = arg min
β

||β − β̂n||
2

2
s.t.

n+1∑
i=n−w+2

|yi − xiβ| ≤ sadw + e

(4.18)

Before analyzing SPAA, the solution strategy for Eqn. (4.18) is discussed. The

loss function in SPAA requires the LAD solution for the current window, which can

be calculated by converting the optimization to a linear program [44, 45] as:

βlad = arg min
β

n+1∑
i=n−w+2

|yi − xiβ| or

βlad = arg min
β,ui

n+1∑
i=n−w+2

ui s.t. ui − |yi − xiβ| = 0

(4.19)

Finally, the above can be written as the following linear program:

βlad = arg min
β,ui

n+1∑
i=n−w+2

ui

ui ≥ (yi − xiβ) , ui ≥ − (yi − xiβ)

(4.20)

where, ui are artificial variables introduced to convert the problem to a linear program.

The inequality in Eqn. (4.20) forces each ui to equal |yi − xiβ| upon minimization.

Once, βlad is found, sadw required in evaluating the loss function in SPAA can be

obtained. Similar to Eqn. (4.20), the overall optimization in Eqn. (4.18) can be
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reduced to a set of linear inequality constraints with a quadratic objective function

as:

β̂n+1 = arg min
β

||β − β̂n||
2

2
subject to the constraints :

ui ≥ (yi − xiβ) , ui ≥ − (yi − xiβ) ,
n+1∑

i=n−w+2

ui ≤ sadw + e

(4.21)

The variables for this optimization are the ui’s and β. Since we already know that

there exists a β = βlad that leads to
n+1∑

i=n−w+2

|yi − xiβlad| = sadw, it is guaranteed

that we can always find a β which will satisfy the inequalities in Eqn. (4.21) above.

As e ≥ 0, we have:

sadw ≤
∑
i

|yi − xiβ| ≤
∑
i

ui ≤ sadw + e

However, unlike in Eqn. (4.20), Eqn. (4.21) does not always force each ui to equal

|yi − xiβ|, but the original requirements as per Eqn. (4.18) are always met. The

inequality constraints ensure that the new total deviation,
∑
i

|yi − xi|, is within the

acceptable relaxed limit of (sadw + e). The use of the threshold parameter, e, causes

existence of multiple solutions for β̂ and ui’s satisfying the constraints. The objective

function then causes the selection of that β̂ which is closest to β̂n, hence giving a

unique solution. Were one to set e to zero, β̂ equals βlad . Depending on whether βlad

is unique or not (there are situations where βlad may be non-unique), the objective

function then becomes inactive or active. Hence the formulation in Eqn. (4.18),

among other things, always ensures a unique update.

We see that, given some initial estimate, β̂ is learnt adaptively from the data.

There are two parameters, w & e, the window size and the threshold respectively

that are needed for the update equation. These can be learnt offline by minimizing

the prediction error on the training data set. The significance of these parameters

will be discussed in the following section.
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4.3.2 Analysis, comparison and comments

Let us now perform a comparative analysis of the proposed SPAA algorithm with

the original form and with the RLS and MWLS algorithms. It is also interesting

to note that SPAA with a window size of 1 reduces to OPAA, and with e as 0%

(meaning aggressive parameter update), reduces to a moving window LAD algorithm.

Therefore, SPAA can also be called a moving window L1 or LAD algorithm with a

cautious parameter update strategy or alternately a window based OPAA algorithm.

SPAA and OPAA

The OPAA algorithm, as shown in Eqn. (4.11), contains two terms in the up-

date expression for the regression vector, the left hand/objective term and the right

hand/constraint term. The constraint term defines a feasible space for β̂. This space

contains β̂ values, all of which satisfy the required performance in prediction accuracy.

In OPAA, this requirement in prediction accuracy is measured by the ability of β̂ to

correctly predict the latest response variable, i.e. yn+1. From this space of possible

β̂ values, the one closest to its previous value is picked. The sensitivity/threshold

parameter, ξ, can be considered as a relaxation to the requirement in prediction ac-

curacy and its value will depend on the particular application. For example, when an

appropriate value of ξ is selected, noise or minor process fluctuations will not cause

any undesirable changes in the model parameters. This happens because β̂n correctly

predicts yn+1 within the desired threshold ξ, and forms a part of the feasible space for

β̂. The objective function is then minimized for the case when β̂n remains unchanged,

i.e. β̂n+1 = β̂n and no update occurs. Only when large changes in the system occur,

will the decrease in the accuracy of β̂n be large enough to cause a change in its value.

The optimum value of ξ can be learnt by minimizing the error on the training data.

The key point to note here is that the model update is based only on the most recent

sample. This is true in the case of the two variants, OPAA-I & OPAA-II as well.

Hence, a single abnormal data sample can have a large impact on the performance.

In contrast to OPAA, the prediction performance over the latest w observations is

considered for parameter updates in SPAA. Generally in practical applications, model

training is always carried out over a minimum number of samples to avoid issues like
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overfitting and high prediction variance. From Eqn. (4.18), we can see that this

performance is measured by the sum of the absolute deviations in predicting the

points in a window. We can consider OPAA as a specific case of SPAA with w as 1.

The use of a window instead of a single sample to assess the performance of the model

makes it more robust to arbitrary fluctuations in the system. It acts in a way similar

to the forgetting factor used in RLS and its selection is a tradeoff between prediction

bias and prediction variance or model robustness and model adaptability. Models

with a larger window size will be more robust and slower to adapt whereas those

with a smaller window size will be less robust and faster to adapt. Hence, SPAA

with an appropriately selected window size performs better than OPAA or either

of its variants, OPAA-I or OPAA-II. This will be demonstrated in the applications

section later on. The down-side of using a window formulation is that the closed form

update expression of the original algorithm is lost and computational complexity

is increased. Although using a window will lead to robustness, SPAA without the

sensitivity parameter, e, will still be subjected to updates caused by noise or minor

disturbances. This is evident from Eqn. (4.20), since the sadw for every window

will almost always be different from each other. The use of e, as of ξ in OPAA,

causes the loss term to become zero for minor fluctuations and avoids unnecessary

updates. Again, offline optimization on the training data is one way to select w &

e values. Expert process knowledge may be used to restrict w within a meaningful

range. For values of e larger than the optimal one, the loss term will be zero more

frequently and hence will lead to fewer updates which means lower computation since

the optimization in Eqn. (4.18) will be no longer required. This will be reflected in

a decreased performance in terms of R and rmsep values. However, because of the

window formulation it would still be able to capture a trend change, though with a

slight delay and bias depending on e.

Hence, the SPAA formulation gives a general framework where the w and e values

can be tweaked as per the application at hand. For example, in situations where

capturing the overall trend with increased robustness is preferred rather than exactly

predicting the reference values (possibly laboratory values in the case of soft sensor

applications), an e value greater than the optimum one (optimum in the sense of min-

imum training error) could be chosen. This tradeoff between computation, robustness
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and accuracy can be suited to match the requirements.

SPAA and RLS/MWLS

As will be shown in the next section, the LAD estimate is the ML (maximum likeli-

hood) estimate when the residuals are assumed to follow a Laplace distribution. The

least squares estimate on the other hand is based on the residuals following a Gaus-

sian distribution. Hence, the LAD estimate, and consequently the SPAA algorithm

based on it, is more robust to outlying values in the output than the least squares

algorithms [46]. Furthermore, the regression vector is updated for every new sample

in the case of RLS and for every update step in the case of MWLS. The SPAA on

the other hand can be said to follow a smart update since it updates the regression

parameters only when the average performance over the latest w points is unsatis-

factory. Also, since it uses the absolute deviation loss function and does a cautious

update, it is to be expected that the SPAA algorithm will have a fewer number of

predictions with high relative error values compared to the other algorithms. On the

computation side however, based on computer run time during simulations, SPAA is

computationally heavier than either RLS or MWLS.

SPAA and LAD

SPAA can also be seen as a modified implementation of the LAD algorithm. The

LAD estimate is the ML estimate when the residuals are assumed to follow a Laplace

(or double exponential) distribution [36, 47]. Consider a linear system similar to Eqn.

(4.1) where the errors are independent and identically distributed according to the

zero mean Laplace distribution:

y = Xβ + ε, where ε ∼ L (0, b) (4.22)

The density function of the errors is given as:

εi =
1

2b
exp

(
−|εi|

b

)
(4.23)

where b is the scale parameter.
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Writing the likelihood function we have:

lβ,b = f (y,X|β, b) = f (y|X,β, b) f (X|β, b) (4.24)

Considering that the predictor variables and the regression parameters are indepen-

dent of each other, the last term in the above equation is a constant and can be

denoted as c.

lβ,b = cf (y1, y2, ...yn|X,β, b) =
c

(2b)n
exp

(
−
∑
|yi − xiβ|
b

)
(4.25)

Finally, the log-likelihood function is given as:

Lβ,b = ln lβ,b = −
∑
|yi − xiβ|
b

+ ln c − n ln 2b (4.26)

Thus, maximizing the likelihood is equivalent to minimizing
∑
|yi − xiβ|, which is

the LAD solution. Since the Laplace distribution has fatter tails compared to the

Gaussian distribution, the LAD solution is more robust to outliers in the output

compared to the least squares solution. However, the LAD method also has certain

characteristics that make it unsuitable for implementation, the primary of which are

the non-uniqueness of the solution and the computational complexity compared to

least squares [48, 49]. In the case of the least squares solution, the condition required

for uniqueness is for the input matrix to have full column rank. However, there is no

particular defined condition that can guarantee a unique LAD solution [50]. Secondly,

the simplex method, which is typically used to solve linear programs, becomes slow for

large observations. Nevertheless, upto a few hundred observations, LAD regression is

competitive with LS [51].

The proposed algorithm, SPAA, is able to retain the desirable characteristics of

the LAD solution while tackling the above mentioned disadvantages. Although the

size of the window, w , will vary with the application, it will rarely be large enough

for computation to become a factor in its implementation. Secondly, the form of the

optimization in Eqn. (4.18) inherently deals with the issue of multiple solutions by

selecting the regression vector with the least distance from its previous value.
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4.3.3 SPAA variants

The SPAA framework is quite flexible and a number of variations are possible within

it. These variations come at almost no increase in computational complexity. When to

use a particular variant depends on the application and availability of expert process

knowledge. As mentioned earlier, like OPAA, the SPAA formulation consists of two

components, the objective term which is to be minimized and the constraint term.

The variations in these two terms are now discussed respectively.

Objective function variations

There are numerous ways to describe closeness in mathematical terms besides the one

used for β̂ in OPAA. We discuss some alternatives below.

(a) Sum of Squares of Fractional Change

Instead of minimizing ||β−β̂n||
2

2
in the objective, one could minimize,

m∑
j

1
2

(
βj−β̂n,j
β̂n,j

)2
,

i.e. the sum of squares of the fractional changes in the regression parameters. If the

update in β̂ is brought about by a disturbance or outlier, the former should perform

better whereas for a system change the latter should be better. This is because in the

case of a disturbance/outlier, one would expect the parameter to return to normal

and the error will be minimized when the change in the regression coefficients (and

not the fractional change) due to the disturbance is minimal. On the other hand,

a system change implies a new value of β̂. In this case, among all β̂ that satisfy

the constraint, selecting the one that minimizes the relative change in regression co-

efficients makes more sense. In applications where regression coefficients indicate a

physical relationship between response and explanatory variables, it is more reason-

able to accept, say, a 5 % change in a coefficient with a large magnitude than accept

a 100 % change in one with a much smaller magnitude. Selecting between the two

depends on the expected noise/disturbance and the trend changes anticipated in the

system and use of expert/prior knowledge, if available, is recommended.

(b) L1 norm

Here, instead of minimizing the L2 norm in the objective, one could minimize the L1
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norm. Hence, the update to β̂ now becomes:

β̂n+1 = arg min
β
|β − β̂n|1 s.t.

n+1∑
i=n−w+2

|yi − xiβ| ≤ sadw + e (4.27)

|β − β̂n|1 is the L1 norm of the vector (β − β̂n) and is the same as
m∑
j=1

|βj − β̂n,j|,

where m is the dimension of β̂. Without going into details, we directly write the

form of the final update expression. The reader can verify this using the techniques

employed previously in Section 4.3.1.

β̂n+1 = arg min
β,zj ,ui

m∑
j=1

zj s.t.

zj ≥
(
βj − β̂n,j

)
, zj ≥ −

(
βj − β̂n,j

)
&

ui ≥ (yi − xiβ) , ui ≥ − (yi − xiβ) ,
n+1∑

i=n−w+2

ui ≤ sadw + e

(4.28)

where, zi & ui are artificial variables introduced for conversion into a linear program.

The consequence of using the L1 norm instead of the L2 norm is that because of the

sparseness property of the L1 norm, the update with changes in fewer of the regression

coefficients will be preferred whereas in the L2 norm, the update will almost always

be one where all the coefficients change to some extent. Also, since the prediction is

a linear function of β̂, using the L1 norm will cause less deviation from the previous

β̂ value. Again, this may or may not be desirable depending on whether the update

is caused by a disturbance or process change and use of expert judgment will be re-

quired to select between the two.

Constraint term variations

Lastly, as pointed out by Fisher [52], the use of LAD for regression is very flexible.

Since the SPAA algorithm, in its constraint/loss term, uses a slightly modified ver-

sion of the absolute cost function, it also inherits the same flexibility. A number

of constraints can be easily incorporated within the existing optimization problem

without any significant increase in computational requirement. For example, if it is
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required to weigh the data unequally, it can be done by simply transforming the data

as,
(
∼
xi,

∼
yi

)
= wi (xi, yi) [53]. The weights, wi could be time weights [54], or they

could be a robust measure of the distances in the input space [53].

Also, in the case of industrial applications, use of prior or expert knowledge re-

garding the systems can be implemented easily. The regression coefficients in the case

of real world systems quantify the physical relationship between the response and ex-

planatory variables. Hence, suppose that based on experience or historical evidence

from similar scenarios elsewhere, one wanted to restrict the fractional change in any

particular regression coefficient, j, to a value p , the same can be very easily incorpo-

rated into the existing framework by adding the additional inequality constraint as

follows:

βj ≤ (1 + p) β̂n,j & βj ≥ (1− p) β̂n,j (4.29)

Another variation in the constraint term can be made by employing a quadratic

loss function. Keeping the objective function unchanged, the new update expression

can be written as:

β̂n+1 = arg min
β

||β − β̂n||
2

2
s.t.

n+1∑
i=n−w+2

(yi − xiβ)2 ≤ lsw + e (4.30)

Here, lsw is the sum of squares of deviations given by the least squares solution

on the window and e is the threshold/sensitivity parameter. Using the method of

Lagrangian multiplier, the above leads to a set of quadratic equations for the update

expression as opposed to the original SPAA which does not have an analytical update

expression. However, with the decrease in computational complexity, the robustness

of the absolute value cost function is also lost.

4.4 Results and discussion

In this section, the SPAA algorithm is tested on a numerically simulated and an

industrial data set and its performance compared with OPAA, RLS and MWLS. The
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results are consistent with the observations and comments made earlier and clearly

bring out the advantages of SPAA.

4.4.1 Numerical simulation

A SISO (single input single output) parameter varying ARX model is simulated as

follows:

yt = a0 + a1yt−1 + a2ut + a3ut−1 + εt (4.31)

where ut, the input, is a uniformly distributed random number in the interval [−2,+2],

a0, a1, a2 & a3 are the ARX model parameters & εt is zero mean white noise. For

the training set, a total of 600 samples are generated and the ARX parameters varied

with a combination of ramp and step changes as shown in Table 4.1 (all ramp changes

are linear).

Table 4.1: Parameter variation: Numerical simulation - Training set
time, t a0 a1 a2 a3
001 : 200 -1.00 → 0.00 +0.50 +1.00 → +0.25 +0.25
201 : 400 0.00 -0.50 +0.25 +1.00
401 : 600 0.00 → +1.00 +0.75 +0.25 → -0.75 -0.50

All algorithms are trained on this data set and the optimum parameters (w, ξ, C, e, λ)

selected by minimizing the rmsep on it . The least squares solution for the first 20

points is used as the initial value of the ARX parameters. Next, for the test set, two

cases are considered.

(i) Case I:

The same equation, Eqn. (4.31) used for the training set is used to generate the test

set.

(ii) Case II

The sequence in which the ARX model parameters vary in the training set is changed

for the test set generation in this case. The parameter variation, shown in Table 4.2,

is the same as in Table 4.1 but with rows 1 and 2 interchanged.

In both test cases, outliers are added to the output, y. It is then observed how the

different algorithms perform in the presence of extreme values. For the test cases, the
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Table 4.2: Parameter variation: Numerical simulation - Test set - Case II
time, t a0 a1 a2 a3
001 : 200 0.00 -0.50 +0.25 +1.00
201 : 400 0.00 → -1.00 +0.50 +0.25 → +1.00 +0.25
401 : 600 -1.00 → +1.00 +0.75 +1.00 → -0.75 -0.50
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Figure 4.1: Contaminated vs. clean output for Test Cases I and II

results are given based on comparison of the predicted output with the outlier free

output. Figure 4.1 presents the scatter plot of the outputs with outliers against the

clean data.

Before the results are presented, we show Figures, 4.2 & 4.3 illustrating the effects

of the parameters e and w. From Figures 4.2 & 4.3, one can see that w and e affect

parameter estimation, and hence prediction, differently. While both have a smoothing

effect on the estimation and prediction, increase in w causes increasing influence of

past samples on the current estimation. Thus, a large window leads to a robust but

less adaptive estimation. Once a trend change is detected, it leads to a bias in the

estimation. However, this bias is removed when the sliding window moves forward
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Figure 4.2: Effect of w on estimating a2, for fixed e(= 0)
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Figure 4.3: Effect of e on estimating a2, for fixed w(= 10)

82



and leaves all past samples behind. This role is quite similar to that of λ in RLS.

On the other hand, increase in e results in less parameter updates but it also causes

a delay in detecting the trend change. As soon as this trend change is detected, (by

activation of the loss function), the estimation of the updated parameters is based

only on the current window. The bias is caused by the presence of the threshold since

according to the formulation, the updated parameter does not have to fit the LAD

solution for the current window exactly.

Table 4.3: Test Results: Numerical simulation - Case I
Model λ/ξ/e/w R rmsep (y) Updates rmsep(a0/a1/a2/a3)
RLS 0.94/-/-/- 0.941 0.695 580 0.38/0.33/0.19/0.30
MWLS -/-/-/30 0.935 0.731 580 0.44/0.33/0.22/0.32
SPAA -/-/20/20 0.947 0.648 125 0.28/0.30/0.16/0.29
OPAA -/0.8/-/- 0.845 1.223 301 0.51/0.42/0.54/0.50

Table 4.4: Test Results: Numerical simulation - Case II
Model λ/ξ/e/w R rmsep (y) Updates rmsep(a0/a1/a2/a3)
RLS 0.94/-/-/- 0.903 0.757 580 0.34/0.38/0.28/0.29
MWLS -/-/-/30 0.892 0.802 580 0.51/0.44/0.29/0.35
SPAA -/-/20/20 0.926 0.657 126 0.29/0.27/0.21/0.21
OPAA -/0.8/-/- 0.752 1.375 306 0.95/0.77/0.53/0.54

Tables 4.3 & 4.4 show the performance of the various algorithms for Test Cases

I & II. As discussed earlier, SPAA with e = 0 is effectively a moving window LAD

algorithm. The rmsep values of SPAA (e = 0) for Test Cases I & II are 0.658 &

0.697 respectively, which are higher than those of SPAA (e = 20) for the corre-

sponding cases. For the variants of OPAA, rmsep values of 0.912/0.944 for OPAA-I,

& 1.076/1.166 for OPAA-II are obtained for Test Cases I/II. Although the OPAA

variants show improvement, it is still much less accurate than the other algorithms

because of the update being based on a single sample as pointed out earlier. Another

observation is that more than one combination of C and ξ can lead to the least rm-

sep on the training set. In such cases it is difficult to select the appropriate set of

parameters for OPAA -I/II.

The results clearly show that SPAA performs the best among all the algorithms.

The greater the number/degree of outlying values, the greater will be the difference

83



in the performance of SPAA and the other algorithms. It is also interesting to note

that the number of updates in the SPAA algorithm for both cases is significantly less

than the rest, including OPAA-I and OPAA-II. Figures 4.4, 4.5, 4.6 and 4.7 show

the tracking performance of RLS, MWLS, SPAA, OPAA & its variants for parameter

a0 for both test cases. The tracking performance for parameters a1, a2 & a3 is also

similar and the associated figures are presented in Appendix A. These figures are able

to demonstrate clearly why the SPAA algorithm performs as it does. For clarity, the

comparison of SPAA with RLS, MWLS and with OPAA, OPAA-I is shown separately

(performance of OPAA-II is quite similar to OPAA-I and is not included in the

figures).
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Figure 4.4: Tracking a0, Test Case I. - True, - RLS, - MWLS, - SPAA
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Figure 4.5: Tracking a0, Test Case II. - True, - RLS, - MWLS, - SPAA
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Figure 4.6: Tracking a0, Test Case I. - True, - OPAA-I, - OPAA, - SPAA
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Figure 4.7: Tracking a0, Test Case II. - True, - OPAA-I, - OPAA, - SPAA

It is clear that SPAA is much more robust than the other algorithms. However,

SPAA also leads to a bias in the parameter estimation. This is possibly the reason

why the difference in performance is not more in terms of the R or rmsep values.

However, for industrial applications it is generally not necessary to track the true

(or laboratory) values exactly (due to potential errors in laboratory analysis), merely

tracking the trend of the output is satisfactory. It is also evident that compared to

the other algorithms the variance of the parameter estimates in SPAA is quite low.

In this regard, SPAA’s advantage is brought out more clearly.

4.4.2 Industrial case study

In this section, an industrial data set from an oil sands processing plant located

in Alberta, Canada is used to assess the performance of SPAA. The output is the

Reid Vapor Pressure (RVP) of the bottoms of a de-propanizer column which is part

of the upgrading unit of the oil sands processing plant. The inputs used are the

flowrate, temperature and pressure associated with the de-propanizer column. Due

to proprietary reasons, further details are not given regarding the process and nor-

malized values are used for the inputs and output. The system is approximated by

the following linear model:
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Figure 4.8: RVP normalized values,test set

y = Xβ̂ (4.32)

Around 700 and 350 samples form the training and test sets respectively. The

least squares solution based on the first 50 points is used as the initial estimate for

β. Figure 4.8 shows the plot of the normalized RVP values for the test set. The test

set contains potential outliers based on the 3 σ edit rule [30] since the explanatory

variables for the corresponding points in the test set are within the normal operating

range.

Table 4.5 shows the performance of the algorithms on the test set. While calculat-

ing the R and rmsep values, the potential outliers were not included in the calculation

in order to check the performance with respect to the outlier free data.

Table 4.5: Test Results: Industrial case study
Model λ e w R rmsep Updates
RLS 0.95 - - 0.597 0.414 348
MWLS - - 30 0.571 0.432 348
SPAA - 1.5 30 0.622 0.401 207

SPAA performs better than RLS and MWLS in the test set in the presence of

potential outliers. A selected section of the prediction trend is displayed in Figure
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Figure 4.9: Prediction comparison on a section of test data

4.9. It shows that SPAA is able to track the reference value better in comparison to

the other methods. The number of updates to β in SPAA is also lower than that in

RLS or MWLS. This is also reflected in a smaller variance in prediction for SPAA as

compared to either RLS or MWLS. The variance in the prediction for SPAA, RLS and

MWLS is 0.167, 0.173 and 0.187 respectively. The number of updates can be further

controlled by appropriately tuning the value of the threshold/sensitivity parameter, e.

The effect of the sensitivity/threshold parameter is illustrated by Figure 4.10 which

displays the parameter estimates for the regression vector of the linear model in Eqn.

(4.32). Though small at 1.5 %, it is still significant since it is a percentage value and

the window size at 30 is large.
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Figure 4.10: Clockwise from top left, parameter estimates for the constant term,
flowrate, temperature and pressure respectively. - SPAA(e = 0), - SPAA(e = 1.5)

4.5 Conclusion

In this chapter, a new method called SPAA, which improves from an existing adaptive

linear regression algorithm, OPAA, to make it more robust and suitable for practical

applications, has been proposed. Compared to OPAA, RLS and MWLS, SPAA is

more robust and follows a cautious parameter update strategy. Also, the SPAA
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framework is quite flexible and general. OPAA and moving window LAD are realized

from it at specific values of the tuning parameters and a number of variations are

possible with little or no additional computational complexity. The advantages of

the method are highlighted by application to an industrial and numerically simulated

data set.
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Chapter 5

Conclusions

5.1 Summary

This thesis focuses on the development of models for building soft sensors for predic-

tion applications. Although soft sensors have, over the years, received considerable

research attention, there are still many challenges faced during industrial applica-

tions. The major theme addressed in this thesis is the adaptability of soft sensors so

that sustained performance is achieved without the need for model re-training after

fixed time intervals. Secondly, simple linear models are considered. The low com-

putational cost associated with such models gives them an advantage over the other

more complex and heavier model structures.

Chapter 1 briefly introduced the need and justification for developing soft sensors

in the first place. In Chapter 2, the issue of handling nonlinear and time varying

systems simultaneously under the JIT modeling framework was addressed. Since the

similarity criteria are typically based on space, it may happen that old samples get

large weights in the local model. This will decrease the model performance if the

system is time varying. Therefore a novel similarity criterion, which takes account of

time as an additional variable, was introduced to calculate sample weights. Further,

besides the offline strategy of determining the bandwidth parameters, an adaptive

method was proposed as an alternative. The new method, based on minimizing

the leave-one-out cross validation, finds the bandwidth parameters adaptively with

respect to each query. Advantages of the methods were illustrated by application

to numerically simulated and industrial NIR data. It was found that the proposed

methods outperformed the traditional Euclidean space based JIT models as well as

91



RLWPLS, an existing method to deal with time varying nonlinear systems under the

JIT framework.

Chapter 3 again dealt with JIT based soft sensors. The shortcomings of the

existing distance-angle similarity metric were highlighted and an improved weighing

scheme formulated. Secondly, point-based bandwidth selection strategy, where a

bandwidth is stored with every historical data, was proposed to efficiently utilize

available data. Since the point-based method is offline, the increase in computation

cost associated with it is not a major concern. Results obtained from application

to simulated and experimental laboratory data justified the claims made. Besides

increase in prediction accuracy, clearer interpretation of results and an intuitive basis

for parameter selection were observed as advantages of the new methods.

Chapter 4 introduced an existing adaptive linear regression algorithm, called

OPAA. OPAA was then improved to make it suitable for industrial applications and

the new algorithm thus developed was called SPAA. Linear regression algorithms such

as the moving window least squares and recursive least squares are not robust due

to the squared error cost function and are susceptible to minor process disturbances.

SPAA, which uses an absolute deviation cost function and cautious parameter update

strategy was shown to overcome these drawbacks. The methods were then applied to

a numerical example and data from a de-propanizer column. Results indicated that

SPAA performed better in the presence of outliers and had fewer parameter updates

in comparison to the other algorithms.

5.2 Recommendations for future work

The first two chapters focus on improving the similarity criterion to increase the

accuracy of JIT based modeling. One common element among the two is the structure

of the similarity/weight function. The first step is to extend the normal input space to

include metrics/new variables that give additional information regarding the system.

The additional variables can be either the age of the sample, as in Chapter 1, to deal

with time varying issue, or the angle, as in Chapter 2, to deal with the dynamics of

the process. The weight is then calculated by simply taking the Euclidean distance

between any two input variables thus modified. In this work, only two additional
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variables, time and angle have been considered. However, other metrics such as

correlation, used by Fujiwara et al. [23], could also be incorporated along similar

lines. Secondly, since the similarity criterion is evaluated based on distance in the

input space only, and squared error cost functions are used in the local models, they

are susceptible to outlying output, y, values. Therefore, use of robust local models

to address this issue can be an area for potential future work.

With regards to SPAA, developed in Chapter 3, it is noted that it is robust to

outliers in the output space but is sensitive to large leverage points, i.e., outliers

in the predictor variable [55, 56]. To handle outliers in the input variables, robust

distance measures such as MCD or MVE [57] can be explored. More guidelines

regarding the use of the SPAA variants can be established. Finally, the window and

threshold parameters used are global values obtained through offline optimization.

Exploring adaptive estimation techniques for these parameters is another possible

research direction.
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Appendix A
Figures displaying the tracking performance of ARX model parameters a1, a2 & a3

for Test Cases I & II, Section 4.4.1, Chapter 4.
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Figure 1: Tracking a1, Test Case I. - True, - RLS, - MWLS, - SPAA
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Figure 2: Tracking a1, Test Case II. - True, - RLS, - MWLS, - SPAA
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Figure 3: Tracking a2, Test Case I. - True, - RLS, - MWLS, - SPAA
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Figure 4: Tracking a2, Test Case II. - True, - RLS, - MWLS, - SPAA
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Figure 5: Tracking a3, Test Case I. - True, - RLS, - MWLS, - SPAA
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Figure 6: Tracking a3, Test Case II. - True, - RLS, - MWLS, - SPAA
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Figure 7: Tracking a1, Test Case I. - True, - OPAA-I, - OPAA, - SPAA
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Figure 8: Tracking a1, Test Case II. - True, - OPAA-I, - OPAA, - SPAA
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Figure 9: Tracking a2, Test Case I. - True, - OPAA-I, - OPAA, - SPAA
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Figure 10: Tracking a2, Test Case II. - True, - OPAA-I, - OPAA, - SPAA
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Figure 11: Tracking a3, Test Case I. - True, - OPAA-I, - OPAA, - SPAA
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Figure 12: Tracking a3, Test Case II. - True, - OPAA-I, - OPAA, - SPAA

104


